WorldWideScience

Sample records for theory non-perturbative effects

  1. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...

  2. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  3. Alien calculus and non perturbative effects in Quantum Field Theory

    Science.gov (United States)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  4. Non-perturbative Heavy Quark Effective Theory: An application to semi-leptonic B-decays

    CERN Document Server

    Della Morte, Michele; Simma, Hubert; Sommer, Rainer

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays at the leading order in 1/m_h.

  5. Non-Perturbative Nekrasov Partition Function from String Theory

    CERN Document Server

    Antoniadis, Ignatios; Hohenegger, Stefan; Narain, K S; Assi, Ahmad Zein

    2014-01-01

    We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3xT2 and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general {\\Omega}-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the {\\Omega}-background.

  6. The b-quark mass from non-perturbative $N_f=2$ Heavy Quark Effective Theory at $O(1/m_h)$

    DEFF Research Database (Denmark)

    Bernardoni, F.; Blossier, B.; Bulava, J.

    2014-01-01

    We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $\\overline{m}_{\\rm b}^{\\overline{\\rm MS}}(2 {\\rm...

  7. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model...

  8. Non-perturbative effects and the refined topological string

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematiques; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P{sup 1} x P{sup 1}, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.

  9. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  10. Topological string theory, modularity and non-perturbative physics

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Marco

    2011-09-15

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in

  11. Non-perturbative studies of scalar and scalar-fermion quantum field theories at zero and finite temperature using the Gaussian effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Hajj, G.A.

    1988-01-01

    The Gaussian effective potential (GEP), a non-perturbative approach to study quantum field theory, is applied to scalar and scalar-fermion models. We study the scalar {phi}{sup 6} field coupled to fermions through g{sub B}{phi}{psi}{psi} or g{sub B}{phi}{sup 2}{psi}{psi} in 2 and 3 space-time dimensions. In addition, we derive the finite temperature (T > 0) GEP from first principles and apply it to study these models at T > 0. Also the Autonomous {lambda}{phi}{sup 4}, coupled to fermions through a Yukawa term (g{sub B}{phi}{psi}{psi}), is examined in 4 dimensions at T > 0. In all these models, in order to obtain stable theories, it is found that g{sub B} must vanish as 1/log(M{sub uv}), 1/M{sub uv} or 1/M{sub uv}{sup 2} in 2, 3 or 4 dimensions respectively, M{sub uv} being an ultraviolet cutoff which is sent to infinity. The contribution of fermions to the GEP, however, is nonvanishing. It is also found that for the class of theories discussed, symmetry, if broken, is restored above a critical temperature. The coupling constant parameter space for each model is studied carefully, and regions where symmetry breaking occurs are determined both at zero and finite temperature.

  12. Non-perturbative effects on seven-brane Yukawa couplings

    CERN Document Server

    Marchesano, Fernando

    2010-01-01

    We analyze non-perturbative corrections to the superpotential of seven-brane gauge theories on type IIB and F-theory warped Calabi-Yau compactifications. We show in particular that such corrections modify the holomorphic Yukawa couplings by an exponentially suppressed contribution, generically solving the Yukawa rank-one problem present in F-theory local models. We provide explicit expressions for the non-perturbative correction to the seven-brane superpotential, and check that it is related to a non-commutative deformation to the tree-level superpotential via the Seiberg-Witten map.

  13. Non-perturbative string theories and singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, M. (Rome-1 Univ. (Italy). Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Rome (Italy))

    1990-08-23

    Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale {epsilon} is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius {epsilon}. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.).

  14. Non-perturbative selection rules in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and I.N.F.N. Sezione di Padova, via Marzolo 8, Padova, I-35131 (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2015-09-29

    We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.

  15. Non-perturbative equivalences among large Nc gauge theories with adjoint and bifundamental matter fields

    Science.gov (United States)

    Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.

    2003-12-01

    We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra.

  16. Non-perturbative equivalences among large N gauge theories with adjoint and bifundamental matter fields

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel; Unsal, Mithat E-mail: mithat@phys.washington.edu; Yaffe, Laurence G

    2003-12-01

    We prove an equivalence, in the large N limit, between certain U(N) gauge theories containing adjoint representation matter fields and their orbifold projections. Lattice regularization is used to provide a non-perturbative definition of these theories; our proof applies in the strong coupling, large mass phase of the theories. Equivalence is demonstrated by constructing and comparing the loop equations for a parent theory and its orbifold projections. Loop equations for both expectation values of single-trace observables, and for connected correlators of such observables, are considered; hence the demonstrated non-perturbative equivalence applies to the large N limits of both string tensions and particle spectra. (author)

  17. Monte Carlo simulations of a supersymmetric matrix model of dynamical compactification in non perturbative string theory

    CERN Document Server

    Anagnostopoulos, Konstantinos N; Nishimura, Jun

    2012-01-01

    The IKKT or IIB matrix model has been postulated to be a non perturbative definition of superstring theory. It has the attractive feature that spacetime is dynamically generated, which makes possible the scenario of dynamical compactification of extra dimensions, which in the Euclidean model manifests by spontaneously breaking the SO(10) rotational invariance (SSB). In this work we study using Monte Carlo simulations the 6 dimensional version of the Euclidean IIB matrix model. Simulations are found to be plagued by a strong complex action problem and the factorization method is used for effective sampling and computing expectation values of the extent of spacetime in various dimensions. Our results are consistent with calculations using the Gaussian Expansion method which predict SSB to SO(3) symmetric vacua, a finite universal extent of the compactified dimensions and finite spacetime volume.

  18. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  19. Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure

    Directory of Open Access Journals (Sweden)

    O.M. Voitsekhivska

    2011-12-01

    Full Text Available The non-perturbation theory of electronic dynamic conductivity for open two-barrier resonance tunnel structure is established for the first time within the model of rectangular potentials and different effective masses of electrons in the elements of nano-structure and the wave function linear over the intensity of electromagnetic field. It is proven that the results of the theory of dynamic conductivity, developed earlier in weak signal approximation within the perturbation method, qualitatively and quantitatively correlate with the obtained results. The advantage of non-perturbation theory is that it can be extended to the case of electronic currents interacting with strong electromagnetic fields in open multi-shell resonance tunnel nano-structures, as active elements of quantum cascade lasers and detectors.

  20. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)

    2016-10-15

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  1. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  2. Non-perturbative effects and wall-crossing from topological strings

    CERN Document Server

    Collinucci, Andres; Uranga, Angel M

    2009-01-01

    We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d N=2 IIB models. By introducing fluxes and/or orientifolds and/or D-branes, we describe the reduction to 4d N=1 models, and describe the computation of non-perturbative superpotential contributions from resummed brane instantons. We argue that the connection between non-perturbative effects and the topological string underlies the continuity and holomorphy of non-perturbative effects across lines of BPS stability. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, suggesting a realization of the Kontsevich-Soibelmann...

  3. Necessary and sufficient conditions for non-perturbative equivalences of large Nc orbifold gauge theories

    Science.gov (United States)

    Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.

    2005-07-01

    Large N coherent state methods are used to study the relation between U(Nc) gauge theories containing adjoint representation matter fields and their orbifold projections. The classical dynamical systems which reproduce the large Nc limits of the quantum dynamics in parent and daughter orbifold theories are compared. We demonstrate that the large Nc dynamics of the parent theory, restricted to the subspace invariant under the orbifold projection symmetry, and the large Nc dynamics of the daughter theory, restricted to the untwisted sector invariant under ``theory space'' permutations, coincide. This implies equality, in the large Nc limit, between appropriately identified connected correlation functions in parent and daughter theories, provided the orbifold projection symmetry is not spontaneously broken in the parent theory and the theory space permutation symmetry is not spontaneously broken in the daughter. The necessity of these symmetry realization conditions for the validity of the large Nc equivalence is unsurprising, but demonstrating the sufficiency of these conditions is new. This work extends an earlier proof of non-perturbative large Nc equivalence which was only valid in the phase of the (lattice regularized) theories continuously connected to large mass and strong coupling [1].

  4. Non-perturbative Equivalences In Gauge Theories With Global Symmetries In The Limit Of Large N

    CERN Document Server

    Kovtun, P

    2004-01-01

    The thesis is devoted to the study of various types of equivalences in large N gauge theories. We are specifically interested in theories whose dynamics is not constrained by supersymmetry or conformal invariance, and we consider theories both at zero and at finite temperature. Specific examples include equivalences between gauge theories, gauge theories and matrix models, and between gauge theories and gravitational theories. The use of lattice regularization for zero temperature gauge theories and effective hydrodynamic description for finite temperature gauge theories made it possible to find generic equivalences which do not rely on any sort of small-parameter expansion.

  5. Non-perturbative QCD Effects and the Top Mass at the Tevatron

    CERN Document Server

    Wicke, Daniel

    2008-01-01

    The modelling of non-perturbative effects is an important part of modern collider physics simulations. In hadron collisions there is some indication that the modelling of the interactions of the beam remnants, the underlying event, may require non-trivial colour reconnection effects to be present. We recently introduced a universally applicable toy model of such reconnections, based on hadronising strings. This model, which has one free parameter, has been implemented in the Pythia event generator. We then considered several parameter sets (`tunes'), constrained by fits to Tevatron minimum-bias data, and determined the sensitivity of a simplified top mass analysis to these effects, in exclusive semi-leptonic top events at the Tevatron. A first attempt at isolating the genuine non-perturbative effects gave an estimate of order +-0.5GeV from non-perturbative uncertainties. The results presented here are an update to the original study and include recent bug fixes of Pythia that influenced the tunings investigat...

  6. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.

  7. Integrability and non-perturbative effects in the AdS/CFT correspondence

    CERN Document Server

    Gómez, C; Gómez, César; Hernández, Rafael

    2007-01-01

    We present a non-perturbative resummation of the asymptotic strong-coupling expansion for the dressing phase factor of the AdS_5xS^5 string S-matrix. The non-perturbative resummation provides a general form for the coefficients in the weak-coupling expansion, in agreement with crossing symmetry and transcendentality. The ambiguities of the non-perturbative prescription are discussed together with the similarities with the non-perturbative definition of the c=1 matrix model.

  8. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  9. Necessary and sufficient conditions for non-perturbative equivalences of large N{sub c} orbifold gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pave; Uensal, Mithat; Yaffe, Laurence G. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2005-07-01

    Large N coherent state methods are used to study the relation between U(N{sub c}) gauge theories containing adjoint representation matter fields and their orbifold projections. The classical dynamical systems which reproduce the large N{sub c} limits of the quantum dynamics in parent and daughter orbifold theories are compared. We demonstrate that the large N{sub c} dynamics of the parent theory, restricted to the subspace invariant under the orbifold projection symmetry, and the large N{sub c} dynamics of the daughter theory, restricted to the untwisted sector invariant under 'theory space' permutations, coincide. This implies equality, in the large N{sub c} limit, between appropriately identified connected correlation functions in parent and daughter theories, provided the orbifold projection symmetry is not spontaneously broken in the parent theory and the theory space permutation symmetry is not spontaneously broken in the daughter. The necessity of these symmetry realization conditions for the validity of the large N{sub c} equivalence is unsurprising, but demonstrating the sufficiency of these conditions is new. This work extends an earlier proof of non-perturbative large N{sub c} equivalence which was only valid in the phase of the (lattice regularized) theories continuously connected to large mass and strong coupling.

  10. Non-perturbatively gauge-fixed compact U(1) lattice gauge theory

    Science.gov (United States)

    De, Asit K.; Sarkar, Mugdha

    2017-10-01

    An extensive study of the compact U(1) lattice gauge theory with a higher derivative gauge-fixing term and a suitable counter-term has been undertaken to determine the nature of the possible continuum limits for a wide range of the parameters, especially at strong gauge couplings ( g > 1), adding to our previous study at a single gauge coupling g = 1 .3 [1]. Our major conclusion is that a continuum limit of free massless photons(with the redundant pure gauge degrees of freedom decoupled) is achieved at any gauge coupling, not necessarily small, provided the coefficient \\tilde{κ} of the gauge-fixing term is sufficiently large. In fact, the region of continuous phase transition leading to the above physics in the strong gauge coupling region is found to be analytically connected to the point g = 0 and \\tilde{κ}\\to ∞ where the classical action has a global unique minimum, around which weak coupling perturbation theory in bare parameters is defined, controlling the physics of the whole region. A second major conclusion is that, local algorithms like Multihit Metropolis fail to produce faithful field configurations with large values of the coefficient \\tilde{κ} of the higher derivative gauge-fixing term and at large lattice volumes. A global algorithm like Hybrid Monte Carlo, although at times slow to move out of metastabilities, generally is able to produce faithful configurations and has been used extensively in the current study.

  11. Correlations in double parton distributions: perturbative and non-perturbative effects

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)

    2016-10-12

    The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

  12. Effect of Hydrotherapy on Static and Dynamic Balance in Older Adults: Comparison of Perturbed and Non-Perturbed Programs

    Directory of Open Access Journals (Sweden)

    Elham Azimzadeh

    2013-01-01

    Full Text Available Objectives: Falling is a main cause of mortality in elderly. Balance training exercises can help to prevent falls in older adults. According to the principle of specificity of training, the perturbation-based trainings are more similar to the real world. So these training programs can improve balance in elderly. Furthermore, exercising in an aquatic environment can reduce the limitations for balance training rather than a non-aquatic on. The aim of this study is comparing the effectiveness of perturbed and non-perturbed balance training programs in water on static and dynamic balance in aforementioned population group. Methods & Materials: 37 old women (age 80-65, were randomized to the following groups: perturbation-based training (n=12, non-perturbation-based training (n=12 and control (n=13 groups. Static and dynamic balance had been tested before and after the eight weeks of training by the postural stability test of the Biodex balance system using dynamic (level 4 and static platform. The data were analyzed by one sample paired t-test, Independent t-test and ANOVA. Results: There was a significant improvement for all indexes of static and dynamic balance in perturbation-based training (P<0.05. However, in non-perturbed group, all indexes were improved except ML (P<0.05. ANOVA showed that perturbed training was more effective than non-perturbed training on both static and dynamic balances. Conclusion: The findings confirmed the specificity principle of training. Although balance training can improve balance abilities, these kinds of trainings are not such specific for improving balance neuromuscular activities.The perturbation-based trainings can activate postural compensatory responses and reduce falling risk. According to results, we can conclude that hydrotherapy especially with perturbation-based programs will be useful for rehabilitation interventions in elderly .

  13. Electro-Weak Dark Matter: Non-perturbative effect confronting indirect detections

    Directory of Open Access Journals (Sweden)

    Eung Jin Chun

    2015-11-01

    Full Text Available We update indirect constraints on Electro-Weak Dark Matter (EWDM considering the Sommerfeld–Ramsauer–Townsend (SRT effect for its annihilations into a pair of standard model gauge bosons assuming that EWDM accounts for the observed dark matter (DM relic density for a given DM mass and mass gaps among the multiplet components. For the radiative or smaller mass splitting, the hypercharged triplet and higher multiplet EWDMs are ruled out up to the DM mass ≈10–20 TeV by the combination of the most recent data from AMS-02 (antiproton, Fermi-LAT (gamma-ray, and HESS (gamma-line. The Majorana triplet (wino-like EWDM can evade all the indirect constraints only around Ramsauer–Townsend dips which can occur for a tiny mass splitting of order 10 MeV or less. In the case of the doublet (Higgsino-like EWDM, a wide range of its mass ≳500 GeV is allowed except Sommerfeld peak regions. Such a stringent limit on the triplet DM can be evaded by employing a larger mass gap of the order of 10 GeV which allows its mass larger than about 1 TeV. However, the future CTA experiment will be able to cover most of the unconstrained parameter space.

  14. Fast Ion Effects on Fishbones and n=1 Kinks in JET Simulated by a Non-perturbative NOVA-KN Code

    Energy Technology Data Exchange (ETDEWEB)

    N.N. Gorelenkov; C.Z. Cheng; V.G. Kiptily; M.J. Mantsinen; S.E. Sharapov; the JET-EFDA Contributors

    2004-10-28

    New global non-perturbative hybrid code, NOVA-KN, and simulations of resonant type modes in JET [Joint European Torus] plasmas driven by energetic H-minority ions are presented. The NOVA-KN code employs the ideal-MHD description for the background plasma and treats non-perturbatively the fast particle kinetic response, which includes the fast ion finite orbit width (FOW) effect. In particular, the n = 1 fishbone mode, which is in precession drift resonance with fast ions, is studied. The NOVA-KN code is applied to model an n = 1 (f = 50-80kHz) MHD activity observed recently in JET low density plasma discharges with high fast ion (H-minority) energy content generated during the ion cyclotron resonance heating (ICRH). This n = 1 MHD activity is interpreted as the instability of the n = 1 precession drift frequency fishbone modes.

  15. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2016-09-15

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.

  16. $M_b$ and $f_B$ from non-perturbatively renormalized HQET with $N_f$=2 light quarks

    CERN Document Server

    Blossier, Benoit; Della Morte, Michele; Donnellan, Michael; Fritzsch, Patrick; Garron, Nicolas; Heitger, Jochen; von Hippel, Georg; Simma, Hubert; Sommer, Rainer

    2011-01-01

    We present an updated analysis of the non-perturbatively renormalized b-quark mass and B meson decay constant based on CLS lattices with two dynamical non-perturbatively improved Wilson quarks. This update incorporates additional light quark masses and lattice spacings in large physical volume to improve chiral extrapolations and to reach the continuum limit. We use Heavy Quark Effective Theory (HQET) including 1/m_b terms with non-perturbative coefficients based on the matching of QCD and HQET developed by the ALPHA collaboration during the past years.

  17. Associated heavy quarks pair production with Higgs as a tool for a search for non-perturbative effects of the electroweak interaction at the LHC

    Directory of Open Access Journals (Sweden)

    B.A. Arbuzov

    2017-09-01

    Full Text Available Assuming an existence of the anomalous triple electro-weak bosons interaction being defined by coupling constant λ we calculate its contribution to interactions of the Higgs with pairs of heavy particles. Bearing in mind experimental restrictions −0.011<λ<0.011 we present results for possible effects in processes pp→W+W−H,pp→W+ZH,pp→W−ZH,pp→t¯tH, pp→b¯bH. Effects could be significant with negative sign of λ in associated heavy quarks t,b pairs production with the Higgs. In calculations we rely on results of the non-perturbative approach to a spontaneous generation of effective interactions, which defines the form-factor of the three-boson anomalous interaction.

  18. Associated heavy quarks pair production with Higgs as a tool for a search for non-perturbative effects of the electroweak interaction at the LHC

    Science.gov (United States)

    Arbuzov, B. A.; Zaitsev, I. V.

    2017-09-01

    Assuming an existence of the anomalous triple electro-weak bosons interaction being defined by coupling constant λ we calculate its contribution to interactions of the Higgs with pairs of heavy particles. Bearing in mind experimental restrictions - 0.011 p p →W+W- H , p p →W+ ZH , p p →W- ZH , p p → t bar tH, pp → b bar bH. Effects could be significant with negative sign of λ in associated heavy quarks t , b pairs production with the Higgs. In calculations we rely on results of the non-perturbative approach to a spontaneous generation of effective interactions, which defines the form-factor of the three-boson anomalous interaction.

  19. Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks

    DEFF Research Database (Denmark)

    Bernardoni, F.; Blossier, B.; Bulava, J.

    2014-01-01

    We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three...

  20. Non-perturbative unitarity constraints on the ratio of shear viscosity to entropy density in UV complete theories with a gravity dual

    CERN Document Server

    Brustein, Ram

    2011-01-01

    We reconsider, from a novel perspective, how unitarity constrains the corrections to the ratio of shear viscosity \\eta\\ to entropy density s. We start with higher-derivative extensions of Einstein gravity in asymptotically anti-de Sitter spacetimes. It is assumed that these theories are derived from string theory and thus have a unitary UV completion that is dual to a unitary, UV-complete boundary gauge theory. We then propose that the gravitational perturbations about a solution of the UV complete theory are described by an effective theory whose linearized equations of motion have at most two time derivatives. Our proposal leads to a concrete prescription for the calculation of \\eta/s for theories of gravity with arbitrary higher-derivative corrections. The resulting ratio can take on values above or below 1/4\\pi\\ and is consistent with all the previous calculations, even though our reasoning is substantially different. For the purpose of calculating \\eta/s, our proposal also leads to only two possible cand...

  1. Non-perturbative study of impurity effects on the Kubo conductivity in macroscopic periodic and quasiperiodic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Vicenta; Ramírez, Carlos; Sánchez, Fernando [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, 04510 México D.F., México (Mexico); Wang, Chumin, E-mail: chumin@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México D.F. (Mexico)

    2014-09-15

    In this paper, we analyze the effects of site and bond impurities on the electrical conductance of periodic and quasiperiodic systems with macroscopic length by means of a real-space renormalization plus a convolution method developed for the Kubo–Greenwood formula. All analyzed systems are connected to semi-infinite periodic leads. Analytical and numerical conductivity spectra are obtained for one and two site impurities in a periodic chain, where the separation between impurities determines the number of maximums in the spectra. We also found transparent states at the zero chemical potential in Fibonacci chains of every three generations with bond impurities, whose existence was confirmed by an analytical analysis within the Landauer formalism. For many impurities, the spectral average of the conductivity versus the system length reveals a power-law behavior, when the distance between impurities follows the Fibonacci sequence. Finally, we present an analysis of the conductance spectra of segmented periodic and Fibonacci chains and nanowires.

  2. Non-perturbative description of quantum systems

    CERN Document Server

    Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander

    2015-01-01

    This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory.  In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.

  3. Non-perturbative corrections in N=2 strings

    CERN Document Server

    Gregori, A

    1999-01-01

    We investigate the non-perturbative equivalence of some heterotic /type IIA dual pairs with N=2 supersymmetry. We compute R/sup 2/-like corrections, both on the type IIA and on the heterotic side. The coincidence of their perturbative part provides a test of duality. The type IIA result is then used to predict the full, non- perturbative correction to the heterotic effective action. We determine the instanton numbers and the Olive-Montonen duality groups. (34 refs).

  4. A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Energy Technology Data Exchange (ETDEWEB)

    Capri, M.A.L.; Fiorentini, D.; Sorella, S.P. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Pereira, A.D. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); UFF - Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)

    2017-08-15

    In this work, we study the propagators of matter fields within the framework of the refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST-invariant formulation of the Gribov-Zwanziger framework achieved in Capri et al. (Phys Rev D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016), (Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hepth]), Pereira et al. (arXiv:1605.09747 [hep-th]), the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement. (orig.)

  5. Non-perturbative reheating and Nnaturalness

    Science.gov (United States)

    Hardy, Edward

    2017-11-01

    We study models in which reheating happens only through non-perturbative processes. The energy transferred can be exponentially suppressed unless the inflaton is coupled to a particle with a parametrically small mass. Additionally, in some models a light scalar with a negative mass squared parameter leads to much more efficient reheating than one with a positive mass squared of the same magnitude. If a theory contains many sectors similar to the Standard Model coupled to the inflaton via their Higgses, such dynamics can realise the Nnaturalness solution to the hierarchy problem. A sector containing a light Higgs with a non-zero vacuum expectation value is dominantly reheated and there is little energy transferred to the other sectors, consistent with cosmological constraints. The inflaton must decouple from other particles and have a flat potential at large field values, in which case the visible sector UV cutoff can be raised to 10 TeV in a simple model.

  6. Non-perturbative lorentzian quantum gravity, causality and topology change

    NARCIS (Netherlands)

    Ambjørn, J.; Loll, R.

    1998-01-01

    We formulate a non-perturbative lattice model of two-dimensional Lorentzian quantum gravity by performing the path integral over geometries with a causal structure. The model can be solved exactly at the discretized level. Its continuum limit coincides with the theory obtained by quantizing 2d

  7. Non-perturbative plaquette in 3d pure SU(3)

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.

  8. Holomorphic couplings in non-perturbative string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis Marco

    2011-06-15

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z{sub 3}, that is canonically constructed from the original five-brane and Calabi-Yau threefold Z{sub 3} via a blow-up. We exploit the use of the blow-up threefold Z{sub 3} as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z{sub 3} as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z{sub 3}, that is generated dynamically by the five-brane backreaction. (orig.)

  9. A non-perturbative operator product expansion

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico, Distrito Federal (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2009-10-15

    Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photonmomenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This overdetermines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition. (orig.)

  10. Non-perturbative superpotentials across lines of marginal stability

    CERN Document Server

    Garcia-Etxebarria, Inaki; PH-TH

    2008-01-01

    We discuss the behaviour of non-perturbative superpotentials in 4d N=1 type II compactifications (and orientifolds thereof) near lines of marginal stability, where the spectrum of contributing BPS D-brane instantons changes discontinuously. The superpotential is nevertheless continuous, in agreement with its holomorphic dependence on the closed string moduli. The microscopic mechanism ensuring this continuity involves novel contributions to the superpotential: As an instanton becomes unstable against decay to several instantons, the latter provide a multi-instanton contribution which reconstructs that of the single-instanton before decay. The process can be understood as a non-perturbative lifting of additional fermion zero modes of an instanton by interactions induced by other instantons. These effects provide mechanisms via which instantons with U(1) symmetry can contribute to the superpotential. We provide explicit examples of these effects for non-gauge D-brane instantons, and for D-brane gauge instantons...

  11. Proton–proton fusion in lattice effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rupak, Gautam, E-mail: grupak@u.washington.edu; Ravi, Pranaam, E-mail: pr340@msstate.edu

    2015-02-04

    The proton–proton fusion rate is calculated at low energy in a lattice effective field theory (EFT) formulation. The strong and the Coulomb interactions are treated non-perturbatively at leading order in the EFT. The lattice results are shown to accurately describe the low energy cross section within the validity of the theory at energies relevant to solar physics. In prior works in the literature, Coulomb effects were generally not included in non-perturbative lattice calculations. Work presented here is of general interest in nuclear lattice EFT calculations that involve Coulomb effects at low energy. It complements recent developments of the adiabatic projection method for lattice calculations of nuclear reactions.

  12. Testing QCD in the non-perturbative regime

    Energy Technology Data Exchange (ETDEWEB)

    A.W. Thomas

    2007-01-01

    This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.

  13. Lower Hybrid Wave Electric Field Vector Measurements Using Non-Perturbative Dynamic Stark Effect Optical Spectroscopy on Alcator C-Mod

    Science.gov (United States)

    Martin, E. H.

    2017-10-01

    Plasma-wave interactions near the lower hybrid (LH) wave launcher can have a major impact on driven LH current, especially in the high-density regime. To identify the relevant physics responsible for this interaction a correlated effort of experimental measurements and simulations of the LH wave electric field vector, ELH, were carried out on Alcator C-Mod using the SELHF (Stark Effect Lower Hybrid Field) diagnostic and COMSOL modeling. For a range of plasma parameters observations show that: 1) The polarization ELH resides primarily in the radial-poloidal plane and becomes increasingly poloidal for locations away and to the top of the LH launcher. 2) Saturation of the radial component of ELH is observed at an LH power density of approximately 12 MW/m2. 3) Reflectometry phase fluctuations were found to be correlated with |ELH|. These results suggest that the LH resonance cone and power spectrum may be substantially modified near the LH launcher in the high-density regime from the expected radial polarization and square root scaling of the magnitude with LH power. Simulation of the experimental data was carried out through development of a synthetic diagnostic using a full wave cold plasma COMSOL model. Density fluctuations and reflectometry measured density profiles were incorporated. Without density fluctuations, the synthetic ELH signal is dominantly in the radial direction and scales with the square root of LH power, as expected. Increasing density fluctuations in the model can cause the magnitude of ELH to decrease substantially and greatly vary the direction of ELH. The observations and results outlined above will be presented in detail and the applicability of density fluctuations as a mechanism behind the behavior of ELH will be discussed. Funded by the DOE OFES (DE-AC05-00OR22725 and DE-FC02-99ER54512).

  14. Non-perturbative aspects in a weakly interacting Higgs sector

    CERN Document Server

    Maas, Axel

    2012-01-01

    Just like the weakly interacting QED can support non-perturbative phenomena, like atoms, so can the weak and Higgs interactions. Especially, there are strong field-theoretical arguments that only bound states can be the (quasi-)asymptotic physical degrees of freedom of this sector. After a brief review of these arguments, the 2-point, 3-point and 4-point correlation functions of the Higgs-W system are determined using lattice gauge theory. The results support a conjectured duality between elementary states and bound states for weak Higgs self-interactions. This leads to relations between the bound states and the experimentally observed particles. Interestingly, these may yield pseudo-scalar admixtures at the Higgs energy, and possibly a faint standard-model signal in the channel where a Kaluza-Klein graviton would be expected.

  15. A non-perturbative mechanism for elementary particle mass generation

    CERN Document Server

    Frezzotti, R

    2014-01-01

    Taking inspiration from lattice QCD data, we argue that a finite non-perturbative mass contribution for quarks is generated as a consequence of the dynamical phenomenon of spontaneous chiral symmetry breaking, in turn triggered by the explicitly breaking of chiral symmetry induced by the critical Wilson term in the action. In pure lattice QCD this mass term cannot be separated from the unavoidably associated linearly divergent contribution. However, if QCD is enlarged to a theory where also a scalar field is present, coupled to a doublet of SU(2) fermions via a Yukawa and a Wilson-like term, then in the phase where the scalar field takes a non-vanishing expectation value, a dynamically generated and "naturally" light fermion mass (numerically unrelated to the expectation value of the scalar field) is conjectured to emerge at a critical value of the Yukawa coupling where the symmetry of the model is maximally enhanced. Masses dynamically generated in this way display a natural hierarchy according to which the ...

  16. Variational techniques in non-perturbative QCD

    CERN Document Server

    Kovner, Alex; Kovner, Alex

    2004-01-01

    We review attempts to apply the variational principle to understand the vacuum of non-abelian gauge theories. In particular, we focus on the method explored by Ian Kogan and collaborators, which imposes exact gauge invariance on the trial Gaussian wave functional prior to the minimization of energy. We describe the application of the method to a toy model -- confining compact QED in 2+1 dimensions -- where it works wonderfully and reproduces all known non-trivial results. We then follow its applications to pure Yang-Mills theory in 3+1 dimensions at zero and finite temperature. Among the results of the variational calculation are dynamical mass generation and the analytic description of the deconfinement phase transition.

  17. Patient observers and non-perturbative infrared dynamics in inflation

    Science.gov (United States)

    Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S.

    2018-02-01

    We have previously derived the effect of soft graviton modes on the quantum state of de Sitter using spontaneously broken asymptotic symmetries. In the present paper we prove that this effect can be reinterpreted in terms of Bogoliubov transformations acting on the quantum state. This also enables us to address the much discussed issues regarding the observability of infrared effects in de Sitter from a new perspective. While it is commonly agreed that infrared effects are not visible to a single sub-horizon observer at late times, we argue that the question is less trivial for a patient observer who has lived long enough to have a record of the state before the soft mode was created. Though classically there is no obstruction to measuring this effect locally, we give several indications that quantum mechanical uncertainties may censor the effect. We then apply our methods to find a non-perturbative description of the quantum state pertaining to the Page time of de Sitter, and derive with these new methods the probability distribution for the local quantum states of de Sitter and slow-roll inflation in the presence of long modes. Finally, we show that this formalism reproduces and generalizes the usual criterion for the presence of eternal inflation in general classes of slow-roll inflation.

  18. Non-perturbative Methods For Hierarchical Models

    CERN Document Server

    Oktay, M B

    2001-01-01

    The goal of this thesis is to provide a practical method to calculate, in scalar field theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson's hierarchical model in the symmetric and broken phases to perform high precision calculations of the Green's functions at zero momentum. We use the well-known correspondence between statistical mechanics and field theory in which the large cut-off limit is obtained by letting β reach a critical value βc. We show that the round-off errors on the magnetic susceptibility grow like (βc − β) −1 near criticality. We show that the systematic errors (finite truncation and volume) can be controlled with an exponential precision and reduced to a level lower than numerical errors. We probe the numerical errors made in Renormalization Group (RG) calculations by varyin...

  19. Proton–proton fusion in lattice effective field theory

    Directory of Open Access Journals (Sweden)

    Gautam Rupak

    2015-02-01

    Full Text Available The proton–proton fusion rate is calculated at low energy in a lattice effective field theory (EFT formulation. The strong and the Coulomb interactions are treated non-perturbatively at leading order in the EFT. The lattice results are shown to accurately describe the low energy cross section within the validity of the theory at energies relevant to solar physics. In prior works in the literature, Coulomb effects were generally not included in non-perturbative lattice calculations. Work presented here is of general interest in nuclear lattice EFT calculations that involve Coulomb effects at low energy. It complements recent developments of the adiabatic projection method for lattice calculations of nuclear reactions.

  20. Non-Perturbative Formulation of Time-Dependent String Solutions

    CERN Document Server

    Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.

    2006-01-01

    We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.

  1. Perturbative and Non-Perturbative Aspects of N=8 Supergravity

    CERN Document Server

    Ferrara, Sergio

    2011-01-01

    Some aspects of quantum properties of N=8 supergravity in four dimensions are discussed for non-practitioners. At perturbative level, they include the Weyl trace anomaly as well as composite duality anomalies, the latter being relevant for perturbative finiteness. At non-perturbative level, we briefly review some facts about extremal black holes, their Bekenstein-Hawking entropy and attractor flows for single- and two-centered solutions.

  2. Instanton effects in ABJM theory from Fermi gas approach

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2012-11-19

    We study the instanton effects of the ABJM partition function using the Fermi gas formalism. We compute the exact values of the partition function at the Chern-Simons levels k=1, 2, 3, 4, 6 up to N=44, 20, 18, 16, 14 respectively, and extract non-perturbative corrections from these exact results. Fitting the resulting non-perturbative corrections by their expected forms from the Fermi gas, we determine unknown parameters in them. After separating the oscillating behavior of the grand potential, which originates in the periodicity of the grand partition function, and the worldsheet instanton contribution, which is computed from the topological string theory, we succeed in proposing an analytical expression for the leading D2-instanton correction. Just as the perturbative result, the instanton corrections to the partition function are expressed in terms of the Airy function.

  3. Non-perturbative inputs for gluon distributions in the hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, B.I. [Ioffe Physico-Technical Institute, Saint Petersburg (Russian Federation); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)

    2017-03-15

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K{sub T}-and collinear factorizations. (orig.)

