Thermal fluctuations in pinned elastic systems: field theory of rare events and droplets
International Nuclear Information System (INIS)
Balents, Leon; Le Doussal, Pierre
2005-01-01
Using the functional renormalization group (FRG) we study the thermal fluctuations of elastic objects (displacement field u, internal dimension d) pinned by a random potential at low temperature T, as prototypes for glasses. A challenge is how the field theory can describe both typical (minimum energy T = 0) configurations, as well as thermal averages which, at any non-zero T as in the phenomenological droplet picture, are dominated by rare degeneracies between low lying minima. We show that this occurs through an essentially non-perturbative thermal boundary layer (TBL) in the (running) effective action Γ [u] at T > 0 for which we find a consistent scaling ansatz to all orders. The TBL describes how temperature smoothes the singularities of the T = 0 theory and contains the physics of rare thermal excitations (droplets). The formal structure of this TBL, which involves all cumulants of the coarse grained disorder, is first explored around d = 4 using a one-loop Wilson RG. Next, a more systematic exact RG (ERG) method is employed, and first tested on d = 0 models where it can be pushed quite far. There we obtain precise relations between TBL quantities and droplet probabilities (those are constrained by exact identities which are then checked against recent exact results). Our analysis is then extended to higher d, where we illustrate how the TBL scaling remains consistent to all orders in the ERG and how droplet picture results can be retrieved. Since correlations are determined deep in the TBL (by derivatives of Γ [u] at u = 0), it remains to be understood (in any d) how they can be retrieved (as u = 0 + limits in the non-analytic T = 0 effective action), i.e., how to recover a T = 0 critical theory. This formidable 'matching problem' is solved in detail for d = 0, N = 1 by studying the (partial) TBL structure of higher cumulants when points are brought together. We thereby obtain the β-function at T = 0, all ambiguities removed, displayed here up to four
International Nuclear Information System (INIS)
Yoon, P. H.; Schlickeiser, R.; Kolberg, U.
2014-01-01
Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result
Kawai, Shinnosuke; Komatsuzaki, Tamiki
2009-12-14
We present a novel theory which enables us to explore the mechanism of reaction selectivity and robust functions in complex systems persisting under thermal fluctuation. The theory constructs a nonlinear coordinate transformation so that the equation of motion for the new reaction coordinate is independent of the other nonreactive coordinates in the presence of thermal fluctuation. In this article we suppose that reacting systems subject to thermal noise are described by a multidimensional Langevin equation without a priori assumption for the form of potential. The reaction coordinate is composed not only of all the coordinates and velocities associated with the system (solute) but also of the random force exerted by the environment (solvent) with friction constants. The sign of the reaction coordinate at any instantaneous moment in the region of a saddle determines the fate of the reaction, i.e., whether the reaction will proceed through to the products or go back to the reactants. By assuming the statistical properties of the random force, one can know a priori a well-defined boundary of the reaction which separates the full position-velocity space in the saddle region into mainly reactive and mainly nonreactive regions even under thermal fluctuation. The analytical expression of the reaction coordinate provides the firm foundation on the mechanism of how and why reaction proceeds in thermal fluctuating environments.
DEFF Research Database (Denmark)
Jørgensen, E.; Koshelets, V. P.; Monaco, Roberto
1982-01-01
The radiation emission from long and narrow Josephson tunnel junctions dc-current biased on zero-field steps has been ascribed to resonant motion of fluxons on the transmission line. Within this dynamic model a theoretical expression for the radiation linewidth is derived from a full statistical ...... treatment of thermal fluctuations in the fluxon velocity. The result appears to be very general and is corroborated by experimental determination of linewidth and frequency of radiation emitted from overlap Nb-I-Pb junctions....
Watanabe, Shinji; Miyake, Kazumasa
2018-03-01
The thermal expansion coefficient α and the Grüneisen parameter Γ near the magnetic quantum critical point (QCP) are derived on the basis of the self-consistent renormalization (SCR) theory of spin fluctuations. From the SCR entropy, the specific heat CV, α, and Γ are shown to be expressed in a simple form as CV = Ca - Cb, α = αa + αb, and Γ = Γa + Γb, respectively, where Ci, αi, and Γi (i = a, b) are related with each other. As the temperature T decreases, Ca, αb, and Γb become dominant in CV, α, and Γ, respectively. The inverse susceptibility of spin fluctuation coupled to the volume V in Γb is found to give rise to the divergence of Γ at the QCP for each class of ferromagnetism and antiferromagnetism (AFM) in spatial dimensions d = 3 and 2. This V-dependent inverse susceptibility in αb and Γb contributes to the T dependences of α and Γ, and even affects their criticality in the case of the AFM QCP in d = 2. Γa is expressed as Γ a(T = 0) = - V/T0( {partial T0}/{partial V} )T = 0 with T0 being the characteristic temperature of spin fluctuation, which has an enhanced value in heavy electron systems.
Thermodynamic theory of equilibrium fluctuations
International Nuclear Information System (INIS)
Mishin, Y.
2015-01-01
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.
Insects in fluctuating thermal environments.
Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David
2015-01-07
All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.
Quantum fluctuations from thermal fluctuations in Jacobson formalism
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)
2017-09-15
In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)
Thermal turbulent convection: thermal plumes and fluctuations
International Nuclear Information System (INIS)
Gibert, M.
2007-10-01
In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)
Thermal and active fluctuations of a compressible bilayer vesicle
Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki
2018-05-01
We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.
Boley, Bruno A
1997-01-01
Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.
Buckling of stiff polymers: Influence of thermal fluctuations
Emanuel, Marc; Mohrbach, Hervé; Sayar, Mehmet; Schiessel, Helmut; Kulić, Igor M.
2007-12-01
The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite temperature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus persistence length.
Single molecule detection, thermal fluctuation and life
YANAGIDA, Toshio; ISHII, Yoshiharu
2017-01-01
Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869
Thermal fluctuation problems encountered in LMFRs
International Nuclear Information System (INIS)
Gelineau, O.; Sperandio, M.; Martin, P.; Ricard, J.B.; Martin, L.; Bougault, A.
1994-01-01
One of the most significant problems of LMFBRs deals with thermal fluctuations. The main reason is that LMFBRs operate with sodium coolant at very different temperatures which leads to the existence of several areas of transition between hot and cold sodium. These transitions areas which are the critical points, maybe found in the reactor block as well as in the secondary and auxiliary loops. The characteristics of these thermal fluctuations are not easy to quantify because of their complex (random) behaviour, and often demand the use of thermalhydraulic mock-up tests. A good knowledge of these phenomena is essential because of the potential high level of damage they can induce on structures. Two typical thermal fluctuation problems encountered on operation reactors are described. They were not originally anticipated at the design stage of the former Phenix and the latter Superphenix reactors. Description and the analyses performed to describe the damaging process are explained. A well known thermal fluctuation problem is presented. It is pointed out how the feedback from the damages observed on operating reactors is used to prevent the components from any high cycle fatigue
Remarks on transport theories of interplanetary fluctuations
International Nuclear Information System (INIS)
Ye Zhou; Matthaeus, W.H.
1990-01-01
The structure of approximate transport theories for the radial behavior of interplanetary fluctuations is reconsidered. The emphasis is on theories derived under the assumption of scale separation; i.e., the correlation length of the fluctuations is much less than the scale of large inhomogeneities. In these cases the zero-wavelength limit provides a first approximation to the spectral evolution equations for the radial dependence of interplanetary fluctuation spectra. The goal here is to investigate the structure of a recently presented (Zhou and Matthaeus, 1989) transport theory, in which coupling of inward- and outward-type fluctuations appears in the leading order, an effect the authors call mixing. In linear theory, mixing-type couplings of inward-type and outward-type waves are formally a nonresonant effect. However, leading order mixing terms do not vanish at zero wavelength for fluctuations that vary nearly perpendicular to the local magnetic field, or when the mean magnetic field is weak. Leading order mixing terms also survive when the dispersion relation fails and there is a nonunique relationship between frequency and wave number. The former case corresponds to nearly two-dimensional structures; these are included, for example, in isotropic models of turbulence. The latter instance occurs when wave-wave couplings are sufficiently strong. Thus there are a variety of situations in which leading order mixing effects are expected to be present
Fluctuation Solution Theory Properties from Molecular Simulation
DEFF Research Database (Denmark)
Abildskov, Jens; Wedberg, R.; O’Connell, John P.
2013-01-01
The thermodynamic properties obtained in the Fluctuation Solution Theory are based on spatial integrals of molecular TCFs between component pairs in the mixture. Molecular simulation, via either MD or MC calculations, can yield these correlation functions for model inter- and intramolecular...
Analytical theory of intensity fluctuations in SASE
Energy Technology Data Exchange (ETDEWEB)
Yu, L.H.; Krinsky, S. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source
1997-07-01
Recent advances in SASE experiments stimulate interest in quantitative comparison of measurements with theory. Extending the previous analysis of the SASE intensity in guided modes, the authors provide an analytical description of the intensity fluctuations by calculating intensity correlation functions in the frequency domain. Comparison of the results with experiment yields new insight into the SASE process.
Spin fluctuation theory of itinerant electron magnetism
Takahashi, Yoshinori
2013-01-01
This volume shows how collective magnetic excitations determine most of the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.
Molecular thermodynamics using fluctuation solution theory
DEFF Research Database (Denmark)
Ellegaard, Martin Dela
. The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application......Properties of chemicals and their mutual phase equilibria are critical variables in process design. Reliable estimates of relevant equilibrium properties, from thermodynamic models, can form the basis of good decision making in the development phase of a process design, especially when access...... to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained...
WORKSHOP: Thermal field theory
Energy Technology Data Exchange (ETDEWEB)
Anon.
1989-04-15
The early history of the Universe is a crucial testing ground for theories of elementary particles. Speculative ideas about the constituents of matter and their interactions are reinforced if they are consistent with what we suppose happened near the beginning of time and discarded if they are not. The cosmological consequences of these theories are usually deduced using a general statistical approach called thermal field theory. Thus, 75 physicists from thirteen countries met in Cleveland, Ohio, last October for the first 'Workshop on Thermal Field Theories and their Applications'.
Thermodynamic properties of fluids from Fluctuation Solution Theory
International Nuclear Information System (INIS)
O'Connell, J.P.
1990-01-01
Fluctuation Theory develops exact relations between integrals of molecular correlation functions and concentration derivatives of pressure and chemical potential. These quantities can be usefully correlated, particularly for mechanical and thermal properties of pure and mixed dense fluids and for activities of strongly nonideal liquid solutions. The expressions yield unique formulae for the desirable thermodynamic properties of activity and density. The molecular theory origins of the flucuation properties, their behavior for systems of technical interest and some of their successful correlations will be described. Suggestions for fruitful directions will be suggested
Thermal fluctuation effects far from the critical temperature
International Nuclear Information System (INIS)
Refai, T.F.
1980-01-01
We report the first measurements of thermal fluctuations in superconductors at temperatures far from the critical temperature T/sub c/ (T approx. 1/2 T/sub c/), and also the first measurements that use thermal fluctuations to probe the non-equilibrium dynamics of a superconductor. This is the first work that separately measures the fluctuations that cause a superconductor to switch to the dissipative state and those that cause it to switch back to the superconductor state. These unique measurements allowed: (1) The first measurement experimental confirmation of the theory of Langer, Ambegaokar, McCumber, and Halperin (LAMH) where T/sub c/ was not an adjustable parameter. This rigorous test of the theory was not previously possible because earlier measurements were carried out very near T/sub c/, where a change of many orders of magnitude of predicted effects occur if the assumed T/sub c/ changes a few millidegrees. Thus T/sub c/ in all previous work was always adjusted so as to get agreement with the theory. (2) The first verification of the LAMH model far from T/sub c/. (3) The first experimental confirmation of the relation between current and transition probability that was predicted in the LAMH model. (4) Confirmation that the Lamda model developed by Peters, Wolf, and Rachford (PWR) to explain the dynamics on the nonequilibrium region can be extended to explain fluctuation effects. This is based on an original phenomenological extension of the LAMH model that is developed in this work and on our data. (5) The most direct measurement to date of the nature of the decay of the dissipative region in a weak link. These measurements show that the region recovers exponentially in time as proposed in the Lamda model
Thermal fluctuations in a hyperscaling-violation background
Energy Technology Data Exchange (ETDEWEB)
Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Upadhyay, Sudhaker [Indian Institute of Technology Kharagpur, Centre for Theoretical Studies, Kharagpur (India); Al Asfar, Lina [Universite Blaise Pascal, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France)
2017-08-15
In this paper, we study the effect of thermal fluctuations on the thermodynamics of a black geometry with hyperscaling violation. These thermal fluctuations in the thermodynamics of this system are produced from quantum corrections of geometry describing this system. We discuss the stability of this system using specific heat and the entire Hessian matrix of the free energy. We will analyze the effects of thermal fluctuations on the stability of this system. We also analyze the effects of thermal fluctuations on the criticality of the hyperscaling-violation background. (orig.)
Influence of thermal fluctuations on ligament break-up: a fluctuating lattice Boltzmann study
Xue, Xiao; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico
2017-11-01
Thermal fluctuations are essential ingredients in a nanoscale system, driving Brownian motion of particles and capillary waves at non-ideal interfaces. Here we study the influence of thermal fluctuations on the breakup of liquid ligaments at the nanoscale. We offer quantitative characterization of the effects of thermal fluctuations on the Plateau-Rayleigh mechanism that drives the breakup process of ligaments. Due to thermal fluctuations, the droplet sizes after break-up need to be analyzed in terms of their distribution over an ensemble made of repeated experiments. To this aim, we make use of numerical simulations based on the fluctuating lattice Boltzmann method (FLBM) for multicomponent mixtures. The method allows an accurate and efficient simulation of the fluctuating hydrodynamics equations of a binary mixture, where both stochastic viscous stresses and diffusion fluxes are introduced. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069.
Queues and Lévy fluctuation theory
Dębicki, Krzysztof
2015-01-01
The book provides an extensive introduction to queueing models driven by Lévy-processes as well as a systematic account of the literature on Lévy-driven queues. The objective is to make the reader familiar with the wide set of probabilistic techniques that have been developed over the past decades, including transform-based techniques, martingales, rate-conservation arguments, change-of-measure, importance sampling, and large deviations. On the application side, it demonstrates how Lévy traffic models arise when modelling current queueing-type systems (as communication networks) and includes applications to finance. Queues and Lévy Fluctuation Theory will appeal to graduate/postgraduate students and researchers in mathematics, computer science, and electrical engineering. Basic prerequisites are probability theory and stochastic processes.
Theory of electromagnetic fluctuations for magnetized multi-species plasmas
Energy Technology Data Exchange (ETDEWEB)
Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)
2014-09-15
Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.
The fluctuation theory of the stellar mass loss
International Nuclear Information System (INIS)
Andriesse, C.D.
1981-01-01
The idea that fluctuations in the mass flow are as significant as the very existence of the flow has led to the development of a fluctuation theory of the stellar mass loss. A general theory for fluctuations in non-equilibrium systems - and such are stellar atmospheres - was developed long ago. In developing the general theory to a specific stellar theory, however, the arguments have not come up in their logical order. The present sketch of this theory improves on that order and is offered as a framework for further study. (Auth.)
International Nuclear Information System (INIS)
Volkov, A.G.; Kortov, S.V.; Povzner, A.A.
1996-01-01
The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density
Fluctuations in the thermal superfluid model for heated spherical nuclei
International Nuclear Information System (INIS)
Nguyen Dinhdang; Nguyen Zuythang
1990-01-01
The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)
Quantum fluctuations and thermal dissipation in higher derivative gravity
Directory of Open Access Journals (Sweden)
Dibakar Roychowdhury
2015-08-01
Full Text Available In this paper, based on the AdS2/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z→∞. In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z=5 fixed point.
Energy Technology Data Exchange (ETDEWEB)
Gibert, M
2007-10-15
In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)
Thermalization vs. isotropization and azimuthal fluctuations
International Nuclear Information System (INIS)
Mrowczynski, Stanislaw
2005-01-01
Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage
Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma
International Nuclear Information System (INIS)
Hazeltine, R. D.; Mahajan, S. M.
2013-01-01
Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained
International Nuclear Information System (INIS)
Kelly, R.
1977-01-01
An energetic ion which is incident on a solid target causes a momentary temperature increase in the impact region, i.e., a so-called thermal spike occurs. Such spikes are capable of causing (or supplementing) disordering, precipitation, crystallization, electronic excitation, stoichiometry change, desorption, and sputtering, it being the contribution to sputtering that is considered here. The approach used is compatible with modern damage-distribution theory. Thus the temperature profile left by the incident ion is taken as a three-dimensional Gaussian with parameters appropriate to power-law scattering, and is used as the initial condition for solving the heat-conduction equation. Let us write this solution as T = T(t, y), where t is time and y is a dimension parallel to the target surface. The vaporization flux from a solid surface is taken as pnsup(1/2)(2π 2 >kT)sup(-1/2), where p, the equilibrium pressure of a vapor species containing n atoms, can be written as p 0 exp(-L/T), p 0 and L are constants largely independent of temperature, and 2 > is the mean mass per atom of target. An equation for the thermal sputtering coefficient is given: after integration the final result takes the form: Ssub(thermal)=pnsup(1/2)[2π 2 >k(Tsub(infinity)+cΔT 0 )]sup(-1/2)πlambda 2 tsub(eff.)atoms/ion, where Tsub(infinity) is the macroscopic target temperature, cΔT 0 is the maximum temperature increase at x = y = 0, p is to be evaluated at T = Tsub(infinity) + cΔT 0 , lambda is the mean atomic spacing of the target, and tsub(eff.) is a quantity with units of time. (author)
Rectification of thermal fluctuations in ideal gases.
Meurs, P; Van den Broeck, C; Garcia, A
2004-11-01
We calculate the systematic average speed of the adiabatic piston and a thermal Brownian motor, introduced by C. Van den Broeck, R, Kawai and P. Meurs [Phys. Rev. Lett. 93, 090601 (2004)], by an expansion of the Boltzmann equation and compare with the exact numerical solution.
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Kim, Chang-Bae; Horton, W.
1990-05-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Changbae Kim; Horton, W.
1991-01-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)
Topology of microwave background fluctuations - Theory
Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman
1990-01-01
Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.
Study of thermal - hydraulic sensors signal fluctuations in PWR
International Nuclear Information System (INIS)
Hennion, F.
1987-10-01
This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr
Critical thermal limits affected differently by developmental and adult thermal fluctuations
DEFF Research Database (Denmark)
Salachan, Paul Vinu; Sørensen, Jesper Givskov
2017-01-01
the developmental and adult life stages. For developmental acclimation, we found mildly detrimental effects of high amplitude fluctuations for critical thermal minima, while the critical thermal maxima showed a beneficial response to higher amplitude fluctuations. For adult acclimation involving shifts between...... fluctuating and constant regimes, cold tolerance was shown to be dictated by developmental temperature conditions irrespective of the adult treatments, while the acquired heat tolerance was readily lost when flies developed at fluctuating temperature were shifted to a constant regime as adults. Interestingly......, we also found that effect of fluctuations at any life stage was gradually lost with prolonged adult maintenance suggesting a more prominent effect of fluctuations during developmental compared to adult acclimation in Drosophila melanogaster....
Methods of thermal field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)
1998-11-01
We introduce the basic ideas of thermal field theory and review its path integral formulation. We then discuss the problems of QCD theory at high and at low temperatures. At high temperature the naive perturbation expansion breaks down and is cured by resummation. We illustrate this improved perturbation expansion with the g{sup 2}{phi}{sup 4} theory and then sketch its application to find the gluon damping rate in QCD theory. At low temperature the hadronic phase is described systematically by the chiral perturbation theory. The results obtained from this theory for the quark and the gluon condensates are discussed. (author) 22 refs., 6 figs.
Symmetry breaking due to quantum fluctuations in massless field theories
International Nuclear Information System (INIS)
Ghose, P.; Datta, A.
1977-10-01
It is shown that quantum fluctuations can act as the driving mechanism for the spontaneous breakdown of both scale and the discrete phi→-phi symmetries in a lamdaphi 4 theory which is massless and scale invariant in the tree approximation. Consequently dimensional transformation occurs and the dimensionless and only parameter lambda in the theory is fixed and replaced by the vacuum expectation value of the field. These results are shown to be consistent with the appropriate renormalization group equation for the theory. A scalar electrodynamics which is massless and scale invariant in the tree approximation is also considered, and it is shown that the Higgs meson in such a theory is much heavier than the vector meson for small values of the gauge coupling constant e. Another interesting consequence of such a theory is that it possesses vortex-line solutions only when quantum fluctuations are taken into account
Fluctuation and dissipation in nonequilibrium quantum field theory
International Nuclear Information System (INIS)
Ramos, Rudnei O.
1994-01-01
The nonequilibrium dynamics of a scalar field is studied using perturbation theory and a real time finite temperature formulation. The evolution equation for the scalar field is explicitly obtained, and terms responsible for noise (fluctuations) and dissipation are identified and studied in the high temperature limit. (author)
Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations
DEFF Research Database (Denmark)
Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing
2007-01-01
Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...
Baumgarten, Lorenz; Kierfeld, Jan
2018-05-01
We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy
Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory
International Nuclear Information System (INIS)
Velazquez, L
2013-01-01
Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor R ijkl (x|θ) of the statistical manifold M. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(x-check|θ) obtained from dp(x|θ) by considering a coordinate change x-check = φ(x) cannot be factorized into independent distributions as dp(x-check|θ) = prod i dp (i) (x-check i |θ). It is shown that the curvature tensor R ijkl (x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(θ)=θ i x-bar i -s( x-bar |θ)+k 2 R(x|θ)/6. (paper)
Particle evaporation spectra with inclusion of thermal shape fluctuations
International Nuclear Information System (INIS)
Moretto, L.G.; Bowman, D.R.
1987-04-01
The origin of the substantial sub-Coulomb component observed in proton and 4 He evaporation spectra at high excitation energy is attributed to the thermal excitation of shape degrees of freedom. A critique of the Hauser-Feshbach theory as used in evaporation codes is presented. A new formalism including the thermal excitation of collective modes as well as quantal penetration in the framework of a transition state approach is derived. 5 figs
General framework for fluctuating dynamic density functional theory
Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim
2017-12-01
We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz
Quantum Fluctuations and the Unruh effect in strongly-coupled conformal field theories
Cáceres, Elena; Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2010-06-01
Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.
Information-to-free-energy conversion: Utilizing thermal fluctuations.
Toyabe, Shoichi; Muneyuki, Eiro
2013-01-01
Maxwell's demon is a hypothetical creature that can convert information to free energy. A debate that has lasted for more than 100 years has revealed that the demon's operation does not contradict the laws of thermodynamics; hence, the demon can be realized physically. We briefly review the first experimental demonstration of Maxwell's demon of Szilard's engine type that converts information to free energy. We pump heat from an isothermal environment by using the information about the thermal fluctuations of a Brownian particle and increase the particle's free energy.
Effects of thermal fluctuations on non-minimal regular magnetic black hole
International Nuclear Information System (INIS)
Jawad, Abdul; Shahzad, M.U.
2017-01-01
We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein-Yang-Mill theory with gauge field of magnetic Wu-Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb's free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the γ factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant. (orig.)
Effects of thermal fluctuations on non-minimal regular magnetic black hole
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)
2017-05-15
We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein-Yang-Mill theory with gauge field of magnetic Wu-Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb's free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the γ factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant. (orig.)
Scattering and Gaussian Fluctuation Theory for Semiflexible Polymers
Directory of Open Access Journals (Sweden)
Xiangyu Bu
2016-09-01
Full Text Available The worm-like chain is one of the best theoretical models of the semiflexible polymer. The structure factor, which can be obtained by scattering experiment, characterizes the density correlation in different length scales. In the present review, the numerical method to compute the static structure factor of the worm-like chain model and its general properties are demonstrated. Especially, the chain length and persistence length involved multi-scale nature of the worm-like chain model are well discussed. Using the numerical structure factor, Gaussian fluctuation theory of the worm-like chain model can be developed, which is a powerful tool to analyze the structure stability and to predict the spinodal line of the system. The microphase separation of the worm-like diblock copolymer is considered as an example to demonstrate the usage of Gaussian fluctuation theory.
Magnetic fluctuations due to thermally excited Alfven waves
International Nuclear Information System (INIS)
Agim, Y.Z.; Prager, S.C.
1990-01-01
Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10 . Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-β regimes. 21 refs., 6 figs
Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.
Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr
2014-03-01
In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chiral charge erasure via thermal fluctuations of magnetic helicity
International Nuclear Information System (INIS)
Long, Andrew J.; Sabancilar, Eray
2016-01-01
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ_5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ_5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ"3T"2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T"3/(α"5μ_5"4) until it reaches an equilibrium value H∼μ_5T"2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ_5< T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t∼T/(α"3μ_5"2). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.
Detecting protein folding by thermal fluctuations of microcantilevers.
Directory of Open Access Journals (Sweden)
Romina Muñoz
Full Text Available The accurate characterization of proteins in both their native and denatured states is essential to effectively understand protein function, folding and stability. As a proof of concept, a micro rheological method is applied, based on the characterization of thermal fluctuations of a micro cantilever immersed in a bovine serum albumin solution, to assess changes in the viscosity associated with modifications in the protein's structure under the denaturant effect of urea. Through modeling the power spectrum density of the cantilever's fluctuations over a broad frequency band, it is possible to implement a fitting procedure to accurately determine the viscosity of the fluid, even at low volumes. Increases in viscosity during the denaturant process are identified using the assumption that the protein is a hard sphere, with a hydrodynamic radius that increases during unfolding. This is modeled accordingly through the Einstein-Batchelor formula. The Einstein-Batchelor formula estimates are verified through dynamic light scattering, which measures the hydrodynamic radius of proteins. Thus, this methodology is proven to be suitable for the study of protein folding in samples of small size at vanishing shear stresses.
Creation of Magnetic Fields by Electrostatic and Thermal Fluctuations
International Nuclear Information System (INIS)
Saleem, Hamid
2009-01-01
It is pointed out that the electrostatic and thermal fluctuations are the main source of magnetic fields in unmagnetized inhomogeneous plasmas. The unmagnetized inhomogeneous plasmas can support a low frequency electromagnetic ion wave as a normal mode like Alfven wave of magnetized plasmas. But this is a coupled mode produced by the mixing of longitudinal and transverse components of perturbed electric field due to density inhomogeneity. The ion acoustic wave does not remain electrostatic in non-uniform plasmas. On the other hand, a low frequency electrostatic wave can also exist in the pure electron plasmas and it couples with ion acoustic wave when ions are dynamic. These waves can become unstable when density and temperature gradients are parallel to each other as can be the case of laser plasmas and is the common situation in stellar cores. The main instability condition for the electrostatic and electromagnetic modes is the same (2/3)κ n T (where κ n and κ T are inverse of the scale lengths of gradients of density and electron temperature, respectively). This indicates that the electrostatic and magnetic field fluctuations are strongly coupled in unmagnetized nonuniform plasmas.
Thermal fluctuations of dilaton black holes in gravity's rainbow
Dehghani, M.
2018-06-01
In this work, thermodynamics and phase transition of some new dilaton black hole solutions have been explored in the presence of the rainbow functions. By introducing an energy dependent space time, the dilaton potential has been obtained as the linear combination of two Liouville-type potentials and three new classes of black hole solutions have been constructed. The conserved and thermodynamic quantities of the new dilaton black holes have been calculated in the energy dependent space times. It has been shown that, even if some of the thermodynamic quantities are affected by the rainbow functions, the thermodynamical first law still remains valid. Also, the impacts of rainbow functions on the stability or phase transition of the new black hole solutions have been investigated. Finally, the quantum gravitational effects on the thermodynamics and phase transition of the solutions have been studied through consideration of the thermal fluctuations.
Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.
2014-01-01
Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.
Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles.
Bartheld, José L; Artacho, Paulina; Bacigalupe, Leonardo
2017-12-01
Most research in physiological ecology has focused on the effects of mean changes in temperature under the classic "hot vs cold" acclimation treatment; however, current evidence suggests that an increment in both the mean and variance of temperature could act synergistically to amplify the negative effects of global temperature increase and how it would affect fitness and performance-related traits in ectothermic organisms. We assessed the effects of acclimation to daily variance of temperature on thermal performance curves of swimming speed in helmeted water toad tadpoles (Calyptocephalella gayi). Acclimation treatments were 20°C ± 0.1 SD (constant) and 20°C ± 1.5 SD (fluctuating). We draw two key findings: first, tadpoles exposed to daily temperature fluctuation had reduced maximal performance (Z max ), and flattened thermal performance curves, thus supporting the "vertical shift or faster-slower" hypothesis, and suggesting that overall swimming performance would be lower through an examination of temperatures under more realistic and ecologically-relevant fluctuating regimens; second, there was significant interindividual variation in performance traits by means of significant repeatability estimates. Our present results suggest that the widespread use of constant acclimation temperatures in laboratory experiments to estimate thermal performance curves (TPCs) may lead to an overestimation of actual organismal performance. We encourage the use of temperature fluctuation acclimation treatments to better understand the variability of physiological traits, which predict ecological and evolutionary responses to global change. Copyright © 2017 Elsevier Ltd. All rights reserved.
Superconductivity versus quantum criticality: Effects of thermal fluctuations
Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo
2018-02-01
We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.
Gatsonis, Nikolaos; Yang, Jun
2013-11-01
The SDPD-DV is implemented in our work for arbitrary 3D wall bounded geometries. The particle position and momentum equations are integrated with a velocity-Verlet algorithm and the entropy equation is integrated with a Runge-Kutta algorithm. Simulations of nitrogen gas are performed to evaluate the effects of timestep and particle scale on temperature, self-diffusion coefficient and shear viscosity. The hydrodynamic fluctuations in temperature, density, pressure and velocity from the SDPD-DV simulations are evaluated and compared with theoretical predictions. Steady planar thermal Couette flows are simulated and compared with analytical solutions. Simulations cover the hydrodynamic and mesocopic regime and show thermal fluctuations and their dependence on particle size.
Squeezing of thermal and quantum fluctuations: Universal features
DEFF Research Database (Denmark)
Svensmark, Henrik; Flensberg, Karsten
1993-01-01
We study the classical and quantum fluctuations of a general damped forced oscillator close to a bifurcation instability. Near the instability point, the fluctuations are strongly phase correlated and are squeezed. In the limit of low damping, it is shown that the system has universal features when...... scaled with the damping. The same scaling law applies to the classical and to the quantum regimes. We furthermore show that the coupling to the environment is crucial in the generation of squeezed fluctuations....
