WorldWideScience

Sample records for theoretical model simulation

  1. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)

    User

    Simulation of Drainage Flow and Leaching in Salt Affected ... mg/l with an impermeable layer at 10 m depth and impermeable field boundaries. .... The hydraulic where D is the free molecular diffusion ...... Dynamics of fluid in porous media.

  2. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)

    A three-dimensional variable-density groundwater flow model, the SEAWAT model, was used to assess the influence of subsurface drain spacing, evapotranspiration and irrigation water quality on salt concentration at the base of the root zone, leaching and drainage in salt affected irrigated land. The study was carried out ...

  3. Accelerator simulation and theoretical modelling of radiation effects (SMoRE)

    CERN Document Server

    2018-01-01

    This publication summarizes the findings and conclusions of the IAEA coordinated research project (CRP) on accelerator simulation and theoretical modelling of radiation effects, aimed at supporting Member States in the development of advanced radiation-resistant structural materials for implementation in innovative nuclear systems. This aim can be achieved through enhancement of both experimental neutron-emulation capabilities of ion accelerators and improvement of the predictive efficiency of theoretical models and computer codes. This dual approach is challenging but necessary, because outputs of accelerator simulation experiments need adequate theoretical interpretation, and theoretical models and codes need high dose experimental data for their verification. Both ion irradiation investigations and computer modelling have been the specific subjects of the CRP, and the results of these studies are presented in this publication which also includes state-ofthe- art reviews of four major aspects of the project...

  4. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    Science.gov (United States)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  5. Theoretical model simulations for the global Thermospheric Mapping Study (TMS) periods

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    Theoretical and semiempirical models of the solar UV/EUV and of the geomagnetic driving forces affecting the terrestrial mesosphere and thermosphere have been used to generate a series of representative numerical time-dependent and global models of the thermosphere, for the range of solar and geoamgnetic activity levels which occurred during the three Thermospheric Mapping Study periods. The simulations obtained from these numerical models are compared with observations, and with the results of semiempirical models of the thermosphere. The theoretical models provide a record of the magnitude of the major driving forces which affected the thermosphere during the study periods, and a baseline against which the actual observed structure and dynamics can be compared.

  6. Transport simulations TFTR: Theoretically-based transport models and current scaling

    International Nuclear Information System (INIS)

    Redi, M.H.; Cummings, J.C.; Bush, C.E.; Fredrickson, E.; Grek, B.; Hahm, T.S.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Scott, S.D.; Stratton, B.C.; Synakowski, E.J.; Tang, W.M.; Taylor, G.

    1991-12-01

    In order to study the microscopic physics underlying observed L-mode current scaling, 1-1/2-d BALDUR has been used to simulate density and temperature profiles for high and low current, neutral beam heated discharges on TFTR with several semi-empirical, theoretically-based models previously compared for TFTR, including several versions of trapped electron drift wave driven transport. Experiments at TFTR, JET and D3-D show that I p scaling of τ E does not arise from edge modes as previously thought, and is most likely to arise from nonlocal processes or from the I p -dependence of local plasma core transport. Consistent with this, it is found that strong current scaling does not arise from any of several edge models of resistive ballooning. Simulations with the profile consistent drift wave model and with a new model for toroidal collisionless trapped electron mode core transport in a multimode formalism, lead to strong current scaling of τ E for the L-mode cases on TFTR. None of the theoretically-based models succeeded in simulating the measured temperature and density profiles for both high and low current experiments

  7. Security Analysis of Smart Grid Cyber Physical Infrastructures Using Modeling and Game Theoretic Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, Robert K [ORNL; Sheldon, Frederick T. [University of Idaho

    2015-01-01

    Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.

  8. Theoretical modeling, simulation and experimental study of hybrid piezoelectric and electromagnetic energy harvester

    Directory of Open Access Journals (Sweden)

    Ping Li

    2018-03-01

    Full Text Available In this paper, performances of vibration energy harvester combined piezoelectric (PE and electromagnetic (EM mechanism are studied by theoretical analysis, simulation and experimental test. For the designed harvester, electromechanical coupling modeling is established, and expressions of vibration response, output voltage, current and power are derived. Then, performances of the harvester are simulated and tested; moreover, the power charging rechargeable battery is realized through designed energy storage circuit. By the results, it’s found that compared with piezoelectric-only and electromagnetic-only energy harvester, the hybrid energy harvester can enhance the output power and harvesting efficiency; furthermore, at the harmonic excitation, output power of harvester linearly increases with acceleration amplitude increasing; while it enhances with acceleration spectral density increasing at the random excitation. In addition, the bigger coupling strength, the bigger output power is, and there is the optimal load resistance to make the harvester output the maximal power.

  9. Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.

    Science.gov (United States)

    Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji

    2016-11-23

    The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.

  10. Theoretical Modeling and Simulation of Phase-Locked Loop (PLL for Clock Data Recovery (CDR

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2012-01-01

    Full Text Available Modern communication and computer systems require rapid (Gbps, efficient  and large bandwidth data transfers. Agressive scaling of digital integrated systems  allow buses and communication controller circuits to be integrated with the microprocessor on the same chip. The  Peripheral Component Interconnect Express (PCIe protocol handles all communcation between the central processing unit (CPU and hardware devices. PCIe buses require efficient clock data recovery circuits (CDR to recover clock signals embedded in data during transmission. This paper describes the theoretical modeling and simulation of a phase-locked loop (PLL used in a CDR circuit. A simple PLL architecture for a 5 GHz CDR circuit is proposed  and elaborated in this work. Simulations were carried out using a Hardware Description Language, Verilog-AMS. The effect of jitter on the proposed design is also simulated and evaluated in this work. It was found that the proposed design is robust against both input and VCO jitter.ABSTRAK: Sistem komunikasi dan komputer moden memerlukan pemindahan data yang cekap (Gbps, dan bandwidth yang besar. Pengecilan agresif menggunakan teknik sistem digital bersepadu membenarkan bas dan litar pengawal komunikasi disatukan dengan  mikroprocessor dalam cip yang sama. Protokol persisian komponen sambung tara ekspres (PCIe mengendalikan semua komunikasi antara unit pemprosesan pusat (CPU dan peranti perkakasan. Bas PCIe memerlukan litar jam pemulihan data (CDR yang cekap untuk mendapatkan kembali isyarat jam yang tertanam dalam data semasa transmisi. Karya ini menerangkan teori pemodelan dan simulasi gelung fasa terkunci (PLL untuk CDR. Rekabentuk 5 GHz PLL yang mudah telah dicadangkan dalm kertas kerja ini. Simulasi telah dijalankan menggunakan perisian verilog-AMS. Simulasi mengunnakan kesan ketar dalam reka bentuk yang dicadangkan telah dinilai. Reka bentuk yang dicadangkan terbukti teguh mengatasi ganguan ketar di input dan VCO.KEY WORDS

  11. Linac4 DTL Prototype: Theoretical Model, Simulation and Low Energy Measurements

    CERN Document Server

    Grespan, F; Gerigk, F; Ramberger, S

    2010-01-01

    A one meter long hot prototype of the LINAC4 DTL, built in a collaboration with INFN Legnaro, was delivered to CERN in 2008. It was then copper plated at CERN is and is presently prepared for high-power testing at the CERN test stand in SM18. In this paper we present 2D/3D simulations and the first RF low-power measurements to verify the electromagnetic properties of the cavity and to tune it before the high-power RF tests. In particular, the influence of the post couplers was studied in order to guarantee stabilization of the accelerating field during operation. We present an equivalent circuit model of the DTL, together with a comparison of 3D simulations and measurement results for the hot model.