  4. Renormalons and the heavy quark effective theory

    CERN Document Server

    Martinelli, G; Martinelli, G; Sachrajda, C T

    1995-01-01

    We propose a non-perturbative method for defining the higher dimensional operators which appear in the Heavy Quark Effective Theory (HQET), such that their matrix elements are free of renormalon singularities, and diverge at most logarithmically with the ultra-violet cut-off. Matrix elements of these operators can be computed numerically in lattice simulations of the HQET. We illustrate our procedures by presenting physical definitions of the binding energy (\\lb) and of the kinetic energy (-\\lambda_1/2m_Q) of the heavy quark in a hadron. This allows us to define a ``subtracted pole mass", whose inverse can be used as the expansion parameter in applications of the HQET.

  5. ER= EPR and Non-Perturbative Action Integrals for Quantum Gravity

    CERN Document Server

    Alasfar, L A

    2016-01-01

    In this paper, we summarise a conjuncture for constructing and calculating path integrals (in non perturbative fashion ) by summing over homotopy classes of paths in a multiply-connected spacetime. The topology of the spacetime is defined by Einstein-Rosen bridges (ERB) forming from the entanglement of Wheeler's quantum foam described by S.W Hawking paper 'Virtual Blackholes' (Phys.Rev. D53 (1996) 3099-3107). Because these 'bubbles' are entangled, they are connected by Plankian ERB's by the ER=EPR conjecture of L. Susskind Hence the spacetime will possess a large first Betti number $ B_1$. For any compact 2-surface in the spacetime, the topology ( in particular the homotopy ) of that surface is not trivial, due to the large number of Plankian ERB's that define homotopy though this surface. The quantisation of spacetime with this topology - along with the proper choice of the 2-surfaces- is conjectured to allow a non perturbative path integrals of quantum gravity theory over the spacetime manifold. The task is...

  6. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    Science.gov (United States)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not

  7. Effective theories of single field inflation when heavy fields matter

    CERN Document Server

    Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P

    2012-01-01

    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...

  8. Exotic branes and non-perturbative seven branes

    NARCIS (Netherlands)

    Eyras, E; Lozano, Y

    2000-01-01

    We construct the effective action of certain exotic branes in the Type Ii theories which are not predicted by their space-time supersymmetry algebras. We analyze in detail the case of the NS-7B brane, S-dual to the D7-brane, and connected by T-duality to other exotic branes in Type IIA: the KK-6A

  9. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Papinutto, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Pena, C. [European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2006-04-15

    We discuss the renormalisation properties of the complete set of {delta}B=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  10. Constraining a fourth generation of quarks: non-perturbative Higgs boson mass bounds

    CERN Document Server

    Bulava, J.; Nagy, A.

    2013-01-01

    We present a non-perturbative determination of the upper and lower Higgs boson mass bounds with a heavy fourth generation of quarks from numerical lattice computations in a chirally symmetric Higgs-Yukawa model. We find that the upper bound only moderately rises with the quark mass while the lower bound increases significantly, providing additional constraints on the existence of a straight-forward fourth quark generation. We examine the stability of the lower bound under the addition of a higher dimensional operator to the scalar field potential using perturbation theory, demonstrating that it is not significantly altered for small values of the coupling of this operator. For a Higgs boson mass of $\\sim125\\mathrm{GeV}$ we find that the maximum value of the fourth generation quark mass is $\\sim300\\mathrm{GeV}$, which is already in conflict with bounds from direct searches.

  11. Perturbative and non-perturbative aspects in vector model/higher spin duality

    Science.gov (United States)

    Jevicki, Antal; Jin, Kewang; Ye, Qibin

    2013-05-01

    We review some recent work on AdS/CFT duality involving the 3D O(N) vector model and AdS4 higher spin gravity. Our construction is based on bi-local collective field theory which provides an off-shell formulation of higher spin gravity with G = 1/N playing the role of a coupling constant. Consequently, perturbative and non-perturbative issues of the theory can be studied. For the correspondence based on free CFTs we discuss the nature of bulk 1/N interactions through an S-matrix which is argued to be equal to 1 (Coleman-Mandula theorem). As a consequence in this class of theories nonlinearities are removable, through a nonlinear field transformation which we show at the exact level. We also describe a geometric (Kähler space) framework for the bi-local theory which applies equally simply to Sp(2N) fermions and the de Sitter correspondence. We discuss in this framework the structure and size of the bi-local Hilbert space and the implementation of (finite N) exclusion principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.

  12. D-effects in Toroidally Compactified Type II String Theory

    CERN Document Server

    Pioline, B

    1999-01-01

    We review exact results obtained for R^4 couplings in maximally supersymmetric type II string theories. These couplings offer a privileged scene to understand the rules of semiclassical calculus in string theory. Upon expansion in weak string coupling, they reveal an infinite sum of non-perturbative e^{-1/g} effects that can be imputed to euclidean D-branes wrapped on cycles of the compactification manifolds. They also shed light on the relation between Dp-branes and D-(p-2)branes, D-strings and (p,q) strings, instanton sums and soliton loops. The latter interpretation takes over in D<=6 in order to account for the e^{-1/g^2} effects, still mysterious from the point of view of instanton calculus. [To appear in the proceedings of the conference "Quantum Aspects of Gauge Theories, Supersymmetry and Unification" held at Neuchatel University, Switzerland, 18-23 September 1997.

  13. Non-perturbative studies of QCD at small quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Wennekers, J.

    2006-07-15

    We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)

  14. Universality and Non-Perturbative Definitions of 2D Quantum Gravity from Matrix Models

    CERN Document Server

    Miramontes, J L; Guillen, Joaquin Sanchez

    1992-01-01

    The universality of the non-perturbative definition of Hermitian one-matrix models following the quantum, stochastic, or $d=1$-like stabilization is discussed in comparison with other procedures. We also present another alternative definition, which illustrates the need of new physical input for $d=0$ matrix models to make contact with 2D quantum gravity at the non-perturbative level.

  15. Non-perturbative gravity at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, Sarah

    2013-12-18

    In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP

  16. Parameters of heavy quark effective theory from N{sub f}=2 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS, Orsay (France). LPT; Paris-11 Univ., 91 - Orsay (France); Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tantalo, Nazario [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy)

    2012-07-15

    We report on a non-perturbative determination of the parameters of the lattice Heavy Quark Effective Theory (HQET) Lagrangian and of the time component of the heavy-light axial-vector current with N{sub f} = 2 flavors of massless dynamical quarks. The effective theory is considered at the 1/m{sub h} order, and the heavy mass m{sub h} covers a range from slightly above the charm to beyond the beauty region. These HQET parameters are needed to compute, for example, the b-quark mass, the heavy-light spectrum and decay constants in the static approximation and to order 1/m{sub h} in HQET. The determination of the parameters is done non-perturbatively. The computation reported in this paper uses the plaquette gauge action and two different static actions for the heavy quark described by HQET. For the light-quark action we choose non-perturbatively O(a)-improved Wilson fermions.

  17. Non-perturbative renormalization of the static vector current and its O(a)-improvement in quenched QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F.

    2007-06-15

    We carry out the renormalization and the Symanzik O(a)-improvement programme for the static vector current in quenched lattice QCD. The scale independent ratio of the renormalization constants of the static vector and axial currents is obtained non-perturbatively from an axial Ward identity with Wilson-type light quarks and various lattice discretizations of the static action. The improvement coefficients c{sub V}{sup stat} and b{sub V}{sup stat} are obtained up to O(g{sub 4}{sup 0})-terms by enforcing improvement conditions respectively on the axial Ward identity and a three-point correlator of the static vector current. A comparison between the non-perturbative estimates and the corresponding one-loop results shows a non-negligible effect of the O(g{sub 4}{sup 0})-terms on the improvement coefficients but a good accuracy of the perturbative description of the ratio of the renormalization constants. (orig.)

  18. Summary of working group activities in non-perturbative quantum ...

    Indian Academy of Sciences (India)

    quantum chromodynamics (lattice gauge theory). PUSHAN MAJUMDAR. Department of Theoretical Physics, Indian Association for the Cultivation of Science, ... Wilson–Dirac operator which is denoted as DW. However, this Dirac operator breaks chiral symmetry explicitly. Till date the best that can be done is to write down a ...

  19. Methods in M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Vanhove, P. [CEA/Saclay, Direction des Sciences de la Matiere (DSM-SPhT), 91 - Gif-sur-Yvette (France); Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics

    1999-07-01

    In these notes I discuss various aspects of the elusive M-theory, with a special stress on the structure of the supergravity effective descriptions and their relations. These notes are arranged into 7 chapters: (1) Introducing the supergravities, (2) The bound state problem, (3) Unitary and supergravity theories, (4) Superstring theory considerations, (5) Non-perturbative contributions, (6) Unitary techniques in supergravity theories, and (7) Instantons computation and the adS/sCFT correspondence.

  20. Non-perturbative study of rotationally induced inner-shell excitation

    Science.gov (United States)

    Wille, U.

    1982-03-01

    Within the time-dependent formulation of atomic scattering theory, the exponential representation (“Magnus expansion”) of the quantum mechanical time-evolution matrix is used in a non-perturbative study of rotationally induced inner-shell excitation in slow ion-atom collisions. The impact-parameter dependence of this type of process is shown to represent a transparent example for testing the convergence properties of the Magnus expansion. The specific structure of the Magnus expansion for multi-state rotational coupling in the vicinity of a united-atom ( n, l) shell is investigated, and the analytic solution which this problem admits in the sudden limit is discussed. Explicit calculations within the Magnus approach have been performed for typical two-state and three-state problems relevant to K-shell and L-shell excitation. Their results are compared to the results of the sudden approximation and of coupled-state calculations. Good agreement between the Magnus results and the coupled-state calculations is obtained throughout if terms up to third order are retained in the commutator expansion of the exponent matrix associated with the time-evolution matrix.

  1. Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiwen [Department of Mathematics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China); Wang, Xin; Huang, Min-xin [Interdisciplinary Center for Theoretical Study,Department of Modern Physics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China)

    2017-01-16

    We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Mariño conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus g, the NS quantization scheme leads to g quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant ℏ and can be derived from the Lockhart-Vafa partition function of non-perturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Mariño, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least g nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact NS quantization conditions. This highly nontrivial coincidence between the two quantization schemes requires infinite constraints among the refined Gopakumar-Vafa invariants. The equivalence for mirror curves of genus one has been verified for some local del Pezzo surfaces. In this paper, we generalize the correspondence to higher genus, and analyze in detail the resolved ℂ{sup 3}/ℤ{sub 5} orbifold and several SU(N) geometries. We also give a proof for some models at ℏ=2π/k.

  2. Perturbative and Non-perturbative $N=8$ Supergravity

    CERN Document Server

    Bianchi, Massimo; Kallosh, Renata

    2010-01-01

    We study extremal black holes, their ADM mass and area of the horizon in N = 8 supergravity. Contrary to intuition gained from N = 2, 4 theories, in N = 8 supergravity BPS states may become massless only at the boundary of moduli space. We show that stringy states described in [1], which have no mass gap and survive in the toroidal compactification in addition to massless states of perturbative N = 8 supergravity, display a null singularity in four-dimensional space-time, when viewed as solutions of N = 8 Einstein equations. We analyze known methods of resolving such singularities and explain why they do not work in D=4, N = 8 supergravity. We discuss possible implications for the issue of UV finiteness of the four-dimensional N = 8 perturbation theory.

  3. Conformal bootstrap: non-perturbative QFT's under siege

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    [Exceptionally in Council Chamber] Originally formulated in the 70's, the conformal bootstrap is the ambitious idea that one can use internal consistency conditions to carve out, and eventually solve, the space of conformal field theories. In this talk I will review recent developments in the field which have boosted this program to a new level. I will present a method to extract quantitative informations in strongly-interacting theories, such as 3D Ising, O(N) vector model and even systems without a Lagrangian formulation. I will explain how these techniques have led to the world record determination of several critical exponents. Finally, I will review exact analytical results obtained using bootstrap techniques.

  4. Non-perturbative embedding of local defects in crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Cances, Eric; Deleurence, Amelie [CERMICS, Ecole des Ponts and INRIA, 6 and 8 Avenue Blaise Pascal, Cite Descartes, 77455 Marne-la-Vallee Cedex 2 (France); Lewin, Mathieu [CNRS and Laboratoire de Mathematiques UMR 8088, Universite de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France)], E-mail: cances@cermics.enpc.fr, E-mail: deleurence@cermics.enpc.fr, E-mail: Mathieu.Lewin@math.cnrs.fr

    2008-07-23

    We present a new variational model for computing the electronic first-order density matrix of a crystalline material in the presence of a local defect. A natural way to obtain variational discretizations of this model is to expand the difference Q between the density matrix of the defective crystal and the density matrix of the perfect crystal, in a basis of precomputed maximally localized Wannier functions of the reference perfect crystal. This approach can be used within any semi-empirical or density functional theory framework.

  5. Effective field theory and unitarity in vector boson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sekulla, Marco [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Kilian, Wolfgang [Siegen Univ. (Germany); Ohl, Thorsten [Wuerzburg Univ. (Germany); Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2016-10-15

    Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.

  6. The N/D method with non-perturbative left-hand-cut discontinuity and the S10NN partial wave

    Science.gov (United States)

    Entem, D. R.; Oller, J. A.

    2017-10-01

    In this letter we introduce an integral equation that allows to calculate the exact left-hand-cut discontinuity for an uncoupled S-wave partial-wave amplitude in potential scattering for a given finite-range potential. In particular this is applied here to the S10 nucleon-nucleon (NN) partial wave. The calculation of Δ (A) is completely fixed by the potential because short-range physics (corresponding to integrated out degrees of freedom within the low-energy Effective Field Theory) does not contribute to Δ (A). The results obtained from the N / D method for a partial-wave amplitude are rigorous, since now the discontinuities along the left-hand cut and right-hand cut are exactly known. This solves in this case the open question with respect to the N / D method and the effect on the final result of the non-perturbative iterative diagrams in the evaluation of Δ (A). The solution of this problem also implies the equivalence of the N / D method and the Lippmann-Schwinger (LS) equation for the nonsingular one-pion exchange S10NN potential (Yukawa potential). The equivalence between the N / D method with one extra subtraction and the LS equation renormalized with one counterterm or with subtractive renormalization also holds for the singular attractive S10NN potentials calculated by including higher orders in Chiral Perturbation Theory (ChPT). However, the N / D method is more flexible and, rather straightforwardly, it allows to evaluate partial-wave amplitudes with a higher number of extra subtractions, that we fix in terms of shape parameters within the effective range expansion. We give results up to three extra subtractions in the N / D method, which provide a rather accurate reproduction of the S10NN phase shifts when the NNLO ChPT potential is employed. Our new method then provides a general theory to renormalize non-perturbatively singular and regular potentials in scattering that can be extended to higher partial waves as well as to coupled channel scattering.

  7. Light-Front Holography and Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

    2009-12-09

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  8. Non-perturbative treatment of orange-type potential in endohedrals

    Science.gov (United States)

    Amusia, Miron Ya.; Chernysheva, Larissa V.

    2009-05-01

    We developed a system of programs that permit to treat non-perturbatively the effect of the fullerene shell upon the stuffed atom photoelectrons in the frame of RPAE. We use the zero-thickness ``orange-skin'' potential. Usually this potential was applied to calculate a factor that permitted to obtain all photoionization characteristics of an endohedral directly from respective characteristics of isolated atoms. It appeared, however that even when the photoelectron energy is low enough, the fullerenes shell can affect not only the real states of the electron on the way of the atom. Surprisingly enough at the first glance, the fullerene shell, even being remote quite far from the central atom in the endohedral, can strongly affect the intermediate virtual states. Therefore, the factorization of the fullerenes shell effects become in general incorrect. To take the modification of the virtual states, one has to treat the considered process with participation of the endohedral atom within the frame of a given model. We developed simple programs that permit to take into account one zero-thickness fullerenes potential or two -- for ``onion-type'' endohedrals in the RPAE frame and performed concrete calculations for Ar@C60.

  9. Collider searches for non-perturbative low-scale gravity states

    CERN Document Server

    Gingrich, Douglas M

    2015-01-01

    The possibility of producing non-perturbative low-scale gravity states in collider experiments was first discussed in about 1998. The ATLAS and CMS experiments have searched for non-perturbative low-scale gravity states using the Large Hadron Collider (LHC) with a proton--proton centre of mass energy of 8 TeV. These experiments have now seriously confronted the possibility of producing non-perturbative low-scale gravity states which were proposed over 17 years ago. I will summarise the results of the searches, give a personal view of what they mean, and make some predictions for 13 TeV centre of mass energy. I will also discuss early ATLAS 13 TeV centre of mass energy results.

  10. Non-perturbative F-terms across lines of BPS stability

    CERN Document Server

    Garcia-Etxebarria, Inaki; Uranga, Angel M

    2008-01-01

    We consider non-perturbative terms in the 4d effective action due to BPS D-brane instantons, and study their continuity properties in moduli space as instantons cross lines of BPS stability, potentially becoming non-BPS. We argue that BPS instantons contributing to the superpotential cannot become non-BPS anywhere in moduli space, since they cannot account for the required four goldstino fermion zero modes. At most they can reach lines of threshold stability, where they split into mutually BPS multi-instantons, as already discussed in the literature. On the other hand, instantons with additional fermion zero modes, contributing to multi-fermion F-terms, can indeed cross genuine lines of marginal stability, beyond which they lead to non-BPS systems. The non-BPS instanton generates an operator which is a D-term locally in moduli space, but not globally. This is due to a cohomological obstruction localized on the BPS locus, where the D-term must be written as an F-term, thus ensuring the continuity of the 4d con...

  11. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Directory of Open Access Journals (Sweden)

    Y.F. Liu Shuai

    2018-01-01

    Full Text Available We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP. Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  12. Quantum torsion with non-zero standard deviation: Non-perturbative approach for cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Dzhunushaliev, Vladimir, E-mail: v.dzhunushaliev@gmail.com [Dept. Theor. and Nucl. Phys., KazNU, Almaty, 010008 (Kazakhstan); Institute for Basic Research, Eurasian National University, Astana, 010008 (Kazakhstan); Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, 265 a, Chui Street, Bishkek, 720071 (Kyrgyzstan); Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Folomeev, Vladimir, E-mail: vfolomeev@mail.ru [Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, 265 a, Chui Street, Bishkek, 720071 (Kyrgyzstan); Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta, E-mail: jutta.kunz@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)

    2013-02-12

    Cosmology with non-perturbative quantum corrections resulting from torsion is considered. It is shown that the evolution of closed, open and flat Universes is changed because of the presence of a non-zero dispersion of quantum torsion. The evolution of a Universe with quantum torsion and with one type of average curvature can be similar to the evolution of a Universe without quantum torsion and with another type of average curvature. For the description of the non-perturbative quantum torsion, a vector field approximation is applied.

  13. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  14. Power counting and Wilsonian renormalization in nuclear effective field theory

    Science.gov (United States)

    Valderrama, Manuel Pavón

    2016-05-01

    Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.

  15. A model of non-perturbative gluon emission in an initial state parton shower

    CERN Document Server

    Gieseke, Stefan; Siódmok, Andrzej

    2008-01-01

    We consider a model of transverse momentum production in which non-perturbative smearing takes place throughout the perturbative evolution, by a simple modification to an initial state parton shower algorithm. We find a reasonable description of data over a wide range of energy and discuss the extrapolation to the LHC.

  16. Constraining the Higgs boson mass: A non-perturbative lattice study

    CERN Document Server

    Jansen, Karl; Nagy, Attila

    2012-01-01

    We present non-perturbatively obtained results for upper and lower Higgs boson mass bounds using a chiral invariant lattice formulation of the Higgs-Yukawa sector of the standard model. We determine the mass bounds both, for a standard model top quark mass and for a possible fourth quark generation with masses up to 700GeV.

  17. Testing perturbative results with non-perturbative methods for the Hierarchical model

    OpenAIRE

    Meurice, Y.; Oktay, M. B.

    2000-01-01

    We present non-perturbative methods to calculate accurately the renormalized quantities for Dyson's Hierarchical Model. We apply this method and calculate the critical exponent gamma with 12 and 4 significant digits in the high and low temperature phases, respectively. We report accurate values for universal ratios of amplitudes and preliminary results concerning the comparison with perturbative results.

  18. AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-04-29

    The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.

  19. Duality and supersymmetry breaking in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S. (European Organization for Nuclear Research, Geneva (Switzerland) California Univ., Los Angeles (USA)); Magnoli, N.; Veneziano, G. (European Organization for Nuclear Research, Geneva (Switzerland)); Taylor, T.R. (Northeastern Univ., Boston, MA (USA))

    1990-08-16

    Target-space duality is incorporated in previously proposed effective actions describing non-perturbative supersymmetry breaking in string theory via gaugino condensation. Duality-preserving vacua with broken supersymmetry and fixed unified coupling constant do generically occur. The question of the vanishing of the cosmological constant is also briefly addressed. (orig.).

  20. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  1. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  2. Non-perturbative renormalization of the axial current in $N_f = 3$ lattice QCD with Wilson fermions and tree-level improved gauge action

    CERN Document Server

    Bulava, John; Heitger, Jochen; Wittemeier, Christian

    2016-01-01

    We non-perturbatively determine the renormalization factor of the axial vector current in lattice QCD with $N_f=3$ flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity and it is imposed among Schr\\"{o}dinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of $\\approx 0.09$ fm and below. An interpolation formula for $Z_A(g_0^2)$, smoothly connecting the non-perturbative values to the 1-loop expression, is provided together with our final results.

  3. Carbon-deuterium bonds as non-perturbative infrared probes of protein dynamics, electrostatics, heterogeneity, and folding.

    Science.gov (United States)

    Zimmermann, Jörg; Romesberg, Floyd E

    2014-01-01

    Vibrational spectroscopy is uniquely able to characterize protein dynamics and microenvironmental heterogeneity because it possesses an inherently high temporal resolution and employs probes of ultimately high structural resolution-the bonds themselves. The use of carbon-deuterium (C-D) bonds as vibrational labels circumvents the spectral congestion that otherwise precludes the use of vibrational spectroscopy to proteins and makes the observation of single vibrations within a protein possible while being wholly non-perturbative. Thus, C-D probes can be used to site-specifically characterize conformational heterogeneity and thermodynamic stability. C-D probes are also uniquely useful in characterizing the electrostatic microenvironment experienced by a specific residue side chain or backbone due to its effect on the C-D absorption frequency. In this chapter we describe the experimental procedures required to use C-D bonds and FT IR spectroscopy to characterize protein dynamics, structural and electrostatic heterogeneity, ligand binding, and folding.

  4. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  5. Perturbative and non-perturbative aspects of heavy-quark fragmentation

    CERN Document Server

    Gardi, E; Gardi, Einan; Cacciari, Matteo

    2004-01-01

    We describe a new approach to heavy-quark fragmentation which is based on a resummed perturbative calculation and parametrization of power corrections, concentrating on the z -> 1 limit, where the heavy meson carries a large fraction of the momentum of the initial quark. It is shown that the leading power corrections in this region are controlled by the scale m(1-z). Renormalon analysis is then used to extend the perturbative treatment of soft and collinear radiation to the non-perturbative regime. Theoretical predictions are confronted with data on B-meson production in e+e- annihilation.

  6. Non-perturbative scalar potential inspired by type IIA strings on rigid CY

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Sergei [Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier,F-34095, Montpellier (France); Ketov, Sergei V. [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo,Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University,30 Lenin Ave., Tomsk 634050 (Russian Federation); Wakimoto, Yuki [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan)

    2016-11-10

    Motivated by a class of flux compactifications of type IIA strings on rigid Calabi-Yau manifolds, preserving N=2 local supersymmetry in four dimensions, we derive a non-perturbative potential of all scalar fields from the exact D-instanton corrected metric on the hypermultiplet moduli space. Applying this potential to moduli stabilization, we find a discrete set of exact vacua for axions. At these critical points, the stability problem is decoupled into two subspaces spanned by the axions and the other fields (dilaton and Kähler moduli), respectively. Whereas the stability of the axions is easily achieved, numerical analysis shows instabilities in the second subspace.

  7. MEDIA EFFECTS THEORIES

    Directory of Open Access Journals (Sweden)

    Elena MAFTEI-GOLOPENȚIA

    2015-11-01

    Full Text Available The complexity of the world and the various existing points of view play sometimes the role of barriers to understanding the events that take place around us or in which we are directly involved, that we may find overwhelming sometimes. In this context, we have no choice but to find instruments that can help us find a meaning beyond ”raw” information. Frames and other media effects theories can be this instrument, that can help us understand ”the stories” about the surrounding world. Frames are useful to us because our mind can’t simply process each new situation from scratch. This paper aims mainly at analysing frames, their function, their types, their roles and the levels at which they manifest themselves. It also represents the theoretical background of a future case study about the way in which the academic world is symbolically seen by the press.

  8. Nucleon structure in terms of OPE with non-perturbative Wilson coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Cundy, N.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division, Dept. of Mathematical Sciences

    2008-10-15

    Lattice calculations could boost our understanding of Deep Inelastic Scattering by evaluating moments of the Nucleon Structure Functions. To this end we study the product of electromagnetic currents between quark states. The Operator Product Expansion (OPE) decomposes it into matrix elements of local operators (depending on the quark momenta) and Wilson coefficients (as functions of the larger photon momenta). For consistency with the matrix elements, we evaluate a set of Wilson coefficients non-perturbatively, based on propagators for numerous momentum sources, on a 24{sup 3} x 48 lattice. The use of overlap quarks suppresses unwanted operator mixing and lattice artifacts. Results for the leading Wilson coefficients are extracted by means of Singular Value Decomposition. (orig.)

  9. Non-Perturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2002-03-19

    We here use our non-perturbative, cluster decomposable relativistic scattering formalism to calculate photon-spinor scattering, including the related particle-antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it unitary two-particle amplitude for quantum-particle scattering. We verify that we have done this correctly by showing that our calculated photon-spinor amplitude reduces in the weak coupling limit to the usual lowest order, manifestly covariant (QED) result with the correct normalization. That we are able to successfully do this directly demonstrates that renormalizability need not be a fundamental requirement for all physically viable models.

  10. Non-perturbative running of quark masses in three-flavour QCD

    CERN Document Server

    Campos, Isabel; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios

    2016-01-01

    We present our preliminary results for the computation of the non-perturbative running of renormalized quark masses in $N_f = 3$ QCD, between the electroweak and hadronic scales, using standard finite-size scaling techniques. The computation is carried out to very high precision, using massless $\\mathcal{O}(a)$-improved Wilson quarks. Following the strategy adopted by the ALPHA Collaboration for the running coupling, different schemes are used above and below a scale $\\mu_0 \\sim m_b$, which differ by using either the Schr\\"odinger Functional or Gradient Flow renormalized coupling. We discuss our results for the running in both regions, and the procedure to match the two schemes.

  11. Media Effects: Theory and Research.

    Science.gov (United States)

    Valkenburg, Patti M; Peter, Jochen; Walther, Joseph B

    2016-01-01

    This review analyzes trends and commonalities among prominent theories of media effects. On the basis of exemplary meta-analyses of media effects and bibliometric studies of well-cited theories, we identify and discuss five features of media effects theories as well as their empirical support. Each of these features specifies the conditions under which media may produce effects on certain types of individuals. Our review ends with a discussion of media effects in newer media environments. This includes theories of computer-mediated communication, the development of which appears to share a similar pattern of reformulation from unidirectional, receiver-oriented views, to theories that recognize the transactional nature of communication. We conclude by outlining challenges and promising avenues for future research.

  12. Non-perturbative relativistic guiding center transformation: exact magnetic moment and the gyro-phase proposed as the Kaluza-Klein 5^th dimension

    CERN Document Server

    Di Troia, Claudio

    2016-01-01

    The non perturbative guiding center transformation [Di Troia C., Phys. Plasmas 22, 042103 (2015)] is extended to the relativistic regime. The single particle dynamic is described in the Minkowski flat space-time. The main solutions are obtained in covariant form: the gyrating particle solutions and the guiding particle solution, both in gyro-kinetic as in MHD orderings. It is shown the relevance of the ideal Ohm's law in the context of the guiding center transformation. Moreover, it is also considered the presence of a gravitational field. The way to introduce the gravitational field is original and based on the Einstein conjecture on the feasibility to extend the general relativity theory to include electromagnetism. In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness of the conservation of magnetic moment, or the fact that the gyro-phase is treated as the non observable fifth dimension of the Kaluza-Klein model.

  13. Theory of Effectiveness Measurement

    Science.gov (United States)

    2006-09-01

    1997. Geisler, Eliezer, The Metrics of Science and Technology, Quorum Books, Westport, CT, 2000. Geller, Daniel S. and J. David Singer , Nations...Perret, Geoffrey, There’s a War to Be Won: The United States Army in World War II, Random House, New York, 1991. Pfanzagl, Johann , Theory of

  14. Turbulent mixing of a critical fluid: The non-perturbative renormalization

    Directory of Open Access Journals (Sweden)

    M. Hnatič

    2018-01-01

    Full Text Available Non-perturbative Renormalization Group (NPRG technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi〉∼(Pji⊥+αPji∥/kd+ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow, but there is a new nonequilibrium regime (universality class associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ of possible scaling regimes in the system. The physical point d=3, ζ=4/3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α≲2.26. Otherwise, in the case of “strong compressibility” α≳2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.

  15. Renormalization and effective field theory

    CERN Document Server

    Costello, Kevin

    2011-01-01

    This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...

  16. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  17. Transition Form Factors: A Unique Opportunity to Connect Non-Perturbative Strong Interactions to QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gothe, Ralf W. [University of South Carolina, Columbia, SC (United States)

    2014-01-01

    Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from explored — where meson-cloud degrees of freedom contribute substantially to the baryon structure — to still unexplored distance scales — where quark degrees of freedom dominate and the transition from dressed to current quarks occurs — we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that then can be compared to state-of-the-art models and QCD-based calculations. Recent results will demonstrate the status of the analysis and of their theoretical descriptions, and an experimental and theoretical outlook will highlight what shall and may be achieved in the new era of the 12-GeV upgraded transition form factor program.

  18. Non-perturbative renormalization of the lattice heavy quark classical velocity

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, J.E. [Department of Energy, Washington, DC (United States). Div. of High Energy Physics; Ogilvie, M.C. [Washington Univ., St. Louis, MO (United States). Dept. of Physics

    1996-02-01

    We discuss the renormalization of the lattice formulation of the heavy quark effective theory (LHQET). In addition to wave function and composite operator renormalizations, on the lattice the classical velocity is also renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. We present results of a new, direct lattice simulation of this finite renormalization, and compare the results to the perturbative (one loop) result. The simulation results are obtained with the use of a variationally optimized heavy-light meson operator, using an ensemble of lattices provided by the Fermilab ACP-MAPS collaboration. (orig.).

  19. Non-Perturbative Renormalization of the Lattice Heavy Quark Classical Velocity

    Science.gov (United States)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1997-02-01

    We discuss the renormalization of the lattice formulation of the Heavy Quark Effective Theory (LHQET). In addition to wave function and composite operator renormalizations, on the lattice the classical velocity is also renormalized. The origin of this renormalization is the reduction of Lorentz (or O(4)) invariance to (hyper)cubic invariance. We present results of a new, direct lattice simulation of this finite renormalization, and compare the results to the perturbative (one loop) result. The simulation results are obtained with the use of a variationally optimized heavy-light meson operator, using an ensemble of lattices provided by the Fermilab ACP-MAPS collaboration.

  20. Soft-Collinear Effective Theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will review the basic principles about Soft-Collinear Effective Theory. I will focus on how it can be used to understand factorization properties and how one can resum large logarithms arising from infrared physics using the renormalization group evolution.

  1. Scalar fluctuations of the scalar metric during inflation from a non-perturbative 5D large-scale repulsive gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Madriz Aguilar, Jose Edgar; Reyes, Luz M.; Moreno, Claudia [Universidad de Guadalajara (UdG), Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Guadalajara, Jalisco (Mexico); Bellini, Mauricio [Universidad Nacional de Mar del Plata (UNMdP), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)

    2013-10-15

    We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion. (orig.)

  2. D-instanton and polyinstanton effects from type I' D0-brane loops

    CERN Document Server

    Petersson, Christoffer; Uranga, Angel M

    2010-01-01

    We study non-perturbative D(-1)-instanton corrections to quartic gauge and curvature couplings in 8d type IIB orientifolds, in terms of a one-loop computation of BPS D0-branes in T-dual type I' models. The complete perturbative and non-perturbative results are determined by the BPS multiplicities of perturbative open strings and D0-brane bound states in the 9d type I' theory. Its modular properties admit a geometric interpretation by lifting to Horava-Witten theory. We use the type I' viewpoint to motivate a proper interpretation of 8d and 4d polyinstanton effects, consistent with heterotic - type II orientifold duality.

  3. Localization at large N in Chern-Simons-matter theories

    Science.gov (United States)

    Mariño, Marcos

    2017-11-01

    We review some exact results for the matrix models appearing in the localization of Chern-Simons-matter theories, focusing on the structure of non-perturbative effects and on the M-theory expansion of ABJM theory. We also summarize some of the results obtained for other Chern-Simons-matter theories, as well as recent applications to topological strings. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed Pestun and Zabzine) which contains 17 chapters available at [1].

  4. Non-perturbative improvement of the axial current with three dynamical flavors and the Iwasaki gauge action

    CERN Document Server

    Kaneko, Takashi; Della Morte, M; Hashimoto, S; Hoffmann, R; Sommer, R

    2007-01-01

    We perform a non-perturbative determination of the improvement coefficient c_A to remove O(a) discretization errors in the axial vector current in three-flavor lattice QCD with the Iwasaki gauge action and the standard O$(a)$-improved Wilson quark action. An improvement condition with a good sensitivity to c_A is imposed at constant physics. Combining our results with the perturbative expansion, c_A is now known rather precisely for 1/a \\gtrsim 1.6 GeV.

  5. The gravity dual of the non-perturbative V = 2 supersymmetric Yang ...

    Indian Academy of Sciences (India)

    -Mills theory. sATCHIDANANDA NAIK. Harish-Chandra Research Institute, Jhusi, Allahabad 211 019, India. Abstract. The anomalous Ward identity is derived for V = 2 SUSY Yang-Mills theo- ries, which is resulted out of wrapping of D5 branes ...

  6. Wilsonian effective action of superstring theory

    Science.gov (United States)

    Sen, Ashoke

    2017-01-01

    By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.