Thermal physics kinetic theory and thermodynamics
Singh, Devraj; Yadav, Raja Ram
2016-01-01
THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions
International Nuclear Information System (INIS)
Reigada, Ramon; Sarmiento, Antonio; Romero, Aldo H.; Sancho, J. M.; Lindenberg, Katja
2000-01-01
We present a model in which the immediate environment of a bistable system is a molecular chain which in turn is connected to a thermal environment of the Langevin form. The molecular chain consists of masses connected by harmonic or by anharmonic springs. The distribution, intensity, and mobility of thermal fluctuations in these chains is strongly dependent on the nature of the springs and leads to different transition dynamics for the activated process. Thus, all else (temperature, damping, coupling parameters between the chain and the bistable system) being the same, the hard chain may provide an environment described as diffusion-limited and more effective in the activation process, while the soft chain may provide an environment described as energy-limited and less effective. The importance of a detailed understanding of the thermal environment toward the understanding of the activation process itself is thus highlighted. (c) 2000 American Institute of Physics
Stochastic cooling of bunched beams from fluctuation and kinetic theory
International Nuclear Information System (INIS)
Chattopadhyay, S.
1982-09-01
A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented
Effects of thermal fluctuations on the thermodynamics of modified Hayward black hole
Energy Technology Data Exchange (ETDEWEB)
Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Shibpur, Department of Mathematics, Howrah (India)
2016-03-15
In this work, we analyze the effects of thermal fluctuations on the thermodynamics of a modified Hayward black hole. These thermal fluctuations will produce correction terms for various thermodynamical quantities like entropy, pressure, internal energy, and specific heats. We also investigate the effect of these correction terms on the first law of thermodynamics. Finally, we study the phase transition for the modified Hayward black hole. It is demonstrated that the modified Hayward black hole is stable even after the thermal fluctuations are taken into account, as long as the event horizon is larger than a certain critical value. (orig.)
Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations
Energy Technology Data Exchange (ETDEWEB)
Simões, F. J. R. Jr.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Gaelzer, R.; Ziebell, L. F. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)
2013-10-15
In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.
Two problems in thermal field theory
Indian Academy of Sciences (India)
In this talk, I review recent progress made in two areas of thermal field theory. In par- ticular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate. Keywords. Thermal field theory; quark-gluon plasma. PACS Nos 11.10.Wx; 12.38.
General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles.
Navarrete-Benlloch, Carlos; Weiss, Talitha; Walter, Stefan; de Valcárcel, Germán J
2017-09-29
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.
International Nuclear Information System (INIS)
Pradel, P.
1984-05-01
After a brief overview of the thermohydraulical conditions of liquid sodium leading to important temperature fluctuations near the metallic surfaces, the author examines the transfer modes of these fluctuations in the structure thickness and the long term mechanical effects. Dimensioning models based on thermal and metallurgical properties are under study for structures subject to such sodium loads [fr
DEFF Research Database (Denmark)
Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.
2000-01-01
The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...
Heat Flux and Entropy Produced by Thermal Fluctuations
DEFF Research Database (Denmark)
Ciliberto, S.; Imparato, Alberto; Naert, A.
2013-01-01
, and a conservation law for the fluctuating entropy, which we justify theoretically. The system is ruled by the same equations as two Brownian particles kept at different temperatures and coupled by an elastic force. Our results set strong constraints on the energy exchanged between coupled nanosystems held...
Non-linear thermal fluctuations in a diode
Kampen, N.G. van
As an example of non-linear noise the fluctuations in a circuit consisting of a diode and a condenser C are studied. From the master equation for this system the following results are derived. 1. (i) The equilibrium distribution of the voltage is rigorously Gaussian, the average voltage being
International Nuclear Information System (INIS)
Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.
1981-01-01
Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs
Study on thermal wave based on the thermal mass theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.
Study on thermal wave based on the thermal mass theory
Institute of Scientific and Technical Information of China (English)
HU RuiFeng; CAO BingYang
2009-01-01
The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.
Fluctuations around classical solutions for gauge theories in Lagrangian and Hamiltonian approach
International Nuclear Information System (INIS)
Miskovic, Olivera; Pons, Josep M
2006-01-01
We analyse the dynamics of gauge theories and constrained systems in general under small perturbations around a classical solution in both Lagrangian and Hamiltonian formalisms. We prove that a fluctuations theory, described by a quadratic Lagrangian, has the same constraint structure and number of physical degrees of freedom as the original non-perturbed theory, assuming the non-degenerate solution has been chosen. We show that the number of Noether gauge symmetries is the same in both theories, but that the gauge algebra in the fluctuations theory becomes Abelianized. We also show that the fluctuations theory inherits all functionally independent rigid symmetries from the original theory and that these symmetries are generated by linear or quadratic generators according to whether the original symmetry is preserved by the background or is broken by it. We illustrate these results with examples
Fluctuation theory for radiative transfer in random media
International Nuclear Information System (INIS)
Bal, Guillaume; Jing Wenjia
2011-01-01
We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization. With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.
Fluctuation theory of solutions applications in chemistry, chemical engineering, and biophysics
Smith, Paul E
2013-01-01
There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications
Infrared difficulties with thermal quantum field theories
International Nuclear Information System (INIS)
Grandou, T.
1997-01-01
Reviewing briefly the two main difficulties encountered in thermal quantum field theories at finite temperature when dealing with the Braaten-Pisarski (BP) resummation program, the motivation is introduced of an analysis relying on the bare perturbation theory, right from the onset. (author)
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
International Nuclear Information System (INIS)
Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate
Fluctuation properties of nuclear energy levels and widths: comparison of theory with experiment
International Nuclear Information System (INIS)
Bohigas, O.; Haq, R.U.; Pandey, A.
1982-09-01
We analyze the fluctuation properties of nuclear energy levels and widths with new spectrally averaged measures. A remarkably close agreement between the predictions of random-matrix theories and experiment is found
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...
Dissipation and thermal fluctuations in heavy-ion collisions
International Nuclear Information System (INIS)
Froebrich, P.
1992-01-01
The concept of friction has turned out to be a useful one not only in solid state physics but also in the description of heavy-ion collisions and fisson. In the following I concentrate on applications to low energy (E << 10 MeV/nucleon) heavy-ion collisions. I put emphasis on the phenomenological side in showing that by using frictional forces (and the associated fluctuating forces) in a semi-phenomenological model one is able to put some order into a large variety of experimental data. These concern above- and below-barrier fusion, spin distributions, deep-inelastic scattering and the emission of δ electrons in deep-ineleastic collisions. (orig.)
Statistical theory of nuclear cross section fluctuations with account s-matrix unitarity
International Nuclear Information System (INIS)
Kun, S.Yu.
1985-01-01
Statistical properties of the S-matrix fluctuating part delta S=S- sub(T) in the T/D>>1, N>>1 Ericoson fluctuations mode are investigated. A unitary representation is used for the investigation of statistical properties of the S-matrix. The problem on correlation of fluctuating elements of the S-matrix is discussed. The S-matrix unitary representation allows one to strictly substantiates the assumptions of the Ericson fluctuations theory: a) the real and imaginary parts of the deltaS-matrix have identical dispersions, do not correlate and are distributed according to the normal law; 2) various deltaS-matrix elements do not correlate
General Theory of Decoy-State Quantum Cryptography with Dark Count Rate Fluctuation
International Nuclear Information System (INIS)
Xiang, Gao; Shi-Hai, Sun; Lin-Mei, Liang
2009-01-01
The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate
International Nuclear Information System (INIS)
Jolas, A.
1981-10-01
An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr
Theory of overdispersion in counting statistics caused by fluctuating probabilities
International Nuclear Information System (INIS)
Semkow, Thomas M.
1999-01-01
It is shown that the random Lexis fluctuations of probabilities such as probability of decay or detection cause the counting statistics to be overdispersed with respect to the classical binomial, Poisson, or Gaussian distributions. The generating and the distribution functions for the overdispersed counting statistics are derived. Applications to radioactive decay with detection and more complex experiments are given, as well as distinguishing between the source and background, in the presence of overdispersion. Monte-Carlo verifications are provided
Experiments and numerical simulations of fluctuating thermal stratification in a branch pipe
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Akira; Murase, Michio; Sasaki, Toru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Takenaka, Nobuyuki; Hamatani, Daisuke [Kobe Univ. (Japan)
2002-09-01
Many pipes branch off from the main pipe in plants. When the main flow in the main pipe is hotter than a branch pipe that branches off downward, the hot water penetrates into the branch pipe with the cavity flow that is induced by the main flow and causes thermal stratification. If the interface of the stratification fluctuates in an occluded branch pipe, thermal fatigue may occur in pipe wall. Some experiments and numerical simulations were conducted to elucidate the mechanism of this fluctuating thermal stratification. The vortex structures were observed in the experiments of straight or bent branch pipes. When the main flow was heated and the thermal stratification interface was at the elbow, a ''burst'' phenomenon occurred in the interface in connection with large heat fluctuation. The effects of pipe shape on the length of penetration were investigated in order to modify simulation conditions. The vortex structures and the fluctuating thermal stratification at elbow in the numerical simulation showed good agreement with experiments. (author)
State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory
Directory of Open Access Journals (Sweden)
Stefano Bellucci
2014-01-01
Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.
International Nuclear Information System (INIS)
Solontsov, A.
2015-01-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects
Kulasiri, Don
2011-01-01
We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Palmer, B.J.
1994-01-01
A method to calculate the thermal diffusivity D T from spontaneous fluctuations in the local heat energy density is presented. Calculations of the thermal diffusivity are performed for the Lennard-Jones fluid, carbon dioxide, and water. The results for the Lennard-Jones fluid are in agreement with calculations of the thermal conductivity using Green-Kubo relations and nonequilibrium molecular-dynamics techniques. The results for carbon dioxide and water give thermal diffusivities within a factor of 2 of the experimental values
Explanation of L→H mode transition based on gradient stabilization of edge thermal fluctuations
International Nuclear Information System (INIS)
Stacey, W.M.
1996-01-01
A linear analysis of thermal fluctuations, using a fluid model which treats the large radial gradient related phenomena in the plasma edge, leads to a constraint on the temperature and density gradients for stabilization of edge temperature fluctuations. A temperature gradient, or conductive edge heat flux, threshold is identified. It is proposed that the L→H transition takes place when the conductive heat flux to the edge produces a sufficiently large edge temperature gradient to stabilize the edge thermal fluctuations. The consequences following from this mechanism for the L→H transition are in accord with observed phenomena associated with the L→H transition and with the observed parameter dependences of the power threshold. First, a constraint is established on the edge temperature and density gradients that are sufficient for the stability of edge temperature fluctuations. A slab approximation for the thin plasma edge and a fluid model connected to account for the large radial gradients present in the plasma edge are used. Equilibrium solutions are characterized by the value of the density and of its gradient L n -1 double-bond - n -1 , etc. Temperature fluctuations expanded about the equilibrium value are then used in the energy balance equation summed over plasma ions, electrons and impurities to obtain, after linearization, an expression for the growth rate ω of edge localized thermal fluctuations. Thermal stability of the equilibrium solution requires ω ≤ 0, which establishes a constraint that must be satisfied by L n -1 and L T -1 . The limiting value of the constraint (ω = 0) leads to an expression for the minimum value of that is sufficient for thermal stability, for a given value of L T -1. It is found that there is a minimum value of the temperature gradient, (L T -1 ) min that is necessary for a stable solution to exist for any value of L n -1
Semi-classical theory of fluctuations in nuclear matter
International Nuclear Information System (INIS)
Benhassine, B.
1994-01-01
At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author)
London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor
Energy Technology Data Exchange (ETDEWEB)
Talantsev, E.F.; Crump, W.P. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Storey, J.G.; Tallon, J.L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)
2017-03-15
Recently, compressed H{sub 2}S has been shown to become superconducting at 203 K under a pressure of 155 GPa. One might expect fluctuations to dominate at such temperatures. Using the magnetisation critical current, we determine the ground-state London penetration depth, λ{sub 0} = 189 nm, and the superconducting energy gap, Δ{sub 0} = 27.8 meV, and find these parameters are similar to those of cuprate superconductors. We also determine the fluctuation temperature scale, T{sub fluc} = 1470 K, which shows that, unlike the cuprates, T{sub c} of the hydride is not limited by fluctuations. This is due to its three dimensionality and suggests the search for better superconductors should refocus on three-dimensional systems where the inevitable thermal fluctuations are less likely to reduce the observed T{sub c}. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
String production as a result of thermal fluctuations
International Nuclear Information System (INIS)
Guerra Junior, J.M.; Marques, G.C.; Rodrigues, S.J.
1989-06-01
Based on the analysis of the free energies of topological defects the study of phase transitions in field theory at finite temperature, was developed. In the case of strings, it is shown one can get, in dilute gas approximation, explicit expressions for the lenght of the string as well as the density contrast in terms of the free energy per unit lenght of the string. In the high temperature limit one can get explicit expressions for all revelant quantities up to one-loop approximation. When applied to the SO(10) model, good phenomenological results are obtained. In particular, the scale Independent Zel'dovich spectrum with the right order of magnitude, is derived in a simple manner. (author) [pt
Main factors for fatigue failure probability of pipes subjected to fluid thermal fluctuation
International Nuclear Information System (INIS)
Machida, Hideo; Suzuki, Masaaki; Kasahara, Naoto
2015-01-01
It is very important to grasp failure probability and failure mode appropriately to carry out risk reduction measures of nuclear power plants. To clarify the important factors for failure probability and failure mode of pipes subjected to fluid thermal fluctuation, failure probability analyses were performed by changing the values of a stress range, stress ratio, stress components and threshold of stress intensity factor range. The important factors for the failure probability are range, stress ratio (mean stress condition) and threshold of stress intensity factor range. The important factor for the failure mode is a circumferential angle range of fluid thermal fluctuation. When a large fluid thermal fluctuation acts on the entire circumferential surface of the pipe, the probability of pipe breakage increases, calling for measures to prevent such a failure and reduce the risk to the plant. When the circumferential angle subjected to fluid thermal fluctuation is small, the failure mode of piping is leakage and the corrective maintenance might be applicable from the viewpoint of risk to the plant. (author)
Czech Academy of Sciences Publication Activity Database
Lalouette, L.; Košťál, Vladimír; Colinet, H.; Gagneul, D.; Renault, D.
2007-01-01
Roč. 274, č. 7, (2007), s. 1759-1767 ISSN 1742-464X Grant - others:Biodiversity Research Centre of the Université Catholique de Louvain(BE) BRC 111 Institutional research plan: CEZ:AV0Z50070508 Keywords : amino acid * fluctuating thermal regime * insect Subject RIV: ED - Physiology Impact factor: 3.396, year: 2007
Detecting sequential bond formation using three-dimensional thermal fluctuation analysis
Czech Academy of Sciences Publication Activity Database
Bartsch, T.; Fisinger, S.; Kochanczyk, M.D.; Huang, R.; Jonáš, Alexandr; Florin, E. L.
2009-01-01
Roč. 10, 9-10 (2009), s. 1541-1547 ISSN 1439-4235 Institutional research plan: CEZ:AV0Z20650511 Keywords : biophysics * mechanical properties * optical tweezers * single-molecule studies * thermal fluctuations Subject RIV: BO - Biophysics Impact factor: 3.453, year: 2009
Work fluctuation theorems and free energy from kinetic theory
Brey, J. Javier; Ruiz-Montero, M. J.; Domínguez, Álvaro
2018-01-01
The formulation of the first and second principles of thermodynamics for a particle in contact with a heat bath and submitted to an external force is analyzed, by means of the Boltzmann-Lorentz kinetic equation. The possible definitions of the thermodynamic quantities are discussed in the light of the H theorem verified by the distribution of the particle. The work fluctuation relations formulated by Bochkov and Kuzovlev, and by Jarzynski, respectively, are derived from the kinetic equation. In addition, particle simulations using both the direct simulation Monte Carlo method and molecular dynamics, are used to investigate the practical accuracy of the results. Work distributions are also measured, and they turn out to be rather complex. On the other hand, they seem to depend very little, if any, on the interaction potential between the intruder and the bath.
Thermal fluctuation within nests and predicted sex ratio of Morelet's Crocodile.
Escobedo-Galván, Armando H; López-Luna, Marco A; Cupul-Magaña, Fabio G
2016-05-01
Understanding the interplay between thermal variations and sex ratio in reptiles with temperature-dependent sex determination is the first step for developing long-term conservation strategies. In case of crocodilians, the information is fragmentary and insufficient for establishing a general framework to consider how thermal fluctuation influence sex determination under natural conditions. The main goal of this study was to analyze thermal variation in nests of Crocodylus moreletii and to discuss the potential implications for predicting offspring sex ratio. The study was carried out at the Centro de Estudios Tecnológicos del Mar N° 2 and at the Sistemas Productivos Cocodrilo, Campeche, Mexico. Data was collected in the nesting season of Morelet's Crocodiles during three consecutive seasons (2007-2009). Thermal fluctuations for multiple areas of the nest chamber were registered by data loggers. We calculate the constant temperature equivalent based on thermal profiles among nests to assess whether there are differences between the nest temperature and its equivalent to constant temperature. We observed that mean nest temperature was only different among nests, while daily thermal fluctuations vary depending on the depth position within the nest chamber, years and nests. The constant temperature equivalent was different among and within nests, but not among survey years. We observed differences between constant temperature equivalent and mean nest temperature both at the top and in the middle of the nest cavities, but were not significantly different at the bottom of nest cavities. Our results enable examine and discuss the relevance of daily thermal fluctuations to predict sex ratio of the Morelet's Crocodile. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi
2014-01-01
Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)
Phase transitions and transport in anisotropic superconductors with large thermal fluctuations
International Nuclear Information System (INIS)
Fisher, D.S.
1991-01-01
Fluctuation effects in conventional superconductors such as broadening of phase transitions and flux creep tend to be very small primarily because of the large coherence lengths. Thus mean field theory, with only small fluctuation corrections, usually provides an adequate description of these systems. Regimes in which fluctuation effects cause qualitatively different physics are very difficult to study as they typically occur in very small regions of the phase diagram or, in transport, require measuring extremely small voltages. In striking contrast, in the high temperature cuprate superconductors a combination of factors - short coherence lengths, anisotropy and higher temperatures - make fluctuation effects many orders of magnitude larger. The current understanding of transport and phase transitions in the cuprate superconductors-particularly YBCO and BSCCO-is reviewed. New results are presented on the two-dimensional regimes and 2D-3D crossover in the strongly anisotropic case of BSCCO. The emphasis is on pinning and vortex glass behavior
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B. [Nantes Univ., 44 (France)
1994-01-14
At intermediate energies the heavy ion collisions can be studied within the framework of a semi-classical approach based on the Vlasov-Uehling-Uhlenbeck (VUU) equation. Such an approach reduces the N-body problem to its description in terms of the one-body distribution function and constitutes the basis of several successful simulation models. Our aim in this work is to extend these average approaches to treat fluctuations. Within the framework of a linear approximation, we derived a Fokker-Planck transport equation in the one-body phase space. When it is reduced to its first moments, one recovers the VUU equation for the average dynamics together with the time evolution equation for the correlations. The collective transport coefficients are then obtained by projection on the one-body collective space. Independently, using a projection method introduced by Van Kampen, based on the constants of motion, we deduce the stationary expressions for the covariance matrix in phase space. We extract then, the equilibrium dispersions of one-body observables in a homogeneous case and in a spherical symmetric one. These results are compared with two types of simulation models in a relaxation time approximation. In the first one which is of Lagrangian type, the collective transport coefficients are directly extracted from the simulation and consequently the numerical fluctuations are washed out. The second model, due to its Eulerian character, allows us to make a microscopical comparison. (author) 58 refs.
Quantum theory of dynamic multiple light scattering in fluctuating disordered media
International Nuclear Information System (INIS)
Skipetrov, S. E.
2007-01-01
We formulate a quantum theory of dynamic multiple light scattering in fluctuating disordered media and calculate the fluctuation and the autocorrelation function of the photon number operator for light transmitted through a disordered slab. The effect of disorder on the information capacity of a quantum communication channel operating in a disordered environment is estimated, and the use of squeezed light in diffusing-wave spectroscopy is discussed
Thermal blurring effects on fluctuations of conserved charges in rapidity space
Energy Technology Data Exchange (ETDEWEB)
Asakawa, M.; Kitazawa, M.; Onishi, Y.; Sakaida, M.
2016-12-15
We argue that the diffusion in the hadron phase and the thermal blurring at thermal freezeout affect observed conserved charge fluctuations considerably in relativistic heavy ion collisions, and show that their effects are of similar order at RHIC and LHC, and thus equally important in understanding experimental data. We also argue that, in order to disentangle them and obtain the initial state charge fluctuations, which we are interested in, it is crucial to measure their dependence on the rapidity window size. In the energy range of the beam energy scan program at RHIC, the diffusion effect would be less important because of the shorter duration of the hadron phase, but the importance of thermal blurring is not reduced. In addition, it is necessary to take account of the complex correspondence between the space-time rapidity and rapidity of observed particles, there.
Quantitative theory of thermal fluctuations and disorder in the vortex ...
Indian Academy of Sciences (India)
described. To differentiate various phases, one should understand the nature of the ..... of Science and Technology of China (G1999064602) and National Nature Science ... [9] H Pastoriza, M F Goffman, A Arribêre and F de la Cruz, Phys. Rev.
THEORY OF CORRELATIONS AND FLUCTUATIONS IN NEUTRON DISTRIBUTIONS
Energy Technology Data Exchange (ETDEWEB)
Osborn, R. K.; Yip, S.
1963-06-15
Equations are derived for the first and second order densities for neutrons and alpha particles. The implications of the equations are examined by reducing them to their diffusion theory equivalents, and the one-speed equations are obtained. Results show that in cases where the singlet density can be approximated as spatially uniform, the same approximation may not apply to the doublet density. (D.C.W.)
Theory of thermal expansivity and bulk modulus
International Nuclear Information System (INIS)
Kumar, Munish
2005-01-01
The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order
Thermalization in a holographic confining gauge theory
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2015-08-01
Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theory's most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
Effect of thermal fluctuations in spin-torque driven magnetization dynamics
International Nuclear Information System (INIS)
Bonin, R.; Bertotti, G.; Serpico, C.; Mayergoyz, I.D.; D'Aquino, M.
2007-01-01
Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection
Effect of thermal fluctuations in spin-torque driven magnetization dynamics
Energy Technology Data Exchange (ETDEWEB)
Bonin, R. [INRiM, I-10135 Turin (Italy)]. E-mail: bonin@inrim.it; Bertotti, G. [INRiM, I-10135 Turin (Italy); Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' I-80125 Naples (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); D' Aquino, M. [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , I-80133 Naples (Italy)
2007-09-15
Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection.
The field fluctuational model of thermally stimulated processes in ferroelectric LiNbO3
International Nuclear Information System (INIS)
Tale, I.; Tale, V.; Rosa, J.
1983-01-01
The thermally stimulated processes in the x-irradiated LiNbO 3 crystals were studied by the fractional glow technique. The trap ionization with unusually high values of the mean activation energy and the effective frequency factor as well as decreasing the activation energy of the traps when the temperature increased from 150-180 K were observed. It is suggested that all these effects are due to the ion-fluctuation process (the electric field generated by thermal reorientation of dipoles). (author)
Evaluation of diffusion coefficients in multicomponent mixtures by means of the fluctuation theory
DEFF Research Database (Denmark)
Shapiro, Alexander
2003-01-01
We derive general expressions for diffusion coefficients in multicomponent non-ideal gas or liquid mixtures. The derivation is based on the general statistical theory of fluctuations around an equilibrium state. The matrix of diffusion coefficients is expressed in terms of the equilibrium...... characteristics. We demonstrate on several examples that the developed theory is in agreement with the established experimental facts and dependencies for the diffusion coefficients. (C) 2002 Elsevier Science B.V. All rights reserved....
Sphalerons, small fluctuations, and baryon-number violation in electroweak theory
International Nuclear Information System (INIS)
Arnold, P.; McLerran, L.
1987-01-01
We study the formalism of the sphaleron approximation to baryon-number violation in the standard model at temperatures near 1 TeV. We investigate small fluctuations of the sphaleron, the competition of large-scale sphalerons with thermal fluctuations, and the damping of the transition rate in the plasma. We find a suppression of the rate due to Landau damping and due to factors arising from zero modes. Our approximations are valid in the regime 2M/sub W/(T) 2 . We find that the rate of baryon-number violation is still significantly larger than the expansion rate of the Universe
Fluctuations effects in diblock copolymer fluids: Comparison of theories and experiment
International Nuclear Information System (INIS)
Guenza, M.; Schweizer, K.S.
1997-01-01
The analytic Polymer Reference Interaction Site Model (PRISM) theory of structurally and interaction symmetric Gaussian diblock copolymer fluids is reformulated, extended, and applied to make predictions for experimentally observable equilibrium properties of the disordered state. These include the temperature, degree of polymerization, copolymer composition, and polymer density or concentration dependences of the peak scattering intensity, effective chi-parameter, and heat capacity. The location of the order-disorder transition is empirically estimated based on the disordered, strongly fluctuating state scattering function. Detailed numerical applications of PRISM theory demonstrates it provides an excellent description of the data. An in depth comparison of the mathematical structure and predictions of PRISM theory with the highly coarse-grained, incompressible Brazovski endash Leibler endash Fredrickson endash Helfand (BLFH) fluctuation corrected field theory is also carried out. Under some conditions (nearly symmetric composition, high melt densities, moderate temperatures) there are striking mathematical similarities between the predictions of the physically very different theories, although quantitative differences always persist. However, for strongly asymmetric copolymer compositions, short chains, compressible copolymer solutions, and low temperatures many qualitative differences emerge. The possibility of multiple, self-consistent fluctuation feedback mechanisms within the most general PRISM approach are identified, their qualitative features discussed, and contrasted with alternative versions of the fluctuation-corrected incompressible field theories due to BLFH and Stepanow. The predictions of PRISM and BLFH theory for the composition, copolymer density, temperature, and molecular weight dependence of the effective chi-parameter are presented and qualitatively compared with recent experiments. copyright 1997 American Institute of Physics
Thermalization in a holographic confining gauge theory
International Nuclear Information System (INIS)
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2015-01-01
Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theory’s most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
International Nuclear Information System (INIS)
Krommes, John A.
2007-01-01
The present state of the theory of fluctuations in gyrokinetic (GK) plasmas and especially its application to sampling noise in GK particle-in-cell (PIC) simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism
Energy Technology Data Exchange (ETDEWEB)
John A. Krommes
2007-10-09
The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.
Thermal gluons beyond pure perturbation theory
International Nuclear Information System (INIS)
Reinbach, J.
2000-01-01
The perturbative treatment of non-abelian gauge theory at high temperature leads to a threshold in calculation because of chromomagnetic effects. Infinitely many terms of the same order of magnitude arise. The numerical series to be summed is contained in the part of the theory reduced on 3D, which was recently treated non-perturbative as 2+1D Yang-Mills theory at T=0 by Karabali, Kim and Nair. In the thesis in question the exact 3D results are combined with the thermal 4D diagrammatic. In particular the splitting of the space-part of the transverse self-energy in the static limit is treated. As expected, the 3D subsystem can separate as regularized 3D Yang-Mills theory from the 4D structure. In 1-loop order the regulators are received explicit. For 2-loop order it can be shown amongst other things, that the generic contribution with hard inner momenta vanishes. It is examined, how the magnetic mass could follow. Under pressure it is possible to separate the 3D part in 1- and 2-loop order and to receive regulators [de
International Nuclear Information System (INIS)
Lortz, Rolf; Wang Yuxing; Junod, Alain; Toyota, Naoki
2007-01-01
The range of thermal fluctuations in 'classical' bulk superconductors is extremely small and especially in low-fields hardly experimentally accessible. With a new type of calorimeter we were able to detect a tiny lambda anomaly in the specific-heat of the superconductor Nb 3 Sn within a narrow temperature range around the H c2 line. We show that the evolution of the anomaly as a function of magnetic field follows scaling laws expected in the presence of critical thermal fluctuations
POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND
International Nuclear Information System (INIS)
Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.
2016-01-01
This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.
POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)
2016-07-10
This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s{sup 1} bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.
Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Sakai, Hironori; Matsuda, Tatsuma D.; Yamamoto, Etsuji
2017-07-01
We have carried out an analysis of magnetic data in 69 uranium, 7 neptunium, and 4 plutonium ferromagnets with the spin fluctuation theory developed by Takahashi [Y. Takahashi, J. Phys. Soc. Jpn. 55, 3553 (1986), 10.1143/JPSJ.55.3553]. The basic and spin fluctuation parameters of the actinide ferromagnets are determined and the applicability of the spin fluctuation theory to actinide 5 f system has been discussed. Itinerant ferromagnets of the 3 d transition metals and their intermetallics follow a generalized Rhodes-Wohlfarth relation between peff/ps and TC/T0 , viz., peff/ps∝(TC/T0) -3 /2 . Here, ps, peff, TC, and T0 are the spontaneous and effective magnetic moments, the Curie temperature, and the width of spin fluctuation spectrum in energy space, respectively. The same relation is satisfied for TC/T0uranium and neptunium ferromagnets below (TC/T0)kink=0.32 ±0.02 , where a kink structure appears in relation between the two quantities. ps increases more weakly above (TC/T0)kink. A possible interpretation with the TC/T0 dependence of ps is given.
Energy Technology Data Exchange (ETDEWEB)
Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2015-07-15
Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are
Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling
Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.
2011-01-01
Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Y., E-mail: yusuke.n@asagi.waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan); Nagano Prefectural Kiso Seiho High School, Nagano 397-8571 (Japan); Kawaguchi, T., E-mail: pionelish30@toki.waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan); Torii, Y., E-mail: torii0139@asagi.waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan); Yamanaka, Y., E-mail: yamanaka@waseda.jp [Department of Electronic and Physical Systems, Waseda University, Tokyo 169-8555 (Japan)
2017-01-15
The formulation for zero mode of a Bose–Einstein condensate beyond the Bogoliubov approximation at zero temperature [Y. Nakamura et al., Phys. Rev. A 89 (2014) 013613] is extended to finite temperature. Both thermal and quantum fluctuations are considered in a manner consistent with a concept of spontaneous symmetry breakdown for a finite-size system. Therefore, we need a proper treatment of the zero mode operators, which invoke non-trivial enhancements in depletion condensate and thermodynamical quantities such as the specific heat. The enhancements are visible in the weak interaction case. Our approach reproduces the results of a homogeneous system in the Bogoliubov approximation in a large particle number limit.