  12. Theoretical analysis and simulations of the generalized Lotka-Volterra model

    Science.gov (United States)

    Malcai, Ofer; Biham, Ofer; Richmond, Peter; Solomon, Sorin

    2002-09-01

    The dynamics of generalized Lotka-Volterra systems is studied by theoretical techniques and computer simulations. These systems describe the time evolution of the wealth distribution of individuals in a society, as well as of the market values of firms in the stock market. The individual wealths or market values are given by a set of time dependent variables wi, i=1,...,N. The equations include a stochastic autocatalytic term (representing investments), a drift term (representing social security payments), and a time dependent saturation term (due to the finite size of the economy). The wi's turn out to exhibit a power-law distribution of the form P(w)~w-1-α. It is shown analytically that the exponent α can be expressed as a function of one parameter, which is the ratio between the constant drift component (social security) and the fluctuating component (investments). This result provides a link between the lower and upper cutoffs of this distribution, namely, between the resources available to the poorest and those available to the richest in a given society. The value of α is found to be insensitive to variations in the saturation term, which represent the expansion or contraction of the economy. The results are of much relevance to empirical studies that show that the distribution of the individual wealth in different countries during different periods in the 20th century has followed a power-law distribution with 1<α<2.

  13. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    Science.gov (United States)

    Mendenhall, Jonathan D.

    's and other micellization properties for a variety of linear and branched surfactant chemical architectures which are commonly encountered in practice. Single-component surfactant solutions are investigated, in order to clarify the specific contributions of the surfactant head and tail to the free energy of micellization, a quantity which determines the cmc and all other aspects of micellization. First, a molecular-thermodynamic (MT) theory is presented which makes use of bulk-phase thermodynamics and a phenomenological thought process to describe the energetics related to the formation of a micelle from its constituent surfactant monomers. Second, a combined computer-simulation/molecular-thermodynamic (CSMT) framework is discussed which provides a more detailed quantification of the hydrophobic effect using molecular dynamics simulations. A novel computational strategy to identify surfactant head and tail using an iterative dividing surface approach, along with simulated micelle results, is proposed. Force-field development for novel surfactant structures is also discussed. Third, a statistical-thermodynamic, single-chain, mean-field theory for linear and branched tail packing is formulated, which enables quantification of the specific energetic penalties related to confinement and constraint of surfactant tails within micelles. Finally, these theoretical and simulations-based strategies are used to predict the micellization behavior of 55 linear surfactants and 28 branched surfactants. Critical micelle concentration and optimal micelle properties are reported and compared with experiment, demonstrating good agreement across a range of surfactant head and tail types. In particular, the CSMT framework is found to provide improved agreement with experimental cmc's for the branched surfactants considered. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  14. Theoretical Tools and Software for Modeling, Simulation and Control Design of Rocket Test Facilities

    Science.gov (United States)

    Richter, Hanz

    2004-01-01

    A rocket test stand and associated subsystems are complex devices whose operation requires that certain preparatory calculations be carried out before a test. In addition, real-time control calculations must be performed during the test, and further calculations are carried out after a test is completed. The latter may be required in order to evaluate if a particular test conformed to specifications. These calculations are used to set valve positions, pressure setpoints, control gains and other operating parameters so that a desired system behavior is obtained and the test can be successfully carried out. Currently, calculations are made in an ad-hoc fashion and involve trial-and-error procedures that may involve activating the system with the sole purpose of finding the correct parameter settings. The goals of this project are to develop mathematical models, control methodologies and associated simulation environments to provide a systematic and comprehensive prediction and real-time control capability. The models and controller designs are expected to be useful in two respects: 1) As a design tool, a model is the only way to determine the effects of design choices without building a prototype, which is, in the context of rocket test stands, impracticable; 2) As a prediction and tuning tool, a good model allows to set system parameters off-line, so that the expected system response conforms to specifications. This includes the setting of physical parameters, such as valve positions, and the configuration and tuning of any feedback controllers in the loop.

  15. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  16. A SCREENING MODEL FOR SIMULATING DNAPL FLOW AND TRANSPORT IN POROUS MEDIA: THEORETICAL DEVELOPMENT

    Science.gov (United States)

    There exists a need for a simple tool that will allow us to analyze a DNAPL contamination scenario from free-product release to transport of soluble constituents to downgradient receptor wells. The objective of this manuscript is to present the conceptual model and formulate the ...

  17. A new theoretical model for inelastic tunneling in realistic systems : comparing STM simulations with experiments

    NARCIS (Netherlands)

    Rossen, E.T.R.

    2012-01-01

    This thesis has been dedicated to modeling the electron transport in tunnel junctions in order to efficiently describe and predict inelastic effects that occur when electrons pass a tunnel junction. These inelastic effects can be considered at several levels of sophistication, from very simple to

  18. Theoretical foundations of learning through simulation.

    Science.gov (United States)

    Zigmont, Jason J; Kappus, Liana J; Sudikoff, Stephanie N

    2011-04-01

    Health care simulation is a powerful educational tool to help facilitate learning for clinicians and change their practice to improve patient outcomes and safety. To promote effective life-long learning through simulation, the educator needs to consider individuals, their experiences, and their environments. Effective education of adults through simulation requires a sound understanding of both adult learning theory and experiential learning. This review article provides a framework for developing and facilitating simulation courses, founded upon empiric and theoretic research in adult and experiential learning. Specifically, this article provides a theoretic foundation for using simulation to change practice to improve patient outcomes and safety. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  20. Theoretical models for supernovae

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1981-01-01

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the γ-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of 4 He and 14 N prior to their collapse on the pair instability

  1. Transport simulations of TFTR experiments to test theoretical models for χe and χi

    International Nuclear Information System (INIS)

    Redi, M.H.; Bateman, G.

