Corrections to the density-functional theory electronic spectrum: Copper phthalocyanine
DEFF Research Database (Denmark)
Vazquez, Hector; Jelinek, P.; Brandbyge, Mads
2009-01-01
A method for improving the electronic spectrum of standard Density-Functional Theory (DFT) calculations (i.e., LDA or GGA approximations) is presented, and its application is discussed for the case of the copper phthalocyanine (CuPc) molecule. The method is based on a treatment of exchange...
Quantum electronics basic theory
Fain, V M; Sanders, J H
1969-01-01
Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai
Quantum theory a wide spectrum
Manoukian, E B
2006-01-01
Suitable for instructors and graduate students in Physics, and researchers and professional scientists in Theoretical Physics, this textbook focuses on Quantum Theory. It includes traditional topics and contains numerous problems some of which are challenging enough for research
Neutrino spectrum from theory and experiments
Indian Academy of Sciences (India)
Neutrino spectrum from theory and experiments ... We discuss possible patterns emerging from the experimental results and review theoretical attempts to understand them. Author Affiliations. Anjan S Joshipura1. Theoretical Physics Group, Physical Research Laboratory, Navarangpura, Ahmedabad 380 009, India ...
Electron Ionization Mass Spectrum of Tellurium Hexafluoride
Energy Technology Data Exchange (ETDEWEB)
Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.
2015-05-18
The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.
Molecular electronic-structure theory
Helgaker, Trygve; Jorgensen, Poul
2013-01-01
Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource for researchers in quantum chemistry and anyone interested in the theory and its applications.
Electronics from theory into practice
Fisher, J E; Hammond, P
1976-01-01
Electronics - From Theory Into Practice deals with design procedures in electronics and bridges the gap between theoretical knowledge and practice. It provides design examples and discusses the use of the Laplace Transform for solving engineering problems. The book introduces bipolar and field effect transistor, the unijunction transistor and the silicon-controlled rectifier, and shows how data sheets are used in design calculations. It then examines the development of integrated circuits and their characteristics. Following this discussion are chapters that contain a brief treatment of theory
Electronic spectrum of 9-methylanthracenium radical cation
Energy Technology Data Exchange (ETDEWEB)
O’Connor, Gerard D.; Schmidt, Timothy W., E-mail: timothy.schmidt@unsw.edu.au [School of Chemistry, UNSW Sydney, New South Wales 2052 (Australia); Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)
2016-04-21
The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm{sup −1} to 44 500 cm{sup −1}. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D{sub 1}←D{sub 0} transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH{sub 2} or CH{sub 3}. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.
Frank, Patrick; Benfatto, Maurizio; Hedman, Britt; Hodgson, Keith O
2008-05-19
The solution structure of Cu(II) in 4 M aqueous ammonia, [Cu(amm)](2+), was assessed using copper K-edge extended X-ray absorption fine structure (EXAFS) and Minuit XANes (MXAN) analyses. Tested structures included trigonal planar, planar and D2d -tetragonal, regular and distorted square pyramids, trigonal bipyramids, and Jahn-Teller distorted octahedra. Each approach converged to the same axially elongated square pyramid, 4 x Cu-Neq=2.00+/-0.02 A and 1 x Cu-Nax=2.16+/-0.02 A (EXAFS) or 2.20+/-0.07 A (MXAN), with strongly localized solvation shells. In the MXAN model, four equatorial ammonias averaged 13 degrees below the Cu(II) xy-plane, which was 0.45+/-0.1 A above the mean N4 plane. When the axial ligand equilibrium partial occupancies of about 0.65 ammonia and 0.35 water were included, EXAFS modeling found Cu-Lax distances of 2.16 and 2.31 A, respectively, reproducing the distances found in the crystal structures of [Cu(NH3)5](2+) and [Cu(NH3)4(H2O)](2+). A transverse axially localized solvent molecule was found at 2.8 A (EXAFS) or 3.1 A (MXAN). Six second-shell solvent molecules were also found at about 3.4+/-0.01 (EXAFS) or 3.8+/-0.2 A (MXAN). The structure of Cu(II) in 4 M pH 10 aqueous NH 3 may be notationally described as {[Cu(NH 3)4.62(H2O)0.38](solv)}(2+).6solv, solv=H2O, NH 3. The prominent shoulder and duplexed maximum of the rising K-edge XAS of [Cu(amm)](2+) primarily reflect the durable and well-organized solvation shells, not found around [Cu(H2O)5](2+), rather than two-electron shakedown transitions. Not accounting for solvent scattering thus may confound XAS-based estimates of metal-ligand covalency. [Cu(amm)](2+) continues the dissymmetry previously found for the solution structure of [Cu(H2O)5](2+), again contradicting the rack-bonding theory of blue copper proteins.
Molecular electronic-structure theory
Helgaker, Trygve; Olsen, Jeppe
2014-01-01
Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluati
Electronic structure theory of the superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Eliav, Ephraim, E-mail: ephraim@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel); Fritzsche, Stephan, E-mail: s.fritzsche@gsi.de [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany); Kaldor, Uzi, E-mail: kaldor@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel)
2015-12-15
High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac–Coulomb–Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental–computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.
Neutrino spectrum from theory and experiments
Indian Academy of Sciences (India)
probed in these two sets of experiments are quite distinct [3]. Important information on the neutrino spectrum is already provided by the presence of these two distinct scales, by the mixing patterns required to understand neutrino deficits and by the negative search results of the laboratory experiments, notably at CHOOZ [4].
Measuring Theory of Mind in Adults with Autism Spectrum Disorder
Brewer, Neil; Young, Robyn L.; Barnett, Emily
2017-01-01
Deficits in Theory of Mind (ToM)--the ability to interpret others' beliefs, intentions and emotions--undermine the ability of individuals with Autism Spectrum Disorder (ASD) to interact in socially normative ways. This study provides psychometric data for the Adult-Theory of Mind (A-ToM) measure using video-scenarios based in part on Happé's…
The Lorentz Theory of Electrons and Einstein's Theory of Relativity
Goldberg, Stanley
1969-01-01
Traces the development of Lorentz's theory of electrons as applied to the problem of the electrodynamics of moving bodies. Presents evidence that the principle of relativity did not play an important role in Lorentz's theory, and that though Lorentz eventually acknowledged Einstein's work, he was unwilling to completely embrace the Einstein…
Electron energy spectrum in core-shell elliptic quantum wire
Directory of Open Access Journals (Sweden)
V.Holovatsky
2007-01-01
Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.
Theory of Mind Abilities and Deficits in Autism Spectrum Disorders
Kimhi, Yael
2014-01-01
Autism spectrum disorder (ASD) is a neurobiological disorder that significantly impairs children's social interaction, verbal and nonverbal communication, and behaviors. Questions about theory of mind (ToM) deficits in ASD have generated a large number of empirical studies. This article reviews current studies of the relationship between ToM and…
Time-Resolved Electron Spectrum Measurements on the Felix Facility
Gillespie, W. A.; Martin, P. F.; MacLeod, A. M.; Macdonald, A. J.; Bakker, R. J.; van der Geer, C. A. J.; van der Meer, A. F. G.; van Amersfoort, P. W.
1993-01-01
Measurements of the FELIX electron energy spectrum using multichannel secondary emission monitors are described. The detectors have a time resolution of 50 ns and span typically 4% in electron energy over 32 channels. Aspects of the design of the OTR detector and energy spectrometer for FELIX are
Systematics in the Electron Spectrum Measured by ATIC
Panov, A. D.; Zatsepin, V. I.; Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Guzik, T. G.; Isbert, J.;
2009-01-01
An analysis of different parameters to separate electrons from protons in the ATIC experiment has been performed. Five separate discriminants were studied by different Monte Carlo programs, leading to a variety of results. Application to the ATIC data indicates the range of variation possible in the interpretation of the data. The results of this analysis, when compared with the published results [5], show good agreement in the most interesting region of energy (from 90 GeV to 600 GeV). The measured electron spectrum is compared with the recent data reported by Fermi/LAT, and there is no major disagreement between ATIC s results and Fermi/LAT. Finally, possible systematics-free, short energy scale features of the ATIC electron spectrum are mentioned. Keywords: ATIC, electron spectrum, fine structure
Kinetic theory of free electron lasers
Energy Technology Data Exchange (ETDEWEB)
Hafizi, B. [Naval Research Lab., Washington, DC (United States); Roberson, C.W. [Office of Naval Research, Arlington, VA (United States)
1995-12-31
We have developed a relativistic kinetic theory of free electron lasers (FELs). The growth rate, efficiency, filling factor and radius of curvature of the radiation wave fronts are determined. We have used the theory to examine the effects of beam compression on growth rate. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The surprising result is that the self field contribution to the beam quality is opposite to the emittance contribution. Hence self fields can improve beam quality, particularly in compact, low voltage FELs.
Theory of the Electron Sheath and Presheath
Scheiner, Brett; Yee, Benjamin T; Hopkins, Matthew M; Barnat, Edward V
2015-01-01
Electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in Particle-In-Cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperature plasma conditions ($T_e\\gg T_i$), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under co...
Calculating the electron temperature in the lightning channel by continuous spectrum
Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN
2017-12-01
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
Measuring the orbital angular momentum spectrum of an electron beam
Grillo, Vincenzo; Tavabi, Amir H.; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E.; Boyd, Robert W.; Lavery, Martin P. J.; Padgett, Miles J.; Karimi, Ebrahim
2017-01-01
Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy. PMID:28537248
Analog Electronic Filters Theory, Design and Synthesis
Dimopoulos, Hercules G
2012-01-01
Filters are essential subsystems in a huge variety of electronic systems. Filter applications are innumerable; they are used for noise reduction, demodulation, signal detection, multiplexing, sampling, sound and speech processing, transmission line equalization and image processing, to name just a few. In practice, no electronic system can exist without filters. They can be found in everything from power supplies to mobile phones and hard disk drives and from loudspeakers and MP3 players to home cinema systems and broadband Internet connections. This textbook introduces basic concepts and methods and the associated mathematical and computational tools employed in electronic filter theory, synthesis and design. This book can be used as an integral part of undergraduate courses on analog electronic filters. Includes numerous, solved examples, applied examples and exercises for each chapter. Includes detailed coverage of active and passive filters in an independent but correlated manner. Emphasizes real filter...
Development of the doppler electron velocimeter: theory.
Energy Technology Data Exchange (ETDEWEB)
Reu, Phillip L.
2007-03-01
Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.
The theory of electronic topological transitions
Blanter, Ya. M.; Kaganov, M. I.; Pantsulaya, A. V.; Varlamov, A. A.
1994-09-01
In the present review an attemp to survey all the theory of electronic topological transitions from the very first paper until the recent achievements is made. The presentation is started from the description of possible topological siguularities in electronic spectra of metals. Then the singularities of thermodynamical and transport properties of a metal in the vicinity of ETT, their fluctuations are discussed in details. In purpose to attract the wide reader audience, the transport phenomena including the behaviour of conductivity, thermoelectric power and sound absorption coefficient in the vicinity ETT are discussed in the framework of simple Boltzmann equation approach. The last chapter of the review are devoted to the discussion of the modern problems of ETT theory, application of it to the study of properties of 2D systems, quantum oscillations in magnetic field, generalized topological transitoins. The review is supplied by the extensive and complete bibliography including around 300 references.
Electronic structure theory: Applications and geometrical aspects
Coh, Sinisa
This thesis contains several applications of the first-principles electronic-structure theory with special emphasis in parts of the thesis on the geometrical aspects of the theory. We start by reviewing the basics of the first-principles electronic-structure methods which are then used throughout the thesis. The first application of these methods is on the analysis of the stability and lattice dynamics of alpha- and beta-cristobalite phases of SiO2. We also map the complete low-energy landscape connecting these two structures and give implications on the phase transition in this compound. Next we study a family of Pbnm perovskites that are promising candidates for silicon-compatible high-K dielectrics. We calculate their structure and dielectric response, and compare with experimental results where available. The third application of these methods is to the large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites. We explain the origin of the peculiar energy landscape topology as a function of epitaxial strain. In the part of the thesis devoted to the geometrical aspects of electronic structure theory, we begin by extending the concept of electronic polarization to a Chern insulators. These insulators are characterized by a non-zero off-diagonal sigma_xy conductivity tensor component, quantized in units of e 2/h. Finally we discuss another geometrical quantity, the Chern-Simons orbital magnetoelectric coupling. We present a first-principles based calculation of this quantity in several compounds, and motivated by recent developments in the theory of topological insulators, we speculate about the existence of "large-theta materials," in which this kind of coupling could be unusually large.
Interacting electrons theory and computational approaches
Martin, Richard M; Ceperley, David M
2016-01-01
Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.
Energy Technology Data Exchange (ETDEWEB)
Tikhonov, E. V., E-mail: tikhonov@mig.phys.msu.ru [Moscow State University (Russian Federation); Uspenskii, Yu. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Khokhlov, D. R. [Moscow State University (Russian Federation)
2015-06-15
A quasiparticle electronic spectrum belongs to the characteristics of nanoobjects that are most important for applications. The following methods of calculating the electronic spectrum are analyzed: the Kohn-Sham equations of the density functional theory (DFT), the hybrid functional method, the GW approximation, and the Lehmann approximation used in the spectral representation of one-electron Green’s function. The results of these approaches are compared with the data of photoemission measurements of benzene, PTCDA, and phthalocyanine (CuPc, H{sub 2}Pc, FePc, PtPc) molecules, which are typical representatives of organic molecular semiconductors (OMS). This comparison demonstrates that the Kohn-Sham equations of DFT incorrectly reproduce the electronic spectrum of OMS. The hybrid functional method correctly describes the spectrum of the valence and conduction bands; however, the HOMO-LUMO gap width is significantly underestimated. The correct gap width is obtained in both the GW approximation and the Lehmann approach, and the total energy in this approach can be calculated in the local density approximation of DFT.
Postmodern theories about readers in electronic environment
Directory of Open Access Journals (Sweden)
Ivanka Kuić
2015-03-01
Full Text Available Introductory part of the paper discusses theories about readers in the last decades of the 20th century. In particular, two big theoretical schools are discussed: aesthetic reception theory and reader-response-criticism movement. Readers are a subject of very different scientific disciplines: literature theory, sociology, anthropology, book history and library science. The idea that a reader is an essential subject for future life of a literary work is common to all theorists. By constructing the theory about a reader, theorists have thought about the reader who uses the conventions of printed text. The issue whether these concepts correspond to electronic surroundings is discussed. Characteristics of the hypertext are emphasized as a new paradigm, and also the issue weather readers enjoys in hypertextual fiction. In conclusion, paper expands the virtual dimension of Isers's theory about interaction between the text and the reader, and also Fish's concept of “interpretative community” which may be constituted on the Internet as a flexible virtual community.
DEFF Research Database (Denmark)
Lysenko, Alexander V.; Volk, Iurii I.; Serozhko, A.
2017-01-01
We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two......-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum...... expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal...
Theory of electron spin echoes in solids
Asadullina, N Y; Asadullin, Y Y
2002-01-01
We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published resul...
Evolution of quasistationary electron spectrum in open spherical quantum dot
Directory of Open Access Journals (Sweden)
M.V. Tkach
2008-09-01
Full Text Available The evolution of electron quasistationary spectrum in open spherical quantum dot is under study within the effective mass and rectangular potential model. Within the framework of the S-matrix model the exact solution of Schrödinger equation is obtained in general analytical form. It is shown, for the first time, that the generalized resonance energies and widths introduced as the parameters defining the probability distribution function (over the energy or quasi momentum of electron location in quantum dot, adequately characterize the evolution of its quasistationary states (contrary to the S-matrix poles in the whole range of barrier thickness: from zero (free states up to the infinity (stationary bound states are under the barrier and virtual and free states are above it.
The electronic spectrum of the FeF radical
Kermode, S
2001-01-01
well as two previously unobserved electronic states around 5000 cm sup - sup 1 above the ground state. The states are assigned as A sup 6 PI and B sup 6 SIGMA sup + electronic states. The spin components of both electronic states were found to be heavily perturbed resulting in uneven splittings between them. A third, weak series was also observed but could not be assigned. The (0,0) band of the sup 6 PI sub 7 sub / sub 2 -B sup 6 SIGMA sub 5 sub / sub 2 transition at 398 nm was observed in absorption by laser induced fluorescence and rotational structure assigned. The spectra obtained were weak due to a low population of the B sup 6 SIGMA sup + state by the reaction used to form FeF. The levels were found to be highly perturbed at high J values. Attempts were made to fit the data on the sup 6 PI-B sup 6 SIGMA sup + system to an effective Hamiltonian, though the presence of perturbations meant that the system is not well described by such a model. The electronic spectrum of the FeF radical has been investigate...
Problems of linear electron (polaron) transport theory in semiconductors
Klinger, M I
1979-01-01
Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon
Energy Technology Data Exchange (ETDEWEB)
Tuetuencue, H M [Sakarya ueniversitesi, Fen-Edebiyat Fakueltesi, Fizik Boeluemue, 54140, Adapazari (Turkey); Duman, S [Sakarya ueniversitesi, Fen-Edebiyat Fakueltesi, Fizik Boeluemue, 54140, Adapazari (Turkey); Bagci, S [Sakarya ueniversitesi, Fen-Edebiyat Fakueltesi, Fizik Boeluemue, 54140, Adapazari (Turkey); Srivastava, G P [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)
2007-12-15
We report results of first-principles calculations for structural properties, electronic structure, phonon spectrum and electron-phonon interaction for the antiperovskite compound AlCNi{sub 3}. The structural properties are calculated using a plane-wave-pseudopotential method and the density functional theory within the generalised gradient approximation. The electronic structure and density of states for AlCNi{sub 3} are presented and compared with previous theoretical calculations. Our structural and electronic results are used, within the implementation of a linear response technique, for calculations of phonon states. We have observed that all phonon modes are stable along the [100] direction while unstable phonon modes are found in the [110] and [111] symmetry directions. At the Brillouin zone edge point X, the electron-phonon coupling parameters for phonon modes in AlCNi{sub 3} are calculated to be smaller than their corresponding values for MgCNi{sub 3}. This result indicates that the electron-phonon interaction is not very strong in AlCNi{sub 3}.
Kinetic theory of plasma sheaths surrounding electron-emitting surfaces.
Sheehan, J P; Hershkowitz, N; Kaganovich, I D; Wang, H; Raitses, Y; Barnat, E V; Weatherford, B R; Sydorenko, D
2013-08-16
A one-dimensional kinetic theory of sheaths surrounding planar, electron-emitting surfaces is presented which accounts for plasma electrons lost to the surface and the temperature of the emitted electrons. It is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. The sheath potential goes to zero as the plasma electron temperature equals the emitted electron temperature, which can occur in the afterglow of an rf plasma and some low-temperature plasma sources. These results were validated by particle in cell simulations. The theory was tested by making measurements of the sheath surrounding a thermionically emitting cathode in the afterglow of an rf plasma. The measured sheath potential shrunk to zero as the plasma electron temperature cooled to the emitted electron temperature, as predicted by the theory.
Explanation of Second-Order Asymptotic Theory Via Information Spectrum Method
Hayashi, Masahito
We explain second-order asymptotic theory via the information spectrum method. From a unified viewpoint based on the generality of the information spectrum method, we consider second-order asymptotic theory for use in fixed-length data compression, uniform random number generation, and channel coding. Additionally, we discuss its application to quantum cryptography, folklore in source coding, and security analysis.
Graph-based linear scaling electronic structure theory.
Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Electronic Raman scattering and the renormalization of the electron spectrum in LuB{sub 12}
Energy Technology Data Exchange (ETDEWEB)
Ponosov, Yu. S., E-mail: ponosov@imp.uran.ru; Streltsov, S. V., E-mail: streltsov@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Levchenko, A. V.; Filippov, V. B. [National Academy of Sciences of Ukraine, Frantsevich Institute of Materials Science Problems (Ukraine)
2016-09-15
The electronic Raman scattering in LuB{sub 12} single crystals of various isotope compositions is studied in the temperature range 10–650 K. The shape and the energy position of spectral maxima depend on the direction and magnitude of a probe wavevector, the temperature, and the excitation symmetry and remain unchanged when the isotope composition changes. Experimental spectra are compared with the spectra simulated on the basis of a calculated electronic structure. The experimental results are successfully described when the electron spectrum renormalization effects caused by electron–phonon coupling are taken into account. This confirms that the origin of the observed spectra in LuB{sub 12} is due to Raman scattering by electrons. A comparison of the calculated and experimental data makes it possible to determine the coupling constant (λ{sub ep} = 0.32) that gives the correct superconducting transition temperature.
Ultra-large-scale electronic structure theory and numerical algorithm
Hoshi, Takeo
2008-01-01
This article is composed of two parts; In the first part (Sec. 1), the ultra-large-scale electronic structure theory is reviewed for (i) its fundamental numerical algorithm and (ii) its role in nano-material science. The second part (Sec. 2) is devoted to the mathematical foundation of the large-scale electronic structure theory and their numerical aspects.
Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory
Talbot, Christopher; Neo, Choo Tong
2013-01-01
This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…
Schuwerk, Tobias; Vuori, Maria; Sodian, Beate
2015-01-01
This study aimed to investigate the relationship between explicit and implicit forms of Theory of Mind reasoning and to test the influence of experience on implicit Theory of Mind reasoning in individuals with autism spectrum disorders and in neurotypical adults. Results from two standard explicit Theory of Mind tasks are mixed: Individuals with…
Frolov, Alexei M
2015-01-01
Ionization of light atoms and ions during nuclear $\\beta^{-}$-decay is considered. We determine the velocity/momentum spectrum of secondary electrons emitted during nuclear $\\beta^{-}$-decay in one-electron tritium atom. The same method can be applied to describe velocity/momentum distributions of secondary electrons emitted from $\\beta^{-}$-decaying few-electron atoms and molecules.
Universal spectrum of 2d conformal field theory in the large c limit
Thomas Hartman; Keller, Christoph A.; Bogdan Stoica
2014-01-01
Two-dimensional conformal field theories exhibit a universal free energy in the high temperature limit $T \\to \\infty$, and a universal spectrum in the Cardy regime, $\\Delta \\to \\infty$. We show that a much stronger form of universality holds in theories with a large central charge $c$ and a sparse light spectrum. In these theories, the free energy is universal at all values of the temperature, and the microscopic spectrum matches the Cardy entropy for all $\\Delta \\geq c/6$. The same is true o...
An introduction to the electron theory of solids
Stringer, John; Hopkins, D W; Finniston, H M
2013-01-01
An Introduction to the Electron Theory of Solids introduces the reader to the electron theory of solids. Topics covered range from the breakdown of classical theory to atomic spectra and the old quantum theory, as well as the uncertainty principle of Heisenberg and the foundations of quantum mechanics. Some problems in wave mechanics and a wave-mechanical treatment of the simple harmonic oscillator and the hydrogen atom are also presented.Comprised of 12 chapters, this book begins with an introduction to Isaac Newton's theory of classical mechanics and how the scientists after him discounted h
THEORY OF MIND IN CHILDREN WITH FETAL ALCOHOL SPECTRUM DISORDERS
Lindinger, Nadine M.; Malcolm-Smith, Susan; Dodge, Neil C.; Molteno, Christopher D.; Thomas, Kevin G. F.; Meintjes, Ernesta M.; Jacobson, Joseph L.; Jacobson, Sandra W.
2015-01-01
Background Theory of mind (ToM) refers to the ability to understand and make inferences about other people’s intentions, feelings, and beliefs. Although children with fetal alcohol spectrum disorders (FASD) are known to have deficits in social-cognitive function, little is known about ToM in FASD. Methods ToM ability was assessed using a developmentally sensitive ToM battery, including the Reading the Mind in the Eyes (RME) test, a measure of mental inferential ability that has been found to be impaired in other clinical populations. IQ and executive function (EF) were assessed as potential mediating variables. The battery was administered to 63 children (aged 9–11 years) from Cape Town, South Africa, whose mothers had been prospectively recruited during pregnancy. Children with fetal alcohol syndrome (FAS; n=8) and partial FAS (PFAS; n=19), as well as nonsyndromal heavily exposed children (HE; n=17), were compared to children born to abstaining or light drinkers (n=19) from the same community. Results No FASD group differences were found on the less challenging ToM tasks. By contrast, children with FAS and PFAS performed more poorly than controls on a more challenging ToM task, the RME test. A continuous measure of prenatal alcohol exposure was more sensitive than FASD diagnosis in that it was related to four higher-order ToM measures, particularly the ability to attribute mental states assessed on RME. IQ only partially mediated the effect of exposure on RME performance, and these effects were not mediated by EF. Hence, the data suggest that these ToM measures tap into a specific alcohol-related social-cognitive deficit that does not merely reflect poorer EF. FASD diagnosis and prenatal alcohol exposure were each also related to RME after control for Attention Deficit/Hyperactivity Disorder. Conclusions These findings suggest that deficits in higher-order ToM function may play a significant role in the social-cognitive behavioural impairment in FASD. PMID
Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders
Miguel Ángel Romero-Munguía
2013-01-01
Individuals with autism spectrum disorders (ASD) have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad). Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction) seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account) and mnesic imbalance theories are the only ones that attempt to explain all these core tr...
Directory of Open Access Journals (Sweden)
S. V. Shchelkunov
2005-06-01
Full Text Available We report the development of a nondestructive technique to measure bunch rms length in the psec range and below, and eventually in the fsec range, by measuring the high-frequency spectrum of wakefield radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric. We demonstrate numerically that the generated spectrum is determined by the rms bunch length, while the specific axial and longitudinal charge distribution is not important. Measurement of the millimeter-wave spectrum will determine the rms bunch length in the psec range. This has been done using a series of calibrated mesh filters and the charge bunches produced by the 50 MeV rf linac system at ATF (Accelerator Test Facility, Brookhaven. We have developed the analysis of the factors crucial for achieving good accuracy in this measurement, and find the experimental data are fully understood by the theory. We point out that this technique also may be used for measuring fsec bunch lengths, using a prepared planar wakefield microstructure.
The time-resolved photoelectron spectrum of toluene using a perturbation theory approach
Richings, Gareth W.; Worth, Graham A.
2014-12-01
A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includes only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S1 excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.
The time-resolved photoelectron spectrum of toluene using a perturbation theory approach
Energy Technology Data Exchange (ETDEWEB)
Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)
2014-12-28
A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includes only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.
Theory of Mind, linguistic recursion and autism spectrum disorder
DEFF Research Database (Denmark)
Polyanskaya, Irina; Blackburn, Patrick Rowan; Braüner, Torben
2017-01-01
In this paper we give the motivation for and discuss the design of an experiment investigating whether the acquisition of linguistic recur-sion helps children with Autism Spectrum Disorder (ASD) develop second-order false belief skills. We first present the relevant psycho-logical concepts (in...
Orbital Models and Electronic Structure Theory
DEFF Research Database (Denmark)
Linderberg, Jan
2012-01-01
This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules w...... when used for the interpretation of electronic transitions, electron spin resonance parameters, rotatory dispersion, nuclear quadrupole couplings as well as geometric bonding patterns. Ballhausen's profound impact on the field cannot be overestimated.......This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules...
Kretschmer, A.; Lampmann, S.A.; Altgassen, A.M.
2014-01-01
The aims of the present study were to investigate relations between moral reasoning, executive functioning and Theory of Mind in children with autism spectrum disorders (ASD) compared to typically developing children and to apply the dual aspect theory of Lind (1978, 2008) to moral reasoning in
Theory of interrelated electron and proton transfer processes
DEFF Research Database (Denmark)
Kuznetsov, A.M.; Ulstrup, Jens
2003-01-01
A simple theory of elementary act of interrelated reactions of electron and proton transfer is developed. Mechanisms of synchronous and multistage transfer and coherent transitions via a dynamically populated intermediate state are discussed. Formulas for rate constants of adiabatic and nonadiaba......A simple theory of elementary act of interrelated reactions of electron and proton transfer is developed. Mechanisms of synchronous and multistage transfer and coherent transitions via a dynamically populated intermediate state are discussed. Formulas for rate constants of adiabatic...
Quantum theory of the electron liquid
National Research Council Canada - National Science Library
Giuliani, Gabriele; Vignale, Giovanni
2005-01-01
... to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid, are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the r...
Rival Theories of Newsreading in the Electronic Newspaper Arena.
Dozier, David M.
Emerging videotex news services--systems for distributing textual information on television screens that permit direct competition with pulp newspapers--are presently rooted in a limited theory of newsreading. The first of two rival theories of newsreading applicable to electronic newspapers is "uses and gratifications" research--the…
Spontaneous theory of mind and its absence in autism spectrum disorders
Senju, Atsushi
2011-01-01
Theory of mind, the cognitive capacity to infer others' mental states, is crucial for the development of social communication. The impairment of theory of mind may relate to autism spectrum disorder (ASD), which is characterized by profound difficulties in social interaction and communication. In the current article, I summarize recent updates in theory of mind research utilizing the spontaneous false belief test, which assesses participants' spontaneous tendency to attribute belief status to...
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
Multifrequency Electron Paramagnetic Resonance Theory and Applications
Misra, Sushil K
2011-01-01
Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.
Quantum chemistry the development of ab initio methods in molecular electronic structure theory
Schaefer III, Henry F
2004-01-01
This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi
Aberration Theory - A Spectrum Of Design Techniques For The Perplexed
Shafer, David
1986-10-01
The early medieval scholar Maimonides wrote a famous book called "Guide for the Perplexed", which explained various thorny philosophical and religious questions for the benefit of the puzzled novice. I wish I had had such a person to guide me when I first started a career in lens design. There the novice is often struck by how much of an "art" this endeavor is. The best bet, for a beginner with no experience, should be to turn to optical aberration theory - which, in principle, should explain much of what goes into designing an optical system. Unfortunately, this subject is usually presented in the form of proofs and derivations, with little time spent on the practical implications of aberration theory. Furthermore, a new generation of lens designers, who grew up with the computer, often consider aberration theory as an unnecessary relic from the past. My career, by contrast, is based on the conviction that using the results of aberration theory is the only intelligent way to design optical systems. Computers are an invaluable aide, but we must, ultimately, bite the bullet and think. Along these lines, I have given several papers over the last few years which deal directly with the philosophy of lens design; the kind of guides for the perplexed that I wished I had had from the start. These papers include: "Lens design on a desert island - A simple method of optical design", "A modular method of optical design", "Optical design with air lenses", "Optical design with 'phantom' aspherics", "Optical design methods: your head as a personal computer", "Aberration theory and the meaning of life", and a paper at Innsbruck - "Some interesting correspondences in aberration theory". In all cases, the emphasis is on using your head to think, and the computer to help you out with the numerical work and the "fine-tuning" of a design. To hope that the computer will do the thinking for you is folly. Solutions gained by this route rarely equal the results of an experienced and
Theory of Electron-Ion Collisions
Energy Technology Data Exchange (ETDEWEB)
Griffin, Donald C
2009-10-02
Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 - August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.
Theory of Magnetization in Bloch Electron Systems
Ogata, Masao
2017-04-01
The exact formulas for magnetization and magnetic susceptibility are derived for Bloch electrons in terms of Bloch wave functions. They are extensions of the previous work to general cases where the spin-orbit interaction as well as the Zeeman term is included, the potential is noncentrosymmetric, and the time-reversal symmetry is broken. The obtained magnetization for Bloch electrons is a natural generalization of the free-electron magnetic moment including the effect of the spin-orbit interaction. The obtained susceptibility has six contributions and the physical meaning of each term is clarified. The new formula contains the Landau-Peierls, Pauli, and Van Vleck susceptibilities, the atomic diamagnetism, and contributions from the "Berry curvature". In the atomic limit, the obtained formula reduces to two contributions: the atomic diamagnetism and a generalized form of the Van Vleck susceptibility modified by the spin-orbit interaction. It is also found that, in general cases, the Pauli, Van Vleck (interband), and Berry curvature susceptibilities are closely related to common magnetization matrix elements, which is in sharp contrast to previous studies. A general form of the off-diagonal magnetic susceptibility is also derived.
Theory of Dirac Electrons in Organic Conductors
Directory of Open Access Journals (Sweden)
Akito Kobayashi
2012-04-01
Full Text Available The dynamical property of electrons with the tilted Dirac cone was examined using the tilted Weyl equation. The polarization function exhibits cusps and nonmonotonic structures by varying both the frequency and the momentum. A pair of tilted Dirac cones exhibits a new plasmon for the intermediate magnitude of momentum owing to the combined effects of two tilted cones. Dirac electrons with the zero-gap state (ZGS in organic conductor α-(BEDT-TTF2I3 are examined by calculating the Berry curvature, which displays the peak structure for a pair of Dirac particles between the conduction band and the valence band. The ZGS is theoretically predicted for α-(BEDT-TTF2NH4Hg(SCN4 under uniaxial pressure. Examining the band structure of the stripe charge ordered state of α-(BEDT-TTF2I3 under pressure, we have found a topological transition from a conventional insulator to a new phase of a pair of Dirac electrons with a finite mass. Further, investigating the zero-energy (N = 0 Landau level under a strong magnetic field, we propose ferromagnetism breaking the SU(2 valley-pseudo-spin symmetry, and the phase fluctuations of the order parameters leading to Kosterlitz-Thouless transition at lower temperatures.
Electric circuit theory applied electricity and electronics
Yorke, R
1981-01-01
Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical
Linnett Double Quartet Theory, Challenging the Pairing Electrons
Directory of Open Access Journals (Sweden)
Yeganeh Khaniani
2009-01-01
Full Text Available Linnett proposed his theory 45 years after Lewis's supposition. During these years Pauling, Mulliken and Hund made different molecular structure models based on valance bond and molecular orbital theory. Their theories were seemed to fit many experiences but had some inabilities. Linnett's double quartet theory could solved some important problems about stability of radicals, paramagnetism / diamagnetism in molecular systems, electronic structure in transition states and finally challenge of resonance and aromaticity. In this article we review some basic ideas and concepts concerning different models and then we give a detailed discussion of the LDQ and use it in diverse branches of chemistry.
Information Theory Broadens the Spectrum of Molecular Ecology and Evolution.
Sherwin, W B; Chao, A; Jost, L; Smouse, P E
2017-12-01
Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analytic gradients in electronic structure theory
Shroll, Robert Marvin
1997-10-01
The energy gradients for the Hartree Fock ground state, Dirac-Hartree-Fock ground state, singles-only configuration interaction approximation to the first singlet excited state, and a set of restricted singles- only configuration interaction equations are presented. Algebraic approximations will be used in all of these state energy equation derivations. This leads us to a commonality between the various methods which is the need to calculate gradients with respect to basis set expansion coefficients. For the non-relativistic correlated energy states, these coefficient derivatives will be determined using Coupled Perturbed Hartree Fock (CPHF) theory. For the relativistic case, an analogous set of equations are presented which have been called the Coupled Perturbed Dirac-Hartree-Fock (CPDHF) equations.
Liquid-state polaron theory of the hydrated electron revisited.
Donley, James P; Heine, David R; Tormey, Caleb A; Wu, David T
2014-07-14
The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.
Game theory for dynamic spectrum sharing cognitive radio
Raoof, Omar
2013-01-01
This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel University on 21 June 2010. ‘Game Theory’ is the formal study of conflict and cooperation. The theory is based on a set of tools that have been developed in order to assist with the modelling and analysis of individual, independent decision makers. These actions potentially affect any decisions, which are made by other competitors. Therefore, it is well suited and capable of addressing the various is...
Electron States and Quasienergy Spectrum of the Graphene Exposed to the Electromagnetic Wave
S.V. Kryuchkov; E.I. Kukhar’; O.S. Nikitina
2013-01-01
The effective spectrum and wave functions of electron states in graphene under the electromagnetic wave with circular polarization are found. The band gap in the graphene spectrum induced by the electromagnetic wave is calculated. Occurrence of such gap is shown to have the nature of the parametric resonance. The effective energy of the electron state in graphene is proved to be the energy averaged over the period of the electromagnetic wave.
Tecmer, P.; van Lingen, H.; Gomes, A.S.P.; Visscher, L.
2012-01-01
The electronic spectrum of the CUO molecule was investigated with the IHFSCC-SD (intermediate Hamiltonian Fock-space coupled cluster with singles and doubles) method and with TD-DFT (time-dependent density functional theory) employing the PBE and PBE0 exchange-correlation functionals. The importance
Directory of Open Access Journals (Sweden)
O.Ya.Farenyuk
2006-01-01
Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.
Perspective: Explicitly correlated electronic structure theory for complex systems.
Grüneis, Andreas; Hirata, So; Ohnishi, Yu-Ya; Ten-No, Seiichiro
2017-02-28
The explicitly correlated approach is one of the most important breakthroughs in ab initio electronic structure theory, providing arguably the most compact, accurate, and efficient ansatz for describing the correlated motion of electrons. Since Hylleraas first used an explicitly correlated wave function for the He atom in 1929, numerous attempts have been made to tackle the significant challenges involved in constructing practical explicitly correlated methods that are applicable to larger systems. These include identifying suitable mathematical forms of a correlated wave function and an efficient evaluation of many-electron integrals. R12 theory, which employs the resolution of the identity approximation, emerged in 1985, followed by the introduction of novel correlation factors and wave function ansätze, leading to the establishment of F12 theory in the 2000s. Rapid progress in recent years has significantly extended the application range of explicitly correlated theory, offering the potential of an accurate wave-function treatment of complex systems such as photosystems and semiconductors. This perspective surveys explicitly correlated electronic structure theory, with an emphasis on recent stochastic and deterministic approaches that hold significant promise for applications to large and complex systems including solids.
One-Electron Theory of Metals. Cohesive and Structural Properties
DEFF Research Database (Denmark)
Skriver, Hans Lomholt
by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth...... metals, and the localization of 3d, 4f, and 5f electrons in the 3d metal monoxides, the light lanthanides, and the actinides, respectively, as well as the cohesive properties of metals in general.!......The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...
Energy Dependence of Near-relativistic Electron Spectrum at ...
Indian Academy of Sciences (India)
discussed the radiation belt electron drop outs with respect to their local time, radial and particle-energy dependence. In this paper we present the energy dependence of REDs and REEs at geostationary orbit for electrons at energies 2 MeV, 0.9 MeV, 0.6 MeV with respect to the solar wind and Interplanetary Magnetic Field ...
Fein, Lance; Jones, Don
2015-01-01
This study addresses the compromise skills that are taught to students diagnosed with autistic spectrum disorders (ASD) and related social and communication deficits. A private school in the southeastern United States implemented an emergence theory-based curriculum to address these skills, yet no formal analysis was conducted to determine its…
Johnson, Gaige; Kohler, Kelly; Ross, Denise
2017-01-01
The purpose of the current paper is to describe the impact of applied behaviour analysis on language treatment for children with autism spectrum disorders (ASDs) diagnoses. Specifically, this paper will describe Skinner's theory of verbal behaviour and its contributions to evidence-based treatments for communication deficits among individuals with…
Williamson, Pamela; Carnahan, Christina R.; Jacobs, Jennifer A.
2012-01-01
Using a constructivist grounded theory approach, this study sought to understand what influences reading comprehension and how meaning is made from text among high-functioning individuals with autism spectrum disorder (ASD). Using a think-aloud procedure, 13 individuals ages 7-13 with ASD read 16 passages at their instructional reading level.…
Idiom, Syntax, and Advanced Theory of Mind Abilities in Children with Autism Spectrum Disorders
Whyte, Elisabeth M.; Nelson, Keith E.; Scherf, K. Suzanne
2014-01-01
Purpose: When researchers investigate figurative language abilities (including idioms) in children with autism spectrum disorder (ASD), syntax abilities may be more important than once considered. In addition, there are limitations to the overreliance on false-belief tasks to measure theory of mind (TOM) abilities. In the current study, the…
The Extreme Male Brain Theory and Gender Role Behaviour in Persons with an Autism Spectrum Condition
Stauder, J. E. A.; Cornet, L. J. M.; Ponds, R. W. H. M.
2011-01-01
According to the Extreme Male Brain theory persons with autism possess masculinised cognitive traits. In this study masculinisation of gender role behaviour is evaluated in 25 persons with an autism spectrum condition (ASC) and matched controls with gender role behaviour as part of a shortened version of the Minnesota Multiphasic Personality…
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.
Salim, Shelly; Moh, Sangman
2016-06-30
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks
Directory of Open Access Journals (Sweden)
Shelly Salim
2016-06-01
Full Text Available A cognitive radio sensor network (CRSN is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
Theory of quantum-circuit refrigeration by photon-assisted electron tunneling
Silveri, Matti; Grabert, Hermann; Masuda, Shumpei; Tan, Kuan Yen; Möttönen, Mikko
2017-09-01
We focus on a recently experimentally realized scenario of normal-metal-insulator-superconductor tunnel junctions coupled to a superconducting resonator. We develop a first-principles theory to describe the effect of photon-assisted electron tunneling on the quantum state of the resonator. Our results are in very good quantitative agreement with the previous experiments on refrigeration and heating of the resonator using the photon-assisted tunneling, thus providing a stringent verification of the developed theory. Importantly, our results provide simple analytical estimates of the voltage-tunable coupling strength and temperature of the thermal reservoir formed by the photon-assisted tunneling. Consequently, they are used to introduce optimization principles for initialization of quantum devices using such a quantum-circuit refrigerator. Thanks to the first-principles nature of our approach, extension of the theory to the full spectrum of quantum electric devices seems plausible.
Plugged In: Electronics Use in Youth and Young Adults with Autism Spectrum Disorder
MacMullin, Jennifer A.; Lunsky, Yona; Weiss, Jonathan A.
2016-01-01
Although electronic technology currently plays an integral role for most youth, there are growing concerns of its excessive and compulsive use. This study documents patterns and impact of electronics use in individuals with autism spectrum disorder compared to typically developing peers. Participants included 172 parents of typically developing…
Spectrum and angular distribution of low energy electrons from 152Eu deca
Directory of Open Access Journals (Sweden)
L. P. Sydorenko
2015-04-01
Full Text Available Angular distribution of low energy electrons from 152Eu decay was measured. Measurements were carried out in cylindrical geometry, which permits minimum distortions of data. These data confirm existence of angular distribution dependence on the energy of emitted electrons but this dependence somewhat differs from theory predicted. It is noted that the theory predicts too low intensity of near-zero energy electrons e0 (Ee ~ 1 - 2 eV emission; also, the static screening of charge used in theory should not influence the emission of e0-electrons.
Transport Theory for Kinetic Emission of Secondary Electrons from Solids
DEFF Research Database (Denmark)
Schou, Jørgen
1980-01-01
. These quantities are determined from the solutions to a system of Boltzmann transport equations. Input quantities are the cross sections for collisions between the involved particles and the surface barrier of the target. A general power cross section has been utilized in the analytical procedure. It is shown......Kinetic secondary electron emission from a solid target resulting from incidence of keV electrons or keV and MeV ions is treated theoretically on the basis of ionization cascade theory. The energy and angular distribution and the yield of secondary electrons are calculated for a random target...
Theory of coherent molecule to surface electron injection: An ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5. Theory of coherent molecule to surface electron injection: An analytical model ... Using a quasicontinuum approach to model the substrate, analytical expressions pertaining to the time-dependent probability among the various levels of the substrate is ...
DEFF Research Database (Denmark)
Høgfeldt Hansen, Leif
2016-01-01
The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....
Theory of molecular nonadiabatic electron dynamics in condensed phases
Takatsuka, Kazuo
2017-11-01
In light of the rapid progress of ultrafast chemical dynamics driven by the pulse lasers having width as short as several tens of attoseconds, we herein develop a theory of nonadiabatic electron wavepacket dynamics in condensed phases, with which to directly track the dynamics of electronic-state mixing such as electron transfer in liquid solvents. Toward this goal, we combine a theory of path-branching representation for nonadiabatic electron wavepacket dynamics in vacuum {a mixed quantum-classical representation, Yonehara and Takatsuka [J. Chem. Phys. 129, 134109 (2008)]} and a theory of entropy functional to treat chemical dynamics in condensed phases {a mixed dynamical-statistical representation, Takatsuka and Matsumoto [Phys. Chem. Chem. Phys. 18, 1771 (2016)]}. Difficulty and complexity in the present theoretical procedure arise in embedding the Schrödinger equation into classically treated statistical environment. Nevertheless, the resultant equations of motion for electronic-state mixing due to the intrinsic nonadiabatic interactions and solute-solvent interactions, along with the force matrix that drives nuclear branching paths, both turn out to be clear enough to make it possible to comprehend the physical meanings behind. We also discuss briefly the nonvalidness of naive application of the notion of nonadiabatic transition dynamics among free energy surfaces.
Field theory of the spinning electron: I - Internal motions
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1994-05-01
One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.
Variational methods in electron-atom scattering theory
Nesbet, Robert K
1980-01-01
The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...
Theory of neutron scattering by electrons in magnetic materials
Lovesey, S. W.
2015-10-01
A theory of neutron scattering by magnetic materials is reviewed with emphasis on the use of electronic multipoles that have universal appeal, because they are amenable to calculation and appear in theories of many other experimental techniques. The conventional theory of magnetic neutron scattering, which dates back to Schwinger (1937 Phys. Rev. 51 544) and Trammell (1953 Phys. Rev. 92 1387), yields an approximation for the scattering amplitude in terms of magnetic dipoles formed with the spin (S) and orbital angular momentum (L) of valence electrons. The so-called dipole-approximation has been widely adopted by researchers during the past few decades that has seen neutron scattering develop to its present status as the method of choice for investigations of magnetic structure and excitations. Looking beyond the dipole-approximation, however, reveals a wealth of additional information about electronic degrees of freedom conveniently encapsulated in magnetic multipoles. In this language, the dipole-approximation retains electronic axial dipoles, S and L. At the same level of approximation are polar dipoles—called anapoles or toroidal dipoles—allowed in the absence of a centre of inversion symmetry. Anapoles are examples of magneto-electric multipoles, time-odd and parity-odd irreducible tensors, that have come to the fore as signatures of electronic complexity in materials.
Theory of molecular nonadiabatic electron dynamics in condensed phases.
Takatsuka, Kazuo
2017-11-07
In light of the rapid progress of ultrafast chemical dynamics driven by the pulse lasers having width as short as several tens of attoseconds, we herein develop a theory of nonadiabatic electron wavepacket dynamics in condensed phases, with which to directly track the dynamics of electronic-state mixing such as electron transfer in liquid solvents. Toward this goal, we combine a theory of path-branching representation for nonadiabatic electron wavepacket dynamics in vacuum {a mixed quantum-classical representation, Yonehara and Takatsuka [J. Chem. Phys. 129, 134109 (2008)]} and a theory of entropy functional to treat chemical dynamics in condensed phases {a mixed dynamical-statistical representation, Takatsuka and Matsumoto [Phys. Chem. Chem. Phys. 18, 1771 (2016)]}. Difficulty and complexity in the present theoretical procedure arise in embedding the Schrödinger equation into classically treated statistical environment. Nevertheless, the resultant equations of motion for electronic-state mixing due to the intrinsic nonadiabatic interactions and solute-solvent interactions, along with the force matrix that drives nuclear branching paths, both turn out to be clear enough to make it possible to comprehend the physical meanings behind. We also discuss briefly the nonvalidness of naive application of the notion of nonadiabatic transition dynamics among free energy surfaces.
Energy Dependence of Near-relativistic Electron Spectrum at ...
Indian Academy of Sciences (India)
This may give us some insight into how we can safeguard geostationary satellites from functional anomalies of the deep dielectric charging type, which are caused by charge accumulation and subsequent discharge of relativistic electrons. In this study we examine whether there is any energy dependence in relativistic ...
Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders
Directory of Open Access Journals (Sweden)
Miguel Ángel Romero-Munguía
2013-01-01
Full Text Available Individuals with autism spectrum disorders (ASD have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad. Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account and mnesic imbalance theories are the only ones that attempt to explain all these core triadic symptoms of ASD On the other hand, theory of mind deficit in empathizing-systemizing theory is the most influential account for ASD, but its counterpart in the mnesic imbalance theory, faulty procedural memory, seems to occur earlier in development; consequently, this might be a better solution to the problem of the etiology of ASD, if it truly meets the precedence criterion. Hence, in the present paper I review the reasoning in favor of the theory of mind deficit but with a new interpretation based on the mnesic imbalance theory, which posits that faulty procedural memory causes deficits in several cognitive skills, resulting in poor performance in theory of mind tasks.
Spontaneous theory of mind and its absence in autism spectrum disorders.
Senju, Atsushi
2012-04-01
Theory of mind, the cognitive capacity to infer others' mental states, is crucial for the development of social communication. The impairment of theory of mind may relate to autism spectrum disorder (ASD), which is characterized by profound difficulties in social interaction and communication. In the current article, I summarize recent updates in theory of mind research utilizing the spontaneous false belief test, which assesses participants' spontaneous tendency to attribute belief status to others. These studies reveal that young infants pass the spontaneous false belief test well before they can pass the same task when explicitly asked to answer. By contrast, high-functioning adults with ASD, who can easily pass the false belief task when explicitly asked to, do not show spontaneous false belief attribution. These findings suggest that the capacity for theory of mind develops much earlier than was previously thought, and the absence of spontaneous theory of mind may relate to impairment in social interaction and communication found in ASD.
Electron-phonon coupling using many-body GW theory
Monserrat, Bartomeu; Vanderbilt, David
Electron-phonon coupling drives a plethora of phenomena, such as superconductivity in metals, or the temperature dependence of optical properties in semiconductors. There is increasing evidence that semi-local density functional theory (DFT) is not adequate for the description of electron-phonon coupling, and instead effects such as electronic correlation need to be included. Unfortunately, methods beyond semi-local DFT are computationally demanding, limiting the study of these phenomena. In this talk we will introduce the idea of ``thermal lines'', which can be used to explore the vibrational phase space of solids and molecules at small computational cost. In particular, we will describe how thermal lines can be exploited to calculate the temperature dependence of band structures beyond semi-local DFT, by using many-body GW theory, or by including the effects of spin-orbit coupling. We will present first-principles results showing the effects of electron correlation on the strength of electron-phonon coupling, and the effects of electron-phonon coupling on topological states of matter. Supported by Robinson College, Cambridge, and the Cambridge Philosophical Society.
Realistic theory of electronic correlations in nanoscopic systems
Schüler, Malte; Barthel, Stefan; Wehling, Tim; Karolak, Michael; Valli, Angelo; Sangiovanni, Giorgio
2017-07-01
Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund's J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.
Spectrum and network measurements
Witte, Robert A
2014-01-01
This new edition of Spectrum and Network Measurements enables readers to understand the basic theory, relate it to measured results, and apply it when creating new designs. This comprehensive treatment of frequency domain measurements successfully consolidates all the pertinent theory into one text. It covers the theory and practice of spectrum and network measurements in electronic systems. It also provides thorough coverage of Fourier analysis, transmission lines, intermodulation distortion, signal-to-noise ratio and S-parameters.
Theory of parametrically amplified electron-phonon superconductivity
Energy Technology Data Exchange (ETDEWEB)
Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene
2017-07-01
Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.
Theory of parametrically amplified electron-phonon superconductivity
Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene
2017-07-01
Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016), 10.1038/nature16522], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.
Theory of reversible electron transfer reactions in a condensed phase.
Dhole, Kajal; Modak, Brindaban; Samanta, Alok; Ghosh, Swapan K
2010-07-01
We have derived an exact analytical expression for the average forward rate of a reversible electron transfer reaction, modeled through a reaction coordinate undergoing diffusive motion in arbitrary potential wells of the reactant and the product in presence of a localized sink of arbitrary location and strength. The dynamics of diffusive motion is described by employing two coupled generalized diffusion reaction (Smoluchowski) equations with coordinate dependent diffusivity and delta sink. The average forward electron transfer rate constant obtained here for the system, with equilibrium or nonequilibrium distributions as initial condition, is determined by the forward and backward rate constants calculated based on the transition state theory and the weighted average rate for the well dynamics. We also discuss various limiting cases for the rate of electron transfer reactions corresponding to the different experimental situations. As an illustrative example, we have considered back electron transfer (ET) reaction and shown that the present theory can explain the non-Marcus free energy gap dependence of the rate of ET reactions. More importantly, the approach presented here can easily be extended to systems describing the dynamics of diffusive motion in coupled multipotential surfaces associated with electron transfer reactions.
Excess electrons in ice: a density functional theory study.
Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro
2014-02-21
We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.
On the electronic configuration in Pu: spectroscopy and theory
Energy Technology Data Exchange (ETDEWEB)
Tobin, J G; Soderlind, P; Landa, A; Moore, K T; Schwartz, A J; Chung, B W; Wall, M; Wills, J M; Eriksson, O; Haire, R; Kutepov, A L
2006-10-11
Photoelectron spectroscopy, synchrotron-radiation-based x-ray absorption, electron energy-loss spectroscopy, and density-functional calculations within the mixed-level and magnetic models, together with canonical band theory have been used to study the electron configuration in Pu. These methods suggest a 5f{sup n} configuration for Pu of 5 {le} n < 6, with n {ne} 6, contrary to what has recently been suggested in several publications. We show that the n = 6 picture is inconsistent with the usual interpretation of photoemission and x-ray absorption spectra. Instead, these spectra support the traditional conjecture of a 5f{sup 5} configuration in Pu as is obtained by density-functional theory. We further argue, based on 5f-band filling, that an n = 6 hypothesis is incompatible with the position of Pu in the actinide series and its monoclinic ground-state phase.
Bora, E; Yücel, M; Pantelis, C
2009-10-01
The aim of this study was to critically review the literature in order to determine if Theory of Mind (ToM) impairment can be considered a trait-marker for schizophrenia spectrum disorders and bipolar disorder (BD). After a thorough literature search, we reviewed the empirical studies investigating ToM impairments in remitted schizophrenia patients, first episode patients, subjects at high-risk (HR) for psychosis and first-degree relatives of schizophrenia patients. Studies investigating ToM impairment in other schizophrenia spectrum conditions, affective psychosis and BD were also reviewed. ToM abnormalities exist at onset and continue throughout the course of schizophrenia, persist into remission, and while less severe, are apparent in HR populations. Mentalizing impairments are also observed in other forms of psychotic illness and BD. Mentalizing impairment in schizophrenia spectrum disorders and BD might reflect underlying general cognitive deficits and residual symptom expression, rather than representing a specific trait-marker.
Ab initio calculation of the electronic absorption spectrum of liquid water
Energy Technology Data Exchange (ETDEWEB)
Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories
Caselle, Michele; Panero, Marco
2015-01-01
We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.
Hagedorn spectrum and equation of state of Yang-Mills theories
Caselle, Michele; Panero, Marco
2015-01-01
We present a novel lattice calculation of the equation of state of SU(2) Yang-Mills theory in the confining phase. We show that a gas of massive, non-interacting glueballs describes remarkably well the results, provided that a bosonic closed-string model is used to derive an exponentially growing Hagedorn spectrum for the heavy glueball states with no free parameters. This effective model can be applied to SU(3) Yang-Mills theory and the theoretical prediction agrees nicely with the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.
Time-resolved electron spectrum diagnostics for a free-electron laser
Gillespie, W. A.; MacLeod, A. M.; Martin, P. F.; van der Meer, A. F. G.; van Amersfoort, P. W.
1996-01-01
Time-resolved electron-beam diagnostics have been developed for use with free-electron lasers (FELs) and associated electron sources, based on the techniques of secondary electron emission and optical transition radiation (OTR). The 32-channel OTR detector forms part of a high-resolution (0.18%)
Spectrum of the QCD Dirac operator and chiral random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Verbaarschot, J. (Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States))
1994-04-18
We argue that the spectrum of the QCD Dirac operator near zero virtuality can be described by random matrix theory. As in the case of the classical random matrix ensembles of Dyson we have three different cases: the chiral orthogonal ensemble, the chiral unitary ensemble, and the chiral symplectic ensemble. They correspond to gauge groups SU(2) in the fundamental representation, SU([ital N][sub [ital c
Pino, Maria Chiara; Mazza, Monica; Mariano, Melania; Peretti, Sara; Dimitriou, Dagmara; Masedu, Francesco; Valenti, Marco; Franco, Fabia
2017-01-01
Theory of mind (ToM) is impaired in individuals with autism spectrum disorders (ASD). The aims of this study were to: (i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and (ii) to assess if a ToM simple test known as eyes-test could predict performance on…
The KLM + KLN Auger electron spectrum of rubidium in different matrices
Inoyatov, A. Kh; Kovalík, A.; Perevoshchikov, L. L.; Filosofov, D. V.; Vénos, D.; Lee, B. Q.; Ekman, J.; Baimukhanova, A.
2017-08-01
The KLM + KLN Auger electron spectrum of rubidium (Z = 37) emitted in the electron capture decay of radioactive 83Sr in a polycrystalline platinum matrix and also 85Sr in polycrystalline platinum and carbon matrices as well as in an evaporated layer onto a carbon backing were experimentally studied in detail for the first time using a combined electrostatic electron spectrometer. Energies, relative intensities, and natural widths of fifteen basic spectrum components were determined and compared with both theoretical predictions and experimental data for krypton (Z = 36). Relative spectrum line energies obtained from the semi-empirical calculations in intermediate coupling scheme were found to agree within 3σ with the measured values while disagreement with experiment exceeding 3σ was often observed for values obtained from our multiconfiguration Dirac-Hartree-Fock calculations. The absolute energy of the dominant spectrum component given by the semi-empirical approach agrees within 1σ with the measured value. Shifts of +(0.2 ± 0.2) and -(1.9 ± 0.2) eV were measured for the dominant KLM spectrum components between the 85Sr sources prepared by vacuum evaporation on and implanted into the carbon foil, respectively, relative to 85Sr implanted into the platinum foil. A value of (713 ± 2) eV was determined for the energy difference of the dominant components of the KLM + KLN Auger electron spectra of rubidium and krypton generated in the polycrystalline platinum matrix. From the detailed analysis of the measured data and available theoretical results, the general conclusion can be drawn that the proper description of the KLM + KLN Auger electron spectrum for Z around 37 should still be based on the intermediate coupling of angular momenta taking into account relativistic effects.
Generalization of the Schrödinger theory of electrons.
Sahni, Viraht
2017-08-01
The Schrödinger theory for a system of electrons in the presence of both a static and time-dependent electromagnetic field is generalized so as to exhibit the intrinsic self-consistent nature of the corresponding Schrödinger equations. This is accomplished by proving that the Hamiltonian in the stationary-state and time-dependent cases {Ĥ;Ĥ(t)} are exactly known functionals of the corresponding wave functions {Ψ;Ψ(t)}, that is, Ĥ=Ĥ[Ψ] and Ĥ(t)=Ĥ[Ψ(t)]. Thus, the Schrödinger equations may be written as Ĥ[Ψ]Ψ=E[Ψ]Ψ and Ĥ[Ψ(t)]Ψ(t)=i∂Ψ(t)/∂t. As a consequence the eiegenfunctions and energy eigenvalues {Ψ,E} of the stationary-state equation, and the wave function Ψ(t) of the temporal equation, can be determined self-consistently. The proofs are based on the "Quantal Newtonian" first and second laws which are the equations of motion for the individual electron amongst the sea of electrons in the external fields. The generalization of the Schrödinger equation in this manner leads to additional new physics. The traditional description of the Schrödinger theory of electrons with the Hamiltonians {Ĥ;Ĥ(t)} known constitutes a special case. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Theory and Simulation of an Inverse Free Electron Laser Experiment
Guo, S. K.; Bhattacharjee, A.; Fang, J. M.; Marshall, T. C.
1996-11-01
An experimental demonstration of the acceleration of electrons using a high power CO2 laser in an inverse free electron laser (IFEL) is underway at the Brookhaven National Laboratory. This experiment has generated data, which we are attempting to simulate. Included in our studies are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge (which is significant at lower laser power); energy-spread of the electrons; arbitrary wiggler field profile; and slippage. Two types of wiggler profile have been considered: a linear taper of the period, and a step-taper of the period (the period is ~ 3cm, the field is ~ 1T, and the wiggler length is 47cm). The energy increment of the electrons ( ~ 1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (40MeV). For laser power ~ 0.5GW, the predictions of the simulations are in good accord with experimental results. A matter currently under study is the discrepancy between theory and observations for the electron energy distribution observed at the end of the IFEL. This work is supported by the Department of Energy.
Coleman, Karen J.; Lutsky, Marta A.; Yau, Vincent; Qian, Yinge; Pomichowski, Magdalena E.; Crawford, Phillip M.; Lynch, Frances L.; Madden, Jeanne M.; Owen-Smith, Ashli; Pearson, John A.; Pearson, Kathryn A.; Rusinak, Donna; Quinn, Virginia P.; Croen, Lisa A.
2015-01-01
To identify factors associated with valid Autism Spectrum Disorder (ASD) diagnoses from electronic sources in large healthcare systems. We examined 1,272 charts from ASD diagnosed youth <18 years old. Expert reviewers classified diagnoses as confirmed, probable, possible, ruled out, or not enough information. A total of 845 were classified with…
Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales
Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.
2017-12-01
At electron scales, the power spectrum of solar-wind magnetic fluctuations can be highly variable and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar wind interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.
Exact beta function and glueball spectrum in large N Yang-Mills theory.
Bochicchio, M.
In the pure large-N Yang-Mills theory there is a quasi-BPS sector that is exactly solvable at large N. It follows an exact beta function and the glueball spectrum in this sector. The main technical tool is a new holomorphic loop equation for quasi-BPS Wilson loops, that occurs as a non-supersymmetric analogue of Dijkgraaf-Vafa holomorphic loop equation for the glueball superpotential of n=1 SUSY gauge theories. The new holomorphic loop equation is localized, i.e. reduced to a critical equation, by a deformation of the loop that is a vanishing boundary in homology, somehow in analogy with Witten's cohomological localization by a coboundary deformation in SUSY gauge theories.
A quantum field theory of the extended electron
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1993-12-01
In a recent paper, the classical model of Barut and Zanghi (BZ) for the electron spin which interpreted the Zitterbewegung (zbw) motion along helical paths and its quantum version have been investigated by using the language of Clifford algebras. In also doing, a new non-linear Dirac-like equation (NDE) was derived. We want to readdress the whole subject, and complete it, by adopting - for the sake of physical clarity - the ordinary tensorial language. In particular, we re-derive here the NDE for the electron quantum field, show it to be associated with a new conserved probability current, and stress its importance for a quantum field theory of spin 1/2 fermions. Actually, we propose this equation in substitution for the Dirac equation, which comes from the former by averaging over a zbw cycle. We then derive a new equation of motion for the quantum field velocity, which will allow us to regard the electron as an extended object, with a classically intelligible internal structure (thus overcoming some known, long-standing problems). We carefully the solutions of the NDE; with special attention to those implying (at the classical limit) light-like helical motions, since these appear to be the most adequate equations for the electron description, from the kinematical and physical points of view, and do cope with the electron electromagnetic properties (such as Coulomb field and intrinsic magnetic moment). (author). 18 refs.
The matter power spectrum in redshift space using effective field theory
Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun
2017-11-01
The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.
Effect of magnetic field on electron spectrum in spherical nano-structures
Directory of Open Access Journals (Sweden)
V. Holovatsky
2014-03-01
Full Text Available The influence of the magnetic field on energy spectrum and wave functions of electron in spherical nano-structures such as single quantum dot and spherical layer is investigated. It is shown that the magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number. Increasing magnetic field induction entails the monotonous character of electron energy for the states with m ≥ 0 and non-monotonous one for the states with m < 0. The electron wave functions of the ground and few excited states are studied considering the influence of the magnetic field. It is shown that 1s and 1p states are degenerated in the spherical layer driven by the strong magnetic field. In the limit case, the series of size-quantized levels produce the Landau levels which are typical for the bulk crystals.
Decomposition study of the electron paramagnetic resonance spectrum of irradiated alanine.
Vanhaelewyn, G C; Amira, S A; Mondelaers, W K; Callens, F J
2000-02-01
Recent Electron Paramagnetic Resonance (EPR) studies on alanine powders as a function of irradiation dose and temperature on the one hand and single crystal Electron Nuclear DOuble Resonance (ENDOR) studies on the other hand, showed the presence of at least three radicals contributing to the total alanine EPR spectrum. The latter spectrum obtained after irradiation at room temperature (RT), is dominated by the well-known stable-alanine-radical (SAR) CH3C*HCOO-, also denoted R1. Appropriate heating of irradiated alanine causes the relative contribution of R1 to decrease, resulting in a spectrum mainly caused by the H-abstraction radical CH3C*(NH3)COO-, denoted R2. Although the EPR spectrum of these two radicals could be satisfactorily simulated, their influence on dose reconstruction has not been reported yet. Therefore, a detailed Maximum Likelihood Common Factor Analysis (MLCFA) study has been performed on EPR spectra from polycrystalline alanine samples, after irradiation and heat treatments. Conclusions concerning the number of contributing radicals and their influence on the RT irradiated alanine EPR spectrum will be made.
Electron correlation in solids via density embedding theory
Energy Technology Data Exchange (ETDEWEB)
Bulik, Ireneusz W.; Chen, Weibing [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Scuseria, Gustavo E. [Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)
2014-08-07
Density matrix embedding theory [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)] and density embedding theory [I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89, 035140 (2014)] have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to the ab initio description of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2, and 3 dimensions, using coupled cluster theory as the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable to coupled cluster calculations of infinite systems even when using a single unit cell as the fragment. The theory is formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost.
A Linear Theory of Microwave Instability in Electron Storage Rings
Energy Technology Data Exchange (ETDEWEB)
Cai, Yunhai; /SLAC
2011-07-06
The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in electron storage rings below a threshold current. Yet, how to accurately determine this threshold, above which the Haissinski distribution becomes unstable, is not firmly established in theory. In this paper, we will show how to apply the Laguerre polynomials in an analysis of this stability that are associated with the potential-well distortion. Our approach provides an alternative to the discretization method proposed by Oide and Yokoya. Moreover, it reestablishes an essential connection to the theory of mode coupling originated by Sacherer. Our new and self-consistent method is applied to study the microwave instability driven by commonly known impedances, including coherent synchrotron radiation in free space.
Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems
Lau, Wayne Heung
This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton
Transformers and inductors for power electronics theory, design and applications
Hurley, WG
2013-01-01
Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transform
Review of x-ray free-electron laser theory
Directory of Open Access Journals (Sweden)
Zhirong Huang
2007-03-01
Full Text Available High-gain free-electron lasers (FELs are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the start-up, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission. The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.
Quantum theory of the optical and electronic properties of semiconductors
Haug, Hartmut
1990-01-01
The current technological revolution in the development of computing devices has created a demand for a textbook on the quantum theory of the electronic and optical properties of semiconductors and semiconductor devices. This book successfully fulfills this need. Based on lectures given by the authors, it is a comprehensive introduction for researchers or graduate-level students to the subject. Certain sections can also serve as a graduate-level textbook for use in solid state physics courses or for more specialized courses. The final chapters establish a direct link to current research in sem
Microscopic Theory of Multipole Ordering in f-Electron Systems
Directory of Open Access Journals (Sweden)
Takashi Hotta
2012-01-01
Full Text Available A microscopic framework to determine multipole ordering in f-electron systems is provided on the basis of the standard quantum field theory. For the construction of the framework, a seven-orbital Hubbard Hamiltonian with strong spin-orbit coupling is adopted as a prototype model. A type of multipole and ordering vector is determined from the divergence of multipole susceptibility, which is evaluated in a random phase approximation. As an example of the application of the present framework, a multipole phase diagram on a three-dimensional simple cubic lattice is discussed for the case of n=2, where n denotes the average f-electron number per site. Finally, future problems concerning multipole ordering and fluctuations are briefly discussed.
Current functional theory for multi-electron configuration
DEFF Research Database (Denmark)
Bang, Jens N.; Bohr, Henrik
2010-01-01
The density functional theory (DFT) formalism is reformulated into a framework of currents so as to give the energy a parameter dependent behaviour, e.g., time. This “current” method is aimed at describing the transition of electrons from one orbital to another and especially from the ground state...... to an excited state and extended to the relativistic region in order to include magnetic fields which is relevant especially for heavy metallic compounds. The formalism leads to a set of coupled first order partial differential equations to describe the time evolution of atoms and molecules. The application...... of the method to ZnO and H2O to calculate the occupation probabilities of the orbitals lead to the results that compare favorably with those obtained from DFT. Furthermore, evolution equations for electrons in both atoms and molecules can be derived. Applications to specific examples of small molecules (being...
Electron-Cloud Build-Up: Theory and Data
Energy Technology Data Exchange (ETDEWEB)
Furman, M. A.
2010-10-08
We present a broad-brush survey of the phenomenology, history and importance of the electron-cloud effect (ECE). We briefly discuss the simulation techniques used to quantify the electron-cloud (EC) dynamics. Finally, we present in more detail an effective theory to describe the EC density build-up in terms of a few effective parameters. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire 'ECLOUD' series. In addition, the proceedings of the various flavors of Particle Accelerator Conferences contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC.
First Calorimetric Measurement of OI-line in the Electron Capture Spectrum of $^{163}$Ho
Ranitzsch, P. C. -O.; Wegner, M.; Kempf, S.; Fleischmann, A.; Enss, C.; Gastaldo, L.; Herlert, A.; Johnston, K.
2014-01-01
The isotope $^{163}$Ho undergoes an electron capture process with a recommended value for the energy available to the decay, $Q_{\\rm EC}$, of about 2.5 keV. According to the present knowledge, this is the lowest $Q_{\\rm EC}$ value for electron capture processes. Because of that, $^{163}$Ho is the best candidate to perform experiments to investigate the value of the electron neutrino mass based on the analysis of the calorimetrically measured spectrum. We present for the first time the calorimetric measurement of the atomic de-excitation of the $^{163}$Dy daughter atom upon the capture of an electron from the 5s shell in $^{163}$Ho, OI-line. The measured peak energy is 48 eV. This measurement was performed using low temperature metallic magnetic calorimeters with the $^{163}$Ho ion implanted in the absorber. We demonstrate that the calorimetric spectrum of $^{163}$Ho can be measured with high precision and that the parameters describing the spectrum can be learned from the analysis of the data. Finally, we dis...
The energy spectrum of cosmic-ray electrons measured with H.E.S.S.
Energy Technology Data Exchange (ETDEWEB)
Egberts, Kathrin
2009-03-30
The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)
Electron scattering from neon via effective range theory
Energy Technology Data Exchange (ETDEWEB)
Fedus, Kamil, E-mail: kamil@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun (Poland)
2014-07-01
Elastic cross-sections for electron scattering on neon from 0 energy up to 16 eV are analyzed by an analytical approach to the modified effective range theory (MERT). It is shown that energy and angular variations of elastic differential, integral and momentum transfer cross sections can be accurately parameterized by six MERT coefficients up to the energy threshold for the first Feshbach resonance. MERT parameters are determined empirically by numerical comparison with large collection of available experimental data of elastic total (integral) cross-sections. The present analysis is validated against numerous electron beams and swarm experiments. The comparison of derived MERT parameters with those found for other noble gases, helium, argon and krypton, is done. The derived scattering length (for the s-partial wave) in neon, 0.227a0, agrees well with recent theories; it is small but, differently from Ar and Kr, still positive. Analogue parameters for the p-wave and the d-wave are negative and positive respectively for all the four gases compared. (author)
Photoinduced intermolecular electron transfer in complex liquids: Experiment and theory
Tavernier, H. L.; Kalashnikov, M. M.; Fayer, M. D.
2000-12-01
Photoinduced intermolecular electron transfer between Rhodamine 3B and N,N-dimethylaniline has been studied in a series of seven liquids: acetonitrile, ethanol, propylene glycol, and mixtures of ethanol, 2-butanol, ethylene glycol, propylene glycol, and glycerol. In each liquid, the donor and acceptors have different diffusion constants and experience distinct dielectric properties. Ps time-dependent fluorescence measurements and steady-state fluorescence yield measurements were made and analyzed using a detailed statistical mechanical theory that includes a distance-dependent Marcus rate constant, diffusion with the hydrodynamic effect, and solvent structure. All solvent-dependent parameters necessary for calculations were measured, including dielectric constants, diffusion constants, and redox potentials, leaving the electronic coupling unknown. Taking the distance-dependence of the coupling to be β=1 Å-1, data were fit to a single parameter, the coupling matrix element at contact, J0. The theory is able to reproduce both the functional form of the time-dependence and the concentration-dependence of the data in all seven liquids by fitting only J0. Despite the substantial differences in the properties of the experimental systems studied, fits to the data are very good and the values for J0 are very similar for all solvents.
Gauge field spectrum in massive Yang-Mills theory with Lorentz violation
Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.
2016-10-01
The spectrum of the massive C P T -odd Yang-Mills propagator with Lorentz violation is calculated at tree level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violation. The causality analysis is performed with group and front velocities for both spacelike and timelike background tensors. It is shown that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary if one takes the Faddeev-Popov ghost into account.
Chiral random matrix theory and the spectrum of the Dirac operator near zero virtuality
Energy Technology Data Exchange (ETDEWEB)
Verbaarschot, J. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics
1994-01-01
We study the spectrum of the QCD Dirac operator near zero virtuality. We argue that it can be described by a random matrix theory with the chiral structure of QCD. In the large N limit, this model reduces to the low energy limit of the QCD partition function put forward by Leutwyler and Smilga. We conjecture that the microscopic limit of its spectral density is universal and reproduces that of QCD. Using random matrix methods we obtain its exact analytical expression. This results is compared to numerically calculated spectra for a liquid of instantons, and we find a very satisfactory agreement. (author). 26 refs., 2 figs.
$SU(2)$ gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum
Arthur, Rudy; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2016-01-01
We investigate the scalar and pseudoscalar spectrum of the $SU(2)$ gauge theory with $N_f=2$ flavours of fermions in the fundamental representation using non perturbative lattice simulations. We provide first benchmark estimates of the mass of the lightest $0(0^{+})$ ($\\sigma$), $0(0^{-})$ ($\\eta'$) and $1(0^+)$ ($a_0$) states, including estimates of the relevant disconnected contributions. We find $m_{a_0}/F_{\\rm{PS}}= 16.7(4.9)$, $m_\\sigma/F_{\\rm{PS}}=19.2(10.8)$ and $m_{\\eta'}/F_{\\rm{PS}} = 12.8(4.7)$. These values for the masses of light scalar states provide crucial information for composite extensions of the Standard Model from the unified Fundamental Composi te Higgs-Technicolor theory \\cite{Cacciapaglia:2014uja} to models of composite dark matter.
Evaluation of the theory of mind in autism spectrum disorders with the Strange Stories test
Directory of Open Access Journals (Sweden)
Renata de Lima Velloso
2013-11-01
Full Text Available Objective To evaluate the theory of mind in autism spectrum disorders (ASD and control individuals by applying the Strange Stories test that was translated and adapted to the Portuguese language. Method Twenty-eight children with ASD and 56 controls who were all male and aged between 6 and 12 years participated in the study. Results There were significant differences between the median scores of the groups for each of the 12 stories of the test and for the sum total of all the median scores. The median scores for all stories were significantly greater in the control group than those in the experimental group (children with ASD. In addition, the protocol had excellent internal consistency. Conclusion The theory of mind skills assessed with the Strange Stories test indicated alterations in children with ASD compared with children in the control group.
Performance of children with autism spectrum disorder on advanced theory of mind tasks.
Brent, Ella; Rios, Patricia; Happé, Francesca; Charman, Tony
2004-09-01
Although a number of advanced theory of mind tasks have been developed, there is sparse information on whether performance on different tasks is associated. The study examined the performance of 20 high-functioning 6- to 12-year-old children with autism spectrum disorder and 20 controls on three high-level theory of mind tasks: Strange Stories, Cartoons and the children's version of the Eyes task. The pattern of findings suggests that the three tasks may share differing, non-specific, information-processing requirements in addition to tapping any putative mentalizing ability. They may also indicate a degree of dissociation between social-cognitive and social-perceptual or affective components of the mentalizing system.
Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories
Energy Technology Data Exchange (ETDEWEB)
Caselle, Michele; Nada, Alessandro; Panero, Marco [Department of Physics, University of Turin & INFN,Via Pietro Giuria 1, I-10125 Turin (Italy)
2015-07-27
We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Borsányi et al. in http://dx.doi.org/10.1007/JHEP07(2012)056.
Measurement of the Electron Energy Spectrum and its Moments in Inclusive B --> X e nu Decays
Energy Technology Data Exchange (ETDEWEB)
Brandt, T
2004-04-19
We report a measurement of the inclusive electron energy spectrum for semileptonic decays of B mesons in a data sample of 52 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We determine the branching fraction, first, second, and third moments of the spectrum for lower cut-offs on the electron energy between 0.6 and 1.5GeV. We measure the partial branching fraction to be {Beta}(B {yields} Xev,E{sub e} > 0.6GeV) = (10.36 {+-} 0.06(stat.) {+-} 0.23(sys.))%.
Electron spin resonance absorption spectrum of trivalent gadolinium in the oxide YAIG
Energy Technology Data Exchange (ETDEWEB)
Marshall, S.A. (Argonne National Lab., IL); Marshall, T.; Serway, R.A.
1978-01-01
The electron spin resonance absorption spectrum of trivalent gadolinium in single crystals of yttrium-aluminium garnet is re-investigated at X-band and Q-band wavelengths. Fine structure spectral parameters deduced from Q-band wavelength measurements are found to predict satisfactorily spectral observations at both wavelengths. A list of spectral parameters deduced from data taken at 77/sup 0/K is given.
Theory of Fast Electron Transport for Fast Ignition
Robinson, A P L; Davies, J R; Gremillet, L; Honrubia, J J; Johzaki, T; Kingham, R J; Sherlock, M; Solodov, A A
2013-01-01
Fast Ignition Inertial Confinement Fusion is a variant of inertial fusion in which DT fuel is first compressed to high density and then ignited by a relativistic electron beam generated by a fast (< 20 ps) ultra-intense laser pulse, which is usually brought in to the dense plasma via the inclusion of a re-entrant cone. The transport of this beam from the cone apex into the dense fuel is a critical part of this scheme, as it can strongly influence the overall energetics. Here we review progress in the theory and numerical simulation of fast electron transport in the context of Fast Ignition. Important aspects of the basic plasma physics, descriptions of the numerical methods used, a review of ignition-scale simulations, and a survey of schemes for controlling the propagation of fast electrons are included. Considerable progress has taken place in this area, but the development of a robust, high-gain FI `point design' is still an ongoing challenge.
Electron avalanche structure determined by random walk theory
Englert, G. W.
1973-01-01
A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.
Suzuki, Hiroshi
1967-01-01
Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis
Berengut, J C; Dzuba, V A; Flambaum, V V; Gribakin, G F
2015-01-01
The strong mixing of many-electron basis states in excited atoms and ions with open $f$ shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these 'compound resonances' leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination, and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by 'spreading' of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach, as it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture in...
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-01
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
On the application of quantum transport theory to electron sources.
Jensen, Kevin L
2003-01-01
Electron sources (e.g., field emitter arrays, wide band-gap (WBG) semiconductor materials and coatings, carbon nanotubes, etc.) seek to exploit ballistic transport within the vacuum after emission from microfabricated structures. Regardless of kind, all sources strive to minimize the barrier to electron emission by engineering material properties (work function/electron affinity) or physical geometry (field enhancement) of the cathode. The unique capabilities of cold cathodes, such as instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, cold emission, small size and/or low voltage operation characteristics, commend their use in several advanced devices when physical size, weight, power consumption, beam current, and pulse repletion frequency are important, e.g., RF power amplifier such as traveling wave tubes (TWTs) for radar and communications, electrodynamic tethers for satellite deboost/reboost, and electric propulsion systems such as Hall thrusters for small satellites. The theoretical program described herein is directed towards models to evaluate emission current from electron sources (in particular, emission from WBG and Spindt-type field emitter) in order to assess their utility, capabilities and performance characteristics. Modeling efforts particularly include: band bending, non-linear and resonant (Poole-Frenkel) potentials, the extension of one-dimensional theory to multi-dimensional structures, and emission site statistics due to variations in geometry and the presence of adsorbates. Two particular methodologies, namely, the modified Airy approach and metal-semiconductor statistical hyperbolic/ellipsoidal model, are described in detail in their present stage of development.
Kinetic Theory and Fast Wind Observations of the Electron Strahl
Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan
2018-02-01
We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centred on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature and the magnetic field strength decline as power laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with observations of the eVDF made by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 au, in particular by predicting how this width scales with particle energy and background density. We find that the strahl distribution is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 au; however, it then overestimates the strahl amplitude at larger heliocentric distances. This indicates that our model may be improved through the inclusion of additional physics, possibly through the introduction of 'anomalous diffusion' of the strahl electrons.
Li, Wenqi; Yu, Lianghong; Peng, Chun; Liang, Xiaoyan
2017-11-01
We proposed a theoretical description and numerical model of signal-spectrum shaping based on conformal profile theory and the three-dimensional coupling wave equations for improving the performance of optical parametric chirped pulse amplification (OPCPA). Using our model, we executed quantitative simulations of signal-spectrum shaping and compared the differences of spatiotemporal amplification characteristics between a shaped signal-spectrum and Gaussian signal-spectrum of an OPCPA based on LiB3O5 near 800 nm. By comparison, we found that the conversion efficiency from pump to signal can be dramatically boosted via signal-spectrum shaping. Meanwhile the amplified-spectrum profile, as well as the Fourier-limited pulse, can be improved significantly. We also found that the spatial spot profiles, for injecting a shaped signal or a Gaussian signal in OPCPA, are nearly the same before the saturation regime and at the maximum conversion efficiency or output energy.
Davari, Mehdi D; Ferrer, Francisco J Avila; Morozov, Dmitry; Santoro, Fabrizio; Groenhof, Gerrit
2014-10-20
In this work we present the vibrationally resolved optical absorption spectrum of p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI), the green fluorescent protein (GFP) chromophore, computed at several levels of theory, including time-dependent DFT with various functionals and basis sets, CASSCF, CASPT2 and XMCQDPT2. We also investigated what happens to the spectrum if the ground- and excited-state geometries are optimized at different levels of theory (mixed approach), as has been used previously. The vibrationally resolved absorption spectra obtained by DFT, CASPT2 and XMCQDPT2 are very similar and consist of a main absorption peak and a shoulder that is ∼1500 cm(-1) higher in energy. The vibrational progression increases moderately with temperature. These spectra are in qualitative agreement with experimental action spectra, but much narrower and lack the long tail in the blue, even at high temperatures. Because our calculated emission spectra, which are equally narrow, are in good agreement with the emission of green fluorescent protein at 253 K, we argue that the action spectrum are too broad to be considered as the absorption spectrum. The CASSCF method and the mixed approaches overestimate the vibrational progressions with respect to CAM-B3LYP, CASPT2 and XMCQDPT2, due to inaccuracies in the geometric S0 →S1 displacements. Finally, we computed the vibronic spectra of four chromophore analogues with different substitutions on the rings and found that these substitutions hardly affect the lineshape in vacuum. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent
2015-11-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the
Search for an admixture of sterile neutrino in the electron spectrum from tritium $\\beta$-decay
Abdurashitov, D; Likhovid, N; Lokhov, A; Tkachev, I; Yants, V
2014-01-01
We propose an experiment intended for search for an admixture of sterile neutrino with mass m$_s$ in the range of 1-8 keV that may be detected as specific distortion of the electron energy spectrum during tritium decay. The distortion is spread over large part of the spectrum so to reveal it one can use a detector with relatively poor (near 10-15%) energy resolution. A classic proportional counter is a simple natural choice for a tritium $\\beta$-decay detector. The method we are proposing is original in two respects. First, the counter is produced as a whole from fully-fused quartz tube allowing to measure current pulse directly from anode while providing high stability for a long time. Second, a modern digital acquisition technique can be used in measurements at ultrahigh count rate - up to 10$^6$ Hz. As a result an energy spectrum of tritium electrons containing up to 10$^{12}$ counts may be collected in a month of live time measurements. Due to high statistics an upper limit down to 10$^{-3}$..10$^{-5}$ ca...
Implications of the cosmic ray electron spectrum and anisotropy measured with Fermi-LAT
Energy Technology Data Exchange (ETDEWEB)
Di Bernardo, Giuseppe [Gothenburg Univ. (Sweden). Dept. of Physics; Evoli, Carmelo [SISSA, Trieste (Italy); Gaggero, Daniele; Grasso, Dario [Pisa Univ. (Italy). Dipt. die Fisica; INFN, Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mazziotta, Mario Nicola [Istituto Nazionale di Fisica Nucleare, Bari (Italy)
2010-11-15
The Fermi Large Area Telescope (LAT) collaboration recently released the updated results of the measurement of the cosmic ray electron (CRE) spectrum and published its first constraints on the CRE anisotropy. With respect to the previous Fermi-LAT results, the CRE spectrum measurement was extended down from 20 to 7 GeV, thus providing a better lever arm to discriminate theoretical models. Here we show that the new data strengthen the evidence for the presence of two distinct electron and positron spectral components. Furthermore, we show that under such hypothesis most relevant CRE and positron data sets are remarkably well reproduced. Consistent fits of cosmic-ray nuclei and antiproton data, which are crucial to validate the adopted propagation setup(s) and to fix the solar modulation potential, are obtained for the Kraichnan and plain-diffusion propagation setups, while the Kolmogorov one is disfavored. We then confirm that nearby pulsars are viable source candidates of the required e{sup {+-}} extra-component. In that case, we show that the predicted CRE anisotropy is compatible with Fermi-LAT constraints and that a positive detection should be at hand of that observatory. Models assuming that only nearby supernova remnants contribute to the high energy tail of the observed CRE spectrum are in contrast with anisotropy limits. (orig.)
Self-Esteem, Internalizing Symptoms, and Theory of Mind in Youth With Autism Spectrum Disorder.
McCauley, James B; Harris, Michelle A; Zajic, Matthew C; Swain-Lerro, Lindsay E; Oswald, Tasha; McIntyre, Nancy; Trzesniewski, Kali; Mundy, Peter; Solomon, Marjorie
2017-10-19
Self-esteem is a potent indicator of mental health in typically developing (TYP) individuals. It is surprising that there have been few comprehensive investigations of self-esteem in children and adolescents with autism spectrum disorder (ASD), given that they are at high risk for comorbid mental health problems, such as depression and anxiety. The objectives of the current study were to assess how youth with ASD rate their self-esteem compared to age-matched TYP youth and to examine how self-esteem relates to internalizing psychopathology and theory of mind in the two groups. Seventy-three children and adolescents, ages 9 to 17, were administered a battery of questionnaires assessing self-esteem and internalizing symptoms, as well as tasks designed to measure theory of mind. Results indicated that youth with ASD rated their self-esteem significantly lower than did TYP youth. Self-esteem was strongly related to depression in both groups but was negatively related to theory of mind only for youth with ASD. These results may provide important insights into how individuals with ASD form evaluations of their own self-worth and illustrate how increasing self-awareness in individuals with ASD is not without risks.
Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?
Haker, Helene; Schneebeli, Maya; Stephan, Klaas Enno
2016-01-01
Diagnosis and individualized treatment of autism spectrum disorder (ASD) represent major problems for contemporary psychiatry. Tackling these problems requires guidance by a pathophysiological theory. In this paper, we consider recent theories that re-conceptualize ASD from a "Bayesian brain" perspective, which posit that the core abnormality of ASD resides in perceptual aberrations due to a disbalance in the precision of prediction errors (sensory noise) relative to the precision of predictions (prior beliefs). This results in percepts that are dominated by sensory inputs and less guided by top-down regularization and shifts the perceptual focus to detailed aspects of the environment with difficulties in extracting meaning. While these Bayesian theories have inspired ongoing empirical studies, their clinical implications have not yet been carved out. Here, we consider how this Bayesian perspective on disease mechanisms in ASD might contribute to improving clinical care for affected individuals. Specifically, we describe a computational strategy, based on generative (e.g., hierarchical Bayesian) models of behavioral and functional neuroimaging data, for establishing diagnostic tests. These tests could provide estimates of specific cognitive processes underlying ASD and delineate pathophysiological mechanisms with concrete treatment targets. Written with a clinical audience in mind, this article outlines how the development of computational diagnostics applicable to behavioral and functional neuroimaging data in routine clinical practice could not only fundamentally alter our concept of ASD but eventually also transform the clinical management of this disorder.
Lin, Shu-Kai; Tsai, Ching-Hong; Li, Hsing-Jung; Huang, Chien-Yu; Chen, Kuan-Lin
2017-10-01
This study aimed to clarify the relationships between theory of mind and pretend play in children with autism spectrum disorder, using refined assessments of theory of mind and pretend play while controlling for autistic behaviors and verbal comprehension. A total of 92 children with autism spectrum disorder aged 4-10 years were enrolled. In two visits, the children were assessed with the Theory of Mind Task Battery, the Child-Initiated Pretend Play Assessment, the Childhood Autism Rating Scale, and the Verbal Comprehension Index of the Wechsler Intelligence Scales, respectively, for their theory of mind, pretend play performance, autistic behaviors, and verbal comprehension. The hierarchical regression models showed that in addition to the contributions of the autistic behaviors and verbal comprehension scores, the theory of mind scores positively predicted (p mind has a predominant role in the quality, not the quantity, of pretend play of children with autism spectrum disorder, when the children's autistic behaviors and verbal comprehension are considered. This study fills a gap in the previous literature and provides information useful for clinicians and researchers on the relationships between theory of mind and pretend play in children with autism spectrum disorder.
Gunasekaran, Sethu; Rajalakshmi, K.; Kumaresan, Subramanian
2013-08-01
The Fourier transform (FT-IR) spectrum of Levofloxacin was recorded in the region 4000-400 cm-1 and a complete vibrational assignment of fundamental vibrational modes of the molecule was carried out using density functional method. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using DFT (B3LYP) method by employing 6-31 G (d, p) basis sets. The most stable geometry of the molecule under investigation has been determined from the potential energy scan. The first-order hyperpolarizability (βo) and other related properties (μ, αo) of Levofloxacin are calculated using density functional theory (DFT) on a finite field approach. UV-vis spectrum of the molecule was recorded and the electronic properties, such as HOMO and LUMO energies were performed by DFT using 6-31 G (d, p) basis sets. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The other molecular properties like molecular electrostatic potential (MESP), Mulliken population analysis and thermodynamic properties of the title molecule have been calculated.
Event schemas in autism spectrum disorders: the role of theory of mind and weak central coherence.
Loth, Eva; Gómez, Juan Carlos; Happé, Francesca
2008-03-01
Event schemas (generalized knowledge of what happens at common real-life events, e.g., a birthday party) are an important cognitive tool for social understanding: They provide structure for social experiences while accounting for many variable aspects. Using an event narratives task, this study tested the hypotheses that theory of mind (ToM) deficits and weak central coherence (WCC, a local processing bias) undermine different aspects of event knowledge in people with autism spectrum disorder (ASD). Event narratives of ASD ToM-failers were overall significantly impaired. ASD ToM-passers showed more specific abnormalities relating to variable activities, and some of these were significantly associated to WCC. Abnormalities in event knowledge might help linking ASD-typical social deficits in real-life situations and the adherence to inflexible routines.
Jones, Catherine R G; Simonoff, Emily; Baird, Gillian; Pickles, Andrew; Marsden, Anita J S; Tregay, Jenifer; Happé, Francesca; Charman, Tony
2017-09-25
It has been strongly argued that atypical cognitive processes in autism spectrum disorder (ASD) contribute to the expression of behavioural symptoms. Comprehensive investigation of these claims has been limited by small and unrepresentative sample sizes and the absence of wide-ranging task batteries. The current study investigated the cognitive abilities of 100 adolescents with ASD (mean age = 15 years 6 months), using 10 tasks to measure the domains of theory of mind (ToM) and executive function (EF). We used structural equation modelling as a statistically robust way of exploring the associations between cognition and parent-reported measures of social communication and restricted and repetitive behaviours (RRBs). We found that ToM ability was associated with both social communication symptoms and RRBs. EF was a correlate of ToM but had no direct association with parent-reported symptom expression. Our data suggest that in adolescence ToM ability, but not EF, is directly related to autistic symptom expression. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. The behaviours that are common to autism spectrum disorder (ASD) have been linked to differences in thinking ability. We assessed autistic adolescents and found that social communication difficulties and the presence of restricted and repetitive behaviours related to difficulties in understanding other peoples' minds (theory of mind). In contrast, these behaviours were not associated with the general thinking abilities involved in planning and executing tasks (executive function). © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Bartelmann, Matthias; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Dombrowski, Johannes; Mildenberger, Julius
2017-08-01
In earlier work, we have developed a kinetic field theory (KFT) for cosmological structure formation and showed that the nonlinear density-fluctuation power spectrum known from numerical simulations can be reproduced quite well even if particle interactions are taken into account to first order only. Besides approximating gravitational interactions, we had to truncate the initial correlation hierarchy of particle momenta at the second order. Here, we substantially simplify KFT. We show that its central object, the free generating functional, can be factorised, taking the full hierarchy of momentum correlations into account. The factors appearing in the generating functional, which we identify as nonlinearly evolved density-fluctuation power spectra, have a universal form and can thus be tabulated for fast access in perturbation schemes. In this paper, we focus on a complete evaluation of the free generating functional of KFT, not including particle interactions yet. This implies that the nonlinearly evolved power spectra contain a damping term which reflects that structures are being wiped out at late times by free streaming. Once particle interactions will be taken into account, they will compensate this damping. If we suppress this damping in a way suggested by the fluctuation-dissipation relations of KFT, our results show that the complete hierarchy of initial momentum correlations is responsible for a large part of the characteristic nonlinear deformation and the mode transport in the density-fluctuation power spectrum. Without any adjustable parameters, KFT accurately reproduces the scale at which nonlinear evolution sets in. Finally, we further develop perturbation theory based on the factorisation of the generating functional and propose a diagrammatic scheme for the perturbation terms.
Short-Range Correlation Models in Electronic Structure Theory
Goldey, Matthew Bryant
Correlation methods within electronic structure theory focus on recovering the exact electron-electron interaction from the mean-field reference. For most chemical systems, including dynamic correlation, the correlation of the movement of electrons proves to be sufficient, yet exact methods for capturing dynamic correlation inherently scale polynomially with system size despite the locality of the electron cusp. This work explores a new family of methods for enhancing the locality of dynamic correlation methodologies with an aim toward improving accuracy and scalability. The introduction of range-separation into ab initio wavefunction methods produces short-range correlation methodologies, which can be supplemented with much faster approximate methods for long-range interactions. First, I examine attenuation of second-order Moller-Plesset perturbation theory (MP2) in the aug-cc-pVDZ basis. MP2 treats electron correlation at low computational cost, but suffers from basis set superposition error (BSSE) and fundamental inaccuracies in long-range contributions. The cost differential between complete basis set (CBS) and small basis MP2 restricts system sizes where BSSE can be removed. Range-separation of MP2 could yield more tractable and/or accurate forms for short- and long-range correlation. Retaining only short-range contributions proves to be effective for MP2 in the small aug-cc-pVDZ (aDZ) basis. Using one range-separation parameter within either the complementary error function (erfc) or a sum of two error functions (terfc), superior behavior is obtained versus both MP2/aDZ and MP2/CBS for inter- and intra-molecular test sets. Attenuation of the long-range helps to cancel both BSSE and intrinsic MP2 errors. Direct scaling of the MP2 correlation energy (SMP2) proves useful as well. The resulting SMP2/aDZ, MP2(erfc, aDZ), and MP2(terfc, aDZ) methods perform far better than MP2/aDZ across systems with hydrogen-bonding, dispersion, and mixed interactions at a
Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.
2016-04-01
We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.
The spectrum of surface plasma polaritons under Gaussian spatial distribution of electrons
Dmitruk, M L; Mamontova, Y V
2002-01-01
Dispersion of surface electromagnetic waves (surface plasma polaritons, SPP) a nonhomogeneous solid-state plasma with Gaussian spatial distribution of electrons is calculated within the local dielectric function approximation. The calculated spatial distribution of electromagnetic fields allows one to identify the nature of the corresponding branches of the SPP dispersion. The attenuated total reflections spectrum is calculated for the Otto geometry of the experiment. The genesis of SPP dispersion curves under variation in the characteristic parameters of the solid-state plasma distribution is investigated as well.
The H3+ rovibrational spectrum revisited with a global electronic potential energy surface
Velilla, Luis; Lepetit, Bruno; Aguado, Alfredo; Beswick, J. Alberto; Paniagua, Miguel
2008-08-01
In this paper, we have computed the rovibrational spectrum of the H3+ molecule using a new global potential energy surface, invariant under all permutations of the nuclei, that includes the long range electrostatic interactions analytically. The energy levels are obtained by a variational calculation using hyperspherical coordinates. From the comparison with available experimental results for low lying levels, we conclude that our accuracy is of the order of 0.1 cm-1 for states localized in the vicinity of equilateral triangular configurations of the nuclei, and changes to the order of 1 cm-1 when the system is distorted away from equilateral configurations. Full rovibrational spectra up to the H++H2 dissociation energy limit have been computed. The statistical properties of this spectrum (nearest neighbor distribution and spectral rigidity) show the quantum signature of classical chaos and are consistent with random matrix theory. On the other hand, the correlation function, even when convoluted with a smoothing function, exhibits oscillations which are not described by random matrix theory. We discuss a possible similarity between these oscillations and the ones observed experimentally.
Dimensionality effect on two-electron energy spectrum: A fractional-dimension-based formulation
Energy Technology Data Exchange (ETDEWEB)
Correa, R.; Gutiérrez, W.; Mikhailov, I. [Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Fulla, M.R. [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Marín, J.H., E-mail: jhmarin@unal.edu.co [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia)
2015-07-17
We analyze the spectrum of two-electron quantum dot with anisotropic parabolic confinement by using the fractional-dimension formulation which allows us to reduce the two-particle problem to two equations for independent particles in an effective space with variable dimension, ranging between two and three for ellipsoidal-shaped quantum dots and between one and two for elliptical-shaped quantum disks. The dependencies of energy levels on the heterostructure sizes for quantum dots, disks and wires are presented. - Highlights: • We report the two-electron eigenenergies in a quantum dot with anisotropic parabolic confinement. • Our model is versatile enough to consider changes in the dimension space from 3 to 2 and 2 to 1. • The two-electron structure is calculated in integer and fractional dimensional spaces. • The two-electron energy structure is sensitive to the quantum dot size and morphology changes. • The electron–electron Coulomb interaction is strongly dependent on the space dimensionality.
Gaigg, Sebastian B.
2012-01-01
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviors and an inflexible adherence to routinised patterns of thought and behavior. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognizing and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding, and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterized by more widespread anomalies in the domain of emotions. In this review I summarize the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world. PMID:23316143
Directory of Open Access Journals (Sweden)
Sebastian B Gaigg
2012-12-01
Full Text Available Autism Spectrum Disorder (ASD is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviours and an inflexible adherence to routinised patterns of thought and behaviour. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognising and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterised by more widespread anomalies in the domain of emotions. In this review I summarise the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early-emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world.
Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum
Directory of Open Access Journals (Sweden)
Ольга Юрьевна Хецелиус
2014-11-01
Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.
Measurements of the cosmic-ray electron and positron spectrum and anisotropies with the Fermi LAT
Loparco, F.; Fermi LAT Collaboration
2017-12-01
The Large Area Telescope (LAT) onboard the Fermi satellite is a pair-conversion telescope for high-energy gamma rays of astrophysical origin. Although it was designed to be a high-sensitivity gamma-ray telescope, the LAT has proved to be an excellent electron/positron detector. It has been operating in low Earth orbit since June 2008 and has collected more than 16 million cosmic-ray electron and positron (CRE) events in its first seven years of operation. The huge data sample collected by the LAT enables a precise measurement of the CRE energy spectrum up to the TeV region. A search for anisotropies in the arrival directions of CREs was also performed. The upper limits on the dipole anisotropy probe the presence of nearby young and middle-aged CRE sources.
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
DAMPE Collaboration; Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M. S.; Chang, J.; Chen, D. Y.; Chen, H. F.; Chen, J. L.; Chen, W.; Cui, M. Y.; Cui, T. S.; D'Amone, A.; de Benedittis, A.; De Mitri, I.; di Santo, M.; Dong, J. N.; Dong, T. K.; Dong, Y. F.; Dong, Z. X.; Donvito, G.; Droz, D.; Duan, K. K.; Duan, J. L.; Duranti, M.; D'Urso, D.; Fan, R. R.; Fan, Y. Z.; Fang, F.; Feng, C. Q.; Feng, L.; Fusco, P.; Gallo, V.; Gan, F. J.; Gao, M.; Gao, S. S.; Gargano, F.; Garrappa, S.; Gong, K.; Gong, Y. Z.; Guo, D. Y.; Guo, J. H.; Hu, Y. M.; Huang, G. S.; Huang, Y. Y.; Ionica, M.; Jiang, D.; Jiang, W.; Jin, X.; Kong, J.; Lei, S. J.; Li, S.; Li, X.; Li, W. L.; Li, Y.; Liang, Y. F.; Liang, Y. M.; Liao, N. H.; Liu, H.; Liu, J.; Liu, S. B.; Liu, W. Q.; Liu, Y.; Loparco, F.; Ma, M.; Ma, P. X.; Ma, S. Y.; Ma, T.; Ma, X. Q.; Ma, X. Y.; Marsella, G.; Mazziotta, M. N.; Mo, D.; Niu, X. Y.; Peng, X. Y.; Peng, W. X.; Qiao, R.; Rao, J. N.; Salinas, M. M.; Shang, G. Z.; H. Shen, W.; Shen, Z. Q.; Shen, Z. T.; Song, J. X.; Su, H.; Su, M.; Sun, Z. Y.; Surdo, A.; Teng, X. J.; Tian, X. B.; Tykhonov, A.; Vagelli, V.; Vitillo, S.; Wang, C.; Wang, H.; Wang, H. Y.; Wang, J. Z.; Wang, L. G.; Wang, Q.; Wang, S.; Wang, X. H.; Wang, X. L.; Wang, Y. F.; Wang, Y. P.; Wang, Y. Z.; Wen, S. C.; Wang, Z. M.; Wei, D. M.; Wei, J. J.; Wei, Y. F.; Wu, D.; Wu, J.; Wu, L. B.; Wu, S. S.; Wu, X.; Xi, K.; Xia, Z. Q.; Xin, Y. L.; Xu, H. T.; Xu, Z. L.; Xu, Z. Z.; Xue, G. F.; Yang, H. B.; Yang, P.; Yang, Y. Q.; Yang, Z. L.; Yao, H. J.; Yu, Y. H.; Yuan, Q.; Yue, C.; Zang, J. J.; Zhang, C.; Zhang, D. L.; Zhang, F.; Zhang, J. B.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, P. F.; Zhang, S. X.; Zhang, W. Z.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. Q.; Zhang, Y. L.; Zhang, Y. P.; Zhang, Z.; Zhang, Z. Y.; Zhao, H.; Zhao, H. Y.; Zhao, X. F.; Zhou, C. Y.; Zhou, Y.; Zhu, X.; Zhu, Y.; Zimmer, S.
2017-12-01
High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.
Directory of Open Access Journals (Sweden)
Umer Mehmood
2015-01-01
Full Text Available The molecular structures and UV-visible absorption spectra of complex photosensitizers comprising oxadiazole isomers as the π-bridges were analyzed by density functional theory (DFT and time-dependent DFT. The ground state and excited state oxidation potentials, HOMOs and LUMOs energy levels, and electron injection from the dyes to semiconductor TiO2 have been computed in vacuum here. The results show that all of the dyes may potentially be good photosensitizers in DSSC. To justify the simulation basis, N3 dye was also simulated under the similar conditions. Simulated absorption spectrum, HOMO, LUMO, and band gap values of N3 were compared with the experimental values. We also computed the electronic structure properties and absorption spectra of dye/(TiO28 systems to elucidate the electron injection efficiency at the interface. This work is expected to give proper orientation for experimental synthesis.
Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders
Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.
2011-12-01
Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills
Paynter, Jessica; Peterson, Candida C.
2013-01-01
Children with autism spectrum disorders (ASDs) routinely fail false belief tests of theory of mind (ToM), even at advanced chronological and mental ages. Initial training efforts were largely disappointing for those with ASD, suggesting an intractable deficit. However, more recently, children with ASD trained with various pictorial strategies…
Crane, Laura; Goddard, Lorna; Pring, Linda
2013-01-01
Autobiographical memory difficulties have been widely reported in adults with autism spectrum disorder (ASD). The aim of the current study was to explore the potential correlates of autobiographical memory performance (including depressed mood, rumination, working memory and theory of mind) in adults with ASD, relative to a group of typical adults…
Kouklari, Evangelia-Chrysanthi; Thompson, Trevor; Monks, Claire P.; Tsermentseli, Stella
2017-01-01
Previous research has clearly demonstrated that autism spectrum disorder (ASD) involves deficits in multiple neuropsychological functions, such as executive function (EF) and theory of mind (ToM). A conceptual distinction is commonly made between cool and hot EF. In ASD, continued attention has been paid to the cool areas of executive dysfunction.…
Lind, Sophie E.; Bowler, Dermot M.
2009-01-01
This study aimed to test the hypothesis that children with autism spectrum disorder (ASD) use their knowledge of complement syntax as a means of "hacking out" solutions to false belief tasks, despite lacking a representational theory of mind (ToM). Participants completed a "memory for complements" task, a measure of receptive vocabulary, and…
Buhler, Eva; Bachmann, Christian; Goyert, Hannah; Heinzel-Gutenbrunner, Monika; Kamp-Becker, Inge
2011-01-01
Autism spectrum disorders (ASD) and attention deficit hyperactivity disorders (ADHD) are both associated with deficits in executive control and with problems in social contexts. This study analyses the variables inhibitory control and theory of mind (ToM), including a developmental aspect in the case of the latter, to differentiate between the…
Mercer, Jean
2017-01-01
Purpose: To review and assess theory and research supporting DIR/Floortime™, a method proposed for treatment of young children with autism spectrum disorders (ASD). Methods: Published materials describing the principles of DIR/Floortime™were evaluated. Published outcome research articles were assessed for the adequacy of their design and…
Mazza, Monica; Mariano, Melania; Peretti, Sara; Masedu, Francesco; Pino, Maria Chiara; Valenti, Marco
2017-01-01
Individuals with autism spectrum disorders (ASD) show significant impairments in social skills and theory of mind (ToM). The aim of this study was to evaluate ToM and social information processing abilities in 52 children with ASD compared to 55 typically developing (TD) children. A mediation analysis evaluated whether social information…
Begeer, S.M.; Howlin, P.; Hoddenbach, E.M.; Clauser, C.; Lindauer, R.J.L.; Clifford, P.; Gevers, C.; Boer, F.; Koot, H.M.
2015-01-01
Limited perspective taking or “Theory of Mind” (ToM) abilities are a core deficit of autism, and many interventions are aimed to improve ToM abilities. In this study, we investigated the effectiveness of a ToM treatment for children with autism spectrum disorders (ASD) and, for the first time, the
Peterson, Candida C; Slaughter, Virginia P; Paynter, Jessica
2007-12-01
Results of several studies using the Vineland scale to explore links between social behavior and theory of mind (ToM) have produced mixed results, especially for children on the autism spectrum. The present pair of studies developed a psychometrically sound, age-referenced measure of social maturity to explore these issues further. In Study 1, 37 typically developing preschoolers took a battery of standard false belief tests of ToM and were rated by their teachers on a newly developed age-referenced social maturity scale with 7 items. In Study 2, a further group of 43 children aged 4 to 12 years (13 with autism, 14 with Asperger's disorder and 16 with typical development) took part in the same procedure. In Study 1, ToM was found to predict typical preschoolers' social maturity independently of age and verbal maturity. In Study 2, children with autism scored below age-matched and younger typical developers in both ToM and social maturity. Those with Asperger's disorder did well on ToM but poorly on social maturity. Study 2 replicated Study 1's finding (for typical children and for the full sample) that ToM was linked with social maturity independently of age and verbal ability, although the link was not independent of autism diagnosis. Teachers are capable of rating children's social behavior with peers as advanced, on-time or delayed for their age. Suggestive links between these ratings and ToM require further investigation, especially among children on the autism spectrum.
The Contributions of Felix Bloch and W. V. Houston to the Electron Theory of Metals
Rorschach, H. E., Jr.
1970-01-01
Discusses the contributions of Bloch and Houston to the electron theory of metals. Contains (1) a biographical note on W. V. Houston, (2) a review of the development of the electron theory of metals, and (3) a discussion of gravitationally induced electric fields. Bibliography. (LC)
Reflections on the Electron Theory of the Chemical Bond: 1900-1925.
Stranges, Anthony N.
1984-01-01
Traces the history of the electron theory of the chemical bond. Nineteenth-century ideas on electrical combination, early twentieth-century theories of electrical attraction, and the contribution of G. N. Lewis's shared electron pair are among the topics considered. (JN)
Social motivation and implicit theory of mind in children with autism spectrum disorder.
Burnside, Kimberly; Wright, Kristyn; Poulin-Dubois, Diane
2017-08-01
According to the social motivation theory of autism, children who develop Autism Spectrum Disorder (ASD) have early deficits in social motivation, which is expressed by decreased attention to social information. These deficits are said to lead to impaired socio-cognitive development, such as theory of mind (ToM). There is little research focused on the relation between social motivation and ToM in this population. The goal of the present study was to investigate the link between one aspect of social motivation, social orienting, and ToM in preschoolers with ASD. It was expected that, in contrast to typically developing (TD) children, children with ASD would show impaired performance on tasks measuring social orienting and ToM. It was also expected that children's performance on the social orienting tasks would be correlated with their performance on the ToM task. A total of 17 children with ASD and 16 TD children participated in this study. Participants completed two social orienting tasks, a face preference task and a biological motion preference task, as well an implicit false belief task. Results reveal that TD children, but not children with ASD, exhibited social preference as measured by a preference for faces and biological motion. Furthermore, children with ASD tended to perform worse on the ToM task compared to their TD counterparts. Performance on the social motivation tasks and the ToM task tended to be related but only for the TD children. These findings suggest that ToM is multifaceted and that motivational deficits might have downstream effects even on implicit ToM. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory
Baseilhac, Pascal; Koizumi, Kozo
2007-09-01
The transfer matrix of the XXZ open spin-½ chain with general integrable boundary conditions and generic anisotropy parameter (q is not a root of unity and |q| = 1) is diagonalized using the representation theory of the q-Onsager algebra. Similarly to the Ising and superintegrable chiral Potts models, the complete spectrum is expressed in terms of the roots of a characteristic polynomial of degree d = 2N. The complete family of eigenstates are derived in terms of rational functions defined on a discrete support which satisfy a system of coupled recurrence relations. In the special case of linear relations between left and right boundary parameters for which Bethe-type solutions are known to exist, our analysis provides an alternative derivation of the results of Nepomechie et al and Cao et al. In the latter case the complete family of eigenvalues and eigenstates splits into two sets, each associated with a characteristic polynomial of degree d < 2N. Numerical checks performed for small values of N support the analysis.
Direct gaze elicits atypical activation of the theory-of-mind network in autism spectrum conditions.
von dem Hagen, Elisabeth A H; Stoyanova, Raliza S; Rowe, James B; Baron-Cohen, Simon; Calder, Andrew J
2014-06-01
Eye contact plays a key role in social interaction and is frequently reported to be atypical in individuals with autism spectrum conditions (ASCs). Despite the importance of direct gaze, previous functional magnetic resonance imaging in ASC has generally focused on paradigms using averted gaze. The current study sought to determine the neural processing of faces displaying direct and averted gaze in 18 males with ASC and 23 matched controls. Controls showed an increased response to direct gaze in brain areas implicated in theory-of-mind and gaze perception, including medial prefrontal cortex, temporoparietal junction, posterior superior temporal sulcus region, and amygdala. In contrast, the same regions showed an increased response to averted gaze in individuals with an ASC. This difference was confirmed by a significant gaze direction × group interaction. Relative to controls, participants with ASC also showed reduced functional connectivity between these regions. We suggest that, in the typical brain, perceiving another person gazing directly at you triggers spontaneous attributions of mental states (e.g. he is "interested" in me), and that such mental state attributions to direct gaze may be reduced or absent in the autistic brain.
Idiom, syntax, and advanced theory of mind abilities in children with autism spectrum disorders.
Whyte, Elisabeth M; Nelson, Keith E; Scherf, K Suzanne
2014-02-01
When researchers investigate figurative language abilities (including idioms) in children with autism spectrum disorder (ASD), syntax abilities may be more important than once considered. In addition, there are limitations to the overreliance on false-belief tasks to measure theory of mind (TOM) abilities. In the current study, the authors investigated idiom, syntax, and advanced TOM abilities in children with ASD compared to children with typical development (TD). Twenty-six children with ASD, ages 5 to 12 years, were compared to individuals in each of 2 control groups of children with TD: 1 matched on chronological age and nonverbal IQ, and 1 matched on syntax age-equivalence and raw scores. Idiom comprehension, syntax, vocabulary, and 2 measures of advanced TOM abilities were examined. Although children with ASD performed worse on idiom comprehension compared to the age-matched group with TD, they exhibited comparable idiom performance to the syntax-matched group with TD. Advanced TOM abilities were related to idiom comprehension for children with ASD, but not for children with TD, above the contributions of basic language abilities. Syntax abilities should be used as a matching variable when examining figurative or other late-developing language skills.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990)PLRAAN1050-294710.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ/ω_{b}theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ∼10%) within the range of validity of the approach. We have also calculated
Broad relaxation spectrum and the field theory of glassy dynamics for pinned elastic systems.
Balents, Leon; Le Doussal, Pierre
2004-06-01
We study thermally activated, low-temperature equilibrium dynamics of elastic systems pinned by disorder using one loop functional renormalization group (FRG). Through a series of increasingly complete approximations, we investigate how the field theory reveals the glassy nature of the dynamics, in particular divergent barriers and barrier distributions controling the spectrum of relaxation times. First, we naively assume a single relaxation time tau(k) for each wave vector k, leading to analytical expressions for equilibrium dynamical response and correlations. These exhibit two distinct scaling regimes (scaling variables T k(theta) ln t and t/ tau(k), respectively, with T the temperature, theta the energy fluctuation exponent, and tau(k) approximately e(c k(-theta) /T) ) and are easily extended to quasiequilibrium and aging regimes. A careful study of the dynamical operators encoding for fluctuations of the relaxation times shows that this first approach is unsatisfactory. A second stage of approximation including these fluctuations, based on a truncation of the dynamical effective action to a random friction model, yields a size (L) dependent log-normal distribution of relaxation times (effective barriers centered around Ltheta and of fluctuations approximately L(theta/2) ) and some procedure to estimate dynamical scaling functions. Finally, we study the full structure of the running dynamical effective action within the field theory. We find that relaxation time distributions are nontrivial (broad but not log normal) and encoded in a closed hierarchy of FRG equations divided into levels p=0,1, em leader, corresponding to vertices proportional to the pth power of frequency omega(p). We show how each level p can be solved independently of higher ones, the lowest one (p=0) comprising the statics. A thermal boundary layer ansatz (TBLA) appears as a consistent solution. It extends the one discovered in the statics which was shown to embody droplet thermal
Extension of the electronic gamma-ray Spectrum Catalogue Web Site
Gehrke, R. J.; Mandler, J. W.; Helmer, R. G.; Davidson, J. R.
2001-07-01
The electronic version of the γ-Ray Spectrum Catalogue, at the Web Site http://id.inel.gov/gamma/, has been extended to include additional radionuclides measured with modern Ge detectors. The set of data for each nuclide includes a new spectral plot, a complete decay scheme, and a table of γ-ray energies and intensities downloaded from the Evaluated Nuclear Structure Data File (ENSDF). Each γ-ray is color coded in the same way in each of these three presentations. γ rays from daughter activities are identified in the spectrum by labeling the peak with the isotope with which it belongs. X-rays, artifact peaks (e.g., sum peaks), and contaminant radionuclides are distinctly colored. For each available nuclide, any available spectra from the earlier NaI(Tl) and Ge(Li) Catalogues have been included. The date of all of the downloaded ENSDF data is also recorded to provide a pedigree. Actinide decay chains allow hot links to other members of the decay chain. Links to other user information resources have been included.
Theory of semiconductor junction devices a textbook for electrical and electronic engineers
Leck, J H
1967-01-01
Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe
Newbury, Dale E; Ritchie, Nicholas W M
2011-01-01
The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.
Theory and applications of free-electron vortex states
Bliokh, K. Y.; Ivanov, I. P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M. A.; Schattschneider, P.; Nori, F.; Verbeeck, J.
2017-05-01
Both classical and quantum waves can form vortices : entities with helical phase fronts and circulating current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translating theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.
Electron transmission through molecules and molecular layers: Theory and Simulations
Nitzan, Abraham
2000-03-01
Several aspects of electron transmission through molecular layers will be discussed. (a) The mechanism of electron tunneling through a narrow water barrier between two Pt(100) metal surfaces was studied by numerical simulations.[1] Assuming that the water configuration is static on the time scale of the electron motion, the tunneling probability show distinct resonance structures below the vacuum barrier. These resonances are shown to be associated with molecular cavities in which the electron is trapped between repulsive oxygen cores. The lifetimes of these resonances are found to be of the order 10 fs or less. (b) The concept of 'tunneling time' is revisited and this time is analyzed for a simple superexchange model of electron transfer.[2] This time is computed also for electron tunneling through water and its relation to the resonance features observed in that process and to their lifetime is discussed.[3] (c) Theoretical models that analyze thermal effects in resonance tunneling are presented.[4] References 1. U. Peskin, A. Edlund, I. Bar-On , M. Galperin and A. Nitzan, Transient resonance structures in electron tunneling through water, J. Chem. Phys. 111, 7558 (1999). 2. A. Nitzan, J. Jortner, J. Wilkie and M. Ratner, Tunneling time for electron transfer reactions, to be published. 3. M. Galperin and A. Nitzan, Tunneling time for electron transfer through water, to be published. 4. D. Segal, A. Nitzan, W. B. Davis, M. R. Wasielewski, and M. A. Ratner, Electron Transfer Rates in Bridged Molecular Systems II: A steady state analysis of coherent tunneling and thermal transitions, J. Phys. Chem., in press.
Ram, S; Kundu, T K
2004-11-01
Metastable nanoclusters of ZnO semiconductor crystallites, 20 to 30 nm diameter, are synthesized by a reconstructive decomposition of a polymer precursor of dispersed Zn2+ cations in poly vinyl alcohol (PVA) polymer molecules. They have EPR (electron paramagnetic resonance) spectrum of distinct excitonic features. Multiple EPR bands appear in prominent intensities in oxygen vacancies VO+ and singly ionized Oi- and Zn(i)+ interstitials. A paramagnetic VO+ vacancy derives from usual diamagnetic O2- vacancy of VO++ (behaves as if doubly charged compared to the lattice) by addition of one electron. The results demonstrate the existence of a surface-interface or surface barrier layer in free-carrier depletion at the crystallite surface in the clusters and its effects on the Oi- and Zn(i)+ ionization states (determine green photoluminescence). Both VO+ and Zn(i)+ are curable by a thermal annealing in O2 gas. A cured sample of equilibrium structure achieved by heating at approximately 550 degrees C has a single EPR in Oi- at g = 1.990. The results are useful in understanding their correlation with EPR and optical properties in ZnO semiconductors and devices.
Hostutler, David A.; Li, Haiyang; Clouthier, Dennis J.; Wannous, Ghassan
2002-03-01
The optical spectrum of jet-cooled Ge2 has been observed for the first time. Laser-induced fluorescence (LIF) and wavelength resolved emission spectra were recorded using the pulsed discharge technique with a tetramethylgermane precursor. Analysis of the spectra yielded the vibrational constants ωe″=287.9(47), ωexe″=0.81(55), ωeye″=0.0037(18), ωe'=189.0(15), ωexe'=6.41(30), and Te'=20 610.8(16) cm-1. High-resolution rotationally resolved spectra of several bands of 74Ge2 show two strong P and R branches and two very weak Q branches. We have assigned the band system as a Hund's case (c) Ω'=1-Ω″=1 transition from the ground 3Σg- state to a 3Σu- excited state. The bond lengths derived from the rotational constants are r0″=2.3680(1) Å and re'=2.5244(18) Å, an ˜0.16 Å increase on electronic excitation. Arguments are presented for assigning the transition to a σg2πu2→σg2πuπg electron promotion, although the observed increase in the bond length is much less than predicted by previous ab initio calculations. The absence of the 0u+-0g+ component in the spectra has been attributed to an excited state predissociation.
An experimental and theoretical study of the electronic spectrum of the HBCl free radical
Energy Technology Data Exchange (ETDEWEB)
Gharaibeh, Mohammed A. [Department of Chemistry, The University of Jordan, Amman 11942 (Jordan); Nagarajan, Ramya; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Tarroni, Riccardo [Dipartimento di Chimica Industriale “Toso Montanari,” Università di Bologna, Viale Risorgimento 4, 40136 Bologna (Italy)
2015-01-07
Following our previous discovery of the spectra of the HBX (X = F, Cl, and Br) free radicals [S.-G. He, F. X. Sunahori, and D. J. Clouthier, J. Am. Chem. Soc. 127, 10814 (2005)], the A{sup ~2}A{sup ″}Π−X{sup ~2}A{sup ′} band systems of the HBCl and DBCl free radicals have been studied in detail. The radicals have been prepared in a pulsed electric discharge jet using a precursor mixture of BCl{sub 3} and H{sub 2} or D{sub 2} in high pressure argon. Laser-induced fluorescence (LIF) and single vibronic level emission spectra have been recorded to map out the ground and excited state vibrational energy levels. The band system involves a linear-bent transition between the two Renner-Teller components of what would be a {sup 2}Π electronic state at linearity. We have used high level ab initio theory to calculate the ground and excited state potential energy surfaces and have determined the vibronic energy levels variationally. The theory results were used to assign the LIF spectra which involve transitions from the ground state zero-point level to high vibrational levels of the excited state. The correspondence between theory and experiment, including the transition frequencies, upper state band symmetries, and H, B, and Cl isotope shifts, was used to validate the assignments.
Electronic Health Services: An Introduction to Theory and Application
African Journals Online (AJOL)
Information and communication technologies have made dramatic changes in our lives. Healthcare communities also made use of these technologies. Using computerized medical knowledge, electronic patients' information and telecommunications a lot of applications are now established throughout the world.
Electronic structure of EuN: Growth, spectroscopy, and theory
DEFF Research Database (Denmark)
Richter, J. H.; Ruck, B.J.; Simpson, M.
2011-01-01
and XES) at the nitrogen K edge are compared to several different theoretical models, namely, local spin density functional theory with Hubbard U corrections (LSDA+U), dynamic mean field theory (DMFT) in the Hubbard-I approximation, and quasiparticle self-consistent GW (QSGW) calculations. The DMFT...... and QSGW models capture the density of conduction band states better than does LSDA+U. Only the Hubbard-I model contains a correct description of the Eu 4f atomic multiplets and locates their energies relative to the band states, and we see some evidence in XAS for hybridization between the conduction band...
Designing the Electronic Classroom: Applying Learning Theory and Ergonomic Design Principles.
Emmons, Mark; Wilkinson, Frances C.
2001-01-01
Applies learning theory and ergonomic principles to the design of effective learning environments for library instruction. Discusses features of electronic classroom ergonomics, including the ergonomics of physical space, environmental factors, and workstations; and includes classroom layouts. (Author/LRW)
Jung, Taehee; Kim, Myung-Hee
2005-01-01
This study sought to determine whether Korean young children exhibit distinct profiles of intellectual strengths and weaknesses based on Project Spectrum, and to find the working style differences of children among strength, no strength/weakness and weakness domains. Project Spectrum helped to find in which domains each child had strength and/or…
The Theory and Implementation of Electronic Voting Systems
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Groth, Jens; Salomonsen, Gorm
2002-01-01
We describe the theory behind a practical voting scheme based on homomorphic encryption. We give an example of an ElGamal-style encryption scheme, which can be used as the underlying cryptosystem. Then, we present efficient honest verifier zero-knowledge proofs that make the messages in the voting...
Mechling, Linda C.
2011-01-01
Use of portable electronic devices by persons with moderate intellectual disabilities and autism spectrum disorders is gaining increased research attention. The purpose of this review was to synthesize twenty-first century literature (2000-2010) focusing on these technologies. Twenty-one studies were identified which evaluated use of: (a) handheld…
Murphy, Maureen Kendrick
2010-01-01
In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…
Theory and measurement of the electron cloud effect
Harkay, K C
1999-01-01
Photoelectrons produced through the interaction of synchrotron radiation and the vacuum chamber walls can be accelerated by a charged particle beam, acquiring sufficient energy to produce secondary electrons (SEs) in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, a runaway condition can develop. In addition to the SEY, the degree of amplification depends on the beam intensity and temporal distribution. As the electron cloud builds up along a train of stored bunches, a transverse perturbation of the head bunch can be communicated to trailing bunches in a wakefield-like interaction with the cloud. The electron cloud effect is especially of concern for the high-intensity PEP-II (SLAC) and KEK B-factories and at the Large Hadron Collider (LHC) at CERN. An initiative was undertaken at the Advanced Photon Source (APS) storage ring to characterize the electron cloud in order to provide realistic limits on critical input parameters in the models ...
The theory and practice of high resolution scanning electron microscopy
Energy Technology Data Exchange (ETDEWEB)
Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))
1990-01-01
Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.
Theory and practice of uncommon molecular electronic configurations.
Gryn'ova, Ganna; Coote, Michelle L; Corminboeuf, Clemence
2015-01-01
The electronic configuration of the molecule is the foundation of its structure and reactivity. The spin state is one of the key characteristics arising from the ordering of electrons within the molecule's set of orbitals. Organic molecules that have open-shell ground states and interesting physicochemical properties, particularly those influencing their spin alignment, are of immense interest within the up-and-coming field of molecular electronics. In this advanced review, we scrutinize various qualitative rules of orbital occupation and spin alignment, viz., the aufbau principle, Hund's multiplicity rule, and dynamic spin polarization concept, through the prism of quantum mechanics. While such rules hold in selected simple cases, in general the spin state of a system depends on a combination of electronic factors that include Coulomb and Pauli repulsion, nuclear attraction, kinetic energy, orbital relaxation, and static correlation. A number of fascinating chemical systems with spin states that fluctuate between triplet and open-shell singlet, and are responsive to irradiation, pH, and other external stimuli, are highlighted. In addition, we outline a range of organic molecules with intriguing non-aufbau orbital configurations. In such quasi-closed-shell systems, the singly occupied molecular orbital (SOMO) is energetically lower than one or more doubly occupied orbitals. As a result, the SOMO is not affected by electron attachment to or removal from the molecule, and the products of such redox processes are polyradicals. These peculiar species possess attractive conductive and magnetic properties, and a number of them that have already been developed into molecular electronics applications are highlighted in this review. WIREs Comput Mol Sci 2015, 5:440-459. doi: 10.1002/wcms.1233 For further resources related to this article, please visit the WIREs website.
Marcus Theory: Thermodynamics CAN Control the Kinetics of Electron Transfer Reactions
Silverstein, Todd P.
2012-01-01
Although it is generally true that thermodynamics do not influence kinetics, this is NOT the case for electron transfer reactions in solution. Marcus Theory explains why this is so, using straightforward physical chemical principles such as transition state theory, Arrhenius' Law, and the Franck-Condon Principle. Here the background and…
Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters
Bocharov, Grigory S.; Eletskii, Alexander V.
2013-01-01
Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules. PMID:28348342
Theory of Carbon Nanotube (CNT-Based Electron Field Emitters
Directory of Open Access Journals (Sweden)
Alexander V. Eletskii
2013-07-01
Full Text Available Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules.
The Impact of Electronic Media Violence: Scientific Theory and Research
Huesmann, L. Rowell
2007-01-01
Since the early 1960s research evidence has been accumulating that suggests that exposure to violence in television, movies, video games, cell phones, and on the internet increases the risk of violent behavior on the viewer’s part just as growing up in an environment filled with real violence increases the risk of them behaving violently. In the current review this research evidence is critically assessed, and the psychological theory that explains why exposure to violence has detrimental eff...
Dynamical Mean Field Theory and Electronic Structure Calculations
Chitra, R.; Kotliar, G.
1999-01-01
We formulate the dynamical mean field theory directly in the continuum. For a given definition of the local Green's function, we show the existence of a unique functional, whose stationary point gives the physical local Green's function of the solid. We present the diagrammatic rules to calculate it perturbatively in the interaction. Inspired by the success of dynamical mean field calculations for model Hamiltonian systems, we present approximations to the exact saddle point equations which m...
Theory of Mind in Children with Fetal Alcohol Spectrum Disorders.
Lindinger, Nadine M; Malcolm-Smith, Susan; Dodge, Neil C; Molteno, Christopher D; Thomas, Kevin G F; Meintjes, Ernesta M; Jacobson, Joseph L; Jacobson, Sandra W
2016-02-01
Theory of mind (ToM) refers to the ability to understand and make inferences about other people's intentions, feelings, and beliefs. Although children with fetal alcohol spectrum disorders (FASD) are known to have deficits in social-cognitive function, little is known about ToM in FASD. ToM ability was assessed using a developmentally sensitive ToM battery, including the reading the mind in the eyes (RME) test, a measure of mental inferential ability that has been found to be impaired in other clinical populations. IQ and executive function (EF) were assessed as potential mediating variables. The battery was administered to 63 children (aged 9 to 11 years) from Cape Town, South Africa, whose mothers had been prospectively recruited during pregnancy. Children with fetal alcohol syndrome (FAS; n = 8) and partial FAS (PFAS; n = 19), as well as nonsyndromal heavily exposed children (n = 17), were compared to children born to abstaining or light drinkers (n = 19) from the same community. No FASD group differences were found on the less challenging ToM tasks. By contrast, children with FAS and PFAS performed more poorly than controls on a more challenging ToM task, the RME test. A continuous measure of prenatal alcohol exposure (PAE) was more sensitive than FASD diagnosis in that it was related to 4 higher-order ToM measures, particularly the ability to attribute mental states assessed on RME. IQ only partially mediated the effect of exposure on RME performance, and these effects were not mediated by EF. Hence, the data suggest that these ToM measures tap into a specific alcohol-related social-cognitive deficit that does not merely reflect poorer EF. FASD diagnosis and PAE were each also related to RME after control for attention deficit/hyperactivity disorder. These findings suggest that deficits in higher-order ToM function may play a significant role in the social-cognitive behavioral impairment in FASD. Copyright © 2016 by the Research Society on Alcoholism.
Measurement of the Neutron Spectrum of a DD Electronic Neutron Generator
Energy Technology Data Exchange (ETDEWEB)
D. L. Chichester; J. T. Johnson; E. H. Seabury
2010-08-01
A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3? to 92.7? with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.
Effects of the molecular structure on the electronic vertical spectrum of oxoglaucine
Directory of Open Access Journals (Sweden)
Martha Cecilia Daza Espinosa
2018-01-01
Full Text Available The vertical electronic spectrum of oxoglaucine by means of a multireference configuration interaction method (DFT/MRCI was studied. The effect of both methyl and methoxy groups on the geometries and energetic distribution of the low-lying excited states was analyzed. The results show that, by means of the TZVP basis set, at the ground state minima of oxoglaucine, oxoglaucine without methyl and methoxy groups, the lowest excited singlet states are of nπ* (S1 and ππ* (S2 type. Triplet states of ππ* (T1 and nπ* (T2 type are energetically accessible from S1. From the energetic point of view, it can be proposed that the channel for an efficient intersystem crossing 1(nπ*⇝3(ππ* is plausible. Although the presence of the methyl and methoxyl groups distort the planarity of the rings system, the effect in the vertical distribution of the lowest lying singlet and triplet states can be considered as negligible.
Theory of electronic and optical properties of nanostructures
Hewageegana, Prabath S.
"There is plenty of room at the bottom." This bold and prophetic statement from Nobel laureate Richard Feynman back in 1950s at Cal Tech launched the Nano Age and predicted, quite accurately, the explosion in nanoscience and nanotechnology. Now this is a fast developing area in both science and technology. Many think this would bring the greatest technological revolution in the history of mankind. To understand electronic and optical properties of nanostructures, the following problems have been studied. In particular, intensity of mid-infrared light transmitted through a metallic diffraction grating has been theoretically studied. It has been shown that for s-polarized light the enhancement of the transmitted light is much stronger than for p-polarized light. By tuning the parameters of the diffraction grating enhancement can be increased by a few orders of magnitude. The spatial distribution of the transmitted light is highly nonuniform with very sharp peaks, which have the spatial widths about 10 nm. Furthermore, under the ultra fast response in nanostructures, the following two related goals have been proved: (a) the two-photon coherent control allows one to dynamically control electron emission from randomly rough surfaces, which is localized within a few nanometers. (b) the photoelectron emission from metal nanostructures in the strong-field (quasistationary) regime allows coherent control with extremely high contrast, suitable for nanoelectronics applications. To investigate the electron transport properties of two dimensional carbon called graphene, a localization of an electron in a graphene quantum dot with a sharp boundary has been considered. It has been found that if the parameters of the confinement potential satisfy a special condition then the electron can be strongly localized in such quantum dot. Also the energy spectra of an electron in a graphene quantum ring has been analyzed. Furthermore, it has been shown that in a double dot system some
Theory of nuclear excitation by electron capture for heavy ions
Energy Technology Data Exchange (ETDEWEB)
Gagyi-Palffy, A.
2006-07-01
The resonant process of nuclear excitation by electron capture (NEEC) in collisions involving highly-charged ions has been investigated theoretically. NEEC is a rare recombination process in which a free electron is captured into a bound shell of an ion with the simultaneous excitation of the nucleus. Total cross sections for NEEC followed by the radiative decay of the excited nucleus are presented for various collision systems. The possibility to observe the NEEC in scattering experiments with trapped or stored ions was discussed focusing on the cases with the largest calculated resonance strength. As the photons emitted in different channels of the electron recombination process are indistinguishable in the total cross section, the interference between NEEC followed by the radiative decay of the nucleus and radiative recombination was investigated. The angular distribution of the emitted photons in the recombination process provides means to discern the two processes. Angular differential cross sections for the emitted photons in the case of E2 nuclear transitions were presented for several heavy elements. (orig.)
Modern electronic structure theory and applications in organic chemistry
Davidson, ER
1997-01-01
This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is n
Adibsereshki, Narges; Nesayan, Abbas; Asadi Gandomani, Roghayeh; Karimlou, Masood
2015-01-01
Children with Autism Spectrum Disorders (ASD) tend to have problems in establishing and maintaining their social relationships. Some professionals believe this social impairment is the result of deficit in Theory of Mind (ToM). This study was conducted to explore the effectiveness of ToM training on such children. A quasi-experimental method, pre- test, post-test with control group was used. The sample included of 12 girls and 12 boys with High Functioning Autism Spectrum Disorders (HFASD). Two instruments were used as follows: the Theory of Mind test and the social skills questionnaire (1). The samples were randomly placed in the experimental and control groups. The experimental groups had 15 sessions of ToM training and the control groups had just regular school program. The data were analyzed by Kolmogorov-Smirnov, independent t- and twoway- variance tests. The scores for social skills in the experimental group were significantly more than the control group. ToM training might improve the social skills of children with autism spectrum disorders.
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.
Domingo, Luis R
2016-09-30
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
DEFF Research Database (Denmark)
Yan, Wei
2015-01-01
We investigate the hydrodynamic theory of metals, offering systematic studies of the linear-response dynamics for an inhomogeneous electron gas. We include the quantum functional terms of the Thomas-Fermi kinetic energy, the von Weizsa¨cker kinetic energy, and the exchange-correlation Coulomb...... energies under the local density approximation. The advantages, limitations, and possible improvements of the hydrodynamic theory are transparently demonstrated. The roles of various parameters in the theory are identified. We anticipate that the hydrodynamic theory can be applied to investigate the linear...
Modern quantum chemistry introduction to advanced electronic structure theory
Szabo, Attila
1996-01-01
The aim of this graduate-level textbook is to present and explain, at other than a superficial level, modem ab initio approaches to the calculation of the electronic structure and properties of molecules. The first three chapters contain introductory material culminating in a thorough discussion of the Hartree-Fock approximation.The remaining four chapters describe a variety of more sophisticated approaches, which improve upon this approximation.Among the highlights of the seven chapters are (1) a review of the mathematics (mostly matrix algebra) required for the rest of the book, (2) an intr
The impact of electronic media violence: scientific theory and research.
Huesmann, L Rowell
2007-12-01
Since the early 1960s, research evidence has been accumulating that suggests that exposure to violence in television, movies, video games, cell phones, and on the Internet increases the risk of violent behavior on the viewer's part, just as growing up in an environment filled with real violence increases the risk of them behaving violently. In the current review this research evidence is critically assessed and the psychological theory that explains why exposure to violence has detrimental effects for both the short and long-term is elaborated. Finally the size of the "media violence effect" is compared with some other well-known threats to society to estimate how important a threat it should be considered.
The Impact of Electronic Media Violence: Scientific Theory and Research
Huesmann, L. Rowell
2009-01-01
Since the early 1960s research evidence has been accumulating that suggests that exposure to violence in television, movies, video games, cell phones, and on the internet increases the risk of violent behavior on the viewer’s part just as growing up in an environment filled with real violence increases the risk of them behaving violently. In the current review this research evidence is critically assessed, and the psychological theory that explains why exposure to violence has detrimental effects for both the short run and long run is elaborated. Finally, the size of the “media violence effect” is compared with some other well known threats to society to estimate how important a threat it should be considered. PMID:18047947
Wang, Jinlong; Feng, Shuo; Wu, Qihui; Zheng, Xueqiang; Xu, Yuhua; Ding, Guoru
2014-12-01
Cognitive radio (CR) is a promising technology that brings about remarkable improvement in spectrum utilization. To tackle the hidden terminal problem, cooperative spectrum sensing (CSS) which benefits from the spatial diversity has been studied extensively. Since CSS is vulnerable to the attacks initiated by malicious secondary users (SUs), several secure CSS schemes based on Dempster-Shafer theory have been proposed. However, the existing works only utilize the current difference of SUs, such as the difference in SNR or similarity degree, to evaluate the trustworthiness of each SU. As the current difference is only one-sided and sometimes inaccurate, the statistical information contained in each SU's historical behavior should not be overlooked. In this article, we propose a robust CSS scheme based on Dempster-Shafer theory and trustworthiness degree calculation. It is carried out in four successive steps, which are basic probability assignment (BPA), trustworthiness degree calculation, selection and adjustment of BPA, and combination by Dempster-Shafer rule, respectively. Our proposed scheme evaluates the trustworthiness degree of SUs from both current difference aspect and historical behavior aspect and exploits Dempster-Shafer theory's potential to establish a `soft update' approach for the reputation value maintenance. It can not only differentiate malicious SUs from honest ones based on their historical behaviors but also reserve the current difference for each SU to achieve a better real-time performance. Abundant simulation results have validated that the proposed scheme outperforms the existing ones under the impact of different attack patterns and different number of malicious SUs.
Direct Gaze Elicits Atypical Activation of the Theory-of-Mind Network in Autism Spectrum Conditions
National Research Council Canada - National Science Library
von dem Hagen, Elisabeth A.H; Stoyanova, Raliza S; Rowe, James B; Baron-Cohen, Simon; Calder, Andrew J
2014-01-01
.... Controls showed an increased response to direct gaze in brain areas implicated in theory-of-mind and gaze perception, including medial prefrontal cortex, temporoparietal junction, posterior superior...
Lo, Sin Ting; Siemensma, Elbrich; Collin, Philippe; Hokken-Koelega, Anita
2013-09-01
In order to evaluate the social cognitive functioning in children with Prader-Willi syndrome (PWS), Theory of Mind (ToM) and symptoms of Autism Spectrum Disorder were evaluated. Sixty-six children with PWS aged 7-17 years were tested using the Theory of Mind test-R and the Diagnostic Interview for Social Communication disorders. We tested the correlation between Total ToM Standard Deviation Score (Total ToM SDS) and genetic subtype of paternal deletion or maternal uniparental disomy, and total IQ, verbal IQ and performal IQ. Prevalence and symptoms of Autism Spectrum Disorder were assessed. Median (interquartile range) of total ToM SDS of those aged 7-17 years was -3.84 (-5.73, -1.57). Their Total ToM SDS correlated with total IQ (β=0.662, p0.05, adj.R(2)=0.259). No difference in Total ToM SDS was found between children with deletion and maternal uniparental disomy (β=-0.143, p>0.05, adj.R(2)=-0.016). Compared to the reference group of healthy children aged 7-12 years, children with PWS in the same age group had a median ToM developmental delay of 4 (3-5) years. One third of children with PWS scored positive for Autism Spectrum Disorder. Most prominent aberrations in Autism Spectrum Disorder were focused on maladaptive behavior. Our findings demonstrate a markedly reduced level of social cognitive functioning, which has consequences for the approach of children with PWS, i.e. adjustment to the child's level of social cognitive functioning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Interventions based on the Theory of Mind cognitive model for autism spectrum disorder (ASD).
Fletcher-Watson, Sue; McConnell, Fiona; Manola, Eirini; McConachie, Helen
2014-03-21
The 'Theory of Mind' (ToM) model suggests that people with autism spectrum disorder (ASD) have a profound difficulty understanding the minds of other people - their emotions, feelings, beliefs, and thoughts. As an explanation for some of the characteristic social and communication behaviours of people with ASD, this model has had a significant influence on research and practice. It implies that successful interventions to teach ToM could, in turn, have far-reaching effects on behaviours and outcome. To review the efficacy of interventions based on the ToM model for individuals with ASD. In August 2013 we searched CENTRAL, Ovid MEDLINE, Embase, CINAHL, PsycINFO, ERIC, Social Services Abstracts, AutismData, and two trials registers. We also searched the reference lists of relevant papers, contacted authors who work in this field, and handsearched a number of journals. Review studies were selected on the basis that they reported on an applicable intervention (linked to ToM in one of four clearly-defined ways), presented new randomised controlled trial data, and participants had a confirmed diagnosis of an autism spectrum disorder. Studies were selected by two review authors independently and a third author arbitrated when necessary. Risk of bias was evaluated and data were extracted by two review authors independently; a third author arbitrated when necessary. Most studies were not eligible for meta-analysis, the principal reason being mis-matching methodologies and outcome measures. Three small meta-analyses were carried out. Twenty-two randomised trials were included in the review (N = 695). Studies were highly variable in their country of origin, sample size, participant age, intervention delivery type, and outcome measures. Risk of bias was variable across categories. There were very few studies for which there was adequate blinding of participants and personnel, and some were also judged at high risk of bias in blinding of outcome assessors. There was also
Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder.
Directory of Open Access Journals (Sweden)
Todd Lingren
Full Text Available Cohort selection is challenging for large-scale electronic health record (EHR analyses, as International Classification of Diseases 9th edition (ICD-9 diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD.We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children's Hospital (BCH (N = 150 and Cincinnati Children's Hospital and Medical Center (CCHMC (N = 152. Two algorithms were created: (1 rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2 predictive classifier. The positive predictive values (PPV achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups.The rule-based algorithm produced the best PPV: (a BCH: 0.885 vs. 0.273 (baseline; (b CCHMC: 0.840 vs. 0.645 (baseline; (c combined: 0.864 vs. 0.460 (baseline. A validation at Children's Hospital of Philadelphia yielded 0.848 (PPV. Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients identified psychiatric, developmental, and seizure disorder clusters.In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.
Breakdown of Traditional Many-Body Theories for Correlated Electrons.
Gunnarsson, O; Rohringer, G; Schäfer, T; Sangiovanni, G; Toschi, A
2017-08-04
Starting from the (Hubbard) model of an atom, we demonstrate that the uniqueness of the mapping from the interacting to the noninteracting Green function, G→G_{0}, is strongly violated, by providing numerous explicit examples of different G_{0} leading to the same physical G. We argue that there are indeed infinitely many such G_{0}, with numerous crossings with the physical solution. We show that this rich functional structure is directly related to the divergence of certain classes of (irreducible vertex) diagrams, with important consequences for traditional many-body physics based on diagrammatic expansions. Physically, we ascribe the onset of these highly nonperturbative manifestations to the progressive suppression of the charge susceptibility induced by the formation of local magnetic moments and/or resonating valence bond (RVB) states in strongly correlated electron systems.
Gyrokinetic stability theory of electron-positron plasmas
Helander, Per
2016-01-01
The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, 2014) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in i...
Nonlinear theory of short-wavelength free-electron lasers
Freund, H. P.
1995-11-01
The nonlinear evolution of free-electron laser (FEL) amplifiers is studied for infrared and shorter wavelengths. The configuration of interest consists in the propagation of an energetic electron beam through a drift tube in the presence of a periodic wiggler magnetic field with planar symmetry. A three-dimensional formulation is derived in which the electromagnetic field is represented as an expansion of Gaussian optical modes. Since the wiggler model is characterized by planar symmetry, the Gauss-Hermite modes are used for this purpose. A set of nonlinear differential equations is derived for the evolution of the amplitude and phase of each mode, and they are solved simultaneously in conjunction with the three-dimensional Lorentz force equations for an ensemble of electrons in the presence of the magneto-static wiggler, self-electric and self-magnetic fields due to the charge and current distributions of the beam, and the electromagnetic fields. It is important to note that no wiggler average is used in the integration of the electron trajectories. This permits the self-consistent modeling of effects associated with (1) the injection of the beam into the wiggler, (2) emittance growth due to inhomogeneities in the wiggler and radiation fields as well as due to the self-fields, (3) the effect of wiggler imperfections, and (4) betatron oscillations. The optical guiding of the radiation field is implicitly included in the formulation. This approach has important practical advantages in analyzing FELs, since it is necessary only to characterize the beam upon injection into the wiggler, and the subsequent evolution is treated self-consistently. Numerical simulations are performed for two examples corresponding to an infrared FEL at wavelengths near 3.5 μm, and an x-ray FEL operating in the neighborhood of 1.4 Å wavelengths corresponding to the proposed linear coherent light source (LCLS) at the Stanford Linear Accelerator Center. Results for both cases indicate that
Topology Zero: Advancing Theory and Experimentation for Power Electronics Education
Luchino, Federico
For decades, power electronics education has been based on the fundamentals of three basic topologies: buck, boost, and buck-boost. This thesis presents the analytical framework for the Topology Zero, a general circuit topology that integrates the basic topologies and provides significant insight into the behaviour of converters. As demonstrated, many topologies are just particular cases of the Topology Zero, an important contribution towards the understanding, integration, and conceptualization of topologies. The investigation includes steady-state, small-signal, and frequency response analysis. The Topology Zero is physically implemented as an educational system. Experimental results are presented to show control applications and power losses analysis using the educational system. The steady-state and dynamic analyses of the Topology Zero provide profuse proof of its suitability as an integrative topology, and of its ability to be indirectly controlled. As well, the implementation of the Topology Zero within an experimentation system is explained and application examples are provided.
Exploring the Components of Advanced Theory of Mind in Autism Spectrum Disorder
Pedreño, C.; Pousa, E.; Navarro, J. B.; Pàmias, M.; Obiols, J. E.
2017-01-01
Performance of a group of 35 youth and adults with High-Functioning Autism (HFA) was compared with a typical developing (TD) group on three Advanced Theory of Mind tests. The distinction between the social-cognitive and social-perceptual components of Theory of Mind was also explored. The HFA group had more difficulties in all tasks. Performance…
Ryabinkin, Ilya G
2016-01-01
An accurate description of nonadiabatic dynamics of molecular species on metallic surfaces poses a serious computational challenge associated with a multitude of closely-spaced electronic states. We propose a mixed quantum-classical scheme that addresses this challenge by introducing collective electronic variables. These variables are defined through analytic block-diagonalization applied to the time-dependent Hamiltonian matrix governing the electronic dynamics. We compare our scheme with the Ehrenfest approach and with a full-memory electronic friction model on a one-dimensional "adatom + atomic chain" model. Our simulations demonstrate that collective-mode dynamics with only few (2-3) electronic variables is robust and can describe a variety of situations: from a chemisorbed atom on an insulator to an atom on a metallic surface. Our molecular model also reveals that the friction approach is prone to unpredictable and catastrophic failures.
Energy Technology Data Exchange (ETDEWEB)
Verbaarschot, Jacobus (Department of Physics, SUNY, Stony Brook, NY 11794 (United States))
1994-09-19
We study the spectrum of the QCD Dirac operator near zero virtuality for N[sub c] =2. According to a universality argument, it can be described by a random matrix theory with the chiral structure of QCD, but with real matrix elements.Using results derived by Mehta and Mahoux and Nagao and Wadati, we are able to obtain an analytical result for the microscopic spectral density that in turn is the generating function for Leutwyler-Smilga type spectral sum rules. ((orig.))
Testing the extreme male brain theory of autism spectrum disorder in a familial design
Hauth, I.; Bruijn, Y.G. de; Staal, W.G.; Buitelaar, J.K.; Rommelse, N.N.
2014-01-01
Autism Spectrum Disorder (ASD) may be an extreme manifestation of some male-typical traits in both neuroanatomy and cognition. Using the ratio of the second to fourth digit (2D:4D) and digit length as biomarkers of (pre- and postnatal) testosterone levels, examined was whether hypermasculinized
Atmospheric muon and electron neutrino energy spectrum measured by first year of IceCube-86 detector
Kuwabara, Takao; IceCube Collaboration
2017-09-01
The flux of atmospheric neutrinos is the main background for searches for cosmic neutrinos. Precise measurement of its spectrum allows us to reduce uncertainty of any kind of signal analysis. A unified analysis of atmospheric neutrinos using data collected with the full IceCube detector between May 2011 and May 2012 is presented in which both muon and electron flavors are included in a single framework.
Time-dependent density functional theory for many-electron systems interacting with cavity photons.
Tokatly, I V
2013-06-07
Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.
Energy Technology Data Exchange (ETDEWEB)
Kravtsova, Antonina N., E-mail: akravtsova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge str. 5, 344090 Rostov-on-Don (Russian Federation); Lomachenko, Kirill A. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge str. 5, 344090 Rostov-on-Don (Russian Federation); Department of Chemistry and NIS Centre of Excellence, University of Turin, Via P. Giuria 7, 10125 Turin (Italy); Soldatov, Alexander V., E-mail: soldatov@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge str. 5, 344090 Rostov-on-Don (Russian Federation); Meyer, Jennifer; Niedner-Schatteburg, Gereon [Technische Universität Kaiserslautern, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern (Germany); Peredkov, Sergey [Helmholtz-Zentrum Berlin für Materialien und Energie, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, Berlin (Germany); Eberhardt, Wolfgang [Technische Universität Berlin, IOAP, Straße des 17. Juni 135, 10623 Berlin (Germany); Neeb, Matthias, E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, Berlin (Germany)
2014-08-15
Highlights: • M{sub 4,5}-XANES spectra have been calculated for several structural models of free Nb{sub 13}{sup +} cluster. • Theoretical M{sub 4,5}-XANES have been compared with the experimental spectrum of free Nb{sub 13}{sup +}. • Icosahedral structure of Nb{sub 13}{sup +} shows better agreement with experiment than the “amorphous” one. • Distance between Nb atoms in the icosahedral cluster is distinctly reduced as compared to the bulk phase. - Abstract: The atomic and electronic structure of free niobium nanoclusters has been studied on the basis of X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. M{sub 4,5}-XANES spectra have been calculated for several structural models of the 13-atomic niobium cluster. The calculations have been done on the basis of both full multiple scattering theory within the muffin-tin approximation for a potential and full-potential finite difference method. The comparison of the experimental M{sub 4,5}-edge XANES spectrum (Peredkov et al., J. Electron Spectros. Relat. Phenomena 184 (2011) 113–118) with the simulated X-ray absorption spectra of Nb{sub 13}{sup +} hints to a highly-symmetric icosahedral structure of the cluster. An internuclear distance of 2.2 ± 0.1 Å between neighboring “surface” atoms of the icosahedron and 2.09 Å between the central “bulk” atom and “surface” atoms, respectively, has been found upon comparison of the experimental and theoretical XANES spectra.
Boucher, Jill
2012-05-01
In this review, the history of the theory of mind (ToM) theory of autistic spectrum disorder (ASD) is outlined (in which ToM is indexed by success on false belief tasks), and the explanatory power and psychological causes of impaired ToM in ASD are critically discussed. It is concluded that impaired ToM by itself has only limited explanatory power, but that explorations of the psychological precursors of impaired ToM have been fruitful in increasing understanding of mindreading impairments in ASD (where 'mindreading' refers those abilities that underlie triadic interaction as well as ToM). It is argued that early explanations of impaired mindreading are untenable for various reasons, but that impairments of dyadic interaction in ASD that could lead to impaired ability to represent others' mental states may be the critical psychological cause, or causes, of impaired ToM. The complexity of causal routes to impaired ToM is emphasized.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Relativistic light-shift theory of few-electron systems: Heliumlike highly charged ions
Postavaru, O.; Scafes, A. C.
2017-09-01
The light-shift theory of many-electron systems in a laser field is described using the projection operators technique. In heavy ions, the electrons are tightly bound by the Coulomb potential of the nucleus, which prohibits ionization even by strong lasers. However, interaction with the monofrequent laser field leads to dynamic shifts of the electronic energy levels, and the process is treated by second-order time-dependent perturbation theory. In order to treat heliumlike systems, one decomposes the corresponding matrix elements into hydrogenlike matrix elements using the independent particle model. We are applying a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the Stark long-wavelength dipole approximation and takes into account nondipole effects of retardation and interaction with the magnetic field components of the laser beam.
Jacoboni, Carlo
2010-01-01
This book describes in details the theory of the electron transport in the materials and structures at the basis of modern micro- and nano-electronics. It leads and accompanies the reader, through a step-by-step derivation of all calculations, from the basic laws of classical and quantum physics up to the most modern theoretical techniques, such as nonequilibrium Green functions, to study transport properties of both semiconductor materials and modern low-dimensional and mesoscopic structures.
Corsini, NR; Greco, A.; Hine, ND; Molteni, C.; Haynes, PD
2013-01-01
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simula...
Directory of Open Access Journals (Sweden)
Muhammad Mus-’ab Anas
2015-01-01
Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Energy Technology Data Exchange (ETDEWEB)
Peng, Bo; Kowalski, Karol
2017-03-01
In this letter, we introduce the reverse Cuthill-McKee (RCM) algorithm, which is often used for the bandwidth reduction of sparse tensors, to transform the two-electron integral tensors to their block diagonal forms. By further applying the pivoted Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates the low-rank factorization of the high-dimensional tensor contractions that are usually encountered in post-Hartree-Fock calculations. In this letter, we discuss the second-order Møller-Plesset (MP2) method and linear coupled- cluster model with doubles (L-CCD) as two simple examples to demonstrate the efficiency of the RCM-CD technique in representing two-electron integrals in a compact form.
Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory
Berger, Richard; Chapman, Thomas; Brunner, Stephan
2013-10-01
The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 vph = +/-ωbe , where vph =ω0 /k0 and ωbe is the bounce frequency of a deeply trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.
Design and Analysis of an Electron Gun/Booster and Free Electron Laser Optical Theory
2010-09-01
gas ( TIG ) welding has been poor [12]. Electron beam welding offers a much more controllable environment for ensuring weld quality and minimizing...beam welding of the NPS cavity . . . . . . . . . . . . . . . . . 54 29. Buffered chemical polish station . . . . . . . . . . . . . . . . . . . . . . 55...degree turn (and weld ) and to improve the ability to clean the cavities. Removing surface contaminants is of utmost importance in superconducting
DEFF Research Database (Denmark)
Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas
2009-01-01
Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...
Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.
The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,
Energy Technology Data Exchange (ETDEWEB)
Grasso, D.; Profumo, S.; Strong, A.W.; Baldini, L.; Bellazzini, R.; Bloom, E.D.; Bregeon, J.; Di Bernardo, G.; Gaggero, D.; Giglietto, N.; Kamae, T.; Latronico, L.; Longo, F.; Mazziotta, M.N.; Moiseev, A.A.; Morselli, A.; Ormes, J.F.; Pesce-Rollins, M.; Pohl, M.; Razzano, M.; Sgro, C.
2009-05-15
The Fermi-LAT experiment recently reported high precision measurements of the spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. Here we discuss several interpretations of the Fermi results based either on a single large scale Galactic CRE component or by invoking additional electron-positron primary sources, e.g. nearby pulsars or particle Dark Matter annihilation. We show that while the reported Fermi-LAT data alone can be interpreted in terms of a single component scenario, when combined with other complementary experimental results, specifically the CRE spectrum measured by H.E.S.S. and especially the positron fraction reported by PAMELA between 1 and 100 GeV, that class of models fails to provide a consistent interpretation. Rather, we find that several combinations of parameters, involving both the pulsar and dark matter scenarios, allow a consistent description of those results. We also briefly discuss the possibility of discriminating between the pulsar and dark matter interpretations by looking for a possible anisotropy in the CRE flux.
International Workshop on Electronic Density Functional Theory : Recent Progress and New Directions
Vignale, Giovanni; Das, Mukunda
1998-01-01
This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on r...
Kalimullina, L. R.; Nafikova, E. P.; Asfandiarov, N. L.; Chizhov, Yu. V.; Baibulova, G. Sh.; Zhdanov, E. R.; Gadiev, R. M.
2015-03-01
A number of compounds related to quinone derivatives is investigated by means of density functional theory in the B3LYP/6-31G(d) mode. Vertical electron affinity E va and/or electron affinity E a for the investigated compounds are known from experiments. The correlation between the calculated energies of π* molecular orbitals with the E va values measured via electron transmission spectroscopy is determined with a coefficient of 0.96. It is established that theoretical values of the adiabatic electron affinity, calculated as the difference between the total energies of a neutral molecule and a radical anion, correlate with E a values determined from electron transfer experiments with a correlation coefficient of 0.996.
Rayka, Milad; Goli, Mohammad; Shahbazian, Shant
2018-02-07
An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.
Microscopic theory of the one-particle excitation spectrum of normal Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Khodel' , V. A.; Shaginyan, V. R.
1989-01-01
A microscopic theory of one-particle excitations in normal Fermi systems is proposed in the framework of the density-functional method. A system of equations is obtained which makes it possible to calculate the effective mass of a quasiparticle, starting from the interaction between the particles in the vacuum. A system of equations for calculating the thermodynamic functions of heated nuclear matter is also proposed. The equations do not contain any parameters.
Electronic Screen Media for Persons with Autism Spectrum Disorders: Results of a Survey
Shane, Howard C.; Albert, Patti Ducoff
2008-01-01
Social and anecdotal reports suggest a predilection for visual media among individuals on the autism spectrum, yet no formal investigation has explored the extent of that use. Using a distributed questionnaire design, parents and caregivers report on time allotted toward media, including observable behaviors and communicative responses. More time…
Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models
Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri
2017-01-01
Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.
Samimi, A.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Selcher, C. A.; McCarrick, M. J.
2012-11-01
Recent observations show that, during ionospheric heating experiments at frequencies near the second electron gyro-harmonic, discrete spectral lines separated by harmonics of the ion-gyro frequency appear in the stimulated electromagnetic emission (SEE) spectrum within 1 kHz of the pump frequency. In addition to the ion gyro-harmonic structures, on occasion, a broadband downshifted emission is observed simultaneously with these spectral lines. Parametric decay of the pump field into upper hybrid/electron Bernstein (UH/EB) and low-frequency ion Bernstein (IB) and oblique ion acoustic (IA) modes is considered responsible for generation of these spectral features. Guided by predictions of an analytical model, a two-dimensional particle-in-cell (PIC) computational model is employed to study the nonlinear processes during such heating experiments. The critical parameters that affect the spectrum, such as whether discrete gyro-harmonic on broadband structures is observed, include angle of the pump field relative to the background magnetic field, pump field strength, and proximity of the pump frequency to the gyro-harmonic. Significant electron heating along the magnetic field is observed in the parameter regimes considered.
Pehrs, Corinna; Samson, Andrea C.; Gross, James J.
2015-06-01
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits as well as restricted and repetitive behaviors [1]. Specific deficits include failure to initiate reciprocal social interactions, verbal and non-verbal communication difficulties, decreased sensitivity to social and emotional cues, and limited perspective-taking abilities. Social withdrawal, avoidance or indifference to affection or physical contact, lack of eye contact, and decreased joint attention and facial responsiveness are also common [2]. In addition to these core features, there is a growing body of literature that describes problematic patterns of emotional reactivity (increased negative and decreased positive emotions) and emotion regulation (increased use of maladaptive and decreased use of adaptive emotion regulation strategies) [3-5]. The present comment seeks to link difficulties in socio-emotional domains to the Quartet Theory of Human Emotions by mapping characteristic ASD social deficits and emotion dysregulation onto two of the affect systems described in this theory: the hippocampal and orbitofrontal-centered systems.
Lind, Sophie E; Bowler, Dermot M
2009-09-01
This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and without ASD showed an "enactment effect", demonstrating significantly better recognition and source memory for self-performed actions than other-person-performed actions. Within the comparison group, theory-of-mind (ToM) task performance was significantly correlated with source memory, specifically for other-person-performed actions (after statistically controlling for verbal ability). Within the ASD group, ToM task performance was not significantly correlated with source memory (after controlling for verbal ability). Possible explanations for these relations between source memory and ToM are considered.
Chelibanov, V P; Polubotko, A M
2015-01-01
The SEHRS spectrum of 4,4' Bipyridine is analyzed on the base of the Dipole Quadrupole theory. It is demonstrated that there appear strong lines caused by vibrations transforming after a unit irreducible representation of the D2 symmetry group. which is most probably describes the symmetry properties of the molecule. These lines are nearly forbidden for the molecule, adsorbed on rough metal surface. Appearance of these lines is associated with a strong quadrupole light molecule interaction, which exists in this system. In addition, there are lines, caused by contributions from both the vibrations transforming after the unit irreducible representation A and the representation B1, which describes transformational properties of the dz component of the dipole moment, which is perpendicular to the surface. This result is associated with the specific geometry of the molecule, when the indicated vibrations can be nearly degenerated and cannot be resolved by the SEHRS spectra analysis. Analysis of the SEHRS spectra f...
Mazza, Monica; Mariano, Melania; Peretti, Sara; Masedu, Francesco; Pino, Maria Chiara; Valenti, Marco
2017-05-01
Individuals with autism spectrum disorders (ASD) show significant impairments in social skills and theory of mind (ToM). The aim of this study was to evaluate ToM and social information processing abilities in 52 children with ASD compared to 55 typically developing (TD) children. A mediation analysis evaluated whether social information processing abilities can be mediated by ToM competences. In our results, children with autism showed a deficit in social skills and ToM components. The innovative results of our study applying mediation analysis demonstrate that ToM plays a key role in the development of social abilities, and the lack of ToM competences in children with autism impairs their competent social behavior.
Murray, Aja Louise; Booth, Tom; McKenzie, Karen; Kuenssberg, Renate
2016-06-01
It has previously been noted that inventories measuring traits that originated in a psychopathological paradigm can often reliably measure only a very narrow range of trait levels that are near and above clinical cutoffs. Much recent work has, however, suggested that autism spectrum disorder traits are on a continuum of severity that extends well into the nonclinical range. This implies a need for inventories that can capture individual differences in autistic traits from very high levels all the way to the opposite end of the continuum. The Autism-Spectrum Quotient (AQ) was developed based on a closely related rationale, but there has, to date, been no direct test of the range of trait levels that the AQ can reliably measure. To assess this, we fit a bifactor item response theory model to the AQ. Results suggested that AQ measures moderately low to moderately high levels of a general autistic trait with good measurement precision. The reliable range of measurement was significantly improved by scoring the instrument using its 4-point response scale, rather than dichotomizing responses. These results support the use of the AQ in nonclinical samples, but suggest that items measuring very low and very high levels of autistic traits would be beneficial additions to the inventory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Komninos, Yannis; Nicolaides, Cleanthes A
2014-01-01
In a variety of problems concerning the coupling of atomic and molecular states to strong and or short electromagnetic pulses, it is necessary to solve the time-dependent Schroedinger equation nonperturbatively. To this purpose, we have proposed and applied to various problems the state-specific expansion approach. Its implementation requires the computation of bound-bound, bound-free and free-free N-electron matrix elements of the operator that describes the coupling of the electrons to the external electromagnetic field. The present study penetrates into the mathematical properties of the free-free matrix elements of the full electric field operator of the multipolar Hamiltonian. kk is the photon wavenumber, and the field is assumed linearly polarized, propagating along the z axis. Special methods are developed and applied for the computation of such matrix elements using energy-normalized, numerical scattering wavefunctions. It is found that, on the momentum (energy) axis, the free-free matrix elements hav...
Complete spectrum of the infinite-U Hubbard ring using group theory.
Soncini, Alessandro; Van den Heuvel, Willem
2014-05-14
We present a full analytical solution of the multiconfigurational strongly correlated mixed-valence problem corresponding to the N-Hubbard ring filled with N-1 electrons, and infinite on-site repulsion. While the eigenvalues and the eigenstates of the model are known already, analytical determination of their degeneracy is presented here for the first time. The full solution, including degeneracy count, is achieved for each spin configuration by mapping the Hubbard model into a set of Hückel-annulene problems for rings of variable size. The number and size of these effective Hückel annulenes, both crucial to obtain Hubbard states and their degeneracy, are determined by solving a well-known combinatorial enumeration problem, the necklace problem for N-1 beads and two colors, within each subgroup of the CN-1 permutation group. Symmetry-adapted solution of the necklace enumeration problem is finally achieved by means of the subduction of coset representation technique [S. Fujita, Theor. Chim. Acta 76, 247 (1989)], which provides a general and elegant strategy to solve the one-hole infinite-U Hubbard problem, including degeneracy count, for any ring size. The proposed group theoretical strategy to solve the infinite-U Hubbard problem for N-1 electrons is easily generalized to the case of arbitrary electron count L, by analyzing the permutation group CL and all its subgroups.
Energy Technology Data Exchange (ETDEWEB)
Liu, Shubin [Univ. of North Carolina, Chapel Hill, NC (United States); Ess, Daniel H. [Brigham Young Univ., Provo, UT (United States); Univ. of North Carolina, Chapel Hill, NC (United States); Schauer, Cynthia [Univ. of North Carolina, Chapel Hill, NC (United States)
2011-04-20
Proton-coupled electron transfer (PCET) reactions occur in many biological and artificial solar energy conversion processes. In these reactions the electron is often transferred to a site distant to the proton acceptor site. In this work, we employ the dual descriptor and the electrophilic Fukui function from density functional reactivity theory (DFRT) to characterize the propensity for an electron to be transferred to a site other than the proton acceptor site. The electrophilic regions of hydrogen bond or van der Waal reactant complexes were examined using these DFRT descriptors to determine the region of space to which the electron is most likely to be transferred. This analysis shows that in PCET reactions the electrophilic region of the reactant complex does not include the proton acceptor site.
Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron
Fujita, Shigeji
2007-01-01
Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...
Disorder in gauge/gravity duality, pole spectrum statistics and random matrix theory
Saremi, Omid
2014-05-01
In condensed-matter, level statistics has long been used to characterize the phases of a disordered system. We provide evidence within the context of a simple model that in a disordered large-N gauge theory with a gravity dual, there exist phases where the nearest neighbor spacing distribution of the unfolded pole spectra of generic two-point correlators is Poisson. This closely resembles the localized phase of the Anderson Hamiltonian. We perform two tests on our statistical hypothesis. One is based on a statistic defined in the context of random matrix theory, the so-called \\overline{\\Delta _3}, or spectral rigidity, proposed by Dyson and Mehta. The second is a χ-squared test. In our model, the results of both tests are consistent with the hypothesis that the pole spectra of two-point functions can be at least in two distinct phases; first a regular sequence and second a completely uncorrelated sequence with a Poisson nearest neighbor spacing distribution.
Spectrum of fast electrons in a dense gas in the presence of a nonuniform pulsed field
Tkachev, A. N.; Yakovlenko, S. I.
2007-01-01
The problems of gas preionization in discharges related to laser physics are considered. The propagation of fast electrons injected from the cathode in the presence of a nonuniform nonstationary field and the motion of multiplying electrons at the edge of the avalanche in the presence of a nonuniform nonstationary field are simulated. The effect of the voltage pulse steepness and the field nonuniformity on the mean propagation velocity of fast electrons and their energy distribution is demonstrated. At certain combinations of the voltage pulse rise time and amplitude and at a certain time interval, the center of gravity of the electron cloud can move in the opposite direction relative to the direction of force acting upon electrons. It is also demonstrated that the number of hard particles (and, hence, the hard component of the x-ray bremsstrahlung) increases with both an increase in the voltage amplitude and a decrease in the pulse rise time. For nonoptimal conditions of the picosecond voltage pulse, an assumption is formulated: an electron beam in gas is formed due to the electrons at the edge of the avalanche rather than the background multiplication wave approaching the anode.
Extensions of the Theory of the Electron-Phonon Interaction in Metals: A Collection.
1983-11-03
ln(Wa,,,/0), (A6) 7- P has been ignored. Assuming further that where V(wJ4) is the mean DOS over a region { h ’Icp EF±w and ( aV ,,’) (introduced by...electronic sfh-energy z iM - ir on the The distribution function AVE I) In defined as the real axis gives, with energies measured relative M M (+ ,/2...phonon spectrum and thus an increase in the "lattice" contri- bution. which should keep the total heat rapacity positive. (The condition C . 0 can be
Energy Technology Data Exchange (ETDEWEB)
Erhart, Paul [Applied Physics, Chalmers University of Technology, Gothenburg (Sweden); Lawrence Livermore National Laboratory, Livermore, California (United States); Aaberg, Daniel; Sadigh, Babak [Lawrence Livermore National Laboratory, Livermore, California (United States)
2012-07-01
Rare-earth based scintillators represent a challenging class of scintillator materials due to pronounced spin-orbit coupling and subtle interactions between d and f states that cannot be reproduced by standard electronic structure methods such as density functional theory. In this contribution we present a detailed investigation of the electronic band structure of LaBr{sub 3} using the quasi-p article self-consistent GW (scGW) method. This parameter-free approach is shown to yield an excellent description of the electronic structure of LaBr{sub 3}. Specifically we reproduce the correct level ordering and spacing of the 4f and 5d states, which are inverted with respect to the free La atom, the band gap as well as the spin-orbit splitting of La-derived states. We furthermore present electronic structure calculations using G{sub 0}W{sub 0} for the important scintillator material SrI{sub 2}. We explicitly take into account spin-orbit coupling at all levels of the theory. Our results demonstrate the applicability and reliability of the scGW approach for rare-earth halides. They furthermore provide an excellent starting point for investigating the electronic structure of rare-earth dopants such as Ce and Er.
Guo, Xinwei; Qu, Zexing; Gao, Jiali
2018-01-01
The multi-state density functional theory (MSDFT) provides a convenient way to estimate electronic coupling of charge transfer processes based on a diabatic representation. Its performance has been benchmarked against the HAB11 database with a mean unsigned error (MUE) of 17 meV between MSDFT and ab initio methods. The small difference may be attributed to different representations, diabatic from MSDFT and adiabatic from ab initio calculations. In this discussion, we conclude that MSDFT provides a general and efficient way to estimate the electronic coupling for charge-transfer rate calculations based on the Marcus-Hush model.
Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Bergner, G. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Montvay, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Muenster, G.; Oezugurel, U.D.; Sandbrink, D. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1
2013-04-15
We present the current results of our simulations of N=1 supersymmetric Yang-Mills theory on a lattice. The masses of the gluino-glue particle, the a-{eta}', the a-f{sub 0} meson, and the scalar glueball are obtained at finer lattice spacing than before, and extrapolations towards vanishing gluino mass are made. The calculations employ different levels of stout smearing. The statistical accuracy as well as the control of finite size effects and lattice artefacts are better than in previous investigations. Taking the statistical and systematic uncertainties into account, the extrapolations towards vanishing gluino mass of the masses of the fermionic and bosonic states in our present calculations are consistent with the formation of degenerate supermultiplets.
Iao, Lai-Sang; Leekam, Susan R
2014-06-01
Understanding of false belief has long been considered to be a crucial aspect of "theory of mind" that can be explained by a domain-specific mechanism. We argue against this claim using new evidence from a nonverbal false representation task (false-sign task) with typically developing children and children with autism spectrum disorders (ASD). Experiments 1 and 2 showed that typically developing children (mean age=62.67months) were equivalent in their performance across nonverbal and verbal forms of both the false-belief and false-sign tasks. Results for these two misrepresentation tasks differed from the results of an outdated representation task ("false"-photograph task). Experiment 3 showed that children with ASD had difficulties with the false representation tasks, and this could not be explained by executive functioning or language impairments. These findings support the view that children with ASD might not have a specific theory-of-mind deficit. Copyright © 2013 Elsevier Inc. All rights reserved.
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
Zhou, Xia-Yu; Rong, Chunying; Lu, Tian; Zhou, Panpan; Liu, Shubin
2016-05-26
How to accurately predict electronic properties of a Columbic system with the electron density obtained from experiments such as X-ray crystallography is still an unresolved problem. The information-theoretic approach recently developed in the framework of density functional reactivity theory is one of the efforts to address the issue. In this work, using 27 atoms and 41 molecules as illustrative examples, we present a study to demonstrate that one is able to satisfactorily describe such electronic properties as the total energy and its components with information-theoretic quantities like Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, and Onicescu information energy. Closely related to the earlier attempt of expanding density functionals using simple homogeneous functionals, this work not only confirms Nagy's proof that Shannon entropy alone should contain all the information needed to adequately describe an electronic system but also provides a feasible pathway to map the relationship between the experimentally available electron density and various electronic properties for Columbic systems such as atoms and molecules. Extensions to other electronic properties are straightforward.
THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT
Energy Technology Data Exchange (ETDEWEB)
Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)
2014-04-01
We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.
First-principles electronic theory of non-collinear magnetic order in transition-metal nanowires
Tanveer, Muhammad
2014-01-01
The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders...
Integrating clinical theory and practice in an epilepsy-specific electronic patient record.
LENUS (Irish Health Repository)
Breen, Patricia
2009-01-01
This study\\'s objective was to assess the usability of the epilepsy history module of the electronic patient record, developed at Beaumont Hospital, and to identify opportunities for improvement. Observation, interview and document analysis methods were used. Results indicated that the module was useable but the design did not work as well in practice as anticipated by theory. The next iteration of the module included identified enhancements; this iteration is currently in use.
Universality of solar-wind turbulent spectrum from MHD to electron scales.
Alexandrova, O; Saur, J; Lacombe, C; Mangeney, A; Mitchell, J; Schwartz, S J; Robert, P
2009-10-16
To investigate the universality of magnetic turbulence in space plasmas, we analyze seven time periods in the free solar wind under different plasma conditions. Three instruments on Cluster spacecraft operating in different frequency ranges give us the possibility to resolve spectra up to 300 Hz. We show that the spectra form a quasiuniversal spectrum following the Kolmogorov's law approximately k(-5/3) at MHD scales, a approximately k(-2.8) power law at ion scales, and an exponential approximately exp[-sqrt[k(rho)e
AMS-02: Cosmic electron and positron (e− + e+ spectrum up to 1 TeV
Directory of Open Access Journals (Sweden)
Bazo J.
2016-01-01
Full Text Available The AMS-02 spectrometer, on the ISS since 2011, performs highly accurate measurements of cosmic rays up to the TeV region. We review the analysis of the cosmic (e+ + e− flux in the energy range between 0.5 GeV and 1 TeV, based on 10.6 million (e+ + e− events. The high statistics and detector energy resolution allow for a study of the spectral shape of unprecedented quality, thus improving our understanding of the production, acceleration and propagation of cosmic rays. The resulting energy spectrum does not show prominent features.
Sundararaman, Ravishankar; Goddard, William A.; Arias, Tomas A.
2017-03-01
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Chien, J C; Gibson, H L; Dickinson, L C
1978-06-27
Electron transfer from cobaltocytochrome c to ferricytochrome c has been studied by stopped-flow kinetics. The second-order rate constant at pH 7.0, 0.1 ionic strenght, 0.2 M phosphate, and 25 degrees C is 8.3 x 103 M-1 s-1. The activation parameters obtained from measurements made between 20 and 50 degrees C are deltaHnot equal to = 2.3 kcal mol-1 and deltaSnot equal to = -33 eu. The rate constant is not significantly dependent on ionic strength; it is also relatively independent of pH between the pK values for conformation transitions. The rate diminishes at pH greater than 12. The self-exchange reaction of cobalt cytochrome c was investigated with pulsed Fourier transform 1H NMR. The rate is too slow on the 1H NMR scale; it is estimated to be less than 133 M-1 s-1. These results together with the self-exchange rates of iron cytochrome c [Gupta, R.K., Koenig, S. H., and Redfield, A. G. (1972), J. Magn. Reson. 7, 66] were analyzed by theories of Jortner and Hopfield. The theories predict the self-exchange of Cocyt c to be too slow for 1H NMR determination. The rate constant calculated by the nonadiabatic multiphonon electron-tunneling theory for the Fecyt c-Fecyt c+ and Cocyt c-Fecyt c+ electron transfers are in good agreement with experiments.
Finite volume spectrum of 2D field theories from Hirota dynamics
Energy Technology Data Exchange (ETDEWEB)
Gromov, Nikolay [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[St. Petersburg INP, Gatchina (Russian Federation); Kazakov, Vladimir [Univ. Paris-IV, Paris (France). Ecole Normale Superieure, Lab. de Physique Theorique; Vieira, Pedro [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)]|[Univ. do Porto (Portugal). Dept. de Fisica e Centro de Fisica do Porto Faculdade de Ciencias
2008-12-15
We propose, using the example of the O(4) sigma model, a general method for solving integrable two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual particles along the non-compact direction of the space-time cylinder. The method is based on the integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral equation for a single complex function, valid for an arbitrary quantum state and accompanied by the finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present the numerical data for the energy of various states as a function of the size, and derive the general Luescher-type formulas for the finite size corrections. We also re-derive by our method the DdV equation for the SU(2) chiral Gross-Neveu model. (orig.)
On the Spectrum of Prebiotic Chemical Systems. An Information Theory Treatment of Eigen's Paradox
Wallace, Rodrick; Wallace, Robert G.
2008-10-01
We reexamine Eigen’s paradox using the asymptotic limit theorems of information theory. Applying the homology between information source uncertainty and free energy density, under rate distortion constraints, the error catastrophe emerges as the lowest energy state for simple prebiotic systems without error correction. Invoking the usual compartmentalization i.e., ‘vesicles’ and using a Red Queen argument, suggests that information crosstalk between two or more properly interacting structures can initiate a coevolutionary dynamic having at least two quasi-stable states. The first is a low energy realm near the error threshold, and, depending on available energy, the second can approach zero error as a limit. A large deviations argument produces jet-like global transitions which, over sufficient time, may enable shifts between the many quasi-stable modes available to more complicated structures, ‘locking in’ to some subset of the various possible low error rate chemical systems, which become subject to development by selection and chance extinction. Energy availability, according to the model, is thus a powerful necessary condition for low error rate replication, suggesting that some fundamental prebiotic ecosystem transformation entrained reproductive fidelity. This work, then, supports speculation that our RNA/DNA world may indeed be only the chance result of a very broad prebiotic evolutionary phenomenon. Processes in vitro, or ex planeta, might have other outcomes.
Tshantshapanyan, A. A.; Dvoyan, K. G.; Vlahovic, B.
2016-03-01
The electronic states in the GaAs biconical (superellipsoidal) quantum dot (QD) in a strong and weak size quantization (SQ) regimes are theoretically investigated within the framework of the geometrical adiabatic approximation. An atypical linear term in the effective confining potential forms a family of non-equidistant sublevels in the electron energy spectrum, whereas the quadratic term leads to the appearance of the equidistant energy levels as a consequence of the symmetry of the QD. In the weak size quantization regime the motion of the exciton's center-of-gravity is quantized, which leads to the appearance of the additional Coulomb sub-levels in the energy spectrum of the QD. The direct interband absorption of light in the biconical QD is also considered in both strong and weak SQ regimes. The dependences of the absorption edge on QD geometrical parameters are revealed in the linear and quadratic approximations of the effective potential adiabatic terms. Corresponding selection rules for quantum transitions are obtained as well.
Zhengming, L; Jette, D
1999-08-01
Experiments have already shown that obvious differences exist between the dose distribution of electron beams of a clinical accelerator in a water phantom and the dose distribution of monoenergetic electrons of nominal energy of the clinical accelerator in water, because the electron beams which reach the water surface travelling through the collimation system of the accelerator are no longer monoenergetic. It is evident that, while calculating precisely the dose distribution of any incident electron beams, the energy spectrum of the incident electron beam must be taken into consideration. In this note we shall present a method for determining an effective energy spectrum of clinical electron beams from PDD data (percentage depth dose data). It is well known that there is an integral equation of the first kind which links the energy spectrum of an incident electron beam with PDD through the dose distribution of monoenergetic electrons in the medium, as a kernel function in the integral equation. In this note, the integral equation of the first kind will be solved by using the regularization method. The bipartition model of electron transport will be used to calculate the kernel function, namely the energy deposition due to monoenergetic electron beams in the medium.
Zhengming, Luo; Jette, David
1999-08-01
Experiments have already shown that obvious differences exist between the dose distribution of electron beams of a clinical accelerator in a water phantom and the dose distribution of monoenergetic electrons of nominal energy of the clinical accelerator in water, because the electron beams which reach the water surface travelling through the collimation system of the accelerator are no longer monoenergetic. It is evident that, while calculating precisely the dose distribution of any incident electron beams, the energy spectrum of the incident electron beam must be taken into consideration. In this note we shall present a method for determining an effective energy spectrum of clinical electron beams from PDD data (percentage depth dose data). It is well known that there is an integral equation of the first kind which links the energy spectrum of an incident electron beam with PDD through the dose distribution of monoenergetic electrons in the medium, as a kernel function in the integral equation. In this note, the integral equation of the first kind will be solved by using the regularization method. The bipartition model of electron transport will be used to calculate the kernel function, namely the energy deposition due to monoenergetic electron beams in the medium.
Two-electron Rabi oscillations in real-time time-dependent density-functional theory.
Habenicht, Bradley F; Tani, Noriyuki P; Provorse, Makenzie R; Isborn, Christine M
2014-11-14
We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S0 state and the doubly-excited S2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation.
Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams
Energy Technology Data Exchange (ETDEWEB)
van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.
2003-12-20
The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.
Fox, Mary Murphy
2012-01-01
The current study investigated Theory of Mind in young adults with autism. The young adults with autism spectrum disorder (ASD) consisted of four students between the ages of 18 and 19 from an on-campus program for students with autism located at Marywood University in Northeastern Pennsylvania. It was hypothesized that "Mind Reading",…
Laghi, Fiorenzo; Lonigro, Antonia; Levanto, Simona; Ferraro, Maurizio; Baumgartner, Emma; Baiocco, Roberto
2016-01-01
The study aimed at verifying if nice and nasty theory of mind behaviors, in association with teachers' peer buddy nomination, could be used to correctly select peer models for adolescents with autism spectrum disorder. Mentalizing abilities and emotional and behavioral characteristics of 601 adolescents were assessed. Results suggest that teachers…
O'Nions, Elizabeth; Sebastian, Catherine L.; McCrory, Eamon; Chantiluke, Kaylita; Happé, Francesca; Viding, Essi
2014-01-01
Individuals with autism spectrum disorders (ASD) have difficulty understanding other minds (Theory of Mind; ToM), with atypical processing evident at both behavioural and neural levels. Individuals with conduct problems and high levels of callous-unemotional (CU) traits (CP/HCU) exhibit reduced responsiveness to others' emotions and difficulties…
Minshawi, Noha F.; Hurwitz, Sarah; Morriss, Danielle; McDougle, Christopher J.
2015-01-01
The objective of this review is to consider the psychological (largely behavioral) and biological [neurochemical, medical (including genetic), and pharmacological] theories and approaches that contribute to current thinking about the etiology and treatment of self-injurious behavior (SIB) in individuals with autism spectrum disorder and/or…
Energy Technology Data Exchange (ETDEWEB)
Dale, Stephen G., E-mail: sdale@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)
2015-11-14
Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.
Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Kendall, E.; Ruohoniemi, J. M.; Isham, B.; Vega-Cancel, O.; Bordikar, M.
2013-03-01
Stimulated electromagnetic emissions (SEEs) are secondary radiation produced during active space experiments in which the ionosphere is actively heated with high power high frequency (HF) ground-based radio transmitters. Recently, there has been significant interest in ion gyro-harmonic structuring the SEE spectrum due to the potential for new diagnostic information available such as electron acceleration and creation of artificial ionization layers. These relatively recently discovered gyro-harmonic spectral features have almost exclusively been studied when the transmitting frequency is near the second electron gyro-harmonic frequency. The first extensive systematic experimental investigations of the possibility of these spectral features for third electron gyro-harmonic heating are provided here. Discrete spectral features shifted from the transmit frequency ordered by harmonics of the ion gyro-frequency were observed for third electron gyro-harmonic heating for the first time at a recent campaign at the High Frequency Active Auroral Research Program (HAARP) facility. These features were also closely correlated with a broader band feature at a larger frequency shift from the transmit frequency known as the downshifted peak (DP). The power threshold of these spectral features was measured, as well as their behavior with heater beam angle, and proximity of the transmit frequency to the third electron gyro-harmonic frequency. Comparisons were also made with similar spectral features observed during second electron gyro-harmonic heating during the same campaign. A theoretical model is provided that interprets these spectral features as resulting from parametric decay instabilities in which the pump field ultimately decays into high frequency upper hybrid/electron Bernstein and low frequency neutralized ion Bernstein IB and/or obliquely propagating ion acoustic waves at the upper hybrid interaction altitude. Coordinated optical and SEE observations were carried out
Calculated Electronic Behavior and Spectrum of Mg+@C60 Using a Simple Jellium-shell Model
Directory of Open Access Journals (Sweden)
H. A. Schuessler
2004-11-01
Full Text Available Abstract: We present a method for calculating the energy levels and wave functions of any atom or ion with a single valence electron encapsulated in a Fullerene cage using a jelluim-shell model. The valence electron-core interaction is represented by a one-body pseudo-potential obtained through density functional theory with strikingly accurate parameters for Mg+ and which reduces to a purely Coulombic interaction in the case of H. We find that most energy states are affected little by encapsulation. However, when either the electron in the non-encapsulated species has a high probability of being near the jellium cage, or when the cage induces a maximum electron probability density within it, the energy levels shift considerably. Mg+ shows behavior similar to that of H, but since its wave functions are broader, the changes in its energy levels from encapsulation are slightly more pronounced. Agreement with other computational work as well as experiment is excellent and the method presented here is generalizable to any encapsulated species where a one-body electronic pseudo-potential for the free atom (or ion is available. Results are also presented for off-center hydrogen, where a ground state energy minimum of -14.01 eV is found at a nuclear displacement of around 0.1 ÃƒÂ….
Goings, Joshua J; Li, Xiaosong
2016-06-21
One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.
Theory and simulation of an inverse free-electron laser experiment
Gou, S. K.; Bhattacharjee, A.; Fang, J.-M.; Marshall, T. C.
1997-03-01
An experimental demonstration of the acceleration of electrons using a high-power CO2 laser interacting with a relativistic electron beam moving along a wiggler has been carried out at the Accelerator Test Facility of the Brookhaven National Laboratory [Phys. Rev. Lett. 77, 2690 (1996)]. The data generated by this inverse free-electron-laser (IFEL) experiment are studied by means of theory and simulation. Included in the simulations are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge; energy spread of the electrons; and arbitrary wiggler-field profile. Two types of wiggler profile are considered: a linear taper of the period, and a step-taper of the period. (The period of the wiggler is ˜3 cm, its magnetic field is ˜1 T, and the wiggler length is 0.47 m.) The energy increment of the electrons (˜1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (˜40 MeV). At a laser power level ˜0.5 Gw, the simulation results on energy gain are in reasonable agreement with the experimental results. Preliminary results on the electron energy distribution at the end of the IFEL are presented. Whereas the experiment produces a near-monotone distribution of electron energies with the peak shifted to higher energy, the simulation shows a more structured and non-monotonic distribution at the end of the wiggler. Effects that may help reconcile these differences are considered.
Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina
Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
Ab initio study of the electronic spectrum of BeO
Directory of Open Access Journals (Sweden)
MILJENKO PERIC
1999-12-01
Full Text Available Low-lying singlet and triplet electronic states of the BeO molecule are calculated by means of the quantum chemical ab initio method. It was found that all states in the energy range from 0 to 50000 cm-1 are of valence character. Particular attention was paid to the investigation of the dissociative behavior of the states considered. The vibrational structure of the AIP<-XIS and BIS+<-XIS+ spectral systems was calculated.
Jian, Chung-Chin; Goan, Hsi-Sheng
2014-03-01
Two-time correlation functions (CF's) of the electric currents through nanostructure devices are important in the study of the transport properties of current fluctuations and noise spectra. In the Markovian case, an extremely useful procedure to calculate the two-time (multiple-time) CF's is the so-called quantum regression theorem (QRT). For transport problems, a widely used method to calculate the steady-state current noise spectrum (i.e., Fourier transform of the steady-state current-current two-time CF's) is the MacDonald's formula which can be shown to be equivalent to QRT. However, similar to the QRT where only the evolution equations of the single-time expectation values are required to evaluate two-time CF's, the MacDonald's formula involves also only the single-time expectation values. Thus the MacDonald's formula, in our opinion, may not be applicable to calculate the current noise spectrum for transport problems that involves processes with non-Markovian (memory) effects. Here we develop a correct method to calculate the non-Markovian two-time CF's and finite-frequency noise power spectra based on the approach of the non-Markovian quantum state diffusion (NMQSD) or diffusive stochastic Schrodinger equation. This powerful NMQSD method allows us to calculate the exact current-current two-time CF and thus the exact current noise power spectrum for electron transport through a quantum dot. Our exact results reduce to those obtained by QRT or the MacDonald's formula in the Markovian limit.
Holomorphic Hartree-Fock Theory: The Nature of Two-Electron Problems.
Burton, Hugh G A; Gross, Mark; Thom, Alex J W
2018-01-29
We explore the existence and behavior of holomorphic restricted Hartree-Fock (h-RHF) solutions for two-electron problems. Through algebraic geometry, the exact number of solutions with n basis functions is rigorously identified as 1/2(3n - 1), proving that states must exist for all molecular geometries. A detailed study on the h-RHF states of HZ (STO-3G) then demonstrates both the conservation of holomorphic solutions as geometry or atomic charges are varied and the emergence of complex h-RHF solutions at coalescence points. Using catastrophe theory, the nature of these coalescence points is described, highlighting the influence of molecular symmetry. The h-RHF states of HHeH2+ and HHeH (STO-3G) are then compared, illustrating the isomorphism between systems with two electrons and two electron holes. Finally, we explore the h-RHF states of ethene (STO-3G) by considering the π electrons as a two-electron problem and employ NOCI to identify a crossing of the lowest energy singlet and triplet states at the perpendicular geometry.
Energy Technology Data Exchange (ETDEWEB)
Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (United Kingdom)
2014-07-28
We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a “proof of principle” for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C{sup ·+}PF{sup ·−} radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical.
Kim, Eunjoo; Kyeong, Sunghyon; Cheon, Keun-Ah; Park, Bumhee; Oh, Maeng-Keun; Chun, Ji Won; Park, Hae-Jeong; Kim, Jae-Jin; Song, Dong-Ho
2016-05-16
Children and adolescents with Autism Spectrum Disorder (ASD) are characterized by an impaired Theory of Mind (ToM). Recent evidence suggested that two aspects of ToM (cognitive ToM versus affective ToM) are differentially impaired in individuals with ASD. In this study, we examined the neural correlates of cognitive and affective ToM in children and adolescents with ASD compared to typically developing children (TDCs). Twelve children and adolescents with ASD and 12 age, IQ matched TDCs participated in this functional MRI study. The ToM task involved the attribution of cognitive and affective mental states to a cartoon character based on verbal and eye-gaze cues. In cognitive ToM tasks, ASD participants recruited the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and superior temporal gyrus (STG) to a greater extent than did TDCs. In affective ToM tasks, both ASD and TDC participants showed more activation in the insula and other subcortical regions than in cognitive ToM tasks. Correlational analysis revealed that greater activation of the mPFC/ACC regions was associated with less symptom severity in ASD patients. In sum, our study suggests that the recruitment of additional prefrontal resources can compensate for the successful behavioral performance in the ToM task in ASD participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effect of the launched LH spectrum on the fast electron dynamics in the plasma core and edge
Energy Technology Data Exchange (ETDEWEB)
Goniche, M.; Ekedahl, A.; Laugier, J.; Peysson, Y. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Petrz Ilka, V.; Fuchs, V.; Zaeek, F. [Association Euratom / IPP.CR, Czech Academy of Sciences, Praha (Czech Republic)
2003-07-01
The lower hybrid current drive efficiency in the Tore Supra tokamak was investigated in various cases of launched N{sub /} spectra. By varying the number of energized waveguides, the broadening of the N{sub /} spectrum is varied by a factor 3.5. Weak effect of this broadening is found. The effect of the central value N{sub /0} and the MHD activity is also documented. The parasitic losses of fast electrons in the scrape-off layer are analyzed from infra-red images of the antenna protection limiter. For these experiments performed at constant LH power, the heat flux scales mainly with the RF electric field. The effect of the number of powered waveguides is discussed. (authors)
Yung, Yuk L.; Gladstone, G. Randall; Chang, Kar Man; Ajello, Joseph M.; Srivastava, S K
1982-01-01
A combined experimental study of the fluorescence spectrum of H_2 at wavelengths of 1200-1700 Å by electron impact and its application to modeling the Jovian aurora have been carried out. Our laboratory data suggest that at 100 eV the relative cross sections for direct excitation of Lyɑ, Lyman bands (B^1Σ_u^+-X^1Σ_g^+), and Werner bands (C^1π_u-X^1Σ_g^+) are 1, 2.3±0.6, and 2.6±0.5, respectively, in conflict with Stone and Zipfs (1972) results for the Werner bands. Cascade from E,F^1Σ_g^+ ...
Scudder, J. D.
1978-01-01
A detailed first principle kinetic theory for electrons which is neither a classical fluid treatment nor an exospheric calculation is presented. This theory illustrates the global and local properties of the solar wind expansion that shape the observed features of the electron distribution function, such as its bifurcation, its skewness and the differential temperatures of the thermal and suprathermal subpopulations. Coulomb collisions are substantial mediators of the interplanetary electron velocity distribution function and they place a zone for a bifurcation of the electron distribution function deep in the corona. The local cause and effect precept which permeates the physics of denser media is modified for electrons in the solar wind. The local form of transport laws and equations of state which apply to collision dominated plasmas are replaced with global relations that explicitly depend on the relative position of the observer to the boundaries of the system.
Bedtime Electronic Media Use and Sleep in Children with Autism Spectrum Disorder.
Mazurek, Micah O; Engelhardt, Christopher R; Hilgard, Joseph; Sohl, Kristin
2016-09-01
The purpose of this study was to better understand the use of screen-based media at bedtime among children with autism spectrum disorder (ASD). The study specifically examined whether the presence of media devices in the child's bedroom, the use of media as part of the bedtime routine, and exposure to media with violent content just before bedtime were associated with sleep difficulties. Parents of 101 children with ASD completed questionnaires assessing their children's sleep habits, bedroom media access (including television, video game devices, and computers), and patterns of nighttime media use (including timing of media exposure and violent media content). Children with ASD who used media as part of the bedtime routine showed significantly greater sleep onset latency than those who did not (39.8 vs 16.0 minutes). Similarly, children who were exposed to media with violent content within the 30-minute period before bedtime experienced significantly greater sleep onset delays and shorter overall sleep duration. In contrast, the mere presence of bedroom media was not associated with either sleep onset latency or sleep duration. Overall, these findings indicate that incorporating television and video games into the bedtime routine is associated with sleep onset difficulties among children with ASD. Exposure to violent media before bed is also associated with poor sleep. Families of children with ASD should be encouraged to regulate and monitor the timing and content of television and video game use, whether or not such devices are physically present in the child's bedroom.
Scales, Wayne; Bernhardt, Paul; Samimi, Alireza; Bricinsky, Stanley; Selcher, Craig
2012-07-01
Recent observations of Stimulated Electromagnetic Emissions SEEs have shown structures ordered by the ion gyro-frequency. In particular, during experiments in which the heating frequency is near the second electron gyro-harmonic, unique discrete spectral features separated by the ion gyro-frequency have been observed within about 1 kHz of the pump frequency. On occasion, a broadband spectral feature near 500 Hz is observed that coexists with the ion gyro-harmonic spectral features. Explanations for these spectral features have been based on parametric decay of the pump field into upper hybrid/electron Bernstein and ion Bernstein and oblique ion acoustic waves at the upper hybrid layer. This presentation will first review important characteristics of these ion gyro-harmonic spectral features obtained during some recent experiments at the High Frequency Active Auroral Research HAARP facility. These characteristics are then compared to predications of an analytical model for three-wave parametric decay of the pump field into upper hybrid/electron Bernstein and ion Bernstein and oblique ion acoustic waves. It is shown from the analytical theory that important pump field parameters that influence the spectral characteristics include the angle of the pump field relative the background magnetic field, the frequency of the pump relative to the second gyro-harmonic, and the pump field strength. Two Dimensional Particle-In-Cell simulations are used to investigate aspects of the nonlinear evolution such as irregularity development and field aligned electron heating in more detail. These simulations show favorable comparisons with the analytical theory predications as well as the experimental observations. Finally, possibilities for utilizing the experimentally observed SEE spectra for diagnostic purposes are discussed.
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport.
Kershaw, Vincent F; Kosov, Daniel S
2017-12-14
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Avila Ferrer, Francisco J; Davari, Mehdi D; Morozov, Dmitry; Groenhof, Gerrit; Santoro, Fabrizio
2014-10-20
The vibronic spectra of the green fluorescent protein chromophore analogues p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) and 3,5-tert-butyl-HBDI (35Bu) are similar in the vacuum, but very different in water or ethanol. To understand this difference, we have computed the vibrationally resolved solution spectra of these chromophores, using the polarizable continuum model (PCM) to account for solvent effects on the (harmonic) potential energy surfaces (PES). In agreement with experiment, we found that the vibrational progression increases with the polarity of the solvent, but we could neither reproduce the broadening, nor the large difference between the absorption spectra of HBDI and 35Bu. To account for the inhomogeneous broadening of the solution spectra, we used two approaches. In the first, we estimated the polar broadening from the solvent reorganization energy upon photo-excitation, using the state-specific PCM implementation. In the second, we estimated the broadening from the variance of the vertical excitation energies in molecular dynamics trajectories. Although we found good agreement for the lineshape of 35Bu in ethanol, and to a lesser extent in water, we highly underestimated the broadening for HBDI. To resolve this discrepancy, we explored the PES of HBDI in water and found that in contrast to the PCM result, the ground-state geometry is not planar in explicit solvent. We furthermore found that nonplanar geometries enhance the intramolecular charge transfer upon excitation. Therefore, the solvent reorganization and broadening are much larger and we speculate that the much broader spectrum of HBDI in water is due to the population of nonplanar geometries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Review of X-ray Free-Electron Laser Theory
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhirong; /SLAC; Kim, Kwang-Je; /ANL, APS
2006-12-18
High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.
Prasad, O.; Sinha, L.; Misra, N.; Narayan, V.; Kumar, N.; Kumar, A.
2010-09-01
The present work deals with the structural, electronic, and vibrational analysis of rivastigmine. Rivastigmine, an antidementia medicament, is credited with significant therapeutic effects on the cognitive, functional, and behavioural problems that are commonly associated with Alzheimer’s dementia. For rivastigmine, a number of minimum energy conformations are possible. The geometry of twelve possible conformers has been analyzed and the most stable conformer was further optimized at a higher basis set. The electronic properties and vibrational frequencies were then calculated using a density functional theory at the B3LYP level with the 6-311+G(d, p) basis set. The different molecular surfaces have also been drawn to understand the activity of the molecule. A narrower frontier orbital energy gap in rivastigmine makes it softer and more reactive than water and dimethylfuran. The calculated value of the dipole moment is 2.58 debye.
Electron spectroscopies and inelastic processes in nanoclusters and solids: Theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Taioli, Simone, E-mail: taioli@fbk.e [Interdisciplinary Laboratory for Computational Science (LISC), FBK-CMM and University of Trento, via Sommarive 18, I-38123 Trento (Italy); Department of Physics, University of Trento, Via Sommarive 14, I-38100, Trento (Italy); Simonucci, Stefano [Department of Physics, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino (Italy); Interdisciplinary Laboratory for Computational Science (LISC), FBK-CMM and University of Trento, via Sommarive 18, I-38123 Trento (Italy); Calliari, Lucia [Interdisciplinary Laboratory for Computational Science (LISC), FBK-CMM and University of Trento, via Sommarive 18, I-38123 Trento (Italy); Dapor, Maurizio [Interdisciplinary Laboratory for Computational Science (LISC), FBK-CMM and University of Trento, via Sommarive 18, I-38123 Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38123 Trento (Italy)
2010-08-15
The recent, very significant developments in high intensity and brightness electron and photon sources have opened new possibilities of applying electron spectroscopies, such as photoemission, Auger and electron energy loss, to the study of many interesting features in the dynamics of atoms, molecules and condensed-matter systems. In the last few years it has become possible to obtain electron spectra with an overall energy resolution (electron/photon source and electron spectrometer) considerably smaller than the linewidth of the investigated level and to study quantitatively the combined effects of the intrinsic dynamical properties of the system, of features of the incident beam and of the electron spectrometer on the spectral lineshape. For all these reasons, it is important to have theoretical methods that are able to analyze the dynamics of systems at any level of aggregation under the influence of an incident radiation and, simultaneously, to predict spectral lineshapes quantitatively by correlating their features with internal dynamics of the perturbed system. In this report, we present experiments and a critical overview of theoretical methods for interpreting electron spectra of atoms, molecules and solid-state systems. The general theoretical framework for this analysis is resonant multichannel scattering theory. Electron spectroscopies are, in fact, based on scattering processes in which the initial state consists of a projectile, typically photons or electrons, exciting a target to a resonant state, which has long lifetimes if compared to the collision time. This metastable state is embedded in the continuum of final states characterized by the presence of a few fragments, whose observation provides useful information on the properties of the system under study. Even if the general theory of scattering and decay phenomena has been largely developed, its specific application to electron spectroscopies in condensed matter and, in several cases also to
Correlated electron dynamics and memory in time-dependent density functional theory
Energy Technology Data Exchange (ETDEWEB)
Thiele, Mark
2009-07-28
Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Schrödinger Theory of Electrons in Electromagnetic Fields: New Perspectives
Directory of Open Access Journals (Sweden)
Viraht Sahni
2017-03-01
Full Text Available The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent “Quantal Newtonian” law (or differential virial theorem. (The time-independent law, a special case, provides a similar description of stationary-state theory. These laws are in terms of “classical” fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, and an internal magnetic field component. The response of the electron is described by the current density field; (b the scalar potential energy of an electron is the work done in a conservative field. It is thus path-independent. The conservative field is the sum of the internal and Lorentz fields. Hence, the potential is inherently related to the properties of the system, and its constituent property-related components known. As the sources of the fields are functionals of the wave function, so are the respective fields, and, therefore, the scalar potential is a known functional of the wave function; (c as such, the system Hamiltonian is a known functional of the wave function. This reveals the intrinsic self-consistent nature of the Schrödinger equation, thereby providing a path for the determination of the exact wave functions and energies of the system; (d with the Schrödinger equation written in self-consistent form, the Hamiltonian now admits via the Lorentz field a new term that explicitly involves the external magnetic field. The new understandings are explicated for the stationary state case by application to two quantum
Hierarchy spectrum of SM fermions: from top quark to electron neutrino
Xue, She-Sheng
2016-11-01
In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν R f . Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν R f and their left-handed conjugated fields ν R fc . Light masses of gauged Majorana neutrinos in the normal hierarchy (10-5 - 10-2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of toverline{t} -production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).
Hierarchy spectrum of SM fermions: from top quark to electron neutrino
Energy Technology Data Exchange (ETDEWEB)
Xue, She-Sheng [ICRANet,Piazza della Repubblica 10, 65122 Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)
2016-11-10
In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν{sub R}{sup f}. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν{sub R}{sup f} and their left-handed conjugated fields ν{sub R}{sup fc}. Light masses of gauged Majorana neutrinos in the normal hierarchy (10{sup −5}−10{sup −2} eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).
On-Ball Doping of Fullerenes : The Electronic Structure of C59N Dimers from Experiment and Theory
Pichler, Thomas; Knupfer, Martin; Golden, Mark S.; Haffner, Stefan; Friedlein, Rainer; Fink, Jörg; Andreoni, Wanda; Curioni, Alessandro; Keshavarz-K, Majid; Bellavia-Lund, Cheryl; Sastre, Angela; Hummelen, Jan-Cornelis; Wudl, Fred
1997-01-01
We present the first studies of the electronic structure of the heterofullerene (C59N)2 using electron energy-loss spectroscopy in transmission, photoemission spectroscopy, and density functional theory calculations. Both the C 1s excitation spectra and valence band photoemission show negligible
Directory of Open Access Journals (Sweden)
Roberta eFadda
2016-04-01
Full Text Available This paper adds to the growing research on moral judgment by considering whether Theory of Mind (ToM might foster children's autonomous moral judgment achievement. A group of 30 children with Autism Spectrum Disorder (ASD was compared in moral judgment (MJ and ToM with 30 typically developing (TD children. Participants were tested for moral judgment with a classical Piaget’s task and for ToM with a second order False Belief task. In the moral task, children were told two versions of a story: in one version the protagonist acted according to a moral intention but the action resulted in a harmful consequence; in the other version the protagonist acted according to an immoral intention, but the action resulted in a harmless consequence. Children were asked which of the two protagonists was the naughtier. In line with previous studies, the results indicated that, while the majority of TD participants succeeded in the second order False Belief task, only few individuals with ASD showed intact perspective taking abilities. The analysis of the MJ in relation to ToM showed that children with ASD lacking ToM abilities judged guilty the protagonists of the two versions of the story in the moral task because both of them violated a moral rule or because they considered the consequences of the actions, ignoring any psychological information. These results indicate a heteronomous morality in individuals with ASD, based on the respect of learned moral rules and outcomes rather than others’ subjective states.
Giovagnoli, Anna Rita; Parente, Annalisa; Didato, Giuseppe; Deleo, Francesco; Villani, Flavio
2016-06-01
Because temporal lobe epilepsy (TLE) can impair theory of mind (ToM), we examined the effects of anterior temporal lobectomy (ATL) by comparing the preoperative to postoperative ToM course with that of other cognitive functions characteristically impaired in TLE. Eighty-five patients with left (n = 39) or right (n = 46) drug-resistant TLE and an age at epilepsy onset of >12 (n = 54) or ≤12 years (n = 31) were evaluated before and 1 year after surgery; 40 healthy controls were assessed at baseline. The participants' recognition and comprehension of faux pas (FPs) or correct rejection of nonexistent FPs was assessed using the Faux Pas task; and their language, memory, and planning were, respectively, assessed using the Boston Naming, Short Story, and Tower of London tests. Baseline ToM was impaired in the patients with left or right TLE in comparison with the controls, and significantly influenced by education and age at seizure onset, with more severe deficits being observed in those with less education and an age at onset of ≤12 years. After ATL, their recognition and comprehension of FPs was unchanged, whereas the rejection of nonexistent FPs improved in the patients with early seizure onset. Education, preoperative ToM, postoperative executive function, and fluid intelligence and the number of antiepileptic drugs predicted postoperative ToM. Postoperative naming and episodic memory were associated with ATL laterality and education, and planning was associated with age at seizure onset and chronological age. After ATL, the components of ToM may be unchanged or slightly improved depending on cognitive reserve and age at seizure onset, thus suggesting that ATL does not further aggravate the deficits caused by TLE. Moreover, the course of ToM is distinct from that of other cognitive functions. These findings expand the spectrum of the cognitive phenotypes associated with TLE and ATL, and offer potential elements for individual prognoses. Wiley Periodicals, Inc.
Begeer, Sander; Howlin, Patricia; Hoddenbach, Elske; Clauser, Cassandra; Lindauer, Ramon; Clifford, Pamela; Gevers, Carolien; Boer, Frits; Koot, Hans M
2015-12-01
Limited perspective taking or "Theory of Mind" (ToM) abilities are a core deficit of autism, and many interventions are aimed to improve ToM abilities. In this study, we investigated the effectiveness of a ToM treatment for children with autism spectrum disorders (ASD) and, for the first time, the moderating roles of social interaction style (SIS) and disruptive behavior (DB), to determine which children are most likely to respond to this intervention. The trial protocol is registered at www.trialregister.nl, trial number 2327 and published before the data collection was finished (www.trialsjournal.com). Children with autism aged 7-12 years (n = 97) were randomized over a waitlist control or a treatment condition. Outcome measures included ToM and emotion understanding, parent and teacher questionnaires on children's social skills, ToM-related social behavior, and autistic traits. Six-month follow-up parent reported data were collected for the treatment group. The treatment had a positive effect on ToM understanding, parent-reported ToM behavior, and autistic traits, but not on parent or teacher-reported social behavior. Passive SIS was associated with diminished treatment effects on autistic traits, but DB was unrelated to outcomes. The ToM intervention improved conceptual social understanding and ToM-related behavior of children with ASD. However, broader application of learned skills to other domains of functioning was limited. Individual differences with regard to treatment response are discussed. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Accurate band gaps and dielectric properties from one-electron theories (abstract only).
Kresse, G; Shishkin, M; Marsman, M; Paier, J
2008-02-13
For semiconductor modeling, a major shortcoming of density functional theory is that the predicted band gaps are usually significantly too small. It is generally argued that this shortcoming is related to the fact that density functional theory is a ground state theory, and as a result, one is not allowed to associate the one-electron energies with the energies of quasi-particles. Although this fundamental objection is certainly correct, the modeling of the positioning of donor and acceptor levels in semiconductors faces serious limitations with present density functionals. Several solutions to this problem have been suggested. A particular attractive and fairly simple one is the inclusion of a small fraction of the non-local exchange in the Hamiltonian (hybrid functionals). This approach leads to sensible band gaps for most semiconductors, but fails for ionic solids. A more reliable approach is via many-electron Green's function techniques, which have made tremendous advances in recent years. Here GW calculations in various flavors are presented for small gap and large gap systems, comprising typical semiconductors (Si, SiC, GaAs, GaN, ZnO, ZnS, CdS and AlP), small gap semiconductors (PbS, PbSe, PbTe), insulators (C, BN, MgO, LiF) and noble gas solids (Ar, Ne). The general finding is that single-shot G(0)W(0) calculations based on wavefunctions obtained from conventional density functional theory yield too small band gaps, whereas G(0)W(0) calculations following hybrid functional calculations tend to overestimate the band gaps by roughly the same amount. This is at first sight astonishing, since the hybrid functionals yield very good band gaps themselves. The contradiction is resolved by showing that the inclusion of the attractive electron-hole interactions (excitonic effects) is required to obtain good static and dynamic dielectric functions using hybrid functionals. The corrections are usually incorporated in GW calculations using 'vertex corrections', and in
Scudder, J. D.; Olbert, S.
1979-01-01
A kinetic theory for the velocity distribution of solar wind electrons which illustrates the global and local properties of the solar wind expansion is proposed. By means of the Boltzmann equation with the Krook collision operator accounting for Coulomb collisions, it is found that Coulomb collisions determine the population and shape of the electron distribution function in both the thermal and suprathermal energy regimes. For suprathermal electrons, the cumulative effects of Coulomb interactions are shown to take place on the scale of the heliosphere itself, whereas the Coulomb interactions of thermal electrons occur on a local scale near the point of observation (1 AU). The bifurcation of the electron distribution between thermal and suprathermal electrons is localized to the deep solar corona (1 to 10 solar radii).
DEFF Research Database (Denmark)
Miyagi, Haruhide; Madsen, Lars Bojer
2013-01-01
We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...
Theory of Microwave Instability and Coherent Synchrotron Radiation in Electron Storage Rings
Energy Technology Data Exchange (ETDEWEB)
Cai, Y.; /SLAC
2011-12-09
Bursting of coherent synchrotron radiation has been observed and in fact used to generate THz radiation in many electron storage rings. In order to understand and control the bursting, we return to the study of the microwave instability. In this paper, we will report on the theoretical understanding, including recent developments, of the microwave instability in electron storage rings. The historical progress of the theories will be surveyed, starting from the dispersion relation of coasting beams, to the work of Sacherer on a bunched beam, and ending with the Oide and Yokoya method of discretization. This theoretical survey will be supplemented with key experimental results over the years. Finally, we will describe the recent theoretical development of utilizing the Laguerre polynomials in the presence of potential-well distortion. This self-consistent method will be applied to study the microwave instability driven the impedances due to the coherent synchrotron radiation. Over the past quarter century, there has been steady progress toward smaller transverse emittances in electron storage rings used for synchrotron light sources, from tens of nm decades ago to the nm range recently. In contrast, there is not much progress made in the longitudinal plane. For an electron bunch in a typical ring, its relative energy spread {sigma}{sub {delta}} remains about 10{sup -3} and its length {sigma}{sub z} is still in between 5 mm to 10 mm. Now the longitudinal emittance ({sigma}{sub {delta}}{sigma}{sub z}) becomes a factor of thousand larger than those in the transverse dimensions. In this paper, we will address questions of: How short a bunch can be? What is the fundamental limit? If there is a limit, is there any mitigation method? Since the synchrotron radiation is so fundamental in electron storage rings, let us start with the coherent synchrotron radiation (CSR).
Mode conversion electron heating in Alcator C-Mod: Theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Bonoli, P. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Brambilla, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Nelson-Melby, E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Phillips, C. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Porkolab, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Schilling, G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Taylor, G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wukitch, S. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boivin, R. L. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boswell, C. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] (and others)
2000-05-01
Localized electron heating [full width at half maximum of {delta}(r/a){approx_equal}0.2] by mode converted ion Bernstein waves (IBW) has been observed in the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. These experiments were performed in D({sup 3}He) plasmas at high magnetic field (B{sub 0}=7.9 T), high-plasma density (n{sub e0}{>=}1.5x10{sup 20} m{sup -3}), and for 0.05{<=}n{sub He-3}/n{sub e}{<=}0.30. Electron heating profiles of the mode converted IBW were measured using a break in slope analysis of the electron temperature versus time in the presence of rf (radio frequency) modulation. The peak position of electron heating was found to be well-correlated with {sup 3}He concentration, in agreement with the predictions of cold plasma theory. Recently, a toroidal full-wave ion cyclotron range of frequencies (ICRF) code TORIC [M. Brambilla, Nucl. Fusion 38, 1805 (1998)] was modified to include the effects of IBW electron Landau damping at (k{sub (perpendicular} {sub sign)}{rho}{sub i}){sup 2}>>1, This model was used in combination with a 1D (one-dimensional) integral wave equation code METS [D. N. Smithe et al., Radio Frequency Power in Plasmas, AIP Conf. Proc. 403 (1997), p. 367] to analyze these experiments. Model predictions were found to be in qualitative and in some instances quantitative agreement with experimental measurements. A model for mode conversion current drive (MCCD) has also been developed which combines a toroidal full wave code with an adjoint evaluation of the ICRF current drive efficiency. Predictions for off-axis MCCD in C-Mod have been made using this model and will be described. (c) 2000 American Institute of Physics.
Directory of Open Access Journals (Sweden)
Hoddenbach Elske
2012-11-01
Full Text Available Abstract Background Having a ‘theory of mind’, or having the ability to attribute mental states to oneself or others, is considered one of the most central domains of impairment among children with an autism spectrum disorder (ASD. Many interventions focus on improving theory of mind skills in children with ASD. Nonetheless, the empirical evidence for the effect of these interventions is limited. The main goal of this study is to examine the effectiveness of a short theory of mind intervention for children with ASD. A second objective is to determine which subgroups within the autism spectrum profit most from the intervention. Methods This study is a randomized controlled trial. One hundred children with ASD, aged 7 to 12 years will be randomly assigned to an intervention or a waiting list control group. Outcome measures include the completion of theory of mind and emotion understanding tasks, and parent and teacher questionnaires on children’s social skills. Follow-up data for the intervention group will be collected 6 months after the interventions. Discussion This study evaluates the efficacy of a theory of mind intervention for children with ASD. Hypotheses, strengths, and limitations of the study are discussed. Trial registration Netherlands Trial Register NTR2327
Liu, Meng-Jung; Ma, Le-Yin; Chou, Wen-Jiun; Chen, Yu-Min; Liu, Tai-Ling; Hsiao, Ray C.; Hu, Huei-Fan; Yen, Cheng-Fang
2018-01-01
Bullying involvement is prevalent among children and adolescents with autism spectrum disorder (ASD). This study examined the effects of theory of mind performance training (ToMPT) on reducing bullying involvement in children and adolescents with high-functioning ASD. Children and adolescents with high-functioning ASD completed ToMPT (n = 26) and social skills training (SST; n = 23) programs. Participants in both groups and their mothers rated the pretraining and posttraining bullying involve...
Dawber, P G; Grinten, M G D; Habeck, C; Shaikh, F; Spain, J A; Baker, C A; Green, K; Scott, R D; Zimmer, O
2000-01-01
The principle is discussed and some preliminary results are given of an experiment in progress at ILL, which aims to determine the electron-antineutrino correlation coefficient, a, from a measurement of the integrated proton energy spectrum following neutron decay in an electromagnetic trap.
Ramasubramaniam, Ashwin
2010-06-01
The size-dependent electronic structure of oxygen-terminated zigzag graphene nanoribbons is investigated using standard density functional theory (DFT) with an exchange-correlation functional of the generalized gradient approximation form as well as hybrid DFT calculations with two different exchange-correlation functionals. Hybrid DFT calculations, which typically provide more accurate band gaps than standard DFT, are found to predict semiconducting behavior in oxygen-terminated zigzag graphene nanoribbons; this is in distinct contrast to standard DFT with (semi)local exchange-correlation functionals, which have been widely employed in previous studies and shown to predict metallic behavior. (Semi)local exchange-correlation functionals employed in standard DFT calculations cause unphysical delocalization of lone pairs from the oxygen atoms due to self-interaction errors and lead to metallic behavior. Hybrid DFT calculations do not suffer from this spurious effect and produce a clear size-dependent band gap. Appreciable fundamental band gaps (˜1eV) are found for the smallest ribbons (two zigzag rows); the band gap decreases rapidly with increasing ribbon width, resulting eventually in a zero band-gap semiconductor at about 4-5 zigzag rows. This finding could have useful implications for molecular electronics, in particular, since oxygen-terminated zigzag graphene nanoribbons are thermodynamically stable unlike their hydrogenated counterparts. More generally, through a concrete example, this study suggests caution when employing (semi)local functionals in DFT studies of functionalized graphene/graphene derivatives when the functional groups contain electron lone pairs.
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2018-02-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2017-11-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
Directory of Open Access Journals (Sweden)
Roman F. Nalewajski
2002-04-01
Full Text Available Abstract: Recent studies on applications of the information theoretic concepts to molecular systems are reviewed. This survey covers the information theory basis of the Hirshfeld partitioning of molecular electron densities, its generalization to many electron probabilities, the local information distance analysis of molecular charge distributions, the charge transfer descriptors of the donor-acceptor reactive systems, the elements of a Ã¢Â€ÂœthermodynamicÃ¢Â€Â description of molecular charge displacements, both Ã¢Â€ÂœverticalÃ¢Â€Â (between molecular fragments for the fixed overall density and Ã¢Â€ÂœhorizontalÃ¢Â€Â (involving different molecular densities, with the entropic representation description provided by the information theory. The average uncertainty measures of bond multiplicities in molecular Ã¢Â€ÂœcommunicationÃ¢Â€Â systems are also briefly summarized. After an overview of alternative indicators of the information distance (entropy deficiency, missing information between probability distributions the properties of the Ã¢Â€ÂœstockholderÃ¢Â€Â densities, which minimize the entropy deficiency relative to the promolecule reference, are summarized. In particular, the surprisal analysis of molecular densities is advocated as an attractive information-theoretic tool in the electronic structure theory, supplementary to the familiar density difference diagrams. The subsystem information density equalization rules satisfied by the Hirshfeld molecular fragments are emphasized: the local values of alternative information distance densities of subsystems are equal to the corresponding global value, characterizing the molecule as a whole. These local measures of the information content are semi-quantitatively related to the molecular density difference function. In the density functional theory the effective external potentials of molecular fragments are defined, for which
Energy Technology Data Exchange (ETDEWEB)
Heath, R.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1997-11-01
New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization. 8 refs., 8 figs.
Knight, Victoria Floyd
Supported electronic text (eText), or text that has been altered to increase access and provide support to learners, may promote comprehension of science content for students with disabilities. According to CAST, Book Builder(TM) uses supported eText to promote reading for meaning for all students. Although little research has been conducted in the area of supported eText for students with autism spectrum disorders (ASD), technology (e.g., computer assisted instruction) has been used for over 35 years to instruct students with ASD in academic areas. The purpose of this study was to evaluate the effects of a supported eText and explicit instruction on the science vocabulary and comprehension of four middle school students with ASD. Researchers used a multiple probe across participants design to evaluate the Book Builder (TM) program on measures of vocabulary, literal comprehension, and application questions. Results indicated a functional relation between the Book Builder(TM) and explicit instruction (i.e., model-lead-test, examples and non-examples, and referral to the definition) and the number of correct responses on the probe. In addition, students were able to generalize concepts to untrained exemplars. Finally, teachers and students validate the program as practical and useful.
ES12; The 24th Annual Workshop on Recent Developments in Electronic Structure Theory
Energy Technology Data Exchange (ETDEWEB)
Holzwarth, Natalie [Wake Forest Univ., Winston-Salem, NC (United States); Thonhauser, Timo [Wake Forest Univ., Winston-Salem, NC (United States); Salam, Akbar [Wake Forest Univ., Winston-Salem, NC (United States)
2012-06-29
ES12: The 24th Annual Workshop on Recent Developments in Electronic Structure Theory was held June 5-8, 2012 at Wake Forest University in Winston-Salem, NC 27109. The program consisted of 24 oral presentations, 70 posters, and 2 panel discussions. The attendance of the Workshop was comparable to or larger than previous workshops and participation was impressively diverse. The 136 participants came from all over the world and included undergraduate students, graduate students, postdoctoral researchers, and senior scientists. The general assessment of the Workshop was extremely positive in terms of the high level of scientific presentations and discussions, and in terms of the schedule, accommodations, and affordability of the meeting.
Linear-response theory of Coulomb drag in coupled electron systems
DEFF Research Database (Denmark)
Flensberg, Karsten; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka
1995-01-01
We report a fully microscopic theory for the transconductivity, or, equivalently, the momentum transfer rate, of Coulomb coupled electron systems. We use the Kubo linear-response formalism and our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which...... are topologically related but not equivalent to the Aslamazov-Larkin diagrams known from superconductivity. Results reported elsewhere are shown to be special cases of our general expression; specifically, we recover the Boltzmann equation result in the semiclassical clean limit and the memory function results...... for dirty systems with constant impurity scattering rates. Furthermore, we show that for energy-dependent relaxation times, the final result is not expressible in terms of standard density-response functions. Other results include (i) at T = 0, the frequency dependence of the transfer rate is found...
Kanungo, Bikash
2016-01-01
We present a computationally efficient approach to perform large-scale all-electron density functional theory calculations by enriching the classical finite element basis with compactly supported atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element basis. The enrichment functions are compactly supported through the use of smooth cutoff functions, which enhances the conditioning and maintains the locality of the basis. The integrals involved in the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed using an adaptive quadrature grid based on the characteristics of enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by using a block-wise matrix inversion in conjunction with special reduced-order quadrature rules to transform...
Sjostrom, Travis; Daligault, Jérôme
2015-12-01
We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014);] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].
Ji, Yanju; Liu, Xiaocun; Fu, Gang; Chen, Ying; Wang, Fengxiang; Zhao, Junqing
2015-07-01
Structures and electronic properties of 2Meq2AlOC6H4R (R=CN, Cl, H, OMe, NMe2) have been studied in the scheme of density function theory with the B3LYP and the 6-31G (d) basis set. The substitutions of the electron-withdrawing groups (CN, Cl) increase the band gap while the substitutions of the electron-donating groups (OMe, NMe2) decrease the gap. The substitutions of electron-withdrawing groups enhance the electron injection ability. In addition, the vertical ionization energies (IEV), the vertical electronic affinities (EAV) and reorganization energies of 2Meq2AlOPh and its derivatives are calculated in the work. All complexes are better electron transport materials.
Shityakov, Sergey; Roewer, Norbert; Förster, Carola; Broscheit, Jens-Albert
2017-07-01
The purpose of this study was to develop and implement an in silico model of indigoid-based single-electron transistor (SET) nanodevices, which consist of indigoid molecules from natural dye weakly coupled to gold electrodes that function in a Coulomb blockade regime. The electronic properties of the indigoid molecules were investigated using the optimized density-functional theory (DFT) with a continuum model. Higher electron transport characteristics were determined for Tyrian purple, consistent with experimentally derived data. Overall, these results can be used to correctly predict and emphasize the electron transport functions of organic SETs, demonstrating their potential for sustainable nanoelectronics comprising the biodegradable and biocompatible materials.
Husain, Mudassir M
2007-09-01
The ultraviolet and visible spectrum of chrysene and its radical cation formed by ultraviolet irradiation were measured in boric acid glass at room temperature. The theoretical electronic absorption spectrum of any polycyclic aromatic hydrocarbon (PAH) in boric acid matrix is calculated for the first time using semi empirical methods. Earlier reported theoretical results of electronic spectrum are calculated in free state and the results are compared with the spectrum of aromatic systems in glassy or other matrices. The interaction between the trapped PAHs (neutral and ions) and its environment induces strong perturbations of the energy levels which results in large shifts of the electronic transitions as compared to the ideal case of a free, isolated PAH molecule. This shifting due to perturbation has largely been ignored in earlier calculations, while comparing the calculations with the experimentally measured spectrum, in other matrices. The spectrum of singlet and doublet state of chrysene are computed in aqueous medium and also in free state to estimate the spectral shift. Several other geometric (bond length and bond angles) and spectroscopic parameters of chrysene like difference of HOMO-LUMO, ionization potential, dipole moment and polarizability are calculated using semi empirical methods, namely Austin Model 1 (AM1) and Parametric Method 3 (PM3). To get an idea about how the symmetry of chrysene molecule varies upon ionization, the mean polarizability (alpha) as well as its tensor components alpha(xx), alpha(yy) and alpha(zz) are calculated within a field of 0.005 a.u. The lasing action in neutral chrysene and in its cationic form is also discussed for the first time.
Isong, Inyang A; Rao, Sowmya R; Holifield, Chloe; Iannuzzi, Dorothea; Hanson, Ellen; Ware, Janice; Nelson, Linda P
2014-03-01
Dental care is a significant unmet health care need for children with autism spectrum disorders (ASD). Many children with ASD do not receive dental care because of fear associated with dental procedures; oftentimes they require general anesthesia for regular dental procedures, placing them at risk of associated complications. Many children with ASD have a strong preference for visual stimuli, particularly electronic screen media. The use of visual teaching materials is a fundamental principle in designing educational programs for children with ASD. To determine if an innovative strategy using 2 types of electronic screen media was feasible and beneficial in reducing fear and uncooperative behaviors in children with ASD undergoing dental visits. We conducted a randomized controlled trial at Boston Children's Hospital dental clinic. Eighty (80) children aged 7 to 17 years with a known diagnosis of ASD and history of dental fear were enrolled in the study. Each child completed 2 preventive dental visits that were scheduled 6 months apart (visit 1 and visit 2). After visit 1, subjects were randomly assigned to 1 of 4 groups: (1) group A, control (usual care); (2) group B, treatment (video peer modeling that involved watching a DVD recording of a typically developing child undergoing a dental visit); (3) group C, treatment (video goggles that involved watching a favorite movie during the dental visit using sunglass-style video eyewear); and (4) group D, treatment (video peer modeling plus video goggles). Subjects who refused or were unable to wear the goggles watched the movie using a handheld portable DVD player. During both visits, the subject's level of anxiety and behavior were measured using the Venham Anxiety and Behavior Scales. Analyses of variance and Fisher's exact tests compared baseline characteristics across groups. Using intention to treat approach, repeated measures analyses were employed to test whether the outcomes differed significantly: (1) between
Directory of Open Access Journals (Sweden)
O.M. Voitsekhivska
2011-12-01
Full Text Available The non-perturbation theory of electronic dynamic conductivity for open two-barrier resonance tunnel structure is established for the first time within the model of rectangular potentials and different effective masses of electrons in the elements of nano-structure and the wave function linear over the intensity of electromagnetic field. It is proven that the results of the theory of dynamic conductivity, developed earlier in weak signal approximation within the perturbation method, qualitatively and quantitatively correlate with the obtained results. The advantage of non-perturbation theory is that it can be extended to the case of electronic currents interacting with strong electromagnetic fields in open multi-shell resonance tunnel nano-structures, as active elements of quantum cascade lasers and detectors.
Lee, Hyo-Chang; Chung, Chin-Wook
2016-09-01
Hysteresis, which is the history dependence of physical systems, indicates that there are more-than-two stable points in a given condition, and it has been considered to one of the most important topics in fundamental physics. Recently, the hysteresis of plasma has become a focus of research because stable plasma operation is very important for fusion reactors, bio-medical plasmas, and industrial plasmas for nano-device fabrication process. Interestingly, the bi-stability characteristics of plasma with a huge hysteresis loop have been observed in inductive discharge plasmas Because hysteresis study in such plasmas can provide a universal understanding of plasma physics, many researchers have attempted experimental and theoretical studies. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. This research was partially supported by Korea Research Institute of Standard and Science.
Directory of Open Access Journals (Sweden)
Meng Ni
2013-03-01
Full Text Available Percolation theory is generalized to predict the effective properties of specific solid oxide fuel cell composite electrodes, which consist of a pure ion conducting material (e.g., YSZ or GDC and a mixed electron and ion conducting material (e.g., LSCF, LSCM or CeO2. The investigated properties include the probabilities of an LSCF particle belonging to the electron and ion conducting paths, percolated three-phase-boundary electrochemical reaction sites, which are based on different assumptions, the exposed LSCF surface electrochemical reaction sites and the revised expressions for the inter-particle ionic conductivities among LSCF and YSZ materials. The effects of the microstructure parameters, such as the volume fraction of the LSCF material, the particle size distributions of both the LSCF and YSZ materials (i.e., the mean particle radii and the non-dimensional standard deviations, which represent the particle size distributions and the porosity are studied. Finally, all of the calculated results are presented in non-dimensional forms to provide generality for practical application. Based on these results, the relevant properties can be easily evaluated, and the microstructure parameters and intrinsic properties of each material are specified.
A density functional theory investigation of the electronic structure and spin moments of magnetite
Noh, Junghyun
2014-08-01
We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.
Directory of Open Access Journals (Sweden)
Hiroshi Kawabata et al
2008-01-01
Full Text Available Hybrid density functional theory (DFT calculations have been carried out for neutral and radical cation species of a fused selenophene oligomer, denoted by Se(n, where n represents the number of selenophene rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused selenophene was also investigated using one-dimensional periodic boundary conditions (PBC for comparison. It was found that the reorganization energy of a radical cation of Se(n from a vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that Se(n has an effective intramolecular hole transport property. It was found that the radical cation species of Se(n has a low-energy band in the near-IR region, which is strongly correlated to hole conductivity. The relationship between the electronic states and intramolecular hole conductivity was discussed on the basis of theoretical calculations.
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Fromager, Emmanuel
2014-01-01
The exact formulation of multi-configuration density-functional theory (DFT) is discussed in this work. As an alternative to range-separated methods, where electron correlation effects are split in the coordinate space, the combination of Configuration Interaction methods with orbital occupation functionals is explored at the formal level through the separation of correlation effects in the orbital space. When applied to model Hamiltonians, this approach leads to an exact Site-Occupation Embedding Theory (SOET). An adiabatic connection expression is derived for the complementary bath functional and a comparison with Density Matrix Embedding Theory (DMET) is made. Illustrative results are given for the simple two-site Hubbard model. SOET is then applied to a quantum chemical Hamiltonian, thus leading to an exact Complete Active Space Site-Occupation Functional Theory (CASSOFT) where active electrons are correlated explicitly within the CAS and the remaining contributions to the correlation energy are described...
Structural and electronic effects in the metalation of porphyrinoids. Theory and experiment.
Orzeł, Łukasz; Kania, Agnieszka; Rutkowska-Zbik, Dorota; Susz, Anna; Stochel, Grazyna; Fiedor, Leszek
2010-08-16
The structure-reactivity relationships in metalation reactions of porphyrinoids have been studied using experimental and theoretical methods. A series of eight porphyrinoic ligands, derivatives of chlorophylls, was prepared in which both the peripheral groups and the degrees of saturation of the macrocycle were systematically varied. To reveal the solvent and structural factors which control the interactions of these macroligands with metal centers, their interactions with reactive Zn(2+) and inert Pt(2+) ions were investigated using absorption spectroscopy. In parallel, quantum chemical calculations (density functional theory, DFT) were performed for the same set of molecules to examine the influence of structural and electronic factors on the energy of the frontier orbitals, the nucleophilicity/electronegativity of the macrocycle, its hardness, and conformation. These static descriptors of chemical reactivity, relevant to metalation reactions, were verified against the results obtained in the experimental model. The experimentally obtained kinetic data clearly show that the solvent has a crucial role in the activation of the incoming metal center. In terms of chelator structure, the largest effects concern the size of the delocalized pi-electron system and the presence of side groups. Both the DFT calculations and experimental results show the strong influence of the macrocycle rigidity and of the peripheral groups on the chelating ability of porphyrinoids. In particular, the peripheral functionalization of the macrocyclic system seems to drastically reduce its reactivity toward metal ions. The effect of peripheral groups is two-fold: (i) a lower electron density on the core nitrogens, and (ii) increased rigidity of the macrocycle. The outcomes of the theoretical and experimental analyses are discussed also in terms of their relevance to the mechanism of biological metal insertion in the biosynthesis of heme and chlorophyll.
Wills, John M; Andersson, Per; Delin, Anna; Grechnyev, Oleksiy; Alouani, Mebarek
2010-01-01
This book covers the theory of electronic structure of materials, with special emphasis on the usage of linear muffin-tin orbitals. Methodological aspects are given in detail as are examples of the method when applied to various materials. Different exchange and correlation functionals are described and how they are implemented within the basis of linear muffin-tin orbitals. Functionals covered are the local spin density approximation, generalised gradient approximation, self-interaction correction and dynamical mean field theory.
Directory of Open Access Journals (Sweden)
Hélio Godoy
2007-07-01
Full Text Available This paper addresses Documentary Realism, focusing on thephysical phenomena of transduction that take place in analog and digital audiovisual systems, herein analyzed in the light of the Sampling Theory, within the framework of Shannon and Weaver’s Information Theory. Transduction is a process by which one type of energy is transformed into another, or by which information is transcodiﬁed. Within the scope of Documentary Realism, it cannotbe claimed that electronic audiovisual signs, because of their technical digital features lead to a rupture with reality. Rather, the digital documentary, based on electronic digital cinematography, is still an index of reality.
Liu, Weisong; Huang, Zhitao; Wang, Xiang; Sun, Weichao
2017-05-04
In a cognitive radio sensor network (CRSN), wideband spectrum sensing devices which aims to effectively exploit temporarily vacant spectrum intervals as soon as possible are of great importance. However, the challenge of increasingly high signal frequency and wide bandwidth requires an extremely high sampling rate which may exceed today's best analog-to-digital converters (ADCs) front-end bandwidth. Recently, the newly proposed architecture called modulated wideband converter (MWC), is an attractive analog compressed sensing technique that can highly reduce the sampling rate. However, the MWC has high hardware complexity owing to its parallel channel structure especially when the number of signals increases. In this paper, we propose a single channel modulated wideband converter (SCMWC) scheme for spectrum sensing of band-limited wide-sense stationary (WSS) signals. With one antenna or sensor, this scheme can save not only sampling rate but also hardware complexity. We then present a new, SCMWC based, single node CR prototype System, on which the spectrum sensing algorithm was tested. Experiments on our hardware prototype show that the proposed architecture leads to successful spectrum sensing. And the total sampling rate as well as hardware size is only one channel's consumption of MWC.
Electrooptic approach to an integrated optics spectrum analyzer.
Thylen, L; Stensland, L
1981-05-15
An integrated optics spectrum analyzer based on using the linear electrooptic effect is investigated. This spectrum analyzer performs Fourier analysis of sampled electronic signals, where each signal is fed to an electrode of an electrode array. The electrode array acts as a spatial light modulator, and the diffracted light field, representing a weighted discrete Fourier transform (DFT), is focused on a detector array by an integrated transform lens. The theory of operation of the spectrum analyzer is outlined, numerical results relating to this theory are presented, and questions concerning efficiency, dynamic range, design, and implementation are discussed.
Mobit, P; Sandison, G
2002-01-01
Recent Monte Carlo simulations have shown that the assumption in the small cavity theory (and the extension of the small cavity theory by Spencer-Attix) that the cavity does not perturb the electron fluence is seriously flawed. For depths beyond dmax not only is there a significant difference between the energy spectra in the medium and in the solid cavity material but there is also a significant difference in the number of low-energy electrons which cannot travel across the solid cavity and hence deposit their dose in it (i.e. stopper electrons whose residual range is less than the cavity thickness). The number of these low-energy electrons that are not able to travel across the solid state cavity increases with depth and effective thickness of the detector. This also invalidates the assumption in the small cavity theory that most of the dose deposited in a small cavity is delivered by crossers. Based on Monte Carlo simulations, a new cavity theory for solid state detectors irradiated in electron beams has been proposed as: Dmed(p) = meanDdet(p) x s(med,det)S-A x gamma(p)c x S(T) where Dmed(p) is the dose to the medium at point p. MeanDdet(p) is the average detector dose to the same point, s(med,det)S-A is the Spencer-Attix mass collision stopping power ratio of the medium to the detector material, gamma(P)c is the electron fluence perturbation correction factor and S(T) is a stopper-to-crosser correction factor to correct for the dependence of the stopper-to-crosser ratio on depth and the effective cavity size. Monte Carlo simulations have been computed for all the terms in this equation. The new cavity theory has been tested against the Spencer-Attix cavity equation as the small cavity limiting case and also Monte Carlo simulations.
Czech Academy of Sciences Publication Activity Database
Čársky, Petr
2015-01-01
Roč. 191, č. 2015 (2015), s. 191-192 ISSN 1551-7616 R&D Projects: GA MŠk OC09079; GA MŠk(CZ) OC10046; GA ČR GA202/08/0631 Grant - others:COST(XE) CM0805; COST(XE) CM0601 Institutional support: RVO:61388955 Keywords : electron-scattering * calculation of cross sections * second-order perturbation theory Subject RIV: CF - Physical ; Theoretical Chemistry
Directory of Open Access Journals (Sweden)
Barantsev K.A.
2017-01-01
Full Text Available This work is devoted to generalization of the semi-classical theory of interaction of broadband laser radiation with the atomic gas at the room temperature in the cell in the case of the closed excitation contour. The atomic density matrix equations and spectrum and correlations transport equations have been derived for excitation by fluctuating field with Gaussian statistics. It is shown that the spatial oscillations of radiation intensity and atomic density matrix can be excited. It was found that such medium can serve as a filter of incoherent part of the radiation.
DEFF Research Database (Denmark)
Hedegård, Erik Donovan
2017-01-01
considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...
Lind, Sophie E.; Bowler, Dermot M.
2009-01-01
This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and…
Wuttisela, Karntarat
2017-01-01
There are various types of instructional media related to Valence Shell Electron Pair Repulsion (VSEPR) but there is a lack of diversity of resources devoted to assessment. This research presents an assessment and comparison of students' understanding of VSEPR theory before and after tuition involving the use of the foam molecule model (FMM) and…
May, Joy L.
2013-01-01
The purpose of this qualitative grounded theory study was to examine the experiences of clinicians in the adoption of Electronic Medical Records in a Medicare certified Home Health Agency. An additional goal for this study was to triangulate qualitative research between describing, explaining, and exploring technology acceptance. The experiences…
Mazur, P.; Nijboer, B.R.A.
1953-01-01
Maxwell's macroscopic field equations are derived from the fundamental microscopic equations of electron theory in a new way. Instead of the usual space-time averaging procedure a statistical ensemble averaging method is applied, which is perhaps more satisfactory both from a physical and from a
Energy Technology Data Exchange (ETDEWEB)
Holovatsky, V.A., E-mail: ktf@chnu.edu.ua; Bernik, I.B.; Yakhnevych, M. Ya.
2017-03-01
The theoretical investigation of magnetic field effect on energy spectrum and localization of the electron and oscillator strengths of intraband quantum transitions in the nanostructure CdS/HgS/CdS/HgS/CdS is performed. The calculations are made in the framework of effective mass approximation and rectangular potential barriers model using the method of the expansion of quasi-particle wave functions over the complete basis of functions obtained as the exact solutions of the Schrodinger equation for the electron in the nanostructure without the magnetic field. It is shown that the magnetic field violates the spherical symmetry of the system and takes off the degeneration of energy spectrum with respect to the magnetic quantum number. The energy of the electron in the states with m≥0 increases when magnetic field enhances; for the states with m<0 these dependences are non-monotonous (decreasing at first and then increasing). Moreover, the ground state of electron is formed alternately by the states with m=0, −1, −2, …. Magnetic field influences on the distribution of quasi-particle density. It is shown that the electron significantly changes its localization in the nanostructure with two potential wells tunneling through the potential barrier under the effect of magnetic field, changing the oscillator strengths of intraband quantum transitions.
Yost, Dillon C.; Yao, Yi; Kanai, Yosuke
2017-09-01
In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.
DEFF Research Database (Denmark)
Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.
2008-01-01
Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...
Wiederkehr, Karl Heinrich
2010-01-01
The development of an electron-theory of metals is closely connected with early speculation in the period before Maxwell (W Weber and others) regarding electrical conductivity in metals. These Speculations were in contrast with Faraday's view of an all-embracing molecular dielectric polarisation, and a subsequent passage of charges in metallic conductors. In terms of the empirical law of Wiedemann-Franz-Lorenz, the conductivity of electricity and heat had to be treated commonly. The classical electron-theory of metals (Riecke, Drude, H.A. Lorentz) reached a dead end on account of problems concerned with specific heat capacity. Sommerfeld, by means of the Quantum theory and the Fermi-Statistic, could find the solution.
Tuti, Timothy; Nzinga, Jacinta; Njoroge, Martin; Brown, Benjamin; Peek, Niels; English, Mike; Paton, Chris; van der Veer, Sabine N
2017-05-12
Audit and feedback is a common intervention for supporting clinical behaviour change. Increasingly, health data are available in electronic format. Yet, little is known regarding if and how electronic audit and feedback (e-A&F) improves quality of care in practice. The study aimed to assess the effectiveness of e-A&F interventions in a primary care and hospital context and to identify theoretical mechanisms of behaviour change underlying these interventions. In August 2016, we searched five electronic databases, including MEDLINE and EMBASE via Ovid, and the Cochrane Central Register of Controlled Trials for published randomised controlled trials. We included studies that evaluated e-A&F interventions, defined as a summary of clinical performance delivered through an interactive computer interface to healthcare providers. Data on feedback characteristics, underlying theoretical domains, effect size and risk of bias were extracted by two independent review authors, who determined the domains within the Theoretical Domains Framework (TDF). We performed a meta-analysis of e-A&F effectiveness, and a narrative analysis of the nature and patterns of TDF domains and potential links with the intervention effect. We included seven studies comprising of 81,700 patients being cared for by 329 healthcare professionals/primary care facilities. Given the extremely high heterogeneity of the e-A&F interventions and five studies having a medium or high risk of bias, the average effect was deemed unreliable. Only two studies explicitly used theory to guide intervention design. The most frequent theoretical domains targeted by the e-A&F interventions included 'knowledge', 'social influences', 'goals' and 'behaviour regulation', with each intervention targeting a combination of at least three. None of the interventions addressed the domains 'social/professional role and identity' or 'emotion'. Analyses identified the number of different domains coded in control arm to have the biggest
Xinyou, An; Feng, Geng; Weiyi, Ren; Hui, Yang; Ziqi, He; Feiyu, Wang; Tixian, Zeng
2017-03-01
The mechanical, electronic and optical properties of KH under high pressure have been studied using the generalized gradient approximation and Heyd-Scuseria-Ernzerh of hybrid method within density functional theory. Based on the usual condition of equal enthalpies, high pressure phase transition of KH from B 1 to B 2 was confirmed, is about 4.1 GPa, and normalized volume collapse ΔV P /V 0 is about 11.09%. The calculated equilibrium structural parameters and elastic modulus are in excellent agreement with the experimental and other theoretical results. At ground states, B 1 KH is elastic stable, but B 2 KH is unstable. C 11 and c‧ are the main factors, which cause the structural phase transition under the pressures. The band structures and density of states of KH were calculated and analyzed in detail. Valance bands are local and conduction bands are continuous. The VBs mainly originate from K 3s, 3p and H 1s states, and the CBs consist of K 3s, 3p states, some hybridized levels are found between K 3s and 3p states. Mulliken population analysis of KH indicate that the charge populations of H 1s and K 3p states are very obvious but K 3s states are relatively weak, the charge transfers are from K to H. The linear response optical properties of KH were emphatically predicted combing with the band structures and frequency-dependent and dielectric function ε(ω).
Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12)
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank
2017-08-01
In this work, explicitly correlated second order N-electron valence state perturbation theory (NEVPT2-F12) has been derived and implemented for the first time. The NEVPT2-F12 algorithm presented here is based on a fully internally contracted wave function and includes the correction of semi-internal excitation subspaces. The algorithm exploits the resolution of identity (RI) approximation to improve the computational efficiency. The overall O(N5) scaling of the computational effort is documented. In Sec. III, the dissociation processes of diatomic molecules and the singlet-triplet gap of several systems are studied. For all relative energies studied in this work, the errors with respect to the complete basis set (CBS) limit for the NEVPT2-F12 method are within 1 kcal/mol. For moderately sized active spaces, the computational cost of a RI-NEVPT2-F12 correlation energy calculation for each root is comparable to a closed-shell RI-MP2-F12 calculation on the same system.
Directory of Open Access Journals (Sweden)
E. V. Orlenko
2011-01-01
Full Text Available A new methodology of binding energy calculation with respect to different spin arrangements for a multiatomic electron system is developed from the first principle in the frame of the exchange perturbation theory (EPT. We developed EPT formalism in the general form of the Rayleigh-Srchödinger expansion with a symmetric Hamiltonian, taking into account an exchange and nonadditive contributions of a superexchange interaction. The expressions of all corrections to the energy and wave function were reduced to the nonsymmetric Hamiltonian form. The EPT method is extended for the case of degeneracy in the total spin of a system. As an example of the application of the developed EPT formalism for the degeneracy case, spin arrangements were considered for the key ⟨Mn⟩–O–⟨Mn⟩ (⟨Mn⟩: Mn3+ or Mn4+ fragments in manganites. In ⟨Mn⟩–O–⟨Mn⟩ for La1/3Ca2/3MnO3 are in good agreement the obtained estimations of Heisenberg parameter and binding energy with the available experimental data.
Vora-ud, Athorn
2017-11-01
In this work, thermoelectric properties of Bi and Sb atoms substituted PbTe material were predicted by Mott theory through electronic structure calculation. This calculation has been carried by the first-principles DV-Xα molecular orbital method based on Hartree-Fock-Slater approximation. The Pb14Te13, Pb13SbTe13 and Pb13BiTe13 small clusters with a cubic rocksalt structure (Fm-3m; 225) were designed to be performed PbTe, Pb0.75Sb0.25Te and Pb0.75Bi0.25Te materials, respectively. The electronic structure showed that the high symmetry crystal structure, spin energy levels, partial spin density of states and electron charge density. The energy gap and Fermi level have been obtained from energy levels and density of state to be evaluated of electrical conductivity and Seebeck coefficient within Mott's theory predication.
Gonzalez, Carlos A; Squitieri, Emilio; Franco, Hector J; Rincon, Luis C
2017-01-26
The Kohn-Sham density functional theory (DFT) formalism has been used to investigate the influence of the stationary behavior of the electron density (ρ(r⃗;s)) along a minimum energy path on the corresponding stationary conditions observed in the total potential energy of the reactive system, information theory measures (Shannon information entropy and Onicescu information energy), and chemical reactivity indexes (the chemical hardness). The theoretical treatment presented in this work, combined with DFT calculations on 3 different test reactions: Ḣ' + H 2 , Ḣ' + CH 4 and H - + CH 4 , suggest that for any reactive system, properties that can be cast as a functional of the electron density, must exhibit stationary points along the IRC path modulated by the corresponding stationary behavior of the electron density.
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Lind, Sophie E; Williams, David M; Raber, Jacob; Peel, Anna; Bowler, Dermot M
2013-11-01
Research suggests that spatial navigation relies on the same neural network as episodic memory, episodic future thinking, and theory of mind (ToM). Such findings have stimulated theories (e.g., the scene construction and self-projection hypotheses) concerning possible common underlying cognitive capacities. Consistent with such theories, autism spectrum disorder (ASD) is characterized by concurrent impairments in episodic memory, episodic future thinking, and ToM. However, it is currently unclear whether spatial navigation is also impaired. Hence, ASD provides a test case for the scene construction and self-projection theories. The study of spatial navigation in ASD also provides a test of the extreme male brain theory of ASD, which predicts intact or superior navigation (purportedly a systemizing skill) performance among individuals with ASD. Thus, the aim of the current study was to establish whether spatial navigation in ASD is impaired, intact, or superior. Twenty-seven intellectually high-functioning adults with ASD and 28 sex-, age-, and IQ-matched neurotypical comparison adults completed the memory island virtual navigation task. Tests of episodic memory, episodic future thinking, and ToM were also completed. Participants with ASD showed significantly diminished performance on the memory island task, and performance was positively related to ToM and episodic memory, but not episodic future thinking. These results suggest that (contra the extreme male brain theory) individuals with ASD have impaired survey-based navigation skills--that is, difficulties generating cognitive maps of the environment--and adds weight to the idea that scene construction/self-projection are impaired in ASD. The theoretical and clinical implications of these results are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh
2018-01-01
A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.
Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakahira, S.; Nishimura, J.; de Nolfo, G. A.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S. B.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Torii, S.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.; Calet Collaboration
2017-11-01
First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X0 and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152 ±0.016 (stat+syst ). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.
Adriani, O; Akaike, Y; Asano, K; Asaoka, Y; Bagliesi, M G; Bigongiari, G; Binns, W R; Bonechi, S; Bongi, M; Brogi, P; Buckley, J H; Cannady, N; Castellini, G; Checchia, C; Cherry, M L; Collazuol, G; Di Felice, V; Ebisawa, K; Fuke, H; Guzik, T G; Hams, T; Hareyama, M; Hasebe, N; Hibino, K; Ichimura, M; Ioka, K; Ishizaki, W; Israel, M H; Javaid, A; Kasahara, K; Kataoka, J; Kataoka, R; Katayose, Y; Kato, C; Kawanaka, N; Kawakubo, Y; Krawczynski, H S; Krizmanic, J F; Kuramata, S; Lomtadze, T; Maestro, P; Marrocchesi, P S; Messineo, A M; Mitchell, J W; Miyake, S; Mizutani, K; Moiseev, A A; Mori, K; Mori, M; Mori, N; Motz, H M; Munakata, K; Murakami, H; Nakahira, S; Nishimura, J; de Nolfo, G A; Okuno, S; Ormes, J F; Ozawa, S; Pacini, L; Palma, F; Papini, P; Penacchioni, A V; Rauch, B F; Ricciarini, S B; Sakai, K; Sakamoto, T; Sasaki, M; Shimizu, Y; Shiomi, A; Sparvoli, R; Spillantini, P; Stolzi, F; Takahashi, I; Takayanagi, M; Takita, M; Tamura, T; Tateyama, N; Terasawa, T; Tomida, H; Torii, S; Tsunesada, Y; Uchihori, Y; Ueno, S; Vannuccini, E; Wefel, J P; Yamaoka, K; Yanagita, S; Yoshida, A; Yoshida, K; Yuda, T
2017-11-03
First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.
Begeer, Sander; Rieffe, Carolien; Meerum-Terwogt, Mark; Stockmann, Lex
2001-01-01
Studied the role of theory of mind capabilities in the task performance of high-functioning male and female school-age children with autism. In the Netherlands, 10 Ss with autism aged 6 yrs 8 mo to 11 yrs 4 mo (Experimental Group 1), 12 Ss with pervasive developmental disorders not otherwise
Aray, Yosslen
2017-11-01
The nature of the electron density localization in a MoS2 monolayer under 0 % to 11% tensile strain has been systematically studied by means of a localized electron detector function and the Quantum Theory of atoms in molecules. At 10% tensile strain, this monolayer become metallic. It was found that for less than 6.5% of applied stress, the same atomic structure of the equilibrium geometry (0% strain) is maintained; while over 6.5% strain induces a transformation to a structure where the sulfur atoms placed on the top and bottom layer form S2 groups. The localized electron detector function shows the presence of zones of highly electron delocalization extending throughout the Mo central layer. For less than 10% tensile strain, these zones comprise the BCPs and the remainder CPs in separates regions of the space; while for the structures beyond 10% strain, all the critical points are involved in a region of highly delocalized electrons that extends throughout the material. This dissimilar electron localization pattern is like to that previously reported for semiconductors such as Ge bulk and metallic systems such as transition metals bulk.
Theory and design of broadband matching networks applied electricity and electronics
Chen, Wai-Kai
1976-01-01
Theory and Design of Broadband Matching Networks centers on the network theory and its applications to the design of broadband matching networks and amplifiers. Organized into five chapters, this book begins with a description of the foundation of network theory. Chapter 2 gives a fairly complete exposition of the scattering matrix associated with an n-port network. Chapter 3 considers the approximation problem along with a discussion of the approximating functions. Chapter 4 explains the Youla's theory of broadband matching by illustrating every phase of the theory with fully worked out examp
Jacobson, Leif D; Herbert, John M
2010-10-21
Previously, we reported an electron-water pseudopotential designed to be used in conjunction with a polarizable water model, in order to describe the hydrated electron [L. D. Jacobson et al., J. Chem. Phys. 130, 124115 (2009)]. Subsequently, we found this model to be inadequate for the aqueous electron in bulk water, and here we report a reparametrization of the model. Unlike the previous model, the current version is not fit directly to any observables; rather, we use an ab initio exchange-correlation potential, along with a repulsive potential that is fit to reproduce the density maximum of the excess electron's wave function within the static-exchange approximation. The new parametrization performs at least as well as the previous model, as compared to ab initio benchmarks for (H(2)O)(n) (-) clusters, and also predicts reasonable values for the diffusion coefficient, radius of gyration, and absorption maximum of the bulk species. The new model predicts a vertical electron binding energy of 3.7 eV in bulk water, which is 1.4 eV smaller than the value obtained using nonpolarizable models; the difference represents the solvent's electronic reorganization energy following electron detachment. We find that the electron's first solvation shell is quite loose, which may be responsible for the electron's large, positive entropy of hydration. Many-body polarization alters the electronic absorption line shape in a qualitative way, giving rise to a high-energy tail that is observed experimentally but is absent in previous simulations. In our model, this feature arises from spatially diffuse excited states that are bound only by electronic reorganization (i.e., solvent polarization) following electronic excitation.
Wang, Jun-Fei; Fu, Xiao-Nan; Zhang, Xiao-Dong; Wang, Jun-Tao; Li, Xiao-Dong; Jiang, Zhen-Yi
2016-08-01
The structural, elastic, electronic, and thermodynamic properties of thermoelectric material MgAgSb in γ,β,α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states (TDOS) and partial density of states (PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s, Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11504088), the Fund from Henan University of Technology, China (Grant Nos. 2014YWQN08 and 2013JCYJ12), the Natural Science Fund from the Henan Provincial Education Department, China (Grant No. 16A140027), the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2013JQ1018 and 15JK1759), and the Science Foundation of Northwest University of China (Grant No. 14NW23).
Eremeev, S A; Yaguzhinsky, L S
2015-05-01
A brief description of the principal directions for searching and investigating the model of local coupling between respiration and phosphorylation proposed by R. Williams is given in this paper. We found conditions where it was possible to reveal typical functional special features of the mitochondrial phosphorylating system. According to the theory, such special features should be observed experimentally if the mitochondrial phosphorylating system operated in the state of a supercomplex. It was proved that the phosphorylating system is able to operate in two states: P. Mitchell state and R. Williams state. It was demonstrated that in the ATP synthesis reaction, ATP-synthase (F1F0) was able to use thermodynamic potential of Bronsted acids as a source of energy. It was shown using a double-inhibitor titration technique that when the phosphorylating system operated in the supercomplex state, the electron transfer system and ATP-synthesis system were docked rigidly. A model system of chemical synthesis of membrane-bound proton fraction (Bronsted acids), carrying a free energy excess, was developed on the model of bilayer lipid membrane. Catalysts selectively accelerating proton detachment of this fraction were also found. The formation of a Bronsted acids fraction carrying free energy excess was recorded during the operation of proton pumps on mitochondrial and mitoplastic membranes. In the experimental part of the work, a brief description is given of studies on new uncouplers that transfer the phosphorylation system from the local coupling state to the state of transmembrane proton transfer. Thus, they accelerated the respiration of mitochondria and decreased the ADP/O parameter.
Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas
Radway, Matthew J.
Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna
Farzanehpour, M.; Tokatly, I. V.
2014-11-01
We present a rigorous formulation of the time-dependent density-functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v representable.
Becker, A; Faisal, F
2001-03-26
Recently observed momentum distribution of doubly charged recoil-ions of atoms produced by femtosecond infrared laser pulses is analyzed using the so-called intense-field many-body S-matrix theory. Observed characteristics of the momentum distributions, parallel and perpendicular to the polarization axis, are reproduced by the theory. It is shown that correlated energy-sharing between the two electrons in the intermediate state and their 'Volkov-dressing' in the final state, can explain the origin of these characteristics.
Yoon, P. H.; López, R. A.; Seough, J.; Sarfraz, M.
2017-11-01
The present paper investigates the physics of electron firehose instability propagating parallel to the direction of ambient magnetic field vector, by means of particle-in-cell simulation and macroscopic quasilinear kinetic theory. The electron firehose instability is excited when parallel electron temperature exceeds perpendicular temperature, T∥e>T⊥e , under high beta conditions. A recent paper [Sarfraz et al., Phys. Plasmas 24, 012907 (2017)] formulated the quasilinear theory of parallel electron firehose instability by assuming that the electron and proton velocity distribution functions can be approximately described by bi-Maxwellian forms for all times but allowing for dynamical changes in perpendicular and parallel temperatures as well as the wave intensity. The present paper examines the validity of such an approach by making direct comparison against particle-in-cell simulation. It is shown that the macroscopic quasilinear approach provides a qualitative description of the nonlinear phase of the instability, but some quantitative discrepancies are also found. Possible causes for the discrepancies are discussed.
Kawashita, Y; Nakatsukasa, T; Yabana, K
2009-02-11
We have developed a simulation method to describe three-dimensional dynamics of electrons and ions in a molecule based on the time-dependent density-functional theory. We solve the time-dependent Kohn-Sham equation for electrons employing the real-space and real-time method, while the ion dynamics are described in classical mechanics by the Ehrenfest method. For an efficient calculation in massively parallel computers, the code is parallelized dividing the spatial grid points. We apply the method to the Coulomb explosion of the H(2)S molecule under an intense and ultrashort laser pulse and investigate the mechanism of the process.
Umari, P; Petrenko, O; Taioli, S; De Souza, M M
2012-05-14
Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.
Chang, Liang-Te; And Others
A study was conducted to develop the electronic technical competencies of duty and task analysis by using a revised DACUM (Developing a Curriculum) method, a questionnaire survey, and a fuzzy synthesis operation. The revised DACUM process relied on inviting electronics trade professionals to analyze electronic technology for entry-level…
Salmon, Jenny; Buetow, Stephen
2013-01-01
Despite the risk of 'method slurring', researchers have triangulated within a single qualitative study methods that are philosophically incongruent or in a limited context, are congruent, as with hermeneutic phenomenology and constructivist grounded theory. We aimed to make the case that what works best can be to mix two qualitative methods that are philosophically congruent. Thus, we used transcendental phenomenology (TP) and classic grounded theory (CGT) in synergetic sequence to answer our research question. These methods have not previously been used together and one method would not have sufficed. Using the same participant sample, we sought to explore and understand the daily challenges of living with fetal alcohol spectrum disorder (FASD) since no study to date had addressed these issues within New Zealand. Our retrospective exploratory two-phase sequential design was framed by the meta-theory of pragmatism. It mixed qualitative strategies that are ontologically and epistemologically compatible (i.e. TP and CGT are ontologically realist, but epistemologically idealist). They are useful together for the aim of meaningfully studying the lived experiences of purposively selected participants. Empirical data, as secondary results, provide supportive evidence. The first paper from this study was published in J Popul Ther Clin Pharmacol Vol 19(1):e41-e50 when the main findings were reported. This second paper gives greater focus to the methodologies employed and data analysis from the second phase.
Energy Technology Data Exchange (ETDEWEB)
Säkkinen, Niko; Leeuwen, Robert van [Department of Physics, Nanoscience Center, University of Jyväskylä, Survontie 9, 40014 Jyväskylä (Finland); Peng, Yang [Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem (Germany); Appel, Heiko [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem (Germany)
2015-12-21
We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.
Säkkinen, Niko; Peng, Yang; Appel, Heiko; van Leeuwen, Robert
2015-12-01
We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.
Sankardas, Sulata Ajit; Rajanahally, Jayashree
2017-01-01
Children with Autism Spectrum Disorder (ASD) are known to have difficulty in social communication, with research indicating that children with ASD fail to develop functional speech (Lord and Rutter, 1994). Over the years a number of Augmented and Alternate Communication (AAC) devices have been used with children with ASD to overcome this barrier…
Belitz, D.; Kirkpatrick, T. R.
2016-12-01
We present a scaling description of a metal-insulator transition in two-dimensional electron systems that is driven by a vanishing compressibility rather than a vanishing diffusion coefficient. A small set of basic assumptions leads to a consistent theoretical framework that is compatible with existing transport and compressibility measurements, and allows us to make predictions for other observables. We also discuss connections between these ideas and other theories of transitions to an incompressible quantum fluid.
Li, Junfu; O'Shea, James; Hou, Xianghui; Chen, George Z
2017-09-25
The study of electron delocalisation in oxygen atom segregated zones in graphene, aided by the first-principles density functional theory, has revealed extra energy bands of ≥2 eV wide around the Fermi level, predicting Faradaic charge storage occurring in a wide range of potentials, which disagrees with Nernst's law but accounts well for the so called pseudocapacitance of heteroatom-modified graphene based electrode materials in supercapacitors.
Developments in the kinetic theories of ion and electron swarms in the 1960s and 70s
Skullerud, H. R.
2017-04-01
The two decades between 1960 to 1980 saw quite a fantastic development in diverse areas in physics, and so also in the quantitative theoretical treatment and deeper understanding of the behaviour of isolated electrons and ions in gases—that is ‘charged particle swarm physics’. The evolution in swarm theory was strongly correlated with the contemporary advances in computer technology and the emergence of new and accurate experimental methods for finding charged particle transport parameters, as drift velocities, diffusion coefficients and reaction rates, and also with developments in neighbouring fields as plasma physics and the physics of electronic and molecular collisions. In 1960, low energy electron behaviour could already be calculated with reasonable accuracy in the so-called two-term approximation, while ion behaviour could only be treated at weak electric fields. By 1980, reasonably complete theories had been developed for perhaps most cases in interest—which is reflected in a number of reviews, books and journal articles published in the early 1980s. We will present a journey through the developments in this period and the basic theories behind the Boltzmann equation and Maxwell’s transfer equations. We will also indicate how the interaction between different studies of the same basic processes have led to the elimination of shortcomings and a better understanding.
Malet, F.; Pi, M.; Barranco, M.; Lipparini, E.; Serra, Ll.
2006-11-01
We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a perpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.
Pellicano, Elizabeth; Maybery, Murray; Durkin, Kevin; Maley, Alana
2006-01-01
This study examined the validity of "weak" central coherence (CC) in the context of multiple cognitive capabilities/deficits in autism. Children with an autism spectrum disorder (ASD) and matched typically developing children were administered tasks tapping visuospatial coherence, false-belief understanding and aspects of executive control. Significant group differences were found in all three cognitive domains. Evidence of local processing on coherence tasks was widespread in the ASD group, but difficulties in attributing false beliefs and in components of executive functioning were present in fewer of the children with ASD. This cognitive profile was generally similar for younger and older children with ASD. Furthermore, weak CC was unrelated to false-belief understanding, but aspects of coherence (related to integration) were associated with aspects of executive control. Few associations were found between cognitive variables and indices of autistic symptomatology. Implications for CC theory are discussed.
Energy Technology Data Exchange (ETDEWEB)
Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Bhuyan, B.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Cheaib, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va’vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.
2017-04-01
Based on the full BABAR data sample of 466.5 million $B\\bar{B}$ pairs, we present measurements of the electron spectrum from semileptonic B meson decays. We fit the inclusive electron spectrum to distinguish Cabibbo-Kobayashi-Maskawa (CKM) suppressed B → X_{u}eν decays from the CKM-favored B → X_{c}eν decays, and from various other backgrounds, and determine the total semileptonic branching fraction B (B → Xeν) = ( 10.34 ± 0.04_{stat} ± 0.2 6_{syst})%, averaged over B^{±} and B^{0} mesons. We determine the spectrum and branching fraction for charmless B → X_{u}eν decays and extract the CKM element | V_{ub}| , by relying on four different QCD calculations based on the heavy quark expansion. While experimentally, the electron momentum region above 2.1 GeV / c is favored, because the background is relatively low, the uncertainties for the theoretical predictions are largest in the region near the kinematic endpoint. Detailed studies to assess the impact of these four predictions on the measurements of the electron spectrum, the branching fraction, and the extraction of the CKM matrix element |V_{ub}| are presented, with the lower limit on the electron momentum varied from 0.8 GeV / c to the kinematic endpoint. We determine |V_{ub}| using each of these different calculations and find, |V_{ub}| = ( 3.794 ± 0.107_{exp} $+ 0.292\\atop{ - 0.219 SF}$ $+ 0.078 \\atop{- 0.068 theory}$ ) × 10^{- 3} (De Fazio and Neubert), (4.563 ± 0.126_{exp} $+ 0.230\\atop {- 0.208 SF}$ $+ 0.162\\atop{- 0.163 theory}$ ) ×10^{-3} (Bosch, Lange, Neubert, and Paz), (3.959 ± 0.104_{exp} $+ 0.164\\atop{- 0.154 SF}$ $+ 0.042\\atop{ - 0.079 theory}$ ) × 10^{-3} (Gambino, Giordano, Ossola, and Uraltsev), (3.848 ± 0.108_{exp} $+ 0.084\\atop{ - 0.070 theory}$) × 10^{-3} (dressed gluon exponentiation), where the stated
Electron-cloud simulation and theory for high-current heavy-ion beams
Directory of Open Access Journals (Sweden)
R. H. Cohen
2004-12-01
Full Text Available Stray electrons can arise in positive-ion accelerators for heavy-ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize the distinguishing features of electron-cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds (also applicable to other accelerators. We also present results from several ingredients in this capability. (1 We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2 We simulate the effect of specified electron-cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing-mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope “breathing” mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3 We report first results from a long-time-step algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics.
Centroid theory of transverse electron-proton two-stream instability in a long proton bunch
Tai-Sen F. Wang; Channell, Paul J.; Robert J. Macek; Davidson, Ronald C.
2003-01-01
This paper presents an analytical investigation of the transverse electron-proton (e-p) two-stream instability in a proton bunch propagating through a stationary electron background. The equations of motion, including damping effects, are derived for the centroids of the proton beam and the electron cloud by considering Lorentzian and Gaussian frequency spreads for the particles. For a Lorentzian frequency distribution, we derive the asymptotic solution of the coupled linear centroid equation...
Xie, L; Wang, P; Pan, X Q
2014-08-01
The novel discovery of electron vortices carrying quantized orbital angular momentum motivated intensive research of their basic properties as well as applications, e.g. structural characterization of magnetic materials. In this paper, the fundamental interactions of electron vortices within infinitely long atomic-column-like electromagnetic fields are studied based on the relativistically corrected Pauli-Schrödinger equation and the perturbation theory. The relative strengths of three fundamental interactions, i.e. the electron-electric potential interaction, the electron-magnetic potential/field interaction and the spin-orbit coupling are discussed. The results suggest that the perturbation energies of the last two interactions are in an order of 10(3)-10(4) smaller than that of the first one for electron vortices. In addition, it is also found that the strengths of these interactions are strongly dependant on the spatial distributions of the electromagnetic field as well as the electron vortices. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gao, Ting; Sun, Shi-Ling; Shi, Li-Li; Li, Hui; Li, Hong-Zhi; Su, Zhong-Min; Lu, Ying-Hua
2009-05-14
Support vector machines (SVMs), as a novel type of learning machine, has been very successful in pattern recognition and function estimation problems. In this paper we introduce least-squares (LS) SVMs to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation with LS-SVM correction approach has been applied to evaluate the electronic excitation energies of 160 organic molecules. The newly introduced LS-SVM approach reduces the root-mean-square deviation of the calculated electronic excitation energies of 160 organic molecules from 0.32 to 0.11 eV for the B3LYP/6-31G(d) calculation. Thus, the LS-SVM correction on top of B3LYP/6-31G(d) is a better method to correct electronic excitation energies and can be used as the approximation of experimental results which are impossible to obtain experimentally.
Egedal, J.; Le, A.; Daughton, W.; Wetherton, B.; Cassak, P.A.; Chen, L.-J.; Lavraud, B.; Trobert, Roy; Dorelli, J.; Gershman, D. J.;
2016-01-01
Supported by a kinetic simulation, we derive an exclusion energy parameter EX providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner-reconnection region, setting the electron distribution function observed along the low density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low density separatrix.
Charge-shift bonding--a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach.
Shaik, Sason; Danovich, David; Silvi, Bernard; Lauvergnat, David L; Hiberty, Philippe C
2005-10-21
This paper deals with a central paradigm of chemistry, the electron-pair bond. Valence bond (VB) theory and electron-localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge-shift bonds (CS bonds) in which the fluctuation of the electron pair density plays a dominant role. In VB theory, CS bonding manifests by way of a large covalent-ionic resonance energy, RE(CS), and in ELF by a depleted basin population with large variances (fluctuations). CS bonding is shown to be a fundamental mechanism that is necessary to satisfy the equilibrium condition, namely the virial ratio of the kinetic and potential energy contributions to the bond energy. The paper defines the atomic propensity and territory for CS bonding: Atoms (fragments) that are prone to CS bonding are compact electronegative and/or lone-pair-rich species. As such, the territory of CS bonding transcends considerations of static charge distribution, and involves: a) homopolar bonds of heteroatoms with zero static ionicity, b) heteropolar sigma and pi bonds of the electronegative and/or electron-pair-rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc), c) all hypercoordinate molecules. Several experimental manifestations of charge-shift bonding are discussed, such as depleted bonding density, the rarity of ionic chemistry of silicon in condensed phases, and the high barriers of halogen-transfer reactions as compared to hydrogen-transfers.
Yue, Lun; Bauch, Sebastian; Madsen, Lars Bojer
2017-10-01
The many-electron weak-field asymptotic theory (ME-WFAT) for static tunneling ionization [O. I. Tolstikhin et al., Phys. Rev. A 89, 013421 (2014), 10.1103/PhysRevA.89.013421] is applied to diatomic molecules. In the ME-WFAT, the dependence of the ionization rate on the molecular orientation with respect to the static field direction is determined by the structure factor, which in turn depends on the asymptotic tail of the Dyson orbital. We extract the latter by the time-dependent generalized-active-space configuration-interaction method [S. Bauch et al., Phys. Rev. A 90, 062508 (2014), 10.1103/PhysRevA.90.062508], which takes into account electron correlation effects systematically. Results for the orientation-dependent structure factor are presented for H2 and LiH. Compared to mean-field Hartree-Fock results, the inclusion of electron-electron correlation affects the structure factor, and hence the rate, even for these simple systems.
Fraschetti, F.; Pohl, M.
2017-10-01
We develop a model of the steady-state spectrum of the Crab nebula encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting photon differential energy spectrum. We find an impressive agreement with the observations in the synchrotron region. The predicted synchrotron self-Compton accommodates the previously unsolved origin of the broad 200 GeV peak that matches the Fermi/LAT data beyond 1 GeV with the MAGIC data. A natural interpretation of the deviation from power-law of the photon spectrum customarily fit with empirical broken power-laws is provided. This model can be applied to the radio-to- multi-TeV spectra of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants. We also show that MeV-range energetic particle distribution at interplanetary shocks typically fit with broken-power laws or Band function can be accurately reproduced by log-parabolas.
Phalen, Peter L; Dimaggio, Giancarlo; Popolo, Raffaele; Lysaker, Paul H
2017-09-01
Despite the apparent relevance of persecutory delusions to social relationships, evidence linking these beliefs to social functioning has been inconsistent. In this study, we examined the hypothesis that theory of mind moderates the relationship between persecutory delusions and social functioning. 88 adults with schizophrenia or schizoaffective disorder were assessed concurrently for social functioning, severity of persecutory delusions, and two components of theory of mind: mental state decoding and mental state reasoning. Mental state decoding was assessed using the Eyes Test, mental state reasoning using the Hinting Task, and social functioning assessed with the Social Functioning Scale. Moderation effects were evaluated using linear models and the Johnson-Neyman procedure. Mental state reasoning was found to moderate the relationship between persecutory delusions and social functioning, controlling for overall psychopathology. For participants with reasoning scores in the bottom 78th percentile, persecutory delusions showed a significant negative relationship with social functioning. However, for those participants with mental state reasoning scores in the top 22nd percentile, more severe persecutory delusions were not significantly associated with worse social functioning. Mental state decoding was not a statistically significant moderator. Generalizability is limited as participants were generally men in later phases of illness. Mental state reasoning abilities may buffer the impact of persecutory delusions on social functioning, possibly by helping individuals avoid applying global beliefs of persecution to specific individuals or by allowing for the correction of paranoid inferences. Published by Elsevier Ltd.
Directory of Open Access Journals (Sweden)
Zhe Chen
2009-08-01
Full Text Available Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1 algorithms survey, (2 hardware platforms survey, (3 challenges for multi-function (radar/communications multi-GHz front end, (4 compressed sensing for multi-GHz waveforms—revolutionary A/D, (5 machine learning for cognitive radio/radar, (6 quickest detection, and (7 overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts.From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband system. This paper brings together the inter-disciplinary knowledge.
Pan, Guangming; Wang, Shaochen; Zhou, Wang
2017-10-01
In this paper, we consider the asymptotic behavior of Xfn (n )≔∑i=1 nfn(xi ) , where xi,i =1 ,…,n form orthogonal polynomial ensembles and fn is a real-valued, bounded measurable function. Under the condition that Var Xfn (n )→∞ , the Berry-Esseen (BE) bound and Cramér type moderate deviation principle (MDP) for Xfn (n ) are obtained by using the method of cumulants. As two applications, we establish the BE bound and Cramér type MDP for linear spectrum statistics of Wigner matrix and sample covariance matrix in the complex cases. These results show that in the edge case (which means fn has a particular form f (x ) I (x ≥θn ) where θn is close to the right edge of equilibrium measure and f is a smooth function), Xfn (n ) behaves like the eigenvalues counting function of the corresponding Wigner matrix and sample covariance matrix, respectively.
Heijden, van der Hans
1999-01-01
This paper is concerned with the identification of determinants that influence the use ofbusiness-to-consumer electronic markets. Since the widespread adoption of the Internet, these electronic markets are now commonplace and it becomesincreasingly relevant to identify the factors that influence
A theory of local and global processes which affect solar wind electrons. II - Experimental support
Scudder, J. D.; Olbert, S.
1979-01-01
Strong observational support from data obtained on three different satellites and reported by three independent experimental groups is presented for all of the theoretically predicted correlations of a previous paper concerning local and global processes that affect solar-wind electrons. Specifically, it is shown that: (1) subthermal electrons behave most nearly as a classical gas; (2) the solar-wind extrathermal fraction of the electron density is anticorrelated within steady-state stream patterns with the local bulk speed; (3) the extrathermal electrons form a spectrally distinguishable subpopulation whose differential 'temperature' is anticorrelated with the local bulk speed; (4) the heat flux carried by electrons is anticorrelated with the bulk speed; and (5) the extrathermal 'temperature' is nearly independent of radius in the inner heliosphere. It is concluded that the previously discussed global and local Coulomb collisional effects are essential aspects of the solar-wind plasma as it is observed.
Electronic Theory of 2-6 and Related Semiconducting Materials and Structures
1985-10-01
computational effort is reduced considerably by a re- A ’l- A7’B system are the following. cently developed technique based on analytic continua - (1) The...have shown that an ideal parabolic Educacion y Ciencia. This work was supported b) the well absorbs light at the bare harmonic-oscillator frequen...acknowl- different perturbations induce on the ir optical-absorption edge support from Spain’s Ministerio de Educacion y spectrum of wide parabolic
Finke, Erinn H; Hickerson, Benjamin; McLaughlin, Eileen
2015-04-01
The purpose of this study was to determine parental attitudes regarding engagement with video games by their children with autism spectrum disorder (ASD) and whether attitudes vary based on ASD symptom severity. Online survey methodology was used to gather information from parents of children with ASD between the ages of 8 and 12 years. The finalized data set included 152 cases. Descriptive statistics and frequency analyses were used to examine participant demographics and video game play. Descriptive and inferential statistics were used to evaluate questions on the theory of planned behavior. Regression analyses determined the predictive ability of the theory of planned behavior constructs, and t tests provided additional descriptive information about between-group differences. Children with ASD play video games. There are no significant differences in the time, intensity, or types of games played based on severity of ASD symptoms (mild vs. moderate). Parents of children with ASD had positive attitudes about video game play. Parents of children with ASD appear to support video game play. On average, parents indicated video game play was positive for their children with ASD, particularly if they believed the games were having a positive impact on their child's development.
Williams, Ffrancon
2009-01-01
some of the difficulties regarding the use of EPR in studying the OH and hydrated electron (e aq - ) intermediates generated in liquid water by high energy radiation. The problems of detecting the OH radical due to its high reactivity and g-tensor anisotropy are well known and duly noted, but perhaps more striking is the fact that the EPR characterization of e aq - still remains uncertain even after more than 40 years of study. However, in suggesting the possibility that the uninformative singlet EPR spectrum assigned to e aq - could well be coming from the neutral hydronium (H 3 O) radical, the authors make the surprising assertion that the latter would be a π-type radical. In fact, H 3 O with its 9 valence electrons is a hypervalent radical and can be represented as an excess electron bound to a closed-shell H 3 O + structure, such that the unpaired electron occupies a Rydberg 3s-type orbital rather than a 2p-orbital on oxygen. This description is confirmed by high-level theoretical calculations (4, 5 ) which also indicate that H 3 O would only have marginal stability, its dissociation into a hydrogen atom and H 2 O being exothermic with an estimated barrier (0.004 eV) that is much less than kT at room temperature (0.026 eV). On the other hand, the e aq - species is relatively stable in purified water at pH 8 and quite long lived ( t 1/2 = 500 µs) with respect to its transformation to the hydrogen atom (6) . Moreover, e aq - has been shown to possess a unit negative charge (7) , so its assignment to H 3 O or even a solvated H 3 O (8 ) must be regarded as extremely questionable. Chapters 4 and 5 deal with the basic anisotropic Zeeman energy (g) and hyperfine (A) interactions that must be considered in the analysis of solid-state EPR spectra. Although these chapters are again much the same as in the earlier editions, Section 4.9, Comparative Overview, has been added and briefly discusses the pros and cons surrounding the methodology and information derived from
Directory of Open Access Journals (Sweden)
Koller Walter
2009-06-01
Full Text Available Abstract Background The outcome of patients with bacteraemia is influenced by the initial selection of adequate antimicrobial therapy. The objective of our study was to clarify the influence of different crude data correction methods on a microbial spectrum and ranking of pathogens, and b cumulative antimicrobial susceptibility pattern of blood culture isolates obtained from patients from intensive care units (ICUs using a computer based tool, MONI. Methods Analysis of 13 ICUs over a period of 7 years yielded 1427 microorganisms from positive results. Three different data correction methods were applied. Raw data method (RDM: Data without further correction, including all positive blood culture results. Duplicate-free method (DFM: Correction of raw data for consecutive patient's results yielding same microorganism with similar antibiogram within a two-week period. Contaminant-free method (CFM: Bacteraemia caused by possible contaminants was only assumed as true bloodstream infection, if an organism of the same species was isolated from > 2 sets of blood cultures within 5 days. Results Our study demonstrates that different approaches towards raw data correction – none (RDM, duplicate-free (DFM, and a contaminant-free method (CFM – show different results in analysis of positive blood cultures. Regarding the spectrum of microorganisms, RDM and DFM yielded almost similar results in ranking of microorganisms, whereas using the CFM resulted in a clinically and epidemiologically more plausible spectrum. Conclusion For possible skin contaminants, the proportion of microorganisms in terms of number of episodes is most influenced by the CFM, followed by the DFM. However, with exception of fusidic acid for gram-positive organisms, none of the evaluated correction methods would have changed advice for empiric therapy on the selected ICUs.
Molecular control of electron and hole transfer processes: Theory and applications
Energy Technology Data Exchange (ETDEWEB)
Newton, M.D. [Brookhaven National Lab., Upton, NY (United States). Dept. of Chemistry; Cave, R.J. [Harvey Mudd Coll., Claremont, CA (United States). Dept. of Chemistry
1996-02-01
Recent decades have seen remarkable advances in microscopic understanding of electron transfer (ET) processes in widely ranging contexts, including solid-state, liquid solution, and complex biological assemblies. The primary goal of this chapter is to report recent advances in the modeling, calculation, and analysis of electronic coupling in complex molecular aggregates, thereby allowing an assessment of current progress toward the goal of molecular-level control and design. The control of electron transfer kinetics (i.e., enhancing desired processes, while inhibiting others) involves, of course, system energetics (especially activation and reorganization energies) as well as electronic coupling, which is most directly relevant only after the system has reached the appropriate point (or region) along the reaction coordinate. Nevertheless, to focus the discussion in this chapter, the authors will consider such energetics, and the associated molecular and solvent coordinates which control then, only to the extent that they bear on the analysis of the electronic coupling. In the following sections they first discuss the formulation of basic ET models, including the definition of initial and final states, the role of orbitals and 1-particle models in a many-electron context, the utility of various effective Hamiltonians, and the role of vibronic as well as purely electronic effects. With these theoretical tools in hand, they then examine very recent applications to complex molecular systems using the techniques of computational quantum chemistry, followed by detailed analysis of the numerical results. They then conclude with some comments regarding the current ``state of the art`` and remaining challenges.
Centroid theory of transverse electron-proton two-stream instability in a long proton bunch
Directory of Open Access Journals (Sweden)
Tai-Sen F. Wang
2003-01-01
Full Text Available This paper presents an analytical investigation of the transverse electron-proton (e-p two-stream instability in a proton bunch propagating through a stationary electron background. The equations of motion, including damping effects, are derived for the centroids of the proton beam and the electron cloud by considering Lorentzian and Gaussian frequency spreads for the particles. For a Lorentzian frequency distribution, we derive the asymptotic solution of the coupled linear centroid equations in the time domain and study the e-p instability in proton bunches with nonuniform line densities. Examples are given for both uniform and parabolic proton line densities.
Energy Technology Data Exchange (ETDEWEB)
Marana, Naiara L. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil); Albuquerque, Anderson R. [Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56400-000 Floresta, PE (Brazil); La Porta, Felipe A. [Chemistry Department, Federal Technological University of Paraná, 86036-370 Londrina, PR (Brazil); Longo, Elson [São Paulo State University, Chemistry Institute, UNESP, 14801-907 Araraquara, SP (Brazil); Sambrano, Julio R. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil)
2016-05-15
Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors. - Graphical abstract: DFT/B3LYP were performed to simulate the structural and electronic properties as well as the strain and formation energies of SWZnONTs and SWCNTs with different chiralities as functions of their diameters. - Highlights: • The energies of SWZnONTs converge for chirality with diameters up 20 Å. • SWCNTs electronic properties depend on the chirality. • The properties of SWZnONTs are very similar to those of monolayer surface.
Pennington, Robert S.; Coll, Catalina; Estradé, Sònia; Peiró, Francesca; Koch, Christoph T.
2018-01-01
Iterative neural-network-based three-dimensional structural optimization of atomic positions over tens of nanometers is performed using transmission electron microscope (TEM) diffraction data simulated from density functional theory (DFT) all-electron densities, thus retrieving parameter variations along the beam direction. We first use experimental data to show that the GPAW DFT code's all-electron densities are considerably more accurate for electron diffraction calculations compared to conventional isolated-atom scattering factors, and they also compare well to Wien2K DFT simulations. This DFT-TEM combination is then integrated into an iterative neural-network-optimization-based algorithm (PRIMES, parameter retrieval and inversion from multiple electron scattering) to retrieve nanometer-scale ferroelectric polarization domains and strain in theoretical bulklike specimens from TEM data. DFT and isolated-atom methods produce substantially different diffraction patterns and retrieved polarization domain parameters, and DFT is sufficient to retrieve strain properties from a silicon specimen simulated using experimentally derived structure factors. Thus, we show that the improved accuracy, fast computation, and intuitive integration make the GPAW DFT code well suited for three-dimensional materials characterization and demonstrate this using an iterative neural-network algorithm that is verifiable on the mesoscale and, with DFT integration, self-consistent on the nanoscale.
Directory of Open Access Journals (Sweden)
Sophie Elizabeth Lind
2014-12-01
Full Text Available This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation, and which we hypothesised may be impaired in autism spectrum disorder (ASD. Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection, theory of mind, relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the memory island task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. Theory of mind was assessed using the animations task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings, patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not theory of mind or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to number of repetitive behaviours. In other words, children who showed more repetitive behaviours showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.
Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.
2017-11-01
The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.
Bhatia, Anand K.
2008-01-01
Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.
From Theory to Development: Role of Multiphysics Modeling and its Effect on Education in Electronics
National Research Council Canada - National Science Library
Tejinder Singh
2013-01-01
.... Finite element modeling(FEM) tools are very powerful tools and due to there huge advantages, electronics graduates should study these tools in their course curriculum to know how to tackle various types of physics problems...
Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory
Bilal, M.; Jalali-Asadabadi, S.; Ahmad, Rashid; Ahmad, Iftikhar
2015-01-01
We present a review on the research developments on the theoretical electronic properties of the antiperovskite materials. The antiperovskite materials have perovskite type structure with the positions of cations and anions interchanged. The electronic structures are used to explain different physical properties of materials; therefore it is crucial to understand band structures and densities of states of materials for their effective use in technology. The theoretical results of ...
Chen, Hsing-Yin; Chen, Hui-Fen; Kao, Chai-Lin; Yang, Po-Yu; Hsu, Sodio C N
2014-09-28
Cisplatin, Pt(NH3)2Cl2, is a leading chemotherapeutic agent that has been widely used for various cancers. Recent experiments show that combining cisplatin and electron sources can dramatically enhance DNA damage and the cell-killing rate and, therefore, is a promising way to overcome the side effects and the resistance of cisplatin. However, the molecular mechanisms underlying this phenomenon are not clear yet. By using density functional theory calculations, we confirm that cisplatin can efficiently capture the prehydrated electrons and then undergo dissociation. The first electron attachment triggers a spontaneous departure of the chloride ion, forming a T-shaped [Pt(NH3)2Cl]˙ neutral radical, whereas the second electron attachment leads to a spontaneous departure of ammine, forming a linear [Pt(NH3)Cl](-) anion. We further recognize that the one-electron reduced product [Pt(NH3)2Cl]˙ is extremely harmful to DNA. It can abstract hydrogen atoms from the C-H bonds of the ribose moiety and the methyl group of thymine, which in turn leads to DNA strand breaks and cross-link lesions. The activation energies of these hydrogen abstraction reactions are relatively small compared to the hydrolysis of cisplatin, a prerequisite step in the normal mechanism of action of cisplatin. These results rationalize the improved cytotoxicity of cisplatin by supplying electrons. Although the biological effects of the two-electron reduced product [Pt(NH3)Cl](-) are not clear at this stage, our calculations indicate that it might be protonated by the surrounding water.
Hao, Feng; Armiento, Rickard; Mattsson, Ann E
2014-05-14
We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu-O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.
Theory and computation of few-electron atoms in intense laser fields
Moore, L
2001-01-01
experimental peak laser intensity measurement. At 780 nm preliminary results of a comparable calculation of double-ionization are given. In anticipation of a high intensity, high frequency radiation source becoming available in Germany by 2003, a calculation at 14 nm has also been performed. Momentum distributions have revealed the new process of double-electron above threshold ionization. In this process both electrons absorb excess photons during double-ionization. The study of the helium atom-exposed to an intense laser field forms the topic of this thesis. In the context of laser-atom interactions, a laser is said to be intense if the force it exerts on an electron in an atomic orbital is comparable to the force experienced by that electron due to the binding atomic potential. The electronic response of the helium atom to an intense laser field is governed by the interactions of the two electrons between themselves, with the nucleus and with the field. The problem therefore is the fundamental three-body p...
Khakoo, M. A.; Srivastava, S. K.
1985-01-01
The kinetic energy spectra of protons resulting from the dissociative ionization of H2 by electron impact have been measured for electron impact energies from threshold (approximately 17 eV) to 160 eV at 90 deg and 30 deg detection angles, using a crossed-beam experimental arrangement. To check reliability, two separate proton energy analysis methods have been employed, i.e., a time-of-flight proton energy analysis and an electrostatic hemispherical energy analyzer. The present results are compared with previous measurements.
Su, Neil Qiang; Xu, Xin
2016-05-10
Recently, we have developed an integration approach for the calculations of ionization potentials (IPs) and electron affinities (EAs) of molecular systems at the level of second-order Møller-Plesset (MP2) (Su, N. Q.; Xu, X. J. Chem. Theory Comput. 11, 4677, 2015), where the full MP2 energy gradient with respect to the orbital occupation numbers was derived but only at integer occupations. The theory is completed here to cover the fractional occupation systems, such that Slater's transition state concept can be used to have accurate predictions of IPs and EAs. Antisymmetrized Goldstone diagrams have been employed for interpretations and better understanding of the derived equations, where two additional rules were introduced in the present work specifically for hole or particle lines with fractional occupation numbers.
DEFF Research Database (Denmark)
Pennington, Robert S.
to analyze diffraction effects on the amplitude and the phase. There is relatively good comparison between image simulation and experimental data, but the experimental absorption parameter is found to differ between strongly and weakly diffracting conditions. Density functional theory simulations of the mean...
Energy Technology Data Exchange (ETDEWEB)
Maitra, Neepa [Hunter College City University of New York, New York, NY (United States)
2016-07-14
This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.
Theory of Superthermal, Wide, Electron Phase-Space Holes and Bipolar Fields*
Goldman, M. V.; Newman, D. L.
2008-12-01
Laboratory reconnection experiments [1] and recent magnetospheric spacecraft observations [2] are beginning to find bipolar fields with a spatial half-width equal to many Debye lengths (10 or more) traveling at high speeds (faster than the thermal velocity of the bulk of electrons). Electron phase-space hole solutions of the nonlinear Poisson-Vlasov equations (stationary in a frame co-moving with the hole) are constructed analytically with these properties by assuming there is secondary component of the electron distribution. This component can be a tail on the electron distribution or a beam. The hole velocity will be close to the velocity at the end of the tail or the velocity of the beam, provided the ions are moving with sufficient velocity in the frame of the hole. Vlasov simulations are used to study accessibility and stability of these solutions. * Work supported by DOE, NASA, and NSF [1]W. Fox, M. Porkolab, J. Egedal, N. Katz, A. Le, and A. Vrublevskis, "Observation of electron phase-space holes during magnetic reconnection in the Versatile Toroidal Facility," Abstract GP6.00029, 50th Annual Meeting of the Division of Plasma Physics, American Physical Society (Dallas, Nov.~2008). [2] R. E. Ergun and J. Tao, private communication.
Zaidman-Zait, Anat; Mirenda, Pat; Zumbo, Bruno D; Wellington, Stephen; Dua, Vikram; Kalynchuk, Karen
2010-11-01
The Parenting Stress Index-Short Form (PSI-SF) is one of the most widely used instruments for measuring parenting stress in families of children with autism spectrum disorders (ASD). However, no research to date has examined the psychometric properties of the PSI-SF in a sample of parents of young children with ASD. In this regard, item response theory (IRT) can be used to estimate how much information or discrimination each item of a scale offers across the entire range of the latent variable being measured, by creating individual item information curves or profiles. The purpose of this study was to use IRT to examine the discriminability of PSI-SF items in a sample of parents of young children with ASD who experience varying levels of parental stress. The study involved the parents of 141 children with autism spectrum disorders (91.4% mothers; mean age 36.2 years) who completed the PSI-SF following diagnosis. Item characteristic curves were constructed for each of the PSI-SF items and examined with regard to item functioning. Results indicated that, for the most part, changes in parental distress severity were reflected in changes on item scores. However, several items on the subscales measuring parent-child dysfunctional interactions and child behavior difficulty functioned poorly to discriminate parents across a range of total stress severity. The parent-child dysfunctional interaction and difficult child subscales of the PSI-SF scale should be used with caution with parents of young children with ASD. More research is required to examine PSI-SF content validity, at least among parents of children with ASD and perhaps parents of children with other disabilities as well. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental Health.
Energy Technology Data Exchange (ETDEWEB)
Ritzmann, Andrew M.; Dieterich, Johannes M.; Carter, Emily A.
2016-07-27
Solid oxide fuel cells (SOFCs) efficiently generate electricity, but high operating temperatures (T op > 800 °C) limit their utility. Reducing T op requires mixed ion–electron conducting (MIEC) cathode materials. Density functional theory is used here to investigate the role of potassium substitutions in the MIEC material Sr1-x K x FeO3 (SKFO). We predict that such substitutions are endothermic. SrFeO3 and SKFO have nearly identical metallic electronic structures. Oxygen vacancy formation energies decrease by ~0.2 eV when x K increases from 0 to 0.0625. SKFO is a promising SOFC MIEC cathode material; however, further experimental investigations must assess its long-term stability at the desired operating temperatures.
Theory of electron induced reactions. Progress report, May 1, 1980-April 30, 1981. [Ohio Univ
Energy Technology Data Exchange (ETDEWEB)
Onley, D.S.; Wright, L.E.
1981-02-01
(I) The problem of finite-size effects in virtual photon spectra was studied from several directions. It was found that a model-independent correction to the spectrum could be defined for energies up to 200 MeV. It is shown, however, that drastically different current distributions for an M1 transition all share the same transition radius and produce the same correction to the M1 virtual spectrum. This insensitivity to details of the transition is evidently due to a predominance of low-momentum-transfer components, which selects only comparatively low moments of the corresponding form factors. Simultaneous correction for finite size and Coulomb forces (finite charge) was studied, and an alarming interaction between the two corrections was found. (II) Coulomb distortion effects in pair production were also calculated. The distortion factor, which is the ratio of the total pair production cross section with Coulomb distortion to the plane-wave (Bethe-Heitler) result, is shown as a function of photon energy for Z = 92. (III) Some work was also done on pion electroproduction. The model showed good agreement with available experimental data. 8 figures. (RWR)
Romanyuk, O.; Supplie, O.; Susi, T.; May, M. M.; Hannappel, T.
2016-10-01
The atomic and electronic band structures of GaP/Si(001) heterointerfaces were investigated by ab initio density functional theory calculations. Relative total energies of abrupt interfaces and mixed interfaces with Si substitutional sites within a few GaP layers were derived. It was found that Si diffusion into GaP layers above the first interface layer is energetically unfavorable. An interface with Si/Ga substitution sites in the first layer above the Si substrate is energetically the most stable one in thermodynamic equilibrium. The electronic band structure of the epitaxial GaP/Si(001) heterostructure terminated by the (2 ×2 ) surface reconstruction consists of surface and interface electronic states in the common band gap of two semiconductors. The dispersion of the states is anisotropic and differs for the abrupt Si-Ga, Si-P, and mixed interfaces. Ga 2 p , P 2 p , and Si 2 p core-level binding-energy shifts were computed for the abrupt and the lowest-energy heterointerface structures. Negative and positive core-level shifts due to heterovalent bonds at the interface are predicted for the abrupt Si-Ga and Si-P interfaces, respectively. The distinct features in the heterointerface electronic structure and in the core-level shifts open new perspectives in the experimental characterization of buried polar-on-nonpolar semiconductor heterointerfaces.
Partovi-Azar, Pouya; Kaghazchi, Payam
2017-04-15
We report on real-time time-dependent density functional theory calculations on direction-dependent electron and hole transfer processes in molecular systems. As a model system, we focus on α-sulfur. It is shown that time scale of the electron transfer process from a negatively charged S8 molecule to a neighboring neutral monomer is comparable to that of a strong infrared-active molecular vibrations of the dimer with one negatively charged monomer. This results in a strong coupling between the electrons and the nuclei motion which eventually leads to S8 ring opening before the electron transfer process is completed. The open-ring structure is found to be stable. The similar infrared-active peak in the case of hole transfer, however, is shown to be very weak and hence no significant scattering by the nuclei is possible. The presented approach to study the charge transfer processes in sulfur has direct applications in the increasingly growing research field of charge transport in molecular systems. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Stenmark, Theodore; Word, R C; Könenkamp, R
2016-02-22
Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410 nm and 780 nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. The electromagnetic field interaction at the boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.
Measurement of the W Boson Mass with the D0 Run II Detector using the Electron P(T) Spectrum
Energy Technology Data Exchange (ETDEWEB)
Andeen, Jr., Timothy R. [Northwestern Univ., Evanston, IL (United States)
2008-06-01
This thesis is a description of the measurement of the W boson mass using the D0 Run II detector with 770 pb^{-1} of p$\\bar{p}$ collision data. These collisions were produced by the Tevatron at √s = 1.96 TeV between 2002 and 2006. We use a sample of W → ev and Z → ee decays to determine the W boson mass with the transverse momentum distribution of the electron and the transverse mass distribution of the boson. We measure M_{W} = 80340 ± 37 (stat.) ± 26 (sys. theo.) ± 51 (sys. exp.) MeV = 80340 ± 68 MeV with the transverse momentum distribution of the electron and M_{W} = 80361 ± 28 (stat.) ± 17 (sys. theo.) ± 51 (sys. exp.) MeV = 80361 ± 61 MeV with the transverse mass distribution.
Hartmann, S. R.; Happer, W.
1974-01-01
The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.
Electronic structure of aqueous solutions: Bridging the gap between theory and experiments.
Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen E; Schwegler, Eric; Galli, Giulia
2017-06-01
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.
Electronic structure of aqueous solutions: Bridging the gap between theory and experiments
Energy Technology Data Exchange (ETDEWEB)
Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen E.; Schwegler, Eric; Galli, Giulia
2017-06-01
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.
A theory of local and global processes which affect solar wind electrons. 2: Experimental support
Scudder, J. D.; Olbert, S.
1979-01-01
The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E kT sub c; the transthermals with kT sub c E 7 kT sub c and the extrathermals E 7 kT sub c. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal "temperature" should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU.
Theory of the electronic and structural properties of solid state oxides
Energy Technology Data Exchange (ETDEWEB)
Chelikowsky, J.R.
1990-01-01
Studies on electronic and structural properties of solid state oxides continued. This quarter, studies have concentrated on silica. Progress is discussed in the following sections: interatomic potentials and the structural properties of silica; chemical reactivity and covalent/metallic bonding on Si clusters; and surface and thermodynamic interatomic forces fields for silicon. 64 refs., 20 figs., 5 tabs. (CBS)
Faraji, Shirin; Dreuw, Andreas
2017-01-01
Ultraviolet radiation causes two of the most abundant mutagenic and cytotoxic DNA lesions: cyclobutane pyrimidine dimers and 6-4 photoproducts. (6-4) Photolyases are light-activated enzymes that selectively bind to DNA and trigger repair of mutagenic 6-4 photoproducts via photoinduced electron
Newbury, Dale E
2005-01-01
A third-generation silicon drift detector (SDD) in the form of a silicon multicathode detector (SMCD) was tested as an analytical x-ray spectrometer on a scanning electron microscope. Resolution, output count rate, and spectral quality were examined as a function of the detector peaking time from 8 micros to 250 ns and over a range of input count rate (dead time). The SDD-SMCD (50 mm2 active area) produced a resolution of 134 eV with a peaking time of 8 micros. The peak width and peak channel were nearly independent of the input count rate (at 8 micros peaking time, the peak width degradation was 0.003 eV/percent dead time and peak position change was -0.7 eV over the dead time range tested). Maximum output count rates as high as 280 kHz were obtained with a 500 ns peaking time (188 eV resolution) and 500 kHz with a 250 ns peaking time (217 eV resolution). X-ray spectrum imaging was achieved with a pixel dwell time as short as 10 ms (with 1.3 ms overhead) in which a 2048 channel (10 eV/channel) spectrum with 2-byte intensity range was recorded at each pixel (scanned at 128 x 128). With a 220 kHz output count rate, a minor constituent of iron (present at a concentration of 0.04 mass fraction or 4 weight %) in an aluminum-nickel alloy could be readily detected in the x-ray maps derived from the x-ray spectrum image database accumulated in 185 s.
DEFF Research Database (Denmark)
Miyagi, Haruhide; Madsen, Lars Bojer
We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...... at a specific excitation level. In a numerical application to laser-driven electron dynamics of the one-dimensional beryllium atom, the TD-RASSCF method performs accurately while largely reducing the computational complexity compared to the MCTDHF method....
Liu, Meng-Jung; Ma, Le-Yin; Chou, Wen-Jiun; Chen, Yu-Min; Liu, Tai-Ling; Hsiao, Ray C; Hu, Huei-Fan; Yen, Cheng-Fang
2018-01-01
Bullying involvement is prevalent among children and adolescents with autism spectrum disorder (ASD). This study examined the effects of theory of mind performance training (ToMPT) on reducing bullying involvement in children and adolescents with high-functioning ASD. Children and adolescents with high-functioning ASD completed ToMPT (n = 26) and social skills training (SST; n = 23) programs. Participants in both groups and their mothers rated the pretraining and posttraining bullying involvement of participants on the Chinese version of the School Bullying Experience Questionnaire. The paired t test was used to evaluate changes in bullying victimization and perpetration between the pretraining and posttraining assessments. Furthermore, the linear mixed-effect model was used to examine the difference in the training effect between the ToMPT and SST groups. The paired t test indicated that in the ToMPT group, the severities of both self-reported (p = .039) and mother-reported (p = .003) bullying victimization significantly decreased from the pretraining to posttraining assessments, whereas in the SST group, only self-reported bullying victimization significantly decreased (p = .027). The linear mixed-effect model indicated that compared with the SST program, the ToMPT program significantly reduced the severity of mother-reported bullying victimization (p = .041). The present study supports the effects of ToMPT on reducing mother-reported bullying victimization in children and adolescents with high-functioning ASD.
Directory of Open Access Journals (Sweden)
Meng-Jung Liu
Full Text Available Bullying involvement is prevalent among children and adolescents with autism spectrum disorder (ASD. This study examined the effects of theory of mind performance training (ToMPT on reducing bullying involvement in children and adolescents with high-functioning ASD. Children and adolescents with high-functioning ASD completed ToMPT (n = 26 and social skills training (SST; n = 23 programs. Participants in both groups and their mothers rated the pretraining and posttraining bullying involvement of participants on the Chinese version of the School Bullying Experience Questionnaire. The paired t test was used to evaluate changes in bullying victimization and perpetration between the pretraining and posttraining assessments. Furthermore, the linear mixed-effect model was used to examine the difference in the training effect between the ToMPT and SST groups. The paired t test indicated that in the ToMPT group, the severities of both self-reported (p = .039 and mother-reported (p = .003 bullying victimization significantly decreased from the pretraining to posttraining assessments, whereas in the SST group, only self-reported bullying victimization significantly decreased (p = .027. The linear mixed-effect model indicated that compared with the SST program, the ToMPT program significantly reduced the severity of mother-reported bullying victimization (p = .041. The present study supports the effects of ToMPT on reducing mother-reported bullying victimization in children and adolescents with high-functioning ASD.
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
Peterson, Candida C; Garnett, Michelle; Kelly, Adrian; Attwood, Tony
2009-02-01
Children with autism-spectrum disorders (ASD) often fail laboratory false-belief tests of theory of mind (ToM). Yet how this impacts on their everyday social behavior is less clear, partly owing to uncertainty over which specific everyday conversational and social skills require ToM understanding. A new caregiver-report scale of these everyday applications of ToM was developed and validated in two studies. Study 1 obtained parent ratings of 339 children (85 with autism; 230 with Asperger's; 24 typically-developing) on the new scale and results revealed (a) that the scale had good psychometric properties and (b) that children with ASD had significantly more everyday mindreading difficulties than typical developers. In Study 2, we directly tested links between laboratory ToM and everyday mindreading using teacher ratings on the new scale. The sample of 25 children included 15 with autism and 10 typical developers aged 5-12 years. Children in both groups who passed laboratory ToM tests had fewer everyday mindreading difficulties than those of the same diagnosis who failed. Yet, intriguingly, autistic ToM-passers still had more problems with everyday mindreading than younger typically-developing ToM-failers. The possible roles of family conversation and peer interaction, along with ToM, in everyday social functioning were considered.
Siller, Michael; Swanson, Meghan R; Serlin, Gayle; George, Ann
2014-05-01
The current study examines narratives elicited using a wordless picture book, focusing on language used to describe the characters' thoughts and emotions (i.e., internal state language, ISL). The sample includes 21 children with Autism Spectrum Disorder (ASD) and 24 typically developing controls, matched on children's gender, IQ, as well as receptive and expressive vocabulary. This research had three major findings. First, despite equivalent performance on standardized language assessments, the volume of children's narratives (i.e., the number of utterances and words, the range of unique verbs and adjectives) was lower in children with ASD than in typically developing controls. Second, after controlling for narrative volume, the narratives of children with ASD were less likely to reference the characters' emotions than was the case for typically developing controls. Finally, our results revealed a specific association between children's use of emotion terms and their performance on a battery of experimental tasks evaluating children's Theory of Mind abilities. Implications for our understanding of narrative deficits in ASD as well as interventions that use narrative as a context for improving social comprehension are discussed.
Baixauli-Fortea, Inmaculada; Miranda Casas, Ana; Berenguer-Forner, Carmen; Colomer-Diago, Carla; Roselló-Miranda, Belén
2017-11-21
The primary aim of this study is to increase the existing knowledge about the pragmatic skills of children with autism spectrum disorders (ASD). Specifically, the study has two objectives. The first is to provide a profile of characteristics based on The Children's Communication Checklist (CCC-2) pragmatics scales (inappropriate initiation, stereotyped language, use of context, nonverbal communication, and general pragmatics) and narrative task indicators. To this end, children with ASD will be compared to children with typical development (TD), controlling the effects of sex and structural language (speech, syntax, semantics, coherence). The second objective is to analyze whether theory of mind (ToM), verbal working memory, ADHD symptoms, and structural language can predict pragmatic competence in children with ASD without intellectual disability (ID). The results showed worse performance in the group with ASD on the majority of the pragmatic aspects evaluated. In addition, the application of ToM skills and structural language were significant predictors of the pragmatic skills of the children with ASD. These findings reinforce the importance of focusing intervention programs on mentalist abilities through experiences in real social scenarios, along with strengthening structural language components.
O'Nions, Elizabeth; Sebastian, Catherine L; McCrory, Eamon; Chantiluke, Kaylita; Happé, Francesca; Viding, Essi
2014-09-01
Individuals with autism spectrum disorders (ASD) have difficulty understanding other minds (Theory of Mind; ToM), with atypical processing evident at both behavioural and neural levels. Individuals with conduct problems and high levels of callous-unemotional (CU) traits (CP/HCU) exhibit reduced responsiveness to others' emotions and difficulties interacting with others, but nonetheless perform normally in experimental tests of ToM. The present study aimed to examine the neural underpinnings of ToM in children (aged 10-16) with ASD (N = 16), CP/HCU (N = 16) and typically developing (TD) controls (N = 16) using a non-verbal cartoon vignette task. Whilst individuals with ASD were predicted to show reduced fMRI responses across regions involved in ToM processing, CP/HCU individuals were predicted to show no differences compared with TD controls. The analyses indicated that neural responses did not differ between TD and CP/HCU groups during ToM. TD and CP/HCU children exhibited significantly greater medial prefrontal cortex responses during ToM than did the ASD group. Within the ASD group, responses in medial prefrontal cortex and right temporoparietal junction (TPJ) correlated with symptom severity as measured by the Autism Diagnostic Observation Schedule (ADOS). Findings suggest that although both ASD and CP/HCU are characterized by social difficulties, only children with ASD display atypical neural processing associated with ToM. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
DEFF Research Database (Denmark)
Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa
2016-01-01
-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become...... and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC...
The origin of two-dimensional electron gases at oxide interfaces: insights from theory.
Bristowe, N C; Ghosez, Philippe; Littlewood, P B; Artacho, Emilio
2014-04-09
The response of oxide thin films to polar discontinuities at interfaces and surfaces has generated enormous activity due to the variety of interesting effects that it gives rise to. A case in point is the discovery of the electron gas at the interface between LaAlO3 and SrTiO3, which has since been shown to be quasi-two-dimensional, switchable, magnetic and/or superconducting. Despite these findings, the origin of the two-dimensional electron gas is highly debated and several possible mechanisms remain. Here we review the main proposed mechanisms and attempt to model expected effects in a quantitative way with the ambition of better constraining what effects can/cannot explain the observed phenomenology. We do it in the framework of a phenomenological model constructed to provide an understanding of the electronic and/or redox screening of the chemical charge in oxide heterostructures. We also discuss the effect of intermixing, both conserving and not conserving the total stoichiometry.
On the calculation of Δ for electronic excitations in time-dependent density-functional theory
Myneni, Hemanadhan; Casida, Mark E.
2017-04-01
Excited states are often treated within the context of time-dependent (TD) density-functional theory (DFT), making it important to be able to assign the excited spin-state symmetry. While there is universal agreement on how Δ , the difference between for ground and excited states, should be calculated in a wave-function-like formalism such as the Tamm-Dancoff approximation (TDA), confusion persists as to how to determine the spin-state symmetry of excited states in TD-DFT. We try to clarify the origins of this confusion by examining various possibilities for the parameters (σ1 ,σ2) in the formula
Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study
Directory of Open Access Journals (Sweden)
Bin Tang
2018-01-01
Full Text Available As a widely used gas insulator, sulfur hexafluoride (SF6 has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV, which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.
Energy Technology Data Exchange (ETDEWEB)
Barrachina, R.O., E-mail: barra@cab.cnea.gov.ar [Centro Atómico Bariloche and Instituto Balseiro, Comisíon Nacional de Energía Atómica and Universidad Nacional de Cuyo, 8400 Bariloche, Río Negro (Argentina); Gulyás, L.; Sarkadi, L. [Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Pf. 51, H-4001 Debrecen (Hungary)
2016-02-15
The double electron capture into the continuum states of the projectile (double ECC) is investigated theoretically in collisions of 100 keV He{sup 2+} ions with He atoms. The process is described within the framework of the impact parameter and frozen-correlation approximations where the single-electron events are treated by the continuum distorted wave method. On the other hand, the Wannier theory is employed for describing the angular correlation between both ejected electrons. This treatment substantially improved the agreement between the theory and experiment as compared to the previous version of the theory (Gulyás et al., 2010) in which the correlation between the ejected electrons was taken into account by the Coulomb density of states approximation.
Marana, Naiara L.; Albuquerque, Anderson R.; La Porta, Felipe A.; Longo, Elson; Sambrano, Julio R.
2016-05-01
Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors.
Samimi, A.; Scales, W. A.; Fu, H.; Bernhardt, P. A.; Briczinski, S. J.; McCarrick, M. J.
2013-01-01
Stimulated electromagnetic emissions (SEEs) may provide important diagnostic information about space plasma composition, energetics, and dynamics during active experiments in which ground-based high-powered radio waves are transmitted into the ionosphere. The nonlinear plasma processes producing this secondary radiation are not well understood particularly for some recent observations where the transmitter (pump) frequency is near the second harmonic of the electron gyrofrequency. New, more comprehensive, experimental observations of spectral features within 1 kHz of the pump wave frequency are reported here to begin more careful comparisons of the experimental observations and a possible theoretical underpinning, which is also provided. The experimental observations typically show two distinct types of secondary radiation spectra, which are (a) discrete narrowband harmonic spectral structures ordered by the ion gyrofrequency and (b) broadband spectral structure with center frequency near 500 Hz and similar spectral bandwidth. A theoretical model is provided that interprets these spectral features as resulting from parametric decay instabilities in which the pump field ultimately decays into high-frequency upper hybrid/electron Bernstein and low-frequency neutralized ion Bernstein and/or obliquely propagating ion acoustic waves at the upper hybrid interaction altitude. Detailed calculations of the threshold level, growth rate, unstable wave number, and frequency bandwidth of the instabilities are provided for comparisons with experimental observations. An assessment of the effect of the critical instability parameters are provided including pump electric field strength, proximity of the pump frequency to the electron gyrofrequency and pump electric field geometry. The model shows quite reasonable agreement with the experimental observations. Further discussions are provided of connections with past observed SEE spectral features and potential new diagnostic
Lipparini, Filippo; Cappelli, Chiara; Barone, Vincenzo
2012-11-13
A fully polarizable quantum/classical Hamiltonian including SCF (HF or DFT), fluctuating charge, and polarizable continuum regions is introduced and implemented for electronic energies of ground and excited states, using, in the latter case, a linear response formulation. After calibration and validation of the approach, preliminary results are presented for pyrimidine in aqueous solution and for retinal in a rhodopsin mimic. The results are consistent with more tested methodologies and pave the route toward fully consistent yet effective simulations of large systems of technological and/or biological interest in their natural environments.
A complete theory for the magnetism of an ideal gas of electrons
Energy Technology Data Exchange (ETDEWEB)
Biswas, Shyamal; Jana, Debnarayan [Department of Physics, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Sen, Swati [Department of Physical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741252 (India)
2013-05-15
We have explored Pauli paramagnetism, Landau diamagnetism, and de Haas-van Alphen effect in a single framework, and unified these three effects for all temperatures as well as for all strengths of magnetic field. Our result goes beyond Pauli-Landau result on the magnetism of the 3-D ideal gas of electrons, and is able to describe crossover of the de Haas-van Alphen oscillation to the saturation of magnetization. We also have obtained a novel asymptotic series expansion for the low temperature properties of the system.
Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.
2017-01-01
The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.
Theory of Square-Wave Voltammetry of Two-Electron Reduction with the Adsorption of Intermediate
Directory of Open Access Journals (Sweden)
Milivoj Lovric
2012-01-01
Full Text Available Thermodynamically unstable intermediate of fast and reversible two-electron electrode reaction can be stabilized by the adsorption to the electrode surface. In square-wave voltammetry of this reaction mechanism, the split response may appear if the electrode surface is not completely covered by the adsorbed intermediate. The dependence of the difference between the net peak potentials of the prepeak and postpeak on the square-wave frequency is analyzed theoretically. This relationship can be used for the estimation of adsorption constant.
Holomorphic Hartree-Fock Theory: The Nature of Two-Electron Problems
Burton, Hugh G. A.; Gross, Mark; Thom, Alex J. W.
2018-01-01
We explore the existence and behaviour of holomorphic restricted Hartree-Fock (h-RHF) solutions for two-electron problems. Through algebraic geometry, the exact number of solutions with $n$ basis functions is rigorously identified as $\\frac{1}{2}(3^n - 1)$, proving that states must exist for all molecular geometries. A detailed study on the h-RHF states of HZ (STO-3G) then demonstrates both the conservation of holomorphic solutions as geometry or atomic charges are varied and the emergence of...
Energy Technology Data Exchange (ETDEWEB)
Hirokawa, K. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research); Fukuda, Y. (Shizuoka Univ., Shizuoka (Japan). Research Inst. of Electronics); Suzuki, K. (Nippon Steel Corp., Tokyo (Japan)); Hashimoto, S. (NKK Corp., Tokyo (Japan)); Suzuki, T. (Kawasaki Steel Corp., Kobe (Japan)); Usuki, N. (Sumotomo Metal Industries, Ltd., Osaka (Japan)); Gennai, N. (Kobelco Research Inst., Inc., Kobe (Japan)); Yoshida, S. (Daido Steel Co. Ltd., Nagoya (Japan)); Koda, M. (Nisshin Steel Co. Ltd., Tokyo (Japan)); Sezaki, H. (Hitachi Metals, Ltd., Tokyo (Japan)); Horie, H. (Kyushu Electronic Metal Co. Ltd., Fukuoka (Japan)); Tanaka, A. (ULVAC-PHI Incorporated, Kanagawa (Japan)); Otsubo, T. (The Japan Iron and Steel Federation, Tokyo (Japan))
1991-09-01
Cooperative researches by participation of 8 analytical laboratories such as Institute for Materials Research, Tohoku University and Steel Research Center, NKK Corporation, etc. were conducted wherein the common samples of Au, Fe, Ni, Al and their oxides were measured by means of Auger electron spectra. By virtue of an elastic scattering peak apparatus and the standardization of the sample locations, peak energy values of Auger electron spectra obtained by the respective equipment are neutrally in good agreement. Auger profiles (peak intensity) considerably change according to the respective units and the measuring conditions. When the spectra are as sharp as in LMM, LMV and LVV of Fe, Ni and their oxides, and emerge, as in the case of LMM and LMV, in mutually close energy value, the difference in the ratio of spectrum intensity by the respective machines and measuring methods is small in metal oxides, but, in the case of LVV LMM, the state analysis can be made by its slight change. 10 refs., 9 figs., 1 tab.
George, Janine; Dronskowski, Richard
2017-02-16
Intermolecular bonds play a crucial role in the rational design of crystal structures, dubbed crystal engineering. The relatively new term tetrel bonds (TBs) describes a long-known type of such interactions presently in the focus of quantum chemical cluster calculations. Here, we energetically explore the strengths and cooperativity of these interactions in infinite chains, a possible arrangement of such tetrel bonds in extended crystals, by periodic density functional theory. In the chains, the TBs are amplified due to cooperativity by up to 60%. Moreover, we computationally take apart crystals stabilized by infinite tetrel-bonded chains and assess the importance of the TBs for the crystal stabilization. Tetrel bonds can amount to 70% of the overall interaction energy within some crystals, and they can also be energetically decisive for the taken crystal structure; their individual strengths also compete with the collective packing within the crystal structures.
Gauge field theory approach to spin transport in a 2D electron gas
Directory of Open Access Journals (Sweden)
B. Berche
2009-01-01
Full Text Available We discuss the Pauli Hamiltonian including the spin-orbit interaction within an U(1×SU(2 gauge theory interpretation, where the gauge symmetry appears to be broken. This interpretation offers new insight into the problem of spin currents in the condensed matter environment, and can be extended to Rashba and Dresselhaus spin-orbit interactions. We present a few outcomes of the present formulation: i it automatically leads to zero spin conductivity, in contrast to predictions of Gauge symmetric treatments, ii a topological quantization condition leading to voltage quantization follows, and iii spin interferometers can be conceived in which, starting from an arbitrary incoming unpolarized spinor, it is always possible to construct a perfect spin filtering condition.
Baumeier, Björn; Rohlfing, Michael; Andrienko, Denis
2014-08-12
We present a comparative study of excited states in push-pull oligomers of PCPDTBT and PSBTBT and prototypical complexes with a C60 acceptor using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. We analyze excitations in oligomers up to a length of 5 nm and find that for both materials the absorption energy practically saturates for structures larger than two repeat units due to the localized nature of the excitation. In the bimolecular complexes with C60, the transition from Frenkel to charge transfer excitons is generally exothermic and strongly influenced by the acceptor's position and orientation. The high CT binding energy of the order of 2 eV results from the lack of an explicit molecular environment. External polarization effects are then modeled in a GW-BSE based QM/MM approach by embedding the donor-acceptor complex into a polarizable lattice. The lowest charge transfer exciton is energetically stabilized by about 0.5 eV, while its binding energy is reduced to about 0.3 eV. We also identify a globally unbound charge transfer state with a more delocalized hole at higher energy while still within the absorption spectrum, which opens another potential pathway for charge separation. For both PCPDTBT and PSBTBT, the energetics are largely similar with respect to absorption and the driving force to form intermediate charge transfer excitations for free charge generation. These results support that the higher power conversion efficiency observed for solar cells using PSBTBT as donor material is a result of molecular packing rather than of the electronic structure of the polymer.
Tailoring of the electronic properties of ZnO-polyacrylonitrile nanofibers: Experiment and theory
Energy Technology Data Exchange (ETDEWEB)
Iatsunskyi, Igor, E-mail: igoyat@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan (Poland); Vasylenko, Andrij, E-mail: A.Vasylenko@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Institute for Condensed Matter Physics NAS Ukraine, 1 Sventsitskogo str. 79011 Lviv (Ukraine); Viter, Roman, E-mail: roman.viter@lu.lv [Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV 1586, Riga (Latvia); Kempiński, Mateusz; Nowaczyk, Grzegosz [NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska, 85, 61-614 Poznan (Poland); Bechelany, Mikhael, E-mail: mikhael.bechelany@univ-montp2.fr [European Institute of Membranes (IEM, ENSCM-UM-CNRS, UMR 5635), University of Montpellier, Place Eugène Bataillon, F-34095, Montpellier (France)
2017-07-31
Highlights: • ZnO-polyacrylonitrile (ZnO-PAN) nanofibers were obtained by electrospinning method and atomic layer deposition. • Relation between structural and electronic properties of ZnO-PAN nanofibers were established. • DFT for calculation of ZnO work function was performed. - Abstract: We report the study of ZnO-polyacrylonitrile (ZnO-PAN) nanofibers fabricated by the combination of electrospinning and atomic layer deposition. The latter technique enables us to control the size of the surface of ZnO 1D nanostructures and hence its effectiveness for energy and biosensor applications. We observe the tendency of ZnO to form nanograins with increase of the layer thickness, and investigate the influence of the grain size on the electronic properties of the nanofibers. It is demonstrated that the ZnO work function (Φ) is strongly affected by surface band bending in the ZnO layer. The observed change of Φ in ZnO layers results from the curvature of the grain surface as well as the presence of the hydroxyl and oxygen groups, adsorbed on ZnO surface and is in a good agreement with theoretical prediction.
Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering
Bhatia, Anand
2012-01-01
We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.
Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian
2017-12-01
We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .
Tahir, M.
2013-12-10
Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.
Theory of spontaneous radiation by electrons in a trajectory-coherent approximation
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G.; Trifonov, A.Yu. (AN SSSR, Tomsk (Russian Federation). Inst. Sil' notochnoj Ehlektroniki); Belov, V.V. (Moscow Inst. of Electronic Machine Design (Russian Federation))
1993-11-21
The first-order quantum correction for the characterization of spontaneous radiation is calculated by means of electron quasi-classical trajectory-coherent states in an arbitrary electromagnetic field. Well known expressions for the characterization of spontaneous radiation are obtained using quasi-classical approximation. The first-order quantum correction is derived as a function from a classical trajectory (among which is a classical spin vector). Transitions with spin flip and without spin flip are distinguished. Those elements connected with photon kick and quantum motion characteristics are selected for first-order quantum correction. It is shown that, using an ultra-relativistic approximation, the latter may be ignored, but when using a non-relativistic approximation their contributions are approximately equal. A special trajectory-coherent representation that significantly simplifies the investigation of spontaneous radiation is proposed. (author).
Low-energy electron diffraction experiment, theory and surface structure determination
Hove, Michel A; Chan, Chi-Ming
1986-01-01
Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...
Pitts, Amanda L; Hall, Michael B
2013-09-16
To maintain correct copper homeostasis, the body relies on ion binding metallochaperones, cuprophilic ligands, and proteins to move copper around as a complexed metal. The most common binding site for Cu(I) proteins is the CX1X2C motif, where X1 and X2 are nonconserved residues. Although this binding site motif is well established, the mechanistic and electronic details for the transfer of Cu(I) between two binding sites have not been fully established, in particular, whether the transfer is dissociative or associative or if the electron-rich Cu(I)-Cys interactions influence the transfer. In this work, we investigated the electronic structure of the Cu(I)-S interactions during the copper transfer between Atox1 and a metal binding domain on the ATP7A or ATP7B protein. Initially, three Cu(I) methylthiolate complexes, [Cu(SCH3)2](-1), [Cu(SCH3)3](-2), [Cu(SCH3)4](-3), were investigated with density functional theory (DFT) to fully elucidate the electronic structure and bonding between Cu(I) and thiolate species. The two-coordinate, linear species with a C-S-S-C dihedral angle of ∼90° is the lowest energy conformation because the filled π antibonding orbitals are stabilized in this geometry. The importance of π-overlap is also seen with the trigonal planar, three-coordinate Cu(I) complex, which is similarly stabilized. A corresponding four-coordinate species could not be consistently optimized, so it was concluded that tetrahedral coordination was not likely to be stable. The transfer of Cu(I) from the Atox1 metallochaperone to a metal binding domain of the ATP7A or ATP7B protein was then modeled by using the CGGC Atox1 binding site for the donor model and the dithiotreitol ligand (DTT) for the acceptor model. The two- and three-coordinate intermediates calculated along the five-step transfer mechanism converged to near optimal Cu-S π-overlap for the respective geometries, which demonstrates that the electronic structure in this electron-rich environment
Su, Neil Qiang; Xu, Xin
2015-10-13
An integration approach is developed to calculate ionization potentials (IPs), and electron affinities (EAs), which is an extension of the D-ΔMBPT(2) method [A. Beste et al., J. Chem. Phys. 2013, 138, 074101]. The latter is an extension of the single-point method of Cohen et al. [A. J. Cohen et al., J. Chem. Theory Comput. 2009, 5, 786] from the perspective of fractional charges. While relaxation effects were included only at the Hartree-Fock (HF) level in the previous methods, such effects are fully taken into account in the present method up to the second-order Møller-Plesset (MP2) level. This is made possible by deriving the full MP2 energy gradient, with respect to the orbital occupation numbers, which is solved through the coupled-perturbed HF (CP-HF) equations.
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Directory of Open Access Journals (Sweden)
Falko Schmidt
2017-01-01
Full Text Available We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3 in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.
Sinha Ray, Suvonil; Ghosh, Pradipta; Chaudhuri, Rajat K.; Chattopadhyay, Sudip
2017-02-01
The state-specific multireference perturbation theory (SSMRPT) with an improved virtual orbital complete active space configuration interaction (IVO-CASCI) reference function [called as IVO-SSMRPT] is used to investigate the energy surface, geometrical parameters, molecular properties of spectroscopic interest for the systems/situations [such as BeH2, BeCH2, MgCH2, Si2H4, unimolecular dissociation of H2CO, and intramolecular reaction pathways of 1,3-butadiene] where the effect of quasidegeneracy cannot be neglected. The merit of using the IVO-CASCI rather than complete active space self-consistent field (CASSCF) is that it is free from iterations beyond those in the initial SCF calculation and the convergence difficulties that plague CASSCF calculations with increasing size of the CAS. While IVO-CASCI describes the non-dynamical correlation, the SSMRPT scheme is a good second-order perturbative approximation to account for the rest of the correlation energy. Our IVO-SSMRPT method is instrumental in avoiding intruder states in an size-extensive manner and allows the revision of the content of wave function in the model space. It can treat model as well as real systems with predictive accuracy, as is evident from the fairly nice accordance between our estimates, and high-level theoretical results. Our estimates also corroborate well with some experimental findings.
Lind, Sophie E; Bowler, Dermot M; Raber, Jacob
2014-01-01
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the "memory island" task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the "animations" task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.
Energy Technology Data Exchange (ETDEWEB)
Oyarzún, Simón [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne CEDEX (France); Henríquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Suárez, Marco Antonio; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, Germán [Bachillerato, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); Munoz, Raúl C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)
2014-01-15
We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.
George, Janine; Deringer, Volker L; Dronskowski, Richard
2014-05-01
Halogen bonds (XBs) are intriguing noncovalent interactions that are frequently being exploited for crystal engineering. Recently, similar bonding mechanisms have been proposed for adjacent main-group elements, and noncovalent "chalcogen bonds" and "pnictogen bonds" have been identified in crystal structures. A fundamental question, largely unresolved thus far, is how XBs and related contacts interact with each other in crystals; similar to hydrogen bonding, one might expect "cooperativity" (bonds amplifying each other), but evidence has been sparse. Here, we explore the crucial step from gas-phase oligomers to truly infinite chains by means of quantum chemical computations. A periodic density functional theory (DFT) framework allows us to address polymeric chains of molecules avoiding the dreaded "cluster effects" as well as the arbitrariness of defining a "large enough" cluster. We focus on three types of molecular chains that we cut from crystal structures; furthermore, we explore reasonable substitutional variants in silico. We find evidence of cooperativity in chains of halogen cyanides and also in similar chalcogen- and pnictogen-bonded systems; the bonds, in the most extreme cases, are amplified through cooperative effects by 79% (I···N), 90% (Te···N), and 103% (Sb···N). Two experimentally known organic crystals, albeit with similar atomic connectivity and XB characteristics, show signs of cooperativity in one case but not in another. Finally, no cooperativity is observed in alternating halogen/acetone and halogen/1,4-dioxane chains; in fact, these XBs weaken each other by up to 26% compared to the respective gas-phase dimers.
Wopperer, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.
2015-02-01
There are various ways to analyze the dynamical response of clusters and molecules to electromagnetic perturbations. Particularly rich information can be obtained from measuring the properties of electrons emitted in the course of the excitation dynamics. Such an analysis of electron signals covers observables such as total ionization, Photo-Electron Spectra (PES), Photoelectron Angular Distributions (PAD), and ideally combined PES/PAD. It has a long history in molecular physics and was increasingly used in cluster physics as well. Recent progress in the design of new light sources (high intensity, high frequency, ultra short pulses) opens new possibilities for measurements and thus has renewed the interest on these observables, especially for the analysis of various dynamical scenarios, well beyond a simple access to electronic density of states. This, in turn, has motivated many theoretical investigations of the dynamics of electronic emission for molecules and clusters up to such a complex and interesting system as C60. A theoretical tool of choice is here Time-Dependent Density Functional Theory (TDDFT) propagated in real time and on a spatial grid, and augmented by a Self-Interaction Correction (SIC). This provides a pertinent, robust, and efficient description of electronic emission including the detailed pattern of PES and PAD. A direct comparison between experiments and well founded elaborate microscopic theories is thus readily possible, at variance with more demanding observables such as for example fragmentation or dissociation cross sections. The purpose of this paper is to describe the theoretical tools developed on the basis of real-time and real-space TDDFT and to address in a realistic manner the analysis of electronic emission following irradiation of clusters and molecules by various laser pulses. After a general introduction, we shall present in a second part the available experimental results motivating such studies, starting from the simplest
Jette, D
1999-06-01
In modern photon dose-calculation algorithms one is frequently called upon to evaluate the integral at various points throughout the irradiated material of a dose or particle transport quantity multiplied by a weighting factor. For example, for a given dose-calculation point one might be integrating the product of the dose deposited by a monoenergetic beam and the energy distribution of the actual beam, and want to do this throughout the treatment volume. We have developed explicit formulas for replacing such integrations with a weighted sum of two or three functions (of, for example, the point of dose calculation) in order to greatly reduce the calculation time for the algorithm being used. We demonstrate the accuracy of this method of representing dose and particle transport integrals through comparisons with Monte Carlo calculations of dose distributions for two typical problems, in dealing with the energy spectrum of the photon beam and with the energy deposited by all the Compton electrons emerging from a particular interaction point, respectively.
Directory of Open Access Journals (Sweden)
Wei Jiang
2017-09-01
Full Text Available Fluorite (CaF2, a halogen elemental mineral, always co-exists with other minerals. The Ca element in fluorite is often replaced by rare earth elements (REEs, such as cerium (Ce and yttrium (Y. In this work, the electronic structures of fluorite crystals containing REE (Ce, Th, U, and Y impurities were studied by density functional theory (DFT. The calculated results showed that the presence of impurities increased the lattice parameter of fluorite. The impurities caused the Fermi level to shift towards the high energy direction, making the fluorite accept electrons more easily. The impurities except Y led to the occurrence of an impurities state in the valence band. The Mullinken population values of F–REE bonds were larger than that of F–Ca and F–F bonds, and F–Y bonds had the largest population value. Analysis of the frontier molecular orbital showed that the impurities contributed greatly to the lowest unoccupied molecular orbital (LUMO. The interaction between oleic acid and impurities-bearing fluorite were discussed. The results suggested that the incorporation of impurities would enhanced the reactivity of fluorite with oleic acid.
Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.
2018-01-01
Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.
Energy Technology Data Exchange (ETDEWEB)
Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)
2014-04-28
This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.
Energy Technology Data Exchange (ETDEWEB)
Gialampouki, M.A.; Balerba, A.V. [Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110 (Greece); Lekka, Ch.E., E-mail: chlekka@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, Ioannina, 45110 (Greece)
2012-05-15
Highlights: Black-Right-Pointing-Pointer The nanowires (NWs) transform the cylindrical SWNTs' shape to ellipsoid. Black-Right-Pointing-Pointer Ti NWs contribute in the SWNTs' EDOSs with new states at the Fermi level. Black-Right-Pointing-Pointer The deposited bcc NW on the SWNT induce magnetization and electric dipole moment. Black-Right-Pointing-Pointer These composites appear promising for applications in electronic devices. - Abstract: Structural and electronic properties of composite Ti-nanowires/single wall carbon nanotubes ((6,0) and (10,0)) (SWNT) were evaluated by means of density functional theory computations. We considered the cases of monoatomic (MNW), BCC ({beta}-NW) and HCP ({alpha}-NW) nanowires that were either inserted or deposited in/on the SWNTs. In all cases the NWs turn the cylindrical SWNTs' shape to ellipsoid, an effect that is closely related to charge transfer from Ti toward C neighboring atoms. We found that the wires inside the SWNT appear to be more stable compared to the outside cases, while all NWs contribute with new energy states at the Fermi level, transforming the semiconducting (10,0) to a conducting composite. In addition, we found spin up-down differences in the {beta}-NW{sub on} case and electronic charge redistributions e.g. in {alpha}-NW{sub in} (charge accumulation internally along the tube's axis) or in {alpha}-NW{sub on} (superficial charge accumulation in the vicinity of the NW), accompanied by manifestation of electric dipole moment that reaches the value of 10 Debye in a-NW{sub on}. These results may be of use in the design of new C-based nanocomposite systems suitable for applications in microelectronics, sensors and catalysis.