Large-scale magnetic fields, curvature fluctuations, and the thermal history of the Universe
International Nuclear Information System (INIS)
Giovannini, Massimo
2007-01-01
It is shown that gravitating magnetic fields affect the evolution of curvature perturbations in a way that is reminiscent of a pristine nonadiabatic pressure fluctuation. The gauge-invariant evolution of curvature perturbations is used to constrain the magnetic power spectrum. Depending on the essential features of the thermodynamic history of the Universe, the explicit derivation of the bound is modified. The theoretical uncertainty in the constraints on the magnetic energy spectrum is assessed by comparing the results obtained in the case of the conventional thermal history with the estimates stemming from less conventional (but phenomenologically allowed) post-inflationary evolutions
DEFF Research Database (Denmark)
Galliero, Guillaume; Medvedev, Oleg; Shapiro, Alexander
2005-01-01
A 322 (2004) 151). In the current study, a fast molecular dynamics scheme has been developed to determine the values of the penetration lengths in Lennard-Jones binary systems. Results deduced from computations provide a new insight into the concept of penetration lengths. It is shown for four different...... fluctuation theory and molecular dynamics scheme exhibit consistent trends and average deviations from experimental data around 10-20%. (c) 2004 Elsevier B.V. All rights reserved....
Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A
2015-02-20
Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.
Effective field theory of thermal Casimir interactions between anisotropic particles.
Haussman, Robert C; Deserno, Markus
2014-06-01
We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.
International Nuclear Information System (INIS)
Mamiya, H; Oba, Y; Ohnuma, M; Hagiya, H; Oku, T; Suzuki, J; Yokoyama, M; Nishihara, Y; Katayama, T; Awano, H; Koda, T
2011-01-01
In nanoparticulate films with perpendicular magnetic anisotropy, a large demagnetizing field almost compensates for the experimentally designed change in the magnetic field applied parallel to the film normal. We propose a new method based on field-cycling to eliminate the uncertainty in the demagnetizing response from the analysis of the activation volume of the reversal or magnetic activation moment in such films. In this method, the applied field induced variation in the magnetic relaxation rate is measured before the effect of the demagnetizing field becomes dominant. We also discuss an analogical thermal-cycling method to clarify the temperature dependence of the barrier height for magnetization reversal in a magnetic field. We apply these methods to a Co 74 Pt 16 Cr 10 -SiO 2 nanoparticulate film as an example. The results demonstrate that these methods are useful for studying thermal fluctuations in perpendicular recording media.
Simulation of attenuation of thermal fluctuations near a plate impinged by jets
International Nuclear Information System (INIS)
Simoneau, J.P.
2001-01-01
In nuclear reactors, and especially in liquid sodium cooled ones, the combination of temperature differences inside cooling fluid, turbulent flows and high heat transfer coefficients is a potential source of the thermal striping process. Such a phenomenon has been studied for several years by using Large Eddy Simulation models. The present paper focuses on the attenuation of the thermal fluctuations in the boundary layer. The knowledge of this amplitude reduction is of prime importance for subsequent mechanical analyses. A Large Eddy Simulation model is implemented in the Star-cd code, including discretization of the viscous sublayer. The numerical simulation of two parallel jets impinging a flat plate in water is then performed and positively compared to corresponding experimental results. (author)
He, Xiaozhou; Wang, Yin; Tong, Penger
2018-05-01
Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which the measured PDF P (δ T ) of temperature fluctuations δ T in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate ɛ . The conditional PDF G (δ T |ɛ ) of δ T under a constant ɛ is found to be of Gaussian form and its variance σT2 for different values of ɛ follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P (δ T ) . This work thus provides a physical mechanism of the observed exponential distribution of δ T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.
International Nuclear Information System (INIS)
Chui, S.T.
1979-01-01
Recent experiments on the (100) face of W with and without H are interpreted. The significance of large thermal fluctuations in low dimensionality situation and their observation in the present system is pointed out. A thermal impurity depinning transition is discussed. The existence of a commensurate-incommensurate transition as hydrogen coverage is changed is speculated. (author)
ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS?
International Nuclear Information System (INIS)
Kelly, Brandon C.; Siemiginowska, Aneta; Bechtold, Jill
2009-01-01
We analyze a sample of optical light curves for 100 quasars, 70 of which have black hole mass estimates. Our sample is the largest and broadest used yet for modeling quasar variability. The sources in our sample have z 42 ∼ λ (5100 A) ∼ 46 , and 10 6 ∼ BH /M sun ∼ 10 . We model the light curves as a continuous time stochastic process, providing a natural means of estimating the characteristic timescale and amplitude of quasar variations. We employ a Bayesian approach to estimate the characteristic timescale and amplitude of flux variations; our approach is not affected by biases introduced from discrete sampling effects. We find that the characteristic timescales strongly correlate with black hole mass and luminosity, and are consistent with disk orbital or thermal timescales. In addition, the amplitude of short-timescale variations is significantly anticorrelated with black hole mass and luminosity. We interpret the optical flux fluctuations as resulting from thermal fluctuations that are driven by an underlying stochastic process, such as a turbulent magnetic field. In addition, the intranight variations in optical flux implied by our empirical model are ∼<0.02 mag, consistent with current microvariability observations of radio-quiet quasars. Our stochastic model is therefore able to unify both long- and short-timescale optical variations in radio-quiet quasars as resulting from the same underlying process, while radio-loud quasars have an additional variability component that operates on timescales ∼<1 day.
Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations
International Nuclear Information System (INIS)
Atzberger, Paul J.
2011-01-01
We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.
The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma
International Nuclear Information System (INIS)
Pavlenko, V.N.; Panchenko, V.G.
1993-01-01
Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section
Origin of fluctuations in atmospheric pressure arc plasma devices
International Nuclear Information System (INIS)
Ghorui, S.; Das, A.K.
2004-01-01
Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations
International Nuclear Information System (INIS)
Kamaya, Masayuki
2014-01-01
Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation
Thermal and electron transport studies on the valence fluctuating compound YbNiAl4
Falkowski, M.; Kowalczyk, A.
2018-05-01
We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.
A multi-species exchange model for fully fluctuating polymer field theory simulations.
Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H
2014-11-07
Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Mouritsen, Ole G.
1990-01-01
We discuss central questions in weak, first-order structural transitions by means of a magnetic analog model. A theory including fluctuation effects is developed for the model, showing a dynamical response with softening, fading modes and a growing central peak. The model is also analyzed by a two......-dimensional Monte Carlo simulation, showing clear precursor phenomena near the first-order transition and spontaneous nucleation. The kinetics of the domain growth is studied and found to be exceedingly slow. The results are applicable for martensitic transformations and structural surface...
Probing non-thermal density fluctuations in the one-dimensional Bose gas
Directory of Open Access Journals (Sweden)
Jacopo De Nardis, Miłosz Panfil, Andrea Gambassi, Leticia F. Cugliandolo, Robert Konik, Laura Foini
2017-09-01
Full Text Available Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times, these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.
Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field
Huang, Zhiming
2018-04-01
In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.
Drug binding and mobility relating to the thermal fluctuation in fluid lipid membranes
Okamura, Emiko; Yoshii, Noriyuki
2008-12-01
Drug binding and mobility in fluid lipid bilayer membranes are quantified in situ by using the multinuclear solution NMR combined with the pulsed-field-gradient technique. One-dimensional and pulsed-field-gradient F19 and H1 NMR signals of an anticancer drug, 5-fluorouracil (5FU) are analyzed at 283-313 K in the presence of large unilamellar vesicles (LUVs) of egg phosphatidylcholine (EPC) as model cell membranes. The simultaneous observation of the membrane-bound and free 5FU signals enables to quantify in what amount of 5FU is bound to the membrane and how fast 5FU is moving within the membrane in relation to the thermal fluctuation of the soft, fluid environment. It is shown that the mobility of membrane-bound 5FU is slowed down by almost two orders of magnitude and similar to the lipid movement in the membrane, the movement closely related to the intramembrane fluidity. The mobility of 5FU and EPC is, however, not similar at 313 K; the 5FU movement is enhanced in the membrane as a result of the loose binding of 5FU in the lipid matrices. The membrane-bound fraction of 5FU is ˜0.1 and almost unaltered over the temperature range examined. It is also independent of the 5FU concentration from 2 to 30 mM with respect to the 40-50 mM LUV. The free energy of the 5FU binding is estimated at -4 to -2 kJ/mol, the magnitude always close to the thermal fluctuation, 2.4-2.6 kJ/mol.
International Nuclear Information System (INIS)
Lamoreaux, S.K.
1999-01-01
A simple formulation for calculating the magnetic field external to an extended nonpermeable conducting body due to thermal current fluctuations within the body is developed, and is applied to a recent experimental search for the atomic electric-dipole moment (EDM) of 199 Hg. It is shown that the thermal fluctuation field is only slightly smaller in magnitude than other noise sources in that experiment. The formulation is extended to permeable bodies, and the implications for general EDM experiments are discussed. copyright 1999 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Lortz, Rolf [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland)], E-mail: Rolf.Lortz@physics.unige.ch; Wang Yuxing; Junod, Alain [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Toyota, Naoki [Physics Department, Graduate School of Science, Tohoku University, 980-8571 Sendai (Japan)
2007-09-01
The range of thermal fluctuations in 'classical' bulk superconductors is extremely small and especially in low-fields hardly experimentally accessible. With a new type of calorimeter we were able to detect a tiny lambda anomaly in the specific-heat of the superconductor Nb{sub 3}Sn within a narrow temperature range around the H{sub c2} line. We show that the evolution of the anomaly as a function of magnetic field follows scaling laws expected in the presence of critical thermal fluctuations.
Energy Technology Data Exchange (ETDEWEB)
Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2013-10-15
As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.
Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory
Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas
2013-03-01
The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.
Four-dimensional Yang-Mills theory, gauge invariant mass and fluctuating three-branes
International Nuclear Information System (INIS)
Niemi, Antti J; Slizovskiy, Sergey
2010-01-01
We are interested in a gauge invariant coupling between four-dimensional Yang-Mills field and a three-brane that can fluctuate into higher dimensions. For this we interpret the Yang-Mills theory as a higher dimensional bulk gravity theory with dynamics that is governed by the Einstein action, and with a metric tensor constructed from the gauge field in a manner that displays the original gauge symmetry as an isometry. The brane moves in this higher dimensional spacetime under the influence of its bulk gravity, with dynamics determined by the Nambu action. This introduces the desired interaction between the brane and the gauge field in a way that preserves the original gauge invariance as an isometry of the induced metric. After a prudent change of variables the result can be interpreted as a gauge invariant and massive vector field that propagates in the original spacetime R 4 . The presence of the brane becomes entirely invisible, expect for the mass.
Murray, James M; Tesanović, Zlatko
2010-07-16
A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.
Czech Academy of Sciences Publication Activity Database
Colinet, H.; Renault, D.; Javal, M.; Berková, Petra; Šimek, Petr; Košťál, Vladimír
2016-01-01
Roč. 1861, č. 11 (2016), s. 1736-1745 ISSN 1388-1981 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : cold stress * fluctuating thermal regimes * recovery Subject RIV: ED - Physiology Impact factor: 5.547, year: 2016 http://www.sciencedirect.com/science/article/pii/S1388198116302281
Czech Academy of Sciences Publication Activity Database
Košťál, Vladimír; Renault, D.; Mehrabianová, A.; Bastl, J.
2007-01-01
Roč. 147, č. 1, (2007), s. 231-238 ISSN 1095-6433 R&D Projects: GA ČR GA206/03/0099 Institutional research plan: CEZ:AV0Z50070508 Keywords : Insecta * cold hardiness * thermal fluctuations Subject RIV: ED - Physiology Impact factor: 1.863, year: 2007
Quantitative remote sensing in thermal infrared theory and applications
Tang, Huajun
2014-01-01
This comprehensive technical overview of the core theory of thermal remote sensing and its applications in hydrology, agriculture, and forestry includes a host of illuminating examples and covers everything from the basics to likely future trends in the field.
Cosmological string theory with thermal energy
International Nuclear Information System (INIS)
Shiraishi, Kiyoshi.
1988-09-01
An attempt to construct a cosmological scenario directly from string theory is made. Cosmological string theory was presented by Antoniadis, Bachas, Ellis and Nanopoulos. They also expect loop effects on cosmological string theory. In this paper, we point out the other importance of the one-loop effect, the finite temperature effect. The equations of motion for background geometry at finite temperature is given. We address a problem on derivation of the effective action at non-zero temperature. (author)
Energy Technology Data Exchange (ETDEWEB)
Braun-Munzinger, P., E-mail: p.braun-munzinger@gsi.de [Extreme Matter Institute EMMI, GSI, Darmstadt (Germany); Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); Rustamov, A., E-mail: a.rustamov@cern.ch [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); National Nuclear Research Center, Baku (Azerbaijan); Stachel, J., E-mail: stachel@physi.uni-heidelberg.de [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany)
2017-04-15
We develop methods to deal with non-dynamical contributions to event-by-event fluctuation measurements of net-particle numbers in relativistic nuclear collisions. These contributions arise from impact parameter fluctuations and from the requirement of overall net-baryon number or net-charge conservation and may mask the dynamical fluctuations of interest, such as those due to critical endpoints in the QCD phase diagram. Within a model of independent particle sources we derive formulae for net-particle fluctuations and develop a rigorous approach to take into account contributions from participant fluctuations in realistic experimental environments and at any cumulant order. Interestingly, contributions from participant fluctuations to the second and third cumulants of net-baryon distributions are found to vanish at mid-rapidity for LHC energies while higher cumulants of even order are non-zero even when the net-baryon number at mid-rapidity is zero. At lower beam energies the effect of participant fluctuations increases and induces spurious higher moments. The necessary corrections become large and need to be carefully taken into account before comparison to theory. We also provide a procedure for selecting the optimal phase–space coverage of particles for fluctuation analyses and discuss quantitatively the necessary correction due to global charge conservation.
Grzywacz, Piotr; Qin, Jian; Morse, David C
2007-12-01
Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, i.e., by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor S(-1)(k) predicted by a "one-loop" approximation similar to that used in several previous studies. We consider both miscible homopolymer blends and disordered diblock copolymer melts. We show, in both cases, that all UV divergent contributions can be absorbed into a renormalization of the values of the phenomenological parameters of a generalized self-consistent field theory (SCFT). This observation allows the construction of an UV convergent theory of corrections to SCFT phenomenology. The UV-divergent one-loop contribution to S(-1)(k) is shown to be the sum of (i) a k -independent contribution that arises from a renormalization of the effective chi parameter, (ii) a k-dependent contribution that arises from a renormalization of monomer statistical segment lengths, (iii) a contribution proportional to k(2) that arises from a square-gradient contribution to the one-loop fluctuation free energy, and (iv) a k-dependent contribution that is inversely proportional to the degree of polymerization, which arises from local perturbations in fluid structure near chain ends and near junctions between blocks in block copolymers.
Energy Technology Data Exchange (ETDEWEB)
Roy, Kuntal, E-mail: royk@purdue.edu [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
2014-01-06
Straintronic logic is a promising platform for beyond Moore's law computing. Using Bennett clocking mechanism, information can propagate through an array of strain-mediated multiferroic nanomagnets, exploiting the dipolar coupling between the magnets without having to physically interconnect them. Here, we perform a critical analysis of switching failures, i.e., error in information propagation due to thermal fluctuations through a chain of such straintronic devices. We solved stochastic Landau-Lifshitz-Gilbert equation considering room-temperature thermal perturbations and show that magnetization switching may fail due to inherent magnetization dynamics accompanied by thermally broadened switching delay distribution. Avenues available to circumvent such issue are proposed.
International Nuclear Information System (INIS)
Falco, C.M.
1974-01-01
Careful studies of the effect of thermal fluctuations on the I-V characteristics of two different types of weakly coupled superconductors were made. Measurements on externally shunted, oxide-barrier tunnel junctions were found to be in complete quantitative agreement with a theory due to Ambegaokar and Halperin in the limit of β/sub c/ identical with 2eI/sub c/C/sigma 0 2 h much less than 1 where the theory is valid. Similar measurements in the region of β/sub c/ approximately equal to 1 were found to be in qualitative agreement with a theory due to Kurkijarvi and Ambegaokar. Assuming the Ambegaokar and Halperin theory is applicable, measurements on Notarys-Nercereau normal metal underlay weak links indicate the presence of a phase-dependent conductivity predicted by B. D. Josephson in 1962. The magnitude of this conductivity was found to be in agreement with that predicted by theory, however, the sign of the conductivity was found to be in disagreement. A study of the operating characteristics of rf-biased thin-film superconducting quantum interference devices (SQUIDs) has also been made and a set of performance parameters developed to optimize the behavior of these devices. The behavior of these SQUIDs has been compared with a theory due to Hansma in order to look for the effect of the phase-dependent quasiparticle-pair interference current. The me []surements were found to be qualitatively different than predicted by Hansma's theory. (Diss. Abstr. Int., B)
Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani
2017-12-01
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.
Optimal control theory applied to fusion plasma thermal stabilization
International Nuclear Information System (INIS)
Sager, G.; Miley, G.; Maya, I.
1985-01-01
Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research
Plasma thermal energy transport: theory and experiments
International Nuclear Information System (INIS)
Coppi, B.
Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature
Directory of Open Access Journals (Sweden)
Bahador Marzban
2017-04-01
Full Text Available Mechanics of the bilayer membrane play an important role in many biological and bioengineering problems such as cell–substrate and cell–nanomaterial interactions. In this work, we study the effect of thermal fluctuation and the substrate elasticity on the cell membrane–substrate adhesion. We model the adhesion of a fluctuating membrane on an elastic substrate as a two-step reaction comprised of the out-of-plane membrane fluctuation and the receptor–ligand binding. The equilibrium closed bond ratio as a function of substrate rigidity was computed by developing a coupled Fourier space Brownian dynamics and Monte Carlo method. The simulation results show that there exists a crossover value of the substrate rigidity at which the closed bond ratio is maximal.
de Paor, A. M.
Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.
Czech Academy of Sciences Publication Activity Database
Fořt, J.; Beran, Pavel; Konvalinka, P.; Pavlík, Z.; Černý, R.
2017-01-01
Roč. 57, č. 3 (2017), s. 159-166 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : in-situ monitoring * temperature * relative humidity * thermal insulation * energy sustainability * seasonal fluctuations Subject RIV: JN - Civil Engineering OBOR OECD: Construction engineering, Municipal and structural engineering https://ojs.cvut.cz/ojs/index.php/ap/article/view/4087/4171
Introduction to the theory of thermal neutron scattering
Squires, G L
2012-01-01
Since the advent of the nuclear reactor, thermal neutron scattering has proved a valuable tool for studying many properties of solids and liquids, and research workers are active in the field at reactor centres and universities throughout the world. This classic text provides the basic quantum theory of thermal neutron scattering and applies the concepts to scattering by crystals, liquids and magnetic systems. Other topics discussed are the relation of the scattering to correlation functions in the scattering system, the dynamical theory of scattering and polarisation analysis. No previous knowledge of the theory of thermal neutron scattering is assumed, but basic knowledge of quantum mechanics and solid state physics is required. The book is intended for experimenters rather than theoreticians, and the discussion is kept as informal as possible. A number of examples, with worked solutions, are included as an aid to the understanding of the text.
International Nuclear Information System (INIS)
Hattori, Kazumasa
2010-01-01
We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site n f is ∼1. We show that a 'meta-orbital' transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl 2 , CeCu 2 Si 2 , CeCu 2 Ge 2 , and related compounds, which all have low-lying crystalline-electric-field excited states. (author)
Lera, Sandro Claudio; Sornette, Didier
2018-01-01
A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
A gauge-invariant reorganization of thermal gauge theory
International Nuclear Information System (INIS)
Su, Nan
2010-01-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m D /T, m f /T and e 2 , where m D and m f are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ∝ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m D /T and g 2 , where m D is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ∝ 2 - 3 T c . The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume
Mackay, Tom G.
2004-08-01
The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.
Nambu-Goldstone mechanism in real-time thermal field theory
International Nuclear Information System (INIS)
Zhou Bangrong
1998-08-01
In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proven that at finite temperature T below the symmetry restoration temperature T c , a massive Higgs boson and three massless Nambu-Goldstone bosons could emerge from the spontaneous breaking of electroweak group SU L (2)xU Y (1)→U Q (1) if the two fermion flavors in the one generation are mass-degenerate, thus the Goldstone Theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses, owing to 'thermal fluctuation', the Goldstone Theorem will be true only approximately for a very large momentum cut-off Λ in zero temperature fermion loop or for low energy scales. All possible pinch singularities are proven to cancel each other, as is expected in a real-time thermal field theory. (author)
International Nuclear Information System (INIS)
Cintra Filho, J. de S.
1981-01-01
The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt
Thermal and superthermal properties of supersymmetric field theories
International Nuclear Information System (INIS)
Fuchs, J.
1984-01-01
We discuss the finite-temperature behaviour of supersymmetric field theories. We show that their 'superthermal' properties which concern the question of susy breaking at finite temperature and their thermal properties must be considered separately. Susy breaking is determined by the so-called superthermal ensemble, whereas thermodynamical properties follow from the conventional thermal ensemble, leading to the usual statistics for the bosonic and fermionic components of a superfield. We show that superspace techniques can be used in a straightforward way only for superthermal Green functions but not for thermal ones. We also discuss the possibility of finite-temperature susy restoration and the implications of Goldstone's theorem at finite temperature. (orig.)
Workshop on Thermal Field Theory to Neural Networks
Veneziano, Gabriele; Aurenche, Patrick
1996-01-01
Tanguy Altherr was a Fellow in the Theory Division at CERN, on leave from LAPP (CNRS) Annecy. At the time of his accidental death in July 1994, he was only 31.A meeting was organized at CERN, covering the various aspects of his scientific interests: thermal field theory and its applications to hot or dense media, neural networks and its applications to high energy data analysis. Speakers were among his closest collaborators and friends.
Energy Technology Data Exchange (ETDEWEB)
Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu
1999-05-01
A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)
DEFF Research Database (Denmark)
Ciliberto, S.; Imparato, A.; Naert, A.
2013-01-01
Brownian particles kept at different temperatures and coupled by an elastic force. We measure the heat flowing between the two reservoirs and the thermodynamic work done by one part of the system on the other. We show that these quantities exhibit a long-time fluctuation theorem. Furthermore, we evaluate...... the fluctuating entropy, which satisfies a conservation law. These experimental results are fully justified by the theoretical analysis. Our results give more insight into the energy transfer in the famous Feynman ratchet, widely studied theoretically but never in an experiment....
Thermal rectification based on phonon hydrodynamics and thermomass theory
Directory of Open Access Journals (Sweden)
Dong Yuan
2016-06-01
Full Text Available The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection term and the viscous (Laplacian term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.
A. M. de Paor
1998-01-01
International audience; Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ? has the value 1 is proved via ...
Directory of Open Access Journals (Sweden)
A. M. de Paor
1998-01-01
Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.
A theory of power-law distributions in financial market fluctuations.
Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki; Stanley, H Eugene
2003-05-15
Insights into the dynamics of a complex system are often gained by focusing on large fluctuations. For the financial system, huge databases now exist that facilitate the analysis of large fluctuations and the characterization of their statistical behaviour. Power laws appear to describe histograms of relevant financial fluctuations, such as fluctuations in stock price, trading volume and the number of trades. Surprisingly, the exponents that characterize these power laws are similar for different types and sizes of markets, for different market trends and even for different countries--suggesting that a generic theoretical basis may underlie these phenomena. Here we propose a model, based on a plausible set of assumptions, which provides an explanation for these empirical power laws. Our model is based on the hypothesis that large movements in stock market activity arise from the trades of large participants. Starting from an empirical characterization of the size distribution of those large market participants (mutual funds), we show that the power laws observed in financial data arise when the trading behaviour is performed in an optimal way. Our model additionally explains certain striking empirical regularities that describe the relationship between large fluctuations in prices, trading volume and the number of trades.
Shaifer, J.
2016-02-01
The mummichog (Fundulus hetereoclitus) is an intertidal spawning fish that ranges from the Gulf of St. Lawrence to northeastern Florida. A notoriously hardy species, adults can tolerate a wide range of temperature typical of inshore, estuarine waters. This experiment assessed how a wide range of constant and fluctuating temperatures affect the survival, development, and condition of embryos and young larvae. Captive adults were provided nightly with spawning substrates that were inspected each morning for fertilized eggs. Young ( 8 hr post-fertilization) embryos (N = 25 per population) were assigned to either one of a wide range of constant temperatures (8 to 34 °C) generated by a thermal gradient block (TGB), or to one of 10 daily oscillating temperature regimes that spanned the TGB's mid temperature (21 °C). Water was changed and populations inspected for mortalities and hatching at 12-hr intervals. Hatch dates and mortalities were recorded, and larvae were either anesthetized and measured for size by analyzing digital images, or evaluated for persistence in a food-free environment. Mummichog embryos withstood all but the coldest constant regimes and the entire range of fluctuating ones although age at hatching varied substantially within and among experimental populations. Embryos incubated at warmer temperatures hatched out earlier and at somewhat smaller sizes than those experiencing cooler temperatures. Temperatures experienced by embryos had an inverse effect on persistence of larvae relying on yolk nutrition alone. Mummichog exhibited an especially plastic response to thermal challenges which reflects the highly variable nursery habitat used by this species.
Benchmark calculations of thermal reaction rates. I - Quantal scattering theory
Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.
Simple Theory of Thermal Fatigue Caused by RF Pulse Heating
Kuzikov, S
2004-01-01
The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...
An extension of Hewitt's inversion formula and its application to fluctuation theory
Badila, E.S.
2015-01-01
We analyze fluctuations of random walks with generally distributed increments. Integral representations for key performance measures are obtained by extending an inversion theorem of Hewitt [11] for Laplace-Stieltjes transforms. Another important part of the anal- ysis involves the so-called
Thermalization and confinement in strongly coupled gauge theories
Directory of Open Access Journals (Sweden)
Ishii Takaaki
2016-01-01
Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.
Theory of thermal conductivity in the disordered electron liquid
Energy Technology Data Exchange (ETDEWEB)
Schwiete, G., E-mail: schwiete@uni-mainz.de [Johannes Gutenberg Universität, Spin Phenomena Interdisciplinary Center (SPICE) and Institut für Physik (Germany); Finkel’stein, A. M. [Texas A& M University, Department of Physics and Astronomy (United States)
2016-03-15
We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.
Theory of thermal conductivity in the disordered electron liquid
International Nuclear Information System (INIS)
Schwiete, G.; Finkel’stein, A. M.
2016-01-01
We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.
Energy Technology Data Exchange (ETDEWEB)
Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2016-08-01
To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.
Frank, T. D.; Patanarapeelert, K.; Beek, P. J.
2008-05-01
We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted.
International Nuclear Information System (INIS)
Frank, T.D.; Patanarapeelert, K.; Beek, P.J.
2008-01-01
We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted
Pajic-Lijakovic, Ivana
2015-12-01
An attempt was made to discuss and connect various modeling approaches on various time and space scales which have been proposed in the literature in order to shed further light on the erythrocyte membrane rearrangement caused by the cortex-lipid bilayer coupling under thermal fluctuations. Roles of the main membrane constituents: (1) the actin-spectrin cortex, (2) the lipid bilayer, and (3) the trans membrane protein band 3 and their course-consequence relations were considered in the context of the cortex non linear stiffening and corresponding anomalous nature of energy dissipation. The fluctuations induce alternating expansion and compression of the membrane parts in order to ensure surface and volume conservation. The membrane structural changes were considered within two time regimes. The results indicate that the cortex non linear stiffening and corresponding anomalous nature of energy dissipation are related to the spectrin flexibility distribution and the rate of its changes. The spectrin flexibility varies from purely flexible to semi flexible. It is influenced by: (1) the number of band 3 molecules attached to single spectrin filaments, and (2) phosphorylation of the actin-junctions. The rate of spectrin flexibility changes depends on the band 3 molecules rearrangement.
Sirmas, Nick; Radulescu, Matei I.
2016-01-01
The problem of thermal ignition in a homogeneous gas is revisited from a molecular dynamics perspective. A two-dimensional model is adopted, which assumes reactive disks of type A and B in a fixed area that react to form type C products if an activation threshold for impact is surpassed. Such a reaction liberates kinetic energy to the product particles, representative of the heat release. The results for the ignition delay are compared with those obtained from the continuum description assumi...
Information loss in effective field theory: Entanglement and thermal entropies
Boyanovsky, Daniel
2018-03-01
Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.
Gidoin, Cindy; Roques, Lionel; Boivin, Thomas
2015-03-01
Theories of species coexistence and invasion ecology are fundamentally connected and provide a common theoretical framework for studying the mechanisms underlying successful invasions and their ecological impacts. Temporal fluctuations in resource availability and differences in life-history traits between invasive and resident species are considered as likely drivers of the dynamics of invaded communities. Current critical issues in invasion ecology thus relate to the extent to which such mechanisms influence coexistence between invasive and resident species and to the ability of resident species to persist in an invasive-dominated ecosystem. We tested how a fluctuating resource, and species trait differences may explain and help predict long-term impacts of biological invasions in forest specialist insect communities. We used a simple invasion system comprising closely related invasive and resident seed-specialized wasps (Hymenoptera: Torymidae) competing for a well-known fluctuating resource and displaying divergent diapause, reproductive and phenological traits. Based on extensive long-term field observations (1977-2010), we developed a combination of mechanistic and statistical models aiming to (i) obtain a realistic description of the population dynamics of these interacting species over time, and (ii) clarify the respective contributions of fluctuation-dependent and fluctuation-independent mechanisms to long-term impact of invasion on the population dynamics of the resident wasp species. We showed that a fluctuation-dependent mechanism was unable to promote coexistence of the resident and invasive species. Earlier phenology of the invasive species was the main driver of invasion success, enabling the invader to exploit an empty niche. Phenology also had the greatest power to explain the long-term negative impact of the invasive on the resident species, through resource pre-emption. This study provides strong support for the critical role of species
Thibodeau, Lise; Lachaud, James
2016-01-01
Three theories have been proposed to explain the relationship between suicide and economic fluctuations, including the Durkheim (nonlinear), Ginsberg (procyclical), and Henry and Short (countercyclical) theories. This study tested the effect of economic fluctuations, measured by unemployment rate, on suicide rates in Canada from 1926 to 2008. Autoregressive integrated moving average time-series models were used. The results showed a significant relationship between suicide and economic fluctuation; this association was positive during the contraction period (1926-1950) and negative in the period of economic expansion (1951-1973). Males and females showed differential effects in the period of moderate unemployment (1974-2008). In addition, the suicide rate of mid-adults (45-64) was most impacted by economic fluctuations. Our study tends to support Durkheim's theory and suggests the need for public health responses in times of economic contraction and expansion.