    1990-08-01

    1-1/2-d BALDUR transport code predictions using recent theoretically-based models for thermal and particle transport are compared to measured profiles of electron plasma density and electron and ion temperatures for TFTR ohmic, L-mode and supershot discharges. The profile consistent drift wave model is found to overestimate ion temperatures at high heating powers, so that a third mode or loss process is needed in addition to drift wave transport (TEM, η i ) and an edge loss model. None of several versions of local multiple mode models, using the 1989 Carreras-Diamond resistive ballooning model, gives T e , T i within 20% for all three TFTR regimes studied. 36 refs., 7 figs., 4 tabs

  2. Modelling, Simulation, Animation, and Real-Time Control (Mosart) for a Class of Electromechanical Systems: A System-Theoretic Approach

    Science.gov (United States)

    Rodriguez, Armando A.; Metzger, Richard P.; Cifdaloz, Oguzhan; Dhirasakdanon, Thanate; Welfert, Bruno

    2004-01-01

    This paper describes an interactive modelling, simulation, animation, and real-time control (MoSART) environment for a class of 'cart-pendulum' electromechanical systems that may be used to enhance learning within differential equations and linear algebra classes. The environment is useful for conveying fundamental mathematical/systems concepts…

  3. A theoretical starspot model

    International Nuclear Information System (INIS)

    Jahn, K.

    1983-01-01

    A model of the monopoloidal and axisymmetric spot with the untwisted configuration of the magnetic field is considered and the influence of the magnetic field on the gas is described with the assumption that the magnetic field partially inhibits convective-energy transport. Series of starspot models have been computed for a zero-age main sequence star of one solar mass. Models are described by three free parameters: the total magnetic flux, the effective temperature of the spot and the position of the spot bottom. Obtained models of small spots can be compared with sunspot and there is a satisfactory agreement between our results and observations. (author)

  4. Theoretical and phenomological models

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    In the previous lectures, a Z(N) model of the confinement-deconfinement phase transition was presented. Such a model satisfactorily accounts for the qualitative features of this transition and the effects of fermions when they are included. This model does lack a simple physical intuitive picture of the transition. There has been a recent development of such an intuitive physical picture by Feynman and Patel. This picture utilizes a flux-tube model of the confinement-deconfinement transition. Such a picture may not only be regarded as a concrete realization of strong coupling expansions on the lattice, but may also be viewed as a representation of the successful string model phenomenology of high energy physics

  5. Franchise Business Model: Theoretical Insights

    OpenAIRE

    Levickaitė, Rasa; Reimeris, Ramojus

    2010-01-01

    The article is based on literature review, theoretical insights, and deals with the topic of franchise business model. The objective of the paper is to analyse peculiarities of franchise business model and its developing conditions in Lithuania. The aim of the paper is to make an overview on franchise business model and its environment in Lithuanian business context. The overview is based on international and local theoretical insights. In terms of practical meaning, this article should be re...

  6. Theoretical models of DNA flexibility

    Czech Academy of Sciences Publication Activity Database

    Dršata, Tomáš; Lankaš, Filip

    2013-01-01

    Roč. 3, č. 4 (2013), s. 355-363 ISSN 1759-0876 Institutional support: RVO:61388963 Keywords : molecular dynamics simulations * base pair level * indirect readout Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.041, year: 2013

  7. Theoretical modelling, experimental studies and clinical simulations of urethral cooling catheters for use during prostate thermal therapy

    International Nuclear Information System (INIS)

    Davidson, Sean R H; Sherar, Michael D

    2003-01-01

    Urethral cooling catheters are used to prevent thermal damage to the urethra during thermal therapy of the prostate. Quantification of a catheter's heat transfer characteristics is necessary for prediction of the catheter's influence on the temperature and thermal dose distribution in periurethral tissue. Two cooling catheters with different designs were examined: the Dornier Urowave catheter and a prototype device from BSD Medical Corp. A convection coefficient, h, was used to characterize the cooling ability of each catheter. The value of the convection coefficient (h = 330 W m -2 deg C -1 for the Dornier catheter, h = 160 W m -2 deg C -1 for the BSD device) was obtained by comparing temperatures measured in a tissue-equivalent phantom material to temperatures predicted by a finite element method simulation of the phantom experiments. The coefficient was found to be insensitive to the rate of coolant flow inside the catheter between 40 and 120 ml min -1 . The convection coefficient method for modelling urethral catheters was incorporated into simulations of microwave heating of the prostate. Results from these simulations indicate that the Dornier device is significantly more effective than the BSD catheter at cooling the tissue surrounding the urethra

  8. Experimental measurements and theoretical model of the cryogenic performance of bialkali photocathode and characterization with Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Huamu Xie

    2016-10-01

    Full Text Available High-average-current, high-brightness electron sources have important applications, such as in high-repetition-rate free-electron lasers, or in the electron cooling of hadrons. Bialkali photocathodes are promising high-quantum-efficiency (QE cathode materials, while superconducting rf (SRF electron guns offer continuous-mode operation at high acceleration, as is needed for high-brightness electron sources. Thus, we must have a comprehensive understanding of the performance of bialkali photocathode at cryogenic temperatures when they are to be used in SRF guns. To remove the heat produced by the radio-frequency field in these guns, the cathode should be cooled to cryogenic temperatures. We recorded an 80% reduction of the QE upon cooling the K_{2}CsSb cathode from room temperature down to the temperature of liquid nitrogen in Brookhaven National Laboratory (BNL’s 704 MHz SRF gun. We conducted several experiments to identify the underlying mechanism in this reduction. The change in the spectral response of the bialkali photocathode, when cooled from room temperature (300 K to 166 K, suggests that a change in the ionization energy (defined as the energy gap from the top of the valence band to vacuum level is the main reason for this reduction. We developed an analytical model of the process, based on Spicer’s three-step model. The change in ionization energy, with falling temperature, gives a simplified description of the QE’s temperature dependence. We also developed a 2D Monte Carlo code to simulate photoemission that accounts for the wavelength-dependent photon absorption in the first step, the scattering and diffusion in the second step, and the momentum conservation in the emission step. From this simulation, we established a correlation between ionization energy and reduction in the QE. The simulation yielded results comparable to those from the analytical model. The simulation offers us additional capabilities such as calculation

  9. Using Akaike's information theoretic criterion in mixed-effects modeling of pharmacokinetic data: a simulation study [version 3; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Erik Olofsen