  7. Lattice gauge theories

    Science.gov (United States)

    Weisz, Peter; Majumdar, Pushan

    2012-03-01

    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  8. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Dominik

    2010-11-17

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  9. Effective kinetic theory for high temperature gauge theories

    Science.gov (United States)

    Arnold, Peter B.; Moore, Guy D.; Yaffe, Laurence G.

    2003-01-01

    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature T) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. The appropriate Boltzmann equations depend on effective scattering rates for various types of collisions that can occur in the plasma. The resulting effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations. This includes transport coefficients (viscosities and diffusion constants) and energy loss rates. In this paper, we show how to formulate effective Boltzmann equations which will be adequate to compute such observables to leading order in the running coupling g(T) of high-temperature gauge theories [and all orders in 1/log g(T)-1]. As previously proposed in the literature, a leading-order treatment requires including both 2leftrightarrow2 particle scattering processes as well as effective ``1leftrightarrow2'' collinear splitting processes in the Boltzmann equations. The latter account for nearly collinear bremsstrahlung and pair production/annihilation processes which take place in the presence of fluctuations in the background gauge field. Our effective kinetic theory is applicable not only to near-equilibrium systems (relevant for the calculation of transport coefficients), but also to highly non-equilibrium situations, provided some simple conditions on distribution functions are satisfied.

  10. The two-component non-perturbative pomeron and the G-Universality

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Basarab E-mail: nicolesc@in2p3.fr

    2001-04-01

    In this communication we present a generalization of the Donnachie-Landshoff model inspired by the recent discovery of a 2-component Pomeron in LLA-QCD by Bartels, Lipatov and Vacca. In particular, we explore a new property, not present in the usual Regge theory - the G-Universality - which signifies the independence of one of the Pomeron components on the nature of the initial and final hadrons. The best description of the p-barp, pp, {pi}{sup {+-}}p, K{sup {+-}}p, {gamma}{gamma} and {gamma}p forward data is obtained when G-universality is imposed. Moreover, the ln{sup 2}s behaviour of the hadron amplitude, first established by Heisenberg, is clearly favoured by the data.

  11. Domain Wall Fermion Study Of Scaling In Non-perturbative Renormalization Of Quark Bilinears And B(k)

    CERN Document Server

    Zhestkov, Y G

    2001-01-01

    We develop a non-perturbative scaling technique that connects the results of simulations at different values of coupling β to obtain the renormalization coefficients of scalar and pseudoscalar operators, local vector and axial currents, conserved vector and axial currents over the range of energy scales from 1 to 10 GeV. This technique is then applied to discuss the renormalization of the physically important operator ODS=2LL , central to our understanding of CP violation. We use the domain wall fermion formulation in the quenched approximation at a series of three values of β, 6.0, 6.45, and 7.05, corresponding to lattice spacing scaling by factors of two. The lattice volumes used in the series of simulations are 84 and 164 with the extent in the fifth dimension Ls = 14.

  12. Effective medium theory principles and applications

    CERN Document Server

    Choy, Tuck C

    2015-01-01

    Effective medium theory dates back to the early days of the theory of electricity. Faraday in 1837 proposed one of the earliest models for a composite metal-insulator dielectric and around 1870 Maxwell and later Garnett (1904) developed models to describe a composite or mixed material medium. The subject has been developed considerably since and while the results are useful for predicting materials performance, the theory can also be used in a wide range of problems in physics and materials engineering. This book develops the topic of effective medium theory by bringing together the essentials of both the static and the dynamical theory. Electromagnetic systems are thoroughly dealt with, as well as related areas such as the CPA theory of alloys, liquids, the density functional theory etc., with applications to ultrasonics, hydrodynamics, superconductors, porous media and others, where the unifying aspects of the effective medium concept are emphasized. In this new second edition two further chapters have been...

  13. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    Science.gov (United States)

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  14. E{sub 6} Yukawa couplings in F-theory as D-brane instanton effects

    Energy Technology Data Exchange (ETDEWEB)

    Collinucci, Andrés [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); García-Etxebarria, Iñaki [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany)

    2017-03-29

    At weak coupling the neighborhood of a E{sub 6} Yukawa point in SU(5) GUT F-theory models is described by a non-resolvable orientifold of the conifold. We explicitly show, first directly in IIB and then via a mirror symmetry argument, that in this limit the E{sub 6} Yukawa coupling is better described as coming from the non-perturbative contribution of a euclidean D1-brane wrapping the non-resolvable cycle. We also discuss how the M-theory description interpolates between the weak and strong coupling viewpoints.

  15. 3D-localized, high-resolution, non-perturbing, vectorizable magnetic field diagnostic using two-photon Doppler-free laser-induced fluorescence

    Science.gov (United States)

    Yoon, Young Dae; Bellan, Paul M.

    2017-10-01

    A detailed description of a new plasma magnetic field diagnostic using Doppler-free two-photon laser-induced fluorescence is presented. The diagnostic is based on a method previously developed in the context of rubidium vapor experiments. Two counter-propagating diode laser beams at 394nm are directed into an argon plasma to excite Ar-II ions from the metastable level 3s2 3p4 4 p4D7 / 2 ⟶ 3s2 3p4 4 p4D5/ 2 o ⟶ 3s2 3p4 5 s2P3 / 2 . The levels involve two similar (394.43nm and 393.31nm) transition wavelengths, so the two counter-propagating beams effectively cancel out the Doppler effect. The excited ions then decay to the 3s2 3p4 4 p2D5/ 2 o level, emitting a 410.38nm line which is to be detected by a photomultiplier tube. The Zeeman splitting - normally unobservable because of the large Doppler broadening - of the resultant fluorescence is then to be analyzed, yielding the magnetic field of the particular location. This method is expected to provide 3D localized, non-perturbing vector measurements of the magnetic field. The resolution of the diagnostic is only limited by the cross-section of the laser beam, which can easily be as small as hundreds of microns wide. An experimental implementation is currently in progress.

  16. Leading order relativistic hyperon-nucleon interactions in chiral effective field theory

    Science.gov (United States)

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei

    2018-01-01

    We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness S=‑1 {{\\varLambda }}N-{{\\varSigma }}N interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions. A fit to the 36 hyperon-nucleon scattering data points yields {χ }2≃ 16, which is comparable with the sophisticated phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a simultaneous description of the nucleon-nucleon phase shifts and strangeness S=‑1 hyperon-nucleon scattering data at leading order. Supported by the National Natural Science Foundation of China (11375024, 11522539, 11375120), the China Postdoctoral Science Foundation (2016M600845, 2017T100008) and the Fundamental Research Funds for the Central Universities

  17. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    Science.gov (United States)

    Burgess, C. P.; Hayman, Peter; Williams, M.; Zalavári, László

    2017-04-01

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential's singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original prob-lem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  18. Playing with QCD I: effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  19. Non-perturbative treatment of the linear covariant gauges by taking into account the Gribov copies

    Energy Technology Data Exchange (ETDEWEB)

    Capri, M.A.L.; Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Pereira, A.D.; Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)

    2015-10-15

    In this paper, a proposal for the restriction of the Euclidean functional integral to a region free from infinitesimal Gribov copies in linear covariant gauges is discussed. An effective action, akin to the Gribov-Zwanziger action of the Landau gauge, is obtained which implements the aforementioned restriction. Although originally non-local, this action can be cast in local form by introducing auxiliary fields. As in the case of the Landau gauge, dimension two condensates are generated at the quantum level, giving rise to a refinement of the action which is employed to obtain the tree-level gluon propagator in linear covariant gauges. A comparison of our results with those available from numerical lattice simulations is also provided. (orig.)

  20. A non-perturbative study of the evolution of cosmic magnetised sources

    CERN Document Server

    Gaspar, I Delgado; Piccinelli, G; Sussman, Roberto A

    2015-01-01

    We undertake a hydrodynamical study of a magnetised cosmic fluid between the end of the leptonic era and the beginning of the radiation-dominated epoch. We assume this fluid to be the source of a Bianchi I model and to be a mixture of tightly coupled primordial radiation, neutrinos, baryons, electrons and positrons, together with a gas of already decoupled dark matter WIMPS and an already existing magnetic field. The interaction of this field with the tightly coupled gas mixture is described by suitable equations of state that are appropriate for the particle species of the mixture. Comparison of our results with those of previous studies based on an FLRW framework reveals that the effects of the anisotropy of the magnetic field on the evolution of the main thermodynamical variables are negligible, thus validating these studies, though subtle differences are found in the evolution of the magnetic field itself. For larger field intensities we find quantitative and qualitative differences from the FLRW based an...

  1. Effective Lagrangians and chiral random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, M.A.; Verbaarschot, J.J.M. [Department of Physics, State University of New York, Stony Brook, New York 11794 (United States)

    1995-08-15

    Recently, sum rules were derived for the inverse eigenvalues of the Dirac operator. They were obtained in two different ways: (i) starting from the low-energy effective Lagrangian and (ii) starting from a random matrix theory with the symmetries of the Dirac operator. This suggests that the effective theory can be obtained directly from the random matrix theory. Previously, this was shown for three or more colors with fundamental fermions. In this paper we construct the effective theory from a random matrix theory for two colors in the fundamental representation and for an arbitrary number of colors in the adjoint representation. We construct a fermionic partition function for Majorana fermions in Euclidean spacetime. Their reality condition is formulated in terms of complex conjugation of the second kind.

  2. THEORIES OF MANAGEMENT: TOWARDS AN EFFECTIVE ...

    African Journals Online (AJOL)

    Mitch

    This paper then tries to explore the theories/principles of management in the light of effective theatre .... The classical theory recognises the essence of workers or labour force in an organisation and advocates the welfare .... There must be a scalar chain of authority and communication ranging from the highest to the lowest ...

  3. Exploring CRM effectiveness: an institutional theory perspective

    NARCIS (Netherlands)

    B. Hillebrand (Bas); J.J. Nijholt (Jurriaan); E.J. Nijssen (Edwin)

    2011-01-01

    textabstractThis study identifies the potential contribution that institutional theory can make to understanding the success of marketing practices. Based on institutional theory, we argue that the effectiveness of marketing practices decreases when firms are motivated to adopt such practices under

  4. c-function and central charge of the sine-Gordon model from the non-perturbative renormalization group flow

    Directory of Open Access Journals (Sweden)

    V. Bacsó

    2015-12-01

    Full Text Available In this paper we study the c-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the c-function along trajectories of the non-perturbative renormalization group flow gives access to the central charges of the model in the fixed points. The results at vanishing frequency β2, where the periodicity does not play a role, are retrieved and the independence on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge obtained integrating the trajectories starting from the repulsive low-frequencies fixed points (β2<8π to the infra-red limit is in good quantitative agreement with the expected Δc=1 result. The behavior of the c-function in the other parts of the flow diagram is also discussed. Finally, we point out that including also higher harmonics in the renormalization group treatment at the level of local potential approximation is not sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the wave-function renormalization (i.e. going beyond local potential approximation is crucial to get sensible results even when a single frequency is used.

  5. A new approach to analytic, non-perturbative, gauge-invariant QCD renormalization is described, with applications to high energy elastic pp-scattering.

    Directory of Open Access Journals (Sweden)

    Fried H. M.

    2016-01-01

    Full Text Available A new non-perturbative, gauge-invariant model QCD renormalization is applied to high energy elastic pp-scattering. The differential cross-section deduced from this model displays a diffraction dip that resembles those of experiments. Comparison with ISR and LHC data is currently underway.

  6. The Beauty of Lattice Perturbation Theory: the Role of Lattice Perturbation Theory in B Physics

    Science.gov (United States)

    Monahan, C. J.

    2012-12-01

    As new experimental data arrive from the LHC the prospect of indirectly detecting new physics through precision tests of the Standard Model grows more exciting. Precise experimental and theoretical inputs are required to test the unitarity of the CKM matrix and to search for new physics effects in rare decays. Lattice QCD calculations of non-perturbative inputs have reached a precision at the level of a few percent; in many cases aided by the use of lattice perturbation theory. This review examines the role of lattice perturbation theory in B physics calculations on the lattice in the context of two questions: how is lattice perturbation theory used in the different heavy quark formalisms implemented by the major lattice collaborations? And what role does lattice perturbation theory play in determinations of non-perturbative contributions to the physical processes at the heart of the search for new physics? Framing and addressing these questions reveals that lattice perturbation theory is a tool with a spectrum of applications in lattice B physics.

  7. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  8. Effective field theory – concepts and applications

    CERN Document Server

    Beneke, M

    2010-01-01

    Effective field theory provides the modern perspective on renormalization theory and explains why we can make meaningful and precise predictions without knowing the Theory of Everything. By separating physical effects on different distance scales it is also an efficient tool to deal with the strong interaction in various regimes and to sum large logarithms in perturbation theory. The two lectures given at the school provide an introduction and cover mostly textbook material. The write-up below is therefore only meant as a brief reminder of the topics discussed, and provides references to textbooks or other lecture notes for further reading. Further details can also be found in the slides available on-line.

  9. Supersymmetry and Duality in Field Theory and String Theory

    CERN Document Server

    Kiritsis, Elias B

    1999-01-01

    This is a set of lectures given at the 99' Cargese Summer School, "Particle Physics : Ideas and Recent Developments". They contain a pedestrian exposition of recent theoretical progress in non-perturbative field theory and string theory based on ideas of duality.

  10. Implicit leadership theories : think leader, think effective?

    OpenAIRE

    Schyns, B.; Schilling, J

    2011-01-01

    In general, although research into leadership acknowledges negative aspects of leadership, research into implicit leadership theories lags behind in this respect. Most implicit leadership theories research implies that the image of a leader in general reflects an effective leader. However, recent results in leadership research as well as headlines and reports in the popular press cast doubt on this assumption. This article reports a qualitative study, focusing on general implicit leadership t...

  11. Globalisation theories and their effect on education

    OpenAIRE

    Parjanadze, Nikoloz

    2009-01-01

    Globalisation is a relatively new concept in social sciences, especially in educational research and there is no agreement on its essence. The article presents three stances within globalisation theory – the hyperglobalist , the sceptical and the transformational, which reflect disputes concerning new global trends. The discussion highlights social, economic and political aspects globalization theory deals with. The article focuses on the effects of globalisation over education and the dema...

  12. The Faraday effect revisited: General theory

    OpenAIRE

    Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm

    2005-01-01

    This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of th...

  13. A periodic table of effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.

  14. Effective field theory of broken spatial diffeomorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunshan [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Labun, Lance Z. [Department of Physics, University of Texas,2515 Speedway, MS #C1510, Austin, TX 78712-1068 (United States); Department of Physics, National Taiwan University,No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University,No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2016-03-17

    We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constant for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. We discuss several examples relevant to theories of massive gravity.

  15. Effective field theory for triaxially deformed nuclei

    Science.gov (United States)

    Chen, Q. B.; Kaiser, N.; Meißner, Ulf-G.; Meng, J.

    2017-10-01

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.

  16. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  17. Scalar fluctuations of the scalar metric during inflation from a non-perturbative 5D large-scale repulsive gravity model

    OpenAIRE

    Madriz Aguilar. Jose Edgar; Reyes, Luz Marina; Moreno, Claudia; Bellini, Mauricio

    2013-01-01

    We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of General Relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are the dominant during the inflationary phase of the universe. The resulting metric on this limit case is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations on an ...

  18. Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Thomas Jefferson National Accelerator Facility, Theory Center, Newport News, VA (United States); Du, Dechuan; Laehde, Timo A.; Li, Ning; Lu, Bing-Nan; Luu, Thomas [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Klein, Nico [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany)

    2017-05-15

    We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleon force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N3LO) contributions are included. We stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing. (orig.)

  19. Quantum Theory of the Doppler Effect

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Quantum Theory of the Doppler Effect. G S Ranganath. Classroom Volume 1 Issue 10 October 1996 pp 76-78. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/10/0076-0078 ...

  20. A Guide to Effective School Leadership Theories

    Science.gov (United States)

    Lynch, Matthew

    2012-01-01

    Educational administrators know that leadership requires hundreds of judgments each day that require a sensitivity and understanding of various leadership strategies. Bridging the gap between the academic and practical world, "A Guide to Effective School Leadership Theories" provides an exploration of ten dominant leadership strategies to give…

  1. Effective field theory of dissipative fluids

    Science.gov (United States)

    Crossley, Michael; Glorioso, Paolo; Liu, Hong

    2017-09-01

    We develop an effective field theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z 2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.

  2. Introduction to soft-collinear effective theory

    CERN Document Server

    Becher, Thomas; Ferroglia, Andrea

    2015-01-01

    Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC.  This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-spe...

  3. Weak gravity conjecture and effective field theory

    Science.gov (United States)

    Saraswat, Prashant

    2017-01-01

    The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.

  4. Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high temperature

    Science.gov (United States)

    Vuorinen, A.; Yaffe, Laurence G.

    2006-07-01

    A three-dimensional effective theory for high temperature SU(3) gauge theory, which maintains the Z(3) center symmetry of the full theory, is constructed. Such a Z(3) invariant effective theory should be applicable to a wider temperature range than the usual effective theory, known as EQCD, which fails to respect the center symmetry. This center-symmetric effective theory can reproduce domain wall and phase transition properties that are not accessible in EQCD. After identifying a convenient class of Z(3) invariant effective theories, we constrain the coefficients of the various terms in the Lagrangian using leading-order matching to EQCD at high temperature, plus matching of domain wall properties in the full theory. We sketch the expected structure of the phase diagram of the effective theory and briefly discuss the prospects of numerical simulations and the addition of quarks.

  5. Effective Field Theory with Two Higgs Doublets

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2016-01-01

    In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.

  6. D-instanton probe and the enhançon mechanism from a quiver gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Eduardo; Moskovic, Micha [Service de Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus de la Plaine, CP 231, B-1050 Bruxelles (Belgium)

    2014-04-24

    We study the N=2 field theory realized by D3-branes on the ℂ{sup 2}/ℤ{sub 2} orbifold. The dual supergravity solution exhibits a repulson singularity cured by the enhançon mechanism. By comparing the open and closed string descriptions of a probe D-instanton, we can compute the exact non-perturbative profile of the supergravity twisted field, which determines the supergravity background. We then show how the non-trivial IR physics of the field theory translates into the stringy effects that give rise to the enhançon mechanism and the associated excision procedure.

  7. The superconducting state of Holstein model using dynamical mean field theory

    Science.gov (United States)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon

    To enhance the superconducting temperature within the conventional superconductors, we solve the Holstein model, where conduction electrons are coupled to some boson field, using dynamical mean field theory (DMFT) with the configuration interaction impurity solver. Thanks to the non-perturbative nature of DMFT, we determine the zero-temperature order parameter for a wide range of boson energies to find the optimal range for superconductivity. This is beyond the Migdal-Eliashberg theory where the boson energy is assumed to be small compared to the Fermi energy. The effect of Hubbard on-site repulsion will be also discussed.

  8. Effective Field Theory Approaches To B Meson Decay

    CERN Document Server

    Williamson, A R

    2005-01-01

    In this thesis we look at a variety of B meson decays. These decays are important for measuring the CKM matrix elements and over-constraining the standard model. We consider two categories of decays: inclusive semi-leptonic and exclusive non-leptonic. Inclusive semi-leptonic B¯ → X uℓνℓ decays are the theoretically cleanest ways to extract the CKM matrix element | Vub|. A large B¯ → Xuℓν background reduces the available phase space, leaving the decay rate sensitive to the non-perturbative shape function of the B meson. We study the O(Λ QCD/mb) corrections to the hadronic invariant mass spectrum dΓ/dsH in B¯ → Xuℓν ℓ decays, and discuss the implications for the extraction of |Vub|. Using simple models for the subleading shape functions, the effects of subleading operators are estimated to be at the few percent level for experimentally relevant cuts. The subleading correction...

  9. Consistency relations in effective field theory

    Science.gov (United States)

    Munshi, Dipak; Regan, Donough

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity bar theta. Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k gtrsim 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k, can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  10. Effective theory for electroweak doublet dark matter

    Science.gov (United States)

    Dedes, A.; Karamitros, D.; Spanos, V. C.

    2016-11-01

    We perform a detailed study of an effective field theory which includes the standard model particle content extended by a pair of Weyl fermionic SU(2) doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for dark matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable d =4 operators, and nonrenormalizable d =5 operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of dark matter. We find that a weakly interacting dark matter particle with a mass nearby the electroweak scale, and thus observable at the LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  11. Effective Field Theory of Majorana Dark Matter

    OpenAIRE

    Han, Huayong; WU, HONGYAN; Zheng, Sibo

    2017-01-01

    Thermal Majorana dark matter is explored from the viewpoint of effective field theory. Completely analytic result for dark matter annihilation into standard model background is derived in order to account relic density. The parameter space subject to the latest LUX, PandaX-II and Xenon-1T limits is shown in a model-independent way. For illustration, applications to singlet-doublet and neutralino dark matter are work out.

  12. Maxwell-Garnett effective medium theory: Quantum nonlocal effects

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of)

    2015-04-15

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  13. Analyzing B{sub s} - anti B{sub s} mixing. Non-perturbative contributions to bag parameters from sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mannel, T. [Siegen Univ. (Germany). FB 7, Theoretische Physik; Pecjak, B.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pivovarov, A.A. [Siegen Univ. (Germany). FB 7, Theoretische Physik]|[Russian Academy of Sciecnes, Moscow (Russian Federation). Inst. for Nuclear Research

    2007-03-15

    We use QCD sum rules to compute matrix elements of the {delta}B=2 operators appearing in the heavy-quark expansion of the width difference of the B{sub s} mass eigenstates. Our analysis includes the leading-order operators Q and Q{sub S}, as well as the subleading operators R{sub 2} and R{sub 3}, which appear at next-to-leading order in the 1/m{sub b} expansion. We conclude that the violation of the factorization approximation for these matrix elements due to non-perturbative vacuum condensates is as low as 1-2%. (orig.)

  14. Effective Meson Field Theory from QCD

    OpenAIRE

    Hsieh, Ron-Chou

    2003-01-01

    We give a simple and straightforward procedure of how to construct an effective meson Lagrangian from QCD Lagrangian. We integrate the methods of Gasser, Leutwyler, Alkofer and Reinhardt and use the derivative expansion scheme to derive the low energy effective Lagrangian for meson fields to $O(p^4)$. In this paper, why the meson particle can be treated as the goldstone mode is very clear. In our calculation the result in $O(p^2)$ is the same as in the chiral perturbation theory, but the resu...

  15. The Faraday effect revisited General theory

    CERN Document Server

    Cornean, H D; Pedersen, T G

    2005-01-01

    This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field $B$. Then the linear term in $B$ of this expansion is written down in terms of the zero magnetic field Green function and the zero field current operator. In the periodic case, the linear term in $B$ of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed, in contrast to earlier work.

  16. Diagrammatic theory of effective hydraulic conductivity

    Science.gov (United States)

    Hristopulos, Dionissios T.; Christakos, George

    1997-10-01

    This work presents a stochastic diagrammatic theory for the calculation of the effective hydraulic conductivity of heterogeneous media. The theory is based on the mean-flux series expansion of a log-normal hydraulic conductivity medium in terms of diagrammatic representations and leads to certain general results for the effective hydraulic conductivity of three-dimensional media. A selective summation technique is used to improve low-order perturbation analysis by evaluating an infinite set of diagrammatic terms with a specific topological structure that dominates the perturbation series. For stochastically isotropic media the selective summation yeilds the anticipated exponential expression for the effective hydraulic conductivity. This expression is extended to stochastically anisotropic media. It is also shown that in the case of non homogeneous media the uniform effective hydraulic conductivity is replaced by a non-local tensor kernel, for which general diagrammatic expressions are obtained. The non-local kernel leads to the standard exponential behavior for the effective hydraulic conductivity at the homogeneous limit.

  17. The Exact Renormalization Group -- renormalization theory revisited --

    OpenAIRE

    Sonoda, Hidenori

    2007-01-01

    We overview the entire renormalization theory, both perturbative and non-perturbative, by the method of the exact renormalization group (ERG). We emphasize particularly on the perturbative application of the ERG to the phi4 theory and QED in the four dimensional euclidean space.

  18. Effective theory approach to direct detection of dark matter

    OpenAIRE

    Hisano, Junji

    2017-01-01

    An effective field theory approach is presented for evaluation of the dark matter direct detection rate in this lecture note. This is prepared for the Les Houches Summer School Effective Field Theory in Particle Physics and Cosmology, July 2017.

  19. A Geometrical View of Higgs Effective Theory

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, W_L scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, with the curvature a signal of the scale of new physics.

  20. The Effective Field Theory of nonsingular cosmology

    CERN Document Server

    Cai, Yong; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song

    2016-01-01

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory(EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  1. Effective Higgs theories in supersymmetric grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The effective Higgs theories at the TeV scale in supersymmetric SU(5) grand unification models are systematically derived. Restricted to extensions on 5{sub H} containing the Higgs sector we show that only two types of real (vector-like) models and one type of chiral model are found to be consistent with perturbative grand unification. While the chiral model has been excluded by the LHC data, the fate of perturbative unification will be uniquely determined by the two classes of vector-like models. (orig.)

  2. Effective field theory analysis of Higgs naturalness

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)

    2015-07-20

    Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.

  3. The effective theory of Borel equivalence relations

    DEFF Research Database (Denmark)

    Fokina, E.B.; Friedman, S.-D.; Törnquist, Asger Dag

    2010-01-01

    equality on ω is above equality on P (ω), the power set of ω, and any Borel equivalence relation strictly above equality on the reals is above equality modulo finite on P (ω). In this article we examine the effective content of these and related results by studying effectively Borel equivalence relations......The study of Borel equivalence relations under Borel reducibility has developed into an important area of descriptive set theory. The dichotomies of Silver [20] and Harrington, Kechris and Louveau [6] show that with respect to Borel reducibility, any Borel equivalence relation strictly above...... under effectively Borel reducibility. The resulting structure is complex, even for equivalence relations with finitely many equivalence classes. However use of Kleene's O as a parameter is sufficient to restore the picture from the noneffective setting. A key lemma is that of the existence of two...

  4. Effective theory for heavy quark QCD at finite temperature and density with stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, Mathias

    2015-07-01

    In this thesis we presented the derivation as well as the numerical and analytical treatment of an effective theory for lattice Quantum Chromodynamics (LQCD). We derived the effective theory directly from LQCD, which allows us to systematically introduce further improvements. The derivation was performed by means of an expansion around the limit of infinite quark masses and infinite gauge coupling. Using this theory we were able to derive results in the region of large densities. This region is, due to the sign problem, inaccessible to standard LQCD approaches. Although LQCD simulations at large densities have been performed recently by applying stochastic quantization, those are still limited to lattice with low numbers of timeslices and therefor can not reach the low temperature region. Furthermore, they can not be crosschecked with Monte-Carlo simulations. Since the equivalence between stochastic quantization and Monte-Carlo is unproven for the case of finite density systems, new approaches to access the cold dense region of the QCD phase diagram are desirable. The effective theory presented in this thesis provides such an approach. We introduced continuum QCD in chapter 2. In chapter 3 we presented how LQCD, i.e. QCD in a discretized space-time, can be formulated and used as a tool to explore the non-perturbative regions of the QCD phase diagram. Special emphasis was placed on simulations at finite baryon densities and the numerical problems that arise in this region. These problems are caused by the complexification of the action and are known as the sign problem. We gave a detailed presentation of the derivation of our effective theory in chapter 4. For this we performed expansions around the limit of strong coupling and static quarks, κ=β=0, introducing corrections order by order in the expansion parameters κ and β. Truncating the theory at different orders allowed us to determine the parameter region where the convergence to full LQCD is good. The gauge

  5. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  6. Could reggeon field theory be an effective theory for QCD in the Regge limit?

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Jochen [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Contreras, Carlos [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. España 1680, Casilla 110-V, Valparaiso (Chile); Vacca, G.P. [INFN Sezione di Bologna, DIFA, Via Irnerio 46, I-40126 Bologna (Italy)

    2016-03-30

    In this paper we investigate the possibility whether, in the extreme limit of high energies and large transverse distances, reggeon field theory might serve as an effective theory of high energy scattering for strong interactions. We analyse the functional renormalization group equations (flow equations) of reggeon field theory and search for fixed points in the space of (local) reggeon field theories. We study in complementary ways the candidate for the scaling solution, investigate its main properties and briefly discuss possible physical interpretations.

  7. Higgs effective field theories. Systematics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Claudius G.

    2016-07-28

    Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different

  8. Optimal free descriptions of many-body theories

    Science.gov (United States)

    Turner, Christopher J.; Meichanetzidis, Konstantinos; Papić, Zlatko; Pachos, Jiannis K.

    2017-04-01

    Interacting bosons or fermions give rise to some of the most fascinating phases of matter, including high-temperature superconductivity, the fractional quantum Hall effect, quantum spin liquids and Mott insulators. Although these systems are promising for technological applications, they also present conceptual challenges, as they require approaches beyond mean-field and perturbation theory. Here we develop a general framework for identifying the free theory that is closest to a given interacting model in terms of their ground-state correlations. Moreover, we quantify the distance between them using the entanglement spectrum. When this interaction distance is small, the optimal free theory provides an effective description of the low-energy physics of the interacting model. Our construction of the optimal free model is non-perturbative in nature; thus, it offers a theoretical framework for investigating strongly correlated systems.

  9. Chiral effective field theories of the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, M.R. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 (United States); Scherer, S. [Institut fur Kernphysik, Johannes Gutenberg-Universitat, 55099 Mainz (Germany)

    2011-09-15

    Effective field theories of the strong interactions based on the approximate chiral symmetry of QCD provide a model-independent approach to low-energy hadron physics. We give a brief introduction to mesonic and baryonic chiral perturbation theory and discuss a number of applications. We also consider the effective field theory including vector and axial-vector mesons. (authors)

  10. S-duality and modular transformation as a non-perturbative deformation of the ordinary pq-duality

    Energy Technology Data Exchange (ETDEWEB)

    Galakhov, D. [ITEP,Bol. Cheremushkinskaya, Moscow (Russian Federation); NHETC and Department of Physics and Astronomy, Rutgers University,Piscataway, NJ 08855-0849 (United States); Mironov, A. [NHETC and Department of Physics and Astronomy, Rutgers University,Piscataway, NJ 08855-0849 (United States); Theory Department, Lebedev Physics Institute,Leninsky prospekt, Moscow (Russian Federation); Morozov, A. [ITEP,Bol. Cheremushkinskaya, Moscow (Russian Federation)

    2014-06-10

    A recent claim that the S-duality between 4d SUSY gauge theories, which is AGT related to the modular transformations of 2d conformal blocks, is no more than an ordinary Fourier transform at the perturbative level, is further traced down to the commutation relation [P-circumflex,Q-circumflex]=−iℏ between the check-operator monodromies of the exponential resolvent operator in the underlying Dotsenko-Fateev matrix models and β-ensembles. To this end, we treat the conformal blocks as eigenfunctions of the monodromy check operators, what is especially simple in the case of one-point toric block. The kernel of the modular transformation is then defined as the intertwiner of the two monodromies, and can be obtained straightforwardly, even when the eigenfunction interpretation of the blocks themselves is technically tedious. In this way, we provide an elementary derivation of the old expression for the modular kernel for the one-point toric conformal block.

  11. From quantum field theory to hydrodynamics: Transport coefficients and effective kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, S.; Yaffe, L.G. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    1996-05-01

    The evaluation of hydrodynamic transport coefficients in relativistic field theory, and the emergence of an effective kinetic theory description, is examined. Even in a weakly coupled scalar field theory, interesting subtleties arise at high temperatures where thermal renormalization effects are important. In this domain, a kinetic theory description in terms of the fundamental particles ceases to be valid, but one may derive an effective kinetic theory describing excitations with temperature dependent properties. While the shear viscosity depends on the elastic scattering of typical excitations whose kinetic energies are comparable to the temperature, the bulk viscosity is sensitive to particle nonconserving processes at small energies. As a result, the shear and the bulk viscosities have very different dependence on the interaction strength and temperature, with the bulk viscosity providing an especially sensitive test of the validity of an effective kinetic theory description. {copyright} {ital 1996 The American Physical Society.}

  12. Wrapping effects in supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fiamberti, F. [Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); INFN-Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)

    2010-11-15

    Several perturbative computations of finite-size effects, performed on the gauge side of the AdS/CFT correspondence by means of superspace techniques, are presented. First, wrapping effects are analyzed in the standard N = 4 theory, by means of the calculation of the four-loop anomalous dimension of the Konishi operator. Then, a similar computation at five loops is described. Afterwards, finite-size effects are studied in the {beta}-deformed case, where thanks to the reduced number of supersymmetries the simpler class of single-impurity operators can be considered, so that the leading corrections to the anomalous dimensions at generic order can be reduced to the computation of a class of integrals. Explicit results are given up to eleven loops. A further chapter is dedicated to the computation of the leading finite-size effects on operators dual to open strings. In the end, some comments are made and proposals for future developments are discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Nucleon Polarisabilities and Effective Field Theories

    Science.gov (United States)

    Griesshammer, Harald W.

    2017-09-01

    Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.

  14. Chiral random matrix theory and effective theories of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Iida, S

    2000-05-08

    The correlations of the QCD Dirac eigenvalues are studied with use of an extended chiral random matrix model. The inclusion of spatial dependence which the original model lacks enables us to investigate the effects of diffusion modes. We get analytical expressions of level correlation functions with non-universal behavior caused by diffusion modes which is characterized by Thouless energy. Pion mode is shown to be responsible for these diffusion effects when QCD vacuum is considered a disordered medium.

  15. Collinear factorization violation and effective field theory

    Science.gov (United States)

    Schwartz, Matthew D.; Yan, Kai; Zhu, Hua Xing

    2017-09-01

    The factorization of amplitudes into hard, soft and collinear parts is known to be violated in situations where incoming particles are collinear to outgoing ones. This result was first derived by studying limits where noncollinear particles become collinear. We show that through an effective field theory framework with Glauber operators, these factorization-violating effects can be reproduced from an amplitude that is factorized before the splitting occurs. We confirm results at one loop, through single Glauber exchange, and at two loops, through double Glauber exchange. To approach the calculation, we begin by reviewing the importance of Glauber scaling for factorization. We show that for any situation where initial-state and final-state particles are not collinear, the Glauber contribution is entirely contained in the soft contribution. The contributions coming from Glauber operators are necessarily nonanalytic functions of external momentum, with the nonanalyticity arising from the rapidity regulator. The nonanalyticity is critical so that Glauber operators can both preserve factorization when it holds and produce factorization-violating effects when they are present.