An extension of diffusion theory for thermal neutrons near boundaries
International Nuclear Information System (INIS)
Alvarez Rivas, J. L.
1963-01-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PIGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs
Basics of thermal field theory a tutorial on perturbative computations
Laine, Mikko
2016-01-01
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...
Theory of fluctuations and parametric noise in a point nuclear reactor model
International Nuclear Information System (INIS)
Rodriguez, M.A.; San Miguel, M.; Sancho, J.M.
1984-01-01
We present a joint description of internal fluctuations and parametric noise in a point nuclear reactor model in which delayed neutrons and a detector are considered. We obtain kinetic equations for the first moments and define effective kinetic parameters which take into account the effect of parametric Gaussian white noise. We comment on the validity of Langevin approximations for this problem. We propose a general method to deal with weak but otherwise arbitrary non-white parametric noise. Exact kinetic equations are derived for Gaussian non-white noise. (author)
Cascade diffusion theory of sink capture fluctuations during irradiation of a solid
International Nuclear Information System (INIS)
Mansur, L.K.; Brailsford, A.D.; Coghlan, W.A.
1985-01-01
Fluctuations in the number of defects captured by sinks in an irradiated solid, that arise because of the stochastic nature of collision cascade events, are analyzed. Two types of sinks are considered, cavities (or voids) and dislocations. The importance of the physical size of the sink is emphasized, as also is the magnitude of the fluctuations in defect capture relative to the behavior of its statistical mean. In particular, it is shown that the ratio of the variance to the mean, for either a cavity or a dislocation segment, decreases rapidly as overall steady state is approached. Further analytical and computational aspects of a shell model that we introduced earlier are analyzed. The relationship of this model to a truly random system is established, and additional calculations are presented to exemplify some of the features predicted by the mathematical analysis. Importance functions describing the spatial origins of the point defects contributing to the average concentration and flux are described. The probabilities of special types of cascade coincidences are developed. The application of the present formalism to the problems of void nucleation, and dislocation climb over localized obstacles, in irradiated solids is indicated
International Nuclear Information System (INIS)
Kimura, Nobuyuki; Ono, Ayako; Miyakoshi, Hiroyuki; Kamide, Hideki
2009-01-01
A quantitative evaluation on high cycle thermal fatigue due to temperature fluctuation in fluid is of importance for structural integrity in the reactor. It is necessary for the quantitative evaluation to investigate occurrence and propagation processes of temperature fluctuation, e.g., decay of fluctuation intensity near structures and transfer of temperature fluctuation from fluid to structures. The JSME published a guideline for evaluation of high-cycle thermal fatigue of a pipe as the JSME guideline in 2003. This JSME standard covers T-pipe junction used in LWRs operated in Japan. In the guideline, the effective heat transfer coefficients were obtained from temperature fluctuations in fluid and structure in experiments. In the previous studies, the effective heat transfer coefficients were 2 - 10 times larger than the heat transfer coefficients under steady state conditions in a straight tube. In this study, a water experiment of T-junction was performed to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. In the experiment, temperatures in fluid and structure were measured simultaneously at 20 positions to obtain spatial distributions of the effective heat transfer coefficient. In addition, temperatures in structure and local velocities in fluid were measured simultaneously to evaluate the correlation between the temperature and velocity under the non-stationary fields. The large heat transfer coefficients were registered at the region where the local velocity was high. Furthermore it was found that the heat transfer coefficients were correlated with the time-averaged turbulent heat flux near the pipe wall. (author)
Theory of spin-fluctuation induced superconductivity in iron-based superconductors
International Nuclear Information System (INIS)
Zhang, Junhua
2011-01-01
In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum
Fluctuations of the baryonic flux-tube junction from effective string theory
International Nuclear Information System (INIS)
Pfeuffer, Melanie; Bali, Gunnar S.; Panero, Marco
2009-01-01
In quenched QCD, where the dynamic creation of quark-antiquark pairs out of the vacuum is neglected, a confined baryonic system composed of three static quarks exhibits stringlike behavior at large interquark separation, with the formation of flux tubes characterized by the geometry of the so-called Y ansatz. We study the fluctuations of the junction of the three flux tubes, assuming the dynamics to be governed by an effective bosonic string model. We show that the asymptotic behavior of the effective width of the junction grows logarithmically with the distance between the sources, with the coefficient depending on the number of joining strings, on the dimension of spacetime and on the string tension.
Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy
DEFF Research Database (Denmark)
Edwards, R. V.; Sirohi, R. S.; Mann, J. A.
1982-01-01
Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...
Georgescu, Ionuţ; Mandelshtam, Vladimir A
2012-10-14
The theory of self-consistent phonons (SCP) was originally developed to address the anharmonic effects in condensed matter systems. The method seeks a harmonic, temperature-dependent Hamiltonian that provides the "best fit" for the physical Hamiltonian, the "best fit" being defined as the one that optimizes the Helmholtz free energy at a fixed temperature. The present developments provide a scalable O(N) unified framework that accounts for anharmonic effects in a many-body system, when it is probed by either thermal (ℏ → 0) or quantum fluctuations (T → 0). In these important limits, the solution of the nonlinear SCP equations can be reached in a manner that requires only the multiplication of 3N × 3N matrices, with no need of diagonalization. For short range potentials, such as Lennard-Jones, the Hessian, and other related matrices are highly sparse, so that the scaling of the matrix multiplications can be reduced from O(N(3)) to ~O(N). We investigate the role of quantum effects by continuously varying the de-Boer quantum delocalization parameter Λ and report the N-Λ (T = 0), and also the classical N-T (Λ = 0) phase diagrams for sizes up to N ~ 10(4). Our results demonstrate that the harmonic approximation becomes inadequate already for such weakly quantum systems as neon clusters, or for classical systems much below the melting temperatures.
DEFF Research Database (Denmark)
Shapiro, Alexander
2004-01-01
The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...
Directory of Open Access Journals (Sweden)
Malykin G. B.
2009-01-01
Full Text Available Israel L. Bershtein (1908-2000 was one of the famous radio physicists in the world. He had constructed the theory of amplitude and frequency fluctuations for the electromagnetic wave generators working in the radio and optical scales. He also had developed numerous methods for precise measurement of the fluctuations, which also can be applied to ultimate small mechanical displacements. Besides these he was the first person among the scientists, who had registered the Sagnac effect at radiowaves.
Principle of minimal work fluctuations.
Xiao, Gaoyang; Gong, Jiangbin
2015-08-01
Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].
Cosmological Inflation with Multiple Fields and the Theory of Density Fluctuations
Tent, B.J.W. van
2002-01-01
Inflation is a stage of extremely rapid expansion in the very early universe. It was proposed to solve a number of problems in the standard Big Bang theory. In particular it others an explanation for the origin of structures like (clusters of) galaxies on the one hand (by generating small density
International Nuclear Information System (INIS)
Williams, M.M.R.
2007-01-01
Description: Prof. M.M..R Williams has now released three of his legacy books for free distribution: 1 - M.M.R. Williams: The Slowing Down and Thermalization of Neutrons, North-Holland Publishing Company - Amsterdam, 582 pages, 1966. Content: Part I - The Thermal Energy Region: 1. Introduction and Historical Review, 2. The Scattering Kernel, 3. Neutron Thermalization in an Infinite Homogeneous Medium, 4. Neutron Thermalization in Finite Media, 5. The Spatial Dependence of the Energy Spectrum, 6. Reactor Cell Calculations, 7. Synthetic Scattering Kernels. Part II - The Slowing Down Region: 8. Scattering Kernels in the Slowing Down Region, 9. Neutron Slowing Down in an Infinite Homogeneous Medium, 10.Neutron Slowing Down and Diffusion. 2 - M.M.R. Williams: Mathematical Methods in Particle Transport Theory, Butterworths, London, 430 pages, 1971. Content: 1 The General Problem of Particle Transport, 2 The Boltzmann Equation for Gas Atoms and Neutrons, 3 Boundary Conditions, 4 Scattering Kernels, 5 Some Basic Problems in Neutron Transport and Rarefied Gas Dynamics, 6 The Integral Form of the Transport Equation in Plane, Spherical and Cylindrical Geometries, 7 Exact Solutions of Model Problems, 8 Eigenvalue Problems in Transport Theory, 9 Collision Probability Methods, 10 Variational Methods, 11 Polynomial Approximations. 3 - M.M.R. Williams: Random Processes in Nuclear Reactors, Pergamon Press Oxford New York Toronto Sydney, 243 pages, 1974. Content: 1. Historical Survey and General Discussion, 2. Introductory Mathematical Treatment, 3. Applications of the General Theory, 4. Practical Applications of the Probability Distribution, 5. The Langevin Technique, 6. Point Model Power Reactor Noise, 7. The Spatial Variation of Reactor Noise, 8. Random Phenomena in Heterogeneous Reactor Systems, 9. Associated Fluctuation Problems, Appendix: Noise Equivalent Sources. Note to the user: Prof. M.M.R Williams owns the copyright of these books and he authorises the OECD/NEA Data Bank
International Nuclear Information System (INIS)
Maggiore, Michele; Riotto, Antonio
2010-01-01
A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside 'Markovian' terms, we find 'memory' terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the
Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory
Energy Technology Data Exchange (ETDEWEB)
Link, Bennett, E-mail: link@physics.montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2014-07-10
Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.
Topological fluctuations in SU(2) gauge theory with staggered fermions: An exploratory study
International Nuclear Information System (INIS)
Kogut, J.B.; Sinclair, D.K.; Teper, M.; Oxford Univ.
1991-01-01
We investigate some basic aspects of topological fluctuations in lattice QCD, in the version with two colours and four light flavours; and we do so in both the confining, chiral symmetry broken phase in the non-confining, chirally symmetric phase. This latter phase is found to occur not only at high temperatures, just as in the pure gauge system, but also in small spatial volumes, which is unlike the pure gauge case. We derive the way the topological susceptibility should vary with quark mass at small quark masses. We find that the calculated topological susceptibility decreases to zero with the quark mass, with the theoretically expected powers except - in the symmetric phase - at the very smallest values of the quark mass. We demonstrate that this anomalous behaviour can be understood as arising from the fact that the lattice topological 'zero modes' are in fact sufficiently far from being zero. We also show, in the chirally symmetric phase, that, just as expected, the average distance between instantons and anti-instantons decreases with decreasing quark mass. We finish with a new and more precise estimate of the location of the finite-temperature transition in SU(2) with four light flavours. (orig.)
Effective field theory of an anomalous Hall metal from interband quantum fluctuations
Chua, Victor; Assawasunthonnet, Wathid; Fradkin, Eduardo
2017-07-01
We construct an effective field theory, a two-dimensional two-component metallic system described by a model with two Fermi surfaces ("pockets"). This model describes a translationally invariant metallic system with two types of fermions, each with its own Fermi surface, with forward scattering interactions. This model, in addition to the O (2 ) rotational invariance, has a U (1 )×U (1 ) symmetry of separate charge conservation for each Fermi surface. For sufficiently attractive interactions in the d -wave (quadrupolar) channel, this model has an interesting phase diagram that includes a spontaneously generated anomalous Hall metal phase. We derive the Landau-Ginzburg effective action of quadrupolar order parameter fields which enjoys an O (2 )×U (1 ) global symmetry associated to spatial isotropy and the internal U (1 ) relative phase symmetries, respectively. We show that the order parameter theory is dynamically local with a dynamical scaling of z =2 and perform a one-loop renormalization group analysis of the Landau-Ginzburg theory. The electronic liquid crystal phases that result from spontaneous symmetry breaking are studied and we show the presence of Landau damped Nambu-Goldstone modes at low momenta that is a signature of non-Fermi-liquid behavior. Electromagnetic linear response is also analyzed in both the normal and symmetry broken phases from the point of view of the order parameter theory. The nature of the coupling of electromagnetism to the order parameter fields in the normal phase is non-minimal and decidedly contains a precursor to the anomalous Hall response in the form of a order-parameter-dependent Chern-Simons term in the effective action.
Nonlinear field theories and non-Gaussian fluctuations for near-critical many-body systems
International Nuclear Information System (INIS)
Tuszynski, J.A.; Dixon, J.M.; Grundland, A.M.
1994-01-01
This review article outlines a number of efforts made over the past several decades to understand the physics of near critical many-body systems. Beginning with the phenomenological theories of Landau and Ginzburg the paper discusses the two main routes adopted in the past. The first approach is based on statistical calculations while the second investigates the underlying nonlinear field equations. In the last part of the paper we outline a generalisation of these methods which combines classical and quantum properties of the many-body systems studied. (orig.)
International Nuclear Information System (INIS)
Nagaosa, Naoto
2009-01-01
Theories of multiferroics are reviewed with a stress on the role of relativistic spin-orbit interaction and spin current. Ground state electric polarization induced by the non-collinear spin structures, and its dynamical fluctuation, i.e., electro-magnon are discussed. Treatments of the non-perturbative large amplitude thermal and quantum fluctuations are also described. (author)
Dai, Gaole; Shang, Jin; Huang, Jiping
2018-02-01
Heat can transfer via thermal conduction, thermal radiation, and thermal convection. All the existing theories of transformation thermotics and optics can treat thermal conduction and thermal radiation, respectively. Unfortunately, thermal convection has seldom been touched in transformation theories due to the lack of a suitable theory, thus limiting applications associated with heat transfer through fluids (liquid or gas). Here, we develop a theory of transformation thermal convection by considering the convection-diffusion equation, the equation of continuity, and the Darcy law. By introducing porous media, we get a set of equations keeping their forms under coordinate transformation. As model applications, the theory helps to show the effects of cloaking, concentrating, and camouflage. Our finite-element simulations confirm the theoretical findings. This work offers a transformation theory for thermal convection, thus revealing novel behaviors associated with potential applications; it not only provides different hints on how to control heat transfer by combining thermal conduction, thermal convection, and thermal radiation, but also benefits mass diffusion and other related fields that contain a set of equations and need to transform velocities at the same time.
OPEC's production under fluctuating oil prices. Further test of the target revenue theory
International Nuclear Information System (INIS)
Ramcharran, H.
2001-01-01
Oil production cutbacks in recent years by OPEC members to stabilize price and to increase revenues warrant further empirical verification of the target revenue theory (TRT). We estimate a modified version of Griffin (1985) target revenue model using data from 1973 to 2000. The sample period, unlike previous investigations, includes phases of both price increase (1970s) and price decrease (1980s-1990s), thus providing a better framework for examining production behavior. The results, like the earlier study, are not supportive of the strict version of the TRT, however, evidence (negative and significant elasticity of supply) of the partial version are substantiated. Further empirical estimates do not support the competitive pricing model, hypothesizing a positive elasticity of supply. OPEC's loss of market share and the drop in the share of oil-based energy should signal an adjustment in pricing and production strategies
Brandow, B. H.
1986-01-01
A variational study of ground states of the orbitally nondegenerate Anderson lattice model, using a wave function with one variational parameter per Bloch state k, has been extended to deal with essentially metallic systems having a nonintegral number of electrons per site. Quasiparticle excitations are obtained by direct appeal to Landau's original definition for interacting Fermi liquids, scrEqp(k,σ)=δEtotal/δn qp(k,σ). This approach provides a simple and explicit realization of the Luttinger picture of a periodic Fermi liquid. A close correspondence is maintained between the ``interacting'' (U=∞) system and the corresponding ``noninteracting'' (U=0) case, i.e., ordinary band theory; the result can be described as a renormalized band or renormalized hybridization theory. The occupation-number distribution for the conduction orbitals displays a finite discontinuity at the Fermi surface. If the d-f hybridization is nonzero throughout the Brillouin zone, the quasiparticle spectrum will always exhibit a gap, although this gap becomes exponentially small (i.e., of order TK) in the Kondo-lattice regime. In the ``ionic'' case with precisely two electrons per site, such a system may therefore exhibit an insulating (semiconducting) gap. The quasiparticle state density exhibits a prominent spike on each side of the spectral gap, just as in the elementary hybridization model (the U=0 case). For the metallic case, with a nonintegral number of electrons per site, the Fermi level falls within one of the two sharp density peaks. The effective mass at the Fermi surface tends to be very large; enhancements by a factor >~102 are quite feasible. The foregoing variational theory has also been refined by means of a trial wave function having two variational parameters per Bloch state k. The above qualitative features are all retained, with some quantitative differences, but there are also some qualitatively new features. The most interesting of these is the appearance, within
New Insight into Short-Wavelength Solar Wind Fluctuations from Vlasov Theory
Sahraoui, Fouad; Belmont, G.; Goldstein, M. L.
2012-01-01
The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega omega (sub ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, Typically Beta(sub i) approx. > Beta (sub e) 1 and for high oblique angles of propagation 80 deg theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales kappa rho (sub i) approx. > 1 to frequencies either larger or smaller than omega (sub ci), depending on the anisotropy kappa (parallel )/ kappa(perpendicular). This extension into small scales is more readily called whistler (omega > omega (sub ci)) or KAW (omega < omega (sub ci)) although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications for present and future spacecraft wave measurements in the SW.
International Nuclear Information System (INIS)
Nguyen Dinhdang; Nguyen Zuythang
1988-01-01
Using the realistic single-particle energy spectrum obtained in the Woods-Saxon nucleon mean-field potential, we calculate the BCS pairing gap for 58 Ni as a function of temperature taking into account the thermal and particle-number fluctuations. The strength distributions of the electric dipole transitions and the centroids of the isovector giant dipole resonance (IV-GDR) are computed in the framework of the finite-temperature random-phase approximation (RPA) based on the Hamiltonian of the quasiparticle-phonon nuclear model with separate dipole forces. It is shown that the change of the pairing gap at finite temperature can noticeably influence the IV-GDR localisation in realistic nuclei. By taking both thermal and quasiparticle fluctuations in the pairing gap into account the effect of the phase transition from superfluid to normal in the temperature dependence of the IV-GDR centroid is completely smeared out. (author)
Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
Feng, Mengkai; Hou, Zhonghuai
2017-06-28
We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be
Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C
2012-08-01
Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.
International Nuclear Information System (INIS)
El Naschie, M.S.
2003-01-01
The paper is a rather informal introduction to the concepts and results of the E-infinity Cantorian theory of quantum physics. The fundamental tools of complexity theory and non-linear dynamics (Hausdorff dimensions, fat fractals, etc.) are used to give what we think to be a new interpretation of high energy physics and to determine the corresponding mass-spectrum. Particular attention is paid to the role played by the VAK, KAM theorem, Arnold diffusion, Newhaus sinks and knot theory in determining the stability of an elementary 'particle-wave' which emerges in self-organizatory manner out of sizzling vacuum fluctuation
Thermal instability in a gravity-like scalar theory
International Nuclear Information System (INIS)
Brandt, F. T.; Frenkel, J.; Das, Ashok
2008-01-01
We study the question of stability of the ground state of a scalar theory which is a generalization of the φ 3 theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory
Directory of Open Access Journals (Sweden)
Yuwaraj Marotrao Ghugal
Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2017-10-10
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
International Nuclear Information System (INIS)
Puchkov, V.A.
1998-01-01
A method for calculation of non-equilibrium fluctuations in a totally ionized stable plasma with taking into account the particle collisions is proposed. The spectrum of high-frequency fluctuations of the electric field is calculated by the developed method. The formula obtained for the spectrum takes into consideration both the Coulomb collisions and influence of collective effects on the collisions and is applicable for stable arbitrary distributions of electrons and ions
Fluctuating hydrodynamics for ionic liquids
Energy Technology Data Exchange (ETDEWEB)
Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)
2017-04-25
We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.
Unified theory of dislocation motion including thermal activation and inertial effects
International Nuclear Information System (INIS)
Isaac, R.D.; Granato, A.V.
1979-01-01
Transition-state rate theory has generally been used to explain the temperature dependence of the flow stress of a crystal. However, the existence of a change in the flow stress during the superconducting transition indicates the presence of inertial effects in which dislocations overcome obstacles mechanically rather than thermally. It is shown here that the thermally activated and the inertial overcoming of obstacles are not unrelated but can both be derived from principles of stochastic motion. This leads to a theory of dislocation motion that includes both thermal activation and inertial effects. It is also shown that a distribution of activation energies must be considered to account for the experimental data
Fin shape thermal optimization using Bejan's constuctal theory
Lorenzini, Giulio
2011-01-01
The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri
Classical theory of thermal radiation from a solid.
Guo, Wei
2016-06-01
In this work, a solid at a finite temperature is modeled as an ensemble of identical atoms, each of which moves around a lattice site inside an isotropic harmonic potential. The motion of one such atom is studied first. It is found that the atom moves like a time-dependent current density and, thus, can emit electromagnetic radiation. Since all the atoms are identical, they can radiate, too. The resultant radiation from the atoms is the familiar thermal radiation from the solid. After its general expression is obtained, the intensity of the thermal radiation is discussed for its properties, and specifically calculated in the low-temperature limit. Both atomic motion and radiation are formulated in the classical domain.
International Nuclear Information System (INIS)
Nieves, Jose F.
2010-01-01
We apply the thermal field theory methods to study the propagation of photons in a plasma layer, that is a plasma in which the electrons are confined to a two-dimensional plane sheet. We calculate the photon self-energy and determine the appropriate expression for the photon propagator in such a medium, from which the properties of the propagating modes are obtained. The formulas for the photon dispersion relations and polarization vectors are derived explicitly in some detail for some simple cases of the thermal distributions of the charged particle gas, and appropriate formulas that are applicable in more general situations are also given.
Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory
Aarts, G.; Smit, J.
2000-01-01
As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function
Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory
Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert
2018-02-01
Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.
Thermodynamic fluctuations of electromagnetic field in slightly absorbing media
Directory of Open Access Journals (Sweden)
B.A.Veklenko
2004-01-01
Full Text Available A theory of thermodynamic fluctuations of electromagnetic field in slightly absorbing media is developed using the quantum electrodynamics - method of $Gamma$-operators - without phenomenology. The hypothesis offered by Yury L. Klimontovich is under consideration. The necessity of correct consideration of photon-photon correlation functions is shown. The results are compared with the ones obtained with the help of standard theory based upon fluctuation-dissipation theorem (FDT. The latter results are shown to have no field of application at least for the case of thermally excited media of the atoms described with two-level model.
Thermal and Field Enhanced Photoemission Comparison of Theory to Experiment
Lynn-Jensen, Kevin
2004-01-01
Photocathodes are a critical component of high-gain FELs and the analysis of their emission is complex. Relating their performance under laboratory conditions to conditions of an rf photoinjector is difficult. Useful models must account for cathode surface conditions and material properties, as well as drive laser parameters. We have developed a time-dependent model accounting for the effects of laser heating and thermal propagation on photoemission. It accounts for surface conditions (coating, field enhancement, reflectivity), laser parameters (duration, intensity, wavelength), and material characteristics (reflectivity, laser penetration depth, scattering rates) to predict current distribution and quantum efficiency. The applicatIon will focus on photoemission from metals and, in particular, dispenser photocathodes: the later introduces complications such as coverage non-uniformity and field enhancement. The performance of experimentally characterized photocathodes will be extrapolated to 0.1 - 1 nC bunch...
Neutron moderation theory with thermal motion of the moderator nuclei
Energy Technology Data Exchange (ETDEWEB)
Rusov, V.D.; Tarasov, V.A.; Chernezhenko, S.A.; Kakaev, A.A.; Smolyar, V.P. [Odessa National Polytechnic University, Department of Theoretical and Experimental Nuclear Physics, Odessa (Ukraine)
2017-09-15
In this paper we present the analytical expression for the neutron scattering law for an isotropic source of neutrons, obtained within the framework of the gas model with the temperature of the moderating medium as a parameter. The obtained scattering law is based on the solution of the general kinematic problem of elastic scattering of neutrons on nuclei in the L-system. Both the neutron and the nucleus possess arbitrary velocities in the L-system. For the new scattering law we obtain the flux densities and neutron moderation spectra as functions of temperature for the reactor fissile medium. The expressions for the moderating neutrons spectra allow reinterpreting the physical nature of the underlying processes in the thermal region. (orig.)
Self-Organized Criticality Theory Model of Thermal Sandpile
International Nuclear Information System (INIS)
Peng Xiao-Dong; Qu Hong-Peng; Xu Jian-Qiang; Han Zui-Jiao
2015-01-01
A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics. (paper)
Thermal and viscous effects on sound waves: revised classical theory.
Davis, Anthony M J; Brenner, Howard
2012-11-01
In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.
Energy Technology Data Exchange (ETDEWEB)
Calzada Mazeres, P. de la [INITEC (Spain)
1995-07-01
In this study the different equipments of the circulation waste system in thermal power plants are modellized (refrigeration water from the condenser). The purpose is to analyze the transient generated when the pump trip is produced at different shutting times of discharge valve. (Author)
International Nuclear Information System (INIS)
Lascialfari, A.; Borsa, F.; Carretta, P.; Jang, Z.H.; Borsa, F.; Gatteschi, D.
1998-01-01
Measurements of the spin-lattice relaxation rate are reported for muons and protons as a function of temperature for different values of the applied magnetic field in the Mn 12 O 12 molecular cluster. Strongly field dependent maxima in the relaxation rate versus temperature are observed below 50thinspthinspK. The results are explained in terms of thermal fluctuations of the total magnetization of the cluster among the different orientations with respect to the anisotropy axis. The lifetimes of the different m components of the total spin, S T =10 , of the molecule are obtained from the experiment and shown to be consistent with the ones expected from a spin-phonon coupling mechanism. No clear evidence for macroscopic quantum tunneling was observed in the field dependence of the proton relaxation rate at low T . copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Menant, B.; Villand, M.
1994-01-01
The general-purpose thermal-hydraulics program TRIO-VF allows explicit simulation of the main instabilities in an un-compressible flow: it has been applied to the prediction of flow instabilities in a sodium hot jet through a transverse cold flow. in front of a conducting wall. The temperature fluctuations induced in the flow and the wall are studied and an acute skin-effect is evidenced. The temperature gradients (including three components) are analysed: temperature gradients up to 20000 degrees per meter are currently seen in the skin. They are due to the very strong value of the unstationary component normal to the fluid-wall interface. The limitations of TRIO-VF in the present state, and the lack of experimental support for validation does not allow to promise quantitative applications of this modelling to complex industrial situations nowadays, but we hope these applications are for tomorrow. (author)
Theers, Mario; Winkler, Roland G
2014-08-28
We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.
Describing function theory as applied to thermal and neutronic problems
International Nuclear Information System (INIS)
Nassersharif, B.
1983-01-01
Describing functions have traditionally been used to obtain the solutions of systems of ordinary differential equations. In this work the describing function concept has been extended to include nonlinear, distributed parameter partial differential equations. A three-stage solution algorithm is presented which can be applied to any nonlinear partial differential equation. Two generalized integral transforms were developed as the T-transform for the time domain and the B-transform for the spatial domain. The thermal diffusion describing function (TDDF) is developed for conduction of heat in solids and a general iterative solution along with convergence criteria is presented. The proposed solution method is used to solve the problem of heat transfer in nuclear fuel rods with annular fuel pellets. As a special instance the solid cylindrical fuel pellet is examined. A computer program is written which uses the describing function concept for computing fuel pin temperatures in the radial direction during reactor transients. The second problem investigated was the neutron diffusion equation which is intrinsically different from the first case. Although, for most situations, it can be treated as a linear differential equation, the describing function method is still applicable. A describing function solution is derived for two possible cases: constant diffusion coefficient and variable diffusion coefficient. Two classes of describing functions are defined for each case which portray the leakage and absorption phenomena. For the specific case of a slab reactor criticality problem the comparison between analytical and describing function solutions revealed an excellent agreement
Theory and practice of near-field thermal probes for microscopy and thermal analysis
International Nuclear Information System (INIS)
Hodges, C.S.
1999-03-01
Bacterial mats called biofilms that form on the surfaces of industrial steel pipes can cause corrosion of the pipe. Examining the steel surface of the corroded pipe usually involves removal of the biofilm using acid. This acid can also cause corrosion of the pipe so that the observed corrosion cracks and pits are the result of both the acid and the biofilm. It was thought that non-invasive examination of the corrosion caused by the biofilm may be obtained by using a thin wire bent into a loop that acts as both a heat source a nd a detector of heat, measuring the changes in heat flow out of the wire as the wire passes over the steel with the biofilm still present. This technique of using a heated probe to scan samples on a microscopic scale is called Scanning Thermal Microscopy (SThM) and uses an alternating current to produce a.c. thermal waves that emanate from the probe tip into the sample. The alternating current allows better signal-to-noise ratios and also selective depth imaging of the sample since the thermal wave penetrates into the sample a distance inversely proportional to the applied current frequency. Reversal in the contrast of SThM images on biofilms and subsequently all samples was observed as either the frequency or the amplitude of the temperature waves was altered. Whilst changing the time constant of the feedback circuit attached to the SThM probe did go some way to explain this effect, a full explanation is still wanting. Despite many efforts to image the biofilm/steel interface with the biofilm still present, often the biofilm was either too thick or too complicated to do this. A simpler thermal test sample is required to calibrate the thermal probe. In addition to SThM, one may select a point on a sample surface and ramp the temperature of the probe to obtain a Localised Thermal Analysis (LTA) temperature scan looking for melts, recrystallisations, glass transitions of the part of the sample in contact with the probe. This technique is a
International Nuclear Information System (INIS)
Clarke, J.