    2015-07-01

    Full Text Available Akaike's information theoretic criterion for model discrimination (AIC is often stated to "overfit", i.e., it selects models with a higher dimension than the dimension of the model that generated the data. However, with experimental pharmacokinetic data it may not be possible to identify the correct model, because of the complexity of the processes governing drug disposition. Instead of trying to find the correct model, a more useful objective might be to minimize the prediction error of drug concentrations in subjects with unknown disposition characteristics. In that case, the AIC might be the selection criterion of choice. We performed Monte Carlo simulations using a model of pharmacokinetic data (a power function of time with the property that fits with common multi-exponential models can never be perfect - thus resembling the situation with real data. Prespecified models were fitted to simulated data sets, and AIC and AICc (the criterion with a correction for small sample sizes values were calculated and averaged. The average predictive performances of the models, quantified using simulated validation sets, were compared to the means of the AICs. The data for fits and validation consisted of 11 concentration measurements each obtained in 5 individuals, with three degrees of interindividual variability in the pharmacokinetic volume of distribution. Mean AICc corresponded very well, and better than mean AIC, with mean predictive performance. With increasing interindividual variability, there was a trend towards larger optimal models, but with respect to both lowest AICc and best predictive performance. Furthermore, it was observed that the mean square prediction error itself became less suitable as a validation criterion, and that a predictive performance measure should incorporate interindividual variability. This simulation study showed that, at least in a relatively simple mixed-effects modelling context with a set of prespecified models

  10. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data

    Directory of Open Access Journals (Sweden)

    Guisan Antoine

    2009-04-01

    Full Text Available Abstract Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a real absences b pseudo-absences selected randomly from the background and c two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97, and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have

  11. Modeling business processes: theoretical and practical aspects

    Directory of Open Access Journals (Sweden)

    V.V. Dubininа

    2015-06-01

    Full Text Available The essence of process-oriented enterprise management has been examined in the article. The content and types of information technology have been analyzed in the article, due to the complexity and differentiation of existing methods, as well as the specificity of language, terminology of the enterprise business processes modeling. The theoretical aspects of business processes modeling have been reviewed and the modern traditional modeling techniques received practical application in the visualization model of retailers activity have been studied in the article. In the process of theoretical analysis of the modeling methods found that UFO-toolkit method that has been developed by Ukrainian scientists due to it systemology integrated opportunities, is the most suitable for structural and object analysis of retailers business processes. It was designed visualized simulation model of the business process "sales" as is" of retailers using a combination UFO-elements with the aim of the further practical formalization and optimization of a given business process.

  12. Computational simulation of migration and dispersion in free capillary zone electrophoresis, I: Description of the theoretical model

    NARCIS (Netherlands)

    Reijenga, J.C.; Kenndler, E.

    1994-01-01

    An instrument simulator was developed for high-performance capillary electrophoresis which allows for fast graphic illustration of the effect of a large number of variables on the shape of the electropherogram. The input data of the separands are values of pK and mobilities at 25°C and infinite

  13. Tube Bulge Process : Theoretical Analysis and Finite Element Simulations

    International Nuclear Information System (INIS)

    Velasco, Raphael; Boudeau, Nathalie

    2007-01-01

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress

  14. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    International Nuclear Information System (INIS)

    Zhang Feng; Zhang Ning-Ning; Yan Sen; Song Sun; Jun Bao; Chen Gao; Zhang Yi

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells, and thereby reducing the cost of PV electricity generation. LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light, so further improving the efficiency of the PV cells. However, it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC. In this paper, all the physical processes of the light transmission and collection in the BMP-LSC were analyzed. A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC. A larger-size LSC was simulated, and the effects of dye concentration, the LSC thickness, the cell area, and the cell distance were systematically analyzed. (paper)

  15. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Ning-Ning Zhang; Yi Zhang; Sen Yan; Song Sun; Jun Bao; Chen Gao

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells,and thereby reducing the cost of PV electricity generation.LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light,so further improving the efficiency of the PV cells.However,it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC.In this paper,all the physical processes of the light transmission and collection in the BMP-LSC were analyzed.A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC.A larger-size LSC was simulated,and the effects of dye concentration,the LSC thickness,the cell area,and the cell distance were systematically analyzed.

  16. Inhalation of nanoplatelets - Theoretical deposition simulations.

    Science.gov (United States)

    Sturm, Robert

    2017-12-01

    Primary objective of the contribution was the theoretical prediction of nanoplatelet deposition in the human respiratory tract. Modeling was founded on the hypothetical inhalation of graphene nanoplatelets (GNP) measuring 0.01 and 0.1μm in thickness and adopting a projected area diameter of 1-30μm. Particle uptake was assumed to take place with inhalation flow rates of 250, 500, 750, and 1000cm 3 s -1 , respectively. For an appropriate description of pulmonary particle behavior, transport of GNP in a stochastic lung structure and deposition formulae based on analytical and numerical studies were presupposed. The results obtained from the theoretical approach clearly demonstrate that GNP with a thickness of 0.01μm deposit in the respiratory tract by 20-50%, whereas GNP with a thickness of 0.1μm exhibit a deposition of 20-90%. Larger platelets deposit with higher probability than small ones. Increase of inhalation flow rate is accompanied by decreased deposition in the case of thin GNP, whilst thicker GNP are preferably accumulated in the extrathoracic region. Generation-specific deposition ranges from 0.05 to 7% (0.01μm) and from 0.05 to 9%, with maximum values being obtained in airway generation 20. In proximal airway generations (0-10), deposition is increased with inhalation flow rate, whereas in intermediate to distal generations a reverse effect may be observed. Health consequences of GNP deposition in different lung compartments are subjected to an intense debate. Copyright © 2017. Published by Elsevier GmbH.

  17. ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL

    OpenAIRE

    Климак, М.С.; Войтко, С.В.

    2016-01-01

    Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics

  18. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  19. Theoretical and simulation studies of seeding methods

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Claudio [Univ. of California, Los Angeles, CA (United States)

    2017-12-11

    We report the theoretical and experimental studies done with the support of DOE-Grant DE-SC0009983 to increase an X-ray FEL peak power from the present level of 20 to 40 GW to one or more TW by seeding, undulator tapering and using the new concept of the Double Bunch FEL.

  20. Simulation of Daily Weather Data Using Theoretical Probability Distributions.

    Science.gov (United States)

    Bruhn, J. A.; Fry, W. E.; Fick, G. W.