  16. Two Quantum Effects In The Theory Of Gravitation

    CERN Document Server

    Robinson, S P

    2005-01-01

    We will discuss two methods by which the formalism of quantum field theory can be included in calculating the physical effects of gravitation. In the first of these, the consequences of treating general relativity as an effective quantum field theory will be examined. The primary result will be the calculation of the first-order quantum gravity corrections to the β functions of arbitrary Yang-Mills theories. These corrections will effect the high-energy phenomenology of such theories, including the details of coupling constant unification. Following this, we will address the question of how to form effective quantum field theories in classical gravitational backgrounds. We follow the prescription that effective theories should provide a description of experimentally accessible degrees of freedom with all other degrees of freedom integrated out of the theory. We will show that this prescription appears to fail for a scalar field in a black hole background because of an anomaly generated in general cov...

  17. Effective Medium Theory for Anisotropic Metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-11-12

    This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering

  18. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  19. Cosmological perturbation theory and quantum gravity

    CERN Document Server

    Brunetti, Romeo; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna

    2016-01-01

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  20. The Supersymmetric Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)

    2017-03-10

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.

  1. Effective interactions for light nuclei: an effective (field theory) approach

    OpenAIRE

    Stetcu, I.; Rotureau, J.; Barrett, B.R.; van Kolck, U.

    2009-01-01

    One of the central open problems in nuclear physics is the construction of effective interactions suitable for many-body calculations. We discuss a recently developed approach to this problem, where one starts with an effective field theory containing only fermion fields and formulated directly in a no-core shell-model space. We present applications to light nuclei and to systems of a few atoms in a harmonic-oscillator trap. Future applications and extensions, as well as challenges, are also ...

  2. Quantum field theory the why, what and how

    CERN Document Server

    Padmanabhan, Thanu

    2016-01-01

    This book describes, in clear terms, the Why, What and the How of Quantum Field Theory. The raison d'etre of QFT is explained by starting from the dynamics of a relativistic particle and demonstrating how it leads to the notion of quantum fields. Non-perturbative aspects and the Wilsonian interpretation of field theory are emphasized right from the start. Several interesting topics such as the Schwinger effect, Davies-Unruh effect, Casimir effect and spontaneous symmetry breaking introduce the reader to the elegance and breadth of applicability of field theoretical concepts. Complementing the conceptual aspects, the book also develops all the relevant mathematical techniques in detail, leading e.g., to the computation of anomalous magnetic moment of the electron and the two-loop renormalisation of the self-interacting scalar field. It contains nearly a hundred problems, of varying degrees of difficulty, making it suitable for both self-study and classroom use.

  3. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  4. Effective field theories for muonic hydrogen

    Directory of Open Access Journals (Sweden)

    Peset Clara

    2017-01-01

    Full Text Available Experimental measurements of muonic hydrogen bound states have recently started to take place and provide a powerful setting in which to study the properties of QCD. We profit from the power of effective field theories (EFTs to provide a theoretical framework in which to study muonic hydrogen in a model independent fashion. In particular, we compute expressions for the Lamb shift and the hyperfine splitting. These expressions include the leading logarithmic O(mμα6 terms, as well as the leading O(mμα5mμ2ΛQCD2${\\cal O}\\left( {{m_\\mu }{\\alpha ^5}{{m_\\mu ^2} \\over {\\Lambda _{{\\rm{QCD}}}^2}}} \\right$ hadronic effects. Most remarkably, our analyses include the determination of the spin-dependent and spin-independent structure functions of the forward virtualphoton Compton tensor of the proton to O(p3 in HBET and including the Delta particle. Using these results we obtain the leading hadronic contributions to the Wilson coeffcients of the lepton-proton four fermion operators in NRQED. The spin-independent coeffcient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, which is the main source of uncertainty in our computation. The spindependent coeffcient yields the prediction of the hyperfine splitting. The use of EFTs crucially helps us organizing the computation, in such a way that we can clearly address the parametric accuracy of our result. Furthermore, we review in the context of NRQED all the contributions to the energy shift of O(mμα5, as well as those that scale like mrα6× logarithms.

  5. Polchinski ERG Equation in O(N) Scalar Field Theory

    OpenAIRE

    Kubyshin, Yuri; Neves, Rui; Potting, Robertus

    2001-01-01

    We investigate the Polchinski ERG equation for d-dimensional O(N) scalar field theory. In the context of the non-perturbative derivative expansion we find families of regular solutions and establish their relation with the physical fixed points of the theory. Special emphasis is given to the large N limit for which many properties can be studied analytically.

  6. Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jinshuang; Tu, Matisse Wei-Yuan; Zhang Weimin [Department of Physics and Center for Quantum Information Science, National Cheng Kung University, Tainan 70101, Taiwan (China); Yan Yijing, E-mail: wzhang@mail.ncku.edu.t [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong)

    2010-08-15

    In this paper, we present a non-equilibrium quantum theory for transient electron dynamics in nanodevices based on the Feynman-Vernon influence functional. Applying the exact master equation for nanodevices we recently developed to the more general case in which all the constituents of a device vary in time in response to time-dependent external voltages, we obtained non-perturbatively the transient quantum transport theory in terms of the reduced density matrix. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. For a simple illustration, we apply the theory to a single-electron transistor subjected to ac bias voltages. The non-Markovian memory structure and the nonlinear response functions describing transient electron transport are obtained.

  7. Improved perturbative calculations in field theory; Calculation of the mass spectrum and constraints on the supersymmetric standard model; Calculs perturbatifs variationnellement ameliores en theorie des champs; Calcul du spectre et contraintes sur le modele supersymetrique standard

    Energy Technology Data Exchange (ETDEWEB)

    Kneur, J.L

    2006-06-15

    This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.

  8. The use of theory in school effectiveness research revisited

    NARCIS (Netherlands)

    Scheerens, Jaap

    2013-01-01

    From an international review of 109 school effectiveness research studies, only 6 could be seen as theory driven. As the border between substantive conceptual models of educational effectiveness and theory-based models is not always very sharp, this number might be increased to 11 by including those

  9. Applying Learning Theories and Instructional Design Models for Effective Instruction

    Science.gov (United States)

    Khalil, Mohammed K.; Elkhider, Ihsan A.

    2016-01-01

    Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning…

  10. Heavy Quarks, QCD, and Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen

    2012-10-09

    The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.

  11. Symmetries and symmetry breaking beyond the electroweak theory; Symetries et brisures de symetries au-dela de la theorie electrofaible

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, Ch

    1999-05-04

    The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)

  12. Quantum Field Theory in Two Dimensions: Light-front Versus Space-like Solutions

    Science.gov (United States)

    Martinovic̆, L'ubomír

    2017-07-01

    A few non-perturbative topics of quantum field theory in D=1+1 are studied in both the conventional (SL) and light-front (LF) versions. First, we give a concise review of the recently proposed quantization of the two-dimensional massless LF fields. The LF version of bosonization follows in a simple and natural way including the bosonized form of the Thirring model. As a further application, we demonstrate the closeness of the 2D massless LF quantum fields to conformal field theory (CFT). We calculate several correlation functions including those between the components of the LF energy-momentum tensor and derive the LF version of the Virasoro algebra. Using the Euclidean time variable, we can immediately transform calculated quantities to the (anti)holomorphic form. The results found are in agreement with those from CFT. Finally, we show that the proposed framework provides us with the elements needed for an independent LF study of exactly solvable models. We compute the non-perturbative correlation functions from the exact operator solution of the LF Thirring model and compare it to the analogous results in the SL theory. While the vacuum effects are automatically taken into account in the LF case, the non-trivial vacuum structure has to be incorported by an explicit diagonalization of the SL Hamiltonians, to obtain the equivalently complete solution.

  13. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  14. 3d N=1 effective supergravity and F-theory from M-theory on fourfolds

    Energy Technology Data Exchange (ETDEWEB)

    Prins, Daniël; Tsimpis, Dimitrios [Université de Lyon, UMR 5822, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon,4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France)

    2015-09-16

    We consider 3d N=1 M-theory compactifications on Calabi-Yau fourfolds, and the effective 3d theory of light modes obtained by reduction from eleven dimensions. We study in detail the mass spectrum at the vacuum and, by decoupling the massive multiplets, we derive the effective 3d N=1 theory in the large-volume limit up to quartic fermion terms. We show that in general it is an ungauged N=1 supergravity of the form expected from 3d supersymmetry. In particular the massless bosonic fields consist of the volume modulus and the axions originating from the eleven-dimensional three-form, while the moduli-space metric is locally isometric to hyperbolic space. We consider the F-theory interpretation of the 3d N=1 M-theory vacua in the light of the F-theory effective action approach. We show that these vacua generally have F-theory duals with circle fluxes, thus breaking 4d Poincaré invariance.

  15. Hamiltonian truncation approach to quenches in the Ising field theory

    CERN Document Server

    Rakovszky, Tibor; Collura, Mario; Kormos, Márton; Takács, Gábor

    2016-01-01

    In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while...

  16. Boundary effects in super-Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Alberta (Canada); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar, Kashmir (India); Masood, Syed [International Islamic University, Department of Physics, Islamabad (Pakistan)

    2017-05-15

    In this paper, we shall analyze a three dimensional supersymmetry theory with N = 2 supersymmetry. We will analyze the quantization of this theory, in the presence of a boundary. The effective Lagrangian used in the path integral quantization of this theory, will be given by the sum of the gauge fixing term and the ghost term with the original classical Lagrangian. Even though the supersymmetry of this effective Lagrangian will also be broken due to the presence of a boundary, it will be demonstrated that half of the supersymmetry of this theory can be preserved by adding a boundary Lagrangian to the effective bulk Lagrangian. The supersymmetric transformation of this new boundary Lagrangian will exactly cancel the boundary term generated from the supersymmetric transformation of the effective bulk Lagrangian. We will analyze the Slavnov-Taylor identity for this N = 2 Yang-Mills theory with a boundary. (orig.)

  17. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories

    Science.gov (United States)

    Blake, Mike

    2016-08-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by Dc=C vB2/(2 π T ), where vB is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  18. Towards a comprehensive theory of monadic effects

    DEFF Research Database (Denmark)

    Filinski, Andrzej

    2011-01-01

    , operational, and axiomatic characterizations of effects; principles and frameworks for combining effects; prescriptive vs. descriptive effect-type systems; specification vs. implementation of effects; and realizations of effect-related theoretical constructions in practical functional languages, both eager...

  19. Effective Theory of Floquet Topological Transitions

    OpenAIRE

    Kundu, Arijit; Fertig, H. A.; Seradjeh, Babak

    2014-01-01

    We develop a theory of topological transitions in a Floquet topological insulator, using graphene irradiated by circularly polarized light as a concrete realization. We demonstrate that a hallmark signature of such transitions in a static system, i.e. metallic bulk transport with conductivity of order $e^2/h$, is substantially suppressed at some Floquet topological transitions in the clean system. We determine the conditions for this suppression analytically and confirm our results in numeric...

  20. Supersymmetry breaking in superstring theory by Gaugino condensation and its phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-Yen [Lawrence Berkeley National Lab., CA (United States)

    1997-05-01

    Weakly-coupled heterotic string is known to have problems of dilaton/moduli stabilization, supersymmetry breaking (by hidden-sector gaugino condensation), gauge coupling unification, QCD axion, as well as cosmological problems involving dilaton/moduli and axion. The author studies these problems by adopting the point of view that they arise mostly due to limited calculational power, little knowledge of the full vacuum structure, and an inappropriate treatment of gaugino condensation. It turns out that these problems can be solved or are much less severe after a more consistent and complete treatment. There are two kinds of non-perturbative effects in the construction of string effective field theory: the field-theoretical non-perturbative effects of gaugino condensation (with an important constraint ignored in the past) and the stringy nonperturbative effects conjectured by S. Shenker, which are best described using the linear multiplet formalism. Stringy non-perturbative corrections to the Kaehler potential are invoked to stabilize the dilaton at a value compatible with a weak coupling regime. Modular invariance is ensured through the Green-Schwarz counterterm and string threshold corrections which, together with hidden matter condensation, lead to moduli stabilization at the self-dual point where the vev's of moduli's F components vanish. In the vacuum, supersymmetry is broken at a realistic scale with vanishing cosmological constant. As for soft supersymmetry breaking, this model always leads to a dilaton-dominated scenario. For the strong CP problem, the model-independent axion has the right properties to be the QCD axion. Furthermore, there is a natural hierarchy between the dilaton/moduli mass and the gravitino mass, which could solve both the cosmological moduli problem and the cosmological problem of the model-independent axion.

  1. Dissipative Effects in the Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Nacir, Diana; /Buenos Aires, CONICET /Buenos Aires U.; Porto, Rafael A.; /Princeton, Inst. Advanced Study /ISCAP, New York /Columbia U.; Senatore, Leonardo; /Stanford U., ITP /SLAC /KIPAC, Menlo Park; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study

    2012-09-14

    We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.

  2. The Long and Short of Nuclear Effective Field Theory Expansions

    CERN Document Server

    Kaplan, D B; Kaplan, David B.; Steele, James V.

    1999-01-01

    Nonperturbative effective field theory calculations for NN scattering seem to break down at rather low momenta. By examining several toy models, we clarify how effective field theory expansions can in general be used to properly separate long- and short-range effects. We find that one-pion exchange has a large effect on the scattering phase shift near poles in the amplitude, but otherwise can be treated perturbatively. Analysis of a toy model that reproduces 1S0 NN scattering data rather well suggests that failures of effective field theories for momenta above the pion mass can be due to short-range physics rather than the treatment of pion exchange. We discuss the implications this has for extending the applicability of effective field theories.

  3. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  4. Holomorphy without supersymmetry in the Standard Model Effective Field Theory

    Directory of Open Access Journals (Sweden)

    Rodrigo Alonso

    2014-12-01

    Full Text Available The anomalous dimensions of dimension-six operators in the Standard Model Effective Field Theory (SMEFT respect holomorphy to a large extent. The holomorphy conditions are reminiscent of supersymmetry, even though the SMEFT is not a supersymmetric theory.

  5. The premotor theory of attention and the Simon effect

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; Abrahamse, E.L.

    2011-01-01

    In the paper by Hommel (2011-this issue), the roles of the theory of event coding (TEC) and the premotor theory of attention (PMTA) for the Simon effect were considered. PMTA was treated by Hommel in terms of the proposal that attentional orienting can be viewed as the preparation of a saccade

  6. The Effects of Integrating Laboratory Work with Theory on Academic ...

    African Journals Online (AJOL)

    The major findings of the study showed that students taught physics by intergrating laboratory work with theory performed better than those taught by treating practical work after and separate from theory. Gender showed no significant effects. It was therefore recommended that physics teachers should adopt the method of ...

  7. A sufficient condition for de Sitter vacua in type IIB string theory

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-07-15

    We derive a sufficient condition for realizing meta-stable de Sitter vacua with small positive cosmological constant within type IIB string theory flux compactifications with spontaneously broken supersymmetry. There are a number of 'lamp post' constructions of de Sitter vacua in type IIB string theory and supergravity. We show that one of them - the method of 'Kaehler uplifting' by F-terms from an interplay between non-perturbative effects and the leading {alpha}'-correction - allows for a more general parametric understanding of the existence of de Sitter vacua. The result is a condition on the values of the flux induced superpotential and the topological data of the Calabi-Yau compactification, which guarantees the existence of a meta-stable de Sitter vacuum if met. Our analysis explicitly includes the stabilization of all moduli, i.e. the Kaehler, dilaton and complex structure moduli, by the interplay of the leading perturbative and non-perturbative effects at parametrically large volume. (orig.)

  8. The Faraday effect revisited: General theory

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm

    conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field B. Then the linear term in B of this expansion is written down in terms of the zero...... magnetic field Green function and the zero field current operator. In the periodic case, the linear term in B of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed...

  9. Effective Theory of Floquet Topological Transitions

    Science.gov (United States)

    Kundu, Arijit; Fertig, H. A.; Seradjeh, Babak

    2014-12-01

    We develop a theory of topological transitions in a Floquet topological insulator, using graphene irradiated by circularly polarized light as a concrete realization. We demonstrate that a hallmark signature of such transitions in a static system, i.e., metallic bulk transport with conductivity of order e2/h , is substantially suppressed at some Floquet topological transitions in the clean system. We determine the conditions for this suppression analytically and confirm our results in numerical simulations. Remarkably, introducing disorder dramatically enhances this transport by several orders of magnitude.

  10. Spectator Interactions in Soft-Collinear Effective Theory

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Richard J

    2002-11-08

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in {Lambda}/m{sub b}. Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/{Lambda}. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles.

  11. Experimental investigations of strong interaction in the non-perturbative QCD region. Annual progress report, January 16, 1993--January 15, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lindenbaum, S.J.; Samuel, S.

    1993-09-01

    A critical investigation of non-perturbative QCD require investigating glueballs, search for a Quark Gluon Plasma (OGP), and search for strangelets. In the glueball area the data obtained (E- 881) at 8 GeV/c were analyzed for {pi}{sup {minus}} + p {yields} {phi}{phi}n (OZI forbidden), {phi}K{sup +}K{sup {minus}}n (OZI allowed), K{sup {minus}}p {yields} {phi}{phi}({Lambda}{Sigma}) (OZI allowed), and {bar p}p {yields} {phi}{phi} {yields} {phi}{phi}{pi}{sup 0} (OZI forbidden), {phi}K{sup +}K{sup {minus}}{pi}{sup 0} (OZI allowed). By comparing the OZI forbidden (glueball filter reactions) with the OZI allowed and previous 22 GeV/c {pi}{sup {minus}}p {yields} {phi}{phi}n or {phi}K{sup +}K{sup {minus}}n data a further critical test of the so far unsuccessfully challenged hypothesis that our g{sup T}(2010), g{sub T}{prime}(2300) and g{sub T}{double_prime}(2340) all with I{sup G}J{sup PC} = 0{sup +}2{sup ++} are produced by 1-3 2{sup ++} glueballs will be made. In the QGP search with a large-solid-angle TPC a good {Xi} signal was observed. The ratio of {Xi} to single strange quark particles such as {lambda} is a better indication of strangeness enhancement in QGP formation. The data indicate enhancement by a factor {approx} 2 over cascade model (corrected to observed strangeness) predictions, but it is definitely far from conclusive at this stage since the result is model dependent. Double {lambda} topologies of the type needed to discover light strangelets in the nanosecond lifetime region were found. In addition, research has been accomplished in three main areas: bosonic technicolor and strings, buckministerfullerene C{sub 60} and neutrino oscillations in a dense neutrino gas.

  12. Effective Field Theories from Soft Limits of Scattering Amplitudes.

    Science.gov (United States)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2015-06-05

    We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.

  13. What is the simplest effective approach to hot QCD thermodynamics?

    CERN Document Server

    Laine, M.

    2003-01-01

    The dimensionally reduced action is believed to provide for a theoretically consistent and numerically precise effective description of the thermodynamics of the quark-gluon plasma, once the temperature is above a few hundred MeV. Although dramatically simpler than the original QCD it is, however, still a strongly interacting, confining theory. In this talk I speculate on whether there could exist a further simplified recipe within that theory, for physically relevant temperatures, which would already lead to a phenomenologically satisfactory description of the free energy and various correlation lengths of hot QCD, but with only a minimal amount of numerical non-perturbative input needed.

  14. Correlated effective field theory in transition metal compounds

    Science.gov (United States)

    Mukhopadhyay, Subhasis; Chatterjee, Ibha

    2004-03-01

    Mean field theory is good enough to study the physical properties at higher temperatures and in higher dimensions. It explains the critical phenomena in a restricted sense. Near the critical temperatures, when fluctuations become important, it may not give the correct results. Similarly in low dimensions, the correlations become important and the mean field theory seems to be inadequate to explain the physical phenomena. At low-temperatures too, the quantum correlations become important and these effects are to be treated in an appropriate way. In 1974, Prof. M.E. Lines of Bell Laboratories, developed a theory which goes beyond the mean field theory and is known as the correlated effective field (CEF) theory. It takes into account the fluctuations in a semiempirical way. Lines and his collaborators used this theory to explain the short-range correlations and their anisotropy in the paramagnetic phase. Later Suzuki et al., Chatterjee and Desai, Mukhopadhyay and Chatterjee applied this theory to the magnetically ordered phase and a tremendous success of the theory has been found in real systems. The success of the CEF theory is discussed in this review. In order to highlight the success of this theory, earlier effective field theories and their improvements over mean field theories e.g., Bethe-Peierls-Weiss method, reaction field approximation, etc., are also discussed in this review for completeness. The beauty of the CEF theory is that it is mean field-like, but captures the essential physics of real systems to a great extent. However, this is a weak correlated theory and as a result is inappropriate for the metallic phase when strong correlations become important. In recent times, transition metal oxides become important due to the discovery of the high-temperature superconductivity and the colossal magnetoresistance phenomena. These oxides seem to be Mott insulators and undergo an insulator to metal transition by applying magnetic field, pressure and by changing

  15. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  16. Baryon non-invariant couplings in Higgs effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fsica Teorica, IFT-UAM/CSIC, Madrid (Spain)

    2017-03-15

    The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)

  17. Versatility of field theory motivated nuclear effective Lagrangian approach

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Sharma, B.K. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)]. E-mail: bharat@iopb.res.in; Sahu, P.K. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Patra, S.K. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Sil, Tapas [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Centelles, M. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Vinas, X. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2004-11-04

    We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.

  18. Study of Yang–Mills–Chern–Simons theory in presence of the Gribov horizon

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Cientificos (CECs), Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile); Gomez, Arturo, E-mail: arturo.gomez@proyectos.uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar. (Chile); Sorella, Silvio Paolo, E-mail: sorella@uerj.br [UERJ, Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Física Teórica, Rua São Francisco Xavier 524, 20550-013, Maracaná, Rio de Janeiro (Brazil); Vercauteren, David, E-mail: vercauteren.uerj@gmail.com [UERJ, Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Física Teórica, Rua São Francisco Xavier 524, 20550-013, Maracaná, Rio de Janeiro (Brazil)

    2014-06-15

    The two-point gauge correlation function in Yang–Mills–Chern–Simons theory in three dimensional Euclidean space is analysed by taking into account the non-perturbative effects of the Gribov horizon. In this way, we are able to describe the confinement and de-confinement regimes, which naturally depend on the topological mass and on the gauge coupling constant of the theory. -- Highlights: •We implement the Gribov quantization to the Topologically massive Yang–Mills theory. •We find a modified propagator at strong coupling by the Gribov horizon. •The gauge propagator depends on the topological mass and the coupling constant. •By studying the gauge propagator we describe the confined–deconfined regimes.

  19. Quantum field theory as effective BV theory from Chern-Simons

    Energy Technology Data Exchange (ETDEWEB)

    Krotov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Moscow State University, Department of Physics, Vorobjevy Gory, Moscow 119899 (Russian Federation)], E-mail: krotov@itep.ru; Losev, Andrei [Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation)

    2009-01-11

    The general procedure for obtaining explicit expressions for all cohomologies of Berkovits' operator is suggested. It is demonstrated that calculation of BV integral for the classical Chern-Simons-like theory (Witten's OSFT-like theory) reproduces BV version of two-dimensional gauge model at the level of effective action. This model contains gauge field, scalars, fermions and some other fields. We prove that this model is an example of 'singular' point from the perspective of the suggested method for cohomology evaluation. For arbitrary 'regular' point the same technique results in AKSZ (Alexandrov, Kontsevich, Schwarz, Zaboronsky) version of Chern-Simons theory (BF theory) in accord with [N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 0109 (2001) 016, (hep-th/0105050); N. Berkovits, ICTP lectures on covariant quantization of the superstring, (hep-th/0209059); M. Movshev, A. Schwarz, On maximally supersymmetric Yang-Mills theories, Nucl. Phys. B 681 (2004) 324, (hep-th/0311132); M. Movshev, A. Schwarz, Algebraic structure of Yang-Mills theory, (hep-th/0404183)].

  20. Theory of the spin Seebeck effect.

    Science.gov (United States)

    Adachi, Hiroto; Uchida, Ken-ichi; Saitoh, Eiji; Maekawa, Sadamichi

    2013-03-01

    The spin Seebeck effect refers to the generation of a spin voltage caused by a temperature gradient in a ferromagnet, which enables the thermal injection of spin currents from the ferromagnet into an attached nonmagnetic metal over a macroscopic scale of several millimeters. The inverse spin Hall effect converts the injected spin current into a transverse charge voltage, thereby producing electromotive force as in the conventional charge Seebeck device. Recent theoretical and experimental efforts have shown that the magnon and phonon degrees of freedom play crucial roles in the spin Seebeck effect. In this paper, we present the theoretical basis for understanding the spin Seebeck effect and briefly discuss other thermal spin effects.

  1. Automated lattice perturbation theory in the Schroedinger functional. Implementation and applications in HQET

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Dirk

    2012-07-13

    The author developed the pastor software package for automated lattice perturbation theory calculations in the Schroedinger functional scheme. The pastor code consists of two building blocks, dealing with the generation of Feynman rules and Feynman diagrams respectively. Accepting a rather generic class of lattice gauge and fermion actions, passed to the code in a symbolic form as input, a low level part of pastor will generate Feynman rules to an arbitrary order in the bare coupling with a trivial or an Abelian background field. The second, high level part of pastor is a code generator whose output relies on the vertex generator. It writes programs that evaluate Feynman diagrams for a class of Schroedinger functional observables up to one loop order automatically, the relevant O(a) improvement terms are taken into account. We will describe the algorithms used for implementation of both parts of the code in detail, and provide cross checks with perturbative and non-perturbative data to demonstrate the correctness of our code. We demonstrate the usefulness of the pastor package through various applications taken from the matching process of heavy quark effective theory with quantum chromodynamics. We have e.g. completed a one loop analysis for new candidates for matching observables timely and with rather small effort, highlighting two advantages of an automated software setup. The results that were obtained so far will be useful as a guideline for further non-perturbative studies.

  2. Theory of the Spin Seebeck Effect

    OpenAIRE

    Adachi, Hiroto; Uchida, Ken-ichi; Saitoh, Eiji; Maekawa, Sadamichi

    2012-01-01

    The spin Seebeck effect refers to the generation of a spin voltage caused by a temperature gradient in a ferromagnet, which enables the thermal injection of spin currents from the ferromagnet into an attached nonmagnetic metal over a macroscopic scale of several millimeters. The inverse spin Hall effect converts the injected spin current into a transverse charge voltage, thereby producing electromotive force as in the conventional charge Seebeck device. Recent theoretical and experimental eff...

  3. Applying learning theories and instructional design models for effective instruction.

    Science.gov (United States)

    Khalil, Mohammed K; Elkhider, Ihsan A

    2016-06-01

    Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning outcomes, the science of instruction and instructional design models are used to guide the development of instructional design strategies that elicit appropriate cognitive processes. Here, the major learning theories are discussed and selected examples of instructional design models are explained. The main objective of this article is to present the science of learning and instruction as theoretical evidence for the design and delivery of instructional materials. In addition, this article provides a practical framework for implementing those theories in the classroom and laboratory. Copyright © 2016 The American Physiological Society.

  4. Effective Gravitational Theories in String Theory and the AdS/CFT Correspondence

    DEFF Research Database (Denmark)

    Pedersen, Andreas Vigand

    We consider various aspects of effective gravitational theories, including supergravity, within the framework of the blackfold approach. The thesis is naturally split into three parts. In the first part of the thesis, we explore the blackfold approach and explain how it is possible to write down...... as low/high spin. As a byproduct of our analysis, we find a new stationary dipole-charged black hole solution on the AdS S backgrounds of type IIB/M-theory. We finally consider, via a double scaling extremal limit, a novel null-wave zero-temperature giant graviton exhibiting a BPS spectrum. Finally...

  5. Foil bearing lubrication theory including compressibility effects

    Science.gov (United States)

    Gorla, Rama Subba Reddy; Catalano, Daniel A.

    1987-01-01

    An analysis is presented to determine the film thickness in a foil bearing. Using the Reynolds equation and including the compressibility effects of the gas, an equation was developed applicable to the film thickness in a foil bearing. The bearing was divided into three regions, namely, the entrance region, middle region and exit region. Solutions are obtained for the film thickness in each region.

  6. Superconformal quantum field theory in curved spacetime

    Science.gov (United States)

    de Medeiros, Paul; Hollands, Stefan

    2013-09-01

    By conformally coupling vector and hyper multiplets in Minkowski space, we obtain a class of field theories with extended rigid conformal supersymmetry on any Lorentzian 4-manifold admitting twistor spinors. We construct the conformal symmetry superalgebras which describe classical symmetries of these theories and derive an appropriate BRST operator in curved spacetime. In the process, we elucidate the general framework of cohomological algebra which underpins the construction. We then consider the corresponding perturbative quantum field theories. In particular, we examine the conditions necessary for conformal supersymmetries to be preserved at the quantum level, i.e. when the BRST operator commutes with the perturbatively defined S-matrix, which ensures superconformal invariance of amplitudes. To this end, we prescribe a renormalization scheme for time-ordered products that enter the perturbative S-matrix and show that such products obey certain Ward identities in curved spacetime. These identities allow us to recast the problem in terms of the cohomology of the BRST operator. Through a careful analysis of this cohomology, and of the renormalization group in curved spacetime, we establish precise criteria which ensure that all conformal supersymmetries are preserved at the quantum level. As a by-product, we provide a rigorous proof that the beta-function for such theories is one-loop exact. We also briefly discuss the construction of chiral rings and the role of non-perturbative effects in curved spacetime.

  7. From information theory to quantitative description of steric effects.

    Science.gov (United States)

    Alipour, Mojtaba; Safari, Zahra

    2016-07-21

    Immense efforts have been made in the literature to apply the information theory descriptors for investigating the electronic structure theory of various systems. In the present study, the information theoretic quantities, such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy, have been used to present a quantitative description for one of the most widely used concepts in chemistry, namely the steric effects. Taking the experimental steric scales for the different compounds as benchmark sets, there are reasonable linear relationships between the experimental scales of the steric effects and theoretical values of steric energies calculated from information theory functionals. Perusing the results obtained from the information theoretic quantities with the two representations of electron density and shape function, the Shannon entropy has the best performance for the purpose. On the one hand, the usefulness of considering the contributions of functional groups steric energies and geometries, and on the other hand, dissecting the effects of both global and local information measures simultaneously have also been explored. Furthermore, the utility of the information functionals for the description of steric effects in several chemical transformations, such as electrophilic and nucleophilic reactions and host-guest chemistry, has been analyzed. The functionals of information theory correlate remarkably with the stability of systems and experimental scales. Overall, these findings show that the information theoretic quantities can be introduced as quantitative measures of steric effects and provide further evidences of the quality of information theory toward helping theoreticians and experimentalists to interpret different problems in real systems.

  8. ALPs effective field theory and collider signatures

    Energy Technology Data Exchange (ETDEWEB)

    Brivio, I. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Copenhagen, Niels Bohr International Academy, Copenhagen (Denmark); Gavela, M.B.; Merlo, L.; Rey, R. del [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Mimasu, K. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); No, J.M. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); King' s College London, Department of Physics, London (United Kingdom); Sanz, V. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-08-15

    We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono-Z, mono-W, W-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations. (orig.)

  9. Acoustic Effects in Classical Nucleation Theory

    Science.gov (United States)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  10. The effective method for investigation meridian tropism theory in rats ...

    African Journals Online (AJOL)

    This present work describes an effective new method for study traditional Chinese medicine (TCM) on meridian tropism (MT) theory, which plays an essential role in clinical selection of TCM according to syndromes and strengthens the therapeutic effects. The new thread included material basis foundation and its tissue ...

  11. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  12. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    DEFF Research Database (Denmark)

    Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...

  13. Structural properties of the lattice heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, J.E. [Department of Energy, Washington, DC (United States). Div. of High Energy Physics; Ogilvie, M.C. [Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    1995-04-01

    We discuss two related aspects of the lattice version of the heavy quark effective theory (HQET). They are the effects of heavy quark modes with large momenta, near the boundary of the Brillouin zone, and the renormalization of the lattice HQET. We argue that even though large momentum modes are present, their contributions to heavy-light bound states and perturbative loop integrals are dynamically suppressed and vanish in the continuum limit. We also discuss a new feature of the renormalization of the lattice HQET not present in the continuum theory, namely that the classical velocity is finitely renormalized. ((orig.)).

  14. Structural Properties of the Lattice Heavy Quark Effective Theory

    Science.gov (United States)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1995-04-01

    We discuss two related aspects of the lattice version of the heavy quark effective theory (HQET). They are the effects of heavy quark modes with large momenta, near the boundary of the Brillouin zone, and the renormalization of the lattice HQET. We argue that even though large momentum modes are present, their contributions to heavy-light bound states and perturbative loop integrals are dynamically suppressed and vanish in the continuum limit. We also discuss a new feature of the renormalization of the lattice HQET not present in the continuum theory, namely that the classical velocity is finitely renormalized.

  15. Heavy dark matter annihilation from effective field theory.

    Science.gov (United States)

    Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W

    2015-05-29

    We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

  16. Polchinski ERG equation and 2D scalar field theory

    OpenAIRE

    Kubyshin, Yuri; Neves, Rui; Potting, Robertus

    1998-01-01

    We investigate a $Z_2$-symmetric scalar field theory in two dimensions using the Polchinski exact renormalization group equation expanded to second order in the derivative expansion. We find preliminary evidence that the Polchinski equation is able to describe the non-perturbative infinite set of fixed points in the theory space, corresponding to the minimal unitary series of 2D conformal field theories. We compute the anomalous scaling dimension $\\eta$ and the correlation l...

  17. Physics and Geometry of F-theory 2017

    CERN Document Server

    2017-01-01

    The goal of this conference is to bring together the experts in the field of F-theory from around the globe, both from the physics and the mathematics community, in order to exchange ideas about recent progress and future endeavours. F-theory is a non-perturbative realisation of string theory that is written in the language of algebraic geometry, and has always benefitted greatly from interdisciplinary interactions such as this conference.

  18. Inflation from Asymptotically Safe Theories

    DEFF Research Database (Denmark)

    Nielsen, Niklas Grønlund; Sannino, Francesco; Svendsen, Ole

    2015-01-01

    We investigate models in which inflation is driven by an ultraviolet safe and interacting scalar sector stemming from a new class of nonsupersymmetric gauge field theories. These new theories, differently from generic scalar models, are well defined to arbitrary short distances because of the exi......We investigate models in which inflation is driven by an ultraviolet safe and interacting scalar sector stemming from a new class of nonsupersymmetric gauge field theories. These new theories, differently from generic scalar models, are well defined to arbitrary short distances because...... for inflation. In the minimal coupling case the theory requires large non-perturbative quantum corrections to the quantum potential for the theory to agree with data, while in the non- minimal coupling case the perturbative regime in the couplings of the theory is preferred. Requiring the theory to reproduce...