1980-01-01
This paper briefly reviews sources of noise in Josephson junctions, and the limits they impose on the sensitivity of dc and rf SQUIDS. The results are strictly valid only for a resistively shunted junction (RSJ) with zero capacitance, but should be applicable to point contact junctions and microbridges in so far as these devices can be approximated by the RSJ model. Fluctuations arising from Nyquist noise in the resistive shunt of a single junction are discussed in the limit eI/sub o/R/k/sub B/T << 1 in which a classical treatment is appropriate, and then extend the treatment to the limit eI/sub o/R/k/sub B/T greater than or equal to 1 in which quantum effects become important. The Nyquist limit theory is used to calculate the noise in a dc SQUID, and the results are compared with a number of practical devices. The quantum limit is briefly considered. Results for the predicted sensitivity of rf SQUIDS are presented, and also compared with a number of practical devices. Finally, the importance of l/f noise (f is the frequency) in limiting the low frequency performance of SQUIDS is discussed
Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient
Dhont, J.K.G.; Briels, Willem J.
2008-01-01
The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that
Directory of Open Access Journals (Sweden)
Hossein Mahi
2016-09-01
Full Text Available Introduction: Mass production of natural enemies has been considered a necessity for biological control programs. Most beneficial insects have a relatively short shelf-life, so suppliers do not have a sufficient number of biocontrol agents. The development of storage techniques for biocontrol agents provides flexibility and efficiency in mass production. Cold storage by prolonging insect development times provides a steady and sufficient supply of insects and synchronizes a desired developmental stage of biocontrol agents with times of pest outbreaks; so it reduces the cost of biocontrol programs by enlarging the production period over several months. Cold storage is usually associated with major fitness costs. Even if the insects remain alive after cold storage, a reduction of fitness may be observed, so the production of high quality natural enemies must be ensured. Developing effective methods is necessary in mass-producing. It has been reported that using fluctuating thermal regimes (FTR (i.e. cold exposure interrupted by periodic short pulses of high temperature versus constant thermal regimes (CTR can progress the quality of biological control agents and significantly reduce rates of mortality. In this study, the impact of fluctuating thermal regimes versus constant low temperatures on the emergence rate, sex ratio, post-storage development time, adult size, egg load and egg size of the parasitoid wasp, Lysiphlebus fabarum (Marshall was studied. The test was examined in three cold storage periods (1, 2, or 3 weeks. Lysiphlebus fabarum is an aphidiine parasitoid which attacks more than 70 species of aphids. Although both sexual (arrhenotokous and asexual (thelytokous populations of L. fabarum have been reported in Iran, the former population has been studied in this research. Materials and Methods: A stock colony of black bean aphid, Aphis fabae Scopoli (Hemi., Aphididae was established from material collected in bean fields in Khuzestan
Thermal isomerization of azobenzenes: on the performance of Eyring transition state theory
Rietze, Clemens; Titov, Evgenii; Lindner, Steven; Saalfrank, Peter
2017-08-01
The thermal Z\\to E (back-)isomerization of azobenzenes is a prototypical reaction occurring in molecular switches. It has been studied for decades, yet its kinetics is not fully understood. In this paper, quantum chemical calculations are performed to model the kinetics of an experimental benchmark system, where a modified azobenzene (AzoBiPyB) is embedded in a metal-organic framework (MOF). The molecule can be switched thermally from cis to trans, under solvent-free conditions. We critically test the validity of Eyring transition state theory for this reaction. As previously found for other azobenzenes (albeit in solution), good agreement between theory and experiment emerges for activation energies and activation free energies, already at a comparatively simple level of theory, B3LYP/6-31G* including dispersion corrections. However, theoretical Arrhenius prefactors and activation entropies are in qualitiative disagreement with experiment. Several factors are discussed that may have an influence on activation entropies, among them dynamical and geometric constraints (imposed by the MOF). For a simpler model—Z\\to E isomerization in azobenzene—a systematic test of quantum chemical methods from both density functional theory and wavefunction theory is carried out in the context of Eyring theory. Also, the effect of anharmonicities on activation entropies is discussed for this model system. Our work highlights capabilities and shortcomings of Eyring transition state theory and quantum chemical methods, when applied for the Z\\to E (back-)isomerization of azobenzenes under solvent-free conditions.
Hard Thermal Loop approximation in the Light Front Quantum Field Theory
International Nuclear Information System (INIS)
Silva, Charles da Rocha; Perez, Silvana
2011-01-01
Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the λφ3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)
Hard Thermal Loop approximation in the Light Front Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Silva, Charles da Rocha [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil); Universidade Federal do Para (UFPA), Belem, PA (Brazil); Perez, Silvana [Universidade Federal do Para (UFPA), Belem, PA (Brazil)
2011-07-01
Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the {lambda}{phi}3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)
Yadav, Rajeev; Sengupta, Bhaswati; Sen, Pratik
2014-05-22
The present study elucidates the involvement of conformational fluctuation dynamics during chemically and thermally induced unfolding of human serum albumin (HSA) by fluorescence correlation spectroscopic (FCS) study, time-resolved fluorescence measurements, and circular dichroism (CD) spectroscopic methods. Two fluorescent probes, tetramethylrhodamine-5-maleimide (TMR) and N-(7-dimethylamino-4-methylcoumarin-3-yl) iodoacetamide (DACIA) were used to selectively label the domain I of HSA through the reaction with cys-34 for these studies. The guanidine hydrochloride (GnHCl) induced global structural change of HSA is monitored through its hydrodynamic radius (r(H)) and CD response, which is found to be two step in nature. In FCS experiment, along with the diffusion time component we have observed an exponential relaxation time component (τ(R)) that has been ascribed to the concerted chain dynamics of HSA. Unlike in the global structural change, we found that the τ(R) value changes in a different manner in the course of the unfolding. The dependence of τ(R) on the concentration of GnHCl was best fitted with a four state model, indicating the involvement of two intermediate states during the unfolding process, which were not observed through the CD response and r(H) data. The fluorescence lifetime measurement also supports our observation of intermediate states during the unfolding of HSA. However, no such intermediate states were observed during thermally induced unfolding of HSA.
Fully Quantum Fluctuation Theorems
Åberg, Johan
2018-02-01
Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.
Application of thermal comfort theory in probabilistic safety assessment of a nuclear power plant
International Nuclear Information System (INIS)
Zhou Tao; Sun Canhui; Li Zhenyang; Wang Zenghui
2011-01-01
Human factor errors in probabilistic safety assessment (PSA) of a nuclear power plant (NPP) can be prevented using thermal comfort analysis. In this paper, the THERP + HCR model is modified by using PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) index system, so as to obtain the operator cognitive reliability,and to reflect and analyze human perception, thermal comfort status,and cognitive ability in a specific NPP environment. The mechanism of human factors in the PSA is analyzed by operators of skill, rule and knowledge types. The THERP + HCR model modified by thermal comfort theory can reflect the conditions in actual environment, and optimize reliability analysis of human factors. Improving human thermal comfort for different types of operators reduces adverse factors due to human errors, and provides a safe and optimum decision-making for NPPs. (authors)
International Nuclear Information System (INIS)
Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas
2017-01-01
Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in
Energy Technology Data Exchange (ETDEWEB)
Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)
2017-01-15
Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in
Directory of Open Access Journals (Sweden)
Iñigo Antepara
2015-09-01
Full Text Available Thermal properties of mineral wool based materials appear to be of particular importance for their practical applications because the majority of them is used in the form of thermal insulation boards. Every catalogue list of any material producer of mineral wool contains thermal conductivity, sometimes also specific heat capacity, but they give only single characteristic values for dry state of material mostly. Exposure to outside climate or any other environment containing moisture can negatively affect the thermal insulation properties of mineral wool. Nevertheless, the mineral wool materials due to their climatic loading and their environmental exposure contain moisture that can negatively affect their thermal insulation properties. Because the presence of water in mineral wool material is undesirable for the majority of applications, many products are provided with hydrophobic substances. Hydrophilic additives are seldom used in mineral wool products. However, this kind of materials has a good potential for application for instance in interior thermal insulation systems, masonry desalination, green roofs, etc. For these materials, certain moisture content must be estimated and thus their thermal properties will be different than for the dry state. On this account, moisture dependent thermal properties of hydrophilic mineral wool (HMW are studied in a wide range of moisture content using a pulse technique. The experimentally determined thermal conductivity data is analysed using several homogenization formulas based on the effective media theory. In terms of homogenization, a porous material is considered as a mixture of two or three phases. In case of dry state, material consists from solid and gaseous phase. When moistened, liquid phase is also present. Mineral wool consists of the solid phase represented by basalt fibers, the liquid phase by water and the gaseous phase by air. At first, the homogenization techniques are applied for the
An ab-initio coupled mode theory for near field radiative thermal transfer.
Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L
2014-12-01
We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.
Charge-Induced Fluctuation Forces in Graphitic Nanostructures
Directory of Open Access Journals (Sweden)
D. Drosdoff
2016-01-01
Full Text Available Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van der Waals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Our results strongly indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.
Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'
International Nuclear Information System (INIS)
Novelli, A.
1982-01-01
The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)
International Nuclear Information System (INIS)
Tserkovnikov, Yu.A.
2001-01-01
The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru
Thermalization time scales for WIMP capture by the Sun in effective theories
Energy Technology Data Exchange (ETDEWEB)
Widmark, A., E-mail: axel.widmark@fysik.su.se [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden)
2017-05-01
I study the process of dark matter capture by the Sun, under the assumption of a Weakly Interacting Massive Particle (WIMP), in the framework of non-relativistic effective field theory. Hypothetically, WIMPs from the galactic halo can scatter against atomic nuclei in the solar interior, settle to thermal equilibrium with the solar core and annihilate to produce an observable flux of neutrinos. In particular, I examine the thermalization process using Monte-Carlo integration of WIMP trajectories. I consider WIMPs in a mass range of 10–1000 GeV and WIMP-nucleon interaction operators with different dependence on spin and transferred momentum. I find that the density profiles of captured WIMPs are in accordance with a thermal profile described by the Sun's gravitational potential and core temperature. Depending on the operator that governs the interaction, the majority of the thermalization time is spent in either the solar interior or exterior. If normalizing the WIMP-nuclei interaction strength to a specific capture rate, I find that the thermalization time differs at most by 3 orders of magnitude between operators. In most cases of interest, the thermalization time is many orders of magnitude shorter than the age of the solar system.
Research on electric and thermal characteristics of plasma torch based on similarity theory
International Nuclear Information System (INIS)
Cheng Changming; Tang Deli; Lan Wei
2007-01-01
Configuration and working principle of a DC non-transferred plasma torch have been introduced. Based on similarity theory, connections between the electric-thermal characteristics and operational parameter such as flowing gas rate and arc power have been investigated. Calculation and experiment are compared. The results indicate that the calculation results are in agreement with experimental ones. The formulas can be used for plasma torch improvement and optimization. (authors)
Big Bang or vacuum fluctuation
International Nuclear Information System (INIS)
Zel'dovich, Ya.B.
1980-01-01
Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)
A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.
Studies of Fluctuation Processes in Nuclear Collisions
Energy Technology Data Exchange (ETDEWEB)
Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics
2016-04-14
The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and
Effective Thermal Conductivity of Open Cell Polyurethane Foam Based on the Fractal Theory
Directory of Open Access Journals (Sweden)
Kan Ankang
2013-01-01
Full Text Available Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.
An application of the unifying theory of thermal convection in vertical natural convection
Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel
2014-11-01
Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.
Nonrelativistic closed string theory
International Nuclear Information System (INIS)
Gomis, Jaume; Ooguri, Hirosi
2001-01-01
We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting
Fluctuations in high-energy particle collisions
International Nuclear Information System (INIS)
Gronqvist, Hanna
2016-01-01
We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we
Thermal Fluctuations in Casimir Pistons
Lomnitz, M.; Villarreal, C.
2012-07-01
We present analytical and simple expressions to determine the free energy, internal energy, entropy, as well as the pressure acting at the interface of a perfectly conducting rectangular Casimir piston. We show that infrared divergencies linear in temperature become cancelled within the piston configuration, and show a continuous behavior consistent with intuitive expectations.
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Universal mesoscopic conductance fluctuations
International Nuclear Information System (INIS)
Evangelou, S.N.
1992-01-01
The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)
Decoherence and thermalization of a pure quantum state in quantum field theory.
Giraud, Alexandre; Serreau, Julien
2010-06-11
We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.
Effective field theories for heavy Majorana neutrinos in a thermal bath
Energy Technology Data Exchange (ETDEWEB)
Biondini, Simone
2016-05-06
In the leptogenesis framework Majorana neutrinos are at the origin of the baryon asymmetry in the universe. We develop an effective field theory for non-relativistic Majorana fermions and we apply it to the case of a heavy Majorana neutrino decaying in a hot plasma of Standard Model particles, whose temperature is much smaller than the mass of the Majorana neutrino but still much larger than the electroweak scale. Moreover we compute systematically thermal corrections to the CP asymmetries in the Majorana neutrino decays.
Foundations of quantum theory and thermodynamics
International Nuclear Information System (INIS)
Olkhov, Victor
1998-01-01
Physical reasons to support the statement that Quantum theory (Quantum Gravity in particular as well as Classical Gravity) loose applicability due to Thermodynamical effects are presented. The statement is based on several points: 1. N.Bohr requirement that measuring units must have macro size is one of common fundamentals of Quantum theory. 2. The Reference System--the base notion of Classical and Quantum theory and of any observation process as well, must be protected from any external Thermal influence to provide precise measurements of Time and Distance. 3. No physical screen or process, that can reduce or reflect the action of Gravity is known and hence nothing can cool or protect the measuring units of the Reference System from heating by Thermal Gravity fluctuations. 4. Thermal Gravity fluctuations--Thermal fluctuations of Gravity free fall acceleration, are induced by Thermal behavior of matter and Thermal properties of Electromagnetic fields, but usually are neglected as near zero values. Matter heat Gravity and Gravity heat Matter. Thermal fluctuations of Gravity free fall acceleration act as a Universal Heater on any kind of Matter or Field. 5. Nevertheless the usual Thermal properties of Gravity are negligible, they can be dramatically increased by Gravity Blue Shift (near Gravitational Radius) or usual Doppler effects. 6. If Thermal action of Gravity become significant all measurements of Time and Distance that determine the Reference System notion, must depend on the Thermal properties of Gravity, like Temperature or Entropy, and that violate applicability of the Reference System notion and Quantum and Classical theories as well. If so, Thermal notions, like Temperature or Entropy, become more fundamental than common Time and Distance characters. The definition of the Temperature of the Gravity fluctuations and it's possible measurements are suggested
Dewar, R
2003-01-01
Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p subGAMMA of the underlying microscopic phase space trajectories GAMMA over a time interval of length tau satisfies p subGAMMA propor to exp(tau sigma subGAMMA/2k sub B) where sigma subGAMMA is the time-averaged rate of entropy production of GAMMA. Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as tau -> infinity; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth's climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general inf...
Energy Technology Data Exchange (ETDEWEB)
Cao, Xiaobin
2011-01-15
quasi-particle peak broadens and splits into two bands, which indicates a break down of the Fermi liquid picture. The comparison between our results and those obtained using the second-order Born approximation shows that the perturbation theory is unreliable near the Fermi surface. Also with our non-Gaussian fluctuations, our calculation of spectral functions can explain the experimental angle-resolved photoemission spectroscopy (ARPES) data in a reasonable way. At last, the optical conductivity calculation confirms a zero dc conductivity in our model, and suggests that a finite dc conductivity obtained in a former calculation is just an artifact of the perturbation theory. (orig.)
International Nuclear Information System (INIS)
Cao, Xiaobin
2011-01-01
-particle peak broadens and splits into two bands, which indicates a break down of the Fermi liquid picture. The comparison between our results and those obtained using the second-order Born approximation shows that the perturbation theory is unreliable near the Fermi surface. Also with our non-Gaussian fluctuations, our calculation of spectral functions can explain the experimental angle-resolved photoemission spectroscopy (ARPES) data in a reasonable way. At last, the optical conductivity calculation confirms a zero dc conductivity in our model, and suggests that a finite dc conductivity obtained in a former calculation is just an artifact of the perturbation theory. (orig.)
General theory for thermal pulses of finite amplitude in nuclear shell-burnings
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Fujimoto, M Y
1978-09-01
Theory for thermal pulses of nuclear shell-burning is advanced to include the case of finite amplitude. The aims are to predict the progress of thermal pulse quantitatively and to obtain the peak values of the temperature and nuclear energy generation rate without making detailed numerical computation of stellar structure. In order to attain them the physical processes involved in the progress of the pulse are clarified using the concepts of the flatness of the shell source, which destabilizes nuclear burning, and the effect of radiation pressure, which stabilizes it. It is shown that the progress of the pulse can be predicted quantitatively when the pressure and the gravitational potential of the burning shell are specified for the onset stage of the pulse. The pulse height is determined mainly by the initial pressure; the higher initial pressure results in the higher pulse. Mass dependence is also obtained by approximating the gravitational potential by that of white dwarfs. The initial pressure is the quantity which is determined in the course of evolution preceding the pulse. The theory is shown to give a satisfactory agreement with numerical computations for a wide variety of the preceding evolutions, i.e., both for the case of the core in red giant stars and of the accreting white dwarfs.
Theory and calculation of water distribution in bentonite in a thermal field
International Nuclear Information System (INIS)
Carnahan, C.L.
1988-09-01
Highly compacted bentonite is under consideration for use as a buffer material in geological repositories for high-level radioactive wastes. To assess the suitability of bentonite for this use, it is necessary to be able to predict the rate and spatial extent of water uptake and water distribution in highly compacted bentonite in the presence of thermal gradients. The ''Buffer Mass Test'' (BMT) was conducted by workers in Sweden as part of the Stripa Project. The BMT measured uptake and spatial distributions of water infiltrating annuli of compacted MX-80 sodium bentonite heated from within and surrounded by granite rock; the measurements provided a body of data very valuable for comparison to results of theoretical calculations. Results of experiments on adsorption of water by highly compacted MX-80 bentonite have been reported by workers in Switzerland. The experiments included measurements of heats of immersion and adsorption-desorption isotherms. These measurements provide the basis for prediction of water vapor pressures in equilibrium with bentonite having specified adsorbed water contents at various temperatures. The present work offers a phenomenological description of the processes influencing movement of water in compacted bentonite in the presence of a variable thermal field. The theory is applied to the bentonite buffer-water system in an assumed steady state of heat and mass transport, using critical data derived from the experimental work done in Switzerland. Results of the theory are compared to distributions of absorbed water in buffers observed in the Swedish BMT experiments. 9 refs., 2 figs
Nonequilibrium fluctuations in a resistor.
Garnier, N; Ciliberto, S
2005-06-01
In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.
Characterization of the thermalness of a fissile system with a two-group diffusion theory parameter
International Nuclear Information System (INIS)
Bredehoft, B.B.; Busch, R.D.
1993-01-01
In tabulating critical data, the hydrogen-to-fissile atom ratio (H/X) is commonly used to characterize the amount of moderation in a system. Though adequate in many cases, H/X does not account for the moderating contribution of other light nuclei contained in common uranium-moderator mixtures. This ratio also does not account for enrichment of the system, which affects the resonance absorption characteristics and, therefore, the moderating behavior of that system. To alleviate these problems, a two-energy-group diffusion theory analogy to the six-factor formula was applied to define a new parameter p/(η 2 · f 2 ), which describes the moderation characteristics or the 'thermalness' of a fissioning system and includes the effects of enrichment and the presence of moderators other than hydrogen. From an analysis of several low-enriched uranium systems with different moderators, it was found that the values of p/(η 2 · f 2 ) corresponding to minimum critical mass and volume tend to center in a narrower range than do the values of H/X for the same systems. Also, the thermalness parameter does not vary with the addition of a reflector and is applicable to systems with other than hydrogenous moderators. Based on these results, the thermalness parameter p/(η 2 · f 2 ) provides an effective means of characterizing moderated systems relative to optimum conditions
International Nuclear Information System (INIS)
Roura, P.; Costa, J.
2002-01-01
Among the rush of papers published after the discovery of visible luminescence in porous silicon, a number of them claimed that an extraordinary behaviour had been found. However, after five years of struggling with increasingly sophisticated but not completely successful models, it was finally demonstrated that it was simply thermal radiation. Here, we calculate thermal radiation emitted by silicon nanoparticles when irradiated in vacuum with a laser beam. If one interprets this radiation as being photoluminescence, its properties appear extraordinary: non-exponential excitation and decay transients and a supralinear dependence on laser power. Within the (quantum) theory of photoluminescence, this behaviour can be interpreted as arising from a non-usual excitation mechanism known as multiphoton excitation. Although this erroneous interpretation has, to some extent, a predictive power, it is unable to give a sound explanation for the quenching of radiation when particles are not irradiated in vacuum but inside a gas. The real story of this error is presented both to achieve a deeper understanding of the radiative thermal emission of nanoparticles and as a matter of reflection on scientific activity. (author)
Crossover behavior of the thermal conductance and Kramers’ transition rate theory
Velizhanin, Kirill A.; Sahu, Subin; Chien, Chih-Chun; Dubi, Yonatan; Zwolak, Michael
2015-12-01
Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive the heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Not only does this shed new light on Kramers’ classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.
Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions
Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng
One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.
Institute of Scientific and Technical Information of China (English)
GAO Xue; ZHANG Yue; SHANG Jia-Xiang
2011-01-01
We choose a Si/Ge interface as a research object to investigate the infiuence of interface disorder on thermal boundary conductance. In the calculations, the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials, while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory. The results show that interface disorder limits thermal transport. The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance. This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.%We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.It is well known that interfaces can play a dominant role in the overall thermal transport characteristics of structures whose length scale is less than the phonon mean free path.When heat flows across an interface between two different materials,there exists a temperature jump at the interface.Thermal boundary conductance (TBC),which describes the efficiency of heat flow at material interfaces,plays an importance role in the transport of thermal energy in nanometerscale devices,semiconductor superlattices,thin film multilayers and nanocrystalline materials.[1
The field theory of symmetrical layered electrolytic systems and the thermal Casimir effect
International Nuclear Information System (INIS)
Dean, D S; Horgan, R R
2005-01-01
We present a general extension of a field-theoretic approach developed in earlier papers to the calculation of the free energy of symmetrically layered electrolytic systems which is based on the sine-Gordon field theory for the Coulomb gas. The method is to construct the partition function in terms of the Feynman evolution kernel in the Euclidean time variable associated with the coordinate normal to the surfaces defining the layered structure. The theory is applicable to cylindrical systems and its development is motivated by the possibility that a static van der Waals or thermal Casimir force could provide an attractive force stabilizing a dielectric tube formed from a lipid bilayer, an example of which is provided by the t-tubules occurring in certain muscle cells. In this context, we apply the theory to the calculation of the thermal Casimir effect for a dielectric tube of radius R and thickness δ formed from such a membrane in water. In a grand canonical approach we find that the leading contribution to the Casimir energy behaves like -k B TLκ C /R which gives rise to an attractive force which tends to contract the tube radius. We find that κ C ∼0.3 for the case of typical lipid membrane t-tubules. We conclude that except in the case of a very soft membrane this force is insufficient to stabilize such tubes against the bending stress which tends to increase the radius. We briefly discuss the role of the lipid membrane reservoir implicit in the approach and whether its nature in biological systems may possibly lead to a stabilizing mechanism for such lipid tubes
Quantum fluctuations in insulating ferroelectrics
International Nuclear Information System (INIS)
Riseborough, Peter S.
2010-01-01
Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.
International Nuclear Information System (INIS)
Salakhutdinov, M.I.; Mukhiddinov, K.S.; Marupov, R.
2006-01-01
In the paper carried out generalization of experimental results on specific isobaric thermal capacity, heat conductivity and thermal diffusivity coefficients of raw cotton of sort 9326-B and its components on the basis of similarity theory
Energy Technology Data Exchange (ETDEWEB)
Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)
2015-10-07
We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.
Gambling with Superconducting Fluctuations
Foltyn, Marek; Zgirski, Maciej
2015-08-01
Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.
On the stringy nature of winding modes in noncommutative thermal field theories
Arcioni, G; Gomis, J P; Vázquez-Mozo, Miguel Angel; Gomis, Joaquim
2000-01-01
We show that thermal noncommutative field theories admit a version of `channel duality' reminiscent of open/closed string duality, where non-planar thermal loops can be replaced by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble closed strings in three aspects: their mass spectrum is that of closed-string winding modes, their interaction vertices contain extra moduli, and they can be regarded as propagating in a higher-dimensional `bulk' space-time. In noncommutative models that can be embedded in a D-brane, we show the precise relation between the effective `winding fields' and closed strings propagating off the D-brane. The winding fields represent the coherent coupling of the infinite tower of closed-string oscillator states. We derive a sum rule that expresses this effective coupling in terms of the elementary couplings of closed strings to the D-brane. We furthermore clarify the relation between the effective propagating dimension of the winding fields and t...
Non-Gaussian conductivity fluctuations in semiconductors
International Nuclear Information System (INIS)
Melkonyan, S.V.
2010-01-01
A theoretical study is presented on the statistical properties of conductivity fluctuations caused by concentration and mobility fluctuations of the current carriers. It is established that mobility fluctuations result from random deviations in the thermal equilibrium distribution of the carriers. It is shown that mobility fluctuations have generation-recombination and shot components which do not satisfy the requirements of the central limit theorem, in contrast to the current carrier's concentration fluctuation and intraband component of the mobility fluctuation. It is shown that in general the mobility fluctuation consist of thermal (or intraband) Gaussian and non-thermal (or generation-recombination, shot, etc.) non-Gaussian components. The analyses of theoretical results and experimental data from literature show that the statistical properties of mobility fluctuation and of 1/f-noise fully coincide. The deviation from Gaussian statistics of the mobility or 1/f fluctuations goes hand in hand with the magnitude of non-thermal noise (generation-recombination, shot, burst, pulse noises, etc.).
Soudzilovskaia, N.A.; Cornelissen, J.H.C.; van Bodegom, P.M.
2013-01-01
Bryophytes cover large territories in cold biomes, where they control soil temperature regime, and therefore permafrost, carbon and nutrient dynamics. The mechanisms of this control remain unclear. We quantified the dependence of soil temperature fluctuations under bryophyte mats on the interplay of
Topics in fluctuating nonlinear hydrodynamics
International Nuclear Information System (INIS)
Milner, S.T.
1986-01-01
Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers
Nonequilibrium quantum fluctuations of work.
Allahverdyan, A E
2014-09-01
The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.
Effect of Alfvenic fluctuations on the solar wind
International Nuclear Information System (INIS)
Chien, T.H.
1974-01-01
The major source of microscale fluctuations in the interplanetary medium due to the outwardly propagating Alfven waves is considered. The effect of the Alfven waves on the supersonic expansion of the solar wind is studied under the assumption that the motion of the interplanetary medium can be resolved physically into a comparatively smooth and slowly varying mesoscale flow and field with very irregular disordered incompressible microscale Alfvenic fluctuations superposed on it. The important features of the solar wind such as heat conduction flux, spiral interplanetary magnetic field, and proton thermal anisotropy are included in the theory. For inviscid, steady state, spherically symmetrical model of the solar wind, the two-fluid formulation of the background mesoscale MHD equations is obtained. The results show that during the expansion process, fluctuation energy is converted into the kinetic energy of the solar wind. Due to the presence of the Alfvenic fluctuations, the velocity of the solar wind is about 5 percent higher than that without considering the fluctuations. (U.S.)
Thermal conductivity of supercooled water.
Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A
2013-04-01
The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.
Charge Fluctuations of an Uncharged Black Hole
Schiffer, Marcelo
2016-01-01
In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...
International Nuclear Information System (INIS)
Tittle, C.W.
1992-01-01
Diffusion theory has been successfully used to model the effect of fluid invasion into the formation for neutron porosity logs and for the gamma-gamma density log. The purpose of this paper is to present results of computations using a five-group time-dependent diffusion code on invasion effects for the pulsed neutron thermal decay time log. Previous invasion studies by the author involved the use of a three-dimensional three-group steady-state diffusion theory to model the dual-detector thermal neutron porosity log and the gamma-gamma density log. The five-group time-dependent code MGNDE (Multi-Group Neutron Diffusion Equation) used in this work was written by Ferguson. It has been successfully used to compute the intrinsic formation life-time correction for pulsed neutron thermal decay time logs. This application involves the effect of fluid invasion into the formation
International Nuclear Information System (INIS)
Tison, D.L.
1980-01-01
Thermal habitats in effluent cooling waters from production nuclear reactors at the Savannah River Plant are unlike natural thermal habitats in that reactor operations are periodically halted, exposing the organisms growing in these thermal habitats to ambient temperatures for unpredictable lengths of time. Rates of primary production, glucose heterotrophy, and the composition of algal-bacterial mat communities growing along a thermal gradient from about 50 to 35 0 C during periods of reactor operation were studied. Cyanobacteria were the only photoautotrophs in mat communities above 40 0 C while cyanobacteria and eucaryotic algae comprised the photoautotrophic component of mat communities below 40 0 C. The heterotrophic component of these communities above 40 0 C was made up of stenothermic and eurythermic thermophilic bacteria while both eurythermic thermophiles and mesophilic bacteria were found in communities below 40 0 C. Net CO 2 -fixation rates during thermal conditions dropped after initial exposure to ambient temperatures. After prolonged exposure of the thermal communities to ambient temperatures, adaptation and colonization by mesophilic algae occurred. Rates of glucose utilization under varying degrees of thermal influence suggested that the heterotrophic component may not have been optimally adapted to thermal conditions. During periods of changing thermal conditions, an increase in the percentage extracellular release of photosynthetically fixed 14 CO 2 by cyanobacteria and algae and an increase in the percentage of glucose mineralized (respired) by the heterotrophic component of the mat communities was observed. Results of temperature shift experiments indicated that the short-term response of the photoautotrophic component of these communities to thermal stress was an increase in the percentage of photosynthate released extracellularly
Thermal performance of Danish solar combi systems in practice and in theory
DEFF Research Database (Denmark)
Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon
2004-01-01
An overview of measured thermal performances of Danish solar combi systems in practice is given. The thermal performance varies greatly from system to system. Measured and calculated thermal performances of different solar combi systems are compared and the main reasons for the different thermal ...... as theoretically expected....
International Nuclear Information System (INIS)
Nunez, Alvaro; Starinets, Andrei O.
2003-01-01
We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green's functions of N=4 SU(N) supersymmetric Yang-Mills theory in the limit of large N and large 't Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory. Correlation functions of operators dual to massive scalar, vector and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are considered. We find asymptotic formulas for quasinormal frequencies in the massive scalar and tensor cases, and an exact expression for vector perturbations. In the long-distance, low-frequency limit we recover results of the hydrodynamic approximation to thermal Yang-Mills theory
Núñez, Alvaro; Starinets, Andrei O.