    1980-09-01

    A computer simulation model was constructed to supply daily weather data to a plant disease management model for potato late blight. In the weather model Monte Carlo techniques were employed to generate daily values of precipitation, maximum temperature, minimum temperature, minimum relative humidity and total solar radiation. Each weather variable is described by a known theoretical probability distribution but the values of the parameters describing each distribution are dependent on the occurrence of rainfall. Precipitation occurrence is described by a first-order Markov chain. The amount of rain, given that rain has occurred, is described by a gamma probability distribution. Maximum and minimum temperature are simulated with a trivariate normal probability distribution involving maximum temperature on the previous day, maximum temperature on the current day and minimum temperature on the current day. Parameter values for this distribution are dependent on the occurrence of rain on the previous day. Both minimum relative humidity and total solar radiation are assumed to be normally distributed. The values of the parameters describing the distribution of minimum relative humidity is dependent on rainfall occurrence on the previous day and current day. Parameter values for total solar radiation are dependent on the occurrence of rain on the current day. The assumptions made during model construction were found to be appropriate for actual weather data from Geneva, New York. The performance of the weather model was evaluated by comparing the cumulative frequency distributions of simulated weather data with the distributions of actual weather data from Geneva, New York and Fort Collins, Colorado. For each location, simulated weather data were similar to actual weather data in terms of mean response, variability and autocorrelation. The possible applications of this model when used with models of other components of the agro-ecosystem are discussed.

  1. Monte Carlo simulations in theoretical physic

    International Nuclear Information System (INIS)

    Billoire, A.

    1991-01-01

    After a presentation of the MONTE CARLO method principle, the method is applied, first to the critical exponents calculations in the three dimensions ISING model, and secondly to the discrete quantum chromodynamic with calculation times in function of computer power. 28 refs., 4 tabs

  2. Theoretical Models for Orthogonal Cutting

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”......This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”...

  3. A Set Theoretical Approach to Maturity Models

    DEFF Research Database (Denmark)

    Lasrado, Lester; Vatrapu, Ravi; Andersen, Kim Normann

    2016-01-01

    characterized by equifinality, multiple conjunctural causation, and case diversity. We prescribe methodological guidelines consisting of a six-step procedure to systematically apply set theoretic methods to conceptualize, develop, and empirically derive maturity models and provide a demonstration......Maturity Model research in IS has been criticized for the lack of theoretical grounding, methodological rigor, empirical validations, and ignorance of multiple and non-linear paths to maturity. To address these criticisms, this paper proposes a novel set-theoretical approach to maturity models...

  4. Set-Theoretic Approach to Maturity Models

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan

    Despite being widely accepted and applied, maturity models in Information Systems (IS) have been criticized for the lack of theoretical grounding, methodological rigor, empirical validations, and ignorance of multiple and non-linear paths to maturity. This PhD thesis focuses on addressing...... these criticisms by incorporating recent developments in configuration theory, in particular application of set-theoretic approaches. The aim is to show the potential of employing a set-theoretic approach for maturity model research and empirically demonstrating equifinal paths to maturity. Specifically...... methodological guidelines consisting of detailed procedures to systematically apply set theoretic approaches for maturity model research and provides demonstrations of it application on three datasets. The thesis is a collection of six research papers that are written in a sequential manner. The first paper...

  5. Desublimation process: verification and applications of a theoretical model

    International Nuclear Information System (INIS)

    Eby, R.S.

    1979-01-01

    A theoretical model simulating the simultaneous heat and mass transfer which takes place during the desublimation of a gas to a solid is presented. Desublimer column loading profiles to experimentally verify the model were obtained using a gamma scintillation technique. The data indicate that, if the physical parameters of the desublimed frost material are known, the model can accurately predict the desublimation phenomenon. The usefulness of the model in different engineering applications is also addressed

  6. Theoretical Models, Assessment Frameworks and Test Construction.

    Science.gov (United States)

    Chalhoub-Deville, Micheline

    1997-01-01

    Reviews the usefulness of proficiency models influencing second language testing. Findings indicate that several factors contribute to the lack of congruence between models and test construction and make a case for distinguishing between theoretical models. Underscores the significance of an empirical, contextualized and structured approach to the…

  7. Comparing Simulated and Theoretical Sampling Distributions of the U3 Person-Fit Statistic.

    Science.gov (United States)

    Emons, Wilco H. M.; Meijer, Rob R.; Sijtsma, Klaas

    2002-01-01

    Studied whether the theoretical sampling distribution of the U3 person-fit statistic is in agreement with the simulated sampling distribution under different item response theory models and varying item and test characteristics. Simulation results suggest that the use of standard normal deviates for the standardized version of the U3 statistic may…

  8. Theoretical models for recombination in expanding gas

    International Nuclear Information System (INIS)

    Avron, Y.; Kahane, S.

    1978-09-01

    In laser isotope separation of atomic uranium, one is confronted with the theoretical problem of estimating the concentration of thermally ionized uranium atoms. To investigate this problem theoretical models for recombination in an expanding gas and in the absence of local thermal equilibrium have been constructed. The expansion of the gas is described by soluble models of the hydrodynamic equation, and the recombination by rate equations. General results for the freezing effect for the suitable ranges of the gas parameters are obtained. The impossibility of thermal equilibrium in expanding two-component systems is proven

  9. Some Model Theoretic Remarks on Bass Modules

    Directory of Open Access Journals (Sweden)

    E. Momtahan

    2011-09-01

    Full Text Available We study Bass modules, Bass rings, and related concepts from a model theoretic point of view. We observe that the class of Bass modules (over a fixed ring is not stable under elementary equivalence. We observe that under which conditions the class of Bass rings are stable under elementary equivalence.

  10. Hybrid quantum teleportation: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  11. N-barN interaction theoretical models

    International Nuclear Information System (INIS)

    Loiseau, B.

    1991-12-01

    In the framework of antinucleon-nucleon interaction theoretical models, our present understanding on the N-barN interaction is discussed, either from quark- or/and meson- and baryon-degrees of freedom, by considering the N-barN annihilation into mesons and the N-barN elastic and charge-exchange scattering. (author) 52 refs., 11 figs., 2 tabs

  12. A theoretical model of multielectrode DBR lasers

    DEFF Research Database (Denmark)

    Pan, Xing; Olesen, Henning; Tromborg, Bjarne

    1988-01-01

    A theoretical model for two- and three-section tunable distributed Bragg reflector (DBR) lasers is presented. The static tuning properties are studied in terms of threshold current, linewidth, oscillation frequency, and output power. Regions of continuous tuning for three-section DBR lasers...

  13. Theoretical aspects of the optical model

    International Nuclear Information System (INIS)

    Mahaux, C.