  19. Ionic size effects on the Poisson-Boltzmann theory.

    Science.gov (United States)

    Colla, Thiago; Nunes Lopes, Lucas; Dos Santos, Alexandre P

    2017-07-07

    In this paper, we develop a simple theory to study the effects of ionic size on ionic distributions around a charged spherical particle. We include a correction to the regular Poisson-Boltzmann equation in order to take into account the size of ions in a mean-field regime. The results are compared with Monte Carlo simulations and a density functional theory based on the fundamental measure approach and a second-order bulk expansion which accounts for electrostatic correlations. The agreement is very good even for multivalent ions. Our results show that the theory can be applied with very good accuracy in the description of ions with highly effective ionic radii and low concentration, interacting with a colloid or a nanoparticle in an electrolyte solution.

  20. TOPICAL REVIEW: Landau Migdal theory of interacting Fermi systems: a framework for effective theories in nuclear structure physics

    Science.gov (United States)

    Grümmer, Frank; Speth, Josef

    2006-07-01

    We review Migdal's theory of finite Fermi systems and its application to the structure of nuclei. The theory is an extension of Landau's theory of interacting Fermi systems. In the first part the basic formulae are derived within the many-body Green functions approach. The theory is applied to isovector electric giant resonances in medium and heavy mass nuclei. The parameterizations of the renormalized effective ph-interaction and the effective operators are discussed. It is shown that the number of free parameters is restricted by conservation laws. We also present an extension of Migdal's theory, where the low-lying phonons are considered in a consistent manner. The extended theory is again applied to the same isovector electric giant resonances and to the analysis of (α, α') reaction data. We point out that the extended theory is the appropriate framework for self-consistent nuclear structure calculations starting from effective Lagrangians and Hamiltonians.

  1. One-loop Pfaffians and large-field inflation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Fabian, E-mail: fabian.ruehle@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford, OX1 3NP (United Kingdom); Wieck, Clemens, E-mail: clemens.wieck@uam.es [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2017-06-10

    We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.

  2. Generalized Effective Medium Theory for Particulate Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Muhammad Usama Siddiqui

    2016-08-01

    Full Text Available The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites.

  3. Deuteron magnetic quadrupole moment from chiral effective field theory

    NARCIS (Netherlands)

    Liu, C. -P.; de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2012-01-01

    We calculate the magnetic quadrupole moment (MQM) of the deuteron at leading order in the systematic expansion provided by chiral effective field theory. We take into account parity (P) and time-reversal (T) violation which, at the quark-gluon level, results from the QCD vacuum angle and

  4. Effective field theory of dark matter: a global analysis

    NARCIS (Netherlands)

    Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive

  5. Classical and non-classical effective medium theories: New perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Tsukerman, Igor, E-mail: igor@uakron.edu

    2017-05-18

    Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.

  6. The Effects of Integrating Laboratory Work with Theory on Academic ...

    African Journals Online (AJOL)

    This study was an attempt to investigate the effects of integrating laboratory work with theory on academic achievement of secondary school physics students. The study was conducted in Oron Local Government Area of Akwa Ibom State, Nigeria. A total of one hundred and sixty two (162) senior secondary two (SS2) physics ...

  7. Effective field theory approach to LHC Higgs data

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 3. Effective field theory approach to LHC Higgs data. ADAM FALKOWSKI. Special Issue Volume 87 Issue 3 September 2016 Article ID 39. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/pram/087/03/0039. Keywords.

  8. On the exotic Higgs decays in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belusca-Maito, Hermes; Falkowski, Adam [Universite Paris-Sud, Laboratoire de Physique Theorique, Orsay (France)

    2016-09-15

    We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context. (orig.)

  9. Alpha alpha scattering in halo effective field theory

    NARCIS (Netherlands)

    Higa, R.; Hammer, H. -W.; van Kolck, U.

    2008-01-01

    We study the two-alpha-particle (alpha alpha) system in an Effective Field Theory (EFT) for halo-like systems. We propose a power Counting that incorporates the subtle interplay of strong and electromagnetic forces leading to a narrow resonance at an energy of about 0.1 MeV. We investigate the EFT

  10. Strange two-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.

    2008-01-01

    We have constructed the leading order strangeness S = −1,−2 baryon-baryon potential in a chiral effective field theory approach. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The potential, derived using SU(3)f symmetry constraints,

  11. The Hoyle state in nuclear lattice effective field theory

    Indian Academy of Sciences (India)

    2014-10-08

    Oct 8, 2014 ... We review the calculation of the Hoyle state of 12C in nuclear lattice effective field theory (NLEFT) and its anthropic implications in the nucleosynthesis of 12C and 16O in red giant stars. We also analyse the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ...

  12. The Hoyle state in nuclear lattice effective field theory

    Indian Academy of Sciences (India)

    Abstract. We review the calculation of the Hoyle state of 12C in nuclear lattice effective field theory (NLEFT) and its anthropic implications in the nucleosynthesis of 12C and 16O in red giant stars. We also analyse the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ...

  13. Non-perturbative renormalization of quark bilinear operators with Nf=2 (tmQCD) Wilson fermions and the tree-level improved gauge action

    CERN Document Server

    Constantinou, M; Frezzotti, R; Herdoiza, G; Jansen, K; Lubicz, V; Panagopoulos, H; Rossi, G C; Simula, S; Stylianou, F; Vladikas, A

    2010-01-01

    We present results for the renormalization constants of bilinear quark operators obtained by using the tree-level Symanzik improved gauge action and the Nf=2 twisted mass fermion action at maximal twist, which guarantees automatic O(a)-improvement. Our results are also relevant for the corresponding standard (un-twisted) Wilson fermionic action since the two actions only differ, in the massless limit, by a chiral rotation of the quark fields. The scale-independent renormalization constants ZV, ZA and the ratio ZP/ZS have been computed using the RI-MOM approach, as well as other alternative methods. For ZA and ZP/ZS, the latter are based on both standard twisted mass and Osterwalder-Seiler fermions, while for ZV a Ward Identity has been used. The quark field renormalization constant Zq and the scale dependent renormalization constants ZS, ZP and ZT are determined in the RI-MOM scheme. Leading discretization effects of O(g^2 a^2), evaluated in one-loop perturbation theory, are explicitly subtracted from the RI-...

  14. Hidden selection rules, M5-instantons and fluxes in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, & I.N.F.N. Sezione di Padova, via Marzolo 8, I-35131 Padova (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, 69120 Heidelberg (Germany)

    2015-10-21

    We introduce a new approach to investigate the selection rules governing the contributions of fluxed M5-instantons to the F-theory four-dimensional effective action, with emphasis on the generation of charged matter F-terms. The structure of such couplings is unraveled by exploiting the perturbative and non-perturbative homological relations, introduced in our companion paper http://dx.doi.org/10.1007/JHEP09(2015)198, which encode the interplay between the self-dual 3-form flux on the M5-brane, the background 4-form flux and certain fibral curves. The latter are wrapped by time-like M2-branes representing matter insertions in the instanton path integral. In particular, we clarify how fluxed M5-instantons detect the presence of geometrically massive U(1)s which are responsible for ‘hidden’ selection rules. We discuss how for non-generic embeddings the M5-instanton can probe ‘locally massless’ U(1) symmetries if the rank of its Mordell-Weil group is enhanced compared to that of the bulk. As a phenomenological off-spring we propose a new type of non-perturbative corrections to Yukawa couplings which may change the rank of the Yukawa matrix. Along the way, we also gain new insights into the structure of massive U(1) gauge fluxes in the stable degeneration limit.

  15. U-duality and M-Theory

    CERN Document Server

    Obers, N A

    1999-01-01

    This work is intended as a pedagogical introduction to M-theory and to its maximally supersymmetric toroidal compactifications, in the frameworks of 11D supergravity, type II string theory and M(atrix) theory. U-duality is used as the main tool and guideline in uncovering the spectrum of BPS states. We review the 11D supergravity algebra and elementary 1/2-BPS solutions, discuss T-duality in the perturbative and non-perturbative sectors from an algebraic point of view, and apply the same tools to the analysis of U-duality at the level of the effective action and the BPS spectrum, with a particular emphasis on Weyl and Borel generators. We derive the U-duality multiplets of BPS particles and strings, U-duality invariant mass formulae for 1/2- and 1/4-BPS states for general toroidal compactifications on skew tori with gauge backgrounds, and U-duality multiplets of constraints for states to preserve a given fraction of supersymmetry. A number of mysterious states are encountered in $D\\le 3$, whose existence is i...

  16. Effective Biot theory and its generalization to poroviscoelastic models

    Science.gov (United States)

    Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark

    2018-02-01

    A method is suggested to express the effective bulk modulus of the solid frame of a poroelastic material as a function of the saturated bulk modulus. This method enables effective Biot theory to be described through the use of seismic dispersion measurements or other models developed for the effective saturated bulk modulus. The effective Biot theory is generalized to a poroviscoelastic model of which the moduli are represented by the relaxation functions of the generalized fractional Zener model. The latter covers the general Zener and the Cole-Cole models as special cases. A global search method is described to determine the parameters of the relaxation functions, and a simple deterministic method is also developed to find the defining parameters of the single Cole-Cole model. These methods enable poroviscoelastic models to be constructed, which are based on measured seismic attenuation functions, and ensure that the model dispersion characteristics match the observations.

  17. String Theory Effects on Five-Dimensional Black Hole Physics

    CERN Document Server

    Castro, Alejandra; Kraus, Per; Larsen, Finn

    2008-01-01

    We review recent developments in understanding quantum/string corrections to BPS black holes and strings in five-dimensional supergravity. These objects are solutions to the effective action obtained from M-theory compactified on a Calabi-Yau threefold, including the one-loop corrections determined by anomaly cancellation and supersymmetry. We introduce the off-shell formulation of this theory obtained through the conformal supergravity method and review the methods for investigating supersymmetric solutions. This leads to quantum/string corrected attractor geometries, as well as asymptotically flat black strings and spinning black holes. With these solutions in hand, we compare our results with analogous studies in four-dimensional string-corrected supergravity, emphasizing the distinctions between the four and five dimensional theories.

  18. Analysis of general power counting rules in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, Belen; Merlo, Luca [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Jenkins, Elizabeth E.; Manohar, Aneesh V. [University of California at San Diego, Department of Physics, La Jolla, CA (United States); CERN TH Division, Geneva 23 (Switzerland)

    2016-09-15

    We derive the general counting rules for a quantum effective field theory (EFT) in d dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χPT). The relation between Λ and f is generalized to d dimensions. We show that the naive dimensional analysis 4π counting is related to ℎ counting. The EFT counting rules are applied to χPT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT. (orig.)

  19. Features analysis of five-element theory and its basal effects on construction of visceral manifestation theory.

    Science.gov (United States)

    Ma, Zimi; Jia, Chunhua; Guo, Jin; Gu, Haorong; Miao, Yanhuan

    2014-02-01

    To study the Chinese ancient five-element theory, one of the philosophical foundations of Traditional Chinese Medicine (TCM) theory construction, from the perspective of comtemporary cognitive science, and to reveal the important functions of five-element theory in the construction of TCM theory. The basic effects of five-element theory in the construction of TCM theory are intensively expounded and proved from the following aspects: embodiment of five-element theory in cognizing the world, quasi axiom of five-element theory in essence, classification thery of family resemblance and deductive inference pattern of five-element theory, and the openness and expansibility of five-element theory. If five-element theory is considered a cognitive pattern or cognitive system related to culture, then there should be features of cognitive embodiment in the cognitive system. If five-element theory is regarded as a symbolic system, however, then there should be a quasi-axiom for the system, and inferential deduction. If, however, five-element theory is taken as a theoretical constructive metaphor, then there should be features of opening and expansibility for the metaphor. Based on five-element theory, this study provides a cognitive frame for the construction of TCM (a medicine that originated in China, and is characterized by holism and treatment based on pattern identification differentiation) theory with the function of constructing a concept base, thereby implying further research strategies. Useful information may be produced from the creative inferences obtained from the incorporation of five-element theory.

  20. Effective Gravitational Theories in String Theory and the AdS/CFT Correspondence

    DEFF Research Database (Denmark)

    Pedersen, Andreas Vigand

    We consider various aspects of effective gravitational theories, including supergravity, within the framework of the blackfold approach. The thesis is naturally split into three parts. In the first part of the thesis, we explore the blackfold approach and explain how it is possible to write down......, in the third part of the thesis, we switch focus and consider long-wavelength perturbations of charged black branes. More specically, we consider hydrodynamic uctuations of the black p-brane solution of Einstein/Maxwell gravity in D = p + n + 3 dimensions. We extract the first order dissipative transport...

  1. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  2. The effective field theory of dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Haxton, Wick; Katz, Emanuel; Lubbers, Nicholas; Xu, Yiming

    2013-02-01

    We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets — F, Na, Ge, I, and Xe — using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.

  3. Photons and dileptons production in a quark gluon plasma: infrared structure and coherent scattering effects; Production de photons et de dileptons dans un plasma de quarks et de gluons: structure infrarouge et effets coherents

    Energy Technology Data Exchange (ETDEWEB)

    Zaraket, H

    2000-06-01

    This work is devoted to photon and dilepton production in a quark gluon plasma. The theoretical framework in which the study is carried out is Thermal Field Theory, more precisely the hard thermal loop effective theory. Several features of the observables preclude a straightforward application of the effective theory and new tools had to be developed such as the counter term method to avoid double counting. The first part of my study concerns static virtual photon production where I show that important physical contributions are missing in the effective theory at one loop level and hence a two loop calculation is indispensable. Furthermore I give an analytic leading logarithmic estimate of this two loop result showing clearly the insufficiency of the effective theory. The second part of the work focuses on real and quasi real photon production. Again, important contributions arise at two loop level due to collinear divergences. For high mass dilepton the two loop calculation is sufficient. On the other hand, near the light cone photon production rate is non perturbative. Getting closer to the light cone coherent scattering effects (Landau-Pomeranchuk-Migdal effect) arise, which imply the resummation of an infinite series of diagrams. Still nearer the light cone we found a dependence on the non perturbative magnetic mass due to infrared singularities. (author)

  4. Special theory of relativity through the Doppler effect

    Energy Technology Data Exchange (ETDEWEB)

    Moriconi, M [Departamento de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Boa Viagem-CEP 24210-340, Niteroi, Rio de Janeiro (Brazil)

    2006-11-01

    We present the special theory of relativity taking the Doppler effect as the starting point, and derive several of its main effects, such as time dilation, length contraction, addition of velocities and the mass-energy relation, and assuming energy and momentum conservation, we discuss how to introduce the 4-momentum in a natural way. We also use the Doppler effect to explain the 'twin paradox', and its version on a cylinder. As a by-product we discuss Bell's spaceship paradox, and the Lorentz transformation for arbitrary velocities in one dimension.

  5. DsixTools: the standard model effective field theory toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)

    2017-06-15

    We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)

  6. Hadronic parity violation in pionless effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Matthias R., E-mail: schindle@gwu.edu [George Washington University, Department of Physics (United States)

    2011-11-15

    We present results for two-body observables that are sensitive to the parity-violating component of nucleon-nucleon interactions. These interactions are studied using an effective field theory in which the only dynamic degrees of freedom are nucleon fields. The observables we study are cross-section asymmetries in nucleon-nucleon scattering and asymmetries and induced polarizations in the process np{yields}d{gamma}.

  7. Born-Oppenheimer approximation in an effective field theory language

    Science.gov (United States)

    Brambilla, Nora; Krein, Gastão; Tarrús Castellà, Jaume; Vairo, Antonio

    2018-01-01

    The Born-Oppenheimer approximation is the standard tool for the study of molecular systems. It is founded on the observation that the energy scale of the electron dynamics in a molecule is larger than that of the nuclei. A very similar physical picture can be used to describe QCD states containing heavy quarks as well as light-quarks or gluonic excitations. In this work, we derive the Born-Oppenheimer approximation for QED molecular systems in an effective field theory framework by sequentially integrating out degrees of freedom living at energies above the typical energy scale where the dynamics of the heavy degrees of freedom occurs. In particular, we compute the matching coefficients of the effective field theory for the case of the H2+ diatomic molecule that are relevant to compute its spectrum up to O (m α5). Ultrasoft photon loops contribute at this order, being ultimately responsible for the molecular Lamb shift. In the effective field theory the scaling of all the operators is homogeneous, which facilitates the determination of all the relevant contributions, an observation that may become useful for high-precision calculations. Using the above case as a guidance, we construct under some conditions an effective field theory for QCD states formed by a color-octet heavy quark-antiquark pair bound with a color-octet light-quark pair or excited gluonic state, highlighting the similarities and differences between the QED and QCD systems. Assuming that the multipole expansion is applicable, we construct the heavy-quark potential up to next-to-leading order in the multipole expansion in terms of nonperturbative matching coefficients to be obtained from lattice QCD.

  8. Effective binary theory of multi-component nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kalikmanov, V. I., E-mail: Vitaly.Kalikmanov@twisterbv.com [Twister Supersonic Gas Solutions, Einsteinlaan 20, 2289 CC Rijswijk, Netherlands and Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft (Netherlands)

    2015-03-28

    Classical theory of multi-component nucleation [O. Hirschfelder, J. Chem. Phys. 61, 2690 (1974)] belongs to the class of the so-called intractable problems: it requires computational time which is an exponential function of the number of components N. For a number of systems of practical interest with N > 10, the brute-force use of the classical theory becomes virtually impossible and one has to resort to an effective medium approach. We present an effective binary model which captures important physics of multi-component nucleation. The distinction between two effective species is based on the observation that while all N components contribute to the cluster thermodynamic properties, there is only a part of them which trigger the nucleation process. The proposed 2D-theory takes into account adsorption by means of the Gibbs dividing surface formalism and uses statistical mechanical considerations for the treatment of small clusters. Theoretical predictions for binary-, ternary-, and 14-component mixtures are compared with available experimental data and other models.

  9. A referential theory of the repetition-induced truth effect.

    Science.gov (United States)

    Unkelbach, Christian; Rom, Sarah C

    2017-03-01

    People are more likely to judge repeated statements as true compared to new statements, a phenomenon known as the illusory truth effect. The currently dominant explanation is an increase in processing fluency caused by prior presentation. We present a new theory to explain this effect. We assume that people judge truth based on coherent references for statements in memory. Due to prior presentation, repeated statements have more coherently linked references; thus, a repetition-induced truth effect follows. Five experiments test this theory. Experiment 1-3 show that both the amount and the coherence of references for a repeated statement influence judged truth. Experiment 4 shows that people also judge new statements more likely "true" when they share references with previously presented statements. Experiment 5 realizes theoretically predicted conditions under which repetition should not influence judged truth. Based on these data, we discuss how the theory relates to other explanations of repetition-induced truth and how it may integrate other truth-related phenomena and belief biases. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effective field theories for van der Waals interactions

    Science.gov (United States)

    Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio

    2017-06-01

    Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex

  11. Viscosity and dissipative hydrodynamics from effective field theory

    Science.gov (United States)

    Grozdanov, Sašo; Polonyi, Janos

    2015-05-01

    With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.

  12. Equivalent Theory and Retrieval of Effective Metamaterials Parameters

    CERN Document Server

    Feng, Simin

    2010-01-01

    Currently widely used retrieval method often suffers from unreal resonant-antiresonant coupling in extracted permittivity and permeability of metamaterals; and the retrieved material parameters are length-dependent. Here, we apply equivalent theory to discuss a general unit-cell design criterion for length-independent retrieval of effective metamaterial parameters from a single layer of unit cells. We introduce a graphical method which directly retrieves the effective ordinary and extraordinary permittivities and permeabilities without computing refractive index and impedance as middle steps. Our method resolves the longstanding resonant-antiresonant mystery.

  13. Purposeful Program Theory: Effective Use of Theories of Change and Logic Models

    Science.gov (United States)

    Funnell, Sue C.; Rogers, Patricia J.

    2011-01-01

    Between good intentions and great results lies a program theory--not just a list of tasks but a vision of what needs to happen, and how. Now widely used in government and not-for-profit organizations, program theory provides a coherent picture of how change occurs and how to improve performance. "Purposeful Program Theory" shows how to develop,…

  14. Perturbation theory and nonperturbative effects: A happy marriage ?

    Science.gov (United States)

    Chýla, J.

    1992-03-01

    Perturbation expansions in renormalized quantum field theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k(a, χ) of the couplant and the free parameter χ which specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. Close connection of this procedure to Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated.

  15. Inclusion of Dispersion Effects in Density Functional Theory

    DEFF Research Database (Denmark)

    Møgelhøj, Andreas

    on fitting to high-level ab initio and experimental results. The fitting scheme, based on Baysian theory, focuses on the three aspects: a) model space, b) datasets, and c) model selection. The model space consists of a flexible expansion of the exchange enhancement factor in the generalized gradient...... approximation plus local density approximation, and the non-local Rutgers-Chalmers correlations. The datasets are chosen to represent gas phase chemistry, surface chemistry, solid state physics, and non-covalently bound systems in order to produce a generally applicable functional that is particularly useful......In this thesis, applications and development will be presented within the field of van der Waals interactions in density functional theory. The thesis is based on the three projects: i) van der Waals interactions effect on the structure of liquid water at ambient conditions, ii) development...

  16. Chiral effective theory with a light scalar and lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Soto, J., E-mail: joan.soto@ub.edu [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Talavera, P., E-mail: pere.talavera@icc.ub.edu [Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Comte Urgell 187, E-08036 Barcelona (Spain); Tarrus, J., E-mail: tarrus@ecm.ub.es [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

    2013-01-21

    We extend the usual chiral perturbation theory framework ({chi}PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. We discuss the S-wave pion-pion scattering lengths, extract the average value of the two light quark masses and evaluate the impact of the dynamical singlet field in the low-energy constants l{sup Macron }{sub 1}, l{sup Macron }{sub 3} and l{sup Macron }{sub 4} of {chi}PT. We also show how to extract the mass and width of the sigma resonance from chiral extrapolations of lattice QCD data.

  17. Duality constraints on effective actions

    Science.gov (United States)

    Garousi, Mohammad R.

    2017-08-01

    Superstring theories at low energy limit are described by the corresponding supergravities, and their non-perturbative D-brane/O-plane excitations are described by DBI and WZ actions. Higher derivative corrections to these effective actions are important for understanding the stringy behaviour of the fundamental objects. They may be extracted from the contact terms of the corresponding S-matrix elements. On the other hand, the superstring theories enjoy the T- and S-dualities which appear in the S-matrix elements as duality Ward identities. These Ward identities might be used as generating functions for constructing the S-matrix elements. The dualities may also be used directly to construct the effective actions. In this article, we review the duality Ward identities which can be used to generate S-matrix elements, and review the dualities which may be used directly to construct the higher derivative corrections to the effective actions.

  18. Nonperturbative Results for Yang-Mills Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco; Schechter, Joseph

    2010-01-01

    Some non perturbative aspects of the pure SU(3) Yang-Mills theory are investigated assuming a specific form of the beta function, based on a recent modification by Ryttov and Sannino of the known one for supersymmetric gauge theories. The characteristic feature is a pole at a particular value of ....... Assuming the usual QCD value one finds it to be 1.67 GeV, which is in surprisingly good agreement with a quenched lattice calculation. A similar calculation is made for the supersymmetric Yang-Mills theory where the corresponding beta function is considered to be exact....

  19. At the end of the string: the M theory; Au bout de la corde: la theorie M

    Energy Technology Data Exchange (ETDEWEB)

    Vanhove, P

    1998-04-15

    The first chapter is a general introduction that presents the more or less historical path that led to the discovery of the superstring perturbative theory, to the duality conjectures and eventually to the M-theory. Non-perturbative solutions of supergravity theories and the particular roles of these solutions to superstrings are detailed in chapter 2. The relevant features of extended supersymmetries from super-Poincare algebra are also presented in chapter 2. The superstring considered as a basic perturbative object as well as the non-perturbative solutions of Dirichlet membranes are presented in chapter 3. Static and dynamic properties of these solutions are detailed and discussed in chapter 4. Chapter 5 is dedicated to tests of duality conjectures through the calculation of instanton corrections for various superstring theories. The duality transformation of the heterotic/type-I couple with the SO(32) group are tested. Chapter 5 ends with the explicit computations of non-perturbative contributions for the type-I and type-II theories generated inside the frame of a super Yang-Mill supersymmetric model. The role of a new matrix formulation of the superstring theory is highlighted. (A.C.)

  20. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  1. Distribution of zeros of the S-matrix of chaotic cavities with localized losses and coherent perfect absorption: non-perturbative results

    Science.gov (United States)

    Fyodorov, Yan V.; Suwunnarat, Suwun; Kottos, Tsampikos

    2017-07-01

    We employ the random matrix theory framework to calculate the density of zeroes of an M-channel scattering matrix describing a chaotic cavity with a single localized absorber embedded in it. Our approach extends beyond the weak-coupling limit of the cavity with the channels and applies for any absorption strength. Importantly it provides an insight for the optimal amount of loss needed to realize a chaotic coherent perfect absorbing trap. Our predictions are tested against simulations for two types of traps: a complex network of resonators and quantum graphs.

  2. Perturbation theory of nuclear matter with a microscopic effective interaction

    Science.gov (United States)

    Benhar, Omar; Lovato, Alessandro

    2017-11-01

    An updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.

  3. Effective Field Theory and the Gamow Shell Model

    OpenAIRE

    Rotureau, J.; van Kolck, U.

    2013-01-01

    We combine Halo/Cluster Effective Field Theory (H/CEFT) and the Gamow Shell Model (GSM) to describe the $0^+$ ground state of $\\rm{^6He}$ as a three-body halo system. We use two-body interactions for the neutron-alpha particle and two-neutron pairs obtained from H/CEFT at leading order, with parameters determined from scattering in the p$_{3/2}$ and s$_0$ channels, respectively. The three-body dynamics of the system is solved using the GSM formalism, where the continuum states are incorporate...

  4. The effective field theory of nonsingular cosmology: II

    Science.gov (United States)

    Cai, Yong; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song

    2017-06-01

    Based on the effective field theory (EFT) of cosmological perturbations, we explicitly clarify the pathology in nonsingular cubic Galileon models and show how to cure it in EFT with new insights into this issue. With the least set of EFT operators that are capable to avoid instabilities in nonsingular cosmologies, we construct a nonsingular model dubbed the Genesis-inflation model, in which a slowly expanding phase (namely, Genesis) with increasing energy density is followed by slow-roll inflation. The spectrum of the primordial perturbation may be simulated numerically, which shows itself a large-scale cutoff, as the large-scale anomalies in CMB might be a hint for.

  5. The effective field theory of nonsingular cosmology: II

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Li, Hai-Guang [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Piao, Yun-Song [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)

    2017-06-15

    Based on the effective field theory (EFT) of cosmological perturbations, we explicitly clarify the pathology in nonsingular cubic Galileon models and show how to cure it in EFT with new insights into this issue. With the least set of EFT operators that are capable to avoid instabilities in nonsingular cosmologies, we construct a nonsingular model dubbed the Genesis-inflation model, in which a slowly expanding phase (namely, Genesis) with increasing energy density is followed by slow-roll inflation. The spectrum of the primordial perturbation may be simulated numerically, which shows itself a large-scale cutoff, as the large-scale anomalies in CMB might be a hint for. (orig.)

  6. Perturbative Pions in Effective Field Theory for Nucleon Interactions

    Science.gov (United States)

    Mehen, Thomas

    2001-12-01

    I discuss pions in effective field theory (EFT) for the nucleon interaction within the power counting scheme proposed by Kaplan-Savage-Wise (KSW). After explaining why KSW power counting demands perturbative treatment of pions, I present results of next-to-next-to-leading order (NNLO) calculations of nucleon-nucleon scattering in S-,P-, and D-wave channels. Perturbative treatment of pions fails in spin-triplet channels. The origin of large perturbative corrections is the piece of the spin-tensor force which survives in the chiral limit.

  7. Nuclear surface properties in relativistic effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Del Estal, M.; Centelles, M.; Vinas, X

    1999-04-26

    We perform Hartree calculations of symmetric and asymmetric semi-infinite nuclear matter in the framework of relativistic models based on effective hadronic field theories as recently proposed in the literature. In addition to the conventional cubic and quartic scalar self-interactions, the extended models incorporate a quartic vector self-interaction, scalar-vector non-linearities and tensor couplings of the vector mesons. We investigate the implications of these terms on nuclear surface properties such as the surface energy coefficient, surface thickness, surface stiffness coefficient, neutron skin thickness and the spin-orbit force.

  8. Effective theory of black holes in the 1/D expansion

    Energy Technology Data Exchange (ETDEWEB)

    Emparan, Roberto [Institució Catalana de Recerca i Estudis Avançats (ICREA),Passeig Lluís Companys 23, E-08010 Barcelona (Spain); Departament de Física Fonamental, Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Shiromizu, Tetsuya [Department of Mathematics, Nagoya University,Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute, Nagoya University,Nagoya 464-8602 (Japan); Suzuki, Ryotaku [Department of Physics, Osaka City University,Osaka 558-8585 (Japan); Tanabe, Kentaro [Theory Center, Institute of Particles and Nuclear Studies, KEK,Tsukuba, Ibaraki, 305-0801 (Japan); Tanaka, Takahiro [Department of Physics, Kyoto University,Kyoto, 606-8502 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto, 606-8502 (Japan)

    2015-06-23

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this ‘black hole surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’, i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  9. Universal dimer–dimer scattering in lattice effective field theory

    Directory of Open Access Journals (Sweden)

    Serdar Elhatisari

    2017-05-01

    Full Text Available We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length aff and zero-range interaction, all properties of the system scale proportionally with aff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length add/aff=0.618(30 and effective range rdd/aff=−0.431(48. This result for the effective range is the first calculation with quantified and controlled systematic errors. We also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.

  10. Lattice effective field theory for medium-mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lähde, Timo A., E-mail: t.laehde@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Epelbaum, Evgeny; Krebs, Hermann [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); JARA – High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany); Rupak, Gautam [Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762 (United States)

    2014-05-01

    We extend Nuclear Lattice Effective Field Theory (NLEFT) to medium-mass nuclei, and present results for the ground states of alpha nuclei from {sup 4}He to {sup 28}Si, calculated up to next-to-next-to-leading order (NNLO) in the EFT expansion. This computational advance is made possible by extrapolations of lattice data using multiple initial and final states. For our soft two-nucleon interaction, we find that the overall contribution from multi-nucleon forces must change sign from attractive to repulsive with increasing nucleon number. This effect is not produced by three-nucleon forces at NNLO, but it can be approximated by an effective four-nucleon interaction. We discuss the convergence of the EFT expansion and the broad significance of our findings for future ab initio calculations.

  11. The scharnhorst effect: Superluminality and causality in effective field theories

    Science.gov (United States)

    de Clark, Sybil Gertrude

    We present two re-derivations of the Scharnhorst effect. The latter was first obtained in 1990 by Klaus Scharnhorst, soon followed by Gabriel Barton, and consists in the theoretical prediction that the phase velocity of photons propagating in a Casimir vacuum normal to the plates would be larger than c. (Abstract shortened by ProQuest.).

  12. Landau-Migdal theory of interacting Fermi systems: a framework for effective theories in nuclear structure physics

    Energy Technology Data Exchange (ETDEWEB)

    Gruemmer, Frank; Speth, Josef [Institut fuer Kernphysik (Theorie) FZ-Juelich, D52425 Juelich (Germany)

    2006-07-15

    We review Migdal's theory of finite Fermi systems and its application to the structure of nuclei. The theory is an extension of Landau's theory of interacting Fermi systems. In the first part the basic formulae are derived within the many-body Green functions approach. The theory is applied to isovector electric giant resonances in medium and heavy mass nuclei. The parameterizations of the renormalized effective ph-interaction and the effective operators are discussed. It is shown that the number of free parameters is restricted by conservation laws. We also present an extension of Migdal's theory, where the low-lying phonons are considered in a consistent manner. The extended theory is again applied to the same isovector electric giant resonances and to the analysis of ({alpha}, {alpha}') reaction data. We point out that the extended theory is the appropriate framework for self-consistent nuclear structure calculations starting from effective Lagrangians and Hamiltonians. (topical review)

  13. Toward a general theory of momentum-like effects.

    Science.gov (United States)

    Hubbard, Timothy L

    2017-08-01

    The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action. Copyright © 2017. Published by Elsevier B.V.

  14. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  15. Monte Carlo studies of dynamical compactification of extra dimensions in a model of nonperturbative string theory

    CERN Document Server

    Anagnostopoulos, Konstantinos N; Nishimura, Jun

    2015-01-01

    The IIB matrix model has been proposed as a non-perturbative definition of superstring theory. In this work, we study the Euclidean version of this model in which extra dimensions can be dynamically compactified if a scenario of spontaneously breaking the SO(10) rotational symmetry is realized. Monte Carlo calculations of the Euclidean IIB matrix model suffer from a very strong complex action problem due to the large fluctuations of the complex phase of the Pfaffian which appears after integrating out the fermions. We employ the factorization method in order to achieve effective sampling. We report on preliminary results that can be compared with previous studies of the rotational symmetry breakdown using the Gaussian expansion method.

  16. Non-Perturbative approach to the distribution of zeros of the S-matrix of lossy chaotic cavities and its applications to coherent perfect absorption

    Science.gov (United States)

    Fyodorov, Yan; Suwunnarat, Suwun; Kottos, Tsampikos

    We employ the Random Matrix Theory framework to calculate the scattering matrix zeros of a chaotic cavity with a localized absorber embedded in it. Our approach extends beyond the perturbative weak-coupling limit of the cavity with the continuum via a finite number M of open channels and provides an insight for the optimal amount of loss needed to realize a chaotic coherent perfect absorbing trap. Our theoretical results are tested against and found to be in excellent agreement with simulations for two types of chaotic systems: a complex network of coupled resonators and quantum graphs with one absorption center. (S.S and T.K) acknowledge partial support from AFOSR MURI FA9550-14-1-0037 and NSF-EFRI 1641109.

  17. Minimal flavour violation an effective field theory approach

    CERN Document Server

    D'Ambrosio, G.; Isidori, G.; Strumia, A.