2003-06-01
We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green’s functions of N=4 SU(N) supersymmetric Yang-Mills theory in the limit of large N and large ’t Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory. Correlation functions of operators dual to massive scalar, vector and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are considered. We find asymptotic formulas for quasinormal frequencies in the massive scalar and tensor cases, and an exact expression for vector perturbations. In the long-distance, low-frequency limit we recover results of the hydrodynamic approximation to thermal Yang-Mills theory.
Super-Gaussian transport theory and the field-generating thermal instability in laser–plasmas
International Nuclear Information System (INIS)
Bissell, J J; Ridgers, C P; Kingham, R J
2013-01-01
Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser–plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density n e , which we associate with a novel heat-flow q n ∝∇n e . Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇T e × ∇n e field generation mechanism by ∼30% (where T e is the electron temperature), and the diffusive and Righi–Leduc heat-flows by ∼80 and ∼90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux q n are checked against kinetic simulation using the Vlasov–Fokker–Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields. (paper)
Super-Gaussian transport theory and the field-generating thermal instability in laser-plasmas
Bissell, J. J.; Ridgers, C. P.; Kingham, R. J.
2013-02-01
Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser-plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density ne, which we associate with a novel heat-flow qn∝∇ne. Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇Te × ∇ne field generation mechanism by ˜30% (where Te is the electron temperature), and the diffusive and Righi-Leduc heat-flows by ˜80 and ˜90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux qn are checked against kinetic simulation using the Vlasov-Fokker-Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields.
Poshiwa, X.; Groeneveld, R.A.; Heitkonig, I.M.A.; Prins, H.H.T.; Ierland, van E.C.
2013-01-01
Annual rural incomes in Southern Africa show large rainfall-induced fluctuations. Variable rainfall has serious implications for agro-pastoral activities (crop cultivation and livestock keeping), whereas wildlife and tourism are less affected. The aim of this paper is to investigate the role of
Thermalization and revivals after a quantum quench in conformal field theory.
Cardy, John
2014-06-06
We consider a quantum quench in a finite system of length L described by a 1+1-dimensional conformal field theory (CFT), of central charge c, from a state with finite energy density corresponding to an inverse temperature β≪L. For times t such that ℓ/2
Retarded Propagator Representation of Out-of-Equilibrium Thermal Field Theories
International Nuclear Information System (INIS)
Dadic, I.
2009-01-01
We represent out of equilibrium thermal field theories with finite time path in terms of retarded propagators exclusively. For the particle number, defined as the equal time limit of the Keldysh propagator, the time ordering of the diagrams contributing is particularly simple: all external end-points of propagators have maximal time, there are no internal vertices with locally maximal time, the property which guaranties causality), there is, at least one 'sink' vertex (vertex with locally minimal time). The diagram looks like fisher net hanging on external vertices. At the 'sink' vertices energy is not conserved, thus establishing realisation of uncertainty relations in out of equilibrium TFT. Even more, at the equal-time limit, the terms conserving energy at 'sink' vertices vanish. This fact eliminates pinching problem and enables safe time→∞ limit. The retarded propagator in higher orders is regularized only as a part of of the diagram connected to equal time limit of multi point Green function representing expectation value of the product of number operators. These properties indicate clear advantage of finite time path, in large time limit over the use of Keldysh time path.
Lee, H. P.
1977-01-01
The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.
International Nuclear Information System (INIS)
Casati, G.; Chirikov, B.V.
1996-01-01
Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
2016-05-01
The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .
Solitons in proteins at non-zero temperatures with allowance for the fluctuations of polarization
International Nuclear Information System (INIS)
Simo, E.; Caputo, J.G.
2007-06-01
A model for the nonlinear transfer of vibrational energy in molecular chains is derived at temperatures of realistic interest for transport in proteins. The study includes the influence of the fluctuations of polarization in the chain. This theory exhibits a new form of temperature-dependence in intrinsic parameters of alpha-helix, and consequently in the coefficients of the nonlinear Schroedinger equation governing the system and in the solitons' parameters. Thermal fluctuations are analysed in the basis of the non-Gaussian approximation and the total free-energy of the alpha-helix is determined to elucidate the denaturation process of the protein. (author)
Temperature effects in the valence fluctuation of europium intermetallic compounds
International Nuclear Information System (INIS)
Menezes, O.L.T. de; Troper, A.; Gomes, A.A.
1978-03-01
A previously reported model for valence fluctuations in europium compound in order to account for thermal occupation effect. Experimental results are critically discussed and new experiments are suggested
Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope
International Nuclear Information System (INIS)
Naaman, O.; Teizer, W.; Dynes, R. C.
2001-01-01
We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory
Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'
Energy Technology Data Exchange (ETDEWEB)
Novelli, A. (Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi)
1982-01-01
The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer.
Fluctuations of radiative heat exchange between two bodies
Biehs, S.-A.; Ben-Abdallah, P.
2018-05-01
We present a theory to describe the fluctuations of nonequilibrium radiative heat transfer between two bodies both in the far- and near-field regimes. As predicted by the blackbody theory, in the far field, we show that the variance of radiative heat flux is of the same order of magnitude as its mean value. However, in the near-field regime, we demonstrate that the presence of surface polaritons makes this variance more than one order of magnitude larger than the mean flux. We further show that the correlation time of heat flux in this regime is comparable to the relaxation time of heat carriers in each medium. This theory could open the way to an experimental investigation of heat exchanges far from the thermal equilibrium condition.
Plasma diffusion due to magnetic field fluctuations
International Nuclear Information System (INIS)
Okuda, H.; Lee, W.W.; Lin, A.T.
1979-01-01
Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale
Entropic Repulsion Between Fluctuating Surfaces
Janke, W.
The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.
Electrostatic fluctuations in soap films
International Nuclear Information System (INIS)
Dean, D.S.; Horgan, R.R.
2002-01-01
A field theory to describe electrostatic interactions in soap films, described by electric multilayers with a generalized thermodynamic surface-charging mechanism, is studied. In the limit where the electrostatic interactions are weak, this theory is exactly soluble. The theory incorporates in a consistent way, the surface-charging mechanism and the fluctuations in the electrostatic field that correspond to the zero-frequency component of the van der Waals force. It is shown that these terms lead to a Casimir-like attraction that can be sufficiently large to explain the transition between the common black film to a Newton black film
Holographic thermalization in N = 4 super Yang-Mills theory at finite coupling
Energy Technology Data Exchange (ETDEWEB)
Stricker, Stefan A. [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria)
2014-02-15
We investigate the behavior of energy-momentum tensor correlators in holographic N = 4 super Yang-Mills plasma, taking finite coupling corrections into account. In the thermal limit we determine the flow of quasinormal modes as a function of the 't Hooft coupling. Then we use a specific model of holographic thermalization to study the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the plasma constituents approach their thermal distribution as the coupling constant decreases from the infinite coupling limit. All obtained results point towards the weakening of the usual top-down thermalization pattern. (orig.)
Thermally driven convective cells and tokamak edge turbulence
International Nuclear Information System (INIS)
Thayer, D.R.; Diamond, P.H.
1987-07-01
A unified theory for the dynamics of thermally driven convective cell turbulence is presented. The cells are excited by the combined effects of radiative cooling and resistivity gradient drive. The model also includes impurity dynamics. Parallel thermal and impurity flows enhanced by turbulent radial duffusion regulate and saturate overlapping cells, even in regimes dominated by thermal instability. Transport coefficients and fluctuation levels characteristic of the saturated turbulence are calculated. It is found that the impurity radiation increases transport coefficients for high density plasmas, while the parallel conduction damping, elevated by radial diffusion, in turn quenches the thermal instability. The enhancement due to radiative cooling provides a resolution to the dilemma of explaining the experimental observation that potential fluctuations exceed density fluctuations in the edge plasma (e PHI/T/sub e/ > n/n 0 )
Quantum-gravity fluctuations and the black-hole temperature
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)
2015-05-15
Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)
Quantum-gravity fluctuations and the black-hole temperature
International Nuclear Information System (INIS)
Hod, Shahar
2015-01-01
Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)
Kamata, S.
2017-12-01
Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection. Adopting this new definition of l, I investigate the thermal evolution of Dione and Enceladus under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a 30-km-thick global subsurface ocean. Dynamical tides may be able to account for such an amount of heat, though their ices need to be highly viscous.
Kamata, Shunichi
2018-01-01
Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.
Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment
Cottrill, Anton L.; Wang, Song; Liu, Albert Tianxiang; Wang, Wen-Jun; Strano, Michael S.
2018-01-01
Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.
Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment
Cottrill, Anton L.
2018-01-15
Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.
Theory of thermal and charge transport in diffusive normal metal / superconductor junctions
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.
2005-01-01
Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting
Measuring shape fluctuations in biological membranes
International Nuclear Information System (INIS)
Monzel, C; Sengupta, K
2016-01-01
Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes. (topical review)
Sandhya, K L; Chandani, A D L; Fukuda, Atsuo; Vij, Jagdish K; Emelyanenko, A V; Ishikawa, Ken
2013-01-01
In the binary mixture phase diagram of MC881 and MC452, the borderline between anticlinic antiferroelectric SmC(A)(*) and synclinic ferroelectric SmC(*) becomes apparently parallel to the temperature ordinate axis at the critical concentration r(c). The free energy difference between SmC(A)(*) and SmC^{*} is extremely small in a wide temperature range near r(c). In such circumstances, by observing Bragg reflection spectra due to the director helical structure and electric-field-induced birefringence, we have observed the continuous change from SmC(A)(*) to SmC(*) for r/~r(c). These intriguing phenomena have been explained, successfully at least in the high-temperature region, by a thermal equilibrium between the synclinic and anticlinic orderings and the resulting Boltzmann distribution for the ratio between them; the thermal equilibrium is considered to be attained in a nonuniform defect-assisted way through solitary waves moving around dynamically. We have also discussed qualitatively an important role played by the effective long-range interlayer interactions in the low-temperature region.
Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.
1979-01-01
User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.
Directory of Open Access Journals (Sweden)
G. TULLIO
2014-03-01
Full Text Available The present work provides a theoretical framework of reference in order to interpret the fluctuations in Italy’s balance of payments in the post-war period. Such a framework can help to explain the flows of international reserves, even under flexible exchange rates, and may easily be adapted to the analysis of the exchange rate itself. The author first develops a "medium to long term" theoretical model for a "small country", before deriving the equation for the balance of payments to be estimated with annual data. The results of the empirical estimates, which cover the period 1051-1973, are then presented. JEL: E42, F21, F32
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
A model of thermal conductivity for planetary soils: 2. Theory for cemented soils
Piqueux, S.; Christensen, P. R.
2009-09-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.
Energy Technology Data Exchange (ETDEWEB)
Stojanovic, B.; Hallberg, D.; Akander, J. [Building Materials Technology, KTH Research School, Centre for Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden)
2010-10-15
This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer
The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field
Energy Technology Data Exchange (ETDEWEB)
Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)
2016-02-15
Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.
International Nuclear Information System (INIS)
Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Krause, D.E.; Lopez, D.
2003-01-01
We report new constraints on extra-dimensional models and other physics beyond the standard model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2-1.2 μm. The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of ≅0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton's law of gravity are strengthened by more than an order of magnitude in the range 56-330 nm
Neutrino propagation in a fluctuating sun
International Nuclear Information System (INIS)
Burgess, C.P.; Michaud, D.
1997-01-01
We adapt to neutrino physics a general formulation for particle propagation in fluctuating media, initially developed for applications to electromagnetism and neutron optics. In leading approximation this formalism leads to the usual MSW effective Hamiltonian governing neutrino propagation through a medium. Next-to-leading contributions describe deviations from this description, which arise due to neutrino interactions with fluctuations in the medium. We compute these corrections for two types of fluctuations: (i) microscopic thermal fluctuations and (ii) macroscopic fluctuations in the medium s density. While the first of these reproduces standard estimates, which are negligible for applications to solar neutrinos, we find that the second can be quite large, since it grows in size with the correlation length of the fluctuation. We consider two models in some detail. For fluctuations whose correlations extend only over a local region in space of length l, appreciable effects for MSW oscillations arise if (δn/n) 2 l approx-gt 100m or so. Alternatively, a crude model of helioseismic p-waves gives appreciable effects only when (δn/n)approx-gt 1%. In general the dominant effect is to diminish the quality of the resonance, making the suppression of the 7 Be neutrinos a good experimental probe of fluctuations deep within the sun. Fluctuations can also provide a new mechanism for reducing the solar neutrino flux, giving an energy-independent suppression factor of 1/2 away from the resonant region, even for small vacuum mixing angles. copyright 1997 Academic Press, Inc
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
Thermal efficiency maximization for H- and X-shaped heat exchangers based on constructal theory
International Nuclear Information System (INIS)
Chen, Lingen; Feng, Huijun; Xie, Zhihui; Sun, Fengrui
2015-01-01
Constructal optimizations of H- and X-shaped heat exchangers are carried out by taking the maximum thermal efficiency (the ratio of the dimensionless heat transfer rate to the dimensionless total pumping power) as optimization objective. The constraints of total tube volumes and spaces occupied by heat exchangers are considered in the optimizations. For the H-shaped heat exchanger, the thermal efficiency decreases when the dimensionless mass flow rate increases. For the higher order of the X-shaped heat exchanger, when the order number is 3, the thermal efficiency of the heat exchanger with Murry law is increased by 68.54% than that with equal flow velocity in the tubes, and by 435.46% than that with equal cross section area of the tubes. - Highlights: • Constructal optimizations of H- and X-shaped heat exchangers are carried out. • Maximum thermal efficiency is taken as optimization objective. • Thermal efficiency is defined as ratio of heat transfer rate to total pumping power. • Optimal constructs of H- and X-shaped heat exchangers are obtained. • Thermal efficiency of X-shaped heat exchanger is larger than that of H-shaped.
Liu, Gang; Zhou, Jian; Wang, Hui
2017-06-14
Based on Grüneisen's theory, the elastic properties and thermal expansion of bulk SnSe with the Pnma phase are investigated by using first-principles calculations. Our numerical results indicate that the linear thermal expansion coefficient along the a direction is smaller than the one along the b direction, while the one along the c direction shows a significant negative value, even at high temperature. The numerical results are in good accordance with experimental results. In addition, generalized and macroscopic Grüneisen parameters are also presented. It is also found that SnSe possesses negative Possion's ratio. The contributions of different phonon modes to NTE along the c direction are investigated, and it is found that the two modes which make the most important contributions to NTE are transverse vibrations perpendicular to the c direction. Finally, we analyze the relation of elastic constants to negative thermal expansion, and demonstrate that negative thermal expansion can also occur even with all positive macroscopic Grüneisen parameters.
Directory of Open Access Journals (Sweden)
Lorenzo Marcucci
Full Text Available Muscular force generation in response to external stimuli is the result of thermally fluctuating, cyclical interactions between myosin and actin, which together form the actomyosin complex. Normally, these fluctuations are modelled using transition rate functions that are based on muscle fiber behaviour, in a phenomenological fashion. However, such a basis reduces the predictive power of these models. As an alternative, we propose a model which uses direct single molecule observations of actomyosin fluctuations reported in the literature. We precisely estimate the actomyosin potential bias and use diffusion theory to obtain a brownian ratchet model that reproduces the complete cross-bridge cycle. The model is validated by simulating several macroscopic experimental conditions, while its interpretation is compatible with two different force-generating scenarios.
Arani, M. Moeini; Nematollahi, H.; Mahboubi, N.; Bayegan, S.
2014-01-01
We take a new look at the neutron radiative capture by a deuteron at thermal energy with the pionless effective field theory (EFT($\\pi\\!\\!\\!/$)) approach. We present in detail the calculation of $nd\\rightarrow$ $^3H\\gamma$ amplitudes for incoming doublet and quartet channels leading to the formation of a triton fully in the projection method based on the cluster-configuration space approach. In the present work, we consider all possible one-body and two-body photon interaction diagrams. In fa...
Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory
Directory of Open Access Journals (Sweden)
Mohamed I.A. Othman
Full Text Available The aim of this paper is to study the wave propagation of generalized thermoelastic medium with voids under the effect of thermal loading due to laser pulse with energy dissipation. The material is a homogeneous isotropic elastic half-space and heated by a non-Gaussian laser beam with the pulse duration of 0.2 ps. A normal mode method is proposed to analyse the problem and obtain numerical solutions for the displacement components, stresses, temperature distribution and the change in the volume fraction field. The results of the physical quantities have been illustrated graphically by comparison between both types II and III of Green-Naghdi theory for two values of time, as well as with and without void parameters. Keywords: Laser pulse, Voids, Energy dissipation, Green-Naghdi theory, Wave propagation, Thermoelasticity
Computer simulations of phospholipid - membrane thermodynamic fluctuations
DEFF Research Database (Denmark)
Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.
2008-01-01
This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, showing that the slow volume-energy fluctuations derive from the tail region’s van der Waals interactions and are thus analogous...
International Nuclear Information System (INIS)
Akash, B.; Saghir, M.Z.
2007-01-01
This conference provided an opportunity to share research trends in thermal energy. It focused on the application of experimental, analytical or theoretical thermal and energy engineering. New technologies that improve the energy efficiency of engines, reduce exhaust emission levels and explore energy alternatives were highlighted along with market information and consumer education programs. A broad range of topics were addressed, including heat transfer; thermodiffusion; fluid mechanics; new and renewable energy technologies; environmental engineering; heat transfer with non-Newtonian fluid flow; polymer processing technology; energy management; solar thermal energy systems; air-conditioning and refrigeration; PV solar systems; and, energy conversion. The conference featured 152 presentations, of which 81 have been catalogued separately for inclusion in this database
International Nuclear Information System (INIS)
Haik, Y; Saghir, Z.
2006-01-01
This international conference provided a venue for the exchange of research and the discussion of ideas related to thermal engineering. Participants at the conference discussed emerging research trends in thermal energy and presented new technologies and advances in computerized simulations and thermodynamic analyses related to thermal energy. Recent developments in solar cell technology, waste heat utilization, and energy management were presented. New developments in biomass combustion technologies were also described. The conference was divided into 22 sessions that discussed materials and polymers; computational fluid dynamics; energy management; solar energy; natural convection; experimental fluid flow; experimental combustion; multi-phase; environment; solar renewables; computational fluid dynamics and combustion; porous media; and micro and nano media. The conference featured 118 presentations, of which 63 have been catalogued separately for inclusion in this database. refs., tabs., figs
Thermal properties of UO2 from density functional theory: role of strong correlations
International Nuclear Information System (INIS)
Panigrahi, Puspamitra; Kaur Gurpreet; Valsakumar, M.C.
2011-01-01
We report a study of ground state magnetic structure of Uranium-dioxide (UO 2 ) using ab initio calculations employing PAW pseudopotentials and Dudarev's version of GGA+U formalism as implemented in VASP to take into account the strong on-site Coulomb correlation among the localized Uranium-5f electrons. By choosing the value of the Hubbard parameter U eff to be 4.0 eV, we have confirmed the experimental observation that the ground state of UO 2 is an insulator with an anti-ferromagnetic (AFM) ordering. We study systematically the ground state structural, electronic, and magnetic properties of UO 2 and focus on the structure sensitive thermal properties such as specific heat, thermal expansion and comment on the calculation of thermal conductivity. (author)
A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
Ciancio, Vincenzo; Palumbo, Annunziata
2018-04-01
In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.
Many-body theory of electrical, thermal and optical response of molecular heterojunctions
Bergfield, Justin Phillip
In this work, we develop a many-body theory of electronic transport through single molecule junctions based on nonequilibrium Green's functions (NEGFs). The central quantity of this theory is the Coulomb self-energy matrix of the junction SigmaC. SigmaC is evaluated exactly in the sequential-tunneling limit, and the correction due to finite lead-molecule tunneling is evaluated using a conserving approximation based on diagrammatic perturbation theory on the Keldysh contour. In this way, tunneling processes are included to infinite order, meaning that any approximation utilized is a truncation in the physical processes considered rather than in the order of those processes. Our theory reproduces the key features of both the Coulomb blockade and coherent transport regimes simultaneously in a single unified theory. Nonperturbative effects of intramolecular correlations are included, which are necessary to accurately describe the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, essential for a quantitative theory of transport. This work covers four major topics related to transport in single-molecule junctions. First, we use our many-body theory to calculate the nonlinear electrical response of the archetypal Au-1,4-benzenedithiol-Au junction and find irregularly shaped 'molecular diamonds' which have been experimentally observed in some larger molecules but which are inaccessible to existing theoretical approaches. Next, we extend our theory to include heat transport and develop an exact expression for the heat current in an interacting nanostructure. Using this result, we discover that quantum coherence can strongly enhance the thermoelectric response of a device, a result with a number of technological applications. We then develop the formalism to include multi-orbital lead-molecule contacts and multi-channel leads, both of which strongly affect the observable transport. Lastly, we include a dynamic screening correction to
International Nuclear Information System (INIS)
Gupta, Sourendu
2007-01-01
In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence
Gupta, Sourendu
2007-02-01
In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.
Energy Technology Data Exchange (ETDEWEB)
Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)
2007-02-15
In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.
Katul, G. G.; Palmroth, S.; Manzoni, S.; Oren, R.
2012-12-01
Global climate models predict decreases in leaf stomatal conductance (gs) and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions such as soil moisture at the ecosystem scale must be identified. Here, these responses are investigated using an optimality theory applied to stomatal conductance. An analytical model for gs is first proposed based on (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. The optimization theory produced three gas exchange responses that are consistent with observations across a wide-range of species: (1) the sensitivity of gs to vapour pressure deficit (D) is similar to that obtained from a previous synthesis of more than 40 species, (2) the theory is consistent with the onset of an apparent 'feed-forward' mechanism in gs, and (3) the emergent non-linear relationship between the ratio of intercellular to atmospheric CO2 (ci/ca) and D agrees with the results available on this response. A simplified version of this leaf-scale approach recovers the linear relationship between stomatal conductance and leaf-photosynthesis employed in numerous climate models that currently use a variant on the 'Ball-Berry' or the 'Leuning' approaches provided the marginal water use efficiency increases linearly with atmospheric CO2. The model is then up-scaled to the canopy-level using novel theories about the structure of turbulence inside vegetation. This up-scaling proved to be effective in resolving the complex (and two-way) interactions between leaves and their immediate micro
Statistical fluctuations in reactors (1960); Fluctuations statistiques dans les piles (1960)
Energy Technology Data Exchange (ETDEWEB)
Raievski, V [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1960-07-01
The theory of space dependent fluctuations is developed, taking into account the effect of delayed neutrons. The 'diffusion equation' or Fokker-Planck equation is worked out in the case of age and two group theory, but the first one because of in physical significance is used in this report. The theory is applied to the study of the spectral density of fluctuations and fluctuations of counting rate and current flowing through the charge resistor of an ionisation chamber, the effect of the entrance capacity is discussed. The space dependent theory shows that the fluctuations in the core and reflector of a near critical pile obey to the same law. The spectral densities in the core and reflector are similar, there is no sensible attenuation of high frequency fluctuations in the reflector. Compared to the space independent theory, this theory give better agreement with experience, one can use the simple space independent theory but in checking with experiment it is necessary to introduce numerical factors given by the space dependent theory. (author) [French] La theorie des fluctuations statistiques est developpee dans le cas spatial en tenant compte des neutrons retardes, et dans le cadre de la theorie de l'age vitesse. L'equation d'evolution de la probabilite est egalement etablie dans le cadre de la theorie a deux groupes. Ces considerations sont appliquees a l'etude de la densite spectrale des fluctuations et aux fluctuations des taux de comptage et du courant circulant dans la resistance de charge du detecteur. On etudie en particulier l'effet de la constante de temps introduite par la capacite d'entree. Cette theorie etablit que les fluctuations dans le coeur et le reflecteur suivent la meme loi pour une pile critique, il en est de meme pour la densite spectrale meme a frequence elevee. Par rapport a la theorie d'ensemble, la theorie spatiale donne des coefficients numeriques ou facteurs de forme, qui permettent d'obtenir un bon accord entre la theorie et l
Fluctuation current in superconducting loops
International Nuclear Information System (INIS)
Berger, Jorge
2012-01-01
A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
Fluctuation conductivity of thin superconductive vanadium films
International Nuclear Information System (INIS)
Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.
1982-01-01
Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered
International Nuclear Information System (INIS)
Kantar, Ersin; Keskin, Mustafa
2014-01-01
We propose a ternary Ising spins (1/2, 1, 3/2) model to investigate the thermal and magnetic properties of magnetic nanoparticles with core–shell structure within the framework of the effective-field theory with correlations. The center site of the core is occupied by σ=±1/2 spin, while those surrounding the center site are occupied by S=±1, 0 spins and the shell sites are occupied by m=±1/2,±3/2 spins. Thermal behaviors of the core and shell magnetizations, susceptibilities and internal energies as well as total magnetization are examined. In order to confirm the stability of the solutions we also investigate the free energy of the system. According to the values of Hamiltonian parameters, the system undergoes first- and second-order phase transitions. Phase diagrams are calculated and discussed in detail. We find that the system exhibits a tricritical point, reentrant and five different type (Q, P, R, S and W) of compensation behaviors that strongly depend on interaction parameters. The results are in good agreement with some experimental and theoretical results. - Highlights: • Thermal and magnetic properties of ternary Ising nanoparticles are studied. • Phase diagrams within the EFT with correlations are calculated and discussed. • The effects of the exchange interactions and crystal field have been studied. • Reentrant phenomena and compensation behaviors have been found
Energy Technology Data Exchange (ETDEWEB)
Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2014-01-15
We propose a ternary Ising spins (1/2, 1, 3/2) model to investigate the thermal and magnetic properties of magnetic nanoparticles with core–shell structure within the framework of the effective-field theory with correlations. The center site of the core is occupied by σ=±1/2 spin, while those surrounding the center site are occupied by S=±1, 0 spins and the shell sites are occupied by m=±1/2,±3/2 spins. Thermal behaviors of the core and shell magnetizations, susceptibilities and internal energies as well as total magnetization are examined. In order to confirm the stability of the solutions we also investigate the free energy of the system. According to the values of Hamiltonian parameters, the system undergoes first- and second-order phase transitions. Phase diagrams are calculated and discussed in detail. We find that the system exhibits a tricritical point, reentrant and five different type (Q, P, R, S and W) of compensation behaviors that strongly depend on interaction parameters. The results are in good agreement with some experimental and theoretical results. - Highlights: • Thermal and magnetic properties of ternary Ising nanoparticles are studied. • Phase diagrams within the EFT with correlations are calculated and discussed. • The effects of the exchange interactions and crystal field have been studied. • Reentrant phenomena and compensation behaviors have been found.
A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy
Directory of Open Access Journals (Sweden)
Yi Zheng
2015-01-01
Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.
Current fluctuations of interacting active Brownian particles
Pre, Trevor Grand; Limmer, David T.
2018-01-01
We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...
International Nuclear Information System (INIS)
Saghir, M.Z.; Nasr, G.
2004-01-01
This conference provided an opportunity to share research trends in thermal energy, including fluid flow in porous media as encountered in different branches of science and engineering ranging from agricultural, chemical, civil and petroleum engineering, to food and soil sciences. The economic importance of enhanced oil recovery was emphasized along with growing concerns about pollution and ground water quality. Several presentations focused on the application of experimental, analytical or theoretical thermal and energy engineering. New technologies that improve the energy efficiency of engines, reduce exhaust emission levels and explore energy alternatives were also highlighted. The sessions of the conference were entitled: heat transfer; porous media; combustion; environment; enhanced oil recovery; double diffusion; turbulent flow; and, material science. The conference featured 77 presentations, of which 11 have been catalogued separately for inclusion in this database. refs., tabs., figs
Influence of intensity fluctuations on laser damage in optical materials
International Nuclear Information System (INIS)
Koldunov, M.F.; Manenkov, A.A.; Pocotilo, I.L.
1995-01-01
A study is reported of the influence of temporal fluctuations of laser radiation on the development of thermal explosion of absorbing inclusions and on the statistical properties of the laser induced damage in transparent dielectrics. A fluctuation time scale in which the fluctuations affect the thermal explosion of inclusions is established. An analysis is made of the conditions ensuring control of temporal fluctuations of laser radiation so as to eliminate their influence on the experimental statistical relationships governing laser damage associated with the distribution of absorbing inclusions in the bulk and on the surface of a sample
Energy Technology Data Exchange (ETDEWEB)
Kaellblad, K
1998-05-01
The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs
Energy beyond food: foraging theory informs time spent in thermals by a large soaring bird.
Directory of Open Access Journals (Sweden)
Emily L C Shepard
Full Text Available Current understanding of how animals search for and exploit food resources is based on microeconomic models. Although widely used to examine feeding, such constructs should inform other energy-harvesting situations where theoretical assumptions are met. In fact, some animals extract non-food forms of energy from the environment, such as birds that soar in updraughts. This study examined whether the gains in potential energy (altitude followed efficiency-maximising predictions in the world's heaviest soaring bird, the Andean condor (Vultur gryphus. Animal-attached technology was used to record condor flight paths in three-dimensions. Tracks showed that time spent in patchy thermals was broadly consistent with a strategy to maximise the rate of potential energy gain. However, the rate of climb just prior to leaving a thermal increased with thermal strength and exit altitude. This suggests higher rates of energetic gain may not be advantageous where the resulting gain in altitude would lead to a reduction in the ability to search the ground for food. Consequently, soaring behaviour appeared to be modulated by the need to reconcile differing potential energy and food energy distributions. We suggest that foraging constructs may provide insight into the exploitation of non-food energy forms, and that non-food energy distributions may be more important in informing patterns of movement and residency over a range of scales than previously considered.
Inverse scattering problem in turbulent magnetic fluctuations
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-08-01
Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes
Vertical natural convection: application of the unifying theory of thermal convection
Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.
2015-01-01
Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In
Cancellation of infrared and collinear singularities in relativistic thermal field theories. Pt. 2
International Nuclear Information System (INIS)
Le Bellac, M.; Reynaud, P.
1992-01-01
We study the infrared and collinear divergences of a renormalizable scalar field theory at finite temperature. We give the final results of an investigation undertaken in a previous work by showing the complete cancellation of all divergences at two-loop order in a physical process. This result makes the validity of the Kinoshita-Lee-Nauenberg theorem at finite temperature extremely plausible. (orig.)