    1980-01-01

    We first recall the definition of the optical-model potential for nucleons and the physical interpretation of the main related quantities. We then survey the recent theoretical progress towards a reliable calculation of this potential. The present limitations of the theory and some prospects for future developments are outlined. (author)

  14. Explaining clinical behaviors using multiple theoretical models

    Directory of Open Access Journals (Sweden)

    Eccles Martin P

    2012-10-01

    Full Text Available Abstract Background In the field of implementation research, there is an increased interest in use of theory when designing implementation research studies involving behavior change. In 2003, we initiated a series of five studies to establish a scientific rationale for interventions to translate research findings into clinical practice by exploring the performance of a number of different, commonly used, overlapping behavioral theories and models. We reflect on the strengths and weaknesses of the methods, the performance of the theories, and consider where these methods sit alongside the range of methods for studying healthcare professional behavior change. Methods These were five studies of the theory-based cognitions and clinical behaviors (taking dental radiographs, performing dental restorations, placing fissure sealants, managing upper respiratory tract infections without prescribing antibiotics, managing low back pain without ordering lumbar spine x-rays of random samples of primary care dentists and physicians. Measures were derived for the explanatory theoretical constructs in the Theory of Planned Behavior (TPB, Social Cognitive Theory (SCT, and Illness Representations specified by the Common Sense Self Regulation Model (CSSRM. We constructed self-report measures of two constructs from Learning Theory (LT, a measure of Implementation Intentions (II, and the Precaution Adoption Process. We collected data on theory-based cognitions (explanatory measures and two interim outcome measures (stated behavioral intention and simulated behavior by postal questionnaire survey during the 12-month period to which objective measures of behavior (collected from routine administrative sources were related. Planned analyses explored the predictive value of theories in explaining variance in intention, behavioral simulation and behavior. Results Response rates across the five surveys ranged from 21% to 48%; we achieved the target sample size for three of

  15. Explaining clinical behaviors using multiple theoretical models.

    Science.gov (United States)

    Eccles, Martin P; Grimshaw, Jeremy M; MacLennan, Graeme; Bonetti, Debbie; Glidewell, Liz; Pitts, Nigel B; Steen, Nick; Thomas, Ruth; Walker, Anne; Johnston, Marie

    2012-10-17

    In the field of implementation research, there is an increased interest in use of theory when designing implementation research studies involving behavior change. In 2003, we initiated a series of five studies to establish a scientific rationale for interventions to translate research findings into clinical practice by exploring the performance of a number of different, commonly used, overlapping behavioral theories and models. We reflect on the strengths and weaknesses of the methods, the performance of the theories, and consider where these methods sit alongside the range of methods for studying healthcare professional behavior change. These were five studies of the theory-based cognitions and clinical behaviors (taking dental radiographs, performing dental restorations, placing fissure sealants, managing upper respiratory tract infections without prescribing antibiotics, managing low back pain without ordering lumbar spine x-rays) of random samples of primary care dentists and physicians. Measures were derived for the explanatory theoretical constructs in the Theory of Planned Behavior (TPB), Social Cognitive Theory (SCT), and Illness Representations specified by the Common Sense Self Regulation Model (CSSRM). We constructed self-report measures of two constructs from Learning Theory (LT), a measure of Implementation Intentions (II), and the Precaution Adoption Process. We collected data on theory-based cognitions (explanatory measures) and two interim outcome measures (stated behavioral intention and simulated behavior) by postal questionnaire survey during the 12-month period to which objective measures of behavior (collected from routine administrative sources) were related. Planned analyses explored the predictive value of theories in explaining variance in intention, behavioral simulation and behavior. Response rates across the five surveys ranged from 21% to 48%; we achieved the target sample size for three of the five surveys. For the predictor variables

  16. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  17. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  18. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto

    2003-06-01

    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  19. Modelling in Accounting. Theoretical and Practical Dimensions

    Directory of Open Access Journals (Sweden)

    Teresa Szot-Gabryś

    2010-10-01

    Full Text Available Accounting in the theoretical approach is a scientific discipline based on specific paradigms. In the practical aspect, accounting manifests itself through the introduction of a system for measurement of economic quantities which operates in a particular business entity. A characteristic of accounting is its flexibility and ability of adaptation to information needs of information recipients. One of the main currents in the development of accounting theory and practice is to cover by economic measurements areas which have not been hitherto covered by any accounting system (it applies, for example, to small businesses, agricultural farms, human capital, which requires the development of an appropriate theoretical and practical model. The article illustrates the issue of modelling in accounting based on the example of an accounting model developed for small businesses, i.e. economic entities which are not obliged by law to keep accounting records.

  20. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.

    Science.gov (United States)

    Abbou, Jeremy; Anne, Agnès; Demaille, Christophe

    2006-11-16

    The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.

  1. Demonstration of theoretical and experimental simulations in fiber optics course

    Science.gov (United States)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  2. A Simple theoretical model for 63Ni betavoltaic battery

    International Nuclear Information System (INIS)

    ZUO, Guoping; ZHOU, Jianliang; KE, Guotu

    2013-01-01

    A numerical simulation of the energy deposition distribution in semiconductors is performed for 63 Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for 63 Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to 63 Ni and 147 Pm betavoltaic batteries. - Highlights: • The energy deposition distribution is found following an approximate exponential decay law when beta particles emitted from 63 Ni pass through a semiconductor. • A simple theoretical model for 63 Ni betavoltaic battery is constructed based on the exponential decay law. • Theoretical model can be applied to the betavoltaic batteries which radioactive source has a similar energy spectrum with 63 Ni, such as 147 Pm

  3. Theoretical models of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1992-01-01

    A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts

  4. Simple theoretical models for composite rotor blades

    Science.gov (United States)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  5. Theoretical aspects of spatial-temporal modeling

    CERN Document Server

    Matsui, Tomoko

    2015-01-01

    This book provides a modern introductory tutorial on specialized theoretical aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter provides up-to-date coverage of particle association measures that underpin the theoretical properties of recently developed random set methods in space and time otherwise known as the class of probability hypothesis density framework (PHD filters). The second chapter gives an overview of recent advances in Monte Carlo methods for Bayesian filtering in high-dimensional spaces. In particular, the chapter explains how one may extend classical sequential Monte Carlo methods for filtering and static inference problems to high dimensions and big-data applications. The third chapter presents an overview of generalized families of processes that extend the class of Gaussian process models to heavy-tailed families known as alph...

  6. Theoretical Simulations of Materials for Nuclear Energy Applications

    International Nuclear Information System (INIS)

    Abrikosov, A.; Ponomareva, A.V.; Nikonov, A.Y.; Barannikova, S.A.; Dmitriev, A.I.