    2002-01-01

    We present a general analysis of extensions of the Standard Model which satisfy the criterion of Minimal Flavour Violation (MFV). We define this general framework by constructing a low-energy effective theory containing the Standard Model fields, with one or two Higgs doublets and, as the only source of SU(3)^5 flavour symmetry breaking, the background values of fields transforming under the flavour group as the ordinary Yukawa couplings. We analyse present bounds on the effective scale of dimension-six operators, which range between 1 and 10 TeV, with the most stringent constraints imposed by B -> X_s gamma. In this class of theories, it is possible to relate predictions for FCNC processes in B physics to those in K physics. We compare the sensitivity of various experimental searches in probing the hypothesis of MFV. Within the two-Higgs-doublet scenario, we develop a general procedure to obtain all tan(beta)-enhanced Higgs-mediated FCNC amplitudes, discussing in particular their impact in B -> l^+l^-, Delta...

  18. The Last Gasp of Dark Matter Effective Theory

    CERN Document Server

    Bruggisser, Sebastian; Urbano, Alfredo

    2016-01-01

    We discuss an interesting class of models, based on strongly coupled Dark Matter (DM), where sizable effects can be expected in LHC missing energy (MET) searches, compatibly with a large separation of scales. In this case, an effective field theory (EFT) is appropriate (and sometimes necessary) to describe the most relevant interactions at the LHC. The selection rules implied by the structure of the new strong dynamics shape the EFT in an unusual way, revealing the importance of higher-derivative interactions previously ignored. We compare indications from relic density and direct detection experiments with consistent LHC constraints, and asses the relative importance of the latter. Our analysis provides an interesting and well-motivated scenario to model MET at the LHC in terms of a handful of parameters.

  19. Vortex precession in trapped superfluids from effective field theory

    Science.gov (United States)

    Esposito, Angelo; Krichevsky, Rafael; Nicolis, Alberto

    2017-09-01

    We apply a recently developed effective string theory for vortex lines to the case of two-dimensional trapped superfluids. We do not assume a perturbative microscopic description for the superfluid, but only a gradient expansion for the long-distance hydrodynamical description and for the trapping potential. For any regular trapping potential, we compute the spatial dependence of the superfluid density and the orbital frequency and trajectory of an off-center vortex. Our results are fully relativistic and in the nonrelativistic limit reduce to known results based on the Gross-Pitaevskii model. In our formalism, the leading effect in the nonrelativistic limit arises from two simple Feynman diagrams in which the vortex interacts with the trapping potential through the exchange of hydrodynamical modes.

  20. Radiative capture reactions in lattice effective field theory.

    Science.gov (United States)

    Rupak, Gautam; Lee, Dean

    2013-07-19

    We outline a general method for computing nuclear capture reactions on the lattice. The method consists of two major parts. In this study we detail the second part which consists of calculating an effective two-body capture reaction on the lattice at finite volume. We solve this problem by calculating the two-point Green's function using an infrared regulator and the capture amplitude to a two-body bound state. We demonstrate the details of this method by calculating on the lattice the leading M1 contribution to the radiative neutron capture on proton at low energies using pionless effective field theory. We find good agreement with exact continuum results. The approach we outline here can be used in a wide range of applications including few-body reactions in cold atomic systems and hadronic reactions in lattice quantum chromodynamics.

  1. FCNC Effects in a Minimal Theory of Fermion Masses

    CERN Document Server

    Buras, Andrzej J; Pokorski, Stefan; Ziegler, Robert

    2011-01-01

    As a minimal theory of fermion masses we extend the SM by heavy vectorlike fermions, with flavor-anarchical Yukawa couplings, that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles. This model can be regarded as an effective description of the fermionic sector of a large class of existing flavor models and thus might serve as a useful reference frame for a further understanding of flavor hierarchies in the SM. Already such a minimal framework gives rise to FCNC effects through exchange of massive SM bosons whose couplings to the light fermions get modified by the mixing. We derive general formulae for these corrections and discuss the bounds on the heavy fermion masses. Particularly stringent bounds, in a few TeV range, come from the corrections to the Z couplings.

  2. The last gasp of dark matter effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Bruggisser, Sebastian [DESY,Notkestrasse 85, D-22607 Hamburg (Germany); Riva, Francesco; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-11-10

    We discuss an interesting class of models, based on strongly coupled Dark Matter (DM), where sizable effects can be expected in LHC missing energy (MET) searches, compatibly with a large separation of scales. In this case, an effective field theory (EFT) is appropriate (and sometimes necessary) to describe the most relevant interactions at the LHC. The selection rules implied by the structure of the new strong dynamics shape the EFT in an unusual way, revealing the importance of higher-derivative interactions previously ignored. We compare indications from relic density and direct detection experiments with consistent LHC constraints, and asses the relative importance of the latter. Our analysis provides an interesting and well-motivated scenario to model MET at the LHC in terms of a handful of parameters.

  3. The last gasp of Dark Matter effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Bruggisser, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riva, Francesco; Urbano, Alfredo [CERN, Geneva (Switzerland). Theoretical Physics Dept.

    2016-07-15

    We discuss an interesting class of models, based on strongly coupled Dark Matter (DM), where sizable effects can be expected in LHC missing energy (MET) searches, compatibly with a large separation of scales. In this case, an effective field theory (EFT) is appropriate (and sometimes necessary) to describe the most relevant interactions at the LHC. The selection rules implied by the structure of the new strong dynamics shape the EFT in an unusual way, revealing the importance of higher-derivative interactions previously ignored. We compare indications from relic density and direct detection experiments with consistent LHC constraints, and asses the relative importance of the latter. Our analysis provides an interesting and well-motivated scenario to model MET at the LHC in terms of a handful of parameters.

  4. Stakeholder Theory As an Ethical Approach to Effective Management: applying the theory to multiple contexts

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Harrison

    2015-09-01

    Full Text Available Objective – This article provides a brief overview of stakeholder theory, clears up some widely held misconceptions, explains the importance of examining stakeholder theory from a variety of international perspectives and how this type of research will advance management theory, and introduces the other articles in the special issue. Design/methodology/approach – Some of the foundational ideas of stakeholder theory are discussed, leading to arguments about the importance of the theory to management research, especially in an international context. Findings – Stakeholder theory is found to be a particularly useful perspective for addressing some of the important issues in business from an international perspective. It offers an opportunity to reinterpret a variety of concepts, models and phenomena across may different disciplines. Practical implications – The concepts explored in this article may be applied in many contexts, domestically and internationally, and across business disciplines as diverse as economics, public administration, finance, philosophy, marketing, law, and management. Originality/value – Research on stakeholder theory in an international context is both lacking and sorely needed. This article and the others in this special issue aim to help fill that void.

  5. Application of graph theory to cost-effective fire protection of chemical plants during domino effects

    NARCIS (Netherlands)

    Khakzad Rostami, N.; Landucci, G; Reniers, G.L.L.M.E.

    2016-01-01

    In the present study, we have introduced a methodology based on graph theory and multicriteria decision analysis for cost-effective fire protection of chemical plants subject to fire-induced domino effects. By modeling domino effects in chemical plants as a directed graph, the graph centrality

  6. Electron scattering from neon via effective range theory

    Energy Technology Data Exchange (ETDEWEB)

    Fedus, Kamil, E-mail: kamil@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun (Poland)

    2014-07-01

    Elastic cross-sections for electron scattering on neon from 0 energy up to 16 eV are analyzed by an analytical approach to the modified effective range theory (MERT). It is shown that energy and angular variations of elastic differential, integral and momentum transfer cross sections can be accurately parameterized by six MERT coefficients up to the energy threshold for the first Feshbach resonance. MERT parameters are determined empirically by numerical comparison with large collection of available experimental data of elastic total (integral) cross-sections. The present analysis is validated against numerous electron beams and swarm experiments. The comparison of derived MERT parameters with those found for other noble gases, helium, argon and krypton, is done. The derived scattering length (for the s-partial wave) in neon, 0.227a0, agrees well with recent theories; it is small but, differently from Ar and Kr, still positive. Analogue parameters for the p-wave and the d-wave are negative and positive respectively for all the four gases compared. (author)

  7. Applications of Effective Field Theory Techniques to Jet Physics

    Science.gov (United States)

    Freedman, Simon M.

    In this thesis we study jet production at large energies from leptonic collisions. We use the framework of effective theories of Quantum Chromodynamics (QCD) to examine the properties of jets and systematically improve calculations. We first develop a new formulation of soft-collinear effective theory (SCET), the appropriate effective theory for jets. In this formulation, soft and collinear degrees of freedom are described using QCD fields that interact with each other through light-like Wilson lines in external currents. This formulation gives a more intuitive picture of jet processes than the traditional formulation of SCET. In particular, we show how the decoupling of soft and collinear degrees of freedom that occurs at leading order in power counting is explicit to next-to-leading order and likely beyond. We then use this formulation to write the thrust rate in a factorized form at next-to-leading order in the thrust parameter. The rate involves an incomplete sum over final states due to phase space cuts that is enforced by a measurement operator. Subleading corrections require matching onto not only the next-to-next-to leading order SCET operators, but also matching onto subleading measurement operators. We derive the appropriate hard, jet, and soft functions and show they reproduce the expected subleading thrust rate. Next, we renormalize the next-to-leading order dijet operators used for the subleading thrust rate. Constraints on matching coefficients from current conservation and reparametrization invariance are shown. We also discuss the subtleties involved in regulating the infrared divergences of the individual loop diagrams in order to extract the ultraviolet divergences. The results can be used to increase the theoretical precision of the thrust rate. Finally, we study the (exclusive) k⊥ and C/A jet algorithms in SCET. Regularizing the virtualities and rapidities of the individual graphs, we are able to write the O(alpha s) dijet cross section as the

  8. Using organization theory to understand the determinants of effective implementation of worksite health promotion programs

    National Research Council Canada - National Science Library

    Weiner, Bryan J; Lewis, Megan A; Linnan, Laura A

    .... However, no integrated theory of implementation has emerged from this research. This article describes a theory of the organizational determinants of effective implementation of comprehensive worksite health promotion programs...

  9. Aspects Of Yang-mills Theory: Solitons, Dualities And Spin Chains

    CERN Document Server

    Freyhult, L K

    2004-01-01

    One of the still big problems in the Standard Model of particle physics is the problem of confinement. Quarks or other coloured particles have never been observed in isolation. Quarks are only observed in colour neutral bound states. The strong interactions are described using a Yang-Mills theory. These type of theories exhibits asymptotic freedom, i.e. the coupling is weak at high energies. This means that the theory is perturbative at high energies only. Understanding quark confinement requires knowledge of the non perturbative regime. One attempt has been to identify the proper order parameters for describing the low energy limit and then to write down effective actions in terms of these order parameters. We discuss one possible scenario for confinement and the effective models constructed with this as inspiration. Further we discuss solitons in these models and their properties. Yang-Mills theory has also become important in the context of string theory. According to the AdS/CFT correspondence string theo...

  10. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeno, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, W.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-01

    We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  11. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  12. Nuclear Parity-Violation in Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck

    2005-02-21

    We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.

  13. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  14. Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models

    Directory of Open Access Journals (Sweden)

    May R. D.

    2011-01-01

    Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.

  15. Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-01-01

    Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g-anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.

  16. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    CERN Document Server

    De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-01-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...

  17. Breaking discrete symmetries in the effective field theory of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cannone, Dario [Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova,Padova, I-35131 (Italy); INFN, Sezione di Padova,Padova, I-35131 (Italy); Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics,Pohang, 790-784 (Korea, Republic of); Department of Physics,Postech, Pohang, 790-784 (Korea, Republic of); Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)

    2015-08-03

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  18. Effective field theory for long-range properties of bottomonium

    Science.gov (United States)

    Krein, Gastão

    2017-03-01

    In this communication we present selected results from a recent study [N. Brambilla, G. Krein, J. Tarrús Castellà and A. Vairo, Phys. Rev. D 93, 054002 (2016)] of long-range properties of bottomonium. An analytical expression for the chromopolarizability of 1S bottomonium states is derived within the framework of potential nonrelativistic QCD (pNRQCD). Next, after integrating out the ultrasoft scale associated with the binding energy of bottomonium, the QCD trace anomaly is used to obtain the two-pion production amplitude for the chromopolarizability operator and the result is matched to a chiral effective field theory having bottomonium states and pions as degrees of freedom. We present results for the leading chiral logarithm correction to the mass of the 1S bottomonium and the van der Waals potential between two bottomonium states.

  19. Towards an Effective THeory Of Structure formation (ETHOS)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Although there is substantial gravitational evidence for the existence of dark matter, its particle nature remains one of the biggest mysteries in modern physics. The favourite theoretical model, Cold Dark Matter (CDM), assumes that non-gravitational dark matter interactions are irrelevant for galaxy formation and evolution. Surprisingly, current astronomical observations allow significant departures from the CDM hypothesis that have a relevant impact on our understanding of how galaxies form and evolve. Moreover, the observed properties of the smallest galaxies have been a consistent challenge for the CDM model. In this talk, I will argue that to explain galaxy formation and evolution in the broadest sense, an effective dark matter theory must contain a wider range of dark matter particle physics. I will describe the first steps we have taken towards developing ETHOS and present some of its applications.

  20. Does theory influence the effectiveness of health behavior interventions? Meta-analysis.

    Science.gov (United States)

    Prestwich, Andrew; Sniehotta, Falko F; Whittington, Craig; Dombrowski, Stephan U; Rogers, Lizzie; Michie, Susan

    2014-05-01

    To systematically investigate the extent and type of theory use in physical activity and dietary interventions, as well as associations between extent and type of theory use with intervention effectiveness. An in-depth analysis of studies included in two systematic reviews of physical activity and healthy eating interventions (k = 190). Extent and type of theory use was assessed using the Theory Coding Scheme (TCS) and intervention effectiveness was calculated using Hedges's g. Metaregressions assessed the relationships between these measures. Fifty-six percent of interventions reported a theory base. Of these, 90% did not report links between all of their behavior change techniques (BCTs) with specific theoretical constructs and 91% did not report links between all the specified constructs with BCTs. The associations between a composite score or specific items on the TCS and intervention effectiveness were inconsistent. Interventions based on Social Cognitive Theory or the Transtheoretical Model were similarly effective and no more effective than interventions not reporting a theory base. The coding of theory in these studies suggested that theory was not often used extensively in the development of interventions. Moreover, the relationships between type of theory used and the extent of theory use with effectiveness were generally weak. The findings suggest that attempts to apply the two theories commonly used in this review more extensively are unlikely to increase intervention effectiveness. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Hamiltonian truncation approach to quenches in the Ising field theory

    Science.gov (United States)

    Rakovszky, T.; Mestyán, M.; Collura, M.; Kormos, M.; Takács, G.

    2016-10-01

    In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1 + 1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.

  2. The Effect of Religion on Ethnic Tolerance in Malaysia: The Application of Rational Choice Theory (RCT) and the Theory of Planned Behaviour (TPB)

    Science.gov (United States)

    Idris, Fazilah; Abdullah, Mohd Richard Neles; Ahmad, Abdul Razak; Mansor, Ahmad Zamri

    2016-01-01

    There has been little research done on explaining the ethnic tolerance behavior from the perspective of sociological theories. The authors chose rational choice theory and the theory of planned behavior as they are widely used in explaining the human social behaviour. In this article, the theories are used to explain the effects of religion on…

  3. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  4. Theory of nitrogen doping of carbon nanoribbons: edge effects.

    Science.gov (United States)

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Boguslawski, Piotr; Bernholc, J

    2012-01-07

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is a deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.

  5. Effects of collisions on conservation laws in gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Watanabe, T.-H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2015-08-15

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.

  6. Cognitive Load Theory and the Effects of Transient Information on the Modality Effect

    Science.gov (United States)

    Leahy, Wayne; Sweller, John

    2016-01-01

    Based on cognitive load theory and the "transient information effect," this paper investigated the "modality effect" while interpreting a contour map. The length and complexity of auditory and visual text instructions were manipulated. Experiment 1 indicated that longer audio text information within a presentation was inferior…

  7. New Methods in Supersymmetric Theories and Emergent Gauge Symmetry

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.

  8. Exploring Bayesian model selection methods for effective field theory expansions

    Science.gov (United States)

    Schaffner, Taylor; Yamauchi, Yukari; Furnstahl, Richard

    2017-09-01

    A fundamental understanding of the microscopic properties and interactions of nuclei has long evaded physicists due to the complex nature of quantum chromodynamics (QCD). One approach to modeling nuclear interactions is known as chiral effective field theory (EFT). Today, the method's greatest limitation lies in the approximation of interaction potentials and their corresponding uncertainties. Computing EFT expansion coefficients, known as Low-Energy Constants (LECs), from experimental data reduces to a problem of statistics and fitting. In the conventional approach, the fitting is done using frequentist methods that fail to evaluate the quality of the model itself (e.g., how many orders to use) in addition to its fit to the data. By utilizing Bayesian statistical methods for model selection, the model's quality can be taken into account, providing a more controlled and robust EFT expansion. My research involves probing different Bayesian model checking techniques to determine the most effective means for use with estimating the values of LECs. In particular, we are using model problems to explore the Bayesian calculation of an EFT expansion's evidence and an approximation to this value known as the WAIC (Widely Applicable Information Criterion). This work was supported in part by the National Science Foundation under Grant No. PHY-1306250.

  9. BOOK REVIEW: String Theory in a Nutshell

    Science.gov (United States)

    Skenderis, Kostas

    2007-11-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  10. Effect of curriculum based on theory of planned behavior, on components of theory in patients with hypertension

    Directory of Open Access Journals (Sweden)

    Ali Hoseini Soorand

    2015-10-01

    Full Text Available Background and Aim: Hypertension is one of the most common and important non-communicable diseases and health problems in the world today nevertheless, it is preventable and controllable. Theory of Planned Behavior is one of the major theories that explains the process of adopting healthy behaviors. The present study aimed  atat determining the effect of the theory on components of theory in patients with hypertension. Materials and Methods:. This randomized controlled field trial study was done on 110 patients with hypertension in Zirkouh city who were divided into two equal groups. Validity and reliability of the questionnaire used were determined through face and content validity and through Cronbach’s alpha and test-retest, respectively. The obtained data was analyzed by means of SPSS software (V: 16 using statistical t-test and repeated analysis of variance. Results: Both groups were similar regarding  mean  score of  the theory components before intervention, but after the intervention the average scores of the experimental group increased. The attitude increased from 48.7 to  64.1, subjective norm from 34.9 to 43.1, perceived behavioral control from 33.8 to 43, intention behavior from 33.9 to 41.09 and behavior from 65.6 to 82.45 and these differences were statistically significant (P<0.001. However, nosignificant difference was observed in the control group. Conclusion: Regarding the positive effect of education based on The Theory of Planned Behavior in controlling hypertension, planning of a curriculum  based on this theory is recommended.

  11. Inadequate Evidence for Multiple Intelligences, Mozart Effect, and Emotional Intelligence Theories

    Science.gov (United States)

    Waterhouse, Lynn

    2006-01-01

    I (Waterhouse, 2006) argued that, because multiple intelligences, the Mozart effect, and emotional intelligence theories have inadequate empirical support and are not consistent with cognitive neuroscience findings, these theories should not be applied in education. Proponents countered that their theories had sufficient empirical support, were…

  12. A renormalizable effective theory for leading logarithms in ChPT

    OpenAIRE

    Bissegger, Moritz; Fuhrer, Andreas

    2007-01-01

    We argue that the linear sigma model at small external momenta is an effective theory for the leading logarithms of chiral perturbation theory. Based on this assumption an attempt is made to sum these leading logarithms using the standard renormalization group techniques, which are valid in renormalizable quantum field theories.

  13. The Validity of Hersey and Blanchard's Theory of Leader Effectiveness.

    Science.gov (United States)

    Hambleton, Ronald K.; Gumpert, Ray

    1982-01-01

    Examined the use and validity of Hersey and Blanchard's Situational Leadership Theory. Results supported the validity of the theory. Found a definite and significant relationship between the leadership style of a manager in particular situations and managers' perceptions of subordinate job performance. No causal relationship was found. (Author/RC)

  14. Alternative Tests of Quarkonium Production Theory Using Jets

    Science.gov (United States)

    Makris, Yiannis

    In this thesis I discuss an alternative approach for investigating quarkonium production in hadron colliders. I present a complete framework for developing observables for studies of charmonium states produced within a jet. My work is based on the use of effective field theories of quantum chromodynamics that allow for the approximate factorization of jet cross sections in perturbative calculable terms and universal non-perturbative functions that are extracted from data. Particularly in this thesis I explore the factorization approach of non-relativistic quantum chromodynamics and soft-collinear effective theory. The fragmenting jet functions play central role in factorization theorems for cross sections for identified hadrons within jets. This cross sections can depend on the hadron-jet energy ratio and possibly on other jet observables. I expand this concept to jet-shape observables known as angularities and introduce the transverse momentum dependent fragmenting jet functions. Applications of these advanced methods to J/upsilon production from gluon fragmentation in electron-positron annihilation are presented and I develop the tools for expanding this work in hadron colliders. Additionally, I compare predictions for J/upsilon production in jets, based on the framework of fragmenting jet functions, against recent experimental data from the LHCb collaboration.

  15. Generalized uncertainty principle as a consequence of the effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam (Netherlands); Nassar, Ali, E-mail: anassar@zewailcity.edu.eg [Department of Physics, Zewail City of Science and Technology, 12588, Giza (Egypt)

    2017-02-10

    We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  16. Kählerian effective potentials for Chern–Simons-matter theories

    Directory of Open Access Journals (Sweden)

    J.M. Queiruga

    2016-01-01

    Full Text Available In this paper, we will calculate the effective potential for a theory of multiple M2-branes. As the theory of multiple M2-branes can be described by a Chern–Simons-matter theory, this will be done by calculating the Kählerian effective potential for a Chern–Simons-matter theory. This calculation will be performed in N=1 superspace formalism. We will initially study an Abelian Chern–Simons-matter theory, and then generalize those results to the full non-Abelian Chern–Simons-matter theory. We will obtain explicit expressions for the superpropagators for this theory. These superpropagators will be used to calculate the one-loop effective potential.

  17. Type IIA flux compactifications. Vacua, effective theories and cosmological challenges

    Energy Technology Data Exchange (ETDEWEB)

    Koers, Simon

    2009-07-30

    In this thesis, we studied a number of type IIA SU(3)-structure compactifications with 06-planes on nilmanifolds and cosets, which are tractable enough to allow for an explicit derivation of the low energy effective theory. In particular we calculated the mass spectrum of the light scalar modes, using N = 1 supergravity techniques. For the torus and the Iwasawa solution, we have also performed an explicit Kaluza-Klein reduction, which led to the same result. For the nilmanifold examples we have found that there are always three unstabilized moduli corresponding to axions in the RR sector. On the other hand, in the coset models, except for SU(2) x SU(2), all moduli are stabilized. We discussed the Kaluza-Klein decoupling for the supersymmetric AdS vacua and found that it requires going to the Nearly-Calabi Yau limited. We searched for non-trivial de Sitter minima in the original flux potential away from the AdS vacuum. Finally, in chapter 7, we focused on a family of three coset spaces and constructed non-supersymmetric vacua on them. (orig.)

  18. Effective field theory, electric dipole moments and electroweak baryogenesis

    Science.gov (United States)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-03-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  19. Effective Field Theory of Fractional Quantized Hall Nematics

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Michael; /MIT, LNS; Nayak, Chetan; /Station Q, UCSB; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  20. Thickness and camber effects in slender wing theory

    Science.gov (United States)

    Plotkin, A.

    1983-01-01

    It is noted that the flow past thin slender wings with round leading edges can remain attached up to moderate values of angle of attack. In the low aspect ratio limit, the slender wing theory of Jones (1946) can therefore provide a simple analytical tool for studying this flow. First-order corrections to slender wing theory due to spanwise thickness and camber are developed. For wings of general planform, the validity and applicability of slender wing theory have recently been extended with the addition of chordwise and compressibility corrections by Levin and Seginer (1982). It is believed that similar corrections can be applied to the present results.

  1. Critical properties of effective gauge theories for novel quantum fluids

    Energy Technology Data Exchange (ETDEWEB)

    Smoergrav, Eivind

    2005-07-01

    Critical properties of U(1) symmetric gauge theories are studied in 2+1 dimensions, analytically through duality transformations and numerically through Monte Carlo simulations. Physical applications range from quantum phase transitions in two dimensional insulating materials to superfluid and superconducting properties of light atoms such as hydrogen under extreme pressure. A novel finite size scaling method, utilizing the third moment M{sub 3} of the action, is developed. Finite size scaling analysis of M{sub 3} yields the ratio (1 + alpha)/ny and 1/ny separately, so that critical exponents alpha and ny can be obtained independently without invoking hyperscaling. This thesis contains eight research papers and an introductory part covering some basic concepts and techniques. Paper 1: The novel M{sub 3} method is introduced and employed together with Monte Carlo simulations to study the compact Abelian Higgs model in the adjoint representation with q = 2. Paper 2: We study phase transitions in the compact Abelian Higgs model for fundamental charge q = 2; 3; 4; 5. Various other models are studied to benchmark the M{sub 3} method. Paper 3: This is a proceeding paper based on a talk given by F. S. Nogueira at the Aachen EPS HEP 2003 conference. A review of the results from Paper 1 and Paper 2 on the compact Abelian Higgs model together with some results on q = 1 obtained by F. S. Nogueira, H. Kleinert, and A. Sudboe is given. Paper 4: The effect of a Chern-Simons (CS) term in the phase structure of two Abelian gauge theories is studied. Paper 5: We study the critical properties of the N-component Ginzburg-Landau theory. Paper 6: We consider the vortices in the 2-component Ginzburg-Landau model in a finite but low magnetic field. The ground state is a lattice of co centered vortices in both order parameters. We find two novel phase transitions. i) A 'vortex sub-lattice melting' transition where vortices in the field with lowest phase stiffness (&apos

  2. Non-Perturbative Aspects of Thermal QCD

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeff [San Francisco State Univ., CA (United States); Golterman, Maarten F. l. [San Francisco State Univ., CA (United States)

    2015-09-30

    This report summarizes research in theoretical high energy physics carried out under grant support by Mithat Unsal, Jeff Greensite and Maarten Golterman, together with a list of publications generated under this grant.

  3. Selected Issues in Non-Perturbative QCD

    Directory of Open Access Journals (Sweden)

    Trentadue Luca

    2014-01-01

    Full Text Available A short selection of the topics presented and discussed at theWorkshop on the long term strategy of INFN-CSN1: The next 10 Years of accelerator based esperiments. Isola d’Elba, May 21-24, 2014 - Working group “NP-QCD”

  4. Towards Working Technicolor: Effective Theories and Dark Matter

    DEFF Research Database (Denmark)

    Bjarke Gudnason, Sven; Kouvaris, Christoforos; Sannino, Francesco

    2006-01-01

    A fifth force, of technicolor type, responsible for breaking the electroweak theory is an intriguing extension of the Standard Model. Recently new theories have been shown to feature walking dynamics for a very low number of techniflavors and are not ruled out by electroweak precision measurement...... technicolor interactions. There are hypercharge assignments for the techniquarks which renders one of the technibaryons electrically neutral. We investigate the cosmological implications of this scenario and provide a component of dark matter....

  5. Nuclear theory summer meeting on ERHIC

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.; Venugopalan, R.

    2000-06-26

    The eRHIC BNL summer meeting was held at BNL from June 26 to July 14, 2000. The meeting was very informal with only two talks a day and with ample time for discussions and collaborations. Several of the theory talks focused on the issue of saturation of parton distributions at small x--whether screening effects have already been seen at HERA, the relation of saturation to shadowing, and on the various signatures of a proposed novel state of matter--the Colored Glass Condensate--that may be observed at eRHIC. A related topic that was addressed was that of quantifying twist four effects, and on the relevance of these for studies of energy loss. Other issues addressed were coherence effects in vector meson production, anti-quark distributions in nuclei, and the relevance of saturation for heavy ion collisions. There were, also, talks on the Pomeron--the relevance of instantons and the non-perturbative gluon condensate to constructing a Pomeron. On the spin physics side, there were talks on predictions for inclusive distributions at small x. There were also talks on Skewed Parton Distributions and Deeply Virtual Compton Scattering. Though most of the talks were theory talks, there were also several important experimental contributions. A preliminary detector design for eRHIC was presented. Studies for semi-inclusive measurements at eRHIC were also presented. The current status of pA scattering studies at RHIC was also discussed. The eRHIC summer meeting provided a vigorous discussion of the current status of eRHIC studies. It is hoped that this document summarizing these discussions will be of use to all those interested in electron nucleus and polarized electron-polarized proton studies.

  6. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    DEFF Research Database (Denmark)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing

    2016-01-01

    While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...... directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum...

  7. Psychological theory and pedagogical effectiveness: the learning promotion potential framework.

    Science.gov (United States)

    Tomlinson, Peter

    2008-12-01

    After a century of educational psychology, eminent commentators are still lamenting problems besetting the appropriate relating of psychological insights to teaching design, a situation not helped by the persistence of crude assumptions concerning the nature of pedagogical effectiveness. To propose an analytical or meta-theoretical framework based on the concept of learning promotion potential (LPP) as a basis for understanding the basic relationship between psychological insights and teaching strategies, and to draw out implications for psychology-based pedagogical design, development and research. This is a theoretical and meta-theoretical paper relying mainly on conceptual analysis, though also calling on psychological theory and research. Since teaching consists essentially in activity designed to promote learning, it follows that a teaching strategy has the potential in principle to achieve particular kinds of learning gains (LPP) to the extent that it embodies or stimulates the relevant learning processes on the part of learners and enables the teacher's functions of on-line monitoring and assistance for such learning processes. Whether a teaching strategy actually does realize its LPP by way of achieving its intended learning goals depends also on the quality of its implementation, in conjunction with other factors in the situated interaction that teaching always involves. The core role of psychology is to provide well-grounded indication of the nature of such learning processes and the teaching functions that support them, rather than to directly generate particular ways of teaching. A critically eclectic stance towards potential sources of psychological insight is argued for. Applying this framework, the paper proposes five kinds of issue to be attended to in the design and evaluation of psychology-based pedagogy. Other work proposing comparable ideas is briefly reviewed, with particular attention to similarities and a key difference with the ideas of Oser

  8. Effects of conformational distributions on sigma profiles in COSMO theories.

    Science.gov (United States)

    Wang, Shu; Stubbs, John M; Siepmann, J Ilja; Sandler, Stanley I

    2005-12-15

    The charge density or sigma profile of a solute molecule is an essential component in COSMO (conductor-like screen model) based solvation theories, and its generation depends on the molecular conformation used. The usual procedure is to determine the conformation of an isolated molecule, and assume that this is unchanged when the molecule is placed in solution. In this paper, the conformations of 1-hexanol and 2-methoxy-ethanol in both the liquid and vapor phases obtained from Gibbs ensemble simulation and from an isolated-molecule quantum DFT optimization are used to determine the effect of realistic conformation differences on COSMO-based properties predictions. In particular, the vapor pressure at the normal boiling temperature and the binary mixture VLE (vapor-liquid equilibrium) predictions obtained using different conformations are investigated. The results show that the sigma profile for 1-hexanol varies only slightly using the different conformations, while the sigma profile of 2-methoxy-ethanol shows a significant difference between the liquid and vapor phases. Consequently, the vapor pressure predictions for 1-hexanol are similar regardless of the manner in which the conformation population was obtained, while there is a larger difference for 2-methoxy-ethanol depending on whether the liquid or vapor conformations from simulation or the DFT-optimized structure is used. These differences in predictions are seen to be largely due to differences in the ideal solvation energy term. In mixture VLE calculations involving 1-hexanol, we again see that there is little difference in the phase equilibrium predictions among the different conformations, while for the mixture with 2-methoxy-ethanol, the differences in the sigma profiles lead to a more noticeable, though not significant, difference in the phase equilibrium predictions.

  9. Classical theory of atom-surface scattering: The rainbow effect

    Science.gov (United States)

    Miret-Artés, Salvador; Pollak, Eli

    2012-07-01

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  10. Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaolun [Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States); Wu, Shao-Feng [Department of Physics, Shanghai University,Shanghai 200444 (China); Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States)

    2015-01-22

    We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.

  11. Cultural effects on the neural basis of theory of mind.

    Science.gov (United States)

    Kobayashi Frank, Chiyoko; Temple, Elise

    2009-01-01

    "Theory of mind" has been described as the ability to attribute and understand other people's desires and intentions as distinct from one's own. It has been found to develop as early as between 3 and 4 years old, with precursor abilities possibly developing much earlier. There has been debate about the extent to which the developmental trajectory of theory of mind may differ across cultures or language systems. Although very few neuroimaging studies have directly compared different groups from different culture and language systems, across studies of a number of cultural/language groups have been used to explore the neural correlates of theory of mind. A summary of these findings suggests that there may be both universal and culture or language-specific neural correlates related to theory of mind. These studies, while still preliminary in many ways, illustrate the importance of taking into account the cultural background of participants. Furthermore these results suggest that there may be important cultural influence on theory of mind and the neural correlates associated with this ability.

  12. A THEORY OF LEADERSHIP EFFECTIVENESS. MCGRAW-HILL SERIES IN MANAGEMENT.

    Science.gov (United States)

    FIEDLER, FRED E.

    CENTRAL TO THE THEORY OF LEADERSHIP EFFECTIVENESS OUTLINED HERE IS A CONTINGENCY MODEL, ACCORDING TO WHICH GROUP EFFECTIVENESS DEPENDS ON INTERACTION BETWEEN LEADERSHIP STYLES AND THE DEGREE TO WHICH SITUATIONS ENABLE LEADERS TO EXERT INFLUENCE. THE THEORY PREDICTS THAT A TASK-ORIENTED STYLE WILL BE THE BEST STYLE IN FAVORABLE LEADERSHIP…

  13. Effective mass theory of a two-dimensional quantum dot in the ...

    Indian Academy of Sciences (India)

    Effective mass theory; BenDaniel–Duke; quantum dot; electron; magnetic field. PACS Nos 73.21.La; 73.21. ... tronic structure is often understood on the basis of effective mass theory (EMT). In this paper, we use EMT to study the ..... [2] R C Ashoori, Nature (London) 379, 413 (1996). [3] Vijay A Singh and Luv Kumar, Am. J.

  14. Effects of Actor-Network Theory in Accounting Research

    DEFF Research Database (Denmark)

    Justesen, Lise Nederland; Mouritsen, Jan

    2011-01-01

    of a critical literature review and discussion. Findings – Since the early 1990s, actor-network theory, particularly the work of Bruno Latour, has inspired accounting researchers and led to a number of innovative studies of accounting phenomena. In particular, Latour's book, Science in Action, has been...... number of accounting papers that apply actor-network theory. A different sample might have given a somewhat different picture. Furthermore, it focuses on the influence of Latour's work and refrains from discussing how the writings of Michel Callon, John Law or other thinkers within the actor......Purpose – This paper aims to discuss how Bruno Latour's version of actor-network theory has influenced accounting research. It also seeks to show that Latour's writings contain unexplored potential that may inspire future accounting research. Design/methodology/approach – The paper takes the form...

  15. Time dependent density matrix theory and effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)

  16. Classroom Management: Sound Theory and Effective Practice. Fourth Edition

    Science.gov (United States)

    Tauber, Robert T.

    2007-01-01

    Educators need a balance between discipline theory and its practice in the classroom. This is especially important in today's educational climate, with its increased demands for teacher accountability. Tauber has designed this book for both those who are new to teaching and those who are already seasoned teachers, but who have had little, if any,…

  17. Bilingual Education Theory and Practice: Its Effectiveness and Parental Opinions.

    Science.gov (United States)

    Chavez, Linda; Amselle, Jorge

    1997-01-01

    Research studies fail to support bilingual education theory, despite Hispanic parents' extensive lobbying to have their children taught in Spanish. Many Hispanic parents now realize that bilingual education has not served their best interests. The vast majority of limited-English-proficiency students receive English-as-a-Second Language…

  18. 412 The Effects of Integrating Laboratory Work with Theory on ...

    African Journals Online (AJOL)

    User

    2010-10-17

    Oct 17, 2010 ... researcher-made instruments, Physics Practical Achievement Test (PPAT) and Physics Theory ... The Research Design used was the pre-test, post-test control group design. The design is structurally ... Achievement Test (PTAT). The instruments, PTAT and PPAT were given face-validation by four.

  19. Experiential Learning Theory as a Guide for Effective Teaching.

    Science.gov (United States)

    Murrell, Patricia H.; Claxton, Charles S.

    1987-01-01

    David Kolb's experiential learning theory involves a framework useful in designing courses that meet needs of diverse learners. Course designs providing systematic activities in concrete experience, reflective observations, abstract conceptualization, and active experimentation will be sensitive to students' learning styles while challenging…

  20. Effective Contraceptive Use: An Exploration of Theory-Based Influences

    Science.gov (United States)

    Peyman, N.; Oakley, D.

    2009-01-01

    The purpose of this study was to explore factors that influence oral contraceptive (OC) use among women in Iran using the Theory of Planned Behavior (TPB) and concept of self-efficacy (SE). The study sample consisted of 360 married OC users, aged 18-49 years recruited at public health centers of Mashhad, 900 km east of Tehran. SE had the strongest…

  1. Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function

  2. Effective Learning Environments in Relation to Different Learning Theories

    NARCIS (Netherlands)

    Guney, A.; Al, S.

    2012-01-01

    There are diverse learning theories which explain learning processes which are discussed within this paper, through cognitive structure of learning process. Learning environments are usually described in terms of pedagogical philosophy, curriculum design and social climate. There have been only just

  3. QCD on the Lattice: The Central Role of Effective Field Theory

    Science.gov (United States)

    El-Khadra, Aida X.

    Nonperturbative QCD effects are ubiquitous and affect not just processes studied in particle and nuclear physics, but also in astrophysics and cosmology. Lattice field theory is a general quantitative tool for the study of nonperturbative phenomena and has provided us with much insight into nonperturbative QCD effects. In these lectures I present an introduction to lattice QCD with emphasis on the methods used for calculations relevant to quark flavor physics. In lattice QCD, quantitative control over systematic errors is made possible with the use of effective field theories. I briefly review how the effective field theories arise and their relation to the sources of systematic error in lattice QCD.

  4. F-Theory - From Geometry to Physics and Back

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Compactifications of string theory have the potential to form a bridge between what we believe is a consistent quantum theory of gravity in 10 spacetime dimensions and observed physics in four dimensions. At the same time, beautiful results from mathematics, especially algebraic geometry, are directly linked to some of the key concepts in modern particle and quantum field theory. This theory colloquium will illustrate some of these ideas in the context of F-theory, which provides a non-perturbative formulation of a class of string compactifications in their geometric regime. Recent applications of F-theory range from very concrete suggestions to address known challenges in physics beyond the Standard Model to the 'physicalization of geometry' to the construction and investigations of strongly coupled quantum field theories in various dimensions. After reviewing examples of such applications we will conclude by demonstrating the close links between geometry and physics in F-theory via some new results on the r...

  5. Momentum dissipation and effective theories of coherent and incoherent transport

    Science.gov (United States)

    Davison, Richard A.; Goutéraux, Blaise

    2015-01-01

    We study heat transport in two systems without momentum conservation: a hydrodynamic system, and a holographic system with spatially dependent, massless scalar fields. When momentum dissipates slowly, there is a well-defined, coherent collective excitation in the AC heat conductivity, and a crossover between sound-like and diffusive transport at small and large distance scales. When momentum dissipates quickly, there is no such excitation in the incoherent AC heat conductivity, and diffusion dominates at all distance scales. For a critical value of the momentum dissipation rate, we compute exact expressions for the Green's functions of our holographic system due to an emergent gravitational self-duality, similar to electric/magnetic duality, and SL(2, ) symmetries. We extend the coherent/incoherent classification to examples of charge transport in other holographic systems: probe brane theories and neutral theories with non-Maxwell actions.

  6. A review of the findings and theories on surface size effects on visual attention

    DEFF Research Database (Denmark)

    Peschel, Anne Odile; Orquin, Jacob Lund

    2013-01-01

    that large objects are more likely to be fixated, receive more fixations, and are fixated faster than small objects, a comprehensive explanation of this effect is still lacking. To bridge the theoretical gap, we relate the findings from this review to three theories of surface size effects suggested...... in the literature: a linear model based on the assumption of random fixations (Lohse, 1997), a theory of surface size as visual saliency (Pieters et al., 2007), and a theory based on competition for attention (CA; Janiszewski, 1998). We furthermore suggest a fourth model – demand for attention – which we derive...... from the theory of CA by revising the underlying model assumptions. In order to test the models against each other, we reanalyze data from an eye tracking study investigating surface size and saliency effects on attention. The reanalysis revealed little support for the first three theories while...

  7. Effective spacetime understanding emergence in effective field theory and quantum gravity

    CERN Document Server

    Crowther, Karen

    2016-01-01

    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.

  8. Role of Instructional Theory in Authoring Effective and Efficient Learning Technologies.

    Science.gov (United States)

    Scandura, Joseph M.

    1996-01-01

    Major issues in instructional theory and the advantages of structural analysis for building instructional systems are discussed. Building on core technology and the structural learning theory, a research program is proposed which will enable efficient development of effective learning systems for industry and schools. Contains 66 references. (AEF)

  9. Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory.

    Science.gov (United States)

    Burgess, Cliff P

    2004-01-01

    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.

  10. The Effect Of The Materials Based On Multiple Intelligence Theory Upon The Intelligence Groups' Learning Process

    Science.gov (United States)

    Oral, I.; Dogan, O.

    2007-04-01

    The aim of this study is to find out the effect of the course materials based on Multiple Intelligence Theory upon the intelligence groups' learning process. In conclusion, the results proved that the materials prepared according to Multiple Intelligence Theory have a considerable effect on the students' learning process. This effect was particularly seen on the student groups of the musical-rhythmic, verbal-linguistic, interpersonal-social and naturalist intelligence.

  11. Influence of behavioral theory on fruit and vegetable intervention effectiveness among children: a meta-analysis.

    Science.gov (United States)

    Diep, Cassandra S; Chen, Tzu-An; Davies, Vanessa F; Baranowski, Janice C; Baranowski, Tom

    2014-01-01

    To test the hypotheses that interventions clearly based on theory, multiple theories, or a formal intervention planning process will be more effective in changing fruit and vegetable consumption among children than interventions with no behavioral theoretical foundation. Systematic review and meta-analysis. Identification of articles in PubMed, PsycInfo, Medline, Cochrane Collaborative database, and existing literature reviews and meta-analyses. Children aged 2-18 years. Change in fruit and/or vegetable consumption in dietary change interventions. Meta-analysis, meta-regression analysis, and summary reporting for articles. Predicating an intervention on behavioral theory had a small to moderate enhancement (P theory and non-theory interventions were 0.232 for fruit, 0.043 for vegetables, and 0.333 for fruit and vegetables combined. There was mixed support, however, for enhanced dietary change with multiple theories or a formal planning process. After controlling for study quality, theory use was related only to vegetable consumption (β = 0.373; P theory's influences on dietary behaviors to guide future interventions among children. More research is also needed to identify what may be effective practical- or experience-based procedures that complement theory, to incorporate into interventions. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  12. An effective field theory approach to two trapped particles

    OpenAIRE

    Stetcu, I.; Rotureau, J.; Barrett, B.R.; van Kolck, U.

    2010-01-01

    We discuss the problem of two particles interacting via short-range interactions within a harmonic-oscillator trap. The interactions are organized according to their number of derivatives and defined in truncated model spaces made from a bound-state basis. Leading-order (LO) interactions are iterated to all orders, while corrections are treated in perturbation theory. We show explicitly that next-to-LO and next-to-next-to-LO interactions improve convergence as the model space increases. In th...

  13. Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect

    CERN Document Server

    Fujita, Shigeji; Godoy, Salvador

    2009-01-01

    Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects

  14. Color constancy effects measurement of the Retinex theory

    Science.gov (United States)

    Marini, Daniele; Rizzi, Alessandro; Carati, Caterina

    1998-12-01

    Understanding chromatic adaptation is a necessary step to solve the color constancy problem for a variety of application purposes. Retinex theory justifies chromatic adaptation, as well as other color illusions, on visual perception principles. Based on the above theory, we have derived an algorithm to solve the color constancy problem and to simulate chromatic adaption. The evaluation of the result depends on the kind of applications considered. Since our purpose is to contribute to the problem of color rendering on computer system display for photorealistic image synthesis, we have devised a specific test approach. A virtual 'Mondrian' patchwork has been created by applying a rendering algorithm with a photorealistic light model to generate images under different light sources. Trichromatic values of the computer generated patches are the input data for the Retinex algorithm, which computes new color corrected patches. The Euclidean distance in CIELAB space, between the original and Retinex color corrected trichromatic values, has been calculated, showing that the Retinex computational model is very well suited to solve the color constancy problem without any information on the illuminant spectral distribution.

  15. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    Science.gov (United States)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  16. Waltz's Theory of Theory

    DEFF Research Database (Denmark)

    Wæver, Ole

    2009-01-01

    Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism and refle......Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism...... and reflectivism. Yet, ironically, there has been little attention to Waltz's very explicit and original arguments about the nature of theory. This article explores and explicates Waltz's theory of theory. Central attention is paid to his definition of theory as ‘a picture, mentally formed' and to the radical anti......-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory...

  17. 3D gravity with dust: classical and quantum theory

    CERN Document Server

    Husain, Viqar

    2015-01-01

    We study the Einstein gravity and dust system in three spacetime dimensions as an example of a non-perturbative quantum gravity model with local degrees of freedom. We derive the Hamiltonian theory in the dust time gauge and show that it has a rich class of exact solutions. These include the Ba\\~nados-Teitelboim-Zanelli black hole, static solutions with naked singularities and travelling wave solutions with dynamical horizons. We give a complete quantization of the wave sector of the theory, including a definition of a self-adjoint spacetime metric operator. This operator is used to demonstrate the quantization of deficit angle and the fluctuation of dynamical horizons.

  18. N=1 supersymmetric Yang-Mills theory on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Stefano

    2015-04-08

    Supersymmetry (SUSY) relates two classes of particles of our universe, bosons and fermions. SUSY is considered nowadays a fundamental development to explain many open questions about high energy physics. The N=1 super Yang-Mills (SYM) theory is a SUSY model that describes the interaction between gluons and their fermion superpartners called ''gluinos''. Monte Carlo simulations on the lattice are a powerful tool to explore the non-perturbative dynamics of this theory and to understand how supersymmetry emerges at low energy. This thesis presents new results and new simulations about the properties of N=1 SYM, in particular about the phase diagram at finite temperature.

  19. Becoming a CEO: an exploration of the theory and practice of effective organisational leadership

    OpenAIRE

    O'Keeffe, Niall

    2012-01-01

    This Thesis is an exploration of potential enhancement in effectiveness, personally, professionally and organisationally through the use of Theory as an Apparatus of Thought. Enhanced effectiveness was sought by the practitioner (Subject), while in transition to becoming Chief Executive of his organization. The introduction outlines the content and the structure of the University College Cork DBA. Essay One outlines what Theory is, what Adult Mental Development is and an exploration of Theo...

  20. Renormalization-group flow of the effective action of cosmological large-scale structures

    CERN Document Server

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...

  1. Tackling non-linearities with the effective field theory of dark energy and modified gravity

    Science.gov (United States)

    Frusciante, Noemi; Papadomanolakis, Georgios

    2017-12-01

    We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.

  2. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    Science.gov (United States)

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-09

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  3. Higgs-Yukawa model in chirally-invariant lattice field theory

    CERN Document Server

    Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji

    2013-01-01

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  4. Template Composite Dark Matter : SU(2) gauge theory with 2 fundamental flavours

    CERN Document Server

    Drach, Vincent; Pica, Claudio; Rantaharju, Jarno; Sannino, Francesco

    2015-11-13

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon exchange computing the electric polarizability of the DM candidate. Finally, we briefly discuss the viability of the model given the present experimental constraints.

  5. Theory of magnon-driven spin Seebeck effect

    NARCIS (Netherlands)

    Xiao, J.; Bauer, G.E.W.; Uchida, K.; Saitoh, E.; Maekawa, S.

    2010-01-01

    The spin Seebeck effect is a spin-motive force generated by a temperature gradient in a ferromagnet that can be detected via normal metal contacts through the inverse spin Hall effect [K. Uchida et al., Nature (London) 455, 778 (2008)]. We explain this effect by spin pumping at the contact that is

  6. arXiv Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady

    2017-02-03

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  7. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  8. I can do that: the impact of implicit theories on leadership role model effectiveness.

    Science.gov (United States)

    Hoyt, Crystal L; Burnette, Jeni L; Innella, Audrey N

    2012-02-01

    This research investigates the role of implicit theories in influencing the effectiveness of successful role models in the leadership domain. Across two studies, the authors test the prediction that incremental theorists ("leaders are made") compared to entity theorists ("leaders are born") will respond more positively to being presented with a role model before undertaking a leadership task. In Study 1, measuring people's naturally occurring implicit theories of leadership, the authors showed that after being primed with a role model, incremental theorists reported greater leadership confidence and less anxious-depressed affect than entity theorists following the leadership task. In Study 2, the authors demonstrated the causal role of implicit theories by manipulating participants' theory of leadership ability. They replicated the findings from Study 1 and demonstrated that identification with the role model mediated the relationship between implicit theories and both confidence and affect. In addition, incremental theorists outperformed entity theorists on the leadership task.

  9. Application of Graph Theory to Cost-Effective Fire Protection of Chemical Plants During Domino Effects.

    Science.gov (United States)

    Khakzad, Nima; Landucci, Gabriele; Reniers, Genserik

    2017-09-01

    In the present study, we have introduced a methodology based on graph theory and multicriteria decision analysis for cost-effective fire protection of chemical plants subject to fire-induced domino effects. By modeling domino effects in chemical plants as a directed graph, the graph centrality measures such as out-closeness and betweenness scores can be used to identify the installations playing a key role in initiating and propagating potential domino effects. It is demonstrated that active fire protection of installations with the highest out-closeness score and passive fire protection of installations with the highest betweenness score are the most effective strategies for reducing the vulnerability of chemical plants to fire-induced domino effects. We have employed a dynamic graph analysis to investigate the impact of both the availability and the degradation of fire protection measures over time on the vulnerability of chemical plants. The results obtained from the graph analysis can further be prioritized using multicriteria decision analysis techniques such as the method of reference point to find the most cost-effective fire protection strategy. © 2016 Society for Risk Analysis.

  10. Mediatization:Critical Theory Approaches to Media Effects

    OpenAIRE

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exp...

  11. Linguistic Effects on the Neural Basis of Theory of Mind

    Science.gov (United States)

    Frank, C. Kobayashi

    2010-01-01

    Theory of mind” (ToM) has been described as the ability to attribute and understand other people’s desires and intentions as distinct from one’s own. There has been a debate about the extent to which language influences ToM development. Although very few studies directly examined linguistic influence on the neural basis of ToM, results from these studies indicate at least moderate influence of language on ToM. In this review both behavioral and neurological studies that examined the relationship between language and ToM are selectively discussed. This review focuses on cross-linguistic / cultural studies (especially Japanese vs. American / English) since my colleagues and I found evidence of significant linguistic influence on the neural basis of ToM through a series of functional brain imaging experiments. Evidence from both behavioral and neurological studies of ToM (including ours) suggests that the pragmatic (not the constitutive) aspects of language influence ToM understanding more significantly. PMID:21113278

  12. Integrability of orbifold ABJM theories

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Nan; Chen, Hui-Huang [Institute of High Energy Physics and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); Ding, Xiao-Chen [School of Mathematical Sciences, Capital Normal University,105 North Road of West 3rd Ring, Beijing 100048 (China); Li, De-Sheng [Institute of High Energy Physics and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); Wu, Jun-Bao [Institute of High Energy Physics and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); School of Physics, Beihang University,37 Xueyuan Road, Beijing 100191 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); School of Physical Sciences, University of Chinese Academy of Sciences,19A Yuquan Road, Beijing 100049 (China)

    2016-11-18

    Integrable structure has played a very important role in the study of various non-perturbative aspects of planar Aharony-Bergman-Jafferis-Maldacena (ABJM) theories. In this paper, we showed that this remarkable structure survives after orbifold operation with discrete group Γ

  13. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation

    DEFF Research Database (Denmark)

    Popov, Vladislav; Lavrinenko, Andrei; Novitsky, Andrey

    2016-01-01

    We elaborate on an operator approach to effective medium theory for homogenization of the periodic multilayered structures composed of nonmagnetic isotropic materials, which is based on equating the spatial evolution operators for the original structure and its effective alternative. We show...... that the zeroth-, first-, and second-order approximations of the operator effective medium theory correspond to electric dipoles, chirality, and magnetic dipoles plus electric quadrupoles, respectively. We discover that the spatially dispersive bianisotropic effective medium obtained in the second......-order approximation perfectly replaces a multilayered composite and does not suffer from the effective medium approximation breakdown that happened near the critical angle of total internal reflection found previously in the conventional effective medium theory. We establish the criterion of the validity...

  14. Quantum field theory II introductions to quantum gravity, supersymmetry and string theory

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...

  15. Facilitative Social Change Leadership Theory: 10 Recommendations toward Effective Leadership

    Science.gov (United States)

    Watt, Willis M.

    2009-01-01

    In the fast pace of the 21st century there is a demand for effective leaders capable of handling the internal and external changes occurring in our organizations. This paper seeks to inform the reader because change is natural; it is constant; it is inevitable. But, what constitutes effective leadership is the question. The main purpose of this…

  16. Effects of a Theory-Based, Peer-Focused Drug Education Course.

    Science.gov (United States)

    Gonzalez, Gerardo M.

    1990-01-01

    Describes innovative, theory-based, peer-focused college drug education academic course and its effect on perceived levels of risk associated with the use of alcohol, marijuana, and cocaine. Evaluation of the effects of the course indicated the significant effect on perceived risk of cocaine, but not alcohol or marijuana. (Author/ABL)

  17. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  18. Optimization of effective atom centered potentials for london dispersion forces in density functional theory.

    Science.gov (United States)

    von Lilienfeld, O Anatole; Tavernelli, Ivano; Rothlisberger, Ursula; Sebastiani, Daniel

    2004-10-08

    We add an effective atom-centered nonlocal term to the exchange-correlation potential in order to cure the lack of London dispersion forces in standard density functional theory. Calibration of this long-range correction is performed using density functional perturbation theory and an arbitrary reference. Without any prior assignment of types and structures of molecular fragments, our corrected generalized gradient approximation density functional theory calculations yield correct equilibrium geometries and dissociation energies of argon-argon, benzene-benzene, graphite-graphite, and argon-benzene complexes.

  19. Effective Theory of Dark Energy at Redshift Survey Scales

    CERN Document Server

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo

    2016-01-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with $\\Lambda$CDM as fiducial model and a specific choice for the time dependence of our effective functions, we perform a Fisher matrix analysis and find that the unmarginalized $68\\%$ CL errors on the parameters describing the modifications of gravity are of order $\\sigma\\sim10^{-2}$--$10^{-3}$. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravit...

  20. Nucleon effective masses in field theories of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.H.; Reddy, S.; Prakash, M. [Dept. of Physics and Astronomy, Stony Brook, NY (United States)

    1998-06-01

    We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)

  1. Organizational Friction: Urban Crime Control Diminish Effect Theory

    Science.gov (United States)

    2010-12-10

    its neighbors, due to its healthy tourism industry , it has not managed to escape the challenges that confront much of the rest of Latin America. The...employment in the tourism industry . Paul is 27 years old, single, and is currently unemployed. The substantive part of the study began by examining the...use of an aspirin for a toothache, which after prolong use loses its effect. In the final analysis perhaps the greatest testimony to the effect that

  2. Theory of Spin Seebeck Effects in a Quantum Wire

    Science.gov (United States)

    Ogata, Masao; Fukuyama, Hidetoshi

    2017-09-01

    Spin Seebeck coefficient in a quantum wire is microscopically derived using the Kubo formula and thermal Green’s functions, taking account of the effects of disorder in a self-consistent t-matrix approximation. It is found that the induced spin current to be detected through the inverse spin Hall effect will be in the range of experimental detectability when the chemical potential for electrons in the quantum wire is close to the band edge.

  3. Linear-response theory of the longitudinal spin Seebeck effect

    OpenAIRE

    Adachi, Hiroto; Maekawa, Sadamichi

    2012-01-01

    We theoretically investigate the longitudinal spin Seebeck effect, in which the spin current is injected from a ferromagnet into an attached nonmagnetic metal in a direction parallel to the temperature gradient. Using the fact that the phonon heat current flows intensely into the attached nonmagnetic metal in this particular configuration, we show that the sign of the spin injection signal in the longitudinal spin Seebeck effect can be opposite to that in the conventional transverse spin Seeb...

  4. Extended Soliton Solutions in an Effective Action for SU(2 Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sawado

    2006-01-01

    Full Text Available The Skyrme-Faddeev-Niemi (SFN model which is an O(3 σ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2 Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains an additional fourth-order term which destabilizes the soliton solution. We apply the perturbative treatment to the second derivative term in order to exclude (or reduce the ill behavior of the original action and show that the SFN model with the second derivative term possesses soliton solutions.

  5. Effective theories for 2+1 dimensional non-Abelian topological spin liquids

    Science.gov (United States)

    Hernaski, Carlos A.; Gomes, Pedro R. S.

    2017-10-01

    In this work we propose an effective low-energy theory for a large class of 2+1 dimensional non-Abelian topological spin liquids whose edge states are conformal degrees of freedom with central charges corresponding to the coset structure su(2) k ⊕ su(2) k ' /su(2) k+ k ' . For particular values of k ' it furnishes the series for unitary minimal and superconformal models. These gapped phases were recently suggested to be obtained from an array of one-dimensional coupled quantum wires. In doing so we provide an explicit relationship between two distinct approaches: quantum wires and Chern-Simons bulk theory. We firstly make a direct connection between the interacting quantum wires and the corresponding conformal field theory at the edges, which turns out to be given in terms of chiral gauged WZW models. Relying on the bulk-edge correspondence we are able to construct the underlying non-Abelian Chern-Simons effective field theory.

  6. Confidence Intervals for Standardized Effect Sizes: Theory, Application, and Implementation

    Directory of Open Access Journals (Sweden)

    Ken Kelley

    2007-02-01

    Full Text Available The behavioral, educational, and social sciences are undergoing a paradigmatic shift in methodology, from disciplines that focus on the dichotomous outcome of null hypothesis significance tests to disciplines that report and interpret effect sizes and their corresponding confidence intervals. Due to the arbitrariness of many measurement instruments used in the behavioral, educational, and social sciences, some of the most widely reported effect sizes are standardized. Although forming confidence intervals for standardized effect sizes can be very beneficial, such confidence interval procedures are generally difficult to implement because they depend on noncentral t, F, and x2 distributions. At present, no main-stream statistical package provides exact confidence intervals for standardized effects without the use of specialized programming scripts. Methods for the Behavioral, Educational, and Social Sciences (MBESS is an R package that has routines for calculating confidence intervals for noncentral t, F, and x2 distributions, which are then used in the calculation of exact confidence intervals for standardized effect sizes by using the confidence interval transformation and inversion principles. The present article discusses the way in which confidence intervals are formed for standardized effect sizes and illustrates how such confidence intervals can be easily formed using MBESS in R.

  7. Effective medium theory of thin-plate acoustic metamaterials.

    Science.gov (United States)

    Li, Pei; Yao, Shanshan; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2014-04-01

    Effective dynamic properties of acoustic metamaterials made of multilayered flexible thin-plates with periodically attached mass-spring resonators are studied. By using the transfer matrix method, the thin-plate acoustic metamaterial under the plane wave incidence is characterized by a homogeneous effective medium with anisotropic mass density. An approximate analytic expression of effective mass density is derived for a single-layer metamaterial in the normally incident case, and it is shown that the effective mass density can follow either Lorentz or Drude medium models. For the obliquely incident case, it is found that effective mass density is dependent on the lateral wave number of incident waves. Such spatial dispersion comes from the coincidence effect between the incident acoustic wave and flexural wave in the thin plate, and it occurs at much lower frequencies than that for a uniform plate without resonators. Based on the observed spatial dispersion, an acoustic device made of thin-plate metamaterials is designed for frequency-controlled acoustic directive radiation in the low-frequency regime.

  8. Expanding social identity theory for research in media effects: Two international studies and a theoretical model.

    OpenAIRE

    Trepte, Sabine; Krämer, Nicole

    2007-01-01

    "In this paper we propose that Tajfel’s (1979) social identity theory (SIT) and self-categorization theory (SCT, Turner, Brown & Tajfel, 1987) is a relevant and helpful theoretical groundwork to explain selective exposure to media content in general and to entertainment media in particular. It is hypothesized that gender and national identity have a significant effect on selective exposure to entertainment series when being salient. Two international quasi-experimental studies have been condu...

  9. Lower limit to the scale of an effective quantum theory of gravitation.

    Science.gov (United States)

    Caldwell, R R; Grin, Daniel

    2008-01-25

    An effective quantum theory of gravitation in which gravity weakens at energies higher than approximately 10(-3) eV is one way to accommodate the apparent smallness of the cosmological constant. Such a theory predicts departures from the Newtonian inverse-square force law on distances below approximately 0.05 mm. However, it is shown that this modification also leads to changes in the long-range behavior of gravity and is inconsistent with observed gravitational lenses.

  10. Effective dynamics along given reaction coordinates, and reaction rate theory.

    Science.gov (United States)

    Zhang, Wei; Hartmann, Carsten; Schütte, Christof

    2016-12-22

    In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: we first show that if we start with an ergodic diffusion process whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Mori-Zwanzig, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the "equation-free" approach and the "heterogeneous multiscale method" can be seen as special cases of our approach.

  11. Effective long wavelength scalar dynamics in de Sitter

    CERN Document Server

    Moss, Ian

    2016-01-01

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius $k/a \\sim H$ can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales $\\Delta t \\gg H^{-1}$, this results in the well-known Starobinsky stochastic evolution. Our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place, as well as the description of dynamics on spatial and temporal scales comparable to $H^{-1}$ and above. We further elaborate on the use of a Wigner function to evaluate the non-perturbative expectation values of field correlators and the stress-energy tensor of $\\phi$ within the stochastic formalism.

  12. Local thermodynamic mapping for effective liquid density-functional theory

    Science.gov (United States)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  13. The Hippocratic Oath, effect size, and utility theory.

    Science.gov (United States)

    Bordley, Robert F

    2009-01-01

    To be consistent with the Hippocratic Oath, this article proposes that a physician choose that treatment that has the greatest chance of giving the patient an outcome no worse than the uncertain outcome an untreated patient would experience. As this article shows, this specifies the utility function that the physician should use in choosing among treatments. This utility function, although varying with the life circumstances of the patient, need not reflect the patient's utility function. This Hippocratic utility function can be estimated with an effect size measure similar to the stochastic superiority and common language effect size measures used in the statistical analysis of experiments.

  14. Employment Effects of Dispersal Policies. Part I: Theory

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    2003-01-01

    and the transition rate into employment outside the local labour market, but decreases the transition rate into local employment. Thus, a decrease in current place utility decreases the overall job-finding rate if the local reservation wage effect dominates. We argue that dispersal policies on refugee immigrants...... are characterised by low average values of current place utility. Hence, the model predicts that dispersal policies increase the geographical mobility rates of refugees and, for a sufficiently large local reservation wage effect, decrease their job-finding rates....

  15. Partially massless higher-spin theory II: one-loop effective actions

    Science.gov (United States)

    Brust, Christopher; Hinterbichler, Kurt

    2017-01-01

    We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the "minimal" and "non-minimal" parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D = 7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D = 4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D = 4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton's constant of the partially massless higher-spin theory and the number of colors in the dual CFT.

  16. Tests of perturbative and non perturbative structure of moments of hadronic event shapes using experiments JADE and OPAL; Untersuchung perturbativer und nichtperturbativer Struktur der Momente hadronischer Ereignisformvariablen mit den Experimenten JADE und OPAL

    Energy Technology Data Exchange (ETDEWEB)

    Pahl, Christoph Johannes

    2008-01-29

    In hadron production data of the e{sup +}e{sup -} annihilation experiments JADE and OPAL we measure the first five moments of twelve hadronic-event-shape variables at c.m. energies from 14 to 207 GeV. From the comparison of the QCD NLO prediction with the data corrected by means of MC models about hadronization we obtain the reference value of the strong coupling {alpha}{sub s}(M{sub Z{sup 0}})=0.1254{+-}0.0007(stat.){+-}0.0010(exp.){sup +0.0009}{sub -0.0023}(had.){sup +0.0069}{sub -0.0053}(theo.). For some, especially higher moments, systematic unsufficiencies in the QCD NLO prediction are recognizable. Simultaneous fits to two moments under assumption of identical renormalization scales yield scale values from x{sub {mu}}=0.057 to x{sub {mu}}=0.196. We check predictions of different non-perturbative models. From the single-dressed-gluon approximation a perturbative prediction in O({alpha}{sup 5}{sub s}) results with neglegible energy power correction, which describes the thrust average on hadron level well with {alpha}{sub s}(M{sub Z{sup 0}})=0.1186{+-}0,0017(exp.){sub -0.0028}{sup +0.0033}(theo.). The variance of the event-shape variable is measured and compared with models as well as predictions. [German] In Hadronproduktionsdaten der e{sup +}e{sup -}-Vernichtungsexperimente JADE und OPAL messen wir die ersten fuenf Momente von zwoelf hadronischen Ereignisformvariablen bei Schwerpunktsenergien von 14 bis 207 GeV. Aus dem Vergleich der QCD NLO-Vorhersage mit den mittels MC-Modellen um Hadronisierung korrigierten Daten erhalten wir den Referenzwert der starken Kopplung {alpha}{sub s}(M{sub Z{sup 0}})=0.1254{+-}0.0007(stat.){+-}0.0010(exp.){sup +0.0009}{sub -0.0023}(had.){sup +0.0069}{sub -0.0053}(theo.). Fuer einige, insbesondere hoehere, Momente sind systematische Unzulaenglichkeiten in der QCD NLO-Vorhersage erkenntlich. Simultane Fits an zwei Momente unter Annahme identischer Renormierungsskalen ergeben Skalenwerte von x{sub {mu}}=0.057 bis x{sub {mu}}=0

  17. Effectiveness of Interactive Video to Teach CPR Theory and Skills.

    Science.gov (United States)

    Lyness, Ann L.

    This study investigated whether an interactive video system of instruction taught cardiopulmonary resuscitation (CPR) as effectively as traditional instruction. Using standards of the American Heart Association, the study was designed with two randomized groups to be taught either by live instruction or by interactive video. Subjects were 100…

  18. Psychological Theory and Pedagogical Effectiveness: The Learning Promotion Potential Framework

    Science.gov (United States)

    Tomlinson, Peter

    2008-01-01

    Background: After a century of educational psychology, eminent commentators are still lamenting problems besetting the appropriate relating of psychological insights to teaching design, a situation not helped by the persistence of crude assumptions concerning the nature of pedagogical effectiveness. Aims: To propose an analytical or…

  19. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes

    Science.gov (United States)

    Chen, Daifen; Lin, Zijing; Zhu, Huayang; Kee, Robert J.

    A micromodel based upon percolation theory is developed to predict effective properties in composite electrodes for solid oxide fuel-cell (SOFC) applications. The theory considers binary and multi-component mixtures of particles that are either ion or electron conductors. The model predicts effective ionic and electronic conductivities, three-phase boundary lengths, and hydraulic pore radii. The effective properties depend upon primary physical characteristics, including average particle-radii, volumetric packing densities, particle contact angles, and porosity. All results are presented in nondimensional form, which provides considerable generality in their practical application.

  20. Resummation and renormalization in effective theories of particle physics

    CERN Document Server

    Jakovac, Antal

    2015-01-01

    Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to vario...

  1. On quantum effects in a theory of biological evolution.

    Science.gov (United States)

    Martin-Delgado, M A

    2012-01-01

    We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable.

  2. The theory behind the age-related positivity effect

    Directory of Open Access Journals (Sweden)

    Andrew E Reed

    2012-09-01

    Full Text Available The positivity effect refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather & Carstensen, 2005 scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision-making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people.

  3. Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach

    CERN Document Server

    Harris, Philip; Spannowsky, Michael; Williams, Ciaran

    2015-01-01

    We outline and investigate a set of benchmark simplified models with the aim of providing a minimal simple framework for an interpretation of the existing and forthcoming searches of dark matter particles at the LHC. The simplified models we consider provide microscopic QFT descriptions of interactions between the Standard Model partons and the dark sector particles mediated by the four basic types of messenger fields: scalar, pseudo-scalar, vector or axial-vector. Our benchmark models are characterised by four to five parameters, including the mediator mass and width, the dark matter mass and an effective coupling(s). In the gluon fusion production channel we resolve the top-quark in the loop and compute full top-mass effects for scalar and pseudo-scalar messengers. We show the LHC limits and reach at 8 and 14 TeV for models with all four messenger types. We also outline the complementarity of direct detection, indirect detection and LHC bounds for dark matter searches. Finally, we investigate the effects wh...