Thermal theory of autowave processes in low-temperature solid-phase radiochemical reactions
International Nuclear Information System (INIS)
Barelko, V.V.; Barkalov, I.M.; Vaganov, D.A.; Zanin, A.M.; Kiryukhin, D.P.
1982-01-01
A new phenomenon in radiation cryochemistry concerning the class of autowave processes was previously discovered. It was observed in halogenation and hydrohalogenation of hydrocarbons and consisted of spontaneous, laminar propagation of a chemical transformation wave based on a frozen mixture of reagents previously irradiated with 60 Co γ-rays. The effect of the positive inverse correlation between the chemical conversion and brittle fracture of a solid sample of reagents is the phenomenological basis of the phenomenon; formation of fractures triggers a reactive process which takes place on their active surface (or in the layer adjacent to it), and the chemical reaction, in turn, stimulates the subsequent development of the process of decomposition. As a result, a single brittle fracture and chemical conversion wave which moves along the solid sample arises. Different mechanisms of generation of fracture surfaces under the effect of the reaction are possible. A difference in the densities of the initial reagents and the products of the reaction could be one of the causes of brittle fracture, and the thermal stresses induced by the exothermicity of the chemical processes could be another cause. The present work concerns the analysis of the features of the wave process which occurs based on the second, thermal mechanism. The analysis was conducted within the framework of a phenomenological approach which does not require specific definition of the nature of the chemical activation of the system during its brittle fracture
International Nuclear Information System (INIS)
Dubinko, V.I.; Klepikov, V.F.
2007-01-01
In the conventional theory of radiation damage, it is assumed that the main effect of irradiation is due to formation of Frenkel pairs of vacancies and self-interstitial atoms (SIAs) and their clusters. The difference in absorption of vacancies and SIAs by primary or radiation-induced extended defects (EDs) is thought to be the main reason of microstructural evolution under irradiation. On the other hand, the recovery of radiation damage is thought to be driven exclusively by thermal fluctuations resulting in the vacancy evaporation from voids (void annealing) or dislocations (thermal creep) and in the fluctuation-driven overcoming of obstacles by gliding dislocations (plastic strain). However, these recovery mechanisms can be efficient only at sufficiently high temperatures. At lower irradiation temperatures, the main driving force of the recovery processes may be due to nonequilibrium fluctuations of energy states of the atoms surrounding EDs arising as a result of scattering of radiation-induced excitations of atomic and electronic structure at EDs. In the present paper, the mechanisms of nonequilibrium fluctuations that result in such phenomena as the void shrinkage under irradiation at low temperatures (or high dose rates), irradiation creep and irradiation-induced increase of plasticity under sub-threshold irradiation was considered
YagnaSri, P.; Siddiqui, Maimuna; Vijaya Nirmala, M.
2018-03-01
The objective of the work is to develop the higher order theory for piezoelectric composite laminated plates with zigzag function and to determine the thermal characteristics of piezoelectric laminated plate with zig zag function for different aspect ratios (a/h), thickness ratios (z/h) and voltage and also to evaluate electric potential function by solving second order differential equation satisfying electric boundary conditions along the thickness direction of piezoelectric layer. The related functions and derivations for equation of motion are obtained using the dynamic version of the principle of virtual work or Hamilton’s principle. The solutions are obtained by using Navier’s stokes method for anti-symmetric angle-ply with specific type of simply supported boundary conditions. Computer programs have been developed for realistic prediction of stresses and deflections for various sides to thickness ratios (a/h) and voltages.
Multiplicity distributions and charged-neutral fluctuations
Indian Academy of Sciences (India)
from the WA98 experiment at the CERN-SPS. For a thermalized .... light nuclei are well described in the framework of wounded nuclear model [21]. In this ... state rescattering, where the incoming particles loose their memory and every participant ..... In order to compare these fluctuations at different scales in the same level,.
Local P violation effects and thermalization in QCD: Views from quantum field theory and holography
International Nuclear Information System (INIS)
Zhitnitsky, Ariel R.
2012-01-01
We argue that the local violation of P and CP invariance in heavy ion collisions and the universal thermal aspects observed in high energy collisions are in fact two sides of the same coin, and both are related to quantum anomalies of QCD. We argue that the low energy relations representing the quantum anomalies of QCD are saturated by coherent low-dimensional vacuum configurations as observed in Monte Carlo lattice studies. The thermal spectrum and approximate universality of the temperature with no dependence on energy of colliding particles in this framework is due to the fact that the emission results from the distortion of these low-dimensional vacuum sheets rather than from the colliding particles themselves. The emergence of the long-range correlations of P odd domains (a feature which is apparently required for explanation of the asymmetry observed at RHIC and LHC) is also a result of the same distortion of the QCD vacuum configurations. We formulate the corresponding physics using the effective low energy effective Lagrangian. We also formulate the same physics in terms of the dual holographic picture when low-dimensional sheets of topological charge embedded in 4d space, as observed in Monte Carlo simulations, are identified with D2 branes. Finally, we argue that study of these long-range correlations in heavy ion collisions could serve as a perfect test of a proposal that the observed dark energy in present epoch is a result of a tiny deviation of the QCD vacuum energy in expanding universe from its conventional value in Minkowski space–time.
Superconductivity and spin fluctuations
International Nuclear Information System (INIS)
Scalapino, D.J.
1999-01-01
The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations
From gravity to thermal gauge theories. The AdS/CFT correspondence
International Nuclear Information System (INIS)
Papantonopoulos, Eleftherios
2011-01-01
The AdS/CFT correspondence is a powerful tool in studying strongly coupled phenomena in gauge field theories, using results from a weakly coupled gravity background studied in the realm of string theory. AdS/CFT was first successfully applied to the study of phenomena such as the quark-gluon plasma produced in heavy ions collisions. Soon it was realized that its applicability can be extended, in a more phenomenological approach, to condensed matter systems and to systems described by fluid dynamics. The set of tutorial reviews in this volume is intended as an introduction to and survey of the principle of the AdS/CFT correspondence in its field/string theoretic formulation, its applicability to holographic QCD and to heavy ions collisions, and to give a first account of processes in fluid dynamics and condensed matter physics, which can be studied with the use of this principle. Written by leading researchers in the field and cast into the form of a high-level but approachable multi-author textbook, this volume will be of benefit to all postgraduate students, and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research. (orig.)
Stability and fluctuations in black hole thermodynamics
International Nuclear Information System (INIS)
Ruppeiner, George
2007-01-01
I examine thermodynamic fluctuations for a Kerr-Newman black hole in an extensive, infinite environment. This problem is not strictly solvable because full equilibrium with such an environment cannot be achieved by any black hole with mass M, angular momentum J, and charge Q. However, if we consider one (or two) of M, J, or Q to vary so slowly compared with the others that we can regard it as fixed, instances of stability occur, and thermodynamic fluctuation theory could plausibly apply. I examine seven cases with one, two, or three independent fluctuating variables. No knowledge about the thermodynamic behavior of the environment is needed. The thermodynamics of the black hole is sufficient. Let the fluctuation moment for a thermodynamic quantity X be √( 2 >). Fluctuations at fixed M are stable for all thermodynamic states, including that of a nonrotating and uncharged environment, corresponding to average values J=Q=0. Here, the fluctuation moments for J and Q take on maximum values. That for J is proportional to M. For the Planck mass it is 0.3990(ℎ/2π). That for Q is 3.301e, independent of M. In all cases, fluctuation moments for M, J, and Q go to zero at the limit of the physical regime, where the temperature goes to zero. With M fluctuating there are no stable cases for average J=Q=0. But, there are transitions to stability marked by infinite fluctuations. For purely M fluctuations, this coincides with a curve which Davies identified as a phase transition
International Nuclear Information System (INIS)
Kelly, F.A.; Stacey, W.M.; Rapp, J.
2001-01-01
The observed dependence of the TEXTOR [Tokamak Experiment for Technology Oriented Research: E. Hintz, P. Bogen, H. A. Claassen et al., Contributions to High Temperature Plasma Physics, edited by K. H. Spatschek and J. Uhlenbusch (Akademie Verlag, Berlin, 1994), p. 373] density limit on global parameters (I, B, P, etc.) and wall conditioning is compared with the predicted density limit parametric scaling of thermal instability theory. It is necessary first to relate the edge parameters of the thermal instability theory to n(bar sign) and the other global parameters. The observed parametric dependence of the density limit in TEXTOR is generally consistent with the predicted density limit scaling of thermal instability theory. The observed wall conditioning dependence of the density limit can be reconciled with the theory in terms of the radiative emissivity temperature dependence of different impurities in the plasma edge. The thermal instability theory also provides an explanation of why symmetric detachment precedes radiative collapse for most low power shots, while a multifaceted asymmetric radiation from the edge MARFE precedes detachment for most high power shots
Origin of density fluctuations in extended inflation
International Nuclear Information System (INIS)
Kolb, E.W.; Salopek, D.S.; Turner, M.S.
1990-01-01
We calculate both the curvature and isocurvature density fluctuations that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory. The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The curvature perturbations that arise due to the Higgs field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential, and the usual formula for the amplitude of curvature perturbations applies directly
Origin of density fluctuations in extended inflation
International Nuclear Information System (INIS)
Kolb, E.W.; Salopek, D.S.; Turner, M.S.
1990-05-01
The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies
Chai, Jeng-Da
2017-01-28
We propose hybrid schemes incorporating exact exchange into thermally assisted-occupation-density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved description of nonlocal exchange effects. With a few simple modifications, global and range-separated hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid functionals in TAO-DFT yield promising performance for systems with strong static correlation effects (e.g., the dissociation of H 2 and N 2 , twisted ethylene, and electronic properties of linear acenes), while maintaining similar performance for systems without strong static correlation effects. Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to semilocal density functionals in TAO-DFT, global hybrid functionals in TAO-DFT are generally superior in performance for a wide range of applications, such as thermochemistry, kinetics, reaction energies, and optimized geometries.
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2014-01-01
Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.
Theory of the disordered ν =5/2 quantum thermal Hall state: Emergent symmetry and phase diagram
Lian, Biao; Wang, Juven
2018-04-01
Fractional quantum Hall (FQH) system at Landau level filling fraction ν =5 /2 has long been suggested to be non-Abelian, either Pfaffian (Pf) or antiPfaffian (APf) states by numerical studies, both with quantized Hall conductance σx y=5 e2/2 h . Thermal Hall conductances of the Pf and APf states are quantized at κx y=7 /2 and κx y=3 /2 , respectively, in a proper unit. However, a recent experiment shows the thermal Hall conductance of ν =5 /2 FQH state is κx y=5 /2 . It has been speculated that the system contains random Pf and APf domains driven by disorders, and the neutral chiral Majorana modes on the domain walls may undergo a percolation transition to a κx y=5 /2 phase. In this paper, we do perturbative and nonperturbative analyses on the domain walls between Pf and APf. We show the domain wall theory possesses an emergent SO(4) symmetry at energy scales below a threshold Λ1, which is lowered to an emergent U (1 )×U (1) symmetry at energy scales between Λ1 and a higher value Λ2, and is finally lowered to the composite fermion parity symmetry Z2F above Λ2. Based on the emergent symmetries, we propose a phase diagram of the disordered ν =5 /2 FQH system and show that a κx y=5 /2 phase arises at disorder energy scales Λ >Λ1 . Furthermore, we show the gapped double-semion sector of ND compact domain walls contributes nonlocal topological degeneracy 2ND-1, causing a low-temperature peak in the heat capacity. We implement a nonperturbative method to bootstrap generic topological 1 +1 D domain walls (two-surface defects) applicable to any 2 +1 D non-Abelian topological order. We also identify potentially relevant spin topological quantum field theories (TQFTs) for various ν =5 /2 FQH states in terms of fermionic version of U (1) ±8 Chern-Simons theory ×Z8 -class TQFTs.
Fluctuations, dynamical instabilities and clusterization processes
International Nuclear Information System (INIS)
Burgio, G.F.; Chomaz, Ph.; Randrup, J.
1992-01-01
Recent progress with regard to the numerical simulation of fluctuations in nuclear dynamics is reported. Cluster formation in unstable nuclear matter is studied within the framework of a Boltzmann-Langevin equation developed to describe large amplitude fluctuations. Through the Fourier analysis of the fluctuating nuclear density in coordinate space, the onset of the clusterization is related to the dispersion relation of harmonic density oscillations. This detailed study on the simple two-dimensional case demonstrates the validity of the general approach. It is also shown, how the inclusion of fluctuations implies a description in terms of ensemble of trajectories and it is discussed why the presence of a stochastic term may cure the intrinsic unpredictability of deterministic theories (such as mean-field approximation) in presence of instabilities and/or chaos. (author) 8 refs., 3 figs
International Nuclear Information System (INIS)
Lazar, M.; Schlickeiser, R.
2006-01-01
The properties of transverse waves parallel propagating in magnetized plasmas with arbitrary composition and thermally anisotropic, are investigated on the basis of relativistic Vlasov-Maxwell equations. The transverse dispersion relations for plasmas with arbitrary distribution functions are derived. These dispersion relations describe the linear response of the system to the initial perturbations and thus define all existing linear (transverse) plasma modes in the system. By analytic continuation the dispersion relations in the whole complex frequency plane are constructed. Further analysis is restricted to the important case of anisotropic bi-Maxwellian equilibrium plasma distribution functions. Explicit forms of the relativistically correct transverse dispersion relations are derived that hold for any values of the plasma temperatures and the temperature anisotropy. In the limit of nonrelativistic plasma temperatures the dispersion relations are expressed in terms of plasma dispersion function, however, the dependence on frequency and wave numbers is markedly different from the standard noncovariant nonrelativistic analysis. Only in the strictly unphysical formal limit of an infinitely large speed of light, c→∞, does the nonrelativistic dispersion relations reduce to the standard noncovariant dispersion relations
Work extraction from quantum systems with bounded fluctuations in work
Richens, Jonathan G.; Masanes, Lluis
2016-11-01
In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.
Hadronic Correlations and Fluctuations
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker
2008-10-09
We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.
Quantum fluctuations and inflation
International Nuclear Information System (INIS)
Bardeen, J.M.; Bublik, G.J.
1986-05-01
We study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. We consider two different inflationary scenarios (new and chaotic inflation) and find that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. 8 refs., 2 figs
Quantum fluctuations and inflation
International Nuclear Information System (INIS)
Bardeen, J.M.; Bublik, G.J.
1987-01-01
The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)
Fluorescence fluctuation spectroscopy (FFS)
Tetin, Sergey
2012-01-01
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.
Zeta function methods and quantum fluctuations
International Nuclear Information System (INIS)
Elizalde, Emilio
2008-01-01
A review of some recent advances in zeta function techniques is given, in problems of pure mathematical nature but also as applied to the computation of quantum vacuum fluctuations in different field theories, and specially with a view to cosmological applications
Electron quantum interferences and universal conductance fluctuations
International Nuclear Information System (INIS)
Benoit, A.; Pichard, J.L.
1988-05-01
Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr
Phase space dynamics and collective variable fluctuations
International Nuclear Information System (INIS)
Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F.; Schuck, P.
1995-01-01
A dynamical study of collective variable fluctuations in heavy ion reactions is performed within the framework of the Boltzmann-Langevin theory. A general method to extract dispersions on collective variables from numerical simulations based on test particles models is presented and its validity is checked by comparison with analytical equilibrium results. (authors)
Phase space dynamics and collective variable fluctuations
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B.; Farine, M.; Idier, D.; Remaud, B.; Sebille, F. [Laboratoire de Physique Nucleaire de Nantes, 44 (France); Schuck, P. [Institut des Sciences Nucleaires, 38 - Grenoble (France)
1995-12-31
A dynamical study of collective variable fluctuations in heavy ion reactions is performed within the framework of the Boltzmann-Langevin theory. A general method to extract dispersions on collective variables from numerical simulations based on test particles models is presented and its validity is checked by comparison with analytical equilibrium results. (authors) 10 refs.
Queues and Lévy Fluctuation Theory
Dębicki, K.; Mandjes, M.
2015-01-01
The book provides an extensive introduction to queueing models driven by Lévy-processes as well as a systematic account of the literature on Lévy-driven queues. The objective is to make the reader familiar with the wide set of probabilistic techniques that have been developed over the past decades,
Three dimensional particle simulation of drift wave fluctuations in a sheared magnetic field
International Nuclear Information System (INIS)
Sydora, R.D.; Leboeuf, J.N.; Thayer, D.R.; Diamond, P.H.; Tajima, T.
1985-08-01
Three dimensional particle simulations of collisionless drift waves in sheared magnetic fields were performed in order to determine the nonlinear behavior of inverse electron resonance dynamics in the presence of thermal fluctuations. It is found that stochastic electron diffusion in the electron resonance overlap region can destabilize the drift wave eigenmodes. Numerical evaluations based on a nonlinear electron resonance broadening theory give predictions in accord with the frequency and growth rates found in the simulation of short wavelength modes (k/sub y/rho/sub s/ greater than or equal to1)
Directory of Open Access Journals (Sweden)
Mónica Hernández-Rodríguez
2010-01-01
Full Text Available Poecilia sphenops was acclimated to two thermal fluctuations, each following a symmetrical and asymmetrical cycle. The critical maximum temperatures of the fish were significantly different (P Poecilia sphenops fue aclimatada a dos fluctuaciones térmicas cada una con un ciclo simétrico y asimétrico. La temperatura crítica maxima de los peces fue significativamente diferente (P < 0.001 entre las fluctuaciones y se observó a 40°C en el ciclo 20-29°C; para el ciclo 25-35°C fue mayor a 42°C. Los peces aclimatados a la fluctuación 20-29°C fueron más resistentes al frío con una temperatura crítica mínima de 10°C, en contraste a los 11.7°C del régimen 26-35°C. En ambos ciclos la temperatura letal incipiente superior tuvo un intervalo de 38.8 a 39.5°C y la temperatura letal incipiente inferior fue de 10.8 a 11.8°C. La temperatura preferida de las hembras fue de 30 a 31°C, con excepción del ciclo simétrico 26-35°C. La temperatura preferida de los machos aclimatados al ciclo simétrico fue de 23.8 a 24.2°C y de 27.4 a 29.4°C en el ciclo asimétrico. Las temperaturas de evitación de los machos y las hembras aclimatados a la fluctuación 20-29°C tienen un intervalo de 14 a 16°C comparado con el intervalo de 8.4 all .4°C del tratamiento 26-35°C. Los resultados indican que P. sphenops está perfectamente adaptado a las marcadas estaciones de lluvia y sequía de su habitat.
Classical and quantum temperature fluctuations via holography
Energy Technology Data Exchange (ETDEWEB)
Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)
2014-05-27
We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.
Directory of Open Access Journals (Sweden)
V.M. Loktev
2008-09-01
Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.
Ioannou, A.; Itard, L.C.M.; Agarwal, Tushar
2018-01-01
Indoor thermal comfort is generally assessed using the PMV or the adaptive model. This research presents the results obtained by in-situ real time measurements of thermal comfort and thermal comfort perception in 17 residential dwellings in the Netherlands. The study demonstrates the new
Currency speculation and dollar fluctuations
Directory of Open Access Journals (Sweden)
Stephan Schulmeister
1988-12-01
Full Text Available In this study the reasons behind the wide fluctuations of the dollar exchange rate following the breakdown of the Bretton Woods system, for the most part unexplained by the prevailing exchange rate theories, are explored. To do so, the author investigates the exchange rate between the two most traded currencies, the dollar and the deutschemark, from 1973 to 1988. In the first part, the pattern of the daily exchange rate movements is examined to show that a sequence of upward and downward trends interrupted by non-directional movements is typical of exchange rate dynamics in the short run. Moreover, this pattern is systemically exploited through currency speculation, particularly through the use of “technical analysis”. In the second part, the author focuses on the medium-term, arguing that fluctuations can be explained as the result of interacting disequilibria in the goods and asset markets. Although currency speculation has been systemically profitable for most currencies, it should be considered to be destabilizing since the sequence of price runs caused large and persistent deviations of exchange rates from their equilibrium values (purchasing power parity.
Magnetic fluctuation measurements in the Tokapole II tokamak
International Nuclear Information System (INIS)
LaPointe, M.A.
1990-09-01
Magnetic fluctuation measurements have been made in the Tokapole II tokamak in the frequency range 10 kHz ≤ f ≤ 5 MHz. The fluctuations above 500 kHz varied greatly as the effective edge safety factor, q a , was varied over the range 0.8 ≤ q a ≤ 3.8. As q a was varied from 3.8 to 0.8 the high frequency magnetic fluctuation amplitude increased by over three orders of magnitude. The fluctuation amplitude for 0.5 to 2.0 MHz was a factor of 10 lower than the fluctuation amplitude in the range 100 to 400 kHz for q a of 0.8. When q a was increased to 3.8 the difference between the differing frequency ranges increased to a factor of 10 3 . Comparison of the measured broadband fluctuation amplitudes with those predicted from thermally driven Alfven and magnetosonic waves shows that the amplitudes are at least 1000 times larger than the theoretical predictions. This indicates that there is some other mechanism driving the higher frequency magnetic fluctuations. Estimates show that the contribution by the magnetic fluctuations above 500 kHz to the estimated electron energy loss from stochastic fields is negligible. The profiles of the various components of the magnetic fluctuations indicate the possibility that the shear in the magnetic field may stabilize whatever instabilities drive the magnetic fluctuations
Thermally excited proton spin-flip laser emission in tokamaks
International Nuclear Information System (INIS)
Arunasalam, V.; Greene, G.J.
1993-07-01
Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser
Current status of studies on temperature fluctuation phenomena in LMFRs
International Nuclear Information System (INIS)
Ohshima, H.; Muramatsu, T.; Kobayashi, J.; Yamaguchi, A.
1994-01-01
This paper describes the current status of studies being performed in PNC on temperature fluctuation phenomena occurring in fast reactors. The studies concentrate on four problems: thermal stratification, thermal striping, core-plenum interaction and free surface sloshing. Both experimental and analytical approaches to reveal these phenomena and to establish design and safety evaluation methods are presented together with future works. (author)
Pricing of Fluctuations in Electricity Markets
Tsitsiklis, John N.; Xu, Yunjian
2012-01-01
In an electric power system, demand fluctuations may result in significant ancillary cost to suppliers. Furthermore, in the near future, deep penetration of volatile renewable electricity generation is expected to exacerbate the variability of demand on conventional thermal generating units. We address this issue by explicitly modeling the ancillary cost associated with demand variability. We argue that a time-varying price equal to the suppliers' instantaneous marginal cost may not achieve s...
Equilibrium fluctuation energy of gyrokinetic plasma
International Nuclear Information System (INIS)
Krommes, J.A.; Lee, W.W.; Oberman, C.
1985-11-01
The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs
Fluctuating Asymmetry and Intelligence
Bates, Timothy C.
2007-01-01
The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…
Fluctuation effects in bulk polymer phase behavior
International Nuclear Information System (INIS)
Bates, F.S.; Rosedale, J.H.; Stepanek, P.; Lodge, T.P.; Wiltzius, P.; Hjelm R, Jr.; Fredrickson, G.H.
1990-01-01
Bulk polymer-polymer, and block copolymer, phase behaviors have traditionally been interpreted using mean-field theories. Recent small-angle neutron scattering (SANS) studies of critical phenomena in model binary polymer mixtures confirm that non-mean-field behavior is restricted to a narrow range of temperatures near the critical point, in close agreement with the Ginzburg criterion. In contrast, strong derivations from mean-field behavior are evident in SANS and rheological measurements on model block copolymers more than 50C above the order-disorder transition (ODT), which can be attributed to sizeable composition fluctuations. Such fluctuation effects undermine the mean-field assumption, conventionally applied to bulk polymers, and result in qualitative changes in phase behavior, such as the elimination of a thermodynamic stability limit in these materials. The influence of fluctuation effects on block copolymer and binary mixture phase behavior is compared and contrasted in this presentation
Hydrodynamic fluctuations from a weakly coupled scalar field
Jackson, G.; Laine, M.
2018-04-01
Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I
Quantum horizon fluctuations of an evaporating black hole
International Nuclear Information System (INIS)
Roura, Albert
2007-01-01
The quantum fluctuations of a black hole spacetime are studied within a low-energy effective field theory approach to quantum gravity. Our approach accounts for both intrinsic metric fluctuations and those induced by matter fields interacting with the gravitational field. Here we will concentrate on spherically symmetric fluctuations of the black hole horizon. Our results suggest that for a sufficiently massive evaporating black hole, fluctuations can accumulate over time and become significant well before reaching Planckian scales. In addition, we provide the sketch of a proof that the symmetrized two-point function of the stress-tensor operator smeared over a null hypersurface is actually divergent and discuss the implications for the analysis of horizon fluctuations. Finally, a natural way to probe quantum metric fluctuations near the horizon is briefly described
International Nuclear Information System (INIS)
Mansur, L.K.; Yoo, M.H.
1979-01-01
The theory of void swelling and irradiation creep is now fairly comprehensive. A unifying concept on which most of this understanding rests is that of the rate theory point defect concentrations. Several basic aspects of this unifying conept are reviewed. These relate to local fluctuations in point defect concentrations produced by cascades, the effects of thermal and radiation-produced divacancies, and the effects of point defect trapping
Charge fluctuations in high-electron-mobility transistors: a review
International Nuclear Information System (INIS)
Green, F.
1993-01-01
The quasi-two-dimensional carrier population, free to move within a near-perfect crystalline matrix, is the key to remarkable improvements in signal gain, current density and quiet operation. Current-fluctuation effects are central to all of these properties. Some of these are easily understood within linear-response theory, but other fluctuation phenomena are less tractable. In particular, nonequilibrium noise poses significant theoretical challenges, both descriptive and predictive. This paper examines a few of the basic physical issues which motivate device-noise theory. The structure and operation of high-electron-mobility transistor are first reviewed. The recent nonlinear fluctuation theory of Stanton and Wilkins (1987) help to identify at least some of the complicated noise physics which can arise when carriers in GaAs-like conduction bands are subjected to high fields. Simple examples of fluctuation-dominated behaviour are discussed, with numerical illustrations. 20 refs., 9 figs
Chiral vacuum fluctuations in quantum gravity.
Magueijo, João; Benincasa, Dionigi M T
2011-03-25
We examine tensor perturbations around a de Sitter background within the framework of Ashtekar's variables and its cousins parameterized by the Immirzi parameter γ. At the classical level we recover standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties. In the low energy limit we find a second quantized theory of gravitons which displays different vacuum fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive) energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the vacuum fluctuations depends on γ and the ordering of the Hamiltonian constraint, and it would leave a distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity to observational test.
Fluctuations in quantum devices
Directory of Open Access Journals (Sweden)
H.Haken
2004-01-01
Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.
Theory of the pairbreaking superconductor-metal transition in nanowires
International Nuclear Information System (INIS)
Del Maestro, Adrian; Rosenow, Bernd; Sachdev, Subir
2009-01-01
We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (one in the physical case). The fluctuation corrections to the electrical (σ) and thermal (κ) conductivities are determined, and we find that σ has a non-monotonic temperature dependence in the metallic phase which may be consistent with recent experimental results on ultra-narrow wires. In the quantum critical regime, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed, with a new universal experimentally verifiable Lorenz number
DEFF Research Database (Denmark)
Andersen, Elsa
1998-01-01
for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems...
Localization of waves in a fluctuating plasma
International Nuclear Information System (INIS)
Escande, D.F.; Souillard, B.
1984-01-01
We present the first application of localization theory to plasma physics: Density fluctuations induce exponential localization of longitudinal and transverse electron plasma waves, i.e., the eigenmodes have an amplitude decreasing exponentially for large distances without any dissipative mechanism in the plasma. This introduces a new mechanism for converting a convective instability into an absolute one. Localization should be observable in clear-cut experiments
Fluctuations and Instability in Sedimentation
Guazzelli, É lisabeth; Hinch, John
2011-01-01
This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations
Why granular media are thermal after all
Liu, Mario; Jiang, Yimin
2017-06-01
Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.
Influence of Plasma Pressure Fluctuation on RF Wave Propagation
International Nuclear Information System (INIS)
Liu Zhiwei; Bao Weimin; Li Xiaoping; Liu Donglin; Zhou Hui
2016-01-01
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. (paper)
Fluctuations in Schottky barrier heights
International Nuclear Information System (INIS)
Mahan, G.D.
1984-01-01
A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity
Lu, Zexi; Wang, Yan; Ruan, Xiulin
2016-02-01
The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.
Energy Technology Data Exchange (ETDEWEB)
Rojas Sarmiento, M.P.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia)], E-mail: jroar@unal.edu.co
2008-07-15
Systematic measurements on conductivity fluctuation in the CaLaBaCu{sub 3-x}(Ni,Co){sub x}O{sub 7-{delta}} system are reported. Samples with x=0, 0.03, 0.06, 0.09, 0.12, 0.15 and 0.18 were prepared by the standard solid-state reaction recipe. Results of resistivity measurements reveal a linear-like decreasing of the critical temperature T{sub c} with progressive substitution of magnetic elements Ni and Co into the Cu crystallographic sites. From the fluctuation analysis, above and close to T{sub c}, we found the occurrence of three- and two-dimensional Gaussian fluctuation regimes. Closer to T{sub c}, a genuinely critical regime is observed. On the Ginzburg-Landau formalism, from the reduced temperature of the three-dimensional Gaussian region and the mean field critical temperature, we have experimentally obtained the Ginzburg number for the CaLaBaCu{sub 3-x}(Ni,Co){sub x}O{sub 7-{delta}} material. Then, critical magnetic field, critical current density and the jump in the specific heat at the critical temperature are calculated. Critical parameters are strongly affected by the doping with magnetic ions.
International Nuclear Information System (INIS)
Rojas Sarmiento, M.P.; Landinez Tellez, D.A.; Roa-Rojas, J.