    2014-01-01

    We have demonstrated that state-of-the art theoretical calculations have a capability to predict thermodynamic and mechanical properties of materials with very high accuracy, comparable to the experimental accuracy. Considering Fe-Cr alloys, we have investigated the effect of multicomponent alloying on their phase stability, and we have shown that alloying elements Ni, Mn, and Mo, present in RPV steels, reduce the stability of low-Cr steels against binodal, as well as spinodal decomposition. Considering Zr-Nb alloys, we have demonstrated a possibility of obtaining their elastic moduli from ab initio electronic structure calculations. We argue that theoretical simulations represent valuable tool for a design of new materials for nuclear energy applications

  7. Empathy and child neglect: a theoretical model.

    Science.gov (United States)

    De Paul, Joaquín; Guibert, María

    2008-11-01

    To present an explanatory theory-based model of child neglect. This model does not address neglectful behaviors of parents with mental retardation, alcohol or drug abuse, or severe mental health problems. In this model parental behavior aimed to satisfy a child's need is considered a helping behavior and, as a consequence, child neglect is considered as a specific type of non-helping behavior. The central hypothesis of the theoretical model presented here suggests that neglectful parents cannot develop the helping response set to care for their children because the observation of a child's signal of need does not lead to the experience of emotions that motivate helping or because the parents experience these emotions, but specific cognitions modify the motivation to help. The present theoretical model suggests that different typologies of neglectful parents could be developed based on different reasons that parents might not to experience emotions that motivate helping behaviors. The model can be helpful to promote new empirical studies about the etiology of different groups of neglectful families.

  8. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  9. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  10. Theoretical models for supercritical fluid extraction.

    Science.gov (United States)

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  12. A Game Theoretic Model of Thermonuclear Cyberwar

    Energy Technology Data Exchange (ETDEWEB)

    Soper, Braden C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-23

    In this paper we propose a formal game theoretic model of thermonuclear cyberwar based on ideas found in [1] and [2]. Our intention is that such a game will act as a first step toward building more complete formal models of Cross-Domain Deterrence (CDD). We believe the proposed thermonuclear cyberwar game is an ideal place to start on such an endeavor because the game can be fashioned in a way that is closely related to the classical models of nuclear deterrence [4–6], but with obvious modifications that will help to elucidate the complexities introduced by a second domain. We start with the classical bimatrix nuclear deterrence game based on the game of chicken, but introduce uncertainty via a left-of-launch cyber capability that one or both players may possess.

  13. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    2006-01-01

    The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...... into account a number of individual compartments. The signal dephasing is simulated in a semianalytical way by embedding Monte Carlo simulations in the framework of analytical theory. This approach yields a tool for fast, realistic simulation of the change in the transverse relaxation. The results indicate...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...

  14. eudiometric theoretic eudiometric theoretic-approach to modelling

    African Journals Online (AJOL)

    eobe

    2016-01-01

    Jan 1, 2016 ... 2 DEPARTMENT OF PRODUCTION ENGINEERING, UNIVERSITY OF BENIN, BENIN CITY, EDO STATE NIGERIA ... phenomenon of chemical adsorption and desorption of DO at molecular level in a .... Again, few authors have applied linear regression in .... Our goal in modelling is to replicate this natural.

  15. Aviation Safety Simulation Model

    Science.gov (United States)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  16. A theoretical model of water and trade

    Science.gov (United States)

    Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie

    2016-03-01

    Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.

  17. Sentence Comprehension as Mental Simulation: An Information-Theoretic Perspective

    Directory of Open Access Journals (Sweden)

    Gabriella Vigliocco

    2011-11-01

    Full Text Available It has been argued that the mental representation resulting from sentence comprehension is not (just an abstract symbolic structure but a “mental simulation” of the state-of-affairs described by the sentence. We present a particular formalization of this theory and show how it gives rise to quantifications of the amount of syntactic and semantic information conveyed by each word in a sentence. These information measures predict simulated word-processing times in a dynamic connectionist model of sentence comprehension as mental simulation. A quantitatively similar relation between information content and reading time is known to be present in human reading-time data.

  18. Theoretical simulation of soft x-rays for recombining pump

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-05-01

    The theoretical study and computational simulation of soft X-ray laser produced by the recombination of highly ionized plasma are given. An one-dimensional non LTE radiative hydrodynamic code JB-19 is used for simulating the process of soft X-ray laser produced by the recombination. The incident laser light is focused linearly onto the thin carbon fibre. In the duration of incident laser pulse a highly ionized plasma is generated. After the incident laser has been ended the plasma adiabatically expands and rapidly cools down. During the time of three-body recombination and cascading transition, the population inversion between n = 3 and n = 2 is produced and transition gain is obtained. The analysis and evolution is presented, and factors effected on the gain are also discussed. The calculated results have been compared with the experimental data of RAL. It is found that some were in good agreement with them but some are not. Under the limitation of laser energy, the gain is inversely proportional to the wave-length and pulse width of incident laser. For obtaining high gain it is necessary to have double frequency and to shorten the pulse width of Nd-glass laser. Finally the preliminary results about H-like F ion are also given

  19. Theoretical model of polar cap auroral arcs

    International Nuclear Information System (INIS)

    Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)

    1985-01-01

    A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references

  20. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  1. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  2. Anticipatory Cognitive Systems: a Theoretical Model

    Science.gov (United States)

    Terenzi, Graziano

    This paper deals with the problem of understanding anticipation in biological and cognitive systems. It is argued that a physical theory can be considered as biologically plausible only if it incorporates the ability to describe systems which exhibit anticipatory behaviors. The paper introduces a cognitive level description of anticipation and provides a simple theoretical characterization of anticipatory systems on this level. Specifically, a simple model of a formal anticipatory neuron and a model (i.e. the τ-mirror architecture) of an anticipatory neural network which is based on the former are introduced and discussed. The basic feature of this architecture is that a part of the network learns to represent the behavior of the other part over time, thus constructing an implicit model of its own functioning. As a consequence, the network is capable of self-representation; anticipation, on a oscopic level, is nothing but a consequence of anticipation on a microscopic level. Some learning algorithms are also discussed together with related experimental tasks and possible integrations. The outcome of the paper is a formal characterization of anticipation in cognitive systems which aims at being incorporated in a comprehensive and more general physical theory.

  3. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  4. Determination of cognitive development: postnonclassical theoretical model

    Directory of Open Access Journals (Sweden)

    Irina N. Pogozhina

    2015-09-01

    Full Text Available The aim of this research is to develop a postnonclassical cognitive processes content determination model in which mental processes are considered as open selfdeveloping, self-organizing systems. Three types of systems (dynamic, statistical, developing were analysed and compared on the basis of the description of the external and internal characteristics of causation, types of causal chains (dependent, independent and their interactions, as well as the nature of the relationship between the elements of the system (hard, probabilistic, mixed. Mechanisms of open non-equilibrium nonlinear systems (dissipative and four dissipative structures emergence conditions are described. Determination models of mental and behaviour formation and development that were developed under various theoretical approaches (associationism, behaviorism, gestaltism, psychology of intelligence by Piaget, Vygotsky culture historical approach, activity approach and others are mapped on each other as the models that describe behaviour of the three system types mentioned above. The development models of the mental sphere are shown to be different by the following criteria: 1 allocated determinants amount; 2 presence or absence of the system own activity that results in selecting the model not only external, but also internal determinants; 3 types of causal chains (dependent-independent-blended; 4 types of relationships between the causal chain that ultimately determines the subsequent system determination type as decisive (a tough dynamic pattern or stochastic (statistical regularity. The continuity of postnonclassical, classical and non-classical models of mental development determination are described. The process of gradual refinement, complexity, «absorption» of the mental determination by the latter models is characterized. The human mental can be deemed as the functioning of the open developing non-equilibrium nonlinear system (dissipative. The mental sphere is

  5. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  6. Theoretical model of the SOS effect

    Energy Technology Data Exchange (ETDEWEB)

    Darznek, S A; Mesyats, G A; Rukin, S N; Tsiranov, S N [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics

    1997-12-31

    Physical principles underlying the operation of semiconductor opening switches (SOS) are highlighted. The SOS effect occurs at a current density of up to 60 kA/cm{sup 2} in silicon p{sup +}-p-n-n{sup +} structures filled with residual electron-hole plasma. Using a theoretical model developed for plasma dynamic calculations, the mechanism by which current passes through the structure at the stage of high conduction and the processes that take place at the stage of current interruption were analyzed. The dynamics of the processes taking place in the structure was calculated with allowance for both diffusive and drift mechanisms of carrier transport. In addition, two recombination types, viz. recombination via impurities and impact Auger recombination, were included in the model. The effect of the structure on the pumping-circuit current and voltage was also taken into account. The real distribution of the doped impurity in the structure and the avalanche mechanism of carrier multiplication were considered. The results of calculations of a typical SOS are presented. The dynamics of the electron-hole plasma is analyzed. It is shown that the SOS effect represents a qualitatively new mechanism of current interruption in semiconductor structures. (author). 4 figs., 7 refs.

  7. Information-Theoretic Perspectives on Geophysical Models

    Science.gov (United States)

    Nearing, Grey

    2016-04-01

    practice of science (except by Gong et al., 2013, whose fundamental insight is the basis for this talk), and here I offer two examples of practical methods that scientists might use to approximately measure ontological information. I place this practical discussion in the context of several recent and high-profile experiments that have found that simple out-of-sample statistical models typically (vastly) outperform our most sophisticated terrestrial hydrology models. I offer some perspective on several open questions about how to use these findings to improve our models and understanding of these systems. Cartwright, N. (1983) How the Laws of Physics Lie. New York, NY: Cambridge Univ Press. Clark, M. P., Kavetski, D. and Fenicia, F. (2011) 'Pursuing the method of multiple working hypotheses for hydrological modeling', Water Resources Research, 47(9). Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. New York, NY: Wiley-Interscience. Cox, R. T. (1946) 'Probability, frequency and reasonable expectation', American Journal of Physics, 14, pp. 1-13. Csiszár, I. (1972) 'A Class of Measures of Informativity of Observation Channels', Periodica Mathematica Hungarica, 2(1), pp. 191-213. Davies, P. C. W. (1990) 'Why is the physical world so comprehensible', Complexity, entropy and the physics of information, pp. 61-70. Gong, W., Gupta, H. V., Yang, D., Sricharan, K. and Hero, A. O. (2013) 'Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach', Water Resources Research, 49(4), pp. 2253-2273. Jaynes, E. T. (2003) Probability Theory: The Logic of Science. New York, NY: Cambridge University Press. Nearing, G. S. and Gupta, H. V. (2015) 'The quantity and quality of information in hydrologic models', Water Resources Research, 51(1), pp. 524-538. Popper, K. R. (2002) The Logic of Scientific Discovery. New York: Routledge. Van Horn, K. S. (2003) 'Constructing a logic of plausible inference: a guide to cox's theorem

  8. Experimental and theoretical requirements for fuel modelling

    International Nuclear Information System (INIS)

    Gatesoupe, J.P.

    1979-01-01

    From a scientific point of view it may be considered that any event in the life of a fuel pin under irradiation should be perfectly well understood and foreseen from that deterministic point of view, the whole behaviour of the pin maybe analysed and dismantled with a specific function for every component part and each component part related to one basic phenomenon which can be independently studied on pure physical grounds. When extracted from the code structure the subroutine is studied for itself by specialists who try to keep as close as possible to the physics involved in the phenomenon; that often leads to an impressive luxury in details and a subsequent need for many unavailable input data. It might seem more secure to follow that approach since it tries to be firmly based on theoretical grounds. One should think so if the phenomenological situation in the pin were less complex than it is. The codes would not be adequate for off-normal operating conditions since for the accidental transient conditions the key-phenomena would not be the same as for steady-state or slow transient conditions. The orientation given to fuel modelling is based on our two main technological constraints which are: no fuel melting; no cladding failure; no excessive cladding deformation. In this context, the only relevant models are those which have a significant influence on the maximum temperatures in the fuel or on the cladding damage hence the selection between key models and irrelevant models which will next be done. A rather pragmatic view is kept on codification with a special focus on a few determinant aspects of fuel behaviour and no attention to models which are nothing but decorative. Fuel modeling is merely considered as a link between experimental knowledge; it serves as a guide for further improvements in fuel design and as so happens to be quite useful. On this basis the main lacks in of fuel behaviour is described. These are mainly concerning: thermal transfer through

  9. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  10. Theoretical modelling of quantum circuit systems

    International Nuclear Information System (INIS)

    Stiffell, Peter Barry

    2002-01-01

    The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)

  11. Theoretical and simulation analysis of piezoelectric liquid resistance captor filled with pipeline

    Science.gov (United States)

    Zheng, Li; Zhigang, Yang; Junwu, Kan; Lisheng; Bo, Yan; Dan, Lu

    2018-03-01

    This paper designs a kind of Piezoelectric liquid resistance capture energy device, by using the superposition theory of the sheet deformation, the calculation model of the displacement curve of the circular piezoelectric vibrator and the power generation capacity under the concentrated load is established. The results show that the radius ratio, thickness ratio and Young’s modulus of the circular piezoelectric vibrator have greater influence on the power generation capacity. When the material of piezoelectric oscillator is determined, the best radius ratio and thickness ratio make the power generation capacity the largest. Excessive or small radius ratio and thickness ratio will reduce the generating capacity and even generate zero power. In addition, the electromechanical equivalent model is established. Equivalent analysis is made by changing the circuit impedance. The results are consistent with the theoretical simulation results, indicating that the established circuit model can truly reflect the characteristics of the theoretical model.

  12. Theoretