Campos, Maria da Graça R.; Matos, Miguel Pires
2010-01-01
The increase of human life span will have profound implications in Public Health in decades to come. By 2030, there will be an estimated 1.2 billion women in post-menopause. Hormone Replacement Therapy with synthetic hormones is still full of risks and according to the latest developments, should be used for the shortest time possible. Searching for alternative drugs is inevitable in this scenario and science must provide physicians with other substances that can be used to treat the same symptoms with less side effects. Systematic research carried out on this field of study is focusing now on isoflavones but the randomised controlled trials and reviews of meta-analysis concerning post-menopause therapy, that could have an important impact on human health, are very controversial. The aim of the present work was to establish a theoretical calculation suitable for use as a way to estimate the “Theoretical Efficacy (TE)” of a mixture with different bioactive compounds as a way to obtain a “Theoretical Efficacy Related to Estradiol (TERE)”. The theoretical calculation that we propose in this paper integrates different knowledge about this subject and sets methodological boundaries that can be used to analyse already published data. The outcome should set some consensus for new clinical trials using isoflavones (isolated or included in mixtures) that will be evaluated to assess their therapeutically activity. This theoretical method for evaluation of a possible efficacy could probably also be applied to other herbal drug extracts when a synergistic or contradictory bio-effect is not verified. In this way, it we may contribute to enlighten and to the development of new therapeutic approaches. PMID:20386649
Theoretical bases analysis of scientific prediction on marketing principles
A.S. Rosohata
2012-01-01
The article presents an overview categorical apparatus of scientific predictions and theoretical foundations results of scientific forecasting. They are integral part of effective management of economic activities. The approaches to the prediction of scientists in different fields of Social science and the categories modification of scientific prediction, based on principles of marketing are proposed.
Prediction Markets as a Way to Manage Acquisition Programs
2011-06-01
volume helps management set production levels, but if management increases advertising it will undermine the market . This becomes critical for the DoD...34 Corporate Strategy Board. Gaspoz, C. (2008). "Prediction markets as an innovative way to manage R&D portfolios." CAiSE Doctoral Consortium. Montpellier...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Prediction Markets as a Way to Manage Acquisition
Prediction and Theoretical Investigation of the Morphology of ...
African Journals Online (AJOL)
Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and ... Keywords: Erythromycin dihydrate, Morphology prediction, Theoretical ... For atomic charge assignments and .... interactions involved in its attachment energy, in.
Theoretical predictions for vehicular headways and their clusters
Krbálek, Milan
2013-11-01
This paper presents a derivation of analytical predictions for steady-state distributions of netto time gaps among clusters of vehicles moving inside a traffic stream. Using the thermodynamic socio-physical traffic model with short-ranged repulsion between particles (originally introduced in Krbálek and Helbing 2004 Physica A 333 370) we first derive the time-clearance distribution in the model and confront it with relation to the theoretical criteria for the acceptability of analytical clearance distributions. Consecutively, the approximating statistical distributions for the so-called time multi-clearances are calculated by means of the theory of functional convolutions. Moreover, all the theoretical surmises used during the above-mentioned calculations are evaluated by the statistical analysis of traffic data. The mathematical predictions acquired in this paper are thoroughly compared with relevant empirical quantities and discussed in the context of traffic theory.
Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley
Directory of Open Access Journals (Sweden)
Zuo Li
2017-03-01
Full Text Available Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L. and maize ( L. adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP. Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups.
Comparison between theoretical predictions and tracking
International Nuclear Information System (INIS)
Ruggiero, A.G.
1985-01-01
The beam-beam interaction in a proton-antiproton collider has been an outstanding issue for a long time. Several theoretical predictions have been made in the past which range from the appearance of single beam-beam driven resonances to the onset of stochasticity and Arnold diffusion and the presence of chaotic trajectories. All these effects would cause a limit on the maximum strength of the beam-beam interaction, the so called beam-beam tune-shift, and speculative values have been offered ranging from as low as 0.0005 to as large as a fraction of unit. The lower limit could be caused in a more complicated situation where the external focussing forces which keep the two beams in the same storage ring are also modulated in time. These theoretical predictions have been compared with extensive computer tracking where the motion of the particles is followed turn after turn over very long periods of time. Though it is indeed possible to observe the formation of several resonances, nevertheless the onset of connected stochasticity seems to occur at too large beam-beam tune-shift to be of any practical relevance. Moreover no Arnold diffusion has been observed to have any practical significance. Chaotic trajectories have been found to embed the phase space in disconnected regions of appreciable extension. They increase in numbers considerably when time modulation of external focussing forces is added. 15 refs., 18 figs
Comparison between theoretical predictions and tracking
Energy Technology Data Exchange (ETDEWEB)
Ruggiero, A.G.
1985-01-01
The beam-beam interaction in a proton-antiproton collider has been an outstanding issue for a long time. Several theoretical predictions have been made in the past which range from the appearance of single beam-beam driven resonances to the onset of stochasticity and Arnold diffusion and the presence of chaotic trajectories. All these effects would cause a limit on the maximum strength of the beam-beam interaction, the so called beam-beam tune-shift, and speculative values have been offered ranging from as low as 0.0005 to as large as a fraction of unit. The lower limit could be caused in a more complicated situation where the external focussing forces which keep the two beams in the same storage ring are also modulated in time. These theoretical predictions have been compared with extensive computer tracking where the motion of the particles is followed turn after turn over very long periods of time. Though it is indeed possible to observe the formation of several resonances, nevertheless the onset of connected stochasticity seems to occur at too large beam-beam tune-shift to be of any practical relevance. Moreover no Arnold diffusion has been observed to have any practical significance. Chaotic trajectories have been found to embed the phase space in disconnected regions of appreciable extension. They increase in numbers considerably when time modulation of external focussing forces is added. 15 refs., 18 figs.
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Strinati, G.C.
2004-01-01
Theoretical predictions for the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation crossover of trapped Fermi atoms are compared with recent experimental results for the density profiles of L 6 i. The calculations rest on a single theoretical approach that includes pairing fluctuations beyond mean-field. Excellent agreement with experimental results is obtained. Theoretical predictions for the zero-temperature chemical potential and gap at the unitarity limit are also found to compare extremely well with Quantum Monte Carlo simulations and with recent experimental results
Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.
1995-01-01
This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.
A Game Theoretic Approach to Cyber Attack Prediction
Energy Technology Data Exchange (ETDEWEB)
Peng Liu
2005-11-28
The area investigated by this project is cyber attack prediction. With a focus on correlation-based prediction, current attack prediction methodologies overlook the strategic nature of cyber attack-defense scenarios. As a result, current cyber attack prediction methodologies are very limited in predicting strategic behaviors of attackers in enforcing nontrivial cyber attacks such as DDoS attacks, and may result in low accuracy in correlation-based predictions. This project develops a game theoretic framework for cyber attack prediction, where an automatic game-theory-based attack prediction method is proposed. Being able to quantitatively predict the likelihood of (sequences of) attack actions, our attack prediction methodology can predict fine-grained strategic behaviors of attackers and may greatly improve the accuracy of correlation-based prediction. To our best knowledge, this project develops the first comprehensive framework for incentive-based modeling and inference of attack intent, objectives, and strategies; and this project develops the first method that can predict fine-grained strategic behaviors of attackers. The significance of this research and the benefit to the public can be demonstrated to certain extent by (a) the severe threat of cyber attacks to the critical infrastructures of the nation, including many infrastructures overseen by the Department of Energy, (b) the importance of cyber security to critical infrastructure protection, and (c) the importance of cyber attack prediction to achieving cyber security.
A Theoretical Model for the Prediction of Siphon Breaking Phenomenon
International Nuclear Information System (INIS)
Bae, Youngmin; Kim, Young-In; Seo, Jae-Kwang; Kim, Keung Koo; Yoon, Juhyeon
2014-01-01
A siphon phenomenon or siphoning often refers to the movement of liquid from a higher elevation to a lower one through a tube in an inverted U shape (whose top is typically located above the liquid surface) under the action of gravity, and has been used in a variety of reallife applications such as a toilet bowl and a Greedy cup. However, liquid drainage due to siphoning sometimes needs to be prevented. For example, a siphon breaker, which is designed to limit the siphon effect by allowing the gas entrainment into a siphon line, is installed in order to maintain the pool water level above the reactor core when a loss of coolant accident (LOCA) occurs in an open-pool type research reactor. In this paper, we develop a theoretical model to predict the siphon breaking phenomenon. In this paper, a theoretical model to predict the siphon breaking phenomenon is developed. It is shown that the present model predicts well the fundamental features of the siphon breaking phenomenon and undershooting height
A Theoretical Model for the Prediction of Siphon Breaking Phenomenon
Energy Technology Data Exchange (ETDEWEB)
Bae, Youngmin; Kim, Young-In; Seo, Jae-Kwang; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
A siphon phenomenon or siphoning often refers to the movement of liquid from a higher elevation to a lower one through a tube in an inverted U shape (whose top is typically located above the liquid surface) under the action of gravity, and has been used in a variety of reallife applications such as a toilet bowl and a Greedy cup. However, liquid drainage due to siphoning sometimes needs to be prevented. For example, a siphon breaker, which is designed to limit the siphon effect by allowing the gas entrainment into a siphon line, is installed in order to maintain the pool water level above the reactor core when a loss of coolant accident (LOCA) occurs in an open-pool type research reactor. In this paper, we develop a theoretical model to predict the siphon breaking phenomenon. In this paper, a theoretical model to predict the siphon breaking phenomenon is developed. It is shown that the present model predicts well the fundamental features of the siphon breaking phenomenon and undershooting height.
Atahan-Evrenk, Sule; Aspuru-Guzik, Alán
2014-01-01
The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.
Directory of Open Access Journals (Sweden)
Chaminda Jayasundara
2009-01-01
Full Text Available University library administrators in Sri Lanka have begun to search for alternative ways to satisfy their clientele on the basis of service quality. This article aims at providing a theoretical model to facilitate the identification of service quality attributes and domains that may be used to predict customer satisfaction from a service quality perspective. The effectiveness of existing service quality models such as LibQUAL, SERVQUAL and SERVPREF have been questioned. In that regard, this study developed a theoretical model for academic libraries in Sri Lanka based on the disconfirmation and performance-only paradigms. These perspectives were considered by researchers to be the core mechanism to develop service quality/customer satisfaction models. The attributes and domain identification of service quality was carried out with a stratified sample of 263 participants selected from postgraduate and undergraduate students and academic staff members from the faculties of Arts in four universities in Sri Lanka. The study established that responsiveness, supportiveness, building environment, collection and access, furniture and facilities, technology, Web services and service delivery were quality domains which can be used to predict customer satisfaction. The theoretical model is unique in its domain structure compared to the existing models. The model needs to be statistically tested to make it valid and parsimonious.
Theoretical prediction method of subcooled flow boiling CHF
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)
Theoretical prediction method of subcooled flow boiling CHF
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)
Gooyert, V. de
2016-01-01
The ubiquitous practical relevance of system dynamics makes it easy to overlook the scientific impact that system dynamics has had. Studies on building theory with simulations suggest that there are very different ways of arriving at a theoretical contribution, which brings up the question how
International Nuclear Information System (INIS)
Leite Lopes, J.
1984-01-01
A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics
DESIGNERLY WAYS TO THEORETICAL INSIGHT
DEFF Research Database (Denmark)
Bang, Anne Louise; Gelting, Anne Katrine Gøtzsche; Friis, Silje Alberthe Kamille
2014-01-01
visualisation exercise. In addition, theories for how to understand designerly ways of knowing and constructing knowledge have been applied as tools to think with in the discussion. The educational approach where design students read, analyse, and visualise theory, appears to be beneficial to the students...
International Nuclear Information System (INIS)
Lopes, J.L.
1984-01-01
A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics. (Author) [pt
Multi-way Communications: An Information Theoretic Perspective
Chaaban, Anas
2015-09-15
Multi-way communication is a means to significantly improve the spectral efficiency of wireless networks. For instance, in a bi-directional (or two-way) communication channel, two users can simultaneously use the transmission medium to exchange information, thus achieving up to twice the rate that would be achieved had each user transmitted separately. Multi-way communications provides an overview on the developments in this research area since it has been initiated by Shannon. The basic two-way communication channel is considered first, followed by the two-way relay channel obtained by the deployment of an additional cooperative relay node to improve the overall communication performance. This basic setup is then extended to multi-user systems. For all these setups, fundamental limits on the achievable rates are reviewed, thereby making use of a linear high-SNR deterministic channel model to provide valuable insights which are helpful when discussing the coding schemes for Gaussian channel models in detail. Several tools and communication strategies are used in the process, including (but not limited to) computation, signal-space alignment, and nested-lattice codes. Finally, extensions of multi-way communication channels to multiple antenna settings are discussed. © 2015 A. Chaaban and A. Sezgin.
A theoretical model for predicting neutron fluxes for cyclic Neutron ...
African Journals Online (AJOL)
A theoretical model has been developed for prediction of thermal neutron fluxes required for cyclic irradiations of a sample to obtain the same activity previously used for the detection of any radionuclide of interest. The model is suitable for radiotracer production or for long-lived neutron activation products where the ...
Experimental tests and theoretical predictions for electroweak processes
International Nuclear Information System (INIS)
Martinelli, G.; Istituto Nazionale di Fisica Nucleare, Frascati
1987-01-01
In sect. 2, I will briefly recall the basic ingredients of the standard model and I will define the relevant parameters. Low-energy processes which enter into the determination of neutral-current couplings to fermions (in particular sin 2 θ W ) are presented in sect. 3. Radiative corrections to these processes are discussed in sect. 4. In sect. 5 the measurements of the W and Z 0 masses at the SPS collider are described and compared with theoretical predictions including one-loop radiative corrections. (orig./BBO)
Multi-way Communications: An Information Theoretic Perspective
Chaaban, Anas; Sezgin, Aydin
2015-01-01
Multi-way communication is a means to significantly improve the spectral efficiency of wireless networks. For instance, in a bi-directional (or two-way) communication channel, two users can simultaneously use the transmission medium to exchange
A comparison of SAR ATR performance with information theoretic predictions
Blacknell, David
2003-09-01
Performance assessment of automatic target detection and recognition algorithms for SAR systems (or indeed any other sensors) is essential if the military utility of the system / algorithm mix is to be quantified. This is a relatively straightforward task if extensive trials data from an existing system is used. However, a crucial requirement is to assess the potential performance of novel systems as a guide to procurement decisions. This task is no longer straightforward since a hypothetical system cannot provide experimental trials data. QinetiQ has previously developed a theoretical technique for classification algorithm performance assessment based on information theory. The purpose of the study presented here has been to validate this approach. To this end, experimental SAR imagery of targets has been collected using the QinetiQ Enhanced Surveillance Radar to allow algorithm performance assessments as a number of parameters are varied. In particular, performance comparisons can be made for (i) resolutions up to 0.1m, (ii) single channel versus polarimetric (iii) targets in the open versus targets in scrubland and (iv) use versus non-use of camouflage. The change in performance as these parameters are varied has been quantified from the experimental imagery whilst the information theoretic approach has been used to predict the expected variation of performance with parameter value. A comparison of these measured and predicted assessments has revealed the strengths and weaknesses of the theoretical technique as will be discussed in the paper.
Mesoscopic structure prediction of nanoparticle assembly and coassembly: Theoretical foundation
Hur, Kahyun
2010-01-01
In this work, we present a theoretical framework that unifies polymer field theory and density functional theory in order to efficiently predict ordered nanostructure formation of systems having considerable complexity in terms of molecular structures and interactions. We validate our approach by comparing its predictions with previous simulation results for model systems. We illustrate the flexibility of our approach by applying it to hybrid systems composed of block copolymers and ligand coated nanoparticles. We expect that our approach will enable the treatment of multicomponent self-assembly with a level of molecular complexity that approaches experimental systems. © 2010 American Institute of Physics.
Large Hadron Collider (LHC) phenomenology, operational challenges and theoretical predictions
Gilles, Abelin R
2013-01-01
The Large Hadron Collider (LHC) is the highest-energy particle collider ever constructed and is considered "one of the great engineering milestones of mankind." It was built by the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the aim of allowing physicists to test the predictions of different theories of particle physics and high-energy physics, and particularly prove or disprove the existence of the theorized Higgs boson and of the large family of new particles predicted by supersymmetric theories. In this book, the authors study the phenomenology, operational challenges and theoretical predictions of LHC. Topics discussed include neutral and charged black hole remnants at the LHC; the modified statistics approach for the thermodynamical model of multiparticle production; and astroparticle physics and cosmology in the LHC era.
Search for an interstellar Si2C molecule: A theoretical prediction
Indian Academy of Sciences (India)
63, No. 3. — journal of. September 2004 physics pp. 627–631. Search for an interstellar Si2C molecule: A theoretical prediction. SURESH CHANDRA. School of ... top molecule as its electric dipole moment µ lies along the axis of intermediate moment of inertia. Because of differences between the molecular parameters of.
Predicting Child Abuse Potential: An Empirical Investigation of Two Theoretical Frameworks
Begle, Angela Moreland; Dumas, Jean E.; Hanson, Rochelle F.
2010-01-01
This study investigated two theoretical risk models predicting child maltreatment potential: (a) Belsky's (1993) developmental-ecological model and (b) the cumulative risk model in a sample of 610 caregivers (49% African American, 46% European American; 53% single) with a child between 3 and 6 years old. Results extend the literature by using a…
Theoretical models to predict the mechanical behavior of thick composite tubes
Directory of Open Access Journals (Sweden)
Volnei Tita
2012-02-01
Full Text Available This paper shows theoretical models (analytical formulations to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.
Distinguishing prognostic and predictive biomarkers: An information theoretic approach.
Sechidis, Konstantinos; Papangelou, Konstantinos; Metcalfe, Paul D; Svensson, David; Weatherall, James; Brown, Gavin
2018-05-02
The identification of biomarkers to support decision-making is central to personalised medicine, in both clinical and research scenarios. The challenge can be seen in two halves: identifying predictive markers, which guide the development/use of tailored therapies; and identifying prognostic markers, which guide other aspects of care and clinical trial planning, i.e. prognostic markers can be considered as covariates for stratification. Mistakenly assuming a biomarker to be predictive, when it is in fact largely prognostic (and vice-versa) is highly undesirable, and can result in financial, ethical and personal consequences. We present a framework for data-driven ranking of biomarkers on their prognostic/predictive strength, using a novel information theoretic method. This approach provides a natural algebra to discuss and quantify the individual predictive and prognostic strength, in a self-consistent mathematical framework. Our contribution is a novel procedure, INFO+, which naturally distinguishes the prognostic vs predictive role of each biomarker and handles higher order interactions. In a comprehensive empirical evaluation INFO+ outperforms more complex methods, most notably when noise factors dominate, and biomarkers are likely to be falsely identified as predictive, when in fact they are just strongly prognostic. Furthermore, we show that our methods can be 1-3 orders of magnitude faster than competitors, making it useful for biomarker discovery in 'big data' scenarios. Finally, we apply our methods to identify predictive biomarkers on two real clinical trials, and introduce a new graphical representation that provides greater insight into the prognostic and predictive strength of each biomarker. R implementations of the suggested methods are available at https://github.com/sechidis. konstantinos.sechidis@manchester.ac.uk. Supplementary data are available at Bioinformatics online.
Physics of mind: Experimental confirmations of theoretical predictions.
Schoeller, Félix; Perlovsky, Leonid; Arseniev, Dmitry
2018-02-02
What is common among Newtonian mechanics, statistical physics, thermodynamics, quantum physics, the theory of relativity, astrophysics and the theory of superstrings? All these areas of physics have in common a methodology, which is discussed in the first few lines of the review. Is a physics of the mind possible? Is it possible to describe how a mind adapts in real time to changes in the physical world through a theory based on a few basic laws? From perception and elementary cognition to emotions and abstract ideas allowing high-level cognition and executive functioning, at nearly all levels of study, the mind shows variability and uncertainties. Is it possible to turn psychology and neuroscience into so-called "hard" sciences? This review discusses several established first principles for the description of mind and their mathematical formulations. A mathematical model of mind is derived from these principles. This model includes mechanisms of instincts, emotions, behavior, cognition, concepts, language, intuitions, and imagination. We clarify fundamental notions such as the opposition between the conscious and the unconscious, the knowledge instinct and aesthetic emotions, as well as humans' universal abilities for symbols and meaning. In particular, the review discusses in length evolutionary and cognitive functions of aesthetic emotions and musical emotions. Several theoretical predictions are derived from the model, some of which have been experimentally confirmed. These empirical results are summarized and we introduce new theoretical developments. Several unsolved theoretical problems are proposed, as well as new experimental challenges for future research. Copyright © 2017. Published by Elsevier B.V.
Darmon, David
2018-03-01
In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.
Theoretical predictions for side-chain liquid-crystal polymers and comparison to experiment
International Nuclear Information System (INIS)
Dowell, F.
1988-01-01
This paper presents results from a new unique microscopic molecular theory for side-chain liquid-crystalline polymers (LCPs) in the nematic (N) and multiple smectic-A (SA) LC phases and the isotropic (I) liquid phase. There are no ad hoc or arbitrarily adjustable parameters in this theory. The agreement between the theoretical and experimental values for various properties (including transition temperatures and quadratic characteristic radii) is very good (relative deviations between 0% and less than 6.2%). The theoretical results also show--for the first time--that the N and I phases for these LCPs involve the packing of plate-like sections of backbones and side chains and that the local bilayer SA phase involves packing of side-chains within a plate-like section. This type of packing is predicted to be typical for side-chain LCPs. This theory can predict--for the first time--whether the side chains of a molecule pack on the same or alternating opposite sides of the backbone and whether side chains on different molecules interdigitate (overlap) with each other. 13 refs., 1 fig., 4 tabs
Prediction of the theoretical capacity of non-aqueous lithium-air batteries
International Nuclear Information System (INIS)
Tan, Peng; Wei, Zhaohuan; Shyy, W.; Zhao, T.S.
2013-01-01
Highlights: • The theoretical capacity of non-aqueous lithium-air batteries is predicted. • Key battery design parameters are defined and considered. • The theoretical battery capacity is about 10% of the lithium capacity. • The battery mass and volume changes after discharge are also studied. - Abstract: In attempt to realistically assess the high-capacity feature of emerging lithium-air batteries, a model is developed for predicting the theoretical capacity of non-aqueous lithium-air batteries. Unlike previous models that were formulated by assuming that the active materials and electrolyte are perfectly balanced according to the electrochemical reaction, the present model takes account of the fraction of the reaction products (Li 2 O 2 and Li 2 O), the utilization of the onboard lithium metal, the utilization of the void volume of the porous cathode, and the onboard excess electrolyte. Results show that the gravimetric capacity increases from 1033 to 1334 mA h/g when the reaction product varies from pure Li 2 O 2 to pure Li 2 O. It is further demonstrated that the capacity declines drastically from 1080 to 307 mA h/g when the case of full utilization of the onboard lithium is altered to that only 10% of the metal is utilized. Similarly, the capacity declines from 1080 to 144 mA h/g when the case of full occupation of the cathode void volume by the reaction products is varied to that only 10% of the void volume is occupied. In general, the theoretical gravimetric capacity of typical non-aqueous lithium-air batteries falls in the range of 380–450 mA h/g, which is about 10–12% of the gravimetric capacity calculated based on the energy density of the lithium metal. The present model also facilitates the study of the effects of different parameters on the mass and volume change of non-aqueous lithium-air batteries
Theoretical model for cavitation erosion prediction in centrifugal pump impeller
International Nuclear Information System (INIS)
Rayan, M.A.; Mahgob, M.M.; Mostafa, N.H.
1990-01-01
Cavitation is known to have great effects on pump hydraulic and mechanical characteristics. These effects are mainly described by deviation in pump performance, increasing vibration and noise level as well as erosion of blade and casing materials. In the present work, only the hydrodynamic aspect of cavitation was considered. The efforts were directed toward the study of cavitation inception, cavity mechanics and material erosion in order to clarify the macrohydrodynamic aspects of cavitation erosive wear in real machines. As a result of this study, it was found that cavitation damage can be predicted from model data. The obtained theoretical results show good agreement with the experimental results obtained in this investigation and with results of some other investigations. The application of the findings of this work will help the design engineer in predicting the erosion rate, according to the different operating conditions. (author)
Theoretical prediction of a rotating magnon wave packet in ferromagnets.
Matsumoto, Ryo; Murakami, Shuichi
2011-05-13
We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.
International Nuclear Information System (INIS)
Kalinkin, B.N.; Gareev, F.A.
1999-01-01
It is shown that it is just Dubna that possesses the priority both in the recent synthesis of a superheavy nucleus with charge Z=114 (Flerov Laboratory of Nuclear Reactions, JINR) and in its theoretical prediction (Bogolyubov Laboratory of Theoretical Physics, JINR) made 33 years ago. Possible sizes of the 'island of stability' of superheavy nuclei are discussed
A theoretical perspective on road safety communication campaigns.
Elvik, Rune
2016-12-01
This paper proposes a theoretical perspective on road safety communication campaigns, which may help in identifying the conditions under which such campaigns can be effective. The paper proposes that, from a theoretical point of view, it is reasonable to assume that road user behaviour is, by and large, subjectively rational. This means that road users are assumed to behave the way they think is best. If this assumption is accepted, the best theoretical prediction is that road safety campaigns consisting of persuasive messages only will have no effect on road user behaviour and accordingly no effect on accidents. This theoretical prediction is not supported by meta-analyses of studies that have evaluated the effects of road safety communication campaigns. These analyses conclude that, on the average, such campaigns are associated with an accident reduction. The paper discusses whether this finding can be explained theoretically. The discussion relies on the distinction made by many modern theorists between bounded and perfect rationality. Road user behaviour is characterised by bounded rationality. Hence, if road users can gain insight into the bounds of their rationality, so that they see advantages to themselves of changing behaviour, they are likely to do so. It is, however, largely unknown whether such a mechanism explains why some road safety communication campaigns have been found to be more effective than others. Copyright © 2015 Elsevier Ltd. All rights reserved.
Theoretical predictions for pp and panti p elastic scattering in the TeV energy domain
International Nuclear Information System (INIS)
Bourrely, C.; Martin, A.
1984-01-01
We present theoretical predictions on total cross-sections and elastic scattering in the TeV energy domain obtained from the present experimental situation at the ISR and the panti p Collider. (orig.)
Czech Academy of Sciences Publication Activity Database
Bogdanić, Grozdana; Pavlíček, Jan; Wichterle, Ivan
2012-01-01
Roč. 42, SI (2012), s. 1873-1878 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] Institutional support: RVO:67985858 Keywords : petroleum fluids * prediction * physico-chemical properties Subject RIV: CF - Physical ; Theoretical Chemistry
Theoretical Predictions of Cross-Sections of the Super-Heavy Elements
Bouriquet, B.; Kosenko, G.; Abe, Y.
The evaluation of the residue cross-sections of reactionssynthesising superheavy elements has been achieved by the combination of the two-step model for fusion and the evaporation code (KEWPIE) for survival probability. The theoretical scheme of those calculations is presented, and some encouraging results are given, together with some difficulties. With this approach, the measured excitation functions of the 1n reactions producing elements with Z=108, 110, 111 and 112 are well reproduced. Thus, the model has been used to predict the cross-sections of the reactions leading to the formation of the elements with Z=113 and Z=114.
Theoretical predictions of cross-sections of the super-heavy elements
International Nuclear Information System (INIS)
Bouriquet, B.; Abe, Y.; Kosenko, G.
2004-01-01
The evaluation of the residue cross-sections of reactions synthesising superheavy elements has been achieved by the combination of the two-step model for fusion and the evaporation code (KEWPIE) for survival probability. The theoretical scheme of those calculations is presented, and some encouraging results are given, together with some difficulties. With this approach, the measured excitation functions of the 1n reactions producing elements with Z = 108, 110, 111 and 112 are well reproduced. Thus, the model has been used to predict the cross-sections of the reactions leading to the formation of the elements with Z = 113 and Z = 114. (author)
Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid
Gunawardana, K. G. S. H.; Song, Xueyu
2018-05-01
The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a theoretical model based on the interfacial excess thermodynamic properties. The correction parameter (δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05 for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force (Δμ) corresponding to available simulated nucleation conditions is also calculated by combining the simulated data with a classical density functional theory. In this paper, we show that the classical nucleation theory is capable of predicting the nucleation barrier with excellent agreement to the simulated results when the curvature correction to the interfacial free energy is accounted for.
A theoretical model for predicting the Peak Cutting Force of conical picks
Directory of Open Access Journals (Sweden)
Gao Kuidong
2014-01-01
Full Text Available In order to predict the PCF (Peak Cutting Force of conical pick in rock cutting process, a theoretical model is established based on elastic fracture mechanics theory. The vertical fracture model of rock cutting fragment is also established based on the maximum tensile criterion. The relation between vertical fracture angle and associated parameters (cutting parameter and ratio B of rock compressive strength to tensile strength is obtained by numerical analysis method and polynomial regression method, and the correctness of rock vertical fracture model is verified through experiments. Linear regression coefficient between the PCF of prediction and experiments is 0.81, and significance level less than 0.05 shows that the model for predicting the PCF is correct and reliable. A comparative analysis between the PCF obtained from this model and Evans model reveals that the result of this prediction model is more reliable and accurate. The results of this work could provide some guidance for studying the rock cutting theory of conical pick and designing the cutting mechanism.
Dedes, I.; Dudek, J.
2018-03-01
We examine the effects of the parametric correlations on the predictive capacities of the theoretical modelling keeping in mind the nuclear structure applications. The main purpose of this work is to illustrate the method of establishing the presence and determining the form of parametric correlations within a model as well as an algorithm of elimination by substitution (see text) of parametric correlations. We examine the effects of the elimination of the parametric correlations on the stabilisation of the model predictions further and further away from the fitting zone. It follows that the choice of the physics case and the selection of the associated model are of secondary importance in this case. Under these circumstances we give priority to the relative simplicity of the underlying mathematical algorithm, provided the model is realistic. Following such criteria, we focus specifically on an important but relatively simple case of doubly magic spherical nuclei. To profit from the algorithmic simplicity we chose working with the phenomenological spherically symmetric Woods–Saxon mean-field. We employ two variants of the underlying Hamiltonian, the traditional one involving both the central and the spin orbit potential in the Woods–Saxon form and the more advanced version with the self-consistent density-dependent spin–orbit interaction. We compare the effects of eliminating of various types of correlations and discuss the improvement of the quality of predictions (‘predictive power’) under realistic parameter adjustment conditions.
Delayed hydride cracking: theoretical model testing to predict cracking velocity
International Nuclear Information System (INIS)
Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys
2009-01-01
Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)
Rolling force prediction for strip casting using theoretical model and artificial intelligence
Institute of Scientific and Technical Information of China (English)
CAO Guang-ming; LI Cheng-gang; ZHOU Guo-ping; LIU Zhen-yu; WU Di; WANG Guo-dong; LIU Xiang-hua
2010-01-01
Rolling force for strip casting of 1Cr17 ferritic stainless steel was predicted using theoretical model and artificial intelligence.Solution zone was classified into two parts by kiss point position during casting strip.Navier-Stokes equation in fluid mechanics and stream function were introduced to analyze the rheological property of liquid zone and mushy zone,and deduce the analytic equation of unit compression stress distribution.The traditional hot rolling model was still used in the solid zone.Neural networks based on feedforward training algorithm in Bayesian regularization were introduced to build model for kiss point position.The results show that calculation accuracy for verification data of 94.67% is in the range of+7.0%,which indicates that the predicting accuracy of this model is very high.
Finnerty, Niall J; O'Riordan, Saidhbhe L; Lowry, John P; Cloutier, Mathieu; Wellstead, Peter
2013-01-01
Mathematical models of the interactions between alphasynuclein (αS) and reactive oxygen species (ROS) predict a systematic and irreversible switching to damagingly high levels of ROS after sufficient exposure to risk factors associated with Parkinson's disease (PD). We tested this prediction by continuously monitoring real-time changes in neurochemical levels over periods of several days in animals exposed to a toxin known to cause Parkinsonian symptoms. Nitric oxide (NO) sensors were implanted in the brains of freely moving rats and the NO levels continuously recorded while the animals were exposed to paraquat (PQ) injections of various amounts and frequencies. Long-term, real-time measurement of NO in a cohort of animals showed systematic switching in levels when PQ injections of sufficient size and frequency were administered. The experimental observations of changes in NO imply a corresponding switching in endogenous ROS levels and support theoretical predictions of an irreversible change to damagingly high levels of endogenous ROS when PD risks are sufficiently large. Our current results only consider one form of PD risk, however, we are sufficiently confident in them to conclude that: (i) continuous long-term measurement of neurochemical dynamics provide a novel way to measure the temporal change and system dynamics which determine Parkinsonian damage, and (ii) the bistable feedback switching predicted by mathematical modelling seems to exist and that a deeper analysis of its characteristics would provide a way of understanding the pathogenic mechanisms that initiate Parkinsonian cell damage.
Probing the CuO planes with positrons in high Tc cuprates: theoretical predictions
International Nuclear Information System (INIS)
Barbiellini, B.; Jarlborg, T.; Massidda, S.; Peter, M.
1995-01-01
Positron annihilation spectroscopy is a useful tool to investigate the Fermi surface in high T c superconductors. To study the physics of the copper-oxygen subsystem that forms the Cu-O layers, it is important to provide theoretical predictions, on materials where there is a large overlap between the positron and the interesting Cu-O planes. We have performed first-principle electronic structure calculations obtained using the linear muffin-tin orbital and the full-potential linearized augmented plane wave methods. The positron charge distributions and their sensitivity to different potentials are calculated. Secondly, we have computed the annihilation rates and the electron-positron momentum density in order to give predictions of the Fermi surface signals. (orig.)
Theoretical predictions for alpha particle spectroscopic strengths
International Nuclear Information System (INIS)
Draayer, J.P.
1975-01-01
Multinucleon transfers induced in heavy-ion reactions of the type ( 6 Li,d) furnish a selective probe with which to study the interplay between rotational and clustering phenomena so characteristic of the structure of the light sd-shell nuclei. For these nuclei, theoretical predictions for inter-band as well as intra-band transfer strengths can be made using recently tabulated results for angular momentum dependent SU 3 inclusion R 3 relative spectroscopic strengths and angular momentum independent SU 6 inclusion SU 3 coefficients of fractional parentage. The pure SU 3 (oscillator)-SU 4 (supermultiplet) symmetry limit agrees well with results obtained using available eigenfunctions determined in large shell model calculations. In particular, the scalar nature of a transferred ''alpha''-cluster insures that the effect of spatial symmetry admixtures in the initial and final states of the target and residual nuclei are minimized. Sum rule quantities provide a measure of the probable effects of symmetry breaking. Strength variations within a band are expected; transfers to core excited states are often favored. Results extracted from exact finite range DWBA analyses of ( 6 Li,d) data on 16 , 18 O, 20 , 21 , 22 Ne, 24 , 25 Mg show some anomalies in our understanding of the structure and/or reaction mechanisms. (18 figures) (U.S.)
Linguistic and Psycho-Linguistic Principles of Linguadidactics (theoretical interpretation
Directory of Open Access Journals (Sweden)
Liudmila Mauzienė
2011-04-01
Full Text Available This article considers linguadidactics being closely related to linguistics, psychology, psycholinguistics and didactics and applies their theoretical statements and regularities in its scientific studies. Methodology refers to linguistics which investigates the language as a teaching subject. Methodology is linked to psychology in two ways. First of all, it is based on psychology as the teaching process is an intellectual psychical act and its regularities are necessary to know. On the other hand, methodology applies rules of pedagogy that predicts ways of learning and development of language skills. The article emphasizes that sustainable work experience and analysis of scientific research show that teaching process is more effective if consistent patterns of linguistics and psychology are appropriately applied.
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Possible way to check up superbanana transport effects in present-day stellarators
International Nuclear Information System (INIS)
Bykov, V.E.; Volkov, E.D.; Georgievskij, A.V.; Shishkin, A.A.
1986-01-01
An important, as yet unanswered question in stellarator research is the following: how dangerous is the superbanana transport to the plasma confinement? Comparison of experimental data with theoretical transport coefficients indicates that the superbanana transport does occur in experiments. But it is believed that the experimental plasma loss rates (W-VIIA) are considerably lower than those predicted by neoclassical theory. The existing inconsistencies make it necessary to search for additional ways to find out whether the superbanana transport is feasible. One of possible ways is connected with the fact that the neoclassical superbanana transport coefficients depend essentially on the harmonic composition of the magnetic field
TOO MANY, TOO FEW, OR JUST RIGHT? THE PREDICTED NUMBER AND DISTRIBUTION OF MILKY WAY DWARF GALAXIES
International Nuclear Information System (INIS)
Hargis, Jonathan R.; Willman, Beth; Peter, Annika H. G.
2014-01-01
We predict the spatial distribution and number of Milky Way dwarf galaxies to be discovered in the Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST) surveys, by completeness correcting the observed Sloan Digital Sky Survey dwarf population. We apply most massive in the past, earliest forming, and earliest infall toy models to a set of dark matter-only simulated Milky Way/M31 halo pairs from the Exploring the Local Volume In Simulations project. Inclusive of all toy models and simulations, at 90% confidence we predict a total of 37-114 L ≳ 10 3 L ☉ dwarfs and 131-782 L ≲ 10 3 L ☉ dwarfs within 300 kpc. These numbers of L ≳ 10 3 L ☉ dwarfs are dramatically lower than previous predictions, owing primarily to our use of updated detection limits and the decreasing number of SDSS dwarfs discovered per sky area. For an effective r limit of 25.8 mag, we predict 3-13 L ≳ 10 3 L ☉ and 9-99 L ≲ 10 3 L ☉ dwarfs for DES, and 18-53 L ≳ 10 3 L ☉ and 53-307 L ≲ 10 3 L ☉ dwarfs for LSST. We also show that the observed spatial distribution of Milky Way dwarfs in the LSST-era will discriminate between the earliest infall and other simplified models for how dwarf galaxies populate dark matter subhalos
Energy Technology Data Exchange (ETDEWEB)
Kievsky, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Rosati, S. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)]|[Pisa Univ. (Italy). Dipt. di Fisica; Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics; Viviani, M. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)
1996-09-30
The theoretical approaches for studying N-d processes using realistic, semi-phenomenological NN potentials have matured considerably during the last few years. Accurate calculations of scattering observables are now feasible. Recently, high-quality measurements of N-d scattering at energies below the deuteron breakup threshold became available. Therefore, a detailed comparison between theory and experimental data can now be performed. In this paper the various sets of experimental data for the N-d differential cross section, and the vector and tensor analyzing powers are examined in a critical way in the incident nucleon energy range from 1 to 3 MeV. In order to identify possible inadequacies of the interaction models adopted, phase-shift analyses were performed and compared to the theoretical parameters. (orig.).
A three-way approach for protein function classification.
Directory of Open Access Journals (Sweden)
Hafeez Ur Rehman
Full Text Available The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS and Information-Theoretic Rough Sets (ITRS for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy.
Theoretical prediction of the energy stability of graphene nanoblisters
Glukhova, O. E.; Slepchenkov, M. M.; Barkov, P. V.
2018-04-01
The paper presents the results of a theoretical prediction of the energy stability of graphene nanoblisters with various geometrical parameters. As a criterion for the evaluation of the stability of investigated carbon objects we propose to consider the value of local stress of the nanoblister atomic grid. Numerical evaluation of stresses experienced by atoms of the graphene blister framework was carried out by means of an original method for calculation of local stresses that is based on energy approach. Atomistic models of graphene nanoblisters corresponding to the natural experiment data were built for the first time in this work. New physical regularities of the influence of topology on the thermodynamic stability of nanoblisters were established as a result of the analysis of the numerical experiment data. We built the distribution of local stresses for graphene blister structures, whose atomic grid contains a variety of structural defects. We have shown how the concentration and location of defects affect the picture of the distribution of the maximum stresses experienced by the atoms of the nanoblisters.
Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel
2012-10-01
This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.
Effect of a timebase mismatch in two-way optical frequency transfer
Tampellini, Anna; Clivati, Cecilia; Levi, Filippo; Mura, Alberto; Calonico, Davide
2017-12-01
Two-way frequency transfer on optical fibers is a powerful technique for the comparison of distant clocks over long and ultra-long hauls. In contrast to traditional Doppler noise cancellation, it is capable of sustaining higher link attenuation, mitigating the need of optical amplification and regeneration and thus reducing the setup complexity. We investigate the ultimate limitations of the two-way approach on a 300 km multiplexed fiber haul, considering fully independent setups and acquisition systems at the two link ends. We derive a theoretical model to predict the performance deterioration due to a bad synchronisation of the measurements, which is confirmed by experimental results. This study demonstrates that two-way optical frequency transfer is a reliable and performing technique, capable of sustaining remote clocks comparisons at the 10-19 resolution, and is relevant for the development of a fiber network of continental scale for frequency metrology in Europe.
TOO MANY, TOO FEW, OR JUST RIGHT? THE PREDICTED NUMBER AND DISTRIBUTION OF MILKY WAY DWARF GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Hargis, Jonathan R.; Willman, Beth [Department of Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Peter, Annika H. G., E-mail: jhargis@haverford.edu [CCAPP and Department of Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States)
2014-11-01
We predict the spatial distribution and number of Milky Way dwarf galaxies to be discovered in the Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST) surveys, by completeness correcting the observed Sloan Digital Sky Survey dwarf population. We apply most massive in the past, earliest forming, and earliest infall toy models to a set of dark matter-only simulated Milky Way/M31 halo pairs from the Exploring the Local Volume In Simulations project. Inclusive of all toy models and simulations, at 90% confidence we predict a total of 37-114 L ≳ 10{sup 3} L {sub ☉} dwarfs and 131-782 L ≲ 10{sup 3} L {sub ☉} dwarfs within 300 kpc. These numbers of L ≳ 10{sup 3} L {sub ☉} dwarfs are dramatically lower than previous predictions, owing primarily to our use of updated detection limits and the decreasing number of SDSS dwarfs discovered per sky area. For an effective r {sub limit} of 25.8 mag, we predict 3-13 L ≳ 10{sup 3} L {sub ☉} and 9-99 L ≲ 10{sup 3} L {sub ☉} dwarfs for DES, and 18-53 L ≳ 10{sup 3} L {sub ☉} and 53-307 L ≲ 10{sup 3} L {sub ☉} dwarfs for LSST. We also show that the observed spatial distribution of Milky Way dwarfs in the LSST-era will discriminate between the earliest infall and other simplified models for how dwarf galaxies populate dark matter subhalos.
Theoretical prediction of thermal conductivity for thermal protection systems
International Nuclear Information System (INIS)
Gori, F.; Corasaniti, S.; Worek, W.M.; Minkowycz, W.J.
2012-01-01
The present work is aimed to evaluate the effective thermal conductivity of an ablative composite material in the state of virgin material and in three paths of degradation. The composite material is undergoing ablation with formation of void pores or char and void pores. The one dimensional effective thermal conductivity is evaluated theoretically by the solution of heat conduction under two assumptions, i.e. parallel isotherms and parallel heat fluxes. The paper presents the theoretical model applied to an elementary cubic cell of the composite material which is made of two crossed fibres and a matrix. A numerical simulation is carried out to compare the numerical results with the theoretical ones for different values of the filler volume fraction. - Highlights: ► Theoretical models of the thermal conductivity of an ablative composite. ► Composite material is made of two crossed fibres and a matrix. ► Three mechanisms of degradation are investigated. ► One dimensional thermal conductivity is evaluated by the heat conduction equation. ► Numerical simulations to be compared with the theoretical models.
A theoretical prediction of critical heat flux in saturated pool boiling during power transients
International Nuclear Information System (INIS)
Pasamehmetoglu, K.O.; Nelson, R.A.; Gunnerson, F.S.
1987-01-01
Understanding and predicting critical heat flux (CHF) behavior during steady-state and transient conditions is of fundamental interest in the design, operation, and safety of boiling and two-phase flow devices. Presented within this paper are the results of a comprehensive theoretical study specifically conducted to model transient CHF behavior in saturated pool boiling. Thermal energy conduction within a heating element and its influence on the CHF are also discussed. The resultant theory provides new insight into the basic physics of the CHF phenomenon and indicates favorable agreement with the experimental data from cylindrical heaters with small radii. However, the flat-ribbon heater data compared poorly with the present theory, although the general trend was predicted. Finally, various factors that affect the discrepency between the data and the theory are listed
International Nuclear Information System (INIS)
Carroll, David L; Verdeyen, Joseph T
2013-01-01
The exciplex pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, with and without ethane, by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). The blue satellites of the alkali D 2 lines provide an advantageous pathway for optically pumping atomic alkali lasers on the principal series (resonance) transitions with broad linewidth (>2 nm) semiconductor diode lasers. The development of a simple theoretical analysis of continuous-wave XPAL systems is presented along with predictions as a function of temperature and pump intensity. The model predicts that an optical-to-optical efficiency in the range of 40-50% can be achieved for XPAL.
A theoretical adaptive model of thermal comfort - Adaptive Predicted Mean Vote (aPMV)
Energy Technology Data Exchange (ETDEWEB)
Yao, Runming [School of Construction Management and Engineering, The University of Reading (United Kingdom); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Li, Baizhan [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Liu, Jing [School of Construction Management and Engineering, The University of Reading (United Kingdom)
2009-10-15
This paper presents in detail a theoretical adaptive model of thermal comfort based on the ''Black Box'' theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient ({lambda}) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results. (author)
Computational tools for experimental determination and theoretical prediction of protein structure
Energy Technology Data Exchange (ETDEWEB)
O`Donoghue, S.; Rost, B.
1995-12-31
This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.
Blatt, John M
1979-01-01
A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to
DEFF Research Database (Denmark)
Brinck, Lars
In the PhD-dissertation Ways of the Jam I investigate jamming and learning as profoundly collective and improvisational matters. Bridging a theory of funk jamming with situated learning theoretical analyses of New Orleans second line, everyday leadership, and of a studio recording session...... demonstrate how looking at human activity from a jamming perspective enhances our understanding of learning as a complex collective and improvisational process. Ways of the Jam demonstrates how learning is a matter of changing improvisational participation in changing practice in analytically inseparable ways......’ of practice, on the collectivity of changing practice, on the improvisational aspects of participation, and on these analytic perspectives’ complex hegemony and subordination....
Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas
2016-04-01
A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also
Demystifying Theoretical Sampling in Grounded Theory Research
Directory of Open Access Journals (Sweden)
Jenna Breckenridge BSc(Hons,Ph.D.Candidate
2009-06-01
Full Text Available Theoretical sampling is a central tenet of classic grounded theory and is essential to the development and refinement of a theory that is ‘grounded’ in data. While many authors appear to share concurrent definitions of theoretical sampling, the ways in which the process is actually executed remain largely elusive and inconsistent. As such, employing and describing the theoretical sampling process can present a particular challenge to novice researchers embarking upon their first grounded theory study. This article has been written in response to the challenges faced by the first author whilst writing a grounded theory proposal. It is intended to clarify theoretical sampling for new grounded theory researchers, offering some insight into the practicalities of selecting and employing a theoretical sampling strategy. It demonstrates that the credibility of a theory cannot be dissociated from the process by which it has been generated and seeks to encourage and challenge researchers to approach theoretical sampling in a way that is apposite to the core principles of the classic grounded theory methodology.
Environmental risk prediction and emergency plan for liquid ammonia leakage fault
International Nuclear Information System (INIS)
He Zhanfei; Lian Guoxi; Zhang Yuntao; Sun Juan; Du Juan
2014-01-01
Taking liquid ammonia storage in a uranium production process as an example, a multi-puff Gassian model was used to predict and analyze the environmental risk under the scenario of the maximum credible accident as well as the most unfavorable weather conditions. According to the results of prediction, the suggestions for safety evacuation and evacuation way were made, thus providing theoretical basis and technical guideline for uranium mine making risk management and contingency plan. (authors)
Theoretical pKa prediction of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc
Vipperla, Bhavaniprasad; Griffiths, Thomas M.; Wang, Xingyong; Yu, Haibo
2017-01-01
The pKa value of the α-phosphate moiety of uridine 5‧-diphosphate-GlcNAc (UDP-GlcNAc) has been successfully calculated using density functional theory methods in conjunction with the Polarizable Continuum Models. Theoretical methods were benchmarked over a dataset comprising of alkyl phosphates. B3LYP/6-31+G(d,p) calculations using SMD solvation model provide excellent agreement with the experimental data. The predicted pKa for UDP-GlcNAc is consistent with most recent NMR studies but much higher than what it has long been thought to be. The importance of this study is evident that the predicted pKa for UDP-GlcNAc supports its potential role as a catalytic base in the substrate-assisted biocatalysis.
Lamb shift in muonic hydrogen-I. Verification and update of theoretical predictions
International Nuclear Information System (INIS)
Jentschura, U.D.
2011-01-01
Research highlights: → The QED theory of muonic hydrogen energy levels is verified and updated. → Previously obtained results of Pachucki and Borie are confirmed. → The influence of the vacuum polarization potential onto the Bethe logarithm is calculated nonperturbatively. → A model-independent estimate of the Zemach moment correction is given. → Parametrically, the observed discrepancy of theory and experiment is shown to be substantial and large. - Abstract: In view of the recently observed discrepancy of theory and experiment for muonic hydrogen [R. Pohl et al., Nature 466 (2010) 213], we reexamine the theory on which the quantum electrodynamic (QED) predictions are based. In particular, we update the theory of the 2P-2S Lamb shift, by calculating the self-energy of the bound muon in the full Coulomb + vacuum polarization (Uehling) potential. We also investigate the relativistic two-body corrections to the vacuum polarization shift, and we analyze the influence of the shape of the nuclear charge distribution on the proton radius determination. The uncertainty associated with the third Zemach moment 3 > 2 in the determination of the proton radius from the measurement is estimated. An updated theoretical prediction for the 2S-2P transition is given.
Directory of Open Access Journals (Sweden)
Guisan Antoine
2009-04-01
Full Text Available Abstract Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a real absences b pseudo-absences selected randomly from the background and c two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97, and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have
Theoretical Foundations for Website Design Courses.
Walker, Kristin
2002-01-01
Considers how theoretical foundations in website design courses can facilitate students learning the genres of Internet communication. Proposes ways that theories can be integrated into website design courses. Focuses on two students' website portfolios and ways they utilize genre theory and activity theory discussed in class to produce websites…
Doyle, F; McGee, H M; Conroy, R M; Delaney, M
2011-05-01
Depression is associated with increased cardiovascular risk in acute coronary syndrome (ACS) patients, but some argue that elevated depression is actually a marker of cardiovascular disease severity. Therefore, disease indices should better predict depression than established theoretical causes of depression (interpersonal life events, reinforcing events, cognitive distortions, type D personality). However, little theory-based research has been conducted in this area. In a cross-sectional design, ACS patients (n = 336) completed questionnaires assessing depression and psychosocial vulnerabilities. Nested logistic regression assessed the relative contribution of demographic or vulnerability factors, or disease indices or vulnerabilities to depression. In multivariate analysis, all vulnerabilities were independent significant predictors of depression (scoring above threshold on any scale, 48%). Demographic variables accounted for vulnerabilities accounting for significantly more (pseudo R² = 0.16, χ²(change) = 150.9, df = 4, p vulnerabilities increased the overall variance explained to 22% (pseudo R² = 0.22, χ² = 58.6, df = 4, p vulnerabilities predicted depression status better than did either demographic or disease indices. The presence of these proximal causes of depression suggests that depression in ACS patients is not simply a result of cardiovascular disease severity.
International Nuclear Information System (INIS)
Fischer, C.
1980-01-01
The volume describes the reasons why more and more people seek alternative ways of life, the theoretical background and what alternative life means in practice as well as the sociological significance and history of the alternative movement. It also contains statements of persons who have 'got out' and advice on energy-saving. (HSCH) [de
Predicted Extension of the Sagittarius Stream to the Milky Way Virial Radius
Energy Technology Data Exchange (ETDEWEB)
Dierickx, Marion I. P.; Loeb, Abraham, E-mail: mdierickx@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)
2017-02-10
The extensive span of the Sagittarius (Sgr) stream makes it a promising tool for studying the gravitational potential of the Milky Way (MW). Characterizing its stellar kinematics can constrain halo properties and provide a benchmark for the paradigm of galaxy formation from cold dark matter. Accurate models of the disruption dynamics of the Sgr progenitor are necessary to employ this tool. Using a combination of analytic modeling and N -body simulations, we build a new model of the Sgr orbit and resulting stellar stream. In contrast to previous models, we simulate the full infall trajectory of the Sgr progenitor from the time it first crossed the MW virial radius 8 Gyr ago. An exploration of the parameter space of initial phase-space conditions yields tight constraints on the angular momentum of the Sgr progenitor. Our best-fit model is the first to accurately reproduce existing data on the 3D positions and radial velocities of the debris detected 100 kpc away in the MW halo. In addition to replicating the mapped stream, the simulation also predicts the existence of several arms of the Sgr stream extending to hundreds of kiloparsecs. The two most distant stars known in the MW halo coincide with the predicted structure. Additional stars in the newly predicted arms can be found with future data from the Large Synoptic Survey Telescope. Detecting a statistical sample of stars in the most distant Sgr arms would provide an opportunity to constrain the MW potential out to unprecedented Galactocentric radii.
How cells engulf: a review of theoretical approaches to phagocytosis
Richards, David M.; Endres, Robert G.
2017-12-01
Phagocytosis is a fascinating process whereby a cell surrounds and engulfs particles such as bacteria and dead cells. This is crucial both for single-cell organisms (as a way of acquiring nutrients) and as part of the immune system (to destroy foreign invaders). This whole process is hugely complex and involves multiple coordinated events such as membrane remodelling, receptor motion, cytoskeleton reorganisation and intracellular signalling. Because of this, phagocytosis is an excellent system for theoretical study, benefiting from biophysical approaches combined with mathematical modelling. Here, we review these theoretical approaches and discuss the recent mathematical and computational models, including models based on receptors, models focusing on the forces involved, and models employing energetic considerations. Along the way, we highlight a beautiful connection to the physics of phase transitions, consider the role of stochasticity, and examine links between phagocytosis and other types of endocytosis. We cover the recently discovered multistage nature of phagocytosis, showing that the size of the phagocytic cup grows in distinct stages, with an initial slow stage followed by a much quicker second stage starting around half engulfment. We also address the issue of target shape dependence, which is relevant to both pathogen infection and drug delivery, covering both one-dimensional and two-dimensional results. Throughout, we pay particular attention to recent experimental techniques that continue to inform the theoretical studies and provide a means to test model predictions. Finally, we discuss population models, connections to other biological processes, and how physics and modelling will continue to play a key role in future work in this area.
Optimal information transfer in enzymatic networks: A field theoretic formulation
Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.
2017-07-01
Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in
International Nuclear Information System (INIS)
Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel; Cuevas, Sergio; Ramos, Eduardo
2014-01-01
We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors
International Nuclear Information System (INIS)
Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.
1991-12-01
The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled
International Nuclear Information System (INIS)
Lashgari, Mohsen; Malek, Ali M.
2010-01-01
Using quantum electrochemical approaches based on density functional theory and cluster/polarized continuum model, we investigated the corrosion behavior of aluminum in HCl and NaOH media containing phenol inhibitor. In this regard, we determined the geometry and electronic structure of the species at metal/solution interface. The investigations revealed that the interaction energies of hydroxide corrosive agents with aluminum surface should be more negative than those of chloride ones. The inhibitor adsorption in acid is more likely to have a physical nature while it appears as though to be chemical in basic media. To verify these predictions, using Tafel plots, we studied the phenomena from experimental viewpoint. The studies confirmed that the rate of corrosion in alkaline solution is substantially greater than in HCl media. Moreover, phenol is a potential-molecule having mixed-type inhibition mechanism. The relationship between inhibitory action and molecular parameters was discussed and the activity in alkaline media was also theoretically anticipated. This prediction was in accord with experiment.
Theoretical prediction of thermodynamic activities of liquid Au-Sn-X (X=Bi, Sb, Zn) solder systems
Energy Technology Data Exchange (ETDEWEB)
Awe, O.E., E-mail: draweoe2004@yahoo.com [Department of Physics, University of Ibadan, Ibadan (Nigeria); Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria); Oshakuade, O.M. [Department of Physics, University of Ibadan, Ibadan (Nigeria)
2017-02-15
Molecular interaction volume model has been theoretically used to predict the thermodynamic activities of tin in Au-Sn-Bi and Au-Sn-Sb and the thermodynamic activity of zinc in Au-Sn-Zn at experimental temperatures 800 K, 873 K and 973 K, respectively. On the premise of agreement between the predicted and experimental values, we predicted the activities of the remaining two components in each of the three systems. This prediction was extended from three cross-sections to five cross-sections, and to temperature range 400–600 K, relevant for applications. Iso-activities were plotted. Results show that addition of tin reduces the tendency for chemical short range order in both Au-Sb and Au-Zn systems, while addition of gold and bismuth, respectively, reduce the tendency for chemical short range order in Sn-Sb and Au-Sn systems. Also, we found that, in the desired high-temperature region for applications, while a combination of chemical order and miscibility of components exist in both Au-Sn-Bi and Au-Sn-Zn systems, only chemical order exist in the Au-Sn-Sb system. Results, further show that increase in temperature reduces the phase separation tendency in Au-Sn-Bi system.
DEFF Research Database (Denmark)
Dau, Susanne
motions of humans and non-human agencies. The findings reveal that learning; formal and informal can be conceptualized by the metaphor of way-finding; embodied, emotionally and/or cognitive both individually and socially. Way-finding, is argued, to be a contemporary concept for learning processes......, knowledge development and identity-shaping, where learning emerges through motions, feeling and thinking within an information rich world in constant change.......Based on empirical case-study findings and the theoretical framework of learning by Illeris coupled with Nonaka & Takeuchis´s perspectives on knowledge creation, it is stressed that learning are conditioned by contextual orientations-processes in spaces near the body (peripersonal spaces) through...
Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars
Directory of Open Access Journals (Sweden)
Ibrahim M. Metwally
2013-08-01
Full Text Available Where corrosion of steel reinforcement is a concern, fiber-reinforced polymer (FRP reinforcing bar or grid reinforcement provides an alternative reinforcement for concrete flat slabs. The existing provisions for punching of slabs in most international design standards for reinforced concrete are based on tests of steel reinforced slabs. The elastic stiffness and bonding characteristics of FRP reinforcement are sufficiently different from those of steel to affect punching strength [1]. This paper evaluates the punching shear strength of concrete flat slabs reinforced with different types of fiber-reinforced polymer (FRP. A total of 59 full-size slabs were constructed and tested collected from the literature of FRP bars reinforced concrete slabs. The test parameters were the amount of FRP reinforcing bars, Young’s modulus of FRP bars, slab thickness, loaded areas and concrete compressive strength. The experimental punching shear strengths were compared with the available theoretical predictions, including the ACI 318 Code, BS 8110 Code, ACI 440 design guidelines, and a number of models proposed by some researchers in the literature. Two approaches for predicting the punching strength of FRP-reinforced slabs are examined. The first is an empirical new model which is considered as a modification of El-Gamal et al. [2] model. The second is a Neural Networks Technique; which has been developed to predict the punching shear capacity of FRP reinforced concrete slabs. The accuracies of both methods were evaluated against the experimental test data. They attained excellent agreement with available test results compared to the existing design formulas.
The First Galaxies Theoretical Predictions and Observational Clues
Mobasher, Bahram; Bromm, Volker
2013-01-01
New observations of the period between the cosmic recombination and the end of reionization are posing intriguing questions about where the first generations of stars were formed, how the first galaxies were assembled, whether these galaxies have low redshift counterparts, and what role the early galaxies played in the reionization process. Combining the new observational data with theoretical models can shed new light on open issues regarding the star formation process, its role in the reionization of the Universe, and the metal enrichment in galaxies at those early epochs. This volume brings together leading experts in the field to discuss our current level of understanding and what may come in the near future as our observational as well as theoretical tools improve. The book confronts the theory of how the first stars, black holes, and galaxies formed with current and planned observations. This synthesis is very timely, just ahead of the establishment of major new facilities, such as the James Webb Space ...
International Nuclear Information System (INIS)
Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel
2012-01-01
Highlights: ► We study properties of Ph 2 Tz and (PhTz) n Ph as candidates for organic electronics. ► The synthesis of Ph 2 Tz was performed through a modified Pinner-type reaction. ► IR/Raman spectra allowed to conclude that Ph 2 Tz is nearly planar in liquid phase. ► Electronic structure was studied by UV–Vis/TD-DFT methods in different solvents. ► Bandgap, E LUMO , electron mobility predict some n-type character for limit polymer. -- Abstract: This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph 2 Tz) and some oligomeric derivatives. Ph 2 Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV–Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.
Exploring SiSn as a performance enhancing semiconductor: A theoretical and experimental approach
Hussain, Aftab M.
2014-12-14
We present a novel semiconducting alloy, silicon-tin (SiSn), as channel material for complementary metal oxide semiconductor (CMOS) circuit applications. The material has been studied theoretically using first principles analysis as well as experimentally by fabricating MOSFETs. Our study suggests that the alloy offers interesting possibilities in the realm of silicon band gap tuning. We have explored diffusion of tin (Sn) into the industry\\'s most widely used substrate, silicon (100), as it is the most cost effective, scalable and CMOS compatible way of obtaining SiSn. Our theoretical model predicts a higher mobility for p-channel SiSn MOSFETs, due to a lower effective mass of the holes, which has been experimentally validated using the fabricated MOSFETs. We report an increase of 13.6% in the average field effect hole mobility for SiSn devices compared to silicon control devices.
The Observational and Theoretical Tidal Radii of Globular Clusters in M87
Webb, Jeremy J.; Sills, Alison; Harris, William E.
2012-02-01
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87
International Nuclear Information System (INIS)
Webb, Jeremy J.; Sills, Alison; Harris, William E.
2012-01-01
Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.
Energy Technology Data Exchange (ETDEWEB)
Johnson, T.J.; Davis, E.J.
2000-05-01
An experimental and theoretical investigation of the electrophoretic clarification rate of colloidal suspensions was conducted. The suspensions included a coal-washing effluent and a model system of TiO{sub 2} particles. A parametric study of TiO{sub 2} suspensions was performed to validate and analysis of the electrophoretic motion of the clarification front formed between a clear zone and the suspension. To measure the electric field strength needed in the prediction of the location of the front, a moveable probe and salt bridge were connected to a reference electrode. Using the measured electric field strengths, it was found that the numerical solution to the unit cell electrophoresis model agrees with the measured clarification rates. For suspensions with moderately thick electric double layers and high particle volume fractions the deviations from classical Smoluchowski theory are substantial, and the numerical analysis is in somewhat better agreement with the data than a prior solution of the problem. The numerical model reduces to the predictions of previous theories as the thickness of the electric double layer decreases, and it is in good agreement with the clarification rate measured for a coal-washing effluent suspension with thin electric double layers.
Ismail, M.; Adel, A.
2018-04-01
The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.
The way toward theoretical description of state-selected reactions of O+ with methane
Czech Academy of Sciences Publication Activity Database
Hrušák, Jan; Paidarová, Ivana
354-355, SI (2013), s. 372-377 ISSN 1387-3806 R&D Projects: GA ČR GAP208/11/0446 Institutional support: RVO:61388955 Keywords : methane oxidation * excited state * ab initio MCSCF calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.227, year: 2013
Theoretical prediction of ion conductivity in solid state HfO2
Zhang, Wei; Chen, Wen-Zhou; Sun, Jiu-Yu; Jiang, Zhen-Yi
2013-01-01
A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.
Statistical short-term earthquake prediction.
Kagan, Y Y; Knopoff, L
1987-06-19
A statistical procedure, derived from a theoretical model of fracture growth, is used to identify a foreshock sequence while it is in progress. As a predictor, the procedure reduces the average uncertainty in the rate of occurrence for a future strong earthquake by a factor of more than 1000 when compared with the Poisson rate of occurrence. About one-third of all main shocks with local magnitude greater than or equal to 4.0 in central California can be predicted in this way, starting from a 7-year database that has a lower magnitude cut off of 1.5. The time scale of such predictions is of the order of a few hours to a few days for foreshocks in the magnitude range from 2.0 to 5.0.
Axions: on the way to invisibility
International Nuclear Information System (INIS)
Girardi, G.
1982-01-01
We present a survey of the theoretical motivation which lead to the axion and we summarize its properties. A brief account of the experimental situation is given, which in addition to cosmological constraints imposes to the axion the way of invisibility in Grand Unified Theories
Energy Technology Data Exchange (ETDEWEB)
Dhavalikar, Rohan [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611 (United States)
2016-12-01
Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI. - Highlights: • SAR predictions based on a field-dependent magnetization relaxation model.
Theoretical predictions for glass flow into an evacuated canister
International Nuclear Information System (INIS)
Routt, K.R.; Crow, K.R.
1983-01-01
Radioactive waste currently stored at the Savannah River Plant in liquid form is to be immobilized by incorporating it into a borosilicate glass. The glass melter for this process will consist of a refractory lined, steel vessel operated at a glass temperature of 1150 0 C. At the end of a two-year projected melter lifetime, the glass inside the melter is to be drained prior to disposition of the melter vessel. One proposed technique for accomplishing this drainage is by sucking the glass into an evacuated canister. The theoretical bases for design of an evacuated canister for draining a glass melter have been developed and tested. The theoretical equations governing transient and steady-state flow were substantiated with both a silicone glass simulant and molten glass
The theoretical tensile strength of fcc crystals predicted from shear strength calculations
International Nuclear Information System (INIS)
Cerny, M; Pokluda, J
2009-01-01
This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.
Theoretically predicted soft x-ray emission and absorption spectra of graphitic-structured BC2N
Muramatsu, Yasuji
Theoretical B K, C K and N K x-ray emission/absorption spectra of three possible graphitic-structured BC2N clusters are predicted based on the B2p-, C2p-, and N2p- density-of-states (DOS) calculated by discrete variational (DV)-X[alpha] molecular orbital calculations. Several prominent differences in DOS spectral features among BC2Ns, h-BN, and graphite are confirmed from comparison of calculated B2p-, C2p-, and N2p-DOS spectra. These variations in the spectra allow BC2N structures to be positively identified by high-resolution x-ray emission/absorption spectroscopy in the B K, C K, and N K regions.
A theoretical prediction of critical heat flux in subcooled pool boiling during power transients
International Nuclear Information System (INIS)
Pasamehmetoglu, K.O.; Nelson, R.A.; Gunnerson, F.S.
1988-01-01
Understanding and predicting critical heat flux (CHF) behavior during steady-state and transient conditions are of fundamenatal interest in the design, operation, safety of boiling and two-phase flow devices. This paper discusses the results of a comprehensive theoretical study made specifically to model transient CHF behavior in subcooled pool boiling. This study is based upon a simplified steady-state CHF model in terms of the vapor mass growth period. The results obtained from this theory indicate favorable agreement with the experimental data from cylindrical heaters with small radii. The statistical nature of the vapor mass behavior in transient boiling also is considered and upper and lower limits for the current theory are established. Various factors that affect the discrepancy between the data and the theory are discussed
Strength in Ways: Finding Creativity in Routine Strategy Development
2011-06-01
examples like Jerry Rice (sports), Thomas Edison (science) and Warren Buffet (business). Finally, even genius, of course, could benefit from being...our ways must theoretically increase to account for the difference. So expanding ends and declining means may require more creative ways to account ...expanding difference between national ends and means will demand--now more than ever--that our ways account for the delta. How do we do this? How do
Theoretical basis of the new particles
International Nuclear Information System (INIS)
Rujula, A.
1977-01-01
The four-quark standard gauge field theory of weak, electromagnetic and strong interactions is reviewed and placed into a historical perspective since as early as 1961. Theoretical predictions of the model are compared to experimental observations available as of the Conference date, charm production in e + e - annihilation being in the spotlight. Virtues and shortcomings of the standard model are discussed. The model is concluded to have been an incredibly successful predictive tool. Some theoretical developments around the standard model are also discussed in view of CP violation in SU(2)xU(1) gauge theories, the Higgs' bosons and superunification of weak, strong and electromagnetic interactions
A theoretical model for prediction of deposition efficiency in cold spraying
International Nuclear Information System (INIS)
Li Changjiu; Li Wenya; Wang Yuyue; Yang Guanjun; Fukanuma, H.
2005-01-01
The deposition behavior of a spray particle stream with a particle size distribution was theoretically examined for cold spraying in terms of deposition efficiency as a function of particle parameters and spray angle. The theoretical relation was established between the deposition efficiency and spray angle. The experiments were conducted by measuring deposition efficiency at different driving gas conditions and different spray angles using gas-atomized copper powder. It was found that the theoretically estimated results agreed reasonably well with the experimental ones. Based on the theoretical model and experimental results, it was revealed that the distribution of particle velocity resulting from particle size distribution influences significantly the deposition efficiency in cold spraying. It was necessary for the majority of particles to achieve a velocity higher than the critical velocity in order to improve the deposition efficiency. The normal component of particle velocity contributed to the deposition of the particle under the off-nomal spray condition. The deposition efficiency of sprayed particles decreased owing to the decrease of the normal velocity component as spray was performed at off-normal angle
PGT: A Statistical Approach to Prediction and Mechanism Design
Wolpert, David H.; Bono, James W.
One of the biggest challenges facing behavioral economics is the lack of a single theoretical framework that is capable of directly utilizing all types of behavioral data. One of the biggest challenges of game theory is the lack of a framework for making predictions and designing markets in a manner that is consistent with the axioms of decision theory. An approach in which solution concepts are distribution-valued rather than set-valued (i.e. equilibrium theory) has both capabilities. We call this approach Predictive Game Theory (or PGT). This paper outlines a general Bayesian approach to PGT. It also presents one simple example to illustrate the way in which this approach differs from equilibrium approaches in both prediction and mechanism design settings.
Comparative analysis of the performance of One-Way and Two-Way urban road networks
Gheorghe, Carmen
2017-10-01
The fact that the number of vehicles is increasing year after year represents a challenge in road traffic management because it is necessary to adjust the road traffic, in order to prevent any incidents, using mostly the same road infrastructure. At this moment one-way road network provides efficient traffic flow for vehicles but it is not ideal for pedestrians. Therefore, a proper solution must be found and applied when and where it is necessary. Replacing one-way road network with two-way road network may be a viable solution especially if in the area is high pedestrian traffic. The paper aims to highlight the influence of both, one-way and two-way urban road networks through an experimental research which was performed by using traffic data collected in the field. Each of the two scenarios analyzed were based on the same traffic data, the same geometrical conditions of the road (lane width, total road segment width, road slopes, total length of the road network) and also the same signaling conditions (signalised intersection or roundabout). The analysis which involves two-way scenario reveals changes in the performance parameters like delay average, stops average, delay stop average and vehicle speed average. Based on the values obtained, it was possible to perform a comparative analysis between the real, one-way, scenario and the theoretical, two-way, scenario.
Energy Technology Data Exchange (ETDEWEB)
Tsoukos, S; Kateris, A; Kalivas, N; Spyrou, G; Panayiotakis, G [Department of Medical Physics, School of Medicine, University of Patras, 265 00 pAtras (Greece); Kandarakis, I; Gavouras, D [Department of Medical Instrumentation Technology, Technological Educational Institution of Athens (Greece)
1999-12-31
A theoretical model predicting the intensity of light emitted by x-ray imaging phosphor screens per unit of area and time over incident x-ray flux (absolute efficiency) was developed. The model takes into account : A) the structure of the screens which consists of luminescent grains embedded in a binding matrix. B) the direct deposition of energy by x-ray absorption effects.. C) the re-absorption of K fluorescence characteristic x-rays produced when the x-ray energy exceeds the energy of the K absorption edge of the phosphor material. To test the model a set of (Gd,La)2O2S:Tb phosphor screens was prepared by sedimentation in the laboratory. Experimental absolute efficiency data were obtained at x-ray tube voltage range from 40 to 160 kVp. The coincidence between experimental and theoretical results were satisfactory. (authors) 7 refs., 4 figs.
Judge, Timothy A; Rodell, Jessica B; Klinger, Ryan L; Simon, Lauren S; Crawford, Eean R
2013-11-01
Integrating 2 theoretical perspectives on predictor-criterion relationships, the present study developed and tested a hierarchical framework in which each five-factor model (FFM) personality trait comprises 2 DeYoung, Quilty, and Peterson (2007) facets, which in turn comprise 6 Costa and McCrae (1992) NEO facets. Both theoretical perspectives-the bandwidth-fidelity dilemma and construct correspondence-suggest that lower order traits would better predict facets of job performance (task performance and contextual performance). They differ, however, as to the relative merits of broad and narrow traits in predicting a broad criterion (overall job performance). We first meta-analyzed the relationship of the 30 NEO facets to overall job performance and its facets. Overall, 1,176 correlations from 410 independent samples (combined N = 406,029) were coded and meta-analyzed. We then formed the 10 DeYoung et al. facets from the NEO facets, and 5 broad traits from those facets. Overall, results provided support for the 6-2-1 framework in general and the importance of the NEO facets in particular. (c) 2013 APA, all rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Johnson, T.J.; Davis, E.J. [University of Washington, Seattle, WA (USA). Dept. of Chemical Engineering
2000-05-01
An experimental and theoretical investigation of the electrophoretic clarification rate of colloidal suspensions was conducted. The suspensions included a coal-washing effluent and a model system of TiO{sub 2} particles. A parametric study of TiO{sub 2} suspensions was performed to validate an analysis of the electrophoretic motion of the clarification front formed between a clear zone and the suspension. To measure the electric field strength needed in the prediction of the location of the front, a moveable probe and salt bridge were connected to a reference electrode. Using the measured electric field strength, it was found that the numerical solution to the unit cell electrophoresis model agrees with the measured clarification rates. For suspensions with moderately thick electric double layers and high particle volume fractions the deviations from classical Smoluchowski theory are substantial, and the numerical analysis is in somewhat better agreement with the data than a prior solution of the problem. The numerical model reduces to the predictions of previous theories as the thickness of the electric double layer decreases, and it is in good agreement with the clarification rate measured for a coal-washing effluent suspension with thin electric double layers. 21 refs., 8 figs., 4 tabs.
Theoretical Predictions of Freestanding Honeycomb Sheets of Cadmium Chalcogenides
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jia [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Kent, Paul R [ORNL; Xie, Yu [ORNL; Terrones Maldonado, Humberto [ORNL; Smith, Sean C [ORNL
2014-01-01
Two-dimensional (2D) nanocrystals of CdX (X = S, Se, Te) typically grown by colloidal synthesis are coated with organic ligands. Recent experimental work on ZnSe showed that the organic ligands can be removed at elevated temperature, giving a freestanding 2D sheet of ZnSe. In this theoretical work, freestanding single- to few-layer sheets of CdX, each possessing a pseudo honeycomb lattice, are considered by cutting along all possible lattice planes of the bulk zinc blende (ZB) and wurtzite (WZ) phases. Using density functional theory, we have systematically studied their geometric structures, energetics, and electronic properties. A strong surface distortion is found to occur for all of the layered sheets, and yet all of the pseudo honeycomb lattices are preserved, giving unique types of surface corrugations and different electronic properties. The energetics, in combination with phonon mode calculations and molecular dynamics simulations, indicate that the syntheses of these freestanding 2D sheets could be selective, with the single- to few-layer WZ110, WZ100, and ZB110 sheets being favored. Through the GW approximation, it is found that all single-layer sheets have large band gaps falling into the ultraviolet range, while thicker sheets in general have reduced band gaps in the visible and ultraviolet range. On the basis of the present work and the experimental studies on freestanding double-layer sheets of ZnSe, we envision that the freestanding 2D layered sheets of CdX predicted herein are potential synthesis targets, which may offer tunable band gaps depending on their structural features including surface corrugations, stacking motifs, and number of layers.
The predictive mind and the experience of visual art work.
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person's mindset, which determines what top-down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art.
The predictive mind and the experience of visual art work
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person’s mindset, which determines what top–down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art. PMID:25566111
Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P
2014-06-01
With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.
Energy Technology Data Exchange (ETDEWEB)
Moral, Monica; Garcia, Gregorio [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Penas, Antonio [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Garzon, Andres; Granadino-Roldan, Jose M. [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Melguizo, Manuel [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Fernandez-Gomez, Manuel, E-mail: mfg@ujaen.es [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain)
2012-10-26
Highlights: Black-Right-Pointing-Pointer We study properties of Ph{sub 2}Tz and (PhTz){sub n}Ph as candidates for organic electronics. Black-Right-Pointing-Pointer The synthesis of Ph{sub 2}Tz was performed through a modified Pinner-type reaction. Black-Right-Pointing-Pointer IR/Raman spectra allowed to conclude that Ph{sub 2}Tz is nearly planar in liquid phase. Black-Right-Pointing-Pointer Electronic structure was studied by UV-Vis/TD-DFT methods in different solvents. Black-Right-Pointing-Pointer Bandgap, E{sub LUMO}, electron mobility predict some n-type character for limit polymer. -- Abstract: This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph{sub 2}Tz) and some oligomeric derivatives. Ph{sub 2}Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.
Lizandra, Jorge; Devís-Devís, José; Pérez-Gimeno, Esther; Valencia-Peris, Alexandra; Peiró-Velert, Carmen
2016-01-01
This study examined whether adolescents' time spent on sedentary behaviors (academic, technological-based and social-based activities) was a better predictor of academic performance than the reverse. A cohort of 755 adolescents participated in a three-year period study. Structural Equation Modeling techniques were used to test plausible causal hypotheses. Four competing models were analyzed to determine which model best fitted the data. The Best Model was separately tested by gender. The Best Model showed that academic performance was a better predictor of sedentary behaviors than the other way round. It also indicated that students who obtained excellent academic results were more likely to succeed academically three years later. Moreover, adolescents who spent more time in the three different types of sedentary behaviors were more likely to engage longer in those sedentary behaviors after the three-year period. The better the adolescents performed academically, the less time they devoted to social-based activities and more to academic activities. An inverse relationship emerged between time dedicated to technological-based activities and academic sedentary activities. A moderating auto-regressive effect by gender indicated that boys were more likely to spend more time on technological-based activities three years later than girls. To conclude, previous academic performance predicts better sedentary behaviors three years later than the reverse. The positive longitudinal auto-regressive effects on the four variables under study reinforce the 'success breeds success' hypothesis, with academic performance and social-based activities emerging as the strongest ones. Technological-based activities showed a moderating effect by gender and a negative longitudinal association with academic activities that supports a displacement hypothesis. Other longitudinal and covariate effects reflect the complex relationships among sedentary behaviors and academic performance and the
Curiosity and reward: Valence predicts choice and information prediction errors enhance learning.
Marvin, Caroline B; Shohamy, Daphna
2016-03-01
Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has value in and of itself. Reframing curiosity as the motivation to obtain reward-where the reward is information-allows one to leverage major advances in theoretical and computational mechanisms of reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this framework. First, we find an asymmetric effect of positive versus negative information, with positive information enhancing both curiosity and long-term memory for information. Second, we find that it is not the absolute value of information that drives learning but, rather, the gap between the reward expected and reward received, an "information prediction error." These results support the idea that information functions as a reward, much like money or food, guiding choices and driving learning in systematic ways. (c) 2016 APA, all rights reserved).
Directory of Open Access Journals (Sweden)
2009-11-01
Full Text Available This paper has investigated theoretically the influence of sliding speed and temperature on the hysteretic friction in case of a smooth, reciprocating steel ball sliding on smooth rubber plate by finite element method (FEM. Generalized Maxwell-models combined with Mooney-Rivlin model have been used to describe the material behaviour of the ethylenepropylene-diene-monomer (EPDM rubber studied. Additionally, the effect of the technique applied at the parameter identification of the material model and the number of Maxwell elements on the coefficient of friction (COF was also investigated. Finally, the open parameter of the Greenwood-Tabor analytical model has been determined from a fit to the FE results. By fitting, as usual, the Maxwell-model to the storage modulus master curve the predicted COF, in a broad frequency range, will be underestimated even in case of 40-term Maxwell-model. To obtain more accurate numerical prediction or to provide an upper limit for the hysteretic friction, in the interesting frequency range, the Maxwell parameters should be determined, as proposed, from a fit to the measured loss factor master curve. This conclusion can be generalized for all the FE simulations where the hysteresis plays an important role.
Socio-theoretic Accounts of IS
DEFF Research Database (Denmark)
Rose, Jeremy; Jones, Matthew
2005-01-01
A long-standing debate in the IS literature concerns the relationship between technology and organization. Does technology cause effects in organizations, or is it humans that determine how technology is used? Many socio-theoretic accounts of a middle way between the extremes of technological...... confusion. This paper argues that neither structuration theory nor actor network theory offers a particularly convincing account of the interaction of humans and machines, and that their different accounts of agency make them hard to integrate in any meaningful way. Comparing the two theories and their use...
Energy Technology Data Exchange (ETDEWEB)
Prilutski, Yu.I.; Durov, S.S.; Yashchuk, V.N.; Ogul' chansky, T.Yu.; Pogorelov, V.E.; Astashkin, Yu.A. [Kievskij Gosudarstvennyj Univ. (Ukraine). Radiofizicheskij Fakul' tet; Buzaneva, E.V.; Kirghisov, Yu.D. [Department of Radiophysics, Kiev Shevchenko University, Vladimirskaya Str., 64, 252033 Kiev (Ukraine); Andrievsky, G.V. [Institute for Therapy of the Academy of Medical Sciences of Ukraine, Postysheva Str. 2a, 310116 Kharkov (Ukraine); Scharff, P. [Institut fuer Anorganische und Analytische Chemie, TU Clausthal, Paul-Ernst-Strasse 4, D-38670 Clausthal-Zellerfeld (Germany)
1999-12-01
The formation in water of highly stable hydrated clusters (I{sub h} symmetry group) and microcrystals (T{sub h} symmetry group) from C{sub 60} fullerenes is theoretically predicted using a molecular dynamics calculation. The proposed models are confirmed by the experiments on the Raman and absorption spectra of the fullerene aqueous solution. The additional study of the structure of C{sub 60} fullerene aggregates in the dry layer on the support (dielectric/semiconductor) is also performed. (orig.)
Longitudinal Research in Social Science: Some Theoretical Challenges
Directory of Open Access Journals (Sweden)
Thomas K. Burch
2001-12-01
Full Text Available Every advance carries with it potential problems, and longitudinal analysis is no exception. This paper focuses on the problems related to the massive amounts of data generated by longitudinal surveys. It is argued that a proliferation of data may be to the good but it will not necessarily lead to better scientific knowledge. Most demographers think the logical positivist way that theory arises out of empirical generalisations, but massive empirical investigations have only led to disappointing theoretical outcomes in demography. This paper discusses one way out of this impasse - to adopt a different view of theory, a model-based view of science. Theoretical models based on empirical generalisation should become the main representational device in science.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang
2017-05-01
Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.
Minetti, A E; Ardigò, L P; Susta, D; Cotelli, F
1998-12-01
The use of muscles as power dissipators is investigated in this study, both from the modellistic and the experimental points of view. Theoretical predictions of the drop landing manoeuvre for a range of initial conditions have been obtained by accounting for the mechanical characteristics of knee extensor muscles, the limb geometry and assuming maximum neural activation. Resulting dynamics have been represented in the phase plane (vertical displacement versus speed) to better classify the damping performance. Predictions of safe landing in sedentary subjects were associated to dropping from a maximum (feet) height of 1.6-2.0 m (about 11 m on the moon). Athletes can extend up to 2.6-3.0 m, while for obese males (m = 100 kg, standard stature) the limit should reduce to 0.9-1.3 m. These results have been calculated by including in the model the estimated stiffness of the 'global elastic elements' acting below the squat position. Experimental landings from a height of 0.4, 0.7, 1.1 m (sedentary males (SM) and male (AM) and female (AF) athletes from the alpine ski national team) showed dynamics similar to the model predictions. While the peak power (for a drop height of about 0.7 m) was similar in SM and AF (AM shows a +40% increase, about 33 W/kg), AF stopped the downward movement after a time interval (0.219 +/- 0.030 s) from touch-down 20% significantly shorter than SM. Landing strategy and the effect of anatomical constraints are discussed in the paper.
Tau decays: A theoretical perspective
International Nuclear Information System (INIS)
Marciano, W.J.
1992-11-01
Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and ''new physics'' searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given
Ab-initio theoretical predictions of structural properties of semiconductors
International Nuclear Information System (INIS)
Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.
1983-01-01
Calculations of the total energies of Si, GaP and C together with related structural properties are presented. The results show good agreement with experimental values (differences of less than 6%). They also agree with other recent theoretical results. Calculations for Si and GaP have already been reported and are given here as a reference. (L.C.) [pt
Improving protein function prediction methods with integrated literature data
Directory of Open Access Journals (Sweden)
Gabow Aaron P
2008-04-01
Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder
Hao, Shiqiang; Zhao, Li-Dong; Chen, Chang-Qiang; Dravid, Vinayak P; Kanatzidis, Mercouri G; Wolverton, Christopher M
2014-01-29
We examine the thermodynamics of phase separation and ordering in the ternary Ca(x)Pb(1-x)S and Sr(x)Pb(1-x)S systems by density-functional theory combined with a cluster expansion and Monte Carlo simulations. Similar to most other ternary III-V or IV-VI semiconductor alloys, we find that bulk phase separation is thermodynamically preferred for PbS-CaS. However, we predict the surprising existence of stable, ordered ternary compounds in the PbS-SrS system. These phases are previously unreported ordered rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. The stability of these predicted ordered phases is confirmed by transmission electron microscopy observations and band gap measurements. We believe this work paves the way for a combined theory-experiment approach to decipher complex phase relations in multicomponent chalcogenide systems.
Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries
2013-07-01
A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.
Theoretical developments in SUSY
Energy Technology Data Exchange (ETDEWEB)
Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2009-01-15
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Theoretical Developments in SUSY
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.
Theoretical developments in SUSY
International Nuclear Information System (INIS)
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
[Phenomenological anthropological social psychiatry--paving the way for a theoretical reanimation].
Thoma, Samuel
2012-11-01
This article tries to link the present lack of theoretical discussion within German Social Psychiatry with a loss of phenomenological and anthropological thought. The so-called Phenomenological Psychiatry used to play a very important role in German psychiatry during the 50 ies until the 70 ies and had strong influences on the first reformers of German psychiatry, such as Walter Ritter von Baeyer, Heinz Häfner, Caspar Kulenkampff, Karl Peter Kisker and Erich Wulff. Their reforms were not only founded by a social criticism put forth by theories such as marxism (Basaglia, Wulff) or structuralism (Foucault) but also by a concrete notion of what it is like to suffer from mental illness and what kind of needs are linked to such suffering. This very notion was given by the phenomenological approach. Finally the article tries to give reasons for today's reciprocal loss of connection of the phenomenological and the socio-psychiatric school. © Georg Thieme Verlag KG Stuttgart · New York.
Neural Elements for Predictive Coding
Directory of Open Access Journals (Sweden)
Stewart SHIPP
2016-11-01
Full Text Available Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backwards in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forwards and backwards pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a updates in the microcircuitry of primate visual cortex, and (b rapid technical advances made
Neural Elements for Predictive Coding.
Shipp, Stewart
2016-01-01
Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many 'illusory' instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons do not project in both directions - has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic 'canonical microcircuit' and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural
Theoretical-experimental comparison of vitrified glass container behavior using the Castem system
International Nuclear Information System (INIS)
Moncouyoux, J.P.; Jamet, P.; Combescure, A.; Millard, A.
1989-01-01
This paper compares theoretical predictions of vitrified nuclear waste glass package collapse with experimental values in order to qualify the mathematical models describing canister deformation under external pressure loads. After briefly outlining the program and describing the experiments performed, the paper discusses the theoretical predictions based on the INCA code from the CEA's CASTEM system
Directory of Open Access Journals (Sweden)
Tammy M K Cheng
Full Text Available Recent analyses of human genome sequences have given rise to impressive advances in identifying non-synonymous single nucleotide polymorphisms (nsSNPs. By contrast, the annotation of nsSNPs and their links to diseases are progressing at a much slower pace. Many of the current approaches to analysing disease-associated nsSNPs use primarily sequence and evolutionary information, while structural information is relatively less exploited. In order to explore the potential of such information, we developed a structure-based approach, Bongo (Bonds ON Graph, to predict structural effects of nsSNPs. Bongo considers protein structures as residue-residue interaction networks and applies graph theoretical measures to identify the residues that are critical for maintaining structural stability by assessing the consequences on the interaction network of single point mutations. Our results show that Bongo is able to identify mutations that cause both local and global structural effects, with a remarkably low false positive rate. Application of the Bongo method to the prediction of 506 disease-associated nsSNPs resulted in a performance (positive predictive value, PPV, 78.5% similar to that of PolyPhen (PPV, 77.2% and PANTHER (PPV, 72.2%. As the Bongo method is solely structure-based, our results indicate that the structural changes resulting from nsSNPs are closely associated to their pathological consequences.
A Theoretical Framework for Ecological Interface Design
DEFF Research Database (Denmark)
Vicente, Kim J.; Rasmussen, Jens
1988-01-01
A theoretical framework for designing interfaces for complex systems is de-scribed. The framework, called ecological interface design (EID), suggests a set of principles for designing interfaces in a way that supports the funda-mental properties of human cognition. The basis of EID is the skills...... of the task require. The EID approach extends the concept of direct manipulation inter-faces by taking into account the added complications introduced by complex systems. In this paper, we describe the development of the framework, its theoretical foundations, and examples of its application to various work...
Theoretical prediction and impact of fundamental electric dipole moments
International Nuclear Information System (INIS)
Ellis, Sebastian A.R.; Kane, Gordon L.
2016-01-01
The predicted Standard Model (SM) electric dipole moments (EDMs) of electrons and quarks are tiny, providing an important window to observe new physics. Theories beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative phases of terms in the effective Lagrangian of the extended theory, which are generally unknown. Underlying theories, such as string/M-theories compactified to four dimensions, could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory. Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that the phases were predicted to be zero at tree level in the theory at the unification or string scale ∼O(10 16 GeV). Electroweak (EW) scale EDMs still arise via running from the high scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here we extend the earlier work by studying the dependence of the low scale EDMs on the constrained but not fully known fundamental Yukawa couplings. The dominant contribution is from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron EDM should not be found to be larger than about 5×10 −30 e cm, and the neutron EDM should not be larger than about 5×10 −29 e cm. These values are quite a bit smaller than the reported predictions from Split SUSY and typical effective theories, but much larger than the Standard Model prediction. Also, since models with random phases typically give much larger EDMs, it is a significant testable prediction of compactified M-theory that the EDMs should not be above these upper limits. The actual EDMs can be below the limits, so once they are measured they could provide new insight into the fundamental Yukawa couplings of leptons and quarks. We comment also on the role of strong CP violation. EDMs probe fundamental physics near the Planck scale.
Theoretical prediction and impact of fundamental electric dipole moments
Energy Technology Data Exchange (ETDEWEB)
Ellis, Sebastian A.R.; Kane, Gordon L. [Michigan Center for Theoretical Physics (MCTP),Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)
2016-01-13
The predicted Standard Model (SM) electric dipole moments (EDMs) of electrons and quarks are tiny, providing an important window to observe new physics. Theories beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative phases of terms in the effective Lagrangian of the extended theory, which are generally unknown. Underlying theories, such as string/M-theories compactified to four dimensions, could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory. Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that the phases were predicted to be zero at tree level in the theory at the unification or string scale ∼O(10{sup 16} GeV). Electroweak (EW) scale EDMs still arise via running from the high scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here we extend the earlier work by studying the dependence of the low scale EDMs on the constrained but not fully known fundamental Yukawa couplings. The dominant contribution is from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron EDM should not be found to be larger than about 5×10{sup −30}e cm, and the neutron EDM should not be larger than about 5×10{sup −29}e cm. These values are quite a bit smaller than the reported predictions from Split SUSY and typical effective theories, but much larger than the Standard Model prediction. Also, since models with random phases typically give much larger EDMs, it is a significant testable prediction of compactified M-theory that the EDMs should not be above these upper limits. The actual EDMs can be below the limits, so once they are measured they could provide new insight into the fundamental Yukawa couplings of leptons and quarks. We comment also on the role of strong CP violation. EDMs probe fundamental physics near the Planck scale.
Theoretical isochrones with decreasing gravitational constant
International Nuclear Information System (INIS)
Vandenberg, D.A.
1976-01-01
Van Flandern has postulated a variation of the gravitational constant at the rate approximately -8 x 10 -11 /yr. This variation, consistent with Hoyle-Narlikar and Dirac cosmologies, has been assumed in the computation of a 5 x 10 9 yr theoretical isochrone. Present results show that, even for this age, theory predicts a cluster turn-off luminosity approximately 0.5 to 1.0 mag fainter than the observed turn-offs of globular clusters. Unsatisfactory agreement between theoretical and observed luminosity functions is also indicated. (author)
The personality profile of terrorist leaders: theoretical aspects and ways of measuring
Dimitrovska, Aleksandra; Dojcinovski, Metodija
2015-01-01
The main task of the psychology of terrorism is to explain the psychological aspects of terrorism, trying to provide answers about the behavior of the persons involved in terrorist activities. The literature suggests that there is no a single theory that explains the reasons and the way of "making the terrorists." While the first generation of research have viewed on terrorism as a pathology, explaining it predominantly through mental illness and psychopathic personality, th...
An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.
Directory of Open Access Journals (Sweden)
Alexej Abyzov
2008-04-01
Full Text Available Abasic (AP sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1 cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta. While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site and three with pol-beta located upstream of APEX1 (5' to the damaged site. Molecular dynamics (MD simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in
Choi, Garam; Lee, Won Bo
Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.
Fong, Aaron; Meyer, Matthew P; O'Leary, Daniel J
2013-02-18
Previous theoretical studies of Mislow's doubly-bridged biphenyl ketone 1 and dihydrodimethylphenanthrene 2 have determined significant entropic contributions to their normal (1) and inverse (2) conformational kinetic isotope effects (CKIEs). To broaden our investigation, we have used density functional methods to characterize the potential energy surfaces and vibrational frequencies for ground and transition structures of additional systems with measured CKIEs, including [2.2]-metaparacyclophane-d (3), 1,1'-binaphthyl (4), 2,2'-dibromo-[1,1'-biphenyl]-4,4'-dicarboxylic acid (5), and the 2-(N,N,N-trimethyl)-2'-(N,N-dimethyl)-diaminobiphenyl cation (6). We have also computed CKIEs in a number of systems whose experimental CKIEs are unknown. These include analogs of 1 in which the C=O groups have been replaced with CH₂ (7), O (8), and S (9) atoms and ring-expanded variants of 2 containing CH₂ (10), O (11), S (12), or C=O (13) groups. Vibrational entropy contributes to the CKIEs in all of these systems with the exception of cyclophane 3, whose isotope effect is predicted to be purely enthalpic in origin and whose Bigeleisen-Mayer ZPE term is equivalent to DDH‡. There is variable correspondence between these terms in the other molecules studied, thus identifying additional examples of systems in which the Bigeleisen-Mayer formalism does not correlate with DH/DS dissections.
Directory of Open Access Journals (Sweden)
Aaron Fong
2013-02-01
Full Text Available Previous theoretical studies of Mislow’s doubly-bridged biphenyl ketone 1 and dihydrodimethylphenanthrene 2 have determined significant entropic contributions to their normal (1 and inverse (2 conformational kinetic isotope effects (CKIEs. To broaden our investigation, we have used density functional methods to characterize the potential energy surfaces and vibrational frequencies for ground and transition structures of additional systems with measured CKIEs, including [2.2]-metaparacyclophane-d (3, 1,1'-binaphthyl (4, 2,2'-dibromo-[1,1'-biphenyl]-4,4'-dicarboxylic acid (5, and the 2-(N,N,N-trimethyl-2'-(N,N-dimethyl-diaminobiphenyl cation (6. We have also computed CKIEs in a number of systems whose experimental CKIEs are unknown. These include analogs of 1 in which the C=O groups have been replaced with CH2 (7, O (8, and S (9 atoms and ring-expanded variants of 2 containing CH2 (10, O (11, S (12, or C=O (13 groups. Vibrational entropy contributes to the CKIEs in all of these systems with the exception of cyclophane 3, whose isotope effect is predicted to be purely enthalpic in origin and whose Bigeleisen-Mayer ZPE term is equivalent to ΔΔ H‡. There is variable correspondence between these terms in the other molecules studied, thus identifying additional examples of systems in which the Bigeleisen-Mayer formalism does not correlate with ΔH/ΔS dissections.
The structure of the nuclear stellar cluster of the Milky Way
International Nuclear Information System (INIS)
Schoedel, Rainer; Eckart, Andreas
2006-01-01
The structure of the nuclear stellar cluster of the Milky Way is of particular interest because it is the densest stellar cluster in our Galaxy, where the theoretical prediction of the formation of a stellar cusp around the central supermassive black hole, Sagittarius A* (Sgr A*) can be examined. We present high-resolution adaptive optics observations with multiple intermediate band liters of the inner ∼20'' around Sgr A*. From the images, stellar number counts and a detailed map of the interstellar extinction toward the central 0.5 pc of the Milky Way were determined. The extinction map is consistent with a putative southwest-northeast aligned outfbw from the central arcseconds. An azimuthally averaged, crowding and extinction corrected stellar density profle presents clear evidence for the existence of a stellar cusp around Sgr A*. We show that the profle of the surface brightness density is dominated by the brightest stars in the central arcseconds and is different from the shape of the stellar cluster as inferred from the number counts. Several density peaks found in the cluster may indicate clumping, possibly related to the last epoch of star formation in the Galactic Center. There is evidence for a common proper motion of the stars in one of these clumps
Theoretical perspective for baryon number violation
International Nuclear Information System (INIS)
Langacker, P.
1982-01-01
In this talk I describe the theoretical predictions for proton decay and other baryon number violating processes, emphasizing that there are many models and theories involving baryon number violation and that it is an experimental problem to distinguish between them. I first review the the theoretical predictions for the unification mass M/sub X/ and for the weak angle sin 2 theta/sub W/. It will be seen that the class of models involving an Su 3 x SU 2 x U 1 invariant desert between M/sub W/ and M/sub X/ are strongly favored. I then turn to baryon number violation. The proton lifetime and branching ratio predictions for the SU 5 and other 3-2-1 desert models are reviewed, with emphasis on distinguishing between models and on the implications of the small value of the QCD parameter lambda/sub anti MS/ that seems to be favored by the data. I then discuss the consequences of low energy supersymmetry for proton decay, nuclear effects, and models with low mass scales. Finally, I mention possible implications of the anomalously large flux of cosmic ray antiprotons that has recently been reported
SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS
Directory of Open Access Journals (Sweden)
D. E. Dobrinskaya
2016-01-01
Full Text Available The network is an efficient way of social structure analysis for contemporary sociologists. It gives broad opportunities for detailed and fruitful research of different patterns of ties and social relations by quantitative analytical methods and visualization of network models. The network metaphor is used as the most representative tool for description of a new type of society. This new type is characterized by flexibility, decentralization and individualization. Network organizational form became the dominant form in modern societies. The network is also used as a mode of inquiry. Actually three theoretical network approaches in the Internet research case are the most relevant: social network analysis, “network society” theory and actor-network theory. Every theoretical approach has got its own notion of network. Their special methodological and theoretical features contribute to the Internet studies in different ways. The article represents a brief overview of these network approaches. This overview demonstrates the absence of a unified semantic space of the notion of “network” category. This fact, in turn, points out the need for detailed analysis of these approaches to reveal their theoretical and empirical possibilities in application to the Internet studies.
Ways that Social Change Predicts Personal Quality of Life
Cheung, Chau-Kiu; Leung, Kwok
2010-01-01
A notable way that social change affects personal quality of life would rely on the person's experience with social change. This experience may influence societal quality of life and quality of work life, which may in turn affect personal quality of life. Additionally, the experience of social change is possibly less detrimental to personal…
Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi
2014-08-15
We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.
Ways of the Jam:Collective and improvisational perspectives on learning
Brinck, Lars
2014-01-01
In the PhD-dissertation Ways of the Jam I investigate jamming and learning as profoundly collective and improvisational matters. Bridging a theory of funk jamming with situated learning theoretical analyses of New Orleans second line, everyday leadership, and of a studio recording session demonstrate how looking at human activity from a jamming perspective enhances our understanding of learning as a complex collective and improvisational process. Ways of the Jam demonstrates how learning is a...
A Predictive Approach to Network Reverse-Engineering
Wiggins, Chris
2005-03-01
A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.
Theoretical astrophysics an introduction
Bartelmann, Matthias
2013-01-01
A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it
International Nuclear Information System (INIS)
Jin Kyu Kim; Petin, V.G.; Mishra, K.P.
2007-01-01
Complete text of publication follows. Background: Organisms in their living environment are not exposed to merely a single stress agent. Several factors such as radiation and heat may simultaneously exert their stressful effect to the organisms. The combined exposure to two stressors can result in an enhanced effect that would be expected from the addition of the separate exposures to individual agents. Objective: This study has been undertaken to develop a theoretical model for assessment of combined effects of low dose radiation and mild heat for predictive cellular response assay. Rationale: Present study was motivated from the belief that synergism may occur in terms of lethal lesions arising from the interaction of non-lethal sub-lesions induced by individual agents. The sub-lesions induced by each agent may be negligible or undetectable. But, there exists a possibility of some cross talk between sublesions produced by radiation and heat. These processes may reflect the real mechanisms for inflicting the lethal damage by otherwise ignorable or undetectable insults to exposed organisms. Results: A theoretically developed mathematical model of the synergy was formulated which was tested for validation on the experimental data. The model predictions fairly closely corresponded with several experimental results. .The significance of synergistic effects for radiation biology has been demonstrated. A number of common peculiarities of synergistic interactions were found to play their roles. A unified biophysical concept for synergistic interaction has been suggested. Conclusions: For a constant dose rate, synergistic interaction between radiation and hyperthermia especially at low intensity is realized only within a certain range of temperature, independently of the target object analyzed. For temperatures below the range, the synergistic effect was not observed and cell killing was mainly determined by the damage induced by ionizing radiation. On the contrary, the
Theoretical Prediction of the Forming Limit Band
International Nuclear Information System (INIS)
Banabic, D.; Paraianu, L.; Vos, M.; Jurco, P.
2007-01-01
Forming Limit Band (FLB) is a very useful tool to improve the sheet metal forming simulation robustness. Until now, the study of the FLB was only experimental. This paper presents the first attempt to model the FLB. The authors have established an original method for predicting the two margins of the limit band. The method was illustrated on the AA6111-T43 aluminum alloy. A good agreement with the experiments has been obtained
Theoretical Prediction of the Forming Limit Band
Banabic, D.; Vos, M.; Paraianu, L.; Jurco, P.
2007-04-01
Forming Limit Band (FLB) is a very useful tool to improve the sheet metal forming simulation robustness. Until now, the study of the FLB was only experimental. This paper presents the first attempt to model the FLB. The authors have established an original method for predicting the two margins of the limit band. The method was illustrated on the AA6111-T43 aluminum alloy. A good agreement with the experiments has been obtained.
DEFF Research Database (Denmark)
Krøijer, Stine
2015-01-01
In anthropology, examples have always been an integral part of the investigation of the social life of people. Sometimes they simply work as a poor illustration of an author's general or existing theoretical ideas, but on other occasions they are conducive to setting new thoughts in motion. This ...... distinctions between the particular and universal, and set new actions in motion on a horizontal plane without relying on a predefined plan or end-point. The paper points to the ways this may inform the use of examples within the anthropological discipline.......In anthropology, examples have always been an integral part of the investigation of the social life of people. Sometimes they simply work as a poor illustration of an author's general or existing theoretical ideas, but on other occasions they are conducive to setting new thoughts in motion...
Towards a theoretical framework for analysing organisational processes
DEFF Research Database (Denmark)
Rocha, Robson Silva
2003-01-01
In this paper, I discuss how a theoretical framework can be build to analyse socialprocesses of transformation, making the link between macro and micro processes, inwhich this dichotomy can be overcome. The aim of this theoretical framework is toaccount for the transformation in societal...... characteristics and changes in actors' strategiesat micro level, in a way that links macro changes and micro processes - the cognitivestructures of the individual and social structures of the society. In order to build this framework, I draw from the figuration sociology of Norbert Elias, the praxeologia of...
Theoretical Studies Of Nucleation Kinetics And Nanodroplet Microstructure
International Nuclear Information System (INIS)
Wilemski, Gerald
2009-01-01
The goals of this project were to (1) explore ways of bridging the gap between fundamental molecular nucleation theories and phenomenological approaches based on thermodynamic reasoning, (2) test and improve binary nucleation theory, and (3) provide the theoretical underpinning for a powerful new experimental technique, small angle neutron scattering (SANS) from nanodroplet aerosols, that can probe the compositional structure of nanodroplets. This report summarizes the accomplishments of this project in realizing these goals. Publications supported by this project fall into three general categories: (1) theoretical work on nucleation theory (2) experiments and modeling of nucleation and condensation in supersonic nozzles, and (3) experimental and theoretical work on nanodroplet structure and neutron scattering. These publications are listed and briefly summarized in this report.
THEORETICAL PRESSUPOSITIONS OF EDUCATION: SOME HISTORICAL REFLECTIONS
Directory of Open Access Journals (Sweden)
Rodrigo Regert
2017-09-01
Full Text Available Education has always been a much discussed theme and continues to be so. Based on this idea, the goal of this article is to discuss the theoretical pressupositions of education, beginning with the idea itself of human intellectual development and passing through the Ancient, Medieval, Modern and Contemporary Ages. It is important to point out that the article does not have the intention of covering the whole of this theme, nor even all of the theoretical pressupositions, which would be impossible. But it intends to begin or at least continue this discussion. For this the research made use of the descriptive method and its technical procedures took place in a bibliographic way. We conclude that it is important to discuss the theoretical pressupositions of education in history since, without this, it is not even possible to understand current education.
Staying theoretically sensitive when conducting grounded theory research.
Reay, Gudrun; Bouchal, Shelley Raffin; A Rankin, James
2016-09-01
Background Grounded theory (GT) is founded on the premise that underlying social patterns can be discovered and conceptualised into theories. The method and need for theoretical sensitivity are best understood in the historical context in which GT was developed. Theoretical sensitivity entails entering the field with no preconceptions, so as to remain open to the data and the emerging theory. Investigators also read literature from other fields to understand various ways to construct theories. Aim To explore the concept of theoretical sensitivity from a classical GT perspective, and discuss the ontological and epistemological foundations of GT. Discussion Difficulties in remaining theoretically sensitive throughout research are discussed and illustrated with examples. Emergence - the idea that theory and substance will emerge from the process of comparing data - and staying open to the data are emphasised. Conclusion Understanding theoretical sensitivity as an underlying guiding principle of GT helps the researcher make sense of important concepts, such as delaying the literature review, emergence and the constant comparative method (simultaneous collection, coding and analysis of data). Implications for practice Theoretical sensitivity and adherence to the GT research method allow researchers to discover theories that can bridge the gap between theory and practice.
Theoretical Optics An Introduction
Römer, Hartmann
2004-01-01
Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researche
Information-Theoretic Properties of Auditory Sequences Dynamically Influence Expectation and Memory.
Agres, Kat; Abdallah, Samer; Pearce, Marcus
2018-01-01
A basic function of cognition is to detect regularities in sensory input to facilitate the prediction and recognition of future events. It has been proposed that these implicit expectations arise from an internal predictive coding model, based on knowledge acquired through processes such as statistical learning, but it is unclear how different types of statistical information affect listeners' memory for auditory stimuli. We used a combination of behavioral and computational methods to investigate memory for non-linguistic auditory sequences. Participants repeatedly heard tone sequences varying systematically in their information-theoretic properties. Expectedness ratings of tones were collected during three listening sessions, and a recognition memory test was given after each session. Information-theoretic measures of sequential predictability significantly influenced listeners' expectedness ratings, and variations in these properties had a significant impact on memory performance. Predictable sequences yielded increasingly better memory performance with increasing exposure. Computational simulations using a probabilistic model of auditory expectation suggest that listeners dynamically formed a new, and increasingly accurate, implicit cognitive model of the information-theoretic structure of the sequences throughout the experimental session. Copyright © 2017 Cognitive Science Society, Inc.
Theoretical integration and the psychology of sport injury prevention.
Chan, Derwin King-Chung; Hagger, Martin S
2012-09-01
Integrating different theories of motivation to facilitate or predict behaviour change has received an increasing amount of attention within the health, sport and exercise science literature. A recent review article in Sports Medicine, by Keats, Emery and Finch presented an integrated model using two prominent theories in social psychology, self-determination theory (SDT) and the theory of planned behaviour (TPB), aimed at explaining and enhancing athletes' adherence to sport injury prevention. While echoing their optimistic views about the utility of these two theories to explain adherence in this area and the virtues of theoretical integration, we would like to seize this opportunity to clarify several conceptual principles arising from the authors' integration of the theories. Clarifying the theoretical assumptions and explaining precisely how theoretical integration works is crucial not only for improving the comprehensiveness of the integrated framework for predicting injury prevention behaviour, but also to aid the design of effective intervention strategies targeting behavioural adherence. In this article, we use the integration of SDT and TPB as an example to demonstrate how theoretical integration can advance the understanding of injury prevention behaviour in sport.
Prediction of flare activity of stellar aggregates. I. Theoretical part
International Nuclear Information System (INIS)
Mnatsakanyan, M.A.; Mirzoyan, A.L.
1989-01-01
The problem is posed of predicting the number n k (t) of flare stars that have exhibited precisely k flares by the time t on the basis of data on these quantities known during the total time T of observations of the aggregate. The problem posed by Ambartsumyan of determining the distribution function f(ν) of the true frequency of stellar flares from known chronology of these data is equivalent to the limiting form of their formulation - prediction in the future over an infinitely long time. An exact analytic solution of the problem obtained without any assumption about the function f(ν) is given. It permits prediction of the steady flare activity of the aggregate into both the future and the (known) past. It follows from this solution that prediction into the future is in principle impossible to times that exceed the doubled time 2T of the available observations (this means that the problem of determining of the function f(ν) cannot be solved). Moreover, because of the unavoidable fluctuations in the observational data n k (T), such prediction is limited to even shorter times, and these are shorter the larger the value of k. Prediction into the past and into the future on the basis of the data n k (T) at the present time and its possible errors due to small fluctuations in these data are illustrated for the examples of the Pleiades and the Orion aggregate
Creating spaces for Eziko Sipheka Sisophula theoretical framework ...
African Journals Online (AJOL)
Within the academy, science and theories have historically been constructed in ways that maintain and privilege the centrality, superiority, legitimacy and universality of western thinking as 'regimes of truth'. The theoretical value of indigenous theories and science has often been denied because theorizing has been ...
Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J
2013-04-21
Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.
Predicting Freshman Persistence and Voluntary Dropout Decisions from a Theoretical Model.
Pascarella, Ernest T.; Terenzini, Patrick T.
1980-01-01
A five-scale instrument developed from a theoretical model of college attrition correctly identified the persistence/voluntary withdrawal decisions of 78.5 percent of 773 freshmen in a large, residential university. Findings showed that student relationships with faculty were particularly important. (Author/PHR)
Theoretical spectroscopic study of the conjugate microcystin-LR-europium cryptate
Energy Technology Data Exchange (ETDEWEB)
Santos, Julio G.; Dutra, Jose Diogo L.; Costa Junior, Nivan B. da; Freire, Ricardo O., E-mail: rfreire@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Quimica; Alves Junior, Severino; Sa, Gilberto F. de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Quimica Fundamental
2013-02-15
In this work, theoretical tools were used to study spectroscopic properties of the conjugate microcystin-LR-europium cryptate. The Sparkle/AM1 model was applied to predict the geometry of the system and the INDO/S-CIS model was used to calculate the excited state energies. Based on the Judd-Ofelt theory, the intensity parameters were predicted and a theoretical model based on the theory of the 4f-4f transitions was applied to calculate energy transfer and backtransfer rates, radiative and non-radiative decay rates, quantum efficiency and quantum yield. A detailed study of the luminescent properties of the conjugate Microcystin-LR-europium cryptate was carried out. The results show that the theoretical quantum yield of luminescence of 23% is in good agreement with the experimental value published. This fact suggests that this theoretical protocol can be used to design new systems in order to improve their luminescence properties. The results suggest that this luminescent system may be a good conjugate for using in assay ELISA for detection by luminescence of the Microcystin-LR in water. (author)
Energy Technology Data Exchange (ETDEWEB)
Stuckless, J. S.
2002-02-26
The general public needs to have a way to judge the predicted long-term performance of the potential high-level nuclear waste repository at Yucca Mountain. The applicability and reliability of mathematical models used to make this prediction are neither easily understood nor accepted by the public. Natural analogues can provide the average person with a tool to assess the predicted performance and other scientific conclusions. For example, hydrologists with the Yucca Mountain Project have predicted that most of the water moving through the unsaturated zone at Yucca Mountain, Nevada will move through the host rock and around tunnels. Thus, seepage into tunnels is predicted to be a small percentage of available infiltration. This hypothesis can be tested experimentally and with some quantitative analogues. It can also be tested qualitatively using a variety of analogues such as (1) well-preserved Paleolithic to Neolithic paintings in caves and rock shelters, (2) biological remains preserved in caves and rock shelters, and (3) artifacts and paintings preserved in man-made underground openings. These examples can be found in materials that are generally available to the non-scientific public and can demonstrate the surprising degree of preservation of fragile and easily destroyed materials for very long periods of time within the unsaturated zone.
An Experimental and Theoretical Study on Cavitating Propellers.
1982-10-01
34 And Identfyp eV &to" nMeeJ cascade flow theoretical supercavitating flow performance prediction method partially cavitating flow supercavitating ...the present work was to develop an analytical tool for predicting the off-design performance of supercavitating propellers over a wide range of...operating conditions. Due to the complex nature of the flow phenomena, a lifting line theory sirply combined with the two-dimensional supercavitating
Silicene: Recent theoretical advances
Lew Yan Voon, L. C.
2016-04-14
Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.
Silicene: Recent theoretical advances
Lew Yan Voon, L. C.; Zhu, Jiajie; Schwingenschlö gl, Udo
2016-01-01
Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.
DEFF Research Database (Denmark)
Schoeberl, Martin
2018-01-01
Standard multicore processors use the shared main memory via the on-chip caches for communication between cores. However, this form of communication has two limitations: (1) it is hardly time-predictable and therefore not a good solution for real-time systems and (2) this single shared memory...... is a bottleneck in the system. This paper presents a communication architecture for time-predictable multicore systems where core-local memories are distributed on the chip. A network-on-chip constantly copies data from a sender core-local memory to a receiver core-local memory. As this copying is performed...... in one direction we call this architecture a one-way shared memory. With the use of time-division multiplexing for the memory accesses and the network-on-chip routers we achieve a time-predictable solution where the communication latency and bandwidth can be bounded. An example architecture for a 3...
Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor
Ruzziconi, Laura; Lenci, Stefano; Ramini, Abdallah; Younis, Mohammad I.
2014-01-01
The present research study deals with an electrically actuated MEMS device. An experimental investigation is performed, via frequency sweeps in a neighbourhood of the first natural frequency. Resonant behavior is explored, with special attention devoted to jump and pull-in dynamics. A theoretical single degree-of-freedom spring-mass model is derived. Classical numerical simulations are observed to properly predict the main nonlinear features. Nevertheless, some discrepancies arise, which are particularly visible in the resonant branch. They mainly concern the practical range of existence of each attractor and the final outcome after its disappearance. These differences are likely due to disturbances, which are unavoidable in practice, but have not been included in the model. To take disturbances into account, in addition to the classical local investigations, we consider the global dynamics and explore the robustness of the obtained results by performing a dynamical integrity analysis. Our aim is that of developing an applicable confident estimate of the system response. Integrity profiles and integrity charts are built to detect the parameter range where reliability is practically strong and where it becomes weak. Integrity curves exactly follow the experimental data. They inform about the practical range of actuality. We discuss the combined use of integrity charts in the engineering design. Although we refer to a particular case-study, the approach is very general.
Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor
Ruzziconi, Laura
2014-09-15
The present research study deals with an electrically actuated MEMS device. An experimental investigation is performed, via frequency sweeps in a neighbourhood of the first natural frequency. Resonant behavior is explored, with special attention devoted to jump and pull-in dynamics. A theoretical single degree-of-freedom spring-mass model is derived. Classical numerical simulations are observed to properly predict the main nonlinear features. Nevertheless, some discrepancies arise, which are particularly visible in the resonant branch. They mainly concern the practical range of existence of each attractor and the final outcome after its disappearance. These differences are likely due to disturbances, which are unavoidable in practice, but have not been included in the model. To take disturbances into account, in addition to the classical local investigations, we consider the global dynamics and explore the robustness of the obtained results by performing a dynamical integrity analysis. Our aim is that of developing an applicable confident estimate of the system response. Integrity profiles and integrity charts are built to detect the parameter range where reliability is practically strong and where it becomes weak. Integrity curves exactly follow the experimental data. They inform about the practical range of actuality. We discuss the combined use of integrity charts in the engineering design. Although we refer to a particular case-study, the approach is very general.
A queer-theoretical approach to community health psychology.
Easpaig, Bróna R Nic Giolla; Fryer, David M; Linn, Seònaid E; Humphrey, Rhianna H
2014-01-01
Queer-theoretical resources offer ways of productively rethinking how central concepts such as 'person-context', 'identity' and 'difference' may be understood for community health psychologists. This would require going beyond consideration of the problems with which queer theory is popularly associated to cautiously engage with the aspects of this work relevant to the promotion of collective practice and engaging with processes of marginalisation. In this article, we will draw upon and illustrate the queer-theoretical concepts of 'performativity' and 'cultural intelligibility' before moving towards a preliminary mapping of what a queer-informed approach to community health psychology might involve.
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality
L. Waltman (Ludo)
2011-01-01
textabstractThis thesis studies various computational and game-theoretic approaches to economic modeling. Unlike traditional approaches to economic modeling, the approaches studied in this thesis do not rely on the assumption that economic agents behave in a fully rational way. Instead, economic
Davoyan, Arthur R; Engheta, Nader
2013-12-20
We study propagation of transverse-magnetic electromagnetic waves in the bulk and at the surface of a magnetized epsilon-near-zero (ENZ) medium in a Voigt configuration. We reveal that in a certain range of material parameters novel regimes of wave propagation emerge; we show that the transparency of the medium can be altered with the magnetization leading either to magnetically induced Hall opacity or Hall transparency of the ENZ. In our theoretical study, we demonstrate that surface waves at the interface between either a transparent or an opaque Hall medium and a homogeneous medium may, under certain conditions, be predominantly one way. Moreover, we predict that one-way photonic surface states may exist at the interface of an opaque Hall ENZ and a regular metal, giving rise to the possibility for backscattering immune wave propagation and isolation.
Theoretical expectations for σtot at the large hadron collider
Indian Academy of Sciences (India)
particular QCD based model of the energy dependence of the total cross-section, including the effect of soft ... Hence, a critical evaluation of the range of theoretical predictions, is absolutely ... fitted to explain the observed low energy data and the model predictions are then .... Note here that the experimentally measured.
Theoretical investigation of aspects of radioactive contamination
International Nuclear Information System (INIS)
Smith, A.H.; Chandratillake, M.R.; Taylor, J.B.
1998-01-01
The BNFL programme of work has investigated theoretical aspects of the mechanisms responsible for the deposition and adherence of contamination to metallic surfaces and the energetics of physical decontamination processes. The work has been conducted in two phases: The theoretical and laboratory study of deposition of species from aqueous media on to stainless steel; Theoretical assessment of the forces causing the attraction of PuO 2 and UO 2 particles to stainless steel in an air environment and comparison of these forces with the energies delivered by physical jetting processes. The first phase produced a model which was found to give good agreement with plant operational experience of the deposition of simple aqueous ions such as Cobalt. Due to the complexities, however, of surface / colloid and surface / particle interactions the model was found not to be successful at predicting deposition for more complex compounds, such as Ruthenium Nitrosyls. At this stage the model had fulfilled its original requirement of underpinning design work on pipework shielding systems and it was decided not to pursue the library of chemical speciation data that would be necessary to model the behaviour of a full spectrum of possible contaminants. The second phase predicts by theoretical analysis that the relation of the energy delivered by jetting techniques to the physical forces causing the adherence of PuO 2 and UO 2 particles will vary considerably with particle size. This is particularly notably for larger PuO 2 particles which are firmly held as a result of high levels of electrostatic charge due to their intense alpha activity. Small particles tend to be difficult to remove due to the low profile that they present to the jetting medium. Large and small PuO 2 particles and small UO 2 particle are thus predicted to be difficult to remove and will present an energy threshold which may not be crossed by all decontamination techniques. (author)
Energy Technology Data Exchange (ETDEWEB)
Carriger, John F. [U.S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL, 32561 (United States); Martin, Todd M. [U.S. Environmental Protection Agency, Office of Research and Development, Sustainable Technology Division, Cincinnati, OH, 45220 (United States); Barron, Mace G., E-mail: barron.mace@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL, 32561 (United States)
2016-11-15
Highlights: • A Bayesian network was developed to classify chemical mode of action (MoA). • The network was based on the aquatic toxicity MoA for over 1000 chemicals. • A Markov blanket algorithm selected a subset of theoretical molecular descriptors. • Sensitivity analyses found influential descriptors for classifying the MoAs. • Overall precision of the Bayesian MoA classification model was 80%. - Abstract: The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally complex dataset can simplify analysis and interpretation by
Application of high-precision two-way ranging to Galileo Earth-1 encounter navigation
Pollmeier, V. M.; Thurman, S. W.
1992-01-01
The application of precision two-way ranging to orbit determination with relatively short data arcs is investigated for the Galileo spacecraft's approach to its first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz) ranging data acquired from Galileo indicated that under good signal conditions submeter precision and 10-m ranging accuracy were achieved. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. A range data filtering technique, in which explicit modeling of range measurement bias parameters for each station pass is utilized, is shown to largely remove the systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle-finding capabilities of the data. The accuracy of the Galileo orbit solutions obtained with S-band Doppler and precision ranging were found to be consistent with simple theoretical calculations, which predicted that angular accuracies of 0.26-0.34 microrad were achievable. In addition, the navigation accuracy achieved with precision ranging was marginally better than that obtained using delta-differenced one-way range (delta DOR), the principal data type that was previously used to obtain spacecraft angular position measurements operationally.
Interconnection policy: a theoretical survey
Directory of Open Access Journals (Sweden)
César Mattos
2003-01-01
Full Text Available This article surveys the theoretical foundations of interconnection policy. The requirement of an interconnection policy should not be taken for granted in all circumstances, even considering the issue of network externalities. On the other hand, when it is required, an encompassing interconnection policy is usually justified. We provide an overview of the theory on interconnection pricing that results in several different prescriptions depending on which problem the regulator aims to address. We also present a survey on the literature on two-way interconnection.
From theoretical stellar spectra to realistic models of the Milky Way : a never ending Odyssey
Ammon, Karin
2007-01-01
The last chapter is dedicated to the compilation of the results and the discussion about the success of - but also about the problems that have arisen during - and in part also survived - this work. The main goal of this thesis was, firstly, to convert the stellar parameters given by galaxy models into observables, and then to compare these theoretical stellar distributions in different viewing directions with real observational data to check, if it is possible to find a best-fitt...
Information-Theoretic Evidence for Predictive Coding in the Face-Processing System.
Brodski-Guerniero, Alla; Paasch, Georg-Friedrich; Wollstadt, Patricia; Özdemir, Ipek; Lizier, Joseph T; Wibral, Michael
2017-08-23
Predictive coding suggests that the brain infers the causes of its sensations by combining sensory evidence with internal predictions based on available prior knowledge. However, the neurophysiological correlates of (pre)activated prior knowledge serving these predictions are still unknown. Based on the idea that such preactivated prior knowledge must be maintained until needed, we measured the amount of maintained information in neural signals via the active information storage (AIS) measure. AIS was calculated on whole-brain beamformer-reconstructed source time courses from MEG recordings of 52 human subjects during the baseline of a Mooney face/house detection task. Preactivation of prior knowledge for faces showed as α-band-related and β-band-related AIS increases in content-specific areas; these AIS increases were behaviorally relevant in the brain's fusiform face area. Further, AIS allowed decoding of the cued category on a trial-by-trial basis. Our results support accounts indicating that activated prior knowledge and the corresponding predictions are signaled in low-frequency activity (information our eyes/retina and other sensory organs receive from the outside world, but strongly depends also on information already present in our brains, such as prior knowledge about specific situations or objects. A currently popular theory in neuroscience, predictive coding theory, suggests that this prior knowledge is used by the brain to form internal predictions about upcoming sensory information. However, neurophysiological evidence for this hypothesis is rare, mostly because this kind of evidence requires strong a priori assumptions about the specific predictions the brain makes and the brain areas involved. Using a novel, assumption-free approach, we find that face-related prior knowledge and the derived predictions are represented in low-frequency brain activity. Copyright © 2017 the authors 0270-6474/17/378273-11$15.00/0.
Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B
2017-05-01
We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H 2 ) into a metal dihydride complex and then follows the time-evolution of the p-H 2 -derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H 2 -derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H 2 -derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H 2 -derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1 H and 31 P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H 2 -derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
MERGERS IN ΛCDM: UNCERTAINTIES IN THEORETICAL PREDICTIONS AND INTERPRETATIONS OF THE MERGER RATE
International Nuclear Information System (INIS)
Hopkins, Philip F.; Bundy, Kevin; Wetzel, Andrew; Ma, Chung-Pei; Croton, Darren; Khochfar, Sadegh; Hernquist, Lars; Genel, Shy; Van den Bosch, Frank; Somerville, Rachel S.; Keres, Dusan; Stewart, Kyle; Younger, Joshua D.
2010-01-01
Different theoretical methodologies lead to order-of-magnitude variations in predicted galaxy-galaxy merger rates. We examine how this arises and quantify the dominant uncertainties. Modeling of dark matter and galaxy inspiral/merger times contribute factor of ∼2 uncertainties. Different estimates of the halo-halo merger rate, the subhalo 'destruction' rate, and the halo merger rate with some dynamical friction time delay for galaxy-galaxy mergers, agree to within this factor of ∼2, provided proper care is taken to define mergers consistently. There are some caveats: if halo/subhalo masses are not appropriately defined the major-merger rate can be dramatically suppressed, and in models with 'orphan' galaxies and under-resolved subhalos the merger timescale can be severely over-estimated. The dominant differences in galaxy-galaxy merger rates between models owe to the treatment of the baryonic physics. Cosmological hydrodynamic simulations without strong feedback and some older semi-analytic models (SAMs), with known discrepancies in mass functions, can be biased by large factors (∼5) in predicted merger rates. However, provided that models yield a reasonable match to the total galaxy mass function, the differences in properties of central galaxies are sufficiently small to alone contribute small (factor of ∼1.5) additional systematics to merger rate predictions. But variations in the baryonic physics of satellite galaxies in models can also have a dramatic effect on merger rates. The well-known problem of satellite 'over-quenching' in most current SAMs-whereby SAM satellite populations are too efficiently stripped of their gas-could lead to order-of-magnitude under-estimates of merger rates for low-mass, gas-rich galaxies. Models in which the masses of satellites are fixed by observations (or SAMs adjusted to resolve this 'over-quenching') tend to predict higher merger rates, but with factor of ∼2 uncertainties stemming from the uncertainty in those
Research in theoretical nuclear physics
International Nuclear Information System (INIS)
Udagawa, T.
1993-11-01
This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework
Game Theoretic Modeling of Water Resources Allocation Under Hydro-Climatic Uncertainty
Brown, C.; Lall, U.; Siegfried, T.
2005-12-01
Typical hydrologic and economic modeling approaches rely on assumptions of climate stationarity and economic conditions of ideal markets and rational decision-makers. In this study, we incorporate hydroclimatic variability with a game theoretic approach to simulate and evaluate common water allocation paradigms. Game Theory may be particularly appropriate for modeling water allocation decisions. First, a game theoretic approach allows economic analysis in situations where price theory doesn't apply, which is typically the case in water resources where markets are thin, players are few, and rules of exchange are highly constrained by legal or cultural traditions. Previous studies confirm that game theory is applicable to water resources decision problems, yet applications and modeling based on these principles is only rarely observed in the literature. Second, there are numerous existing theoretical and empirical studies of specific games and human behavior that may be applied in the development of predictive water allocation models. With this framework, one can evaluate alternative orderings and rules regarding the fraction of available water that one is allowed to appropriate. Specific attributes of the players involved in water resources management complicate the determination of solutions to game theory models. While an analytical approach will be useful for providing general insights, the variety of preference structures of individual players in a realistic water scenario will likely require a simulation approach. We propose a simulation approach incorporating the rationality, self-interest and equilibrium concepts of game theory with an agent-based modeling framework that allows the distinct properties of each player to be expressed and allows the performance of the system to manifest the integrative effect of these factors. Underlying this framework, we apply a realistic representation of spatio-temporal hydrologic variability and incorporate the impact of
Lin, L.; Luo, X.; Qin, F.; Yang, J.
2018-03-01
As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.
Progress in theoretical calculation of transactinium isotope nuclear data
International Nuclear Information System (INIS)
Salvy, J.
1984-05-01
Considerable progress has been made in effective use of nuclear theory for evaluation purposes. During the past few years, a number of basic improvements have developed in nuclear models commonly used for data evaluation. Actinide data evaluation can also use such improvements, but in the actinide region a further complication arises from the presence of fission competition. Nevertheless, systematic prescriptions for calculating even predicting neutron cross sections within an extended actinide region are available. Many efforts in several laboratorie are currently devoted to improving nuclear codes to be used for evaluation purposes. However at the present time numerous basic parameters associated with the neutron-induced fission process as well as neutron and gamma-ray competition have to be predetermined as input. Systematic studies of the behaviour of these parameters have been initiated with the aim of finding general trends hopefully useful for extrapolation in cases where direct information is lacking. Such trends can emerge from suitable examination of a large number of coherent experimental data, coherent theoretical results, or a combination these. This seems at the present time to be the most promising means for improving the actinide data evaluation. The aim of this paper is only to review briefly some of the main improvements either achieved or under way. The concern will be theoretical aspects useful for evaluating actinide data in the restricted incident neutron energy range from 10 KeV to 20 MeV. It is intended to focus on examples of systematics and on some improvements expected from microscopic methods under development
Genomic Prediction of Barley Hybrid Performance
Directory of Open Access Journals (Sweden)
Norman Philipp
2016-07-01
Full Text Available Hybrid breeding in barley ( L. offers great opportunities to accelerate the rate of genetic improvement and to boost yield stability. A crucial requirement consists of the efficient selection of superior hybrid combinations. We used comprehensive phenotypic and genomic data from a commercial breeding program with the goal of examining the potential to predict the hybrid performances. The phenotypic data were comprised of replicated grain yield trials for 385 two-way and 408 three-way hybrids evaluated in up to 47 environments. The parental lines were genotyped using a 3k single nucleotide polymorphism (SNP array based on an Illumina Infinium assay. We implemented ridge regression best linear unbiased prediction modeling for additive and dominance effects and evaluated the prediction ability using five-fold cross validations. The prediction ability of hybrid performances based on general combining ability (GCA effects was moderate, amounting to 0.56 and 0.48 for two- and three-way hybrids, respectively. The potential of GCA-based hybrid prediction requires that both parental components have been evaluated in a hybrid background. This is not necessary for genomic prediction for which we also observed moderate cross-validated prediction abilities of 0.51 and 0.58 for two- and three-way hybrids, respectively. This exemplifies the potential of genomic prediction in hybrid barley. Interestingly, prediction ability using the two-way hybrids as training population and the three-way hybrids as test population or vice versa was low, presumably, because of the different genetic makeup of the parental source populations. Consequently, further research is needed to optimize genomic prediction approaches combining different source populations in barley.
Piao, Linfeng; Park, Hyungmin; Jo, Chris Hyunchul
2017-01-01
In the present study, we propose a theoretical framework to predict the recovery rates of platelets and white blood cells in the process of centrifugal separation of whole blood contained in a tube for the preparation of platelet-rich plasma. Compared to previous efforts to optimize or standardize the protocols of centrifugation, we try to further the physical background (i.e., based on the multiphase flow phenomena) of analysis to develop a universal approach that can be applied to widely different conditions. That is, one-dimensional quasi-linear partial differential equation to describe the centrifugal sedimentation of dispersed phase (red and white blood cells) in continuous phase (plasma) is derived based on the kinematic-wave theory. With the information of whole blood volume and tube geometry considered, it is possible to determine the positions of interfaces between supernatant/suspension and suspension/sediment, i.e., the particle concentration gradient in a tube, for a wide range of centrifugation parameters (time and acceleration). While establishing a theory to predict the recovery rates of the platelet and white blood cell from the pre-determined interface positions, we also propose a new correlation model between the recovery rates of plasma and platelets, which is found to be a function of the whole blood volume, centrifugal time and acceleration, and tube geometry. The present predictions for optimal condition show good agreements with available human clinical data, obtained from different conditions, indicating the universal applicability of our method. Furthermore, the dependence of recovery rates on centrifugal conditions reveals that there exist a different critical acceleration and time for the maximum recovery rate of platelets and white blood cells, respectively. The other parameters such as hematocrit, whole blood volume and tube geometry are also found to strongly affect the maximum recovery rates of blood cells, and finally, as a strategy
An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams
Ilyas, Saad
2016-06-16
We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever beams forming the two sides of a capacitor. The experimental and theoretical analysis of the coupled system is carried out and compared against the results of beams actuated with fixed electrodes individually. The pull-in characteristics of the electrostatically coupled beams are studied, including the pull-in time. The dynamics of the coupled dual beams are explored via frequency sweeps around the neighborhood of the natural frequencies of the system for different input voltages. Good agreement is reported among the simulation results and the experimental data. The results show considerable drop in the pull-in values as compared to single microbeam resonators. The dynamics of the coupled beam resonators are demonstrated as a way to increase the bandwidth of the resonator near primary resonance as well as a way to introduce increased frequency shift, which can be promising for resonant sensing applications. Moreover the dynamic pull-in characteristics are also studied and proposed as a way to sense the shift in resonance frequency.
Predictability in cellular automata.
Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius
2014-01-01
Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.
International Nuclear Information System (INIS)
Kugo, Teruhiko; Mori, Takamasa; Takeda, Toshikazu
2007-01-01
Extended bias factor methods are proposed with two new concepts, the LC method and the PE method, in order to effectively use critical experiments and to enhance the applicability of the bias factor method for the improvement of the prediction accuracy of neutronic characteristics of a target core. Both methods utilize a number of critical experimental results and produce a semifictitious experimental value with them. The LC and PE methods define the semifictitious experimental values by a linear combination of experimental values and the product of exponentiated experimental values, respectively, and the corresponding semifictitious calculation values by those of calculation values. A bias factor is defined by the ratio of the semifictitious experimental value to the semifictitious calculation value in both methods. We formulate how to determine weights for the LC method and exponents for the PE method in order to minimize the variance of the design prediction value obtained by multiplying the design calculation value by the bias factor. From a theoretical comparison of these new methods with the conventional method which utilizes a single experimental result and the generalized bias factor method which was previously proposed to utilize a number of experimental results, it is concluded that the PE method is the most useful method for improving the prediction accuracy. The main advantages of the PE method are summarized as follows. The prediction accuracy is necessarily improved compared with the design calculation value even when experimental results include large experimental errors. This is a special feature that the other methods do not have. The prediction accuracy is most effectively improved by utilizing all the experimental results. From these facts, it can be said that the PE method effectively utilizes all the experimental results and has a possibility to make a full-scale-mockup experiment unnecessary with the use of existing and future benchmark
Review of Nearshore Morphologic Prediction
Plant, N. G.; Dalyander, S.; Long, J.
2014-12-01
The evolution of the world's erodible coastlines will determine the balance between the benefits and costs associated with human and ecological utilization of shores, beaches, dunes, barrier islands, wetlands, and estuaries. So, we would like to predict coastal evolution to guide management and planning of human and ecological response to coastal changes. After decades of research investment in data collection, theoretical and statistical analysis, and model development we have a number of empirical, statistical, and deterministic models that can predict the evolution of the shoreline, beaches, dunes, and wetlands over time scales of hours to decades, and even predict the evolution of geologic strata over the course of millennia. Comparisons of predictions to data have demonstrated that these models can have meaningful predictive skill. But these comparisons also highlight the deficiencies in fundamental understanding, formulations, or data that are responsible for prediction errors and uncertainty. Here, we review a subset of predictive models of the nearshore to illustrate tradeoffs in complexity, predictive skill, and sensitivity to input data and parameterization errors. We identify where future improvement in prediction skill will result from improved theoretical understanding, and data collection, and model-data assimilation.
Actual and theoretical gas consumption in Dutch dwellings: What causes the differences?
International Nuclear Information System (INIS)
Majcen, Daša; Itard, Laure; Visscher, Henk
2013-01-01
Energy labels in buildings are awarded based on theoretical gas and electricity consumption based on dwelling's physical characteristics. Prior to this research, a large-scale study was conducted in The Netherlands comparing theoretical energy use with data on actual energy use revealing substantial discrepancies (Majcen et al., 2013). This study uses identical energy label data, supplemented with additional data sources in order to reveal how different parameters influence theoretical and actual consumptions gas and electricity. Analysis is conducted through descriptive statistics and regression analysis. Regression analysis explained far less of the variation in the actual consumption than in the theoretical and has shown that variables such as floor area, ownership type, salary and the value of the house, which predicted a high degree of change in actual gas consumption, were insignificant (ownership, salary, value) or had a minor impact on theoretical consumption (floor area). Since some possibly fundamental variables were unavailable for regression analysis, we also conducted a sensitivity study of theoretical gas consumption. It showed that average indoor temperature, ventilation rate and accuracy of U-value have a large influence on the theoretical gas consumption; whereas the number of occupants and internal heat load have a rather limited impact. - Highlights: • Floor area, ownership, salary and value predict the change in actual gas use well. • Mentioned variables are insignificant or have small impact on theoretical use. • Energy consumption of less energy efficient systems is overestimated. • Accurate model assumptions and inspections would reduce the discrepancies. • Big discrepancies stem from misassumption of temperature, heated floor area, U values
Comparison of the models of financial distress prediction
Directory of Open Access Journals (Sweden)
Jiří Omelka
2013-01-01
Full Text Available Prediction of the financial distress is generally supposed as approximation if a business entity is closed on bankruptcy or at least on serious financial problems. Financial distress is defined as such a situation when a company is not able to satisfy its liabilities in any forms, or when its liabilities are higher than its assets. Classification of financial situation of business entities represents a multidisciplinary scientific issue that uses not only the economic theoretical bases but interacts to the statistical, respectively to econometric approaches as well.The first models of financial distress prediction have originated in the sixties of the 20th century. One of the most known is the Altman’s model followed by a range of others which are constructed on more or less conformable bases. In many existing models it is possible to find common elements which could be marked as elementary indicators of potential financial distress of a company. The objective of this article is, based on the comparison of existing models of prediction of financial distress, to define the set of basic indicators of company’s financial distress at conjoined identification of their critical aspects. The sample defined this way will be a background for future research focused on determination of one-dimensional model of financial distress prediction which would subsequently become a basis for construction of multi-dimensional prediction model.
Theoretical Predictions of Springing and Their Comparison with Full Scale Measurements
DEFF Research Database (Denmark)
Gu, X.; Storhaug, G.; Vidic-Perunovic, Jelena
2003-01-01
The present paper considers a large ocean going ship with significant springing responses, which have made a large contribution to the fatigue cracking for certain structural details. Four different theories for predicting ship responses and associated computer programs for predictions of springing...
A Symbiotic Framework for coupling Machine Learning and Geosciences in Prediction and Predictability
Ravela, S.
2017-12-01
In this presentation we review the two directions of a symbiotic relationship between machine learning and the geosciences in relation to prediction and predictability. In the first direction, we develop ensemble, information theoretic and manifold learning framework to adaptively improve state and parameter estimates in nonlinear high-dimensional non-Gaussian problems, showing in particular that tractable variational approaches can be produced. We demonstrate these applications in the context of autonomous mapping of environmental coherent structures and other idealized problems. In the reverse direction, we show that data assimilation, particularly probabilistic approaches for filtering and smoothing offer a novel and useful way to train neural networks, and serve as a better basis than gradient based approaches when we must quantify uncertainty in association with nonlinear, chaotic processes. In many inference problems in geosciences we seek to build reduced models to characterize local sensitivies, adjoints or other mechanisms that propagate innovations and errors. Here, the particular use of neural approaches for such propagation trained using ensemble data assimilation provides a novel framework. Through these two examples of inference problems in the earth sciences, we show that not only is learning useful to broaden existing methodology, but in reverse, geophysical methodology can be used to influence paradigms in learning.
Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields
Hansen, Scott K.; Haslauer, Claus P.; Cirpka, Olaf A.; Vesselinov, Velimir V.
2018-01-01
This paper presents a methodology to predict the shape of solute breakthrough curves in heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the classical macrodispersion theory may not be applicable. The methodology relies on the observation that breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression. Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical contributions include heuristics for the time until an effective macrodispersion coefficient becomes applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen that the results here represent a way to derive continuous time random walk transition distributions from physical considerations rather than from empirical field calibration.
Theoretical description and predictions of the properties of superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Sobiczewski, A [Department of Theoretical Physics, Andrzej Soltan Institute for Nuclear Studies (Poland)
2009-12-31
Theoretical descriptions of superheavy atomic nuclei are shortly reviewed and illustrated by their results. Such properties of these nuclei as their shapes, masses, fission barriers, decay modes, decay energies, half-lives, are discussed. Special attention is given to the shell structure of the nuclei, due to which they exist. The role of the physical studies of the superheavy nuclei for the chemical research on the superheavy elements and, more generally, the relationship between these two kinds of investigation is underlined. This stresses the importance of close cooperation between physicists and chemists, experimentalists and theoreticians, in these studies.
Monahan, Carlyn J.; Muchinsky, Paul M.
1985-01-01
The degree of convergent validity among four methods of identifying vocational preferences is assessed via the decision theoretic paradigm. Vocational preferences identified by Holland's Vocational Preference Inventory (VPI), a rating procedure, and ranking were compared with preferences identified from a policy-capturing model developed from an…
International Nuclear Information System (INIS)
Green, W.J.
1987-04-01
Simple theoretical models have been developed which are suitable for predicting the thermal responses of irradiated research fuel elements of markedly different geometries when they are subjected to loss-of-coolant accident conditions. These models have been used to calculate temperature responses corresponding to various non-forced convective conditions. Comparisons between experimentally observed temperatures and calculated values have shown that a suitable value for surface thermal emissivity is 0.35; modelling of the fuel element beyond the region of the fuel plate needs to be included since these areas account for approximately 25 per cent of the thermal power dissipated; general agreement between calculated and experimental temperatures for both transient and steady-state conditions is good - the maximum discrepancy between calculated and experimental temperatures for a HIFAR Mark IV/V fuel element is ∼ 70 deg C, and for an Oak Ridge Reactor (ORR) box-type fuel element ∼ 30 deg C; and axial power distribution does not significantly affect thermal responses for the conditions investigated. Overall, the comparisons have shown that the models evolved can reproduce experimental data to a level of accuracy that provides confidence in the modelling technique and the postulated heat dissipation mechanisms, and that these models can be used to predict thermal responses of fuel elements in accident conditions that are not easily investigated experimentally
Gregoriou, Zelia
2013-01-01
This paper attempts to renegotiate the conceptual and political borders of intercultural education by importing ways of thinking, concepts, aporias and questions relevant to a gendered study of intercultural interactions from theoretical terrains outside the disciplinary borders and discursive limits of intercultural education. A number of…
Theoretical model for the mechanical behavior of prestressed beams under torsion
Directory of Open Access Journals (Sweden)
Sérgio M.R. Lopes
2014-12-01
Full Text Available In this article, a global theoretical model previously developed and validated by the authors for reinforced concrete beams under torsion is reviewed and corrected in order to predict the global behavior of beams under torsion with uniform longitudinal prestress. These corrections are based on the introduction of prestress factors and on the modification of the equilibrium equations in order to incorporate the contribution of the prestressing reinforcement. The theoretical results obtained with the new model are compared with some available results of prestressed concrete (PC beams under torsion found in the literature. The results obtained in this study validate the proposed computing procedure to predict the overall behavior of PC beams under torsion.
Droplet size in flow: Theoretical model and application to polymer blends
Fortelný, Ivan; JÅ¯za, Josef
2017-05-01
The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.
Energy Technology Data Exchange (ETDEWEB)
Virot, F., E-mail: francois.virot@irsn.fr; Barrachin, M.; Souvi, S.; Cantrel, L.
2014-10-15
Highlights: • Standard enthalpies of formation of BeH, BeH{sub 2}, BeOH, Be(OH){sub 2} have been calculated. • The impact of hydrogen isotopy on thermodynamic properties has been shown. • Speciation in the vacuum vessel shows that the main tritiated species is tritiated steam. • Beryllium hydroxide and hydride could exist during an accidental event. - Abstract: By quantum chemistry calculations, we have evaluated the standard enthalpies of formation of some gaseous species of the Be-O-H chemical system: BeH, BeH{sub 2}, BeOH, Be(OH){sub 2} for which the values in the referenced thermodynamic databases (NIST-JANAF [1] or COACH [2]) were, due to the lack of experimental data, estimated or reported with a large uncertainty. Comparison between post-HF, DFT approaches and available experimental data allows validation of the ability of an accurate exchange-correlation functional, VSXC, to predict the thermo-chemical properties of the beryllium species of interest. Deviation of enthalpy of formation induced by changes in hydrogen isotopy has been also calculated. From these new theoretically determinated data, we have calculated the chemical speciation in conditions simulating an accident of water ingress in the vacuum vessel of ITER.
Empirical and theoretical challenges in aboveground-belowground ecology
DEFF Research Database (Denmark)
W.H. van der Putten,; R.D. Bardgett; P.C. de Ruiter
2009-01-01
of the current conceptual succession models into more predictive models can help targeting empirical studies and generalising their results. Then, we discuss how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects...... and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground-belowground approach offers perspectives for enhancing ecological understanding, namely...
Experimental and theoretical studies of cylindrical Hall thrusters
International Nuclear Information System (INIS)
Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.
2007-01-01
The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation
Production of electroweak bosons at hadron colliders: theoretical aspects
Mangano, Michelangelo L.
2016-01-01
Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.
Slow dynamics at critical points: the field-theoretical perspective
International Nuclear Information System (INIS)
Gambassi, Andrea
2006-01-01
The dynamics at a critical point provides a simple instance of slow collective evolution, characterised by aging phenomena and by a violation of the fluctuation-dissipation relation even for long times. By virtue of the universality in critical phenomena it is possible to provide quantitative predictions for some aspects of these behaviours by field-theoretical methods. We review some of the theoretical results that have been obtained in recent years for the relevant (universal) quantities, such as the fluctuation-dissipation ratio, associated with the non-equilibrium critical dynamics
Ways of Viewing Pictorial Plasticity
Directory of Open Access Journals (Sweden)
Maarten W. A. Wijntjes
2017-03-01
Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.
Ways of Viewing Pictorial Plasticity.
Wijntjes, Maarten W A
2017-01-01
The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter). By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.
Davies, Christine; Harrison, Judd; Lepage, G. Peter; Monahan, Christopher; Shigemitsu, Junko; Wingate, Matthew
2018-03-01
We present lattice QCD results for the matrix elements of R2 and other dimension-7, ΔB = 2 operators relevant for calculations of Δs, the Bs - B̅s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1 + 1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs will be substantially reduced.
Theoretical estimation of Z´ boson mass
International Nuclear Information System (INIS)
Maji, Priya; Banerjee, Debika; Sahoo, Sukadev
2016-01-01
The discovery of Higgs boson at the LHC brings a renewed perspective in particle physics. With the help of Higgs mechanism, standard model (SM) allows the generation of particle mass. The ATLAS and CMS experiments at the LHC have predicted the mass of Higgs boson as m_H=125-126 GeV. Recently, it is claimed that the Higgs boson might interact with dark matter and there exists relation between the Higgs boson and dark matter (DM). Hertzberg has predicted a correlation between the Higgs mass and the abundance of dark matter. His theoretical result is in good agreement with current data. He has predicted the mass of Higgs boson as GeV. The Higgs boson could be coupled to the particle that constitutes all or part of the dark matter in the universe. Light Z´ boson could have important implications in dark matter phenomenology
Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.
2013-01-01
Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086
Information-theoretic lengths of Jacobi polynomials
Energy Technology Data Exchange (ETDEWEB)
Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)
2010-07-30
The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.
A course in theoretical physics
Shepherd, P J
2013-01-01
This book is a comprehensive account of five extended modules covering the key branches of twentieth-century theoretical physics, taught by the author over a period of three decades to students on bachelor and master university degree courses in both physics and theoretical physics. The modules cover nonrelativistic quantum mechanics, thermal and statistical physics, many-body theory, classical field theory (including special relativity and electromagnetism), and, finally, relativistic quantum mechanics and gauge theories of quark and lepton interactions, all presented in a single, self-contained volume. In a number of universities, much of the material covered (for example, on Einstein’s general theory of relativity, on the BCS theory of superconductivity, and on the Standard Model, including the theory underlying the prediction of the Higgs boson) is taught in postgraduate courses to beginning PhD students. A distinctive feature of the book is that full, step-by-step mathematical proofs of all essentia...
One-way mode transmission in one-dimensional phononic crystal plates
Zhu, Xuefeng; Zou, Xinye; Liang, Bin; Cheng, Jianchun
2010-12-01
We investigate theoretically the band structures of one-dimensional phononic crystal (PC) plates with both antisymmetric and symmetric structures, and show how unidirectional transmission behavior can be obtained for either antisymmetric waves (A modes) or symmetric waves (S modes) by exploiting mode conversion and selection in the linear plate systems. The theoretical approach is illustrated for one PC plate example where unidirectional transmission behavior is obtained in certain frequency bands. Employing harmonic frequency analysis, we numerically demonstrate the one-way mode transmission for the PC plate with finite superlattice by calculating the steady-state displacement fields under A modes source (or S modes source) in forward and backward direction, respectively. The results show that the incident waves from A modes source (or S modes source) are transformed into S modes waves (or A modes waves) after passing through the superlattice in the forward direction and the Lamb wave rejections in the backward direction are striking with a power extinction ratio of more than 1000. The present structure can be easily extended to two-dimensional PC plate and efficiently encourage practical studies of experimental realization which is believed to have much significance for one-way Lamb wave mode transmission.
Accelerator simulation and theoretical modelling of radiation effects (SMoRE)
2018-01-01
This publication summarizes the findings and conclusions of the IAEA coordinated research project (CRP) on accelerator simulation and theoretical modelling of radiation effects, aimed at supporting Member States in the development of advanced radiation-resistant structural materials for implementation in innovative nuclear systems. This aim can be achieved through enhancement of both experimental neutron-emulation capabilities of ion accelerators and improvement of the predictive efficiency of theoretical models and computer codes. This dual approach is challenging but necessary, because outputs of accelerator simulation experiments need adequate theoretical interpretation, and theoretical models and codes need high dose experimental data for their verification. Both ion irradiation investigations and computer modelling have been the specific subjects of the CRP, and the results of these studies are presented in this publication which also includes state-ofthe- art reviews of four major aspects of the project...
Experimental realization of a quantum game on a one-way quantum computer
International Nuclear Information System (INIS)
Prevedel, Robert; Stefanov, Andre; Walther, Philip; Zeilinger, Anton
2007-01-01
We report the first demonstration of a quantum game on an all-optical one-way quantum computer. Following a recent theoretical proposal we implement a quantum version of Prisoner's Dilemma, where the quantum circuit is realized by a four-qubit box-cluster configuration and the player's local strategies by measurements performed on the physical qubits of the cluster. This demonstration underlines the strength and versatility of the one-way model and we expect that this will trigger further interest in designing quantum protocols and algorithms to be tested in state-of-the-art cluster resources
Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan. Wikaira
2007-01-01
A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...
New ways of working (NWW): work space and cultural change in virtualizing organizations
Kingma, Sytze
2018-01-01
This study offers a grounded theory of ‘new ways of working’ (NWW), an organizational design concept of Dutch origin with a global relevance. NWW concern business solutions for flexible workspaces enabled by digital network technologies. Theoretically, NWW are analysed with reference to Lefebvre’s
When Preferences Are in the Way: Children's Predictions of Goal-Directed Behaviors.
Yang, Fan; Frye, Douglas
2017-12-18
Across three studies, we examined 4- to 7-year-olds' predictions of goal-directed behaviors when goals conflict with preferences. In Study 1, when presented with stories in which a character had to act against basic preferences to achieve an interpersonal goal (e.g., playing with a partner), 6- and 7-year-olds were more likely than 4- and 5-year-olds to predict the actor would act in accordance with the goal to play with the partner, instead of fulfilling the basic preference of playing a favored activity. Similar results were obtained in Study 2 with scenarios that each involved a single individual pursuing intrapersonal goals that conflicted with his or her basic preferences. In Study 3, younger children's predictions of goal-directed behaviors did not increase for novel goals and preferences, when the influences of their own preferences, future thinking, or a lack of impulse control were minimized. The results suggest that between ages 4 and 7, children increasingly integrate and give more weight to other sources of motivational information (e.g., goals) in addition to preferences when predicting people's behaviors. This increasing awareness may have implications for children's self-regulatory and goal pursuit behaviors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
International Nuclear Information System (INIS)
Phillips, J.C.
2010-01-01
The review multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular first principle methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen). Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC) problem are discussed, and a critical comparison is made with previous polynomial (PC) theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.
The Problems of Theoretical Interpretation of Centralism/Decentralism in Federalism
Directory of Open Access Journals (Sweden)
Сергей Олегович Алехнович
2010-09-01
Full Text Available The article is devoted to the analysis of displacement of a vector of theoretical and empirical judgment of new tendencies in federalism functioning. Authors consider possible ways of development of its potential, initiate new approaches to its reflection and the analysis through a prism of centralism and decentralism in federal relations.
dr. Donald Ropes
2014-01-01
Purpose – To illustrate the possibilities of implementing intergenerational learning as a strategy for promoting older worker learning and development. Design/methodology/approach – Review of literature. Findings – Intergenerational learning is theoretically a natural and effective way for
Harassment among school children and new ways of violence
Norman D. Pautasso
2016-01-01
This article is intended to collect some results of the several studies that have been made concerning Bullying and Harassment among boys and girls who attend basic education institutions in the central part of Santa Cruz province, in Argentina. It encloses theoretical framework about the problem of bullying and violence among children at school. It presents information about the region, some common aggressive behaviors as well as different ways and places in which those violent habits might ...
Governance, tourism and resilience: A long way to go?
DEFF Research Database (Denmark)
Dredge, Dianne
2018-01-01
This chapter seeks to engage in a more complex, critical, theoretically curious, and interdisciplinary discussion about tourism, governance and resilience. It seeks to challenge readers’ assumptions and excavate meanings underpinning commonly used terms like sustainability and tourism...... and governance. It is intended to provoke deep thinking, and to challenge embedded ways of conceptualising and operationalising these concepts. Scientific framing of twentieth century scientific thought, late modern capitalism and the Anthropocene provide the backcloth for thinking about how governance...
Towards Ways to Promote Interaction in Digital Learning Spaces
Olsson , Hanna ,
2012-01-01
Part 7: Doctoral Student Papers; International audience; Social learning is dependent on social interactions. I am exploring ways to promote interaction in Digital Learning Spaces. As theoretical framework I use the types of interaction between learner, instructor and content. That learners feel isolated and lonely in DLSs is a problem which comes at high cost for social learning. My aim is to promote social interaction by offering the edentity: a system for making participants visible to eac...
Theoretical models of neutron emission in fission
International Nuclear Information System (INIS)
Madland, D.G.
1992-01-01
A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts
Blogging in Higher Education: Theoretical and Practical Approach
Gulfidan CAN; Devrim OZDEMIR
2006-01-01
In this paper the blogging method, which includes new forms of writing, is supported as an alternative approach to address the frequently asserted problems in higher education such as product-oriented assessment and lack of value given to students' writing as contribution to the discourse of the academic disciplines. Both theoretical and research background information is provided to clarify the rationale of using this method in higher education. Furthermore, recommended way of using this met...
Molecular approach of uranyl/mineral surfaces: theoretical approach
International Nuclear Information System (INIS)
Roques, J.
2009-01-01
As migration of radio-toxic elements through the geosphere is one of the processes which may affect the safety of a radioactive waste storage site, the author shows that numerical modelling is a support to experimental result exploitation, and allows the development of new interpretation and prediction codes. He shows that molecular modelling can be used to study processes of interaction between an actinide ion (notably a uranyl ion) and a mineral surface (a TiO 2 substrate). He also reports the predictive theoretical study of the interaction between an uranyl ion and a gibbsite substrate
Physical violence and psychological abuse among siblings :a theoretical and empirical analysis
Hoffman, Kristi L.
1996-01-01
This study develops and evaluates a theoretical model based on social learning, conflict, and feminist perspectives to explain teenage sibling physical violence and psychological abuse. Using regression analysis and data from 796 young adults, considerable support is found for all three theoretical approaches and suggests an integrated model best predicts acts of violence and abuse among siblings. For physical violence, males and brothers had significantly higher rates. Spousal...
Urschler, David F.
2016-01-01
Previous research has shown that people’s willingness to help those in need is influenced by a multitude of factors (e.g., perceived dangerousness of a situation, cost-benefit analysis, attributions of responsibility, kinship, status, and culture). However, past research has often focused on single factors to predict helping intentions. Therefore, the present thesis examines the interplay of different factors in order to predict helping intentions in the most accurate and effective way. Th...
Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee
Energy Technology Data Exchange (ETDEWEB)
Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)
2014-07-01
Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.
Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee
International Nuclear Information System (INIS)
Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.
2014-01-01
Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.
Theoretical Simulations of Materials for Nuclear Energy Applications
International Nuclear Information System (INIS)
Abrikosov, A.; Ponomareva, A.V.; Nikonov, A.Y.; Barannikova, S.A.; Dmitriev, A.I.
2014-01-01
We have demonstrated that state-of-the art theoretical calculations have a capability to predict thermodynamic and mechanical properties of materials with very high accuracy, comparable to the experimental accuracy. Considering Fe-Cr alloys, we have investigated the effect of multicomponent alloying on their phase stability, and we have shown that alloying elements Ni, Mn, and Mo, present in RPV steels, reduce the stability of low-Cr steels against binodal, as well as spinodal decomposition. Considering Zr-Nb alloys, we have demonstrated a possibility of obtaining their elastic moduli from ab initio electronic structure calculations. We argue that theoretical simulations represent valuable tool for a design of new materials for nuclear energy applications
Burgner, J; Simpson, A L; Fitzpatrick, J M; Lathrop, R A; Herrell, S D; Miga, M I; Webster, R J
2013-06-01
Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Experiments agree with model predictions, producing point RMS errors consistently Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. Copyright © 2012 John Wiley & Sons, Ltd.
Experimental and theoretical study of magnetohydrodynamic ship models.
Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe
2017-01-01
Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.
Experimental and theoretical study of magnetohydrodynamic ship models.
Directory of Open Access Journals (Sweden)
David Cébron
Full Text Available Magnetohydrodynamic (MHD ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.
Mesoscopic structure prediction of nanoparticle assembly and coassembly: Theoretical foundation
Hur, Kahyun; Hennig, Richard G.; Escobedo, Fernando A.; Wiesner, Ulrich
2010-01-01
structures and interactions. We validate our approach by comparing its predictions with previous simulation results for model systems. We illustrate the flexibility of our approach by applying it to hybrid systems composed of block copolymers and ligand
Wuchty, Stefan
2006-05-23
While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions
Theoretical predictions of the lateral spreading of implanted ions
International Nuclear Information System (INIS)
Ashworth, D.G.; Oven, R.
1986-01-01
The theoretical model and computer program (AAMPITS-3D) of Ashworth and co-workers for the calculation of three-dimensional distributions of implanted ions in multi-element amorphous targets are extended to show that the lateral rest distribution is gaussian in a form with a lateral standard deviation (lateral-spread function) which is a function of depth beneath the target surface. A method is given whereby this function may be accurately determined from a knowledge of the projected range and chord range rest distribution functions. Examples of the lateral-spread function are given for boron, phosphorus and arsenic ions implanted into silicon and a detailed description is given of how the lateral-spread function may be used in conjunction with the projected range rest distribution function to provide a fully three-dimensional rest distribution of ions implanted into amorphous targets. Examples of normalised single ion isodensity contours computed from AMPITS-3D are compared with those obtained using the previous assumption of a lateral standard deviation which was independent of distance beneath the target surface. (author)
Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine
Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam
2016-01-01
A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.
Theoretical Foundations of Study of Cartography
Talhofer, Václav; Hošková-Mayerová, Šárka
2018-05-01
Cartography and geoinformatics are technical-based fields which deal with modelling and visualization of landscape in the form of a map. The theoretical foundation is necessary to obtain during study of cartography and geoinformatics based mainly on mathematics. For the given subjects, mathematics is necessary for understanding of many procedures that are connected to modelling of the Earth as a celestial body, to ways of its projection into a plane, to methods and procedures of modelling of landscape and phenomena in society and visualization of these models in the form of electronic as well as classic paper maps. Not only general mathematics, but also its extension of differential geometry of curves and surfaces, ways of approximation of lines and surfaces of functional surfaces, mathematical statistics and multi-criterial analyses seem to be suitable and necessary. Underestimation of the significance of mathematical education in cartography and geoinformatics is inappropriate and lowers competence of cartographers and professionals in geographic information science and technology to solve problems.
Physical Premium Principle: A New Way for Insurance Pricing
Darooneh, Amir H.
2005-03-01
In our previous work we suggested a way for computing the non-life insurance premium. The probable surplus of the insurer company assumed to be distributed according to the canonical ensemble theory. The Esscher premium principle appeared as its special case. The difference between our method and traditional principles for premium calculation was shown by simulation. Here we construct a theoretical foundation for the main assumption in our method, in this respect we present a new (physical) definition for the economic equilibrium. This approach let us to apply the maximum entropy principle in the economic systems. We also extend our method to deal with the problem of premium calculation for correlated risk categories. Like the Buhlman economic premium principle our method considers the effect of the market on the premium but in a different way.
Experimental and theoretical assessment of flexural properties of hybrid natural fibre composites
DEFF Research Database (Denmark)
Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack; Markussen, Christen Malte
2014-01-01
The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both...... experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well...... predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural...
Around the Way: Testing ΛCDM with Milky Way Stellar Stream Constraints
Dai, Biwei; Robertson, Brant E.; Madau, Piero
2018-05-01
Recent analyses of the Pal 5 and GD-1 tidal streams suggest that the inner dark matter halo of the Milky Way is close to spherical, in tension with predictions from collisionless N-body simulations of cosmological structure formation. We use the Eris simulation to test whether the combination of dissipative physics and hierarchical structure formation can produce Milky Way–like galaxies whose dark matter halos match the tidal stream constraints from the GD-1 and Pal 5 clusters. We use a dynamical model of the simulated Eris galaxy to generate many realizations of the GD-1 and Pal 5 tidal streams, marginalize over observational uncertainties in the cluster galactocentric positions and velocities, and compare with the observational constraints. We find that the total density and potential of Eris contributed by baryons and dark matter satisfies constraints from the existing Milky Way stellar stream data, as the baryons both round and redistribute the dark matter during the dissipative formation of the galaxy, and provide a centrally concentrated mass distribution that rounds the inner potential. The Eris dark matter halo or a spherical Navarro–Frenk–White dark matter work comparably well in modeling the stream data. In contrast, the equivalent dark matter–only ErisDark simulation produces a prolate halo that cannot reproduce the observed stream data. The ongoing Gaia mission will provide decisive tests of the consistency between {{Λ }}{CDM} and Milky Way streams, and should distinguish between models like Eris and more spherical halos.
Experimental and Theoretical Investigations of a Mechanical Lever System Driven by a DC Motor
Nana, B.; Fautso Kuiate, G.; Yamgoué, S. B.
This paper presents theoretical and experimental results on the investigation of the dynamics of a nonlinear electromechanical system made of a lever arm actuated by a DC motor and controlled through a repulsive magnetic force. We use the method of harmonic balance to derive oscillatory solutions. Theoretical tools such as, bifurcation diagrams, Lyapunov exponents, phase portraits, are used to unveil the rich nonlinear behavior of the system including chaos and hysteresis. The experimental results are in close accordance with the theoretical predictions.
Graph-theoretic measures of multivariate association and prediction
International Nuclear Information System (INIS)
Friedman, J.H.; Rafsky, L.C.
1983-01-01
Interpoint-distance-based graphs can be used to define measures of association that extend Kendall's notion of a generalized correlation coefficient. The authors present particular statistics that provide distribution-free tests of independence sensitive to alternatives involving non-monotonic relationships. Moreover, since ordering plays no essential role, the ideas that fully applicable in a multivariate setting. The authors also define an asymmetric coefficient measuring the extent to which (a vector) X can be used to make single-valued predictions of (a vector) Y. The authors discuss various techniques for proving that such statistics are asymptotically normal. As an example of the effectiveness of their approach, the authors present an application to the examination of residuals from multiple regression. 18 references, 2 figures, 1 table
DEFF Research Database (Denmark)
Poel, Mike van der; Gehrig, Edeltraud; Hess, Ortwin
2005-01-01
Ultrafast gain dynamics in an optical amplifier with an active layer of self-organized quantum dots (QDs) emitting near 1.3$muhbox m$is characterized experimentally in a pump-probe experiment and modeled theoretically on the basis of QD Maxwell–Bloch equations. Experiment and theory are in good......$factor) is theoretically predicted and demonstrated in the experiments. The fundamental analysis reveals the underlying physical processes and indicates limitations to QD-based devices....
A theoretical approach to medication adherence for children and youth with psychiatric disorders.
Charach, Alice; Volpe, Tiziana; Boydell, Katherine M; Gearing, Robin E
2008-01-01
This article provides a theoretical review of treatment adherence for children and youth with psychiatric disorders where pharmacological agents are first-line interventions. Four empirically based models of health behavior are reviewed and applied to the sparse literature about medication adherence for children with attention-deficit/hyperactivity disorder and young people with first-episode psychosis. Three qualitative studies of medication use are summarized, and details from the first-person narratives are used to illustrate the theoretical models. These studies indicate, when taken together, that the clinical approach to addressing poor medication adherence in children and youth with psychiatric disorders should be guided by more than one theoretical model. Mental health experts should clarify beliefs, address misconceptions, and support exploration of alternative treatment options unless contraindicated. Recognizing the larger context of the family, allowing time for parents and children to change their attitudes, and offering opportunities for easy access to medication in the future are important ways of respecting patient preferences, while steering them toward best-evidence interventions. Future research using qualitative methods of inquiry to investigate parent, child, and youth experiences of mental health interventions should identify effective ways to improve treatment adherence.
Theoretical prediction of low-density hexagonal ZnO hollow structures
Energy Technology Data Exchange (ETDEWEB)
Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Huan, Tran Doan [Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136 (United States); Thao, Nguyen Thi [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam); Tuan, Le Manh [Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam)
2016-10-14
Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.
Predictability and Prediction for an Experimental Cultural Market
Colbaugh, Richard; Glass, Kristin; Ormerod, Paul
Individuals are often influenced by the behavior of others, for instance because they wish to obtain the benefits of coordinated actions or infer otherwise inaccessible information. In such situations this social influence decreases the ex ante predictability of the ensuing social dynamics. We claim that, interestingly, these same social forces can increase the extent to which the outcome of a social process can be predicted very early in the process. This paper explores this claim through a theoretical and empirical analysis of the experimental music market described and analyzed in [1]. We propose a very simple model for this music market, assess the predictability of market outcomes through formal analysis of the model, and use insights derived through this analysis to develop algorithms for predicting market share winners, and their ultimate market shares, in the very early stages of the market. The utility of these predictive algorithms is illustrated through analysis of the experimental music market data sets [2].
International Nuclear Information System (INIS)
Woerden, H. van; Allen, R.J.; Burton, W.B.
1985-01-01
IAU Symposium 106, held at the Kapteyn Institute in Groningen, presents an overview of all major aspects of galactic astronomy. The vast subject is covered in 20 authoritative review papers and 22 invited papers, each with discussion, plus 81 shorter contributions. The book opens with 4 reviews by historians of science, outlining the history of galactic research. Part 2 deals with (i) galactic rotation, (ii) the large-scale distributions of matter, of both old and young stellar populations, and of the atomic, molecular and high-energy components of the interstellar medium, (iii) small-scale structure in the gas, (iv) the galactic nucleus, (v) the high-velocity clouds. Part 3 discusses the dynamics of the local group of Galaxies and of the Milky Way-Magellanic clouds system, the dynamical and chemical evolution of the Galaxy and of its disk and halo components and the formation of the Galaxy. The controversial subject of spiral structure and star formation is analyzed in several extensive reviews and lively discussions, featuring both observational and theoretical developments. Results of extragalactic research are blended with studies of our Galaxy throughout the book, and there is a separate comparison between Andromeda and Milky Way Galaxies. The Symposium featured the first maps produced by IRAS, and results from most major telescopes in a variety of wavebands. Many review papers present material not published elsewhere. The book closes with a lecture on life in the Galaxy and with an imaginative symposium summary. (orig.)
Theoretical models for the muon spectrum at sea level
International Nuclear Information System (INIS)
Abdel-Monem, M.S.; Benbrook, J.R.; Osborne, A.R.; Sheldon, W.R.
1975-01-01
The absolute vertical cosmic ray muon spectrum is investigated theoretically. Models of high energy interactions (namely, Maeda-Cantrell (MC), Constant Energy (CE), Cocconi-Koester-Perkins (CKP) and Scaling Models) are used to calculate the spectrum of cosmic ray muons at sea level. A comparison is made between the measured spectrum and that predicted from each of the four theoretical models. It is concluded that the recently available measured muon differential intensities agree with the scaling model for energies less than 100 GeV and with the CKP model for energies greater than 200 GeV. The measured differential intensities (Abdel-Monem et al.) agree with scaling. (orig.) [de
Predictable grammatical constructions
DEFF Research Database (Denmark)
Lucas, Sandra
2015-01-01
My aim in this paper is to provide evidence from diachronic linguistics for the view that some predictable units are entrenched in grammar and consequently in human cognition, in a way that makes them functionally and structurally equal to nonpredictable grammatical units, suggesting that these p......My aim in this paper is to provide evidence from diachronic linguistics for the view that some predictable units are entrenched in grammar and consequently in human cognition, in a way that makes them functionally and structurally equal to nonpredictable grammatical units, suggesting...... that these predictable units should be considered grammatical constructions on a par with the nonpredictable constructions. Frequency has usually been seen as the only possible argument speaking in favor of viewing some formally and semantically fully predictable units as grammatical constructions. However, this paper...... semantically and formally predictable. Despite this difference, [méllo INF], like the other future periphrases, seems to be highly entrenched in the cognition (and grammar) of Early Medieval Greek language users, and consequently a grammatical construction. The syntactic evidence speaking in favor of [méllo...
Thermomechanical behavior of a two-way shape memory composite actuator
International Nuclear Information System (INIS)
Ge, Qi; Westbrook, Kristofer K; Dunn, Martin L; Jerry Qi, H; Mather, Patrick T
2013-01-01
Shape memory polymers (SMPs) are a class of smart materials that can fix a temporary shape and recover to their permanent (original) shape in response to an environmental stimulus such as heat, electricity, or irradiation, among others. Most SMPs developed in the past can only demonstrate the so-called one-way shape memory effect; i.e., one programming step can only yield one shape memory cycle. Recently, one of the authors (Mather) developed a SMP that exhibits both one-way shape memory (1W-SM) and two-way shape memory (2W-SM) effects (with the assistance of an external load). This SMP was further used to develop a free-standing composite actuator with a nonlinear reversible actuation under thermal cycling. In this paper, a theoretical model for the PCO SMP based composite actuator was developed to investigate its thermomechanical behavior and the mechanisms for the observed phenomena during the actuation cycles, and to provide insight into how to improve the design. (paper)
Exploratory experimental and theoretical studies of cyclone gasification of wood powder
Energy Technology Data Exchange (ETDEWEB)
Fredriksson, Christian
1999-11-01
This thesis describes an exploratory experimental and theoretical study of gasification of wood powder in a cyclone gasifier. The generated gas could be used to operate a gas turbine in a combined cycle power plant. The objective has been to develop the understanding of cyclone gasification by experimental studies of the performance of a cyclone designed in principle as a separation cyclone and by comparisons between the experimental results and theoretical predictions. The experiments were carried out with commercial Swedish wood powder fuels, injected with air or steam/air mixture through two diametrically opposite tangential inlets and gasified at atmospheric pressure in cyclones of two different configurations with a volume of about 0.034 m{sup 3}. The studies show that stable gasification of this fuel can be obtained for a specific fuel feeding rate of about 5 MW/m{sup 3} cyclone volume for equivalence ratios above 0.15 and that the equivalence ratio had to be kept below about 0.4 in order to avoid material temperatures above 950 deg C. A cyclone with a short outlet pipe, designed as a conventional separation cyclone was found to give lower char conversion than a modified cyclone with a long outlet pipe. The heating value of the gas was found to be approximately 4.5 MJ/kg. The dust load in the product gas was measured to between 1000 and 2500 mg/Nm{sup 3}. It was possible to separate at least 40-60% of the potassium and 60-90% of the sodium supplied with the wood. The alkali that left the cyclone with the product gas appear to be in solid or melted phase in the unseparated char particles and consequently not vaporised during gasification. As the K and Na were assumed to remain within the particles during gasification, it was concluded that to reduce the amount of alkali metals in the product gas it would be necessary to improve the particle separation efficiency. The results of the theoretical modelling, using the existing models in the commercial software CFX
Theoretical optical spectroscopy of complex systems
Energy Technology Data Exchange (ETDEWEB)
Conte, A. Mosca, E-mail: adriano.mosca.conte@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Violante, C., E-mail: claudia.violante@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Missori, M., E-mail: mauro.missori@isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00016 Monterotondo Scalo (Rome) (Italy); Bechstedt, F., E-mail: bech@ifto.physik.uni-jena.de [Institut fur Festkorpertheorie und -optik, Friedrich-Schiller-Universitat, Max-Wien-Platz 1, 07743 Jena (Germany); Teodonio, L. [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Istituto centrale per il restauro e la conservazione del patrimonio archivistico e librario (IC-RCPAL), Italian Minister for Cultural Heritage, Via Milano 76, 00184 Rome (Italy); Ippoliti, E.; Carloni, P. [German Research School for Simulation Sciences, Julich (Germany); Guidoni, L., E-mail: leonardo.guidoni@univaq.it [Università degli Studi di L’Aquila, Dipartimento di Chimica e Materiali, Via Campo di Pile, 67100 L’Aquila (Italy); Pulci, O., E-mail: olivia.pulci@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy)
2013-08-15
Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth.
Theoretical optical spectroscopy of complex systems
International Nuclear Information System (INIS)
Conte, A. Mosca; Violante, C.; Missori, M.; Bechstedt, F.; Teodonio, L.; Ippoliti, E.; Carloni, P.; Guidoni, L.; Pulci, O.
2013-01-01
Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth
International Nuclear Information System (INIS)
Zhou, Zhifang; Xiao, Tian; Chen, Xiaohong; Wang, Chang
2016-01-01
Chinese heavy-polluting industrial enterprises, especially petrochemical or chemical industry, labeled low carbon efficiency and high emission load, are facing the tremendous pressure of emission reduction under the background of global shortage of energy supply and constrain of carbon emission. However, due to the limited amount of theoretic and practical research in this field, problems like lacking prediction indicators or models, and the quantified standard of carbon risk remain unsolved. In this paper, the connotation of carbon risk and an assessment index system for Chinese heavy-polluting industrial enterprises (eg. coal enterprise, petrochemical enterprises, chemical enterprises et al.) based on support vector machine are presented. By using several heavy-polluting industrial enterprises’ related data, SVM model is trained to predict the carbon risk level of a specific enterprise, which allows the enterprise to identify and manage its carbon risks. The result shows that this method can predict enterprise’s carbon risk level in an efficient, accurate way with high practical application and generalization value.
A System Theoretical Inspired Approach to Knowledge Construction
DEFF Research Database (Denmark)
Mathiasen, Helle
2008-01-01
student's knowledge construction, in the light of operative constructivism, inspired by the German sociologist N. Luhmann's system theoretical approach to epistemology. Taking observations as operations based on distinction and indication (selection) contingency becomes a fundamental condition in learning...... Abstract The aim of this paper is to discuss the relation between teaching and learning. The point of departure is that teaching environments (communication forums) is a potential facilitator for learning processes and knowledge construction. The paper present a theoretical frame work, to discuss...... processes, and a condition which teaching must address as far as teaching strives to stimulate non-random learning outcomes. Thus learning outcomes understood as the individual learner's knowledge construction cannot be directly predicted from events and characteristics in the environment. This has...
International Nuclear Information System (INIS)
Majcen, D.; Itard, L.C.M.; Visscher, H.
2013-01-01
In Europe, the Energy Performance of Buildings Directive (EPBD) provides for compulsory energy performance certification (labelling) for all existing dwellings. In the Netherlands, a labelling scheme was introduced in 2008. Certificates contain the energy label of the dwelling and corresponding theoretical gas and electricity consumption, calculated based on the dwellings physical characteristics, its heating, ventilation and cooling systems and standard use characteristics. This paper reports on a large-scale study of around 200,000 dwellings comparing labels and theoretical energy use with data on actual energy use. The study shows that dwellings with a low energy label actually consume much less energy than predicted by the label, but on the other hand, energy-efficient dwellings consume more than predicted. In practice, policy targets are set according to the theoretical rather than the actual consumptions of the building stock. In line with identified discrepancies, the study shows that whereas most energy reduction targets can be met according to the theoretical energy consumption of the dwelling stock, the future actual energy reduction potential is much lower and fails to meet most of the current energy reduction targets. - Highlights: ► Actual gas consumption in Dutch dwellings is lower than the theoretical. ► In the dwellings with label A–B, theoretical gas consumption is lower than actual gas consumption. ► In less efficient dwellings, theoretical gas consumption is much higher than the actual. ► Most current energy reduction targets are unachievable if modelled with actual instead of theoretical energy consumption
Sodium fires: French strategy - theoretical and experimental developments
International Nuclear Information System (INIS)
Descombes; Thomann; Malet, J.C.; Rzekiecki, R.
1985-01-01
After a description of the needs relating to LMFBR safety analysis and design in terms of prevention, detection and protection, the French strategy concerning sodium fires it presented. It includes theoretical developments supported with relevant experimental program, to allow reliable calculations and predictions for safety and design. The following physical phenomena are detailed: (1) sodium fire (mechanical and thermal effects); (2) sodium-structures interactions; (3) aerosols behavior
Si, Guo-Ning; Chen, Lan; Li, Bao-Guo
2014-04-01
Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.
An attempt of classification of theoretical approaches to national identity
Directory of Open Access Journals (Sweden)
Milošević-Đorđević Jasna S.
2003-01-01
Full Text Available It is compulsory that complex social concepts should be defined in different ways and approached from the perspective of different science disciplines. Therefore, it is difficult to precisely define them without overlapping of meaning with other similar concepts. This paper has made an attempt towards theoretical classification of the national identity and differentiate that concept in comparison to the other related concepts (race, ethnic group, nation, national background, authoritativeness, patriarchy. Theoretical assessments are classified into two groups: ones that are dealing with nature of national identity and others that are stating one or more dimensions of national identity, crucial for its determination. On the contrary to the primordialistic concept of national identity, describing it as a fundamental, deeply rooted human feature, there are many numerous contemporary theoretical approaches (instrumentalist, constructivist, functionalistic, emphasizing changeable, fluid, instrumentalist function of the national identity. Fundamental determinants of national identity are: language, culture (music, traditional myths, state symbols (territory, citizenship, self-categorization, religion, set of personal characteristics and values.
Shih, Kao-Shang; Hou, Sheng-Mou; Lin, Shang-Chih
2017-12-01
The pullout strength of a screw is an indicator of how secure bone fragments are being held in place. Such bone-purchasing ability is sensitive to bone quality, thread design, and the pilot hole, and is often evaluated by experimental and numerical methods. Historically, there are some mathematical formulae to simulate the screw withdrawal from the synthetic bone. There are great variations in screw specifications. However, extensive investigation of the correlation between experimental and analytical results has not been reported in literature. Referring to the literature formulae, this study aims to evaluate the differences in the calculated pullout strengths. The pullout tests of the surgical screws are measured and the sawbone is used as the testing block. The absolute errors and correlation coefficients of the experimental and analytical results are calculated as the comparison baselines of the formulae. The absolute error of the dental, traumatic, and spinal groups are 21.7%, 95.5%, and 37.0%, respectively. For the screws with a conical profile and/or tiny threads, the calculated and measured results are not well correlated. The formulae are not accurate indicators of the pullout strengths of the screws where the design parameters are slightly varied. However, the experimental and numerical results are highly correlated for the cylindrical screws. The pullout strength of a conical screw is higher than that of its counterpart, but all formulae consistently predict the opposite results. In general, the bony purchase of the buttress threads is securer than that of the symmetric thread. An absolute error of up to 51.4% indicates the theoretical results cannot predict the actual value of the pullout strength. Only thread diameter, pitch, and depth are considered in the investigated formulae. The thread profile and shape should be formulated to modify the slippage mechanism at the bone-screw interfaces and simulate the strength change in the squeezed bones
Directory of Open Access Journals (Sweden)
DAVE HOLMES
2013-01-01
Full Text Available The article undertakes a theoretical discussion of the online sociability of men who have sex with men. The main objectives of this theoretical exploration are to investigate the links between the ways that bodies are publicized/advertised on online profiles and the concept of sex as a regulatory category; the connections we can make between images/descriptions of certain parts of bodies shown online and the concept of face as an assemblage; and finally, the possibility of resistance against the regulation of the “heterosexual matrix” within so-called same sex desire. Drawing on a set of empirical data gathered through online participant observation on a cruising-for-sex website for men, this analysis hopes to foster our theoretical and political understandings of the ways Internet users are experiencing their bodies in relation to technology, providing new conceptual approaches regarding sexuality on the online cruising for sexual partners.
Basic Modelling principles and Validation of Software for Prediction of Collision Damage
DEFF Research Database (Denmark)
Simonsen, Bo Cerup
2000-01-01
This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software.......This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software....
Physical Premium Principle: A New Way for Insurance Pricing
Directory of Open Access Journals (Sweden)
Amir H. Darooneh
2005-02-01
Full Text Available Abstract: In our previous work we suggested a way for computing the non-life insurance premium. The probable surplus of the insurer company assumed to be distributed according to the canonical ensemble theory. The Esscher premium principle appeared as its special case. The difference between our method and traditional principles for premium calculation was shown by simulation. Here we construct a theoretical foundation for the main assumption in our method, in this respect we present a new (physical definition for the economic equilibrium. This approach let us to apply the maximum entropy principle in the economic systems. We also extend our method to deal with the problem of premium calculation for correlated risk categories. Like the Buhlman economic premium principle our method considers the effect of the market on the premium but in a different way.
A new theoretical approach to analyze complex processes in cytoskeleton proteins.
Li, Xin; Kolomeisky, Anatoly B
2014-03-20
Cytoskeleton proteins are filament structures that support a large number of important biological processes. These dynamic biopolymers exist in nonequilibrium conditions stimulated by hydrolysis chemical reactions in their monomers. Current theoretical methods provide a comprehensive picture of biochemical and biophysical processes in cytoskeleton proteins. However, the description is only qualitative under biologically relevant conditions because utilized theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer simulations, it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton proteins under all conditions.
Prediction of the dollar to the ruble rate. A system-theoretic approach
Borodachev, Sergey M.
2017-07-01
Proposed a simple state-space model of dollar rate formation based on changes in oil prices and some mechanisms of money transfer between monetary and stock markets. Comparison of predictions by means of input-output model and state-space model is made. It concludes that with proper use of statistical data (Kalman filter) the second approach provides more adequate predictions of the dollar rate.
Theoretical physics IV. Quantum mechanics with problems in MAPLE
International Nuclear Information System (INIS)
Reinecker, Peter; Schulz, Michael; Schulz, Beatrix M.
2008-01-01
Quantum mechanics 2 is the fourth volume of the new and unique series for theoretical physics with Maple applications. This from basics newly concipated series mediates theoretical physics from contemporary view and in a way referring to a comprehensive lecture experience. Extensively and completely in five consecutively appearing volumes classical mechanics, electrodynamics, quantum mechanics 1 and 2, as well as statistical physics and thermodynamics are presented. Additionally for the elegant and extensive presentation on an each added CP applications for MAPLE trademark are contained, the software, which at more and more university is already applied in the lecture. They allow the experimenting with theory - and facilitate the understanding essentially. The present volume mediates extending, more complex contents of quantum mechanics, which are based on volume III of the series
Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F
2007-03-01
The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.
Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.
Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M
2010-08-14
Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.
Theoretical aspects of antimatter and gravity.
Blas, Diego
2018-03-28
In this short contribution, I review the physical case of studying the gravitational properties of antimatter from a theoretical perspective. I first discuss which elements are desirable for any theory where the long-range interactions between matter and antimatter differ from those of matter with itself. Afterwards I describe the standard way to hide the effects of new forces in matter-matter interactions which still allows one to generate ponderable matter-antimatter interactions. Finally, I comment on some recent ideas and propose some possible future directions.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).
An experimental and theoretical investigation of particle–wall impacts in a T-junction
Vigolo, D.
2013-07-01
Understanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar-turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow. © 2013 Cambridge University Press.
An experimental and theoretical investigation of particle–wall impacts in a T-junction
Vigolo, D.; Griffiths, I. M.; Radl, S.; Stone, H. A.
2013-01-01
Understanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar-turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow. © 2013 Cambridge University Press.
A Theoretic Basis for IS? The Contribution of ANT
Directory of Open Access Journals (Sweden)
Jim Underwood
2002-11-01
Full Text Available Representation is a key issue of IS design and operation that is often ignored. Actor-network theory (ANT, a semiotic theory of stakeholders, provides a way of dealing with representation. Combining aspects of ANT and Foucault's discourse theory allows us to include concepts as actors and promises a flexible and durable foundation for IS practice, but ANT itself indicates that the search for a purely theoretical foundation for IS is misguided.
A new way of thinking about complications of prematurity.
Moore, Tiffany A; Berger, Ann M; Wilson, Margaret E
2014-01-01
The morbidity and mortality of preterm infants are impacted by their ability to maintain physiologic homeostasis using metabolic, endocrine, and immunologic mechanisms independent of the mother's placenta. Exploring McEwen's allostatic load model in preterm infants provides a new way to understand the altered physiologic processes associated with frequently occurring complications of prematurity such as bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity. The purpose of this article is to present a new model to enhance understanding of the altered physiologic processes associated with complications of prematurity. The model of allostatic load and complications of prematurity was derived to explore the relationship between general stress of prematurity and complications of prematurity. The proposed model uses the concepts of general stress of prematurity, allostasis, physiologic response patterns (adaptive-maladaptive), allostatic load, and complications of prematurity. These concepts are defined and theoretical relationships in the proposed model are interpreted using the four maladaptive response patterns of repeated hits, lack of adaptation, prolonged response, and inadequate response. Empirical evidence for cortisol, inflammation, and oxidative stress responses are used to support the theoretical relationships. The proposed model provides a new way of thinking about physiologic dysregulation in preterm infants. The ability to describe and understand complex physiologic mechanisms involved in complications of prematurity is essential for research. Advancing the knowledge of complications of prematurity will advance clinical practice and research and lead to testing of interventions to reduce negative outcomes in preterm infants.
The problem of distance in the theoretical thought of Sini and Vitiello
Directory of Open Access Journals (Sweden)
Luca Brovelli
2012-04-01
Full Text Available the problem of distance the way it is dealt with in the theoretical reflection of Sini and Vitiello, analyzed under three different perspectives: distance as constitutive element of the bodily experience; the human distance of myth, language, writing, mathematics and distance as a hermeneutic problem.
Ridderinkhof, K Richard; Brass, Marcel
2015-01-01
Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Theoretical perspectives on narrative inquiry.
Emden, C
1998-04-01
Narrative inquiry is gaining momentum in the field of nursing. As a research approach it does not have any single heritage of methodology and its practitioners draw upon diverse sources of influence. Central to all narrative inquiry however, is attention to the potential of stories to give meaning to people's lives, and the treatment of data as stories. This is the first of two papers on the topic and addresses the theoretical influences upon a particular narrative inquiry into nursing scholars and scholarship. The second paper, Conducting a narrative analysis, describes the actual narrative analysis as it was conducted in this same study. Together, the papers provide sufficient detail for others wishing to pursue a similar approach to do so, or to develop the ideas and procedures according to their own way of thinking. Within this first theoretical paper, perspectives from Jerome Bruner (1987) and Wade Roof (1993) are outlined. These relate especially to the notion of stories as 'imaginative constructions' and as 'cultural narratives' and as such, highlight the profound importance of stories as being individually and culturally meaningful. As well, perspectives on narrative inquiry from nursing literature are highlighted. Narrative inquiry in this instance lies within the broader context of phenomenology.
A method for predicting monthly rainfall patterns
International Nuclear Information System (INIS)
Njau, E.C.
1987-11-01
A brief survey is made of previous methods that have been used to predict rainfall trends or drought spells in different parts of the earth. The basic methodologies or theoretical strategies used in these methods are compared with contents of a recent theory of Sun-Weather/Climate links (Njau, 1985a; 1985b; 1986; 1987a; 1987b; 1987c) which point towards the possibility of practical climatic predictions. It is shown that not only is the theoretical basis of each of these methodologies or strategies fully incorporated into the above-named theory, but also this theory may be used to develop a technique by which future monthly rainfall patterns can be predicted in further and finer details. We describe the latter technique and then illustrate its workability by means of predictions made on monthly rainfall patterns in some East African meteorological stations. (author). 43 refs, 11 figs, 2 tabs
Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters
Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong
2018-05-01
This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.
Neurocognitive mechanisms of perception-action coordination: a review and theoretical integration.
Ridderinkhof, K Richard
2014-10-01
The present analysis aims at a theoretical integration of, and a systems-neuroscience perspective on, a variety of historical and contemporary views on perception-action coordination (PAC). We set out to determine the common principles or lawful linkages between sensory and motor systems that explain how perception is action-oriented and how action is perceptually guided. To this end, we analyze the key ingredients to such an integrated framework, examine the architecture of dual-system conjectures of PAC, and endeavor in an historical analysis of the key characteristics, mechanisms, and phenomena of PACs. This analysis will reveal that dual-systems views are in need of fundamental re-thinking, and its elements will be amalgamated with current views on action-oriented predictive processing into a novel integrative theoretical framework (IMPPACT: Impetus, Motivation, and Prediction in Perception-Action Coordination theory). From this framework and its neurocognitive architecture we derive a number of non-trivial predictions regarding conative, motive-driven PAC. We end by presenting a brief outlook on how IMPPACT might present novel insights into certain pathologies and into action expertise. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blai, Boris, Jr.
Psychological theories about human motivation and accommodation to environment can be used to achieve a better understanding of the human factors that function in the work environment. Maslow's theory of human motivational behavior provided a theoretical framework for an empirically-derived method to predict job satisfaction and explore the…
Stability in vitiligo: Is there a perfect way to predict it?
Directory of Open Access Journals (Sweden)
Kanika Sahni
2013-01-01
Full Text Available Stability is a hard-to-define concept in the setting of vitiligo, but is nonetheless extremely crucial to the planning of treatment regimens and also in prognosticating for the patient. There are several ways to judge stability in vitiligo, which include clinical features and, recently, many biochemical, cytological and ultrastructural correlates of the same. These recent advances help in not only in prognosticating individual patients but also in elucidating some of the mechanisms for the pathogenesis of vitiligo, including melanocytorrhagy and oxidative damage to melanocytes.
Predicting formation enthalpies of metal hydrides
Energy Technology Data Exchange (ETDEWEB)
Andreasen, A.
2004-12-01
In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formed by chemical reaction between hydrogen and metal and for the stable hydrides this is associated with release of heat ({delta}H{sub f} ). The more thermodynamically stable the hydride, the larger {delta}H{sub f}, and the higher temperature is needed in order to desorp hydrogen (reverse reaction) and vice versa. For practical application the temperature needed for desorption should not be too high i.e. {delta}H{sub f} should not be too large. If hydrogen desorption is to be possible below 100 deg C (which is the ultimate goal if hydrogen storage in metal hydrides should be used in conjunction with a PEM fuel cell), {delta}H{sub f} should not exceed -48 kJ/mol. Until recently only intermetallic metal hydrides with a storage capacity less than 2 wt.% H{sub 2} have met this criterion. However, discovering reversible hydrogen storage in complex metal hydrides such as NaAlH{sub 4} (5.5 wt. % reversible hydrogen capacity) have revealed a new group of potential candiates. However, still many combination of elements from the periodic table are yet to be explored. Since experimental determination of thermodynamic properties of the vast combinations of elements is tedious it may be advantagous to have a predictive tool for this task. In this report different ways of predicting {delta}H{sub f} for binary and ternary metal hydrides are reviewed. Main focus will be on how well these methods perform numerically i.e. how well experimental results are resembled by the model. The theoretical background of the different methods is only briefly reviewed. (au)
Experimental, computational and theoretical studies of δ′ phase coarsening in Al–Li alloys
International Nuclear Information System (INIS)
Pletcher, B.A.; Wang, K.G.; Glicksman, M.E.
2012-01-01
Experimental characterization of microstructure evolution in three binary Al–Li alloys provides critical tests of both diffusion screening theory and multiparticle diffusion simulations, which predict late-stage phase-coarsening kinetics. Particle size distributions, growth kinetics and maximum particle sizes obtained using quantitative, centered dark-field transmission electron microscopy are compared quantitatively with theoretical and computational predictions. We also demonstrate the dependence on δ′ precipitate volume fraction of the rate constant for coarsening and the microstructure’s maximum particle size, both of which remained undetermined for this alloy system for nearly a half century. Our experiments show quantitatively that the diffusion-screening theoretical description of phase coarsening yields reasonable kinetic predictions, and that useful simulations of microstructure evolution are obtained via multiparticle diffusion. The tested theory and simulation method will provide useful tools for future design of two-phase alloys for elevated temperature applications.
Directory of Open Access Journals (Sweden)
Wuchty Stefan
2006-05-01
show a simple way to predict potential protein interactions by utilizing expectation scores of single domain interactions.
Doyle, Frank; McGee, Hannah; Conroy, Ronán; Delaney, Mary
2011-01-01
Depression is associated with increased cardiovascular risk in patients with acute coronary syndrome (ACS), but some argue that elevated depression is actually a marker of cardiovascular disease severity. Therefore, disease indices should be better predictors of depression than established theoretical causes of depression (interpersonal life events, reinforcing events, cognitive distortions, type D personality). However, little theory-based research has been conducted in this area. In a cross...
Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications
Energy Technology Data Exchange (ETDEWEB)
Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry
2012-05-02
We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.
Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach
Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.
2016-12-01
Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.
Residual Strength Prediction of Debond Damaged Sandwich Panels
DEFF Research Database (Denmark)
Berggreen, Carl Christian
followed by debond growth. The developed theoretical procedure is an extension of the Crack Surface Displacement method, here denoted the Crack Surface Displacement Extrapolation method. The method is first developed in 2D and then extended to 3D by use of a number of realistic assumptions...... for the considered configurations. Comparison of the theoretical predictions to two series of large-scale experiments with loadings (uniform and non-uniform in-plane compression) comparable with real life loading scenarios for sandwich ships shows that the model is indeed able to predict the failure modes...
Tapping generalized essentialism to predict outgroup prejudices.
Hodson, Gordon; Skorska, Malvina N
2015-06-01
Psychological essentialism, the perception that groups possess inherent properties binding them and differentiating them from others, is theoretically relevant to predicting prejudice. Recent developments isolate two key dimensions: essentialistic entitativity (EE; groups as unitary, whole, entity-like) and essentialistic naturalness (EN; groups as fixed and immutable). We introduce a novel question: does tapping the covariance between EE and EN, rather than pitting them against each other, boost prejudice prediction? In Study 1 (re-analysis of Roets & Van Hiel, 2011b, Samples 1-3, in Belgium) and Study 2 (new Canadian data) their common/shared variance, modelled as generalized essentialism, doubles the predictive power relative to regression-based approaches with regard to racism (but not anti-gay or -schizophrenic prejudices). Theoretical implications are discussed. © 2014 The British Psychological Society.
Accurate predictions for the LHC made easy
CERN. Geneva
2014-01-01
The data recorded by the LHC experiments is of a very high quality. To get the most out of the data, precise theory predictions, including uncertainty estimates, are needed to reduce as much as possible theoretical bias in the experimental analyses. Recently, significant progress has been made in computing Next-to-Leading Order (NLO) computations, including matching to the parton shower, that allow for these accurate, hadron-level predictions. I shall discuss one of these efforts, the MadGraph5_aMC@NLO program, that aims at the complete automation of predictions at the NLO accuracy within the SM as well as New Physics theories. I’ll illustrate some of the theoretical ideas behind this program, show some selected applications to LHC physics, as well as describe the future plans.
Studying Musical and Linguistic Prediction in Comparable Ways: The Melodic Cloze Probability Method.
Fogel, Allison R; Rosenberg, Jason C; Lehman, Frank M; Kuperberg, Gina R; Patel, Aniruddh D
2015-01-01
Prediction or expectancy is thought to play an important role in both music and language processing. However, prediction is currently studied independently in the two domains, limiting research on relations between predictive mechanisms in music and language. One limitation is a difference in how expectancy is quantified. In language, expectancy is typically measured using the cloze probability task, in which listeners are asked to complete a sentence fragment with the first word that comes to mind. In contrast, previous production-based studies of melodic expectancy have asked participants to sing continuations following only one to two notes. We have developed a melodic cloze probability task in which listeners are presented with the beginning of a novel tonal melody (5-9 notes) and are asked to sing the note they expect to come next. Half of the melodies had an underlying harmonic structure designed to constrain expectations for the next note, based on an implied authentic cadence (AC) within the melody. Each such 'authentic cadence' melody was matched to a 'non-cadential' (NC) melody matched in terms of length, rhythm and melodic contour, but differing in implied harmonic structure. Participants showed much greater consistency in the notes sung following AC vs. NC melodies on average. However, significant variation in degree of consistency was observed within both AC and NC melodies. Analysis of individual melodies suggests that pitch prediction in tonal melodies depends on the interplay of local factors just prior to the target note (e.g., local pitch interval patterns) and larger-scale structural relationships (e.g., melodic patterns and implied harmonic structure). We illustrate how the melodic cloze method can be used to test a computational model of melodic expectation. Future uses for the method include exploring the interplay of different factors shaping melodic expectation, and designing experiments that compare the cognitive mechanisms of prediction in
Directory of Open Access Journals (Sweden)
Pitts Nigel
2003-12-01
Full Text Available Abstract Background Biomedical research constantly produces new findings but these are not routinely translated into health care practice. One way to address this problem is to develop effective interventions to translate research findings into practice. Currently a range of empirical interventions are available and systematic reviews of these have demonstrated that there is no single best intervention. This evidence base is difficult to use in routine settings because it cannot identify which intervention is most likely to be effective (or cost effective in a particular situation. We need to establish a scientific rationale for interventions. As clinical practice is a form of human behaviour, theories of human behaviour that have proved useful in other similar settings may provide a basis for developing a scientific rationale for the choice of interventions to translate research findings into clinical practice. The objectives of the study are: to amplify and populate scientifically validated theories of behaviour with evidence from the experience of health professionals; to use this as a basis for developing predictive questionnaires using replicable methods; to identify which elements of the questionnaire (i.e., which theoretical constructs predict clinical practice and distinguish between evidence compliant and non-compliant practice; and on the basis of these results, to identify variables (based on theoretical constructs that might be prime targets for behaviour change interventions. Methods We will develop postal questionnaires measuring two motivational, three action and one stage theory to explore five behaviours with 800 general medical and 600 general dental practitioners. We will collect data on performance for each of the behaviours. The relationships between predictor variables (theoretical constructs and outcome measures (data on performance in each survey will be assessed using multiple regression analysis and structural equation
Companions for ``Nessie'' in the Milky Way's Skeleton
Kohler, Susanna
2015-12-01
The recent discovery of a purported bone of the Milky Way, a dark cloud nicknamed Nessie, has provided us with new clues for mapping out the spiral structure of our galaxy. It turns out that Nessie may not be alone: a follow-up study has identified more bones, potentially making up a skeleton of the Milky Way that traces out the densest parts of its spiral arms.Inconvenient Vantage PointHow many spiral arms does the Milky Way have? Where are they located? What does the structure look like between the arms? It may seem surprising that these fundamental questions dont yet have clear answers. But because were stuck in the galaxys disk, were forced to piece together our understanding of the Milky Ways structure based primarily on measurements of position and radial velocity of structures within the galactic plane.The discovery of Nessie presents an intriguing new tool to identify the layout of the galaxy. Nessie is a very long, thin, infrared-dark filament that runs along the modeled position of the Scutum-Centaurus arm and is believed therefore to trace the structure of the arm. In a new study led by Catherine Zucker (University of Virginia, Harvard-Smithsonian Center for Astrophysics), the authors have searched for additional bones like Nessie, hoping to use them to map out the skeleton of the Milky Way.New Bones DiscoveredIn this map of radial velocity vs. galactic longitude, the bone candidates are indicated by the numbered points. The colored lines indicate the positions of two of the galactic spiral arms, according to various models. Click for a closer look! [Zucker et al. 2015]Zucker and collaborators began by using World Wide Telescope, a tool that facilitates visualization of multiple layers of data at a variety of scales, to search through Spitzer infrared data for additional structures like Nessie. Searching specifically along the predicted positions of galactic arms, they found 15 initial bone candidates.Next, the team obtained radial-velocity data for the
Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank
Energy Technology Data Exchange (ETDEWEB)
Park, Jun Sang [Halla Univ. Daejeon (Korea, Republic of)
2017-10-15
In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the 1st - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.
International Nuclear Information System (INIS)
Tamai, Hidesada; Tomiyama, Akio
2004-01-01
A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)
A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin
DEFF Research Database (Denmark)
Löbmann, Korbinian; Laitinen, Riikka; Grohganz, Holger
2013-01-01
. In this study, the co-amorphous drug mixture containing naproxen (NAP) and indomethacin (IND) was investigated using infrared spectroscopy (IR) and quantum mechanical calculations. The structures of both drugs were optimized as monomer, homodimer and heterodimer using density functional theory and used...... for the calculation of IR spectra. Conformational analysis confirmed that the optimized structures were suitable for the theoretical prediction of the spectra. Vibrational modes from the calculation could be matched with experimentally observed spectra for crystalline and amorphous NAP and IND, and it could be shown...... that both drugs exist as homodimers in their respective individual amorphous form. With the results from the experimental single amorphous drugs and theoretical homodimers, a detailed analysis of the experimental co-amorphous and theoretical heterodimer spectra was performed and evaluated. It is suggested...
International Nuclear Information System (INIS)
Cohen, Andrew; Schmaltz, Martin; Katz, Emmanuel; Rebbi, Claudio; Glashow, Sheldon; Brower, Richard; Pi, So-Young
2016-01-01
and gluon particles, we have no clear idea how to express the proton state in terms of these quarks and gluons. This is because the proton, though a bound state of quarks and gluons, is not a state of a fixed number of particles due to strong interactions. Yet, understanding the proton state is very important in order to theoretically predict the reaction rates observed at the LHC in Geneva, which is a proton-proton collider. Katz has formulated a new approach to QFT, which among other things offers a way to adequately approximate the quantum wave function of a bound state at strong coupling. The approximation scheme is related to the fact that any sensible QFT (including that of the strong interactions) is at short distances approximately self-similar upon rescaling of space and time. It turns out that keeping track of the response upon this rescaling is important in efficiently parameterizing the state. Katz and collaborators have used this observation to approximate the state of the proton in toy versions of the strong force. In the late 60s Sheldon Glashow, Abdus Salam and Steven Weinberg (1979 Nobel Prize awardees) proposed a theory unifying weak and electromagnetic interaction which assumed the existence of new particles, the W and Z bosons. The W and Z bosons were eventually detected in high-energy collision in a particle accelerator at CERN, and the recent discovery of the Higgs meson at the Large Hadron Collider (LHC), always at CERN, completed the picture. However, deep theoretical considerations indicate that the theory by Glashow, Weinberg and Salam, often referred to as 'the standard model' cannot be the whole story: the existence of new particles and new interactions at yet higher energies is widely anticipated. The experiments at the LHC are looking for these, while theorists, like Brower, Rebbi and collaborators, are investigating models for these new interactions. Working in a large national collaboration with access to the most powerful DOE computers
Energy Technology Data Exchange (ETDEWEB)
Cohen, Andrew [Boston Univ., MA (United States); Schmaltz, Martin [Boston Univ., MA (United States); Katz, Emmanuel [Boston Univ., MA (United States); Rebbi, Claudio [Boston Univ., MA (United States); Glashow, Sheldon [Boston Univ., MA (United States); Brower, Richard [Boston Univ., MA (United States); Pi, So-Young [Boston Univ., MA (United States)
2016-09-30
interactions between quark and gluon particles, we have no clear idea how to express the proton state in terms of these quarks and gluons. This is because the proton, though a bound state of quarks and gluons, is not a state of a fixed number of particles due to strong interactions. Yet, understanding the proton state is very important in order to theoretically predict the reaction rates observed at the LHC in Geneva, which is a proton-proton collider. Katz has formulated a new approach to QFT, which among other things offers a way to adequately approximate the quantum wave function of a bound state at strong coupling. The approximation scheme is related to the fact that any sensible QFT (including that of the strong interactions) is at short distances approximately self-similar upon rescaling of space and time. It turns out that keeping track of the response upon this rescaling is important in efficiently parameterizing the state. Katz and collaborators have used this observation to approximate the state of the proton in toy versions of the strong force. In the late 60s Sheldon Glashow, Abdus Salam and Steven Weinberg (1979 Nobel Prize awardees) proposed a theory unifying weak and electromagnetic interaction which assumed the existence of new particles, the W and Z bosons. The W and Z bosons were eventually detected in high-energy collision in a particle accelerator at CERN, and the recent discovery of the Higgs meson at the Large Hadron Collider (LHC), always at CERN, completed the picture. However, deep theoretical considerations indicate that the theory by Glashow, Weinberg and Salam, often referred to as "the standard model" cannot be the whole story: the existence of new particles and new interactions at yet higher energies is widely anticipated. The experiments at the LHC are looking for these, while theorists, like Brower, Rebbi and collaborators, are investigating models for these new interactions. Working in a large national collaboration with access to the most
DEFF Research Database (Denmark)
Horn, Christian Franz; Ivens, Bjørn Sven; Ohneberg, Michael
2014-01-01
In recent years, Prediction Markets gained growing interest as a forecasting tool among researchers as well as practitioners, which resulted in an increasing number of publications. In order to track the latest development of research, comprising the extent and focus of research, this article...... provides a comprehensive review and classification of the literature related to the topic of Prediction Markets. Overall, 316 relevant articles, published in the timeframe from 2007 through 2013, were identified and assigned to a herein presented classification scheme, differentiating between descriptive...... works, articles of theoretical nature, application-oriented studies and articles dealing with the topic of law and policy. The analysis of the research results reveals that more than half of the literature pool deals with the application and actual function tests of Prediction Markets. The results...
Theoretical investigation of field-line quality in a driven spheromak
International Nuclear Information System (INIS)
Cohen, R.H.; Cohen, B.I.; Berk, H.L.
2003-01-01
Theoretical studies aimed at predicting and diagnosing field-line quality in a spheromak are described. These include nonlinear 3-D MHD simulations, stability studies, analyses of confinement in spheromaks dominated by either open (stochastic) field lines or approximate flux surfaces, and a theory of fast electrons as a probe of field-line length. (author)
Modern trends in theoretical radiation chemistry development
International Nuclear Information System (INIS)
Kaplan, I.G.
1983-01-01
Most important trends in the development of radiation chemitry theory are considered. Wide use of electronic computers for modeling different stages of radiolysis in conjUnction with advanced precision experimental methods (picosecond pulse radiolysis, acceptor additions method, magnetic method of detecting interstitial active particles) is noted. Information obtained in photochemistry and molecular spectroscopy, including laser photolysis, is in common use in developing the theory. It is noted that data on the processes occurring within less than 10 -12 s time can be obtained now only on the base of theoretical representations about the mechanism of ionizing irradiation interaction with molecular medium. Therefore, special attention in the review is paid to investigation of primary radiolysis processes. Besides investigation of primary medium excitation processes theoretical investigations into the ways of energy degradation, knocked out electrons and their further state are continued. It is noted that a considerable number of papers deal with the nature and behaviour of radiation-induced excess electrons in non-polar solutions and solid matrices. Works on application of diffusion kinetics in radiolysis have been developed in recent years
A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces
Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.
2001-11-01
We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.
Theoretical and experimental morphologies of 4-aminobenzophenone (ABP) crystals
Wang, Qingwu; Sheen, D. B.; Shepherd, E. E. A.; Sherwood, J. N.; Simpson, G. S.; Hammond, R. B.
1997-11-01
The lattice energy (Elatt), slice energies (Eslice) and attachment energies (Eatt) of the different habit faces of ABP crystals have been calculated using the computer program HABIT. On the basis of the attachment energies of different crystal faces, the morphology was defined as {1 0 0}, {0 0 1}, {1 1 0}, {11bar0} and {1 01bar}. To confirm this theoretical prediction, we have grown ABP films and ABP crystals from the vapour phase. In both cases, the morphologically most important face was defined as {1 0 0} face using X-ray diffraction techniques. The remaining faces of the vapour-grown crystals were defined using a projection method, while the crystallites in the films were morphologically analysed by means of atomic force microscopy (AFM). The experimental morphologies are basically in agreement with the computation. Deviations from the equilibrium morphology can be ascribed to departure from equilibrium conditions during growth. For completeness, the results are compared with those for crystals grown from solutions for which deviations in morphology from the theoretical predictions can be ascribed to interaction between the crystal faces and solvent molecules.
Prediction of molecular properties using graph-theoretical invariants
Energy Technology Data Exchange (ETDEWEB)
Helal, N.L.; Steinhaeusler, F.; Winkler-Heil, R. [Inst. of Physics and Biophysics, Univ. of Salzburg, Salzburg (Austria); Eckl, P.M. [Inst. of Genetics and General Biology, Univ. of Salzburg, Salzburg (Austria)
2002-03-01
In man's living and working environments, situations are often encountered in which different ambient factors of a physical, chemical or biological nature could combine with ionizing radiation and give rise to undesirable effects. The list of chemicals, the action of which might combine with that of radiation in the environment is very extensive and many of these chemicals may produce carcinogenic or mutagenic effects or serve as carriers of trace metals, radioactive nuclides or polycyclic aromatic hydrocarbons. High levels of mutagenic chemicals have been reported in many types of food. Broiled meat and fish contain mutagenic compounds arising from the pyrolysis of proteins and amino acids. Mutagens and co-mutagens have also been reported in vegetable derivatives of foods, such as caffeine. As mutagenicity often correlates well with carcinogenicity, the above substances may be considered to be potential carcinogens both alone or in combination with radiation. Progress in the analysis of the interaction of ionizing radiation and toxicants is affected by the lack of scientific data quantitatively relating chemical exposures to a given health risk. The implementation of standard protocols to increase conformity among reported research is urgently needed as a prerequisite for the comparison of data from different laboratories, and the application of this in risk characterization. However, systematic and comprehensive risk management for the multitude of chemical substances which are present on the market and in the environment cannot be based on the availability of experimental data alone. Furthermore, for most existing chemicals these data are not available and will not become available in the near future. Reliable predictions based on quantitative structure-action relationships (QSARs) could represent an effective alternative, provided that, however, differences in the actions of different molecules are linked to differences in their chemical structures. In
International Nuclear Information System (INIS)
Gray, W.H.; Sun, C.T.
1976-07-01
The mechanical properties of a composite superconducting (NbTi/Cu) wire are characterized in terms of the mechanical properties of each constituent material. For a particular composite superconducting wire, five elastic material constants were experimentally determined and theoretically calculated. Since the Poisson's ratios for the fiber and the matrix material were very close, there was essentially no (less than 1 percent) difference among all the theoretical predictions for any individual mechanical constant. Because of the expense and difficulty of producing elastic constant data of 0.1 percent accuracy, and therefore conclusively determining which theory is best, no further experiments were performed
Hybrid rocket engine, theoretical model and experiment
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Rosário, Pedro; Lourenço, Abílio; Paiva, Olímpia; Rodrigues, Adriana; Valle, Antonio; Tuero-Herrero, Ellián
2012-05-01
Based upon the self-regulated learning theoretical framework this study examined to what extent students' Math school achievement (fifth to ninth graders from compulsory education) can be explained by different cognitive-motivational, social, educational, and contextual variables. A sample of 571 students (10 to 15 year old) enrolled in the study. Findings suggest that Math achievement can be predicted by self-efficacy in Math, school success and self-regulated learning and that these same variables can be explained by other motivational (ej., achievement goals) and contextual variables (school disruption) stressing this way the main importance of self-regulated learning processes and the role context can play in the promotion of school success. The educational implications of the results to the school levels taken are also discussed in the present paper.
Lander, Dorothy A.
2002-01-01
Presents a theoretical framework for teaching and learning research literacies. Describes a classroom demonstration involving graduate student cohorts in appreciative inquiry into practitioners' ways of writing. Addresses the issues of human subjects, informed consent, and the ethics of representation. (Contains 49 references.) (SK)
Predictive Analytics in Information Systems Research
G. Shmueli (Galit); O.R. Koppius (Otto)
2011-01-01
textabstractThis research essay highlights the need to integrate predictive analytics into information systems research and shows several concrete ways in which this goal can be accomplished. Predictive analytics include empirical methods (statistical and other) that generate data predictions as
Energy Technology Data Exchange (ETDEWEB)
Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)
1969-07-01
Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)
International Nuclear Information System (INIS)
Loux, P.C.
1969-01-01
Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)
Uher, Jana
2011-09-01
Animal researchers are increasingly interested in individual differences in behavior. Their interpretation as meaningful differences in behavioral strategies stable over time and across contexts, adaptive, heritable, and acted upon by natural selection has triggered new theoretical developments. However, the analytical approaches used to explore behavioral data still address population-level phenomena, and statistical methods suitable to analyze individual behavior are rarely applied. I discuss fundamental investigative principles and analytical approaches to explore whether, in what ways, and under which conditions individual behavioral differences are actually meaningful. I elaborate the meta-theoretical ideas underlying common theoretical concepts and integrate them into an overarching meta-theoretical and methodological framework. This unravels commonalities and differences, and shows that assumptions of analogy to concepts of human personality are not always warranted and that some theoretical developments may be based on methodological artifacts. Yet, my results also highlight possible directions for new theoretical developments in animal behavior research. Copyright © 2011 Wiley Periodicals, Inc.
Dodd, Bucky J.
2013-01-01
Online course design is an emerging practice in higher education, yet few theoretical models currently exist to explain or predict how the diffusion of innovations occurs in this space. This study used a descriptive, quantitative survey research design to examine theoretical relationships between decision-making style and resistance to change…
Communication: Theoretical prediction of free-energy landscapes for complex self-assembly
Energy Technology Data Exchange (ETDEWEB)
Jacobs, William M.; Reinhardt, Aleks; Frenkel, Daan [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)
2015-01-14
We present a technique for calculating free-energy profiles for the nucleation of multicomponent structures that contain as many species as building blocks. We find that a key factor is the topology of the graph describing the connectivity of the target assembly. By considering the designed interactions separately from weaker, incidental interactions, our approach yields predictions for the equilibrium yield and nucleation barriers. These predictions are in good agreement with corresponding Monte Carlo simulations. We show that a few fundamental properties of the connectivity graph determine the most prominent features of the assembly thermodynamics. Surprisingly, we find that polydispersity in the strengths of the designed interactions stabilizes intermediate structures and can be used to sculpt the free-energy landscape for self-assembly. Finally, we demonstrate that weak incidental interactions can preclude assembly at equilibrium due to the combinatorial possibilities for incorrect association.
Theoretical analysis of recirculation zone and buffer zone in the ADS windowless spallation target
International Nuclear Information System (INIS)
Liu, Jie; Pan, Chang-zhao; Tong, Jian-fei; Lu, Wen-qiang
2015-01-01
Highlights: • Height of recirculation zone is very important in windowless target design. • A theoretical formula for the height is derived based on the Bernoulli equation. • Numerical simulation for the LBE is performed and the height of recirculation zone is also obtained. • The theoretically-derived simulation-predicted recirculation zone heights agree with each other very well and the theoretical derivation is proved to be correct. - Abstract: The thermo-hydraulic analysis including reduction of the height of recirculation zone and stability of the free surface is very important in the design and optimization of ADS windowless spallation targets. In the present study, the Bernoulli equation is used to analyze the entire flow process in the target. Formulae for the height of the recirculation zone and the buffer zone are both obtained explicitly. Furthermore, numerical simulation for the heavy metal lead–bismuth eutectic liquid and vapor with cavitation phase change is also performed, and a novel method to calculate the height of the recirculation zone is put forward. By comparison of the theoretical formulae and numerical results, it is clearly shown that they agree with each other very well, and the heights predicted by the two methods are both determined by their own upstream flow parameters
Reliable predictions of waste performance in a geologic repository
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.
1985-08-01
Establishing reliable estimates of long-term performance of a waste repository requires emphasis upon valid theories to predict performance. Predicting rates that radionuclides are released from waste packages cannot rest upon empirical extrapolations of laboratory leach data. Reliable predictions can be based on simple bounding theoretical models, such as solubility-limited bulk-flow, if the assumed parameters are reliably known or defensibly conservative. Wherever possible, performance analysis should proceed beyond simple bounding calculations to obtain more realistic - and usually more favorable - estimates of expected performance. Desire for greater realism must be balanced against increasing uncertainties in prediction and loss of reliability. Theoretical predictions of release rate based on mass-transfer analysis are bounding and the theory can be verified. Postulated repository analogues to simulate laboratory leach experiments introduce arbitrary and fictitious repository parameters and are shown not to agree with well-established theory. 34 refs., 3 figs., 2 tabs
Predicting Athletes’ Pre-Exercise Fluid Intake: A Theoretical Integration Approach
Directory of Open Access Journals (Sweden)
Chunxiao Li
2018-05-01
Full Text Available Pre-exercise fluid intake is an important healthy behavior for maintaining athletes’ sports performances and health. However, athletes’ behavioral adherence to fluid intake and its underlying psychological mechanisms have not been investigated. This prospective study aimed to use a health psychology model that integrates the self-determination theory and the theory of planned behavior for understanding pre-exercise fluid intake among athletes. Participants (n = 179 were athletes from college sport teams who completed surveys at two time points. Baseline (Time 1 assessment comprised psychological variables of the integrated model (i.e., autonomous and controlled motivation, attitude, subjective norm, perceived behavioral control, and intention and fluid intake (i.e., behavior was measured prospectively at one month (Time 2. Path analysis showed that the positive association between autonomous motivation and intention was mediated by subjective norm and perceived behavioral control. Controlled motivation positively predicted the subjective norm. Intentions positively predicted pre-exercise fluid intake behavior. Overall, the pattern of results was generally consistent with the integrated model, and it was suggested that athletes’ pre-exercise fluid intake behaviors were associated with the motivational and social cognitive factors of the model. The research findings could be informative for coaches and sport scientists to promote athletes’ pre-exercise fluid intake behaviors.
Directory of Open Access Journals (Sweden)
Christine Pearson Casanave
2015-04-01
Full Text Available In this conceptual paper, we address the problem that novice scholars in social sciences sometimes have in constructing conceptual or theoretical frameworks for their dissertations and papers for publication. In the first part of the paper, we discuss why the topic is important in the high pressure environment that novice scholars face, in which finishing a doctoral degree and getting published can make a difference in career success or failure, and explain our understanding of theoretical/conceptual framing, including provisionally defining some key terms. We then elucidate ten problems that novice scholars have with theoretical/conceptual framing, using our own experiences as manuscript reviewers and writers as examples. The paper concludes with ways that novice scholars can address the task of framing their scholarly work conceptually and theoretically, on the understanding that the struggles continue over the lifetime of a scholarly career.
Performing Archives: Reflections on Ways of not Being Dead in Public
Directory of Open Access Journals (Sweden)
Óscar Cornago
2014-12-01
Full Text Available The multiplication of the archives, as cultural practices and as a theoretical framework, has grown at the same rate as the suspicion about its usefulness. This paper proposes the idea of «performing archives» as a reaction to this suspicion. Through the concept of archive in Foucault and Agamben, on the one hand, and the Affects Archive project, on the other, different ways of understanding the performative dimension of archive are discussed.
Response of stiff piles to random two-way lateral loading
DEFF Research Database (Denmark)
Bakmar, Christian LeBlanc; Byrne, B.W.; Houlsby, G. T.
2010-01-01
A model for predicting the accumulated rotation of stiff piles under random two-way loading is presented. The model is based on a strain superposition rule similar to Miner's rule and uses rainflow-counting to decompose a random time-series of varying loads into a set of simple load reversals. Th....... The method is consistent with the work of LeBlanc et al. (2010) and is supported by 1g laboratory tests. An example is given for an offshore wind turbine indicating that accumulated pile rotation during the life of the turbine is dominated by the worst expected load.......A model for predicting the accumulated rotation of stiff piles under random two-way loading is presented. The model is based on a strain superposition rule similar to Miner's rule and uses rainflow-counting to decompose a random time-series of varying loads into a set of simple load reversals...
On the way to fun an emotion-based approach to successful game design
Dillon, Roberto
2010-01-01
On the Way to Fun outlines a fine framework linking human emotions and instincts to successful game design, blending a theoretical framework with keys to analyzing game play. The framework is then applied to both successful and unsuccessful games to make for a fine survey for any who want to properly design and develop ideas to maximum benefit.-Midwest Book Review, January 2011I love the '6-11 Framework'. It's a brilliant analysis. Wish I'd thought of it. Emotion is essential to establishing a deep connection with games. So many games lack it, and this book shows the way. The analyses of retro
International Nuclear Information System (INIS)
Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf; Merklein, Marion
2005-01-01
The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress
Predictive information processing in music cognition. A critical review.
Rohrmeier, Martin A; Koelsch, Stefan
2012-02-01
Expectation and prediction constitute central mechanisms in the perception and cognition of music, which have been explored in theoretical and empirical accounts. We review the scope and limits of theoretical accounts of musical prediction with respect to feature-based and temporal prediction. While the concept of prediction is unproblematic for basic single-stream features such as melody, it is not straight-forward for polyphonic structures or higher-order features such as formal predictions. Behavioural results based on explicit and implicit (priming) paradigms provide evidence of priming in various domains that may reflect predictive behaviour. Computational learning models, including symbolic (fragment-based), probabilistic/graphical, or connectionist approaches, provide well-specified predictive models of specific features and feature combinations. While models match some experimental results, full-fledged music prediction cannot yet be modelled. Neuroscientific results regarding the early right-anterior negativity (ERAN) and mismatch negativity (MMN) reflect expectancy violations on different levels of processing complexity, and provide some neural evidence for different predictive mechanisms. At present, the combinations of neural and computational modelling methodologies are at early stages and require further research. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Karpman, M.G.; Fetisov, G.P.; Bologov, D.V.
1999-01-01
Using the Palatnik criterion a comparative analysis is performed of the theoretical and experimental data on comparative electric erosion and erosion resistance of the electrodes and parts made of different materials upon their treatment using electric pulse technique. A reasonable qualitative agreement of the theoretical and experimental data indicates the possibility of using the Palatnik criterion to predict the serviceability of different pairs of the materials in conditions of electroerosion wear [ru
A Primer on Theoretically Exploring the Field of Business Model Innovation
Gassmann, Oliver; Frankenberger, Karolin; Sauer, Roman
2017-01-01
Companies like Amazon, Uber, and Skype have become business strategy icons and the way they transformed industries can hardly be explained with classic strategy research. This article explores the topic of Business Model Innovation, which has become the cornerstone for the competitiveness of many successful firms, from a theoretical perspective. It gives an overview and introduction to the book "Exploring the Field of Business Model Innovation".
IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO
Energy Technology Data Exchange (ETDEWEB)
King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: cking@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)
2012-05-01
We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.
IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO
International Nuclear Information System (INIS)
King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.
2012-01-01
We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.
International Nuclear Information System (INIS)
Runnova, Anastasiya E.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Kurovskaya, Maria K.; Pisarchik, Alexander N.
2016-01-01
We propose a theoretical approach associated with an experimental technique to quantitatively characterize cognitive brain activity in the perception of ambiguous images. Based on the developed theoretical background and the obtained experimental data, we introduce the concept of effective noise intensity characterizing cognitive brain activity and propose the experimental technique for its measurement. The developed theory, using the methods of statistical physics, provides a solid experimentally approved basis for further understanding of brain functionality. The rather simple way to measure the proposed quantitative characteristic of the brain activity related to the interpretation of ambiguous images will hopefully become a powerful tool for physicists, physiologists and medics. Our theoretical and experimental findings are in excellent agreement with each other.
A game-theoretic formulation of the homogeneous self-reconfiguration problem
Pickem, Daniel; Egerstedt, Magnus; Shamma, Jeff S.
2015-01-01
In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.
A game-theoretic formulation of the homogeneous self-reconfiguration problem
Pickem, Daniel
2015-12-15
In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.
Wang, Zhiqiang; Ji, Mingfei; Deng, Jianming; Milne, Richard I; Ran, Jinzhi; Zhang, Qiang; Fan, Zhexuan; Zhang, Xiaowei; Li, Jiangtao; Huang, Heng; Cheng, Dongliang; Niklas, Karl J
2015-06-01
Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols for easily estimating annual TCUE remain problematic. Here, we present a theoretical framework (based on the metabolic scaling theory) to predict whole-plant annual TCUE by directly measuring instantaneous net photosynthetic and respiratory rates. This framework makes four predictions, which were evaluated empirically using seedlings of nine Picea taxa: (i) the flux rates of CO(2) and energy will scale isometrically as a function of plant size, (ii) whole-plant net and gross photosynthetic rates and the net primary productivity will scale isometrically with respect to total leaf mass, (iii) these scaling relationships will be independent of ambient temperature and humidity fluctuations (as measured within an experimental chamber) regardless of the instantaneous net photosynthetic rate or dark respiratory rate, or overall growth rate and (iv) TCUE will scale isometrically with respect to instantaneous efficiency of carbon use (i.e., the latter can be used to predict the former) across diverse species. These predictions were experimentally verified. We also found that the ranking of the nine taxa based on net photosynthetic rates differed from ranking based on either ICUE or TCUE. In addition, the absolute values of ICUE and TCUE significantly differed among the nine taxa, with both ICUE and temperature-corrected ICUE being highest for Picea abies and lowest for Picea schrenkiana. Nevertheless, the data are consistent with the predictions of our general theoretical framework, which can be used to access annual carbon-use efficiency of different species at the level of an individual plant based on simple, direct
de Jonge, J.; Dormann, C.; van den Tooren, M.; Näswall, K.; Hellgren, J.; Sverke, M.
2008-01-01
This chapter presents a recently developed theoretical model on jobrelated stress and performance, the so-called Demand-Induced Strain Compensation (DISC) model. The DISC model predicts in general that adverse health effects of high job demands can best be compensated for by matching job resources
Theoretical study of the lowest-lying electronic states of Aluminium monoiodide
International Nuclear Information System (INIS)
Taher, F.; Kabbani, A.; Ani-El Houte, W.
2004-01-01
Full text.The spectroscopic study of Aluminium monohalides, especially the Aluminium monoiodide, is important for monitoring such species in high temperature fast-flow reactors. Theoretical calculations of AlI are not available, whereas several studies have been done for the other aluminium monohalides. In this work, CAS-SCF/MRCI calculations are performed for the lowest-lying electronic states of AlI in a range of internuclear distance between 2.30 A and 2.80 A. Ab-initio calculations have been effectuated by using the computational chemistry program Molpro. The basis set used in this study for aluminium atom is that used by Langhoff for aluminium monohalides, of contractions using atomic natural orbitals and a pseudopotential is used for iode. Accurate theoretical spectroscopic constants and potential curves are obtained for the ground state X 1 Σ + and the first excited states a 3 Π and A 1 Π. The calculated values of Te, ωe, ωexe and re of these states are compatible with the experimental results. An ordering of states is represented for the lowest five predicted singlet and lowest five predicted triplet states. These results provide a big support to determine the analogy in the ordering of the electronic states in AlF, AlBr and AlI respectively at lower energies. These theoretical results identify a set of electronic singlet and triplet states unobserved experimentally
Theoretical predictions for charm and bottom production at the LHC
Cacciari, Matteo; Houdeau, Nicolas; Mangano, Michelangelo L; Nason, Paolo; Ridolfi, Giovanni
2012-01-01
We present predictions for a variety of single-inclusive observables that stem from the production of charm and bottom quark pairs at the 7 TeV LHC. They are obtained within the FONLL semi-analytical framework, and with two "Monte Carlo + NLO" approaches, MC@NLO and POWHEG. Results are given for final states and acceptance cuts that are as close as possible to those used by experimental collaborations and, where feasible, are compared to LHC data.
Theoretical predictions of diffusion from Brownian motion in superstrong polymers
International Nuclear Information System (INIS)
Dowell, F.
1991-01-01
This paper presents a summary of unique highly nonlinear static and dynamic theories for chain molecules (actually, for almost any kind of organic molecule), including the first superstrong polymers. These theories have been used to predict and explain (1) the physical self-assembly (self-ordering) of specific kinds of molecules into liquid crystalline (LC) phases (i.e., partially ordered phases) and (2) the diffusion of these molecules in various LC phases and the isotropic (I) liquid phase
Comprehensive update of the atomic mass predictions
International Nuclear Information System (INIS)
Haustein, P.E.
1987-01-01
A project has been completed recently for a comprehensive update of atomic mass predictions. This last occurred in 1976. Over the last 10 years the reliability of these earlier predictions (and others published later) has been analyzed by comparisons of the predictions with new masses from isotopes that were not in the experimental data base when the predictions were prepared. This analysis has highlighted distinct systematic features in various models which frequently result in poor predictions for nuclei that lie far from stability. An overview of the new predictions from models with different theoretical approaches will be presented
Theoretical prediction of the structural properties of uranium chalcogenides under high pressure
Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna
2018-05-01
Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.
Theoretical cytotoxicity models for combined exposure of cells to different radiations
International Nuclear Information System (INIS)
Scott, B.R.
1981-01-01
Theoretical cytotoxicity models for predicting cell survival after sequential or simultaneous exposure of cells to high and low linear energy transfer (LET) radiation are discussed. Major findings are that (1) ordering of sequential exposures can influence the level of cell killing achieved; (2) synergism is unimportant at low doses; (3) effects at very low doses should be additive; (4) use of the conventional relative biological effectiveness approach for predicting combined effects of different radiations is unnecessary at very low doses and can lead to overestimation of risk at moderate and high doses
Theoretical and experimental investigations of stochastic boundaries in tokamaks
International Nuclear Information System (INIS)
Ghendrih, Ph.; Grosman, A.; Capes, H.
1996-01-01
The physics of stochastic boundaries are reviewed. The stochastic properties of magnetic field lines are recalled and related to the spectrum of the radial magnetic perturbation. The stochastic region, referred to as the divertor volume, is shown to be bounded to the edge plasma. Theoretical predictions for the transport of energy, current and particles in the divertor volume are analysed for both the laminar and ergodic regimes. (K.A.)
Decentralization – the way of democratization and modernization of the Republic of Moldova
Directory of Open Access Journals (Sweden)
Iurie ŢAP
2017-06-01
Full Text Available Decentralization as a way of organizing a state represents the path to its democratization and effectiveness. Furthermore, territorial decentralization establishes the relations between state and local communities, and in order to be efficient some fundamental theoretic conditions should be respected, guidelines followed and two great balances achieved. Generally, an appropriate decentralization can be a catalyst for development and a remedy to overcome internal crises.
Field-theoretic approach to gravity in the flat space-time
Energy Technology Data Exchange (ETDEWEB)
Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)
1980-01-01
In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.
Silicene: a review of recent experimental and theoretical investigations
International Nuclear Information System (INIS)
Houssa, M; Dimoulas, A; Molle, A
2015-01-01
Silicene is the silicon counterpart of graphene, i.e. it consists in a single layer of Si atoms with a hexagonal arrangement. We present a review of recent theoretical and experimental works on this novel two dimensional material. We discuss first the structural, electronic and vibrational properties of free-standing silicene, as predicted from first-principles calculations. We next review theoretical studies on the interaction of silicene with different substrates. The growth and experimental characterization of silicene on Ag(1 1 1) is next discussed, providing insights into the different phases or atomic arrangements of silicene observed on this metallic surface, as well as on its electronic structure. Recent experimental findings about the likely formation of hexagonal Si nanosheets on MoS2 are also highlighted. (topical review)
Theoretical and experimental study of collectrons for epithermal neutron flux in reactors
International Nuclear Information System (INIS)
Agu, M.N.
1986-01-01
A theoretical study of nuclear reactions and electric charge displacements arising in sensitivity to thermal and epithermal neutrons in collectrons allowed a computer code conception. Collectrons in Rhodium, Silver, Cobalt, Hafnium, Erbium, Gadolinium and Holmium have been tested in different radiation fields given by neutron or gamma filters irradiated in different places of Melusine and Siloe reactors. Some emitters were covered with different steel, nickel or zircaloy thicknesses. Theoretical and experimental results are consistent; that validate the computer code and show possibilities and necessity of covering collectron emitters to reduce or cancel the gamma sensitivity and to improve response instantaneity. A selective measurement of epithermal neutron flux can by this way, made by associating two types of collectrons [fr
Kivisto, Jussi
2005-01-01
This article introduces the agency theory to the field of higher education research. By applying agency theory to the inter-organisational relationship between government and higher education institutions, it is possible to illustrate general problems facing control and governance in a more theoretical and analytical way. The conceptual arsenal…
Theoretical Investigation of CO{sub 2} Adsorption on Graphene
Energy Technology Data Exchange (ETDEWEB)
Lee, Kunjoon; Kim, Seungjoon [Hannam Univ., Daejeon (Korea, Republic of)
2013-10-15
The adsorption of carbon dioxide on graphene sheets was theoretically investigated using density functional theory (DFT) and MP{sub 2} calculations. Geometric parameters and adsorption energies were computed at various levels of theory. The CO{sub 2} chemisorption energies on graphene-C{sub 40} assuming high pressure are predicted to be 71.2-72.1 kcal/mol for the lactone systems depending on various C-O orientations at the UCAM-B3LYP level of theory. Physisorption energies of CO{sub 2} on graphene were predicted to be 2.1 and 3.3 kcal/mol, respectively, at the single-point UMP2/6-31G{sup **} level of theory for perpendicular and parallel orientations.
Adding Theoretical Grounding to Grounded Theory: Toward Multi-Grounded Theory
Göran Goldkuhl; Stefan Cronholm
2010-01-01
The purpose of this paper is to challenge some of the cornerstones of the grounded theory approach and propose an extended and alternative approach for data analysis and theory development, which the authors call multi-grounded theory (MGT). A multi-grounded theory is not only empirically grounded; it is also grounded in other ways. Three different grounding processes are acknowledged: theoretical, empirical, and internal grounding. The authors go beyond the pure inductivist approach in GT an...
A Systems-Theoretical Generalization of Non-Local Correlations
von Stillfried, Nikolaus
Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.
Directory of Open Access Journals (Sweden)
Nataša Šarlija
2017-01-01
Full Text Available This study sheds light on the most common issues related to applying logistic regression in prediction models for company growth. The purpose of the paper is 1 to provide a detailed demonstration of the steps in developing a growth prediction model based on logistic regression analysis, 2 to discuss common pitfalls and methodological errors in developing a model, and 3 to provide solutions and possible ways of overcoming these issues. Special attention is devoted to the question of satisfying logistic regression assumptions, selecting and defining dependent and independent variables, using classification tables and ROC curves, for reporting model strength, interpreting odds ratios as effect measures and evaluating performance of the prediction model. Development of a logistic regression model in this paper focuses on a prediction model of company growth. The analysis is based on predominantly financial data from a sample of 1471 small and medium-sized Croatian companies active between 2009 and 2014. The financial data is presented in the form of financial ratios divided into nine main groups depicting following areas of business: liquidity, leverage, activity, profitability, research and development, investing and export. The growth prediction model indicates aspects of a business critical for achieving high growth. In that respect, the contribution of this paper is twofold. First, methodological, in terms of pointing out pitfalls and potential solutions in logistic regression modelling, and secondly, theoretical, in terms of identifying factors responsible for high growth of small and medium-sized companies.
Topological charge on the lattice: a field theoretical view of the geometrical approach
International Nuclear Information System (INIS)
Rastelli, L.; Rossi, P.; Vicari, E.
1997-01-01
We construct sequences of ''field theoretical'' lattice topological charge density operators which formally approach geometrical definitions in 2D CP N-1 models and 4D SU(N) Yang-Mills theories. The analysis of these sequences of operators suggests a new way of looking at the geometrical method, showing that geometrical charges can be interpreted as limits of sequences of field theoretical (analytical) operators. In perturbation theory, renormalization effects formally tend to vanish along such sequences. But, since the perturbative expansion is asymptotic, this does not necessarily lead to well-behaved geometrical limits. It indeed leaves open the possibility that non-perturbative renormalizations survive. (orig.)
International Nuclear Information System (INIS)
Holley, W.R.; Chatterjee, A.
1996-01-01
We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber composed of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and δ rays due to knock-on collisions involving energy transfers > 100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of circ OH, circ H, e aq , etc.; circ OH attack on sugar molecules leading to strand breaks; circ OH attack on bases; direct ionization of the sugar molecules leading to strand breaks; direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 hp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA. 27 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Honda, H; Wang, H [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study; Nozu, S [Okamaya Prefectural University, Okayama (Japan). Faculty of Computer Science and System Engineering
2000-10-25
A theoretical study has been made of film condensation in helically-grooved, horizontal microfin tubes. The annular flow regime and the stratified flow regime were considered. For the annular flow regime, a previously developed theoretical model was applied. For the stratified flow regime, the height of stratified condensate was estimated by a modified Taitel and Dukler model. For the upper part of the tube exposed to the vapor flow, numerical calculation of Laminar film condensation considering the combined effects of gravity and surface tension forces was conducted. The heat transfer coefficient at the lower part of the tube was estimated by an empirical equation for the internally finned tubes developed by Carnavos. The theoretical predictions of the circumferential average heat transfer coefficient by the two theoretical models were compared with available experimental data for four refrigerants and four tubes. Generally, the annular flow model gave a higher heat transfer coefficient than the stratified flow model in the high quality region, whereas the stratified flow model gave a higher heat transfer coefficient in the low quality region. For tubes with fin heights of 0.16 {approx} 0.24 mm, most of the experimental data agreed within {+-} 20% with the higher of the two theoretical predictions. (author)
Statistical models for expert judgement and wear prediction
International Nuclear Information System (INIS)
Pulkkinen, U.
1994-01-01
This thesis studies the statistical analysis of expert judgements and prediction of wear. The point of view adopted is the one of information theory and Bayesian statistics. A general Bayesian framework for analyzing both the expert judgements and wear prediction is presented. Information theoretic interpretations are given for some averaging techniques used in the determination of consensus distributions. Further, information theoretic models are compared with a Bayesian model. The general Bayesian framework is then applied in analyzing expert judgements based on ordinal comparisons. In this context, the value of information lost in the ordinal comparison process is analyzed by applying decision theoretic concepts. As a generalization of the Bayesian framework, stochastic filtering models for wear prediction are formulated. These models utilize the information from condition monitoring measurements in updating the residual life distribution of mechanical components. Finally, the application of stochastic control models in optimizing operational strategies for inspected components are studied. Monte-Carlo simulation methods, such as the Gibbs sampler and the stochastic quasi-gradient method, are applied in the determination of posterior distributions and in the solution of stochastic optimization problems. (orig.) (57 refs., 7 figs., 1 tab.)
Theoretical computer science and the natural sciences
Marchal, Bruno
2005-12-01
I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the
International Nuclear Information System (INIS)
Douglas-Hamilton, D.H.; Feinberg, R.M.; Lowder, R.S.
1975-01-01
A six-temperature kinetic model of the He : He 2 Co 2 : N 2 : CO laser system is developed, in which five temperatures describe the vibrational excitation of the three CO 2 modes, N 2 , and CO, while the sixth refers to the kinetic temperature. Theoretical predictions of gain and laser output are compared with experiments performed on an electron-beam sustained laser used at atmospheric pressure. Gain and laser measurements have been made with initial gas temperature near 200 and 300 degreeK. A stable discharge can be produced in this type of laser in gas mixtures containing no He, and successful electric laser operation has been demonstrated using H 2 as CO 2 ν 2 deactivant. Various gas mixtures have been investigated experimentally and theoretically; specific output J>100 J/liter atm was obtained both in He : N 2 : CO 2 : H 2 3 : 2 : 1 : 0 and 0 : 3 : 1 : 0.08, with efficiencies near 30%. While the gain measured appears to peak later and decay later than predicted, in all laser output measurements there is good agreement between theoretical prediction and experiment
Tokumitsu, S.; Hasegawa, M.
2018-05-01
The coloring phenomena caused by optical rotation of polarized light beams in sugared water can be an appropriate subject for use as an educational tool. In this paper, such coloring phenomena are studied in terms of theory, and the results are compared with experimental results. First, polarized laser beams in red, blue, or green were allowed to travel in sugared water of certain concentrations, and changes in the irradiance of the beams were measured while changing the distance between a pair of polarizing plates arranged in the sugared water. The angle of rotation was then determined for each color. An equation was established for predicting a theoretical value of the angle of rotation for laser beams of specific colors (wavelengths) traveling in sugared water of specific concentrations. The predicted results from the equation exhibited satisfactory agreement with the experimental values obtained from the measurements. In addition, changes in the irradiance of traveling laser beams, as well as the changes in colors observable for white light beams, were also predicted, resulting in good agreement with the observed results.
Theoretical Coalescence: A Method to Develop Qualitative Theory: The Example of Enduring.
Morse, Janice M
Qualitative research is frequently context bound, lacks generalizability, and is limited in scope. The purpose of this article was to describe a method, theoretical coalescence, that provides a strategy for analyzing complex, high-level concepts and for developing generalizable theory. Theoretical coalescence is a method of theoretical expansion, inductive inquiry, of theory development, that uses data (rather than themes, categories, and published extracts of data) as the primary source for analysis. Here, using the development of the lay concept of enduring as an example, I explore the scientific development of the concept in multiple settings over many projects and link it within the Praxis Theory of Suffering. As comprehension emerges when conducting theoretical coalescence, it is essential that raw data from various different situations be available for reinterpretation/reanalysis and comparison to identify the essential features of the concept. The concept is then reconstructed, with additional inquiry that builds description, and evidence is conducted and conceptualized to create a more expansive concept and theory. By utilizing apparently diverse data sets from different contexts that are linked by certain characteristics, the essential features of the concept emerge. Such inquiry is divergent and less bound by context yet purposeful, logical, and with significant pragmatic implications for practice in nursing and beyond our discipline. Theoretical coalescence is a means by which qualitative inquiry is broadened to make an impact, to accommodate new theoretical shifts and concepts, and to make qualitative research applied and accessible in new ways.
DEFF Research Database (Denmark)
Hallin, Carina Antonia; Andersen, Torben Juul; Tveterås, Sigbjørn
-generation prediction markets and outline its unique features as a third-generation prediction market. It is argued that frontline employees gain deep insights when they execute operational activities on an ongoing basis in the organization. The experiential learning from close interaction with internal and external......This conceptual article introduces a new way to predict firm performance based on aggregation of sensing among frontline employees about changes in operational capabilities to update strategic action plans and generate innovations. We frame the approach in the context of first- and second...
Predictive Analytics in Information Systems Research
Shmueli, Galit; Koppius, Otto
2011-01-01
textabstractThis research essay highlights the need to integrate predictive analytics into information systems research and shows several concrete ways in which this goal can be accomplished. Predictive analytics include empirical methods (statistical and other) that generate data predictions as well as methods for assessing predictive power. Predictive analytics not only assist in creating practically useful models, they also play an important role alongside explanatory modeling in theory bu...
Is There a Disk of Satellites around the Milky Way?
Energy Technology Data Exchange (ETDEWEB)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Marinacci, Federico, E-mail: moupiya@psu.edu [Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2017-07-01
The “disk of satellites” (DoS) around the Milky Way is a highly debated topic with conflicting interpretations of observations and their theoretical models. We perform a comprehensive analysis of all of the dwarfs detected in the Milky Way and find that the DoS structure depends strongly on the plane identification method and the sample size. In particular, we demonstrate that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of the angular momentum of the satellites. Moreover, we calculate the evolution of the 11 classical satellites with proper motion measurements and find that the thin DoS in which they currently reside is transient. Furthermore, we analyze two cosmological simulations using the same initial conditions of a Milky-Way-sized galaxy, an N -body run with dark matter only, and a hydrodynamic one with both baryonic and dark matter, and find that the hydrodynamic simulation produces a more anisotropic distribution of satellites than the N -body one. Our results suggest that an anisotropic distribution of satellites in galaxies can originate from baryonic processes in the hierarchical structure formation model, but the claimed highly flattened, coherently rotating DoS of the Milky Way may be biased by the small-number selection effect. These findings may help resolve the contradictory claims of DoS in galaxies and the discrepancy among numerical simulations.
Is There a Disk of Satellites around the Milky Way?
International Nuclear Information System (INIS)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico
2017-01-01
The “disk of satellites” (DoS) around the Milky Way is a highly debated topic with conflicting interpretations of observations and their theoretical models. We perform a comprehensive analysis of all of the dwarfs detected in the Milky Way and find that the DoS structure depends strongly on the plane identification method and the sample size. In particular, we demonstrate that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of the angular momentum of the satellites. Moreover, we calculate the evolution of the 11 classical satellites with proper motion measurements and find that the thin DoS in which they currently reside is transient. Furthermore, we analyze two cosmological simulations using the same initial conditions of a Milky-Way-sized galaxy, an N -body run with dark matter only, and a hydrodynamic one with both baryonic and dark matter, and find that the hydrodynamic simulation produces a more anisotropic distribution of satellites than the N -body one. Our results suggest that an anisotropic distribution of satellites in galaxies can originate from baryonic processes in the hierarchical structure formation model, but the claimed highly flattened, coherently rotating DoS of the Milky Way may be biased by the small-number selection effect. These findings may help resolve the contradictory claims of DoS in galaxies and the discrepancy among numerical simulations.
By-product mutualism and the ambiguous effects of harsher environments - A game-theoretic model
De Jaegher, Kris; Hoyer, Britta
2016-01-01
We construct two-player two-strategy game-theoretic models of by-product mutualism, where our focus lies on the way in which the probability of cooperation among players is affected by the degree of adversity facing the players. In our first model, cooperation consists of the production of a public
Directory of Open Access Journals (Sweden)
Gheorghe ZAMAN
2011-12-01
This paper herein will analyze, in short, a few of the theoretical, methodological, practical and implementation challenges brought about by the crisis in Romania, as well as the likely ways to prevent, mitigate impacts and resist to its shocks or to go back to the path of a sustainable economic growth.
Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
Towards a theoretical framework for analyzing complex linguistic networks
Lücking, Andy; Banisch, Sven; Blanchard, Philippe; Job, Barbara
2016-01-01
The aim of this book is to advocate and promote network models of linguistic systems that are both based on thorough mathematical models and substantiated in terms of linguistics. In this way, the book contributes first steps towards establishing a statistical network theory as a theoretical basis of linguistic network analysis the boarder of the natural sciences and the humanities.This book addresses researchers who want to get familiar with theoretical developments, computational models and their empirical evaluation in the field of complex linguistic networks. It is intended to all those who are interested in statisticalmodels of linguistic systems from the point of view of network research. This includes all relevant areas of linguistics ranging from phonological, morphological and lexical networks on the one hand and syntactic, semantic and pragmatic networks on the other. In this sense, the volume concerns readers from many disciplines such as physics, linguistics, computer science and information scien...
Desublimation process: verification and applications of a theoretical model
International Nuclear Information System (INIS)
Eby, R.S.
1979-01-01
A theoretical model simulating the simultaneous heat and mass transfer which takes place during the desublimation of a gas to a solid is presented. Desublimer column loading profiles to experimentally verify the model were obtained using a gamma scintillation technique. The data indicate that, if the physical parameters of the desublimed frost material are known, the model can accurately predict the desublimation phenomenon. The usefulness of the model in different engineering applications is also addressed
Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model
Energy Technology Data Exchange (ETDEWEB)
Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)
2004-08-01
The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)
A Review of Darcy's Law: Limitations and Alternatives for Predicting Solute Transport
Steenhuis, Tammo; Kung, K.-J. Sam; Jaynes, Dan; Helling, Charles S.; Gish, Tim; Kladivko, Eileen
2016-04-01
Darcy's Law that was derived originally empirically 160 years ago, has been used successfully in calculating the (Darcy) flux in porous media throughout the world. However, field and laboratory experiments have demonstrated that the Darcy flux employed in the convective disperse equation could only successfully predict solute transport under two conditions: (1) uniformly or densely packed porous media; and (2) field soils under relatively dry condition. Employing the Darcy flux for solute transport in porous media with preferential flow pathways was problematic. In this paper we examine the theoretical background behind these field and laboratory observations and then provide an alternative to predict solute movement. By examining the characteristics of the momentum conservation principles on which Darcy's law is based, we show under what conditions Darcy flux can predict solute transport in porous media of various complexity. We find that, based on several case studies with capillary pores, Darcy's Law inherently merges momentum and in that way erases information on pore-scale velocities. For that reason the Darcy flux cannot predict flow in media with preferential flow conduits where individual pore velocities are essential in predicting the shape of the breakthrough curve and especially "the early arrival" of solutes. To overcome the limitations of the assumption in Darcy's law, we use Jury's conceptualization and employ the measured chemical breakthrough curve as input to characterize the impact of individual preferential flow pathways on chemical transport. Specifically, we discuss how best to take advantage of Jury's conceptualization to extract the pore-scale flow velocity to accurately predict chemical transport through soils with preferential flow pathways.
Theoretical Work for the Fast Zero-Power Reactor FR-0
Energy Technology Data Exchange (ETDEWEB)
Haeggblom, H
1965-08-15
The theoretical part of the fast reactor physics work in Sweden, has mainly been connected with the FR-0 reactor. The report describes the principal features of this reactor, evaluation of cross sections, calculations of critical masses, reactivity of the air gap and of control rods and calculations of neutron generation time and effective beta values. Carlson codes in spherical and in cylindrical geometry are used to evaluate critical masses and fluxes. In cases when reactivity changes are calculated, complementary methods are perturbation theory and variational calculus. The agreement with experiments is in some cases good, especially the determination of critical mass, but in other cases discrepancies are observed, e.g. the activation of U-238 in the reflector is much larger than the theoretical spectrum predicts.
Theoretical Adiabatic Temperature and Chemical Composition of Sodium Combustion Flame
International Nuclear Information System (INIS)
Okano, Yasushi; Yamaguchi, Akira
2003-01-01
Sodium fire safety analysis requires fundamental combustion properties, e.g., heat of combustion, flame temperature, and composition. We developed the GENESYS code for a theoretical investigation of sodium combustion flame.Our principle conclusions on sodium combustion under atmospheric air conditions are (a) the maximum theoretical flame temperature is 1950 K, and it is not affected by the presence of moisture; the uppermost limiting factor is the chemical instability of the condensed sodium-oxide products under high temperature; (b) the main combustion product is liquid Na 2 O in dry air condition and liquid Na 2 O with gaseous NaOH in moist air; and (c) the chemical equilibrium prediction of the residual gaseous reactants in the flame is indispensable for sodium combustion modeling
Theoretical XANES Study of the Activated Nickel (t-Amylisocyanide) Molecule
International Nuclear Information System (INIS)
Glover, J. L.; Chantler, C. T.; Soldatov, A. V.; Smolentsev, G.; Feiters, M. C.
2007-01-01
XANES is one of the most powerful techniques for investigating the active centres of non-crystalline systems such as synthetic catalysts and enzymes. We have investigated XANES for an active species in the Ni-catalyzed polymerization of isocyanides, the activated Ni (t-amylisocyanide) complex, using two of the most popular theoretical approaches. This is a very large cluster for which it is extremely difficult to derive a converged solution using the Finite Difference Method. The cluster has been linked to important chemical developments for catalysts for isocyanide polymerization. Predicted XANES for the nano-cluster are compared with experimental data, providing an important test for different theoretical approaches. Developments of a finite element method gave excellent agreement with the experimental data, while simpler models were relatively unsuccessful
International Nuclear Information System (INIS)
Guichard, R.
2007-12-01
We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > I p : it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p : new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)
INTERDISCIPLINARITY WITHIN THE ARTS. ARE DISCIPLINES THE DIFFERENT WAYS OF MAKING?
Directory of Open Access Journals (Sweden)
Jorge Dalmau
2013-10-01
Full Text Available The disciplinary and interdisciplinary issues in the arts and their transitions into new denominations or ways of operating, leads to rework a space for reflection and general fragmentary approximations, around some concepts that affect procedural displacement of the artistic practices of the last decades. Understanding the countless heterogeneous joints that are generated from multiple perspectives (artistic, social, cultural exchanges and transversalities that complement, supplant and / or lead to other practices, may allow greater integration of open theoretical and practical knowledge from the complexity
Theoretical and computational analyses of LNG evaporator
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Predictions of dental pain: the fear of any expected evil, is worse than the evil itself.
Arntz, A; van Eck, M; Heijmans, M
1990-01-01
In a study of 40 subjects, who twice underwent extensive dental treatment, the relationships between expectations and experiences of pain and of anxiety were investigated. Inaccurate expectations were adjusted in the same way as observed in the laboratory. Especially anxious subjects expected more pain and anxiety than they experienced, and they appeared to need more experiences before their predictions became accurate. In the course of time, the expectations (and memories) of anxious subjects returned to their original more inaccurate level of prediction. The results suggest that the old schema is ultimately reinstated if disconfirmations are few and far between. Anxious subjects did not experience more pain, but they did experience more anxiety than fearless subjects. Detailed investigation of processes of change after disconfirmation showed that anxiety experienced during treatment is a factor that plays a part in maintaining the problem of inaccurate expectations and fear of treatment. Theoretical and clinical implications of these findings are discussed.
The z~4 Lyman Break Galaxies: Colors and Theoretical Predictions
Idzi, Rafal; Somerville, Rachel; Papovich, Casey; Ferguson, Henry C.; Giavalisco, Mauro; Kretchmer, Claudia; Lotz, Jennifer
2004-01-01
We investigate several fundamental properties of z~4 Lyman break galaxies by comparing observations with the predictions of a semianalytic model based on the cold dark matter theory of hierarchical structure formation. We use a sample of B435-dropouts from the Great Observatories Origins Deep Survey and complement the Advanced Camera for Surveys optical B435, V606, i775, and z850 data with the Very Large Telescope Infrared Spectrometer and Array Camera J, H, and Ks observations. We extract B435-dropouts from our semianalytic mock catalog using the same color criteria and magnitude limits that were applied to the observed sample. We find that the i775-Ks colors of the model-derived and observed B435-dropouts are in good agreement. However, we find that the i775-z850 colors differ significantly, indicating perhaps that either too little dust or an incorrect extinction curve has been used. Motivated by the reasonably good agreement between the model and observed data, we present predictions for the stellar masses, star formation rates, and ages for the z~4 Lyman break sample. We find that according to our model, the color selection criteria used to select our z~4 sample surveys 67% of all galaxies at this epoch down to z850Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. Based on observations collected at the European Southern Observatory, Chile (ESO programmes 168.A-0485, 64.0-0643, 66.A-0572, and 68.A-0544).
Theoretical aspects of the nucleon-nucleon workshop
International Nuclear Information System (INIS)
Silbar, R.R.
1984-01-01
This report concentrates on the inelastic NN system from 300 to 1500 MeV. Topics covered include the visibility of quark signals, dibaryons, the model dependence of predicted NN inelasticities, and a review of how well present conventional models compare with a rapidly expanding database. The general conclusion is that there is so far no clear evidence in the NN system at intermediate energies for unconventional dibaryon resonances. Short remarks are also made concerning one theoretical contribution on elastic scattering and on new experimental results for deuteron photo-disintegration and pion-nucleon charge exchange. 11 references
Marañón and historical social psychology: some theoretical questions.
Directory of Open Access Journals (Sweden)
Almagro González, Andrés
2008-11-01
Full Text Available If one takes a multidisciplinary, integrative perspective on historical social psychology, one sees that it is a vital thread not only in the theoretical weave of social psychology as such, but in any social science which studies the social being. The multidisciplinary character of historical social psychology is friendly to authors and ideas from other domains of knowledge. Marañón's insights suggest interesting ways of answering the main questions that arise in historical social psychology. The application of his method, as I shall try to show, can orient to us towards a social psychology concerned not only with the here and now of its object of study, but also with the way in which it has evolved through history.
International Nuclear Information System (INIS)
Satish Kumar, N.V.; Nayak, A.K.; Vijayan, P.K.; Pal, A.K.; Saha, D.; Sinha, R.K.
2004-01-01
A theoretical and experimental investigation has been carried out to study natural circulation characteristics of an Indian PHWR under reduced inventory conditions. The theoretical model incorporates a quasi-steady state analysis of natural circulation at different system inventories. It predicts the system flow rate under single-phase and two-phase conditions and the inventory at which reflux condensation occurs. The model predictions were compared with test data obtained from FISBE (facility for integral system behaviour experiments), which simulates the thermal hydraulic behaviour of the Indian 220 MWe PHWR. The experimental results were found to be in close agreement with the predictions. It was also found that the natural circulation could be oscillatory under reduced inventory conditions. (orig.)
Holley, W. R.; Chatterjee, A.
1996-01-01
We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the
Experimental and Theoretical Progress on the GEM Theory
Brandenburg, J. E.
This paper reports experimental and theoretical progress on the GEM unification theory. In theoretical progress, the derivation of the GEM theory using it in a fully covariant form is achieved based on the principle of self-cancellation of the ZPF EM stress-momentum tensor. This derivation reveals that the final Gravity-EM system obeys a Helmholtz-like equation resembling that governing sound propagation. Finally an improved derivation of the formula for the Newton Gravitation constant is shown, qresulting in the formula G = e2/(4πɛ0 me mp) α exp (-2 (α-.86/σ2…) = 6.673443 x10-11 N-m2 kg-2 that agrees with experimental values to 3 parts per 100,000. Experiments have found parity violating weight reductions in gyroscopes driven by rotating EM fields. These experiments appear to confirm gravity modification using electromagnetism predicted by the GEM theory through the Vacuum Bernoulli Equation.
50 years of brown dwarfs from prediction to discovery to forefront of research
2014-01-01
The years 2012/2013 mark the 50th anniversary of the theoretical prediction that Brown Dwarfs, i.e. degenerate objects which are just not massive enough to sustain stable hydrogen fusion, exist. Some 20 years after their discovery, how Brown Dwarfs form is still one of the main open questions in the theory of star formation. In this volume, the pioneers of Brown Dwarf research review the history of the theoretical prediction and the subsequent discovery of Brown Dwarfs. After an introduction, written by Viki Joergens, reviewing Shiv Kumar's theoretical prediction of the existence of brown dwarfs, Takenori Nakano reviews his and Hayashi's calculation of the Hydrogen Burning Minimum Mass. Both predictions happened in the early 1960s. Jill Tarter then writes on the introduction of the term 'Brown Dwarf', before Ben Oppenheimer, Rafael Rebolo and Gibor Basri describe their first discovery of Brown Dwarfs in the 1990s. Lastly, Michael Cushing and Isabelle Baraffe describe the development of the field to the curren...
Directory of Open Access Journals (Sweden)
Hideyuki Usa
2017-01-01
Full Text Available This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm was calculated. Body weight and limb segment length (thigh and lower leg length were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Impulsivity facets’ predictive relations with DSM-5 PTSD symptom clusters
Roley, Michelle E.; Contractor, Ateka A.; Weiss, Nicole H.; Armour, Cherie; Elhai, Jon D.
2017-01-01
Objective Posttraumatic Stress Disorder (PTSD) has a well-established theoretical and empirical relation with impulsivity. Prior research has not used a multidimensional approach for measuring both PTSD and impulsivity constructs when assessing their relationship. Method The current study assessed the unique relationship of impulsivity facets on PTSD symptom clusters among a non-clinical sample of 412 trauma-exposed adults. Results Linear regression analyses revealed that impulsivity facets best accounted for PTSD’s arousal symptoms. The negative urgency facet of impulsivity was most predictive, as it was associated with all of PTSD’s symptom clusters. Sensation seeking did not predict PTSD’s intrusion symptoms, but did predict the other symptom clusters of PTSD. Lack of perseverance only predicted intrusion symptoms, while lack of premeditation only predicted PTSD’s mood/cognition symptoms. Conclusions Results extend theoretical and empirical research on the impulsivity-PTSD relationship, suggesting that impulsivity facets may serve as both risk and protective factors for PTSD symptoms. PMID:27243571
Predicting heavy episodic drinking using an extended temporal self-regulation theory.
Black, Nicola; Mullan, Barbara; Sharpe, Louise
2017-10-01
Alcohol consumption contributes significantly to the global burden from disease and injury, and specific patterns of heavy episodic drinking contribute uniquely to this burden. Temporal self-regulation theory and the dual-process model describe similar theoretical constructs that might predict heavy episodic drinking. The aims of this study were to test the utility of temporal self-regulation theory in predicting heavy episodic drinking, and examine whether the theoretical relationships suggested by the dual-process model significantly extend temporal self-regulation theory. This was a predictive study with 149 Australian adults. Measures were questionnaires (self-report habit index, cues to action scale, purpose-made intention questionnaire, timeline follow-back questionnaire) and executive function tasks (Stroop, Tower of London, operation span). Participants completed measures of theoretical constructs at baseline and reported their alcohol consumption two weeks later. Data were analysed using hierarchical multiple linear regression. Temporal self-regulation theory significantly predicted heavy episodic drinking (R 2 =48.0-54.8%, ptheory and the extended temporal self-regulation theory provide good prediction of heavy episodic drinking. Intention, behavioural prepotency, planning ability and inhibitory control may be good targets for interventions designed to decrease heavy episodic drinking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Theoretical information reuse and integration
Rubin, Stuart
2016-01-01
Information Reuse and Integration addresses the efficient extension and creation of knowledge through the exploitation of Kolmogorov complexity in the extraction and application of domain symmetry. Knowledge, which seems to be novel, can more often than not be recast as the image of a sequence of transformations, which yield symmetric knowledge. When the size of those transformations and/or the length of that sequence of transforms exceeds the size of the image, then that image is said to be novel or random. It may also be that the new knowledge is random in that no such sequence of transforms, which produces it exists, or is at least known. The nine chapters comprising this volume incorporate symmetry, reuse, and integration as overt operational procedures or as operations built into the formal representations of data and operators employed. Either way, the aforementioned theoretical underpinnings of information reuse and integration are supported.
Transionospheric propagation predictions
Klobucher, J. A.; Basu, S.; Basu, S.; Bernhardt, P. A.; Davies, K.; Donatelli, D. E.; Fremouw, E. J.; Goodman, J. M.; Hartmann, G. K.; Leitinger, R.
1979-01-01
The current status and future prospects of the capability to make transionospheric propagation predictions are addressed, highlighting the effects of the ionized media, which dominate for frequencies below 1 to 3 GHz, depending upon the state of the ionosphere and the elevation angle through the Earth-space path. The primary concerns are the predictions of time delay of signal modulation (group path delay) and of radio wave scintillation. Progress in these areas is strongly tied to knowledge of variable structures in the ionosphere ranging from the large scale (thousands of kilometers in horizontal extent) to the fine scale (kilometer size). Ionospheric variability and the relative importance of various mechanisms responsible for the time histories observed in total electron content (TEC), proportional to signal group delay, and in irregularity formation are discussed in terms of capability to make both short and long term predictions. The data base upon which predictions are made is examined for its adequacy, and the prospects for prediction improvements by more theoretical studies as well as by increasing the available statistical data base are examined.
International Nuclear Information System (INIS)
Kokoouline, V.; Richardson, W.
2014-01-01
Uncertainties in theoretical calculations may include: • Systematic uncertainty: Due to applicability limits of the chosen model. • Random: Within a model, uncertainties of model parameters result in uncertainties of final results (such as cross sections). • If uncertainties of experimental and theoretical data are known, for the purpose of data evaluation (to produce recommended data), one should combine two data sets to produce the best guess data with the smallest possible uncertainty. In many situations, it is possible to assess the accuracy of theoretical calculations because theoretical models usually rely on parameters that are uncertain, but not completely random, i.e. the uncertainties of the parameters of the models are approximately known. If there are one or several such parameters with corresponding uncertainties, even if some or all parameters are correlated, the above approach gives a conceptually simple way to calculate uncertainties of final cross sections (uncertainty propagation). Numerically, the statistical approach to the uncertainty propagation could be computationally expensive. However, in situations, where uncertainties are considered to be as important as the actual cross sections (for data validation or benchmark calculations, for example), such a numerical effort is justified. Having data from different sources (say, from theory and experiment), a systematic statistical approach allows one to compare the data and produce “unbiased” evaluated data with improved uncertainties, if uncertainties of initial data from different sources are available. Without uncertainties, the data evaluation/validation becomes impossible. This is the reason why theoreticians should assess the accuracy of their calculations in one way or another. A statistical and systematic approach, similar to the described above, is preferable.
Theoretical aspects of stress corrosion cracking of Alloy 22
Lee, Sang-Kwon; Macdonald, Digby D.
2018-05-01
Theoretical aspects of the stress corrosion cracking of Alloy 22 in contact with saturated NaCl solution are explored in terms of the Coupled Environment Fracture Model (CEFM), which was calibrated upon available experimental crack growth rate data. Crack growth rate (CGR) was then predicted as a function of stress intensity, electrochemical potential, solution conductivity, temperature, and electrochemical crack length (ECL). From the dependence of the CGR on the ECL and the evolution of a semi-elliptical surface crack in a planar surface under constant loading conditions it is predicted that penetration through the 2.5-cm thick Alloy 22 corrosion resistant layer of the waste package (WP) could occur 32,000 years after nucleation. Accordingly, the crack must nucleate within the first 968,000 years of storage. However, we predict that the Alloy 22 corrosion resistant layer will not be penetrated by SCC within the 10,000-year Intermediate Performance Period, even if a crack nucleates immediately upon placement of the WP in the repository.
The ways of police cadets’ social competence evaluation
Directory of Open Access Journals (Sweden)
V. M. Kiikov
2016-10-01
Full Text Available In the article analysis of general theoretic approaches towards competent and motivated behavior definitions, the model of police officer social competence was proposed along with the ways of its study. Based on development theory conception the initial validation of social competence logical system as a mean of cadets’ social competence evaluation was considered in the article. Additionally, the determination of personality development level as possibility for definition and evaluation of cadets’ social competence based on social behavior theory perspectives was considered. As well the social features of social competence of lawenforcement officers were discussed and the theoretical construction for schematized representation of police cadets’ social competence structure is presented. The model includes: social norms related to police activity; motivation to sociallyoriented activity; social intelligence, as integrative characteristic of cognitive and operational processes; emotional steadiness and communication skills. It was stated that the main characteristic of police cadets’ social competence is efficiency of interaction between police and community. The other important factor influencing social competence is professional activity and in our case it is lawenforcement. The social environment of departmental educational institution was explored as a main factor contributing to development of police cadets’ social competence components.
Predictability of Stock Returns
Directory of Open Access Journals (Sweden)
Ahmet Sekreter
2017-06-01
Full Text Available Predictability of stock returns has been shown by empirical studies over time. This article collects the most important theories on forecasting stock returns and investigates the factors that affecting behavior of the stocks’ prices and the market as a whole. Estimation of the factors and the way of estimation are the key issues of predictability of stock returns.
DEFF Research Database (Denmark)
Nie, Jinzhe; Fang, Lei; Zhang, Ge
2015-01-01
for cooling, dehumidification and indoor air cleaning in normal office, commercial or residential buildings. The desiccant rotor was used for dehumidification and indoor air cleaning; the heat pump provided sensible cooling and regeneration heat for the desiccant rotor. The theoretical model consisted of two...... and predicted. The theoretical model was validated by experimental data. Validating results showed that the model could be used to predict the performance of HP-SDC. The results also showed that the HP-SDC could clean air borne contaminants effectively and could provide an energy efficient choice...
A THEORETICAL MODEL OF SUPPORTING OPEN SOURCE FRONT END INNOVATION THROUGH IDEA MANAGEMENT
DEFF Research Database (Denmark)
Aagaard, Annabeth
2013-01-01
to overcome these various challenges companies are looking for new models to support FEI. This theoretical paper explores in what way idea management may be applied as a tool in facilitation of front end innovation and how this facilitation may be captured in a conceptual model. First, I show through...... a literature study, how idea management and front end innovation are related and how they may support each other. Secondly, I present a theoretical model of how idea management may be applied in support of the open source front end of new product innovations. Thirdly, I present different venues of further...... exploration of active facilitation of open source front end innovation through idea management....
Theoretical Characterizaiton of Visual Signatures (Muzzle Flash)
Kashinski, D. O.; Scales, A. N.; Vanderley, D. L.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.
2014-05-01
We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet and infrared spectra of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. We are currently employing quantum chemistry methods at various levels of sophistication to optimize molecular geometries, compute vibrational frequencies, and determine the optical spectra of specific gas-phase molecules and radicals of interest. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A comparison of computational results to experimental values found in the literature is used to assess the affect of basis set and functional choice on calculation accuracy. The current status of this work will be presented at the conference. Work supported by the ARL, and USMA.
Energy policy - way out and wrong way
International Nuclear Information System (INIS)
Anon.
1989-01-01
The way out, i.e. the right solution of the energy supply problem, is solar energy. The wrong way are high-temperature reactors and nuclear fusion. Arguments are put forward that nuclear fusion, considered an alternative to the harmful nuclear fission even by some nuclear opponents, is in fact equally harmful. (qui)
International Nuclear Information System (INIS)
Riffat, S.B.; Zhao, X.; Doherty, P.S.
2005-01-01
A thin membrane heat-pipe solar collector was designed and constructed to allow heat from solar radiation to be collected at a relatively high efficiency while keeping the capital cost low. A theoretical model incorporating a set of heat balance equations was developed to analyse heat transfer processes occurring in separate regions of the collector, i.e., the top cover, absorber and condenser/manifold areas, and examine their relationship. The thermal performance of the collector was investigated using the theoretical model. The modelling predictions were validated using the experimental data from a referred source. The test efficiency was found to be in the range 40-70%, which is a bitter lower than the values predicted by modelling. The factors influencing these results were investigated
'Impulsar': Experimental and Theoretical Investigations
International Nuclear Information System (INIS)
Apollonov, V. V.
2008-01-01
The Objective of the 'Impulsar' project is to accomplish a circle of experimental, engineering and technological works on creation of a high efficiency laser rocket engine. The project includes many organizations of the rocket industry and Academy of Sciences of Russia. High repetition rate pulse-periodic CO 2 laser system project for launching will be presented. Optical system for 15 MW laser energy delivery and optical matrix of laser engine receiver will by discussed as well. Basic characteristics of the laser-based engine will be compared with theoretical predictions and important stages of further technology implementation (low frequency resonance). Relying on a wide cooperation of different branches of science and industry organizations it is very possible to use the accumulated potential for launching of nano-vehicles during the upcoming 4-5 years
An Expanded Theoretical Framework of Care Coordination Across Transitions in Care Settings.
Radwin, Laurel E; Castonguay, Denise; Keenan, Carolyn B; Hermann, Cherice
2016-01-01
For many patients, high-quality, patient-centered, and cost-effective health care requires coordination among multiple clinicians and settings. Ensuring optimal care coordination requires a clear understanding of how clinician activities and continuity during transitions affect patient-centeredness and quality outcomes. This article describes an expanded theoretical framework to better understand care coordination. The framework provides clear articulation of concepts. Examples are provided of ways to measure the concepts.
Theoretical study of a melting curve for tin
International Nuclear Information System (INIS)
Feng, Xi; Ling-Cang, Cai
2009-01-01
The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)
Validation of theoretical models through measured pavement response
DEFF Research Database (Denmark)
Ullidtz, Per
1999-01-01
mechanics was quite different from the measured stress, the peak theoretical value being only half of the measured value.On an instrumented pavement structure in the Danish Road Testing Machine, deflections were measured at the surface of the pavement under FWD loading. Different analytical models were...... then used to derive the elastic parameters of the pavement layeres, that would produce deflections matching the measured deflections. Stresses and strains were then calculated at the position of the gauges and compared to the measured values. It was found that all analytical models would predict the tensile...
Theoretical calculation of saturated absorption for multilevel atoms
International Nuclear Information System (INIS)
O'Kane, T.J.; Scholten, R.E.; Farrell, P.M.
1998-01-01
We present the first theoretical saturated absorption spectra for general multi-level atoms, using a model based on extensions of the optical Bloch equations, and using Monte Carlo averaging of the absorption of individual atoms with random trajectories through a standing wave. We are for the first time able to accurately predict the merging of hyperfine and cross-over resonances due to intensity dependent phenomena such as power broadening. Results for 20-level sodium and 24-level rubidium models are presented and compared to experiment, demonstrating excellent agreement
THE INFLUENCE OF RADIAL STELLAR MIGRATION ON THE CHEMICAL EVOLUTION OF THE MILKY WAY
Energy Technology Data Exchange (ETDEWEB)
Wang Yue; Zhao Gang, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2013-05-20
Stellar migration is an important dynamical process in the Galactic disk. Here we model radial stellar migration in the Galactic disk with an analytical method, then add it to a detailed Galactic chemical evolution model to study the influence of radial stellar migration on the chemical evolution of the Milky Way, especially for the abundance gradients. We found that the radial stellar migration in the Galactic disk can make the profile of the G-dwarf metallicity distribution of the solar neighborhood taller and narrower, and thus it becomes another solution to the ''G-dwarf problem''. It can also scatter the age-metallicity relation. However, after migration, the abundance distributions along the Galactic radius do not change much; namely, the abundance gradients would not be flattened by the radial stellar migration, which is different from the predictions of many theoretical works. However, it can flatten the radial gradients of the mean chemical abundance of stars, and older stars possess flatter abundance gradients than younger stars. The most significant effect of radial stellar migration on the chemical abundance is that at a certain position it scatters the abundance of stars from a relatively concentrated value to a range.
A priori which-way information in quantum interference with unstable particles
International Nuclear Information System (INIS)
Krause, D.E.; Fischbach, E.; Rohrbach, Z.J.
2014-01-01
If an unstable particle used in a two-path interference experiment decays before reaching a detector, which-way information becomes available that reduces the detected interference fringe visibility V. Here we argue that even when an unstable particle does not decay while in the interferometer, a priori which-way information is still available in the form of path predictability P which depends on the particle's decay rate Γ. We further demonstrate that in a matter-wave Mach–Zehnder interferometer using an excited atom with an appropriately tuned cavity, P is related to V through the duality relation P 2 +V 2 =1. - Highlights: • Even undecayed unstable particles exhibit novel interference effects. • Interference is studied in a Mach–Zehnder interferometer with a cavity. • More which-way information is available when using unstable particles. • A relation between which-way information and interference is satisfied
Lansey, Eli
Optical or photonic metamaterials that operate in the infrared and visible frequency regimes show tremendous promise for solving problems in renewable energy, infrared imaging, and telecommunications. However, many of the theoretical and simulation techniques used at lower frequencies are not applicable to this higher-frequency regime. Furthermore, technological and financial limitations of photonic metamaterial fabrication increases the importance of reliable theoretical models and computational techniques for predicting the optical response of photonic metamaterials. This thesis focuses on aperture array metamaterials. That is, a rectangular, circular, or other shaped cavity or hole embedded in, or penetrating through a metal film. The research in the first portion of this dissertation reflects our interest in developing a fundamental, theoretical understanding of the behavior of light's interaction with these aperture arrays, specifically regarding enhanced optical transmission. We develop an approximate boundary condition for metals at optical frequencies, and a comprehensive, analytical explanation of the physics underlying this effect. These theoretical analyses are augmented by computational techniques in the second portion of this thesis, used both for verification of the theoretical work, and solving more complicated structures. Finally, the last portion of this thesis discusses the results from designing, fabricating and characterizing a light-splitting metamaterial.
Directory of Open Access Journals (Sweden)
Mónica F. Díaz
2012-12-01
Full Text Available Volatile organic compounds (VOCs are contained in a variety of chemicals that can be found in household products and may have undesirable effects on health. Thereby, it is important to model blood-to-liver partition coefficients (log Pliver for VOCs in a fast and inexpensive way. In this paper, we present two new quantitative structure-property relationship (QSPR models for the prediction of log Pliver, where we also propose a hybrid approach for the selection of the descriptors. This hybrid methodology combines a machine learning method with a manual selection based on expert knowledge. This allows obtaining a set of descriptors that is interpretable in physicochemical terms. Our regression models were trained using decision trees and neural networks and validated using an external test set. Results show high prediction accuracy compared to previous log Pliver models, and the descriptor selection approach provides a means to get a small set of descriptors that is in agreement with theoretical understanding of the target property.
Two-way and three-way negativities of three-qubit entangled states
International Nuclear Information System (INIS)
Sharma, S. Shelly; Sharma, N. K.
2007-01-01
We propose to quantify three-qubit entanglement using global negativity along with K-way negativities, where K=2 and 3. The principle underlying the definition of K-way negativity for pure and mixed states of N subsystems is a positive partial transpose sufficient condition. However, K-way partial transpose with respect to a subsystem is defined so as to shift the focus to K-way coherences instead of K subsystems of the composite system. A quantum state of a three-qubit system is characterized by the coherences measured by global, two-way, and three-way negativities. For a canonical state of three-qubit system, entanglement measures for genuine tripartite entanglement, W-like entanglement, and bipartite entanglement can be related to two-way and three-way negativities
MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation
Energy Technology Data Exchange (ETDEWEB)
Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.
1982-01-01
The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.
Predictability of weather and climate
National Research Council Canada - National Science Library
Palmer, Tim; Hagedorn, Renate
2006-01-01
... and anthropogenic climate change are among those included. Ensemble systems for forecasting predictability are discussed extensively. Ed Lorenz, father of chaos theory, makes a contribution to theoretical analysis with a previously unpublished paper. This well-balanced volume will be a valuable resource for many years. High-quality chapter autho...
Theoretical study of relative width of photonic band gap for the 3-D ...
Indian Academy of Sciences (India)
... of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.
Development of Simple Drying Model for Performance Prediction of Solar Dryer: Theoretical Analysis
DEFF Research Database (Denmark)
Singh, Shobhana; Kumar, Subodh
2012-01-01
An analytical moisture diffusion model which considers the influence of external resistance to mass transfer is developed to predict thermal performance of dryer system. The moisture diffusion coefficient, Deff that is necessary to evaluate the prediction model has been determined in terms...... of experimental drying parameters. A laboratory model of mixed-mode solar dryer system is tested with cylindrical potato samples of thickness 5 and 18 mm under simulated indoor conditions. The potato samples were dried at a constant absorbed thermal energy of 750 W/m2 and air mass flow rate of 0.011 kg...
Prediction of intermetallic compounds
International Nuclear Information System (INIS)
Burkhanov, Gennady S; Kiselyova, N N
2009-01-01
The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.
Theoretical predictions of anti-corrosive properties of THAM and its derivatives.
Malinowski, Szymon; Jaroszyńska-Wolińska, Justyna; Herbert, Tony
2017-12-04
We present quantum chemical theoretical estimations of the anti-corrosive properties of THAM (tris(hydroxymethyl)aminomethane) and three derivatives that differ in the number of benzene rings: THAM-1 (2-amino-3-hydroxy-2-(hydroxymethyl) propylobenzoate), THAM-2 (2-amino-2-(hydroxymetyl)prapan-1,3-diyldibenzoate) and THAM-3 (2-amino-propan-1,2,3-triyltribenzoate). Fourteen exchange-correlation functionals based on the density functional theory (DFT) were chosen for quantum chemical study of THAM derivatives. The objective was to examine the effect of benzene rings on potential anti-corrosive properties of THAM compounds. The results indicate that the addition of benzene rings in THAM derivatives is likely to significantly enhance electrostatic bonding of a THAM-based coating to a presented metal surface and, thus, its adhesion and long-term effect in corrosion inhibition. Whereas it is clear that all three derivatives appear to be superior in their bonding characteristics to pure THAM, the potential order of merit between the three is less clear, although THAM-3 presents as possibly superior.
One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows
Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael
2016-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.
Chernin, Artur D.
1994-08-01
In a paper published in 1953, i.e., more than a decade before the observational discovery of the cosmic microwave background radiation, George Gamow predicted theoretically the temperature of this radiation. He estimated it to be 7 K, which is very close to the subsequently measured value of about 3 K. Gamow found the present temperature of the background radiation on the basis of general formulas of cosmological dynamics. This prediction was in no way related to primordial nucleosynthesis.This circumstance has and is still causing misunderstanding in those cases in which the authors have raised doubts about Gamow's results, although an actual error has never been demonstrated. A detailed analysis makes it possible to understand how Gamow's calculation is possible. The problem lies in the fact that Gamow makes a certain additional implicit assumption which allows him to dispense with information on nucleosynthesis. This assumption is discussed in the context of the state of cosmology in the period from the fifties to the seventies, and of the current status of this branch of science.
Theoretical and experimental study of electroporation of red blood cells using MEMS technology
Deng, Peigang; Yin, Guangyao; Zhang, Tong Yi; Chang, Donald C.; Lee, Yi Kuen
2010-01-01
A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC's membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.
Theoretical and experimental study of electroporation of red blood cells using MEMS technology
Deng, Peigang
2010-01-01
A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC\\'s membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.
Information-theoretic security proof for quantum-key-distribution protocols
International Nuclear Information System (INIS)
Renner, Renato; Gisin, Nicolas; Kraus, Barbara
2005-01-01
We present a technique for proving the security of quantum-key-distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the Bennett-Brassard 1984, the six-state, and the Bennett 1992 protocols with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel
Information-theoretic security proof for quantum-key-distribution protocols
Renner, Renato; Gisin, Nicolas; Kraus, Barbara
2005-07-01
We present a technique for proving the security of quantum-key-distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the Bennett-Brassard 1984, the six-state, and the Bennett 1992 protocols with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel.
Joaquín Bedia; Nicola Golding; Ana Casanueva; Maialen Iturbide; Carlo Buontempo; Jose Manuel Gutiérrez
2018-01-01
Managers of wildfire-prone landscapes in the Euro-Mediterranean region would greatly benefit from fire weather predictions a few months in advance, and particularly from the reliable prediction of extreme fire seasons. However, in some cases model biases prevent from a direct application of these predictions in an operational context. Fire risk management requires precise knowledge of the likely consequences of climate on fire risk, and the interest for decision-makers is focused on multi-var...
Experimental and theoretical investigation of an evaporative fuel system for heat engines
International Nuclear Information System (INIS)
Thern, Marcus; Lindquist, Torbjoern; Torisson, Tord
2007-01-01
The evaporative gas turbine (EvGT) pilot plant has been in operation at Lund University in Sweden since 1997. This project has led to improved knowledge of evaporative techniques and the concept of introducing fuel into gas turbines by evaporation. This results in, amongst others, power augmentation, efficiency increase and lower emissions. This article presents the experimental and theoretical results of the evaporation of a mixture of ethanol and water into an air stream at elevated pressures and temperatures. A theoretical model has been established for the simultaneous heat and mass transfer occurring in the ethanol humidification tower. The theoretical model has been validated through experiments at several operating conditions. It has been shown that the air, water and ethanol can be calculated throughout the column in a satisfactory way. The height of the column can be estimated within an error of 15% compared with measurements. The results from the model are most sensitive to the properties of diffusion coefficient, viscosity, thermal conductivity and activity coefficient due to the complexity of the polar gas mixture of water and air
International Nuclear Information System (INIS)
Stacey, Weston M.
2002-01-01
A framework for the predictive calculation of density limits in future tokamaks is proposed. Theoretical models for different density limit phenomena are summarized, and the requirements for additional models are identified. These theoretical density limit models have been incorporated into a relatively simple, but phenomenologically comprehensive, integrated numerical calculation of the core, edge, and divertor plasmas and of the recycling neutrals, in order to obtain plasma parameters needed for the evaluation of the theoretical models. A comparison of these theoretical predictions with observed density limits in current experiments is summarized. A model for the calculation of edge pedestal parameters, which is needed in order to apply the density limit predictions to future tokamaks, is summarized. An application to predict the proximity to density limits and the edge pedestal parameters of the proposed Fusion Ignition Research Experiment is described
Coping and return to work: Measurement and theoretical issues
Directory of Open Access Journals (Sweden)
Magnus Odéen
2010-01-01
Full Text Available Sick leave and early departure from the workforce have serious adverse effects on both individuals and society. Motivation and coping are both important when attempting to return to work. In this article, we wanted to test if either of two coping instruments could predict return to work. Response outcome expectancies as defined in the Cognitive Activation Theory of Stress (CATS (Ursin & Eriksen, 2004 were measured by the CODE scale (Eriksen et al., 1997 and general self-efficacy was measured by the generalized self-efficacy scale (GSE (Schwarzer & Jerusalem, 1995. The instruments were tested in one group of rehabilitation patients (N= 135 and one group of disability pensioners (N=85, who participated in return to work interventions in randomised controlled trials. None of the instruments could predict return to work at any point of measurement. Less than 10% of the theoretical range of the scales was used. The scales appear to measure a concept that is more stable than their underlying theory predicts, and they can not predict an important outcome. Results indicate that caution is advised when making inferences from these instruments to their underlying theories.
Theoretical analysis of sound transmission loss through graphene sheets
International Nuclear Information System (INIS)
Natsuki, Toshiaki; Ni, Qing-Qing
2014-01-01
We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials
Theoretical analysis of sound transmission loss through graphene sheets
Energy Technology Data Exchange (ETDEWEB)
Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Ni, Qing-Qing [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)
2014-11-17
We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.
Fuzzy Predictions for Strategic Decision Making
DEFF Research Database (Denmark)
Hallin, Carina Antonia; Andersen, Torben Juul; Tveterås, Sigbjørn
This article theorizes a new way to predict firm performance based on aggregation of sensing among frontline employees about changes in operational capabilities to update strategic action plans. We frame the approach in the context of first- and second-generation prediction markets and outline it...
Innovation value chain capability in Malaysian-owned company: A theoretical framework
Abidin, Norkisme Zainal; Suradi, Nur Riza Mohd
2014-09-01
Good quality products or services are no longer adequate to guarantee the sustainability of a company in the present competitive business. Prior research has developed various innovation models with the hope to better understand the innovativeness of the company. Due to countless definitions, indicators, factors, parameter and approaches in the study of innovation, it is difficult to ensure which one will best suit the Malaysian-owned company innovativeness. This paper aims to provide a theoretical background to support the framework of the innovation value chain capability in Malaysian-owned Company. The theoretical framework was based on the literature reviews, expert interviews and focus group study. The framework will be used to predict and assess the innovation value chain capability in Malaysian-owned company.
On determining the prediction limits of mathematical models for time series
International Nuclear Information System (INIS)
Peluso, E.; Gelfusa, M.; Lungaroni, M.; Talebzadeh, S.; Gaudio, P.; Murari, A.; Contributors, JET
2016-01-01
Prediction is one of the main objectives of scientific analysis and it refers to both modelling and forecasting. The determination of the limits of predictability is an important issue of both theoretical and practical relevance. In the case of modelling time series, reached a certain level in performance in either modelling or prediction, it is often important to assess whether all the information available in the data has been exploited or whether there are still margins for improvement of the tools being developed. In this paper, an information theoretic approach is proposed to address this issue and quantify the quality of the models and/or predictions. The excellent properties of the proposed indicator have been proved with the help of a systematic series of numerical tests and a concrete example of extreme relevance for nuclear fusion.
Walsh, Matthew M; Gluck, Kevin A; Gunzelmann, Glenn; Jastrzembski, Tiffany; Krusmark, Michael
2018-03-02
The spacing effect is among the most widely replicated empirical phenomena in the learning sciences, and its relevance to education and training is readily apparent. Yet successful applications of spacing effect research to education and training is rare. Computational modeling can provide the crucial link between a century of accumulated experimental data on the spacing effect and the emerging interest in using that research to enable adaptive instruction. In this paper, we review relevant literature and identify 10 criteria for rigorously evaluating computational models of the spacing effect. Five relate to evaluating the theoretic adequacy of a model, and five relate to evaluating its application potential. We use these criteria to evaluate a novel computational model of the spacing effect called the Predictive Performance Equation (PPE). Predictive Performance Equation combines elements of earlier models of learning and memory including the General Performance Equation, Adaptive Control of Thought-Rational, and the New Theory of Disuse, giving rise to a novel computational account of the spacing effect that performs favorably across the complete sets of theoretic and applied criteria. We implemented two other previously published computational models of the spacing effect and compare them to PPE using the theoretic and applied criteria as guides. © 2018 Cognitive Science Society, Inc.
Directory of Open Access Journals (Sweden)
Audra Skukauskaite
2012-01-01
Full Text Available This article presents a reflexive analysis of two transcripts of an open-ended interview and argues for transparency in transcribing processes and outcomes. By analyzing ways in which a researcher's theories become consequential in producing and using transcripts of an open-ended interview, this paper makes visible the importance of examining and presenting theoretical bases of transcribing decisions. While scholars across disciplines have argued that transcribing is a theoretically laden process (GREEN, FRANQUIZ & DIXON, 1997; KVALE & BRINKMAN, 2009, few have engaged in reflexive analyses of the data history to demonstrate the consequences particular theoretical and methodological approaches pose in producing knowledge claims and inciting dialogues across traditions. The article demonstrates how theory-method-claim relationships in transcribing influence research transparency and warrantability. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1201146
Some theoretic elements about vocational guidance in the specialty Carpintería
Directory of Open Access Journals (Sweden)
Odelmi Miló García
2016-03-01
Full Text Available Presently article the methodological conceptual theoretical bases are presented that sustain in an essential way the cultural historical theory, The objective of the same one is to elaborate a methodological strategy for the development of the professional orientation toward the specialty carpentry in students of the first year of the Polytechnic Leonides Blanco González, being given the problem that the students are not motivated by the specialty.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
An Experimental and Theoretical Investigation of Micropiiting in Wind Turbine Gears and Bearings
Energy Technology Data Exchange (ETDEWEB)
Kahraman, Ahmet
2012-03-28
In this research study, the micro-pitting related contact failures of wind turbine gearbox components were investigated both experimentally and theoretically. On the experimental side, a twin-disk type test machine was used to simulate wind turbine transmission contacts in terms of their kinematic (rolling and sliding speeds), surface roughnesses, material parameters and lubricant conditions. A test matrix that represents the ranges of contact conditions of the wind turbine gear boxes was defined and executed to bring an empirical understanding to the micro-pitting problem in terms of key contact parameters and operating conditions. On the theoretical side, the first deterministic micro-pitting model based on a mixed elastohydrodynamic lubrication formulations and multi-axial near-surface crack initiation model was developed. This physics-based model includes actual instantaneous asperity contacts associated with real surface roughness profiles for predicting the onset of the micro-pit formation. The predictions from the theoretical model were compared to the experimental data for validation of the models. The close agreement between the model and measurements was demonstrated. With this, the proposed model can be deemed suitable for identifying the mechanisms leading to micro-pitting of gear and bearing surfaces of wind turbine gear boxes, including all key material, lubricant and surface engineering aspects of the problem, and providing solutions to these micro-pitting problems.
Predictive coding in Agency Detection
DEFF Research Database (Denmark)
Andersen, Marc Malmdorf
2017-01-01
Agency detection is a central concept in the cognitive science of religion (CSR). Experimental studies, however, have so far failed to lend support to some of the most common predictions that follow from current theories on agency detection. In this article, I argue that predictive coding, a highly...... promising new framework for understanding perception and action, may solve pending theoretical inconsistencies in agency detection research, account for the puzzling experimental findings mentioned above, and provide hypotheses for future experimental testing. Predictive coding explains how the brain......, unbeknownst to consciousness, engages in sophisticated Bayesian statistics in an effort to constantly predict the hidden causes of sensory input. My fundamental argument is that most false positives in agency detection can be seen as the result of top-down interference in a Bayesian system generating high...
Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.
Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E
2011-03-01
The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.
Detection technology research on the one-way clutch of automatic brake adjuster
Jiang, Wensong; Luo, Zai; Lu, Yi
2013-10-01
In this article, we provide a new testing method to evaluate the acceptable quality of the one-way clutch of automatic brake adjuster. To analysis the suitable adjusting brake moment which keeps the automatic brake adjuster out of failure, we build a mechanical model of one-way clutch according to the structure and the working principle of one-way clutch. The ranges of adjusting brake moment both clockwise and anti-clockwise can be calculated through the mechanical model of one-way clutch. Its critical moment, as well, are picked up as the ideal values of adjusting brake moment to evaluate the acceptable quality of one-way clutch of automatic brake adjuster. we calculate the ideal values of critical moment depending on the different structure of one-way clutch based on its mechanical model before the adjusting brake moment test begin. In addition, an experimental apparatus, which the uncertainty of measurement is ±0.1Nm, is specially designed to test the adjusting brake moment both clockwise and anti-clockwise. Than we can judge the acceptable quality of one-way clutch of automatic brake adjuster by comparing the test results and the ideal values instead of the EXP. In fact, the evaluation standard of adjusting brake moment applied on the project are still using the EXP provided by manufacturer currently in China, but it would be unavailable when the material of one-way clutch changed. Five kinds of automatic brake adjusters are used in the verification experiment to verify the accuracy of the test method. The experimental results show that the experimental values of adjusting brake moment both clockwise and anti-clockwise are within the ranges of theoretical results. The testing method provided by this article vividly meet the requirements of manufacturer's standard.
Theoretical Framework of Advanced Training in the Field of Conflict Management in Organization
Directory of Open Access Journals (Sweden)
Kilmashkina T.N.
2018-01-01
Full Text Available In this paper, we consider the theoretical framework for creating an advanced training course for professionals working in various organizations whose functional duties include activities aimed at managing conflict situations occurring within the organization. The article also considers such problem concepts as: essence and causes of conflicts, types of conflicts in the organization; organizational, psychological, sociological and cultural ways of managing conflicts in the organization. The proposed theoretical model of advanced professional training is constructed within the framework of the competence approach which, in this case, is based on the notion that a participant in the program should master a certain set of special competencies that include knowledge, skills and abilities necessary for the effective process management of various conflict situations.
Balbi, V.; Kuhl, E.; Ciarletta, P.
2015-05-01
With nine meters in length, the gastrointestinal tract is not only our longest, but also our structurally most diverse organ. During embryonic development, it evolves as a bilayered tube with an inner endodermal lining and an outer mesodermal layer. Its inner surface displays a wide variety of morphological patterns, which are closely correlated to digestive function. However, the evolution of these intestinal patterns remains poorly understood. Here we show that geometric and mechanical factors can explain intestinal pattern formation. Using the nonlinear field theories of mechanics, we model surface morphogenesis as the instability problem of constrained differential growth. To allow for internal and external expansion, we model the gastrointestinal tract with homogeneous Neumann boundary conditions. To establish estimates for the folding pattern at the onset of folding, we perform a linear stability analysis supplemented by the perturbation theory. To predict pattern evolution in the post-buckling regime, we perform a series of nonlinear finite element simulations. Our model explains why longitudinal folds emerge in the esophagus with a thick and stiff outer layer, whereas circumferential folds emerge in the jejunum with a thinner and softer outer layer. In intermediate regions like the feline esophagus, longitudinal and circumferential folds emerge simultaneously. Our model could serve as a valuable tool to explain and predict alterations in esophageal morphology as a result of developmental disorders or certain digestive pathologies including food allergies.
Final Report: 06-LW-013, Nuclear Physics the Monte Carlo Way
International Nuclear Information System (INIS)
Ormand, W.E.
2009-01-01
This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD funding under the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. The project was a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo approaches to quantum many-body systems. The goal was to implement a solution to the notorious 'sign-problem', which if successful, would permit, for the first time, exact solutions to quantum many-body systems that cannot be addressed with other methods. In this document, we outline the progress and accomplishments achieved during FY2006-2007 with LDRD funding in the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National Laboratory. The primary objective of this project was to test the feasibility of implementing a novel approach to solving the generic quantum many-body problem, which is one of the most important problems being addressed in theoretical physics today. Instead of traditional methods based matrix diagonalization, this proposal focused a Monte Carlo method. The principal difficulty with Monte Carlo methods, is the so-called 'sign problem'. The sign problem, which will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-body problem, and is the principal reason that they have not been completely successful in the past. Here, we outline our research in the 'shifted-contour method' applied the Auxiliary Field Monte Carlo (AFMC) method
Wind turbine control and model predictive control for uncertain systems
DEFF Research Database (Denmark)
Thomsen, Sven Creutz
as disturbance models for controller design. The theoretical study deals with Model Predictive Control (MPC). MPC is an optimal control method which is characterized by the use of a receding prediction horizon. MPC has risen in popularity due to its inherent ability to systematically account for time...
International Nuclear Information System (INIS)
Wang, H.-L.; Liu, B.
2014-01-01
This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect
Adulthood Social Class and Union Interest: A First Test of a Theoretical Model.
Mellor, Steven
2016-10-02
A serial mediation model of union interest was tested. Based on theoretical notes provided by Mellor and Golay (in press), adulthood social class was positioned as a predictor of willingness to join a labor union, with success/failure attributions at work and willingness to share work goals positioned as intervening variables. Data from U.S. nonunion employees (N = 560) suggested full mediation after effects were adjusted for childhood social class. In sequence, adulthood social class predicted success/failure attributions at work, success/failure attributions at work predicted willingness to share work goals, and willingness to share work goals predicted willingness to join. Implications for socioeconomic status (SES) research and union expansion are discussed.
International Nuclear Information System (INIS)
Shen Hongbin; Chou Kuochen
2005-01-01
The nucleus is the brain of eukaryotic cells that guides the life processes of the cell by issuing key instructions. For in-depth understanding of the biochemical process of the nucleus, the knowledge of localization of nuclear proteins is very important. With the avalanche of protein sequences generated in the post-genomic era, it is highly desired to develop an automated method for fast annotating the subnuclear locations for numerous newly found nuclear protein sequences so as to be able to timely utilize them for basic research and drug discovery. In view of this, a novel approach is developed for predicting the protein subnuclear location. It is featured by introducing a powerful classifier, the optimized evidence-theoretic K-nearest classifier, and using the pseudo amino acid composition [K.C. Chou, PROTEINS: Structure, Function, and Genetics, 43 (2001) 246], which can incorporate a considerable amount of sequence-order effects, to represent protein samples. As a demonstration, identifications were performed for 370 nuclear proteins among the following 9 subnuclear locations: (1) Cajal body, (2) chromatin, (3) heterochromatin, (4) nuclear diffuse, (5) nuclear pore, (6) nuclear speckle, (7) nucleolus, (8) PcG body, and (9) PML body. The overall success rates thus obtained by both the re-substitution test and jackknife cross-validation test are significantly higher than those by existing classifiers on the same working dataset. It is anticipated that the powerful approach may also become a useful high throughput vehicle to bridge the huge gap occurring in the post-genomic era between the number of gene sequences in databases and the number of gene products that have been functionally characterized. The OET-KNN classifier will be available at www.pami.sjtu.edu.cn/people/hbshen
Evans, Matthew R; Bithell, Mike; Cornell, Stephen J; Dall, Sasha R X; Díaz, Sandra; Emmott, Stephen; Ernande, Bruno; Grimm, Volker; Hodgson, David J; Lewis, Simon L; Mace, Georgina M; Morecroft, Michael; Moustakas, Aristides; Murphy, Eugene; Newbold, Tim; Norris, K J; Petchey, Owen; Smith, Matthew; Travis, Justin M J; Benton, Tim G
2013-11-22
Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.
The semiclassical way to dynamics and spectroscopy
Heller, Eric
2018-01-01
Physical systems have been traditionally described in terms of either classical or quantum mechanics. But in recent years, semiclassical methods have developed rapidly, providing deep physical insight and computational tools for quantum dynamics and spectroscopy. In this book, Eric Heller introduces and develops this subject, demonstrating its power with many examples. In the first half of the book, Heller covers relevant aspects of classical mechanics, building from them the semiclassical way through the semiclassical limit of the Feynman path integral. The second half of the book applies this approach to various kinds of spectroscopy, such as molecular spectroscopy and electron imaging and quantum dynamical systems with an emphasis on tunneling. Adopting a distinctly time-dependent viewpoint, Heller argues for semiclassical theories from experimental and theoretical vantage points valuable to research in physics and chemistry. Featuring more than two hundred figures, the book provides a geometric, phase-sp...
Theoretical Model for the Performance of Liquid Ring Pump Based on the Actual Operating Cycle
Directory of Open Access Journals (Sweden)
Si Huang
2017-01-01
Full Text Available Liquid ring pump is widely applied in many industry fields due to the advantages of isothermal compression process, simple structure, and liquid-sealing. Based on the actual operating cycle of “suction-compression-discharge-expansion,” a universal theoretical model for performance of liquid ring pump was established in this study, to solve the problem that the theoretical models deviated from the actual performance in operating cycle. With the major geometric parameters and operating conditions of a liquid ring pump, the performance parameters such as the actual capacity for suction and discharge, shaft power, and global efficiency can be conveniently predicted by the proposed theoretical model, without the limitation of empiric range, performance data, or the detailed 3D geometry of pumps. The proposed theoretical model was verified by experimental performances of liquid ring pumps and could provide a feasible tool for the application of liquid ring pump.
Theoretical chemistry in Belgium a topical collection from theoretical chemistry accounts
Champagne, Benoît; De Proft, Frank; Leyssens, Tom
2014-01-01
Readers of this volume can take a tour around the research locations in Belgium which are active in theoretical and computational chemistry. Selected researchers from Belgium present research highlights of their work. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format. This volume will be of benefit in particular to those research groups and libraries that have chosen to have only electronic access to the journal. It also provides valuable content for all researchers in theoretical chemistry.
Evans, R; Ferguson, E
2014-02-01
While blood donation is traditionally described as a behaviour motivated by pure altruism, the assessment of altruism in the blood donation literature has not been theoretically informed. Drawing on theories of altruism from psychology, economics and evolutionary biology, it is argued that a theoretically derived psychometric assessment of altruism is needed. Such a measure is developed in this study that can be used to help inform both our understanding of the altruistic motives of blood donors and recruitment intervention strategies. A cross-sectional survey (N = 414), with a 1-month behavioural follow-up (time 2, N = 77), was designed to assess theoretically derived constructs from psychological, economic and evolutionary biological theories of altruism. Theory of planned behaviour (TPB) variables and co-operation were also assessed at time 1 and a measure of behavioural co-operation at time 2. Five theoretical dimensions (impure altruism, kinship, self-regarding motives, reluctant altruism and egalitarian warm glow) of altruism were identified through factor analyses. These five altruistic motives differentiated blood donors from non-donors (donors scored higher on impure altruism and reluctant altruism), showed incremental validity over TPB constructs to predict donor intention and predicted future co-operative behaviour. These findings show that altruism in the context of blood donation is multifaceted and complex and, does not reflect pure altruism. This has implication for recruitment campaigns that focus solely on pure altruism. © 2013 The Authors. Vox Sanguinis published by John Wiley & Sons Ltd. on behalf of International Society of Blood Transfusion.
INTRODUCTION: Theoretical Models as Mass Media Practice: Perspectives from the West
DEFF Research Database (Denmark)
Thomsen, Line
2007-01-01
What is journalism? How does it exist and why? How does journalism define itself and in what ways can we make use of looking theoretically at the practice of it? These were the central themes of our workshop; Theoretical Models as Mass Media Practice held at the ‘Minding the Gap’ conference...... an exceptional framework for understanding the workings of mass media while helping the press reflect over these workings too. In a time of change for the journalistic profession, when media convergence is growing; the media is marked by deregulation and fewer journalists are being asked to do more...... at Reuters Institute in May 2007, from which this collection of papers has been selected. As with the other workshops during the conference, the majority of our panellists were themselves once media practitioners. It is my opinion that this background and inside knowledge of the field in itself can provide...
Theoretical and Empirical Review of Asset Pricing Models: A Structural Synthesis
Directory of Open Access Journals (Sweden)
Saban Celik
2012-01-01
Full Text Available The purpose of this paper is to give a comprehensive theoretical review devoted to asset pricing models by emphasizing static and dynamic versions in the line with their empirical investigations. A considerable amount of financial economics literature devoted to the concept of asset pricing and their implications. The main task of asset pricing model can be seen as the way to evaluate the present value of the pay offs or cash flows discounted for risk and time lags. The difficulty coming from discounting process is that the relevant factors that affect the pay offs vary through the time whereas the theoretical framework is still useful to incorporate the changing factors into an asset pricing models. This paper fills the gap in literature by giving a comprehensive review of the models and evaluating the historical stream of empirical investigations in the form of structural empirical review.
True amplitude wave equation migration arising from true amplitude one-way wave equations
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition
Prediction strategies in a TV recommender system - Method and experiments
van Setten, M.J.; Veenstra, M.; van Dijk, Elisabeth M.A.G.; Nijholt, Antinus; Isaísas, P.; Karmakar, N.
2003-01-01
Predicting the interests of a user in information is an important process in personalized information systems. In this paper, we present a way to create prediction engines that allow prediction techniques to be easily combined into prediction strategies. Prediction strategies choose one or a
A review of theoretical ideas on the EMC effect
International Nuclear Information System (INIS)
Krzywicki, A.
1985-01-01
This paper is a shortened version of a review presented at a nuclear physics conference held in Paris in July 1985. The author concentrates on a sample of representative theoretical ideas. The old dogma, claiming the identity of the structure functions of bound and free nucleons respectively, has been abandoned. Contemplating the plethora of models proposed to explain the EMC effect, the author realizes how unfounded the old dogma has been. However, considerable experimental uncertainties persist (low x region, sea vs. valence, gluon distribution). Also, the predictive power of theoretical models is poor. The author does not see any contradiction between the data and the calculations based on conventional nuclear theory. In this sense, the future theory of the EMC effect will perhaps resemble the rescaling models but, of course, with an improved justification. In any case, it is both important and interesting to achieve a better understanding of the role of QCD degrees of freedom in nuclei
Directory of Open Access Journals (Sweden)
Joaquín Bedia
2018-01-01
Full Text Available Managers of wildfire-prone landscapes in the Euro-Mediterranean region would greatly benefit from fire weather predictions a few months in advance, and particularly from the reliable prediction of extreme fire seasons. However, in some cases model biases prevent from a direct application of these predictions in an operational context. Fire risk management requires precise knowledge of the likely consequences of climate on fire risk, and the interest for decision-makers is focused on multi-variable fire danger indices, calculated through the combination of different model output variables. In this paper we consider whether the skill in dynamical seasonal predictions of one of the most widely applied of such indices (the Canadian Fire Weather Index, FWI is sufficient to inform management decisions, and we examine various methodological aspects regarding the calibration of model outputs prior to its verification and operational applicability. We find that there is significant skill in predicting above average summer FWI in parts of SE Europe at 1 month lead time, but poor skill elsewhere. These results are largely linked to the predictability of relative humidity. Moreover, practical recommendations are given for the use of empirical quantile mapping in probabilistic seasonal FWI forecasts. Furthermore, we show how researchers, fire managers and other stakeholders can take advantage of a new open-source climate service in order to undertake all the necessary steps for data download, post-processing, analysis and verification in a straightforward and fully reproducible manner. Keywords: Climate impact indicators, Quantile mapping, Bias correction, System 4, Fire danger, Seasonal forecasting
Predicting formation enthalpies of metal hydrides
DEFF Research Database (Denmark)
Andreasen, A.
2004-01-01
of elements from the periodic table are yet to beexplored. Since experimental determination of thermodynamic properties of the vast combinations of elements is tedious it may be advantagous to have a predictive tool for this task. In this report different ways of predicting #DELTA#H_f for binary andternary...
Theoretical studies on the α decay half-lives of hyper and normal ...
Indian Academy of Sciences (India)
The α decay half-lives of hyper and normal isotopes of Po nuclei are studied in the present work. The inclusion of Λ – N interaction changes the half-life for α decay. The theoretical predictions on the α decay half-lives of normal Po isotopes are compared with experimental results and are seen to be matching well with each ...
Validation of predicted exponential concentration profiles of chemicals in soils
International Nuclear Information System (INIS)
Hollander, Anne; Baijens, Iris; Ragas, Ad; Huijbregts, Mark; Meent, Dik van de
2007-01-01
Multimedia mass balance models assume well-mixed homogeneous compartments. Particularly for soils, this does not correspond to reality, which results in potentially large uncertainties in estimates of transport fluxes from soils. A theoretically expected exponential decrease model of chemical concentrations with depth has been proposed, but hardly tested against empirical data. In this paper, we explored the correspondence between theoretically predicted soil concentration profiles and 84 field measured profiles. In most cases, chemical concentrations in soils appear to decline exponentially with depth, and values for the chemical specific soil penetration depth (d p ) are predicted within one order of magnitude. Over all, the reliability of multimedia models will improve when they account for depth-dependent soil concentrations, so we recommend to take into account the described theoretical exponential decrease model of chemical concentrations with depth in chemical fate studies. In this model the d p -values should estimated be either based on local conditions or on a fixed d p -value, which we recommend to be 10 cm for chemicals with a log K ow > 3. - Multimedia mass model predictions will improve when taking into account depth dependent soil concentrations
Theoretical modelling of quantum circuit systems
International Nuclear Information System (INIS)
Stiffell, Peter Barry
2002-01-01
The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)
Detailed comparison of next-to-leading order predictions for jet photoproduction at HERA.
Energy Technology Data Exchange (ETDEWEB)
Harris, B. W.; Klassen, M.; Vossebeld, J.
1999-06-02
The precision of new HERA data on jet photoproduction opens up the possibility to discriminate between different models of the photon structure. This requires equally precise theoretical predictions from perturbative QCD calculations. In the past years, next-to-leading order calculations for the photoproduction of jets at HERA have become available. Using the kinematic cuts of recent ZEUS analyses, we compare the predictions of three calculations for different dijet and three-jet distributions. We find that in general all three calculations agree within the statistical accuracy of the Monte Carlo integration yielding reliable theoretical predictions. In certain restricted regions of phase space, the calculations differ by up to 5%.
Theoretical prediction of fast 3D AC electro-osmotic pumps.
Bazant, Martin Z; Ben, Yuxing
2006-11-01
AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow over a stepped electrode array. Numerical simulations of these designs (using the standard low-voltage model) predict flow rates almost twenty times faster than existing planar ACEO pumps, for the same applied voltage and minimum feature size. These pumps may enable new portable or implantable lab-on-a-chip devices, since rather fast (mm s(-1)), tuneable flows should be attainable with battery voltages (<10 V).
Comparison of experimental and theoretical binding and transition energies in the actinide region
Energy Technology Data Exchange (ETDEWEB)
Krause, M. O.; NESTOR, JR., C. W. [OAK RIDGE NATIONAL LAB., TENN. (USA)
1977-11-15
The present status of experimental and theoretical binding and transition energy determinations is reviewed. Experimental data and the most recent theoretical predictions are compared for the energies of K..cap alpha../sub 1/ X-rays, M series X-rays, K-LL Auger electrons, K, L/sub 3/, M and N levels, and the 4f spin-orbit splitting. In addition, the K..cap alpha../sub 1/ and L/sub 3/ data are fitted by Moseley-type diagrams, and data on the shallow levels and the valence bands of actinide oxides are discussed. Comparison shows that the single-particle Dirac-Fock theory and the inclusion of quantum-electrodynamic contributions predicts energies of the innermost levels generally within the accuracy of data, that is in the order of magnitude of 1 eV. However, in the N, O... shells large deviations do occur presumably due to strong many-electron interactions. The inclusion of many-electron effects in the relativistic theory remains a challenge, as do experimental investigations affording an accuracy of better than 1 eV for the various electronic levels.
Use of Graph-Theoretic Models in Technological Preparation of Assembly Plant
Directory of Open Access Journals (Sweden)
Peter Franzevich Yurchik
2015-05-01
Full Text Available The article examines the existing ways of describing the structural and technological properties of the product in the process of building and repair. It turned out that the main body of work on the preparation process of assembling production uses graph-theoretic model of the product. It is shown that, in general, the structural integrity of many-form connections and relations on the set of components that can not be adequately described by binary structures, such as graphs, networks or trees.
Human motion simulation predictive dynamics
Abdel-Malek, Karim
2013-01-01
Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...
Methane Bubble Flame Tower--A Spectacularly Engaging Way to Teach Density
Sandoval, Christopher
2012-01-01
This article presents a demonstration using methane bubble flame tower that offers a fun and relatively cheap way of demonstrating what happens when there is a density difference. Teachers can do this as a predict-observe-explain demonstration after the students have learned about density to extend their learning and get into some higher order…
New results for antiproton-proton elastic scattering and various theoretical models
International Nuclear Information System (INIS)
Fazal-e-Aleem; Saleem, M.; Yodh, G.B.
1991-01-01
The most recent measurements of the ratio ρ of the real and imaginary parts of the forward-scattering amplitudes at 0.546 TeV, the total and elastic differential cross sections at 0.546 and 1.8 TeV for proton-antiproton scattering, are compared to the predictions of the generalized Chou-Yang and other theoretical models. For 1.8 TeV, the presence or absence of the break near -t∼0.15 (GeV/c) 2 and of the dip in the vicinity of 0.6 (GeV/c) 2 are also discussed in the light of various predictions. The possibility of a further rise of the ratio ρ at 1.8 TeV is also probed
Group-regularized individual prediction: theory and application to pain.
Lindquist, Martin A; Krishnan, Anjali; López-Solà, Marina; Jepma, Marieke; Woo, Choong-Wan; Koban, Leonie; Roy, Mathieu; Atlas, Lauren Y; Schmidt, Liane; Chang, Luke J; Reynolds Losin, Elizabeth A; Eisenbarth, Hedwig; Ashar, Yoni K; Delk, Elizabeth; Wager, Tor D
2017-01-15
Multivariate pattern analysis (MVPA) has become an important tool for identifying brain representations of psychological processes and clinical outcomes using fMRI and related methods. Such methods can be used to predict or 'decode' psychological states in individual subjects. Single-subject MVPA approaches, however, are limited by the amount and quality of individual-subject data. In spite of higher spatial resolution, predictive accuracy from single-subject data often does not exceed what can be accomplished using coarser, group-level maps, because single-subject patterns are trained on limited amounts of often-noisy data. Here, we present a method that combines population-level priors, in the form of biomarker patterns developed on prior samples, with single-subject MVPA maps to improve single-subject prediction. Theoretical results and simulations motivate a weighting based on the relative variances of biomarker-based prediction-based on population-level predictive maps from prior groups-and individual-subject, cross-validated prediction. Empirical results predicting pain using brain activity on a trial-by-trial basis (single-trial prediction) across 6 studies (N=180 participants) confirm the theoretical predictions. Regularization based on a population-level biomarker-in this case, the Neurologic Pain Signature (NPS)-improved single-subject prediction accuracy compared with idiographic maps based on the individuals' data alone. The regularization scheme that we propose, which we term group-regularized individual prediction (GRIP), can be applied broadly to within-person MVPA-based prediction. We also show how GRIP can be used to evaluate data quality and provide benchmarks for the appropriateness of population-level maps like the NPS for a given individual or study. Copyright © 2015 Elsevier Inc. All rights reserved.
Empirical Flutter Prediction Method.
1988-03-05
been used in this way to discover species or subspecies of animals, and to discover different types of voter or comsumer requiring different persuasions...respect to behavior or performance or response variables. Once this were done, corresponding clusters might be sought among descriptive or predictive or...jump in a response. The first sort of usage does not apply to the flutter prediction problem. Here the types of behavior are the different kinds of
A Game Theoretic Model of Thermonuclear Cyberwar
Energy Technology Data Exchange (ETDEWEB)
Soper, Braden C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-08-23
In this paper we propose a formal game theoretic model of thermonuclear cyberwar based on ideas found in [1] and [2]. Our intention is that such a game will act as a first step toward building more complete formal models of Cross-Domain Deterrence (CDD). We believe the proposed thermonuclear cyberwar game is an ideal place to start on such an endeavor because the game can be fashioned in a way that is closely related to the classical models of nuclear deterrence [4–6], but with obvious modifications that will help to elucidate the complexities introduced by a second domain. We start with the classical bimatrix nuclear deterrence game based on the game of chicken, but introduce uncertainty via a left-of-launch cyber capability that one or both players may possess.
A Game Theoretical Approach to Hacktivism: Is Attack Likelihood a Product of Risks and Payoffs?
Bodford, Jessica E; Kwan, Virginia S Y
2018-02-01
The current study examines hacktivism (i.e., hacking to convey a moral, ethical, or social justice message) through a general game theoretic framework-that is, as a product of costs and benefits. Given the inherent risk of carrying out a hacktivist attack (e.g., legal action, imprisonment), it would be rational for the user to weigh these risks against perceived benefits of carrying out the attack. As such, we examined computer science students' estimations of risks, payoffs, and attack likelihood through a game theoretic design. Furthermore, this study aims at constructing a descriptive profile of potential hacktivists, exploring two predicted covariates of attack decision making, namely, peer prevalence of hacking and sex differences. Contrary to expectations, results suggest that participants' estimations of attack likelihood stemmed solely from expected payoffs, rather than subjective risks. Peer prevalence significantly predicted increased payoffs and attack likelihood, suggesting an underlying descriptive norm in social networks. Notably, we observed no sex differences in the decision to attack, nor in the factors predicting attack likelihood. Implications for policymakers and the understanding and prevention of hacktivism are discussed, as are the possible ramifications of widely communicated payoffs over potential risks in hacking communities.
Experimental studies of caesium iodide aerosol condensation: theoretical interpretation
International Nuclear Information System (INIS)
Beard, A.M.; Benson, C.G.; Horton, K.D.; Buckle, E.R.
1990-07-01
Caesium iodide is predicted to be a significant source of fission product aerosols during the course of a severe accident in a pressurised water reactor (PWR). The nucleation and growth of caesium iodide aerosols have been studied using a plume chamber and the results compared with theoretical values calculated using the approach developed by Buckle for aerosol nucleation. The morphology of the particles was studied using scanning electron microscopy (SEM) and transmission optical microscopy (TOM), whilst the particle size distributions were determined from differential mobility (DMPS) and aerodynamic (APS) measurements. (author)
Ku, C.-P. Roger; Heshmat, Hooshang
1994-07-01
Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.
Directory of Open Access Journals (Sweden)
Louise Högdahl
2016-09-01
Full Text Available Internet-based guided self-help cognitive behavioural therapy (ICBT seems a promising way of delivering eating disorder treatment. However, treatment drop-out is a common problem and little is known about the correlates, especially in clinical settings. The study aimed to explore prediction of drop-out in the context of a randomized controlled trial within specialized eating disorder care in terms of eating disorder symptomatology, personality traits, comorbidity, and demographic characteristics. 109 outpatients diagnosed with bulimia nervosa or similar eating disorder were randomized to two types of ICBT. Participants were assessed with several clinical- and self-ratings. The average drop-out rate was 36%. Drop-out was predicted by lower scores in the personality traits Dutifulness and Assertiveness as measured by the NEO Personality Inventory Revised, and by higher scores in Self-affirm as measured by the Structural Analysis of Social Behaviour. Drop-out was also predicted by therapist factors: one therapist had significantly more drop-outs (82% than the other three (M = 30%. Theoretical and clinical implications of the impact of the predictors are discussed.
Theoretical studies on aerosol agglomeration processes
Energy Technology Data Exchange (ETDEWEB)
Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use
1997-12-31
In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of
Theoretical studies on aerosol agglomeration processes
Energy Technology Data Exchange (ETDEWEB)
Lehtinen, K E.J. [VTT Energy, Espoo (Finland). Energy Use
1998-12-31
In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of
Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long
2018-03-01
Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems.
Recycling, reducing and reusing: A theoretical framework
International Nuclear Information System (INIS)
Kubursi, A.A.; Butterfield, D.W.
1990-01-01
Macroeconomic models are generally based on a particular national income accounting framework. The current approach treats waste and pollution generation in such a way that any increase in these activities increases directly the gross domestic product of the economy. A reformulation is suggested for the accounting framework so as to treat waste management and pollution abatement as services to business whose costs should be charged against business revenue. Even such costs to households may be considered as costs to output. In this way such expenses appear as a cost to society and not as a final output. A new theoretical framework is developed to correspond to the reformulated accounting principle that allows clear identification of recycling activity and waste management. The rectangular input-output framework is particularly suited for this treatment as it allows different industries to produce the same output and identifies different commodities as inputs in the production of the same output. With the new framework, it is possible to examine the socioeconomic consequences of increased use and production of recyclables. Equally important is the ability to assess the relative efficiency of alternative policies to reuse or reduce the use of products and resources through price incentives and full cost charges. 2 tabs
An Alternative to the Gauge Theoretic Setting
Schroer, Bert
2011-10-01
The standard formulation of quantum gauge theories results from the Lagrangian (functional integral) quantization of classical gauge theories. A more intrinsic quantum theoretical access in the spirit of Wigner's representation theory shows that there is a fundamental clash between the pointlike localization of zero mass (vector, tensor) potentials and the Hilbert space (positivity, unitarity) structure of QT. The quantization approach has no other way than to stay with pointlike localization and sacrifice the Hilbert space whereas the approach built on the intrinsic quantum concept of modular localization keeps the Hilbert space and trades the conflict creating pointlike generation with the tightest consistent localization: semiinfinite spacelike string localization. Whereas these potentials in the presence of interactions stay quite close to associated pointlike field strengths, the interacting matter fields to which they are coupled bear the brunt of the nonlocal aspect in that they are string-generated in a way which cannot be undone by any differentiation. The new stringlike approach to gauge theory also revives the idea of a Schwinger-Higgs screening mechanism as a deeper and less metaphoric description of the Higgs spontaneous symmetry breaking and its accompanying tale about "God's particle" and its mass generation for all the other particles.
Theoretical Approaches to Coping
Directory of Open Access Journals (Sweden)
Sofia Zyga
2013-01-01
Full Text Available Introduction: Dealing with stress requires conscious effort, it cannot be perceived as equal to individual's spontaneous reactions. The intentional management of stress must not be confused withdefense mechanisms. Coping differs from adjustment in that the latter is more general, has a broader meaning and includes diverse ways of facing a difficulty.Aim: An exploration of the definition of the term "coping", the function of the coping process as well as its differentiation from other similar meanings through a literature review.Methodology: Three theoretical approaches of coping are introduced; the psychoanalytic approach; approaching by characteristics; and the Lazarus and Folkman interactive model.Results: The strategic methods of the coping approaches are described and the article ends with a review of the approaches including the functioning of the stress-coping process , the classificationtypes of coping strategies in stress-inducing situations and with a criticism of coping approaches.Conclusions: The comparison of coping in different situations is difficult, if not impossible. The coping process is a slow process, so an individual may select one method of coping under one set ofcircumstances and a different strategy at some other time. Such selection of strategies takes place as the situation changes.
Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.
2018-04-01
Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.
Theoretical study of solvent effects on the coil-globule transition
Polson, James M.; Opps, Sheldon B.; Abou Risk, Nicholas
2009-06-01
The coil-globule transition of a polymer in a solvent has been studied using Monte Carlo simulations of a single chain subject to intramolecular interactions as well as a solvent-mediated effective potential. This solvation potential was calculated using several different theoretical approaches for two simple polymer/solvent models, each employing hard-sphere chains and hard-sphere solvent particles as well as attractive square-well potentials between some interaction sites. For each model, collapse is driven by variation in a parameter which changes the energy mismatch between monomers and solvent particles. The solvation potentials were calculated using two fundamentally different methodologies, each designed to predict the conformational behavior of polymers in solution: (1) the polymer reference interaction site model (PRISM) theory and (2) a many-body solvation potential (MBSP) based on scaled particle theory introduced by Grayce [J. Chem. Phys. 106, 5171 (1997)]. For the PRISM calculations, two well-studied solvation monomer-monomer pair potentials were employed, each distinguished by the closure relation used in its derivation: (i) a hypernetted-chain (HNC)-type potential and (ii) a Percus-Yevick (PY)-type potential. The theoretical predictions were each compared to results obtained from explicit-solvent discontinuous molecular dynamics simulations on the same polymer/solvent model systems [J. Chem. Phys. 125, 194904 (2006)]. In each case, the variation in the coil-globule transition properties with solvent density is mostly qualitatively correct, though the quantitative agreement between the theory and prediction is typically poor. The HNC-type potential yields results that are more qualitatively consistent with simulation. The conformational behavior of the polymer upon collapse predicted by the MBSP approach is quantitatively correct for low and moderate solvent densities but is increasingly less accurate for higher densities. At high solvent densities
Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks
Directory of Open Access Journals (Sweden)
Ruihong Jiang
2017-01-01
Full Text Available This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR and time switching two-way relay (TS-TWR protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA- based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks.
The Bayesian way to relate rhythm perception and production
Sadakata, M.; Desain, P.W.M.; Honing, H.J.
2006-01-01
Measurement of the perception and production of simple rhythmic patterns have been shown not to be in line in some cases. In this study it is demonstrated that a Bayesian approach provides a new way of understanding this difference, by formalizing the perceptual competition between mental representations and assuming possible nonuniform a priori probabilities of the rhythmic categories. Thus we can relate the two kinds of information and predict perception data from production data. In this a...
Theoretical prediction the removal of mercury from flue gas by MOFs
Liu, Yang; Li, Hailong; Liu, Jing
2016-01-01
Removal of mercury from flue gas has been considered as one of the hot topics in both the scientific and industrial world. Adsorption of elemental mercury (Hg) and oxidized mercury species (HgCl, HgO, and HgS) on a novel metal organic framework (MOF) material, named Mg/DOBDC, with unsaturated metal centers was investigated using density functional theory (DFT) calculations. The results show that Hg stably physi-sorbed on the unsaturated metal center (magnesium ion) of Mg/DOBDC with a binding energy (BE) of −27.5 kJ/mol. A direct interaction between Hg and magnesium ion was revealed by the partial density of state (PDOS) analysis. HgCl multi-interacts with two neighboring magnesium ions simultaneously by its Cl endings and thus resulted in strong adsorption strength (−89.0 kJ/mol). The adsorption energies of HgO and HgS on the Mg/DOBDC were as high as −117.0 kJ/mol and −169.7 kJ/mol, respectively, indicating a strong chemisorption. Theoretical calculations in this study reveal that Mg/DOBDC has the potential to serve as an efficient material for removal of mercury from flue gas.
Theoretical prediction the removal of mercury from flue gas by MOFs
Liu, Yang
2016-07-19
Removal of mercury from flue gas has been considered as one of the hot topics in both the scientific and industrial world. Adsorption of elemental mercury (Hg) and oxidized mercury species (HgCl, HgO, and HgS) on a novel metal organic framework (MOF) material, named Mg/DOBDC, with unsaturated metal centers was investigated using density functional theory (DFT) calculations. The results show that Hg stably physi-sorbed on the unsaturated metal center (magnesium ion) of Mg/DOBDC with a binding energy (BE) of −27.5 kJ/mol. A direct interaction between Hg and magnesium ion was revealed by the partial density of state (PDOS) analysis. HgCl multi-interacts with two neighboring magnesium ions simultaneously by its Cl endings and thus resulted in strong adsorption strength (−89.0 kJ/mol). The adsorption energies of HgO and HgS on the Mg/DOBDC were as high as −117.0 kJ/mol and −169.7 kJ/mol, respectively, indicating a strong chemisorption. Theoretical calculations in this study reveal that Mg/DOBDC has the potential to serve as an efficient material for removal of mercury from flue gas.
Burke, Sara E; Dovidio, John F; LaFrance, Marianne; Przedworski, Julia M; Perry, Sylvia P; Phelan, Sean M; Burgess, Diana J; Hardeman, Rachel R; Yeazel, Mark W; van Ryn, Michelle
2017-07-01
Increasing evidence suggests that bisexual people are sometimes evaluated more negatively than heterosexual and gay/lesbian people. A common theoretical account for this discrepancy argues that bisexuality is perceived by some as introducing ambiguity into a binary model of sexuality. The present brief report tests a single key prediction of this theory, that evaluations of bisexual people have a unique relationship with Need for Closure (NFC), a dispositional preference for simple ways of structuring information. Participants ( n =3406) were heterosexual medical students from a stratified random sample of 49 U.S. medical schools. As in prior research, bisexual targets were evaluated slightly more negatively than gay/lesbian targets overall. More importantly for the present investigation, higher levels of NFC predicted negative evaluations of bisexual people after accounting for negative evaluations of gay/lesbian people, and higher levels of NFC also predicted an explicit evaluative preference for gay/lesbian people over bisexual people. These results suggest that differences in evaluations of sexual minority groups partially reflect different psychological processes, and that NFC may have a special relevance for bisexual targets even beyond its general association with prejudice. The practical value of testing this theory on new physicians is also discussed.
Update on protein structure prediction: results of the 1995 IRBM workshop
DEFF Research Database (Denmark)
Hubbard, Tim; Tramontano, Anna; Hansen, Jan
1996-01-01
Computational tools for protein structure prediction are of great interest to molecular, structural and theoretical biologists due to a rapidly increasing number of protein sequences with no known structure. In October 1995, a workshop was held at IRBM to predict as much as possible about a numbe...
Update on protein structure prediction: results of the 1995 IRBM workshop
DEFF Research Database (Denmark)
Hubbard, Tim; Tramontano, Anna; Hansen, Jan
1996-01-01
Computational tools for protein structure prediction are of great interest to molecular, structural and theoretical biologists due to a rapidly increasing number of protein sequences with no known structure. In October 1995, a workshop was held at IRBM to predict as much as possible about a number...
2006-01-01
Wrong-way driving is a phenomenon that mainly happens on motorways. Although the number of wrong-way crashes is relatively limited, their consequences are much more severe than the consequences of other motorway injury crashes. The groups most often causing wrong-way driving accidents are young,
Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta
2017-01-01
Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.