2008-01-01
Systematic measurements on conductivity fluctuation in the CaLaBaCu 3-x (Ni,Co) x O 7-δ system are reported. Samples with x=0, 0.03, 0.06, 0.09, 0.12, 0.15 and 0.18 were prepared by the standard solid-state reaction recipe. Results of resistivity measurements reveal a linear-like decreasing of the critical temperature T c with progressive substitution of magnetic elements Ni and Co into the Cu crystallographic sites. From the fluctuation analysis, above and close to T c , we found the occurrence of three- and two-dimensional Gaussian fluctuation regimes. Closer to T c , a genuinely critical regime is observed. On the Ginzburg-Landau formalism, from the reduced temperature of the three-dimensional Gaussian region and the mean field critical temperature, we have experimentally obtained the Ginzburg number for the CaLaBaCu 3-x (Ni,Co) x O 7-δ material. Then, critical magnetic field, critical current density and the jump in the specific heat at the critical temperature are calculated. Critical parameters are strongly affected by the doping with magnetic ions
Universal fluctuations the phenomenology of hadronic matter
Botet, Robert
2002-01-01
The main purpose of this book is to present, in a comprehensive and progressive way, the appearance of universal limit probability laws in physics, and their connection with the recently developed scaling theory of fluctuations. Arising from the probability theory and renormalization group methods, this novel approach has been proved recently to provide efficient investigative tools for the collective features that occur in any finite system. The mathematical background is self-contained and is formulated in terms which are easy to apply to the physical context. After illustrating the problem
Directory of Open Access Journals (Sweden)
P. P. Paskov
2017-09-01
Full Text Available The effect of Si doping on the thermal conductivity of bulk GaN was studied both theoretically and experimentally. The thermal conductivity of samples grown by Hydride Phase Vapor Epitaxy (HVPE with Si concentration ranging from 1.6×1016 to 7×1018 cm-3 was measured at room temperature and above using the 3ω method. The room temperature thermal conductivity was found to decrease with increasing Si concentration. The highest value of 245±5 W/m.K measured for the undoped sample was consistent with the previously reported data for free-standing HVPE grown GaN. In all samples, the thermal conductivity decreased with increasing temperature. In our previous study, we found that the slope of the temperature dependence of the thermal conductivity gradually decreased with increasing Si doping. Additionally, at temperatures above 350 K the thermal conductivity in the highest doped sample (7×1018 cm-3 was higher than that of lower doped samples. In this work, a modified Callaway model adopted for n-type GaN at high temperatures was developed in order to explain such unusual behavior. The experimental data was analyzed with examination of the contributions of all relevant phonon scattering processes. A reasonable match between the measured and theoretically predicted thermal conductivity was obtained. It was found that in n-type GaN with low dislocation densities the phonon-free-electron scattering becomes an important resistive process at higher temperatures. At the highest free electron concentrations, the electronic thermal conductivity was suggested to play a role in addition to the lattice thermal conductivity and compete with the effect of the phonon-point-defect and phonon-free-electron scattering.
Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian
2017-05-30
We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.
Near-Milne realization of scale-invariant fluctuations
International Nuclear Information System (INIS)
Magueijo, Joao
2007-01-01
A near-Milne universe produces a very red spectrum of vacuum quantum fluctuations but has the potential to produce near-scale-invariant thermal fluctuations. This happens if the energy and entropy are mildly subextensive, for example, if there is a Casimir contribution. Therefore, one does not need to invoke corrections to Einstein gravity (as in loop quantum cosmology) for a thermal scenario to be viable. Neither do we need the energy to scale like the area, as in scenarios where the thermal fluctuations are subject to a phase transition in the early universe. Some odd features of this model are pointed out: whether they are fatal or merely unusual will need to be investigated further
Strain fluctuations and elastic constants
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1982-03-01
It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.
Fluctuations in the hadronization
International Nuclear Information System (INIS)
Bozek, P.; Ploszajaczak, M.
1992-01-01
The multiscaling in the fluctuations of the multiparticle distributions at small scales is studied. Similarly to the multiscaling effect, recently found in multifractal models, the dependence of the intermittency patterns on the low density cut-off in the cascade is analyzed. The effect changes the scaling behaviour and leads to stronger dependence of the scaled factorial moments on the resolution than the power law. This could be an explanation of the behaviour observed recently in the experimental 3-dimensional data. The multiscaling analysis allows to restore the universality in the processes with different cut-offs and could be used in the analysis of the experimental data. (author) 17 refs., 5 figs
International Nuclear Information System (INIS)
Groebner, R.J.
1986-04-01
The study of ion transport in neutral beam-heated discharges in tokamaks is necessary to determine if neoclassical theory can reliably be used to predict the performance of future machines. Previous studies of ion tranport have generally been difficult due to the lack of information regarding the ion temperature profile. The standard procedure used to study ion transport has been to model the T/sub i/ profile with the assumption that the ion thermal diffusivity profile chi/sub i/(r) was equal to a multiplier times chi/sub i//sup neo/(r), the ion thermal diffusivity calculated from neoclassical theory. The multiplier was varied until the calculated T/sub i/ profile agreed with the available ion temperature data, usually T/sub i/(0) or the measured neutron rate. Values of the multiplier in the range of 1 to 10 have generally been obtained with few estimates of the uncertainties in these values. Furthermore, there have been few, if any, attempts to calculate chi/sub i/ by modeling the ion temperature profiles in other ways. As a result, the issue as to whether or not the ion transport in tokamaks is in agreement with neoclassical theory has not been definitively answered
Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.
2018-03-01
Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.
A nanoscale temperature-dependent heterogeneous nucleation theory
International Nuclear Information System (INIS)
Cao, Y. Y.; Yang, G. W.
2015-01-01
Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale
Thermal background noise limitations
Gulkis, S.
1982-01-01
Modern detection systems are increasingly limited in sensitivity by the background thermal photons which enter the receiving system. Expressions for the fluctuations of detected thermal radiation are derived. Incoherent and heterodyne detection processes are considered. References to the subject of photon detection statistics are given.
Critical geometry of a thermal big bang
Afshordi, Niayesh; Magueijo, João
2016-11-01
We explore the space of scalar-tensor theories containing two nonconformal metrics, and find a discontinuity pointing to a "critical" cosmological solution. Due to the different maximal speeds of propagation for matter and gravity, the cosmological fluctuations start off inside the horizon even without inflation, and will more naturally have a thermal origin (since there is never vacuum domination). The critical model makes an unambiguous, nontuned prediction for the spectral index of the scalar fluctuations: nS=0.96478 (64 ) . Considering also that no gravitational waves are produced, we have unveiled the most predictive model on offer. The model has a simple geometrical interpretation as a probe 3-brane embedded in an E AdS2×E3 geometry.
Spectra of turbulent static pressure fluctuations in jet mixing layers
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
International Nuclear Information System (INIS)
Gould, R.W.
1984-01-01
This grant supports an integrated program of experiment and theory in tokamak plasma physics. Emphasis is placed on microscopic fluctuations and anomalous transport. The primary objective is to characterize the properties of the microscopic fluctuations observed in tokamaks and to try to develop an understanding of the fluctuation-induced transport of particles and heat. Anomalous transport, which causes energy losses one to two orders of magnitude larger than predicted by neoclassical transport theory, occurs in all tokamaks and underlies empirical scaling laws
International Nuclear Information System (INIS)
Ball, R. The
1999-01-01
The concept of an endothermally stabilised chemical reactor as an enthalpy coupled thermokinetic system is introduced, and given precise mathematical expression in the form of a four-dimensional dynamical system. Criteria are defined for which the system is free of all kinds of thermal misbehaviour. This important dynamical result defines bounds for a large region of the parameter space within which the reactor may be operated safely. The formalism of singularity theory is extended to bifurcation surfaces in a studio of multiplicity and stability in the CSTR problem
Energy Technology Data Exchange (ETDEWEB)
Alvarez Rivas, J L
1963-07-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PUGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs.
Fluctuating dynamics of nematic liquid crystals using the stochastic method of lines
Bhattacharjee, A. K.; Menon, Gautam I.; Adhikari, R.
2010-07-01
We construct Langevin equations describing the fluctuations of the tensor order parameter Qαβ in nematic liquid crystals by adding noise terms to time-dependent variational equations that follow from the Ginzburg-Landau-de Gennes free energy. The noise is required to preserve the symmetry and tracelessness of the tensor order parameter and must satisfy a fluctuation-dissipation relation at thermal equilibrium. We construct a noise with these properties in a basis of symmetric traceless matrices and show that the Langevin equations can be solved numerically in this basis using a stochastic version of the method of lines. The numerical method is validated by comparing equilibrium probability distributions, structure factors, and dynamic correlations obtained from these numerical solutions with analytic predictions. We demonstrate excellent agreement between numerics and theory. This methodology can be applied to the study of phenomena where fluctuations in both the magnitude and direction of nematic order are important, as for instance, in the nematic swarms which produce enhanced opalescence near the isotropic-nematic transition or the problem of nucleation of the nematic from the isotropic phase.
On small-angle neutron scattering from microemulsion droplets: the role of shape fluctuations
International Nuclear Information System (INIS)
Lisy, V.; Brutovsky, B.
2001-01-01
The form factor and intensity of static neutron scattering from microemulsion droplets are calculated. The droplet is modeled by a double-layered sphere consisting of a fluid core and a thin surfactant layer, immersed in another fluid. All the three components are incompressible and characterized by different scattering length densities. As distinct from previous descriptions of small-angle neutron scattering (SANS), we consistently take into account thermal fluctuations of the droplet shape, to the second order of the fluctuations of the droplet radius. The properties of the layer are described within Helfrich's concept of the elasticity of curved interfaces. It is shown that in many cases the account for the fluctuations is essential for the interpretation of SANS. Information about two elastic constants k and k bar (so far extracted from the experiments in the combination 2k + k bar) can be now simultaneously obtained from SANS for the system in conditions of two-phase coexistence. As an illustration, the theory is applied for the quantitative description of SANS experiments from the literature
Probe branes thermalization in external electric and magnetic fields
International Nuclear Information System (INIS)
Ali-Akbari, M.; Ebrahim, H.; Rezaei, Z.
2014-01-01
We study thermalization on rotating probe branes in AdS 5 ×S 5 background in the presence of constant external electric and magnetic fields. In the AdS/CFT framework this corresponds to thermalization in the flavour sector in field theory. The horizon appears on the worldvolume of the probe brane due to its rotation in one of the sphere directions. For both electric and magnetic fields the behaviour of the temperature is independent of the probe brane dimension. We also study the open string metric and the fluctuations of the probe brane in such a set-up. We show that the temperatures obtained from open string metric and observed by the fluctuations are larger than the one calculated from the induced metric
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2015-01-01
Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential
International Nuclear Information System (INIS)
Ferrari, Jose A.; Perciante, Cesar D.
2008-01-01
The behavior of photochromic glasses during activation and bleaching is investigated. A two-state phenomenological model describing light-induced activation (darkening) and thermal bleaching is presented. The proposed model is based on first-order kinetics. We demonstrate that the time behavior in the activation process (acting simultaneously with the thermal fading) can be characterized by two relaxation times that depend on the intensity of the activating light. These characteristic times are lower than the decay times of the pure thermal bleaching process. We study the temporal evolution of the glass optical density and its dependence on the activating intensity. We also present a series of activation and bleaching experiments that validate the proposed model. Our approach may be used to gain more insight into the transmittance behavior of photosensitive glasses, which could be potentially relevant in a broad range of applications, e.g., real-time holography and reconfigurable optical memories
Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.
Wang, Jianhui; He, Jizhou; Ma, Yongli
2011-05-01
Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.
Fluctuations and the nuclear Meissner effect in rapidly rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Canto, L F; Ring, P; Rasmussen, J O
1985-10-24
The phase transition from a superfluid system to a normal fluid system in nuclei under the influence of a strong Coriolis field is investigated by the generator coordinate method (GCM). The strange behavior of the experimental moments of inertia in the nucleus WYHf is well reproduced in this theory. The pairing collapse of the neutrons, however, is completely washed out by the fluctuations. It is found that the fluctuations of the orientation in gauge space, taken into account by number projection before the variation play the most important role. Fluctuations connected with the virtual admixture of pairing vibrations add only small corrections. (orig.).
Fluctuation Relations for Currents
Sinitsyn, Nikolai; Akimov, Alexei; Chernyak, Vladimir; Chertkov, Michael
2011-03-01
We consider a non-equilibrium statistical system on a graph or a network. Identical particles are injected, interact with each other, traverse, and leave the graph in a stochastic manner described in terms of Poisson rates, possibly strongly dependent on time and instantaneous occupation numbers at the nodes of the graph. We show that the system demonstrates a profound statistical symmetry, leading to new Fluctuation Relations that originate from the supersymmetry and the principle of the geometric universality of currents rather than from the relations between probabilities of forward and reverse trajectories. NSF/ECCS-0925618, NSF/CHE-0808910 and DOE at LANL under Contract No. DE-AC52-06NA25396.
Matsubara, Yoshitsugu; Musashi, Yasuo
2017-12-01
The purpose of this study is to explain fluctuations in email size. We have previously investigated the long-term correlations between email send requests and data flow in the system log of the primary staff email server at a university campus, finding that email size frequency follows a power-law distribution with two inflection points, and that the power-law property weakens the correlation of the data flow. However, the mechanism underlying this fluctuation is not completely understood. We collected new log data from both staff and students over six academic years and analyzed the frequency distribution thereof, focusing on the type of content contained in the emails. Furthermore, we obtained permission to collect "Content-Type" log data from the email headers. We therefore collected the staff log data from May 1, 2015 to July 31, 2015, creating two subdistributions. In this paper, we propose a model to explain these subdistributions, which follow log-normal-like distributions. In the log-normal-like model, email senders -consciously or unconsciously- regulate the size of new email sentences according to a normal distribution. The fitting of the model is acceptable for these subdistributions, and the model demonstrates power-law properties for large email sizes. An analysis of the length of new email sentences would be required for further discussion of our model; however, to protect user privacy at the participating organization, we left this analysis for future work. This study provides new knowledge on the properties of email sizes, and our model is expected to contribute to the decision on whether to establish upper size limits in the design of email services.
Fluctuating Thermodynamics for Biological Processes
Ham, Sihyun
Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.
Effective tension and fluctuations in active membranes
Loubet, Bastien; Seifert, Udo; Lomholt, Michael Andersen
2011-01-01
We calculate the fluctuation spectrum of the shape of a lipid vesicle or cell exposed to a nonthermal source of noise. In particular we take into account constraints on the membrane area and the volume of fluid that it encapsulates when obtaining expressions for the dependency of the membrane tension on the noise. We then investigate three possible origins of the non-thermal noise taken from the literature: A direct force, which models an external medium pushing on the membrane. A curvature f...
Pal, Pinaki
2016-07-27
Auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations were computationally investigated. The main objectives were to quantify the observed ignition characteristics and numerically validate the theory of the turbulent ignition regime diagram recently proposed by Im et al. 2015 [29] that provides a framework to predict ignition behavior . a priori based on the thermo-chemical properties of the reactant mixture and initial flow and scalar field conditions. Ignition regimes were classified into three categories: . weak (where deflagration is the dominant mode of fuel consumption), . reaction-dominant strong, and . mixing-dominant strong (where volumetric ignition is the dominant mode of fuel consumption). Two-dimensional (2D) direct numerical simulations (DNS) of auto-ignition in a lean syngas/air mixture with uniform mixture composition at high-pressure, low-temperature conditions were performed in a fixed volume. The initial conditions considered two-dimensional isotropic velocity spectrums, temperature fluctuations and localized thermal hot spots. A number of parametric test cases, by varying the characteristic turbulent Damköhler and Reynolds numbers, were investigated. The evolution of the auto-ignition phenomena, pressure rise, and heat release rate were analyzed. In addition, combustion mode analysis based on front propagation speed and computational singular perturbation (CSP) was applied to characterize the auto-ignition phenomena. All results supported that the observed ignition behaviors were consistent with the expected ignition regimes predicted by the theory of the regime diagram. This work provides new high-fidelity data on syngas ignition characteristics over a broad range of conditions and demonstrates that the regime diagram serves as a predictive guidance in the understanding of various physical and chemical mechanisms controlling auto
Energy Technology Data Exchange (ETDEWEB)
Raievski, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
The theory of the statistical fluctuations in a pile is extended to the space dependent case, and gives the fluctuations of the number of neutrons in a cell of the core or reflector of the pile. This number changes through elementary processes occurring at random, which are, capture, source, fission and scattering. Of all these processes, fission is the only one which changes more than one neutron at a time and so is responsible of the deviation of the fluctuations from a Poisson law. The importance of this deviation depends on the dimensions of the cell compared to the slowing down length. When the dimensions are small, the fluctuations close to a Poisson law. (author) [French] La theorie des fluctuations statistiques est etendue au cas local et donne les fluctuations du nombre de neutrons dans une cellule situee dans le coeur ou le reflecteur de la pile. Ce nombre evolue au cours du temps sous l'influence de phenomenes aleatoires qui sont la capture, la diffusion, les sources et les neutrons secondaires de fission. L'emission simultanee de plusieurs neutrons distingue ce phenomene des precedents qui n'affectent qu'un neutron individuellement. L'importance de ce phenomene sur la loi de fluctuation depend des dimensions de la cellule par rapport a la longueur de ralentissement. Quand ces dimensions sont petites, le caractere particulier de ce phenomene disparait. (auteur)
Jackson, C. E., Jr.
1977-01-01
A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.
Theory of resistivity-gradient-driven turbulence
International Nuclear Information System (INIS)
Garcia, L.; Carreras, B.A.; Diamond, P.H.; Callen, J.D.
1984-10-01
A theory of the nonlinear evolution and saturation of resistivity-driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation
An experimental investigation on the velocity fluctuation characteristics in a triple air jet
International Nuclear Information System (INIS)
Nam, Ho Yun; Kim, Jong Man; Choi, Jong Hyeon; Choi, Seok Ki
2005-01-01
The thermal striping which occurs due to a turbulent thermal mixing in the upper plenum of a liquid metal reactor causes a temperature fluctuation on the adjacent solid materials and it is an important parameter in the design of a liquid metal reactor. An experimental apparatus which is a mock up of the fuel assembly in the liquid metal reactor is devised, and the average velocity and the velocity fluctuation in a two-dimensional jet from three nozzles are measured. In the present paper the characteristics of the velocity fluctuation which is used for a validation of a thermal hydraulic computer code is described
Magnetic fluctuations associated with density fluctuations in the tokamak edge
International Nuclear Information System (INIS)
Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.
1989-01-01
Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs
Renormalization group analysis of order parameter fluctuations in fermionic superfluids
International Nuclear Information System (INIS)
Obert, Benjamin
2014-01-01
In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.
Generalized Liquid Crystals: Giant Fluctuations and the Vestigial Chiral Order of I, O, and T Matter
Directory of Open Access Journals (Sweden)
Ke Liu (刘科 子竞
2016-10-01
Full Text Available The physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D_{∞h} or D_{2h} symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of “generalized nematics” might become accessible in the laboratory. Little is known because the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I, O, and T symmetric matter.
Liu, Ke; Nissinen, Jaakko; Slager, Robert-Jan; Wu, Kai; Zaanen, Jan
2016-10-01
The physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D∞ h or D2 h symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of "generalized nematics" might become accessible in the laboratory. Little is known because the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I , O , and T symmetric matter.
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-01-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Energy Technology Data Exchange (ETDEWEB)
Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)
2017-02-08
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Active Brownian particles with velocity-alignment and active fluctuations
International Nuclear Information System (INIS)
Großmann, R; Schimansky-Geier, L; Romanczuk, P
2012-01-01
We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case. (paper)
Faraday rotation echo spectroscopy and detection of quantum fluctuations.
Chen, Shao-Wen; Liu, Ren-Bao
2014-04-15
Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.
Charge Fluctuations in Nanoscale Capacitors
Limmer, D.T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P.A.; van Roij, R.H.H.G.; Rotenberg, B.
2013-01-01
The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with
Fluctuating attention in Parkinson's disease
DEFF Research Database (Denmark)
Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen
2001-01-01
Lewy body dementia (DLB), which share many clinical and pathological features with Parkinson’s disease (PD), is charac- terised by marked fluctuations in cognition and consciousness. Fluctuating cognition has not been formally studied in PD, although some studies indicate that PD patients show...
Statistical fluctuations and correlations in hadronic equilibrium systems
Energy Technology Data Exchange (ETDEWEB)
Hauer, Michael
2010-06-17
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
Statistical fluctuations and correlations in hadronic equilibrium systems
International Nuclear Information System (INIS)
Hauer, Michael
2010-01-01
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
Quantum tunnelling fluctuations in anharmonic potentials
International Nuclear Information System (INIS)
Papadopoulos, G.J.; Hadjiagapiou, I.A.
1993-01-01
A nonlinear perturbation theory is developed for the logarithm of the wavefunction. It is then used developing a long range time perturbation series for the wavefunction of the Schroedinger equation in the case of a cubic potential exhibiting a valley and a hump. Starting with a low energy Gaussian wavefunction centred at the bottom of the valley the profiles of the probability and current densities are obtained at different times, thus providing an idea of their evolution. While the probability density is slightly displaced the current density, starting from zero, fluctuates vividly. (author). 4 refs, 4 figs
Mechanics of Fluctuating Elastic Plates and Fiber Networks
Liang, Xiaojun
Lipid membranes and fiber networks in biological systems perform important mechanical functions at the cellular and tissue levels. In this thesis I delve into two detailed problems--thermal fluctuation of membranes and non-linear compression response of fiber networks. Typically, membrane fluctuations are analysed by decomposing into normal modes or by molecular simulations. In the first part of my thesis, I propose a new semi-analytic method to calculate the partition function of a membrane. The membrane is viewed as a fluctuating von Karman plate and discretized into triangular elements. Its energy is expressed as a function of nodal displacements, and then the partition function and co-variance matrix are computed using Gaussian integrals. I recover well-known results for the dependence of the projected area of a lipid bilayer membrane on the applied tension, and recent simulation results on the ependence of membrane free energy on geometry, spontaneous curvature and tension. As new applications I use this technique to study a membrane with heterogeneity and different boundary conditions. I also use this technique to study solid membranes by taking account of the non-linear coupling of in-plane strains with out-of-plane deflections using a penalty energy, and apply it to graphene, an ultra-thin two-dimensional solid. The scaling of graphene fluctuations with membrane size is recovered. I am able to capture the dependence of the thermal expansion coefficient of graphene on temperature. Next, I study curvature mediated interactions between inclusions in membranes. I assume the inclusions to be rigid, and show that the elastic and entropic forces between them can compete to yield a local maximum in the free energy if the membrane bending modulus is small. If the spacing between the inclusions is less than this local maximum then the attractive entropic forces dominate and the separation between the inclusions will be determined by short range interactions; if the
Large fluctuations and fixation in evolutionary games
International Nuclear Information System (INIS)
Assaf, Michael; Mobilia, Mauro
2010-01-01
We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semiclassical WKB (Wentzel–Kramers–Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics beyond the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker–Planck approximation when the selection intensity is finite
Turbulent temperature fluctuations in liquid metals
International Nuclear Information System (INIS)
Lawn, C.J.
1977-01-01
Examination of experimental data for the spectral distribution of velocity (u and v) and temperature (theta) fluctuations in the fully turbulent region of heated pipe-flow has suggested a schematic representation which incorporates the essential features. Evidence is cited to suggest that the -vtheta correlation coefficient maintains higher values that the uv coefficient at wave-numbers in the inertial subrange. The theory of Batchelor, Howells and Townsend, and limited evidence from experiments in mercury, then suggests the form of the theta 2 spectra and -vtheta cross-spectra in liquid metals. From this information, a limiting Peclet number is deduced, above which the correlation coefficient of v and theta should be a fairly weak function of Pe alone. An attempt to check this inference from published data for the RMS level of temperature fluctuations, and for the turbulent Prandtl number, proves inconclusive, because many of the correlation coefficients so estimated have values greater than unity. It is concluded that all these results for theta tilde must therefore be in error. However, since there is no evidence of very low correlation coefficients, they almost certainly lie in the range 0.5 multiply/divide 2 over a large proportion of the radius. Thus theta tilde can be estimated for any fluid in which the fluctuations are induced by uniform heating, at least to within a factor of 2, using the analysis presented. (author)
Local polar fluctuations in lead halide perovskites
Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor
The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.
Thermal ripples in model molybdenum disulfide monolayers
Energy Technology Data Exchange (ETDEWEB)
Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)
2017-01-15
Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Fluctuation microscopy: a probe of medium range order
International Nuclear Information System (INIS)
Treacy, M M J; Gibson, J M; Fan, L; Paterson, D J; McNulty, I
2005-01-01
Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the resolution) of the imaging optics and the sample thickness. The spatial periodicities being probed are related to the diffraction vector. Statistical analysis of the speckle allows the random and non-random (ordered) contributions to be discriminated. The image resolution that gives the maximum speckle contrast, as determined by the normalized variance of the image intensity, is determined by the characteristic length scale of the ordering. Because medium range ordering length scales can extend out to about the tenth coordination shell, fluctuation microscopy tends to be a low image resolution technique. This review presents the kinematical scattering theory underpinning fluctuation microscopy and a description of fluctuation electron microscopy as it has been employed in the transmission electron microscope for studying amorphous materials. Recent results using soft x-rays for studying nanoscale materials are also presented. We summarize outstanding issues and point to possible future directions for fluctuation microscopy as a technique
Duality and reciprocity of fluctuation-dissipation relations in conductors.
Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann
2016-09-01
By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.
Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger
2013-07-01
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.
Enhancement of large fluctuations to extinction in adaptive networks
Hindes, Jason; Schwartz, Ira B.; Shaw, Leah B.
2018-01-01
During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection. Using techniques from large-deviation theory, combined with a measurement of heterogeneity in the susceptible degree distribution at the endemic state, we are able to predict and analyze large fluctuations and extinction in adaptive networks. We find that in the limit of small rewiring there is a sharp exponential reduction in mean extinction times compared to the case of zero adaption. Furthermore, we find an exponential enhancement in the probability of large fluctuations with increased rewiring rate, even when holding the average number of infected nodes constant.
Statistical fluctuations of the number of neutrons in a pile
International Nuclear Information System (INIS)
Raievski, V.
1958-01-01
The theory of the statistical fluctuations in a pile is extended to the space dependent case, and gives the fluctuations of the number of neutrons in a cell of the core or reflector of the pile. This number changes through elementary processes occurring at random, which are, capture, source, fission and scattering. Of all these processes, fission is the only one which changes more than one neutron at a time and so is responsible of the deviation of the fluctuations from a Poisson law. The importance of this deviation depends on the dimensions of the cell compared to the slowing down length. When the dimensions are small, the fluctuations close to a Poisson law. (author) [fr
Market Mechanism Design for Renewable Energy based on Risk Theory
Yang, Wu; Bo, Wang; Jichun, Liu; Wenjiao, Zai; Pingliang, Zeng; Haobo, Shi
2018-02-01
Generation trading between renewable energy and thermal power is an efficient market means for transforming supply structure of electric power into sustainable development pattern. But the trading is hampered by the output fluctuations of renewable energy and the cost differences between renewable energy and thermal power at present. In this paper, the external environmental cost (EEC) is defined and the EEC is introduced into the generation cost. At same time, the incentive functions of renewable energy and low-emission thermal power are designed, which are decreasing functions of EEC. On these bases, for the market risks caused by the random variability of EEC, the decision-making model of generation trading between renewable energy and thermal power is constructed according to the risk theory. The feasibility and effectiveness of the proposed model are verified by simulation results.
High-frequency fluctuations of surface temperatures in an urban environment
Christen, Andreas; Meier, Fred; Scherer, Dieter
2012-04-01
This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.
Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet
Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.
2017-12-01
Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.
Current density fluctuations and ambipolarity of transport
International Nuclear Information System (INIS)
Shen, W.; Dexter, R.N.; Prager, S.C.
1991-10-01
The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range
Kinetic instabilities in plasmas: from electromagnetic fluctuations to collisionless shocks
International Nuclear Information System (INIS)
Ruyer, Charles
2014-01-01
Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between sub-luminal and supra-luminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the sub-luminal regime along with some discrepancy in the supra-luminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energy. We then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle
International Nuclear Information System (INIS)
Tian Yong; Zhang Longqiang; Yang Zhen; Yu Bin
2014-01-01
In order to ensure a long-term reliable operation of the DCS cabinet's 220 V AC power cable, it was needed to confirm whether the conductor temperature rise of power cable meet the requirement of the cable specification. Based on the actual data in site and the theory of numerical heat transfer, conservative model was established, and the conductor temperature was calculated. The calculation results show that the cable arrangement on the cable tray will not lead to the conductor temperature rise of power cable over than the required temperature in technical specification. (authors)
Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.
2018-03-01
RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.
Energy Technology Data Exchange (ETDEWEB)
Peter, F
1986-02-01
In the past decade, the development of fuel and investment costs as it occurred has not given any crucial incentive for a necessary change in thermal efficiency. This can be partly attributed to the high level of technology, but also to the fact that the money spent on efficiency-improving measures increases exponentially for the most part. In any case, it should always be borne in mind in planning a new power station plant that the economic efficiency not only of the plant as a whole must be optimized, but also each individual component and system involved. All efforts to improve economic efficiency in systems and components should be harmonised to fit in with one another.
Learning in neural networks based on a generalized fluctuation theorem
Hayakawa, Takashi; Aoyagi, Toshio
2015-11-01
Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.
International Nuclear Information System (INIS)
Veals, Jeffrey D.; Thompson, Donald L.
2014-01-01
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO 2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO 2 elimination by N–N and C–N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO 2 group elimination or by a concerted H-atom and nitroalkyl NO 2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO 2 elimination by N–N bond fission, HONO elimination involving the nitramine NO 2 group, HONO elimination involving a nitroalkyl NO 2 group, and finally NO 2 elimination by C–N bond fission
Energy Technology Data Exchange (ETDEWEB)
Veals, Jeffrey D.; Thompson, Donald L. [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)
2014-04-21
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO{sub 2} or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO{sub 2} elimination by N–N and C–N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO{sub 2} group elimination or by a concerted H-atom and nitroalkyl NO{sub 2} group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO{sub 2} elimination by N–N bond fission, HONO elimination involving the nitramine NO{sub 2} group, HONO elimination involving a nitroalkyl NO{sub 2} group, and finally NO{sub 2} elimination by C–N bond fission.
Veals, Jeffrey D.; Thompson, Donald L.
2014-04-01
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO2 elimination by N-N and C-N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO2 group elimination or by a concerted H-atom and nitroalkyl NO2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO2 elimination by N-N bond fission, HONO elimination involving the nitramine NO2 group, HONO elimination involving a nitroalkyl NO2 group, and finally NO2 elimination by C-N bond fission.
Elastic constants from microscopic strain fluctuations
Sengupta; Nielaba; Rao; Binder
2000-02-01
Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.