  4. Using Expectancy Effects Theory To Analyze the Groups Who Supported Senator McCarthy.

    Science.gov (United States)

    Corder, Lloyd E.

    In this essay, Festinger's cognitive dissonance theory (which seeks to explain how individuals try to reconcile holding two inconsistent beliefs at the same time) is used to explore the nature of expectancy effects and what possible roles they play in the thinking of the radical right. The paper first defines expectancy effects and explains how…

  5. Effects of the Virtual Environment on Online Faculty Perceptions of Leadership: A Grounded Theory Study

    Science.gov (United States)

    Curry, Steven P.

    2016-01-01

    The purpose of this qualitative study was to explore how faculty members, teaching in the virtual environment of higher education, perceived the effectiveness of leader actions to understand how principles of existing leadership theory in critical areas such as communication effectiveness, development of trust, and ability to motivate faculty…

  6. Effect of Cognitive-Behavioral-Theory-Based Skill Training on Academic Procrastination Behaviors of University Students

    Science.gov (United States)

    Toker, Betül; Avci, Rasit

    2015-01-01

    This study examined the effectiveness of a cognitive-behavioral theory (CBT) psycho-educational group program on the academic procrastination behaviors of university students and the persistence of any training effect. This was a quasi-experimental research based on an experimental and control group pretest, posttest, and followup test model.…

  7. Thermoelectric and Thermomagnetic Effects in Kaluza's Kinetic Theory

    Science.gov (United States)

    Sagaceta-Mejía, Alma R.; Sandoval-Villalbazo, Alfredo; García-Perciante, Ana L.

    2017-10-01

    A five-dimensional treatment of the Boltzmann equation is used to establish the constitutive equations that relate thermodynamic fluxes and forces up to first order in the gradients for simple charged fluids in the presence of electromagnetic fields. The formalism uses the ansatz first introduced by Kaluza back in 1921, proposing that the particle charge-mass ratio is proportional to the fifth component of its velocity field. It is shown that in this approach, space-time curvature yields thermodynamic forces leading to generalizations of the well-known cross-effects present in linear irreversible thermodynamics.

  8. Theory of Crowding Effects on Bimolecular Reaction Rates.

    Science.gov (United States)

    Berezhkovskii, Alexander M; Szabo, Attila

    2016-07-07

    An analytical expression for the rate constant of a diffusion-influenced bimolecular reaction in a crowded environment is derived in the framework of a microscopic model that accounts for: (1) the slowdown of diffusion due to crowding and the dependence of the diffusivity on the distance between the reactants, (2) a crowding-induced attractive short-range potential of mean force, and (3) nonspecific reversible binding to the crowders. This expression spans the range from reaction to diffusion control. Crowding can increase the reaction-controlled rate by inducing an effective attraction between reactants but decrease the diffusion-controlled rate by reducing their relative diffusivity.

  9. The challenge of video games to media effect theory

    OpenAIRE

    Malliet, Steven

    2007-01-01

    Research on the effects of video game play has mainly been focusing on topics such as agression, violence and hostility. This is undoubtedly related to the countless social and political debates that have been held on the harmful impact of this new medium. From a social-psychological point of view, researchers have frequently observed that, up to 15 minutes after having played a game of action, one is more excited or aroused than in the case one had not played that game. Concerning the long-t...

  10. Effects of a social cognitive theory-based hip fracture prevention web site for older adults.

    Science.gov (United States)

    Nahm, Eun-Shim; Barker, Bausell; Resnick, Barbara; Covington, Barbara; Magaziner, Jay; Brennan, Patricia Flatley

    2010-01-01

    The purposes of this study were to develop a Social Cognitive Theory-based, structured Hip Fracture Prevention Web site for older adults and conduct a preliminary evaluation of its effectiveness. The Theory-based, structured Hip Fracture Prevention Web site is composed of learning modules and a moderated discussion board. A total of 245 older adults recruited from two Web sites and a newspaper advertisement were randomized into the Theory-based, structured Hip Fracture Prevention Web site and the conventional Web sites groups. Outcomes included (1) knowledge (hip fractures and osteoporosis), (2) self-efficacy and outcome expectations, and (3) calcium intake and exercise and were assessed at baseline, end of treatment (2 weeks), and follow-up (3 months). Both groups showed significant improvement in most outcomes. For calcium intake, only the Theory-based, structured Hip Fracture Prevention Web site group showed improvement. None of the group and time interactions were significant. The Theory-based, structured Hip Fracture Prevention Web site group, however, was more satisfied with the intervention. The discussion board usage was significantly correlated with outcome gains. Despite several limitations, the findings showed some preliminary effectiveness of Web-based health interventions for older adults and the use of a Theory-based, structured Hip Fracture Prevention Web site as a sustainable Web structure for online health behavior change interventions.

  11. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeremy W., E-mail: jwholt.phys@gmail.com [Department of Physics, University of Washington, Seattle, 98195 (United States); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany); ECT*, Villa Tambosi, I-38123 Villazzano (Italy)

    2016-03-21

    Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: “it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme”. Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  12. One-loop Pfaffians and large-field inflation in string theory

    Directory of Open Access Journals (Sweden)

    Fabian Ruehle

    2017-06-01

    Full Text Available We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.

  13. Quasiclassical theory for the superconducting proximity effect in Dirac materials

    Science.gov (United States)

    Hugdal, Henning G.; Linder, Jacob; Jacobsen, Sol H.

    2017-06-01

    We derive the quasiclassical nonequilibrium Eilenberger and Usadel equations to first order in quantities small compared to the Fermi energy, valid for Dirac edge and surface electrons with spin-momentum locking p .σ ¯ , as relevant for topological insulators. We discuss in detail several of the key technical points and assumptions of the derivation, and provide a Riccati parametrization of the equations. Solving first the equilibrium equations for S/N and S/F bilayers and Josephson junctions, we study the superconducting proximity effect in Dirac materials. Similarly to related works, we find that the effect of an exchange field depends strongly on the direction of the field. Only components normal to the transport direction lead to attenuation of the Cooper pair wave function inside the F. Fields parallel to the transport direction lead to phase shifts in the dependence on the superconducting phase difference for both the charge current and density of states in an S/F/S junction. Moreover, we compute the differential conductance in S/N and S/F bilayers with an applied voltage bias and determine the dependence on the length of the N and F regions and the exchange field.

  14. On the covariant formalism of the effective field theory of gravity and its cosmological implications

    DEFF Research Database (Denmark)

    Codello, Alessandro; Jain, Rajeev Kumar

    2017-01-01

    Following our previous work wherein the leading order effective action was computed in the covariant effective field theory of gravity, here we specialize the effective action to the FRW spacetime and obtain the effective Friedmann equations. In particular, we focus our attention on studying...... expansion of the universe at the present epoch even in the absence of a cosmological constant. We briefly discuss some phenomenological consequences of our results....

  15. Diagonalizing the Hamiltonian of λϕ4 theory in 2 space-time dimensions

    Science.gov (United States)

    Christensen, Neil

    2018-01-01

    We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λϕ4 theory in two space-time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.

  16. Universality and the approach to the continuum limit in lattice gauge theory

    CERN Document Server

    De Divitiis, G M; Guagnelli, M; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, P; Wolff, U; de Divitiis, G; Frezzotti, R; Guagnelli, M; Luescher, M; Petronzio, R; Sommer, R; Weisz, P; Wolff, U

    1995-01-01

    The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.

  17. Universality and the approach to the continuum limit in lattice gauge theory

    Science.gov (United States)

    de Divitiis, Giulia; Frezzotti, Roberto; Guagnelli, Marco; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, Peter; Wolff, Ulli

    1995-02-01

    The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.

  18. Playing with QCD I: effective field theories. Fourth lecture

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    Lattice QCD is just starting to explore the finite density region, still far away from the high-density low-temperature sector. pQCD at finite density seems to provide sensible results, even for not so large values of {mu}. Mass and gap effects provide important contributions to the EoS near the critical region. The phase diagram can be very rich in the high-{mu} sector, with different possibilities for pairing and color superconductivity. Astrophysical measurements are becoming increasingly precise, and will start killing models soon. Some signatures (for strange, quark or hybrid neutron stars) are still very similar, though. The interior of compact stars is a very rich and intricate medium, which may contain all sorts of condensates as well as deconfined quark matter. (author)

  19. Using the Theory of Constraints for Effective Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Archie Lockhamy III

    1999-08-01

    Full Text Available This article provides methodology and guidelines for employing a 'constraint-based approach for effective supply chain management. The article explores the shortcomings of using a traditional supply chain management as well as an Activity Based Management (ABM approach in the managing of supply chains. In addition, the article introduces a supply chain management methodology based on achieving a global optimum for the entire chain. Examples are provided on how constraint-based techniques are currently being applied to the management of certain subsets of the supply chain. Guidelines are presented for managing supply chains using a constraint-based approach. Finally, the article ends with the discussion of the implications regarding the use of a constraint-based approach to the management of supply chains along with the need for future research in this area.

  20. Thermal and viscous effects on sound waves: revised classical theory.

    Science.gov (United States)

    Davis, Anthony M J; Brenner, Howard

    2012-11-01

    In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.

  1. Z boson mediated dark matter beyond the effective theory

    Science.gov (United States)

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2017-02-01

    Direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter—a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Z boson but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z -mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches.

  2. Can chaos theory be used to increase preventive maintenance effectiveness?

    Science.gov (United States)

    Rice, W P

    1996-01-01

    Clinical engineering programs typically establish the content and frequency of a device's inspection and preventive maintenance procedures at the time of implementation. In some programs, these are not altered throughout the device's useful life. In others, history data and traditional statistical methods are used to adapt procedures to change in risk measures. Such methods are essentially reactive in that they are based upon past trends and do not readily consider potentialities for future change in the performance and utilization environments. Chaos theoretical concepts and related measures, when implemented in artificial intelligence programs such as neural networks and genetic algorithms, and used as an adjunct with computerized technology management programs, can assist in asking and answering the more dynamic, proactive questions necessary for effective inspection and preventive maintenance optimization. Today's healthcare environment is ideal for exploring their utilization.

  3. Quantum Theory of SASE-FEL with Propagation Effects

    CERN Document Server

    Bonifacio, R

    2005-01-01

    We present a proof of principle of the novel regime of quantum SASE with propagation effects. Using a self-consistent system of Schrodinger-Maxwell equations, we show that the dynamics of the system is determined by a properly defined "quantum FEL-parameter", ρ', which rules the number of photons emitted per electron, as well as the electron recoil in units of ћk. In the limit ρ'>>1 the quantum model reproduces the classical SASE regime with random spiking behavior and broad spectrum. In this limit we show that the equation for the Wigner function reduces to the classical Vlasov equation. In the opposite limit, ρ'<1, we demonstrate "quantum purification" of SASE: the classical spiking behavior disappears and the power spectrum becomes very narrow so that the temporal coherence of the SASE spectrum is dramatically improved. Photon statistics, electron-photon entangled states, minimum uncertainty states and quantum limitations on bunching and energy spre...

  4. Distinguishing f( R) theories from general relativity by gravitational lensing effect

    Science.gov (United States)

    Liu, Hongguang; Wang, Xin; Li, Haida; Ma, Yongge

    2017-11-01

    The post-Newtonian formulation of a general class of f( R) theories is set up in a third-order approximation. It turns out that the information of a specific form of f( R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the second-order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f( R) gravity and general relativity does appear at the third order when √{f''(0)/f'(0)} is larger than the distance d_0 to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f( R) theories are distinguishable from general relativity by gravitational lensing effect in a third-order post-Newtonian approximation.

  5. Analysis of self-consistency effects in range-separated density-functional theory with Møller-Plesset perturbation theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2011-01-01

    -cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP......Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled......) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational...

  6. Analytical theory of effective interactions in binary colloidal systems of soft particles.

    Science.gov (United States)

    Majka, M; Góra, P F

    2014-09-01

    While density functional theory with integral equations techniques are very efficient tools in the numerical analysis of complex fluids, analytical insight into the phenomenon of effective interactions is still limited. In this paper, we propose a theory of binary systems that results in a relatively simple analytical expression combining arbitrary microscopic potentials into effective interaction. The derivation is based on translating a many-particle Hamiltonian including particle-depletant and depletant-depletant interactions into the occupation field language, which turns the partition function into multiple Gaussian integrals, regardless of what microscopic potentials are chosen. As a result, we calculate the effective Hamiltonian and discuss when our formula is a dominant contribution to the effective interactions. Our theory allows us to analytically reproduce several important characteristics of systems under scrutiny. In particular, we analyze the following: the effective attraction as a demixing factor in the binary systems of Gaussian particles, the screening of charged spheres by ions, which proves equivalent to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, effective interactions in the binary mixtures of Yukawa particles, and the system of particles consisting of both a repulsive core and an attractive/repulsive Yukawa interaction tail. For this last case, we reproduce the "attraction-through-repulsion" and "repulsion-through-attraction" effects previously observed in simulations.

  7. Theory and measurement of the electron cloud effect

    CERN Document Server

    Harkay, K C

    1999-01-01

    Photoelectrons produced through the interaction of synchrotron radiation and the vacuum chamber walls can be accelerated by a charged particle beam, acquiring sufficient energy to produce secondary electrons (SEs) in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, a runaway condition can develop. In addition to the SEY, the degree of amplification depends on the beam intensity and temporal distribution. As the electron cloud builds up along a train of stored bunches, a transverse perturbation of the head bunch can be communicated to trailing bunches in a wakefield-like interaction with the cloud. The electron cloud effect is especially of concern for the high-intensity PEP-II (SLAC) and KEK B-factories and at the Large Hadron Collider (LHC) at CERN. An initiative was undertaken at the Advanced Photon Source (APS) storage ring to characterize the electron cloud in order to provide realistic limits on critical input parameters in the models ...

  8. Cluster multipole theory for anomalous Hall effect in antiferromagnets

    Science.gov (United States)

    Suzuki, M.-T.; Koretsune, T.; Ochi, M.; Arita, R.

    2017-03-01

    We introduce a cluster extension of multipole moments to discuss the anomalous Hall effect (AHE) in both ferromagnetic (FM) and antiferromagnetic (AFM) states in a unified framework. We first derive general symmetry requirements for the AHE in the presence or absence of the spin-orbit coupling by considering the symmetry of the Berry curvature in k space. The cluster multipole (CMP) moments are then defined to quantify the macroscopic magnetization in noncollinear AFM states as a natural generalization of the magnetization in FM states. We identify the macroscopic CMP order which induces the AHE. The theoretical framework is applied to the noncollinear AFM states of Mn3Ir , for which an AHE was predicted in a first-principles calculation, and Mn3Z (Z =Sn ,Ge ), for which a large AHE was recently discovered experimentally. We further compare the AHE in Mn3Z and bcc Fe in terms of the CMP. We show that the AHE in Mn3Z is characterized by the magnetization of a cluster octupole moment in the same manner as that in bcc Fe characterized by the magnetization of the dipole moment.

  9. Effective hospital leadership for quality: theory and practice.

    Science.gov (United States)

    Preston, A P; Saunders, I W; O'Sullivan, D; Garrigan, E; Rice, J

    1995-01-01

    Hospitals need excellent leadership to be efficient in the use of scarce stakeholder resources and to be effective in the competitive provision of services to multiple customers. This study was conducted with the cooperation of the executive team at a large government-funded hospital in Brisbane. It focused on understanding the conceptual models of leadership held by members of the executive and comparing this model with an externally derived model of leadership. Performance on the local model was estimated by cross-linking performance assessment on the external model. Members of the executive espoused, and were also rated by others in the hospital as practising, to a moderate degree, a transformational style of leadership. An overall evaluation of quality practice in the hospital revealed the use of data, the understanding of processes and the formation of supplier partnerships as the areas of hospital activity most limiting the ability to improve. The implications of the conceptual model and performance levels are discussed in relation to the introduction of quality management practice in the hospital, and in terms of management development. A complementary paper focusing on quality implementation as perceived at different staff levels in the hospital is in preparation.

  10. Obstruction of black hole singularity by quantum field theory effects

    Energy Technology Data Exchange (ETDEWEB)

    Abedi, Jahed; Arfaei, Hessamaddin [Department of Physics, Sharif University of Technology,P.O. Box 11155-9161, Tehran, Irany (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-03-21

    We consider the back reaction of the energy due to quantum fluctuation of the background fields considering the trace anomaly for Schwarzschild black hole. It is shown that it will result in modification of the horizon and also formation of an inner horizon. We show that the process of collapse of a thin shell stops before formation of the singularity at a radius slightly smaller than the inner horizon at the order of (c{sub A}(M/(M{sub p}))){sup 1/3}l{sub p}. After the collapse stops the reverse process takes place. Thus we demonstrate that without turning on quantum gravity and just through the effects the coupling of field to gravity as trace anomaly of quantum fluctuations the formation of the singularity through collapse is obstructed. An important consequence of our work is existence of an extremal solution with zero temperature and a mass which is lower bound for the Schwazschild solution. This solution is also the asymptotic final stable state after Hawking radiation.

  11. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  12. Effective field theory and electroweak baryogenesis in the singlet-extended Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Damgaard, P.H. [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Haarr, A. [Faculty of Science and Technology, University of Stavanger,Stavanger, N-4036 (Norway); O’Connell, D. [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh, Edinburgh, Scotland, EH9 3JZ (United Kingdom); Tranberg, A. [Faculty of Science and Technology, University of Stavanger,Stavanger, N-4036 (Norway)

    2016-02-16

    Electroweak baryogenesis is a simple and attractive candidate mechanism for generating the observed baryon asymmetry in the Universe. Its viability is sometimes investigated in terms of an effective field theory of the Standard Model involving higher dimension operators. We investigate the validity of such an effective field theory approach to the problem of identifying electroweak phase transitions strong enough for electroweak baryogenesis to be successful. We identify and discuss some pitfalls of this approach due to the modest hierarchy between mass scales of heavy degrees or freedom and the Higgs, and the possibility of dimensionful couplings violating the decoupling between light and heavy degrees of freedom.

  13. Point-particle effective field theory II: relativistic effects and Coulomb/inverse-square competition

    Science.gov (United States)

    Burgess, C. P.; Hayman, Peter; Rummel, Markus; Williams, Matt; Zalavári, László

    2017-07-01

    We apply point-particle effective field theory (PPEFT) to compute the leading shifts due to finite-sized source effects in the Coulomb bound energy levels of a relativistic spinless charged particle. This is the analogue for spinless electrons of calculating the contribution of the charge-radius of the source to these levels, and our calculation disagrees with standard calculations in several ways. Most notably we find there are two effective interactions with the same dimension that contribute to leading order in the nuclear size, one of which captures the standard charge-radius contribution. The other effective operator is a contact interaction whose leading contribution to δE arises linearly (rather than quadratically) in the small length scale, ɛ, characterizing the finite-size effects, and is suppressed by ( Zα)5. We argue that standard calculations miss the contributions of this second operator because they err in their choice of boundary conditions at the source for the wave-function of the orbiting particle. PPEFT predicts how this boundary condition depends on the source's charge radius, as well as on the orbiting particle's mass. Its contribution turns out to be crucial if the charge radius satisfies ɛ ≲ ( Zα)2 a B , where a B is the Bohr radius, because then relativistic effects become important for the boundary condition. We show how the problem is equivalent to solving the Schrödinger equation with competing Coulomb, inverse-square and delta-function potentials, which we solve explicitly. A similar enhancement is not predicted for the hyperfine structure, due to its spin-dependence. We show how the charge-radius effectively runs due to classical renormalization effects, and why the resulting RG flow is central to predicting the size of the energy shifts (and is responsible for its being linear in the source size). We discuss how this flow is relevant to systems having much larger-than-geometric cross sections, such as those with large

  14. On the Effective Action of Dressed Mean Fields for N=4 Super-Yang-Mills Theory

    Science.gov (United States)

    Cvetic, Gorazd; Kondrashuk, Igor; Schmidt, Ivan

    2006-01-01

    On the basis of the general considerations such as R-operation and Slavnov-Taylor identity we show that the effective action, being understood as Legendre transform of the logarithm of the path integral, possesses particular structure in N = 4 supersymmetric Yang-Mills theory for kernels of the effective action expressed in terms of the dressed effective fields. These dressed effective fields have been introduced in our previous papers as actual variables of the effective action. The concept of dressed effective fields naturally appears in the framework of solution to Slavnov-Taylor identity. The particularity of the structure is independence of these kernels on the ultraviolet regularization scale Λ. These kernels are functions of mutual spacetime distances and of the gauge coupling. The fact that β function in this theory vanishes is used significantly.

  15. Effective Action of Dressed Mean Fields for {N}=4 Super-Yang Theory

    Science.gov (United States)

    Cvetič, Gorazd; Kondrashuk, Igor; Schmidt, Ivan

    Based on general considerations such as R-operation and Slavnov-Taylor identity we show that the effective action, being understood as Legendre transform of the logarithm of the path integral, possesses particular structure in {N}=4 supersymmetric Yang-Mills theory for kernels of the effective action expressed in terms of the dressed effective fields. These dressed effective fields have been introduced in our previous papers as actual variables of the effective action. The concept of dressed effective fields naturally appears in the framework of solution to Slavnov-Taylor identity. The particularity of the structure is the independence of these kernels on the ultraviolet regularization scale Λ. These kernels are functions of mutual spacetime distances and of the gauge coupling. The fact that β function in this theory is zero is used significantly.

  16. On the Effective Action of Dressed Mean Fields for N = 4 Super-Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Gorazd Cvetic

    2006-01-01

    Full Text Available On the basis of the general considerations such as R-operation and Slavnov-Taylor identity we show that the effective action, being understood as Legendre transform of the logarithm of the path integral, possesses particular structure in N = 4 supersymmetric Yang-Mills theory for kernels of the effective action expressed in terms of the dressed effective fields. These dressed effective fields have been introduced in our previous papers as actual variables of the effective action. The concept of dressed effective fields naturally appears in the framework of solution to Slavnov-Taylor identity. The particularity of the structure is independence of these kernels on the ultraviolet regularization scale Λ. These kernels are functions of mutual spacetime distances and of the gauge coupling. The fact that β function in this theory vanishes is used significantly.

  17. The recursion relation in Lagrangian perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Rampf, Cornelius, E-mail: rampf@physik.rwth-aachen.de [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, D-52056 Aachen (Germany)

    2012-12-01

    We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.

  18. Statistical mechanics of vortices from field theory

    CERN Document Server

    Kajantie, Keijo; Neuhaus, T; Rajantie, A; Rummukainen, K

    1999-01-01

    We study with lattice Monte Carlo simulations the interactions and macroscopic behaviour of a large number of vortices in the 3-dimensional U(1) gauge+Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength H_c, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of H_c, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.

  19. Statistical mechanics of vortices from field theory

    Science.gov (United States)

    Kajantie, K.; Laine, M.; Neuhaus, T.; Rajantie, A.; Rummukainen, K.

    1999-10-01

    We study with lattice Monte Carlo simulations the interactions and macroscopic behavior of a large number of vortices in the three-dimensional U(1) gauge + Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength Hc, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of Hc, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.

  20. Reformulation of the Hermitean 1-matrix model as an effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Klitz, Alexander

    2009-07-15

    The formal Hermitean 1-matrix model is shown to be equivalent to an effective field theory. The correlation functions and the free energy of the matrix model correspond directly to the correlation functions and the free energy of the effective field theory. The loop equation of the field theory coupling constants is stated. Despite its length, this loop equation is simpler than the loop equations in the matrix model formalism itself since it does not contain operator inversions in any sense, but consists instead only of derivative operators and simple projection operators. Therefore the solution of the loop equation could be given for an arbitrary number of cuts up to the fifth order in the topological expansion explicitly. Two different methods of obtaining the contributions to the free energy of the higher orders are given, one depending on an operator H and one not depending on it. (orig.)

  1. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  2. Induced polarization effect in reservoir rocks and its modeling based on generalized effective-medium theory

    Directory of Open Access Journals (Sweden)

    Vladimir Burtman

    2015-07-01

    Full Text Available One of the major tasks of the petroleum resource-efficient technologies (pREFFIT is the development and improvement of the methods of exploration for energy resources. This review paper summarizes the results of the research on induced polarization (IP effect in reservoir rocks conducted by the University of Utah Consortium for Electromagnetic Modeling and Inversion (CEMI and TechnoImaging. The electrical IP effect in hydrocarbon (HC bearing reservoir rocks having nonmetallic minerals is usually associated with membrane polarization, which is caused by a variation in the mobility of the ions throughout the rock structure. This mobility is related to the size and shape of the pores filled with electrolyte and the double electrical layers. We have studied the IP response of multiphase porous systems by conducting complex resistivity (CR frequency-domain IP measurements for two different groups of samples: sands and sandstones containing salt water in pores and those whose unsaturated pores were filled with synthetic oil. We have also studied selected carbonate reservoir formations, typical of some major HC deposits. The generalized effective-medium theory of induced polarization (GEMTIP was used to analyze the IP parameters of the measured responses. This paper presents a conceptual model of polarizing clusters to explain the observed IP phenomena. The results of this study show that the HC bearing sands and sandstone samples and carbonate rocks are characterized by a significant IP response. These experimental observations, compared with the theoretical modeling based on the GEMTIP approach, confirm earlier geophysical experiments with the application of the IP method for HC exploration.

  3. Being smart or getting smarter: Implicit theory of intelligence moderates stereotype threat and stereotype lift effects.

    Science.gov (United States)

    Froehlich, Laura; Martiny, Sarah E; Deaux, Kay; Goetz, Thomas; Mok, Sog Yee

    2016-09-01

    This research explores implicit theory of intelligence (TOI) as a moderator of stereotype activation effects on test performance for members of negatively stereotyped and of favourably stereotyped groups. In Germany, Turkish-origin migrants are stereotyped as low in verbal ability. We predicted that on a test diagnostic of verbal intelligence, endorsement of an entity TOI predicts stereotype threat effects for Turkish-origin students and stereotype lift effects for German students. This effect could account for some of the performance gap between immigrants and host society members after stereotype activation. Study 1 (N = 107) established structural equivalence of implicit theories across the ethnic groups. In two experimental studies (Study 2: N = 182, Study 3: N = 190), we tested the moderating effect of TOI in a 2 (stereotype activation: diagnostic vs. non-diagnostic test) × 2 (ethnicity: German vs. Turkish migration background) experimental design. The results showed that when the test was described as diagnostic of verbal intelligence, higher entity theory endorsement predicted stereotype threat effects for Turkish-origin students (Study 2 and Study 3) and stereotype lift effects for German students (Study 3). The results are discussed in terms of practical implications for educational settings and theoretical implications for processes underlying stereotype activation effects. © 2016 The British Psychological Society.

  4. Effect of Multiple Intelligence Theory Practice on Student Success by Bloom's Taxonomy

    Science.gov (United States)

    Uzunoz, Abdulkadir

    2011-01-01

    In this study, it is aimed to determine the effects of the "Multiple Intelligence Theory" on the retention and achievement of the students according to Bloom Taxonomy. This study is a research as an experimental model. Research in academic year of 2008/2009 in Foca Izmir Lesbos Reha Country High School 9 Class is conducted on students.…

  5. Comparing the Effects of Two Facets of Multiple Intelligences Theory on Developing EFL Learners' Listening

    Science.gov (United States)

    Bemani Naeini, Ma'ssoumeh

    2015-01-01

    Gardner's Multiple Intelligences Theory (MIT), however having been embraced in the field of language acquisition, has apparently failed to play a role in research on learning styles as an alternative construct. This study aims at examining the potential effects of MI-based activities, as learning styles, on the listening proficiency of Iranian…

  6. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived...

  7. Effects of Guided Writing Strategies on Students' Writing Attitudes Based on Media Richness Theory

    Science.gov (United States)

    Lan, Yu-Feng; Hung, Chun-Ling; Hsu, Hung-Ju

    2011-01-01

    The purpose of this paper is to develop different guided writing strategies based on media richness theory and further evaluate the effects of these writing strategies on younger students' writing attitudes in terms of motivation, enjoyment and anxiety. A total of 66 sixth-grade elementary students with an average age of twelve were invited to…

  8. Zero-range effective field theory for resonant wino dark matter. Part I. Framework

    Science.gov (United States)

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2017-11-01

    The most dramatic "Sommerfeld enhancements" of neutral-wino-pair annihilation occur when the wino mass is near a critical value where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. Near such a critical mass, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The effective field theory is controlled by a renormalization-group fixed point at which the neutral and charged winos are degenerate in mass and their scattering length is infinite. The parameters of the zero-range effective field theory can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a potential due to the exchange of weak gauge bosons. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. The power of the zero-range effective field theory is illustrated by calculating the rate for formation of the bound state in the collision of two neutral winos through the emission of two soft photons.

  9. Low energy structure of the nucleon from chiral effective field theory

    Directory of Open Access Journals (Sweden)

    Alarcón Jose Manuel

    2014-01-01

    Full Text Available We present some updated results regarding the scalar and electromagnetic structure of the nucleon obtained by the relativistic formulation of chiral effective field theory with baryons. We compare them with previous determinations available in the literature, and show their relevance for searches of physics beyond the standard model in the low energy frontier.

  10. Describing one- and two-neutron halos in effective field theory

    Indian Academy of Sciences (India)

    2014-11-01

    Nov 1, 2014 ... c Indian Academy of Sciences. Vol. 83, No. 5. — journal of. November 2014 physics pp. 661–671. Describing one- and two-neutron halos in effective field theory. DANIEL R PHILLIPS. Department of Physics and Astronomy and Institute of Nuclear and Particle Physics,. Ohio University, Athens, OH 45701, ...

  11. Leading Effective Educational Technology in K-12 School Districts: A Grounded Theory

    Science.gov (United States)

    Hill, Lara Gillian C.

    2011-01-01

    A systematic grounded theory qualitative study was conducted investigating the process of effectively leading educational technology in New Jersey public K-12 school districts. Data were collected from educational technology district leaders (whether formal or non-formal administrators) and central administrators through a semi-structured online…

  12. Limitations of effective medium theory in multilayer graphite/hBN heterostructures

    DEFF Research Database (Denmark)

    Petersen, René; Pedersen, Thomas Garm; Gjerding, Morten Niklas

    2016-01-01

    We apply effective medium theory (EMT) to metamaterials consisting of a varying number of consecutive sheets of graphene and hexagonal boron nitride, and compare this with a full calculation of the permittivity and the reflection based on the tight binding method and the transfer matrix method...

  13. The premotor theory of attention as an account for the Simon effect

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; Abrahamse, E.L.; de Kleine, Elian

    2012-01-01

    The Simon effect refers to the phenomenon that responses are faster when the irrelevant location of a stimulus corresponds with the response location than when these locations do not correspond. In the current paper we examined the viability of an updated version of the premotor theory of attention

  14. Characterizing Teaching Effectiveness in the Joint Action Theory in Didactics: An Exploratory Study in Primary School

    Science.gov (United States)

    Sensevy, Gérard

    2014-01-01

    This paper presents an exploratory study of two consecutive reading sessions conducted in primary school by two different teachers. Our purpose is twofold. From a theoretical viewpoint, we propose a tentative set of conditions of teaching effectiveness by relying on the Joint Action Theory in Didactics. From a methodological viewpoint, drawing on…

  15. The persuasive effects of framing messages on fruit and vegetable consumption according to regulatory focus theory

    NARCIS (Netherlands)

    Dijkstra, Arie; Rothman, Alexander; Pietersma, Suzanne

    2011-01-01

    According to Regulatory Focus theory (RFT), outcomes in persuasive messages can be framed in four different ways, as gains, non-gains, losses or non-losses. In study 1, the persuasiveness of all four frames was compared and the presence/absence effect that was expected on the basis of the

  16. Surprise, Memory, and Retrospective Judgment Making: Testing Cognitive Reconstruction Theories of the Hindsight Bias Effect

    Science.gov (United States)

    Ash, Ivan K.

    2009-01-01

    Hindsight bias has been shown to be a pervasive and potentially harmful decision-making bias. A review of 4 competing cognitive reconstruction theories of hindsight bias revealed conflicting predictions about the role and effect of expectation or surprise in retrospective judgment formation. Two experiments tested these predictions examining the…

  17. Effective mass theory of a two-dimensional quantum dot in the ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. Effective mass theory of a two-dimensional quantum dot in the presence of magnetic field. Himanshu ... The standard kinetic energy operator of quantum mechanics for this position-dependent mass is non-Hermitian and needs to be modified. This is ...

  18. The Limits of Multiple Resource Theory in Display Formatting: Effects of Task Integration

    Science.gov (United States)

    1984-04-01

    The Limits of Multiple Resource Theory in Display Fonnattlng: Effects of task integration Christopher 0. Wickens, University of Illinois; David ...In R. Sugarman (Ed.) Proceedings 25th Annual Meeting Human Factors Society. Santa Monica: Human Factors, 1981. 444 :^% 2&£&i . vv^vk-.viv.^v •:.:>::>>\\^L^>^>: S:->::VV>X-^:

  19. Zero-Range Effective Field Theory for Resonant Wino Dark Matter

    Science.gov (United States)

    Johnson, Evan; Braaten, Eric; Zhang, Hong

    2017-01-01

    The most dramatic ``Sommerfeld enhancements'' of neutral-wino-pair annihilation occur when the wino mass is tuned to near critical values where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. If the wino mass is near a critical value, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The parameters of the zero-range effective field theory can be determined by matching wino scattering amplitudes calculated by solving the Schrödinger equation for a nonrelativistic effective field theory in which the winos interact nonperturbatively through a potential due to the exchange of weak gauge bosons. The power of the zero-range effective field theory is illustrated by calculating the rate for formation of the bound state in the collision of two neutral winos through the emission of two soft photons. Supported in part by DOE grant DE-FG02-05ER15715.

  20. The Effect of a Computerized Simulation on Middle School Students' Understanding of the Kinetic Molecular Theory

    Science.gov (United States)

    Stern, Luli; Barnea, Nitza; Shauli, Sofia

    2008-01-01

    The objective of this study was to evaluate the effect of a dynamic software simulation on the understanding of the kinetic molecular theory by 7th graders. Students in the control group (n = 62) studied a curricular unit that addressed the differences in arrangement and motion of molecules in the three phases of matter. The experimental group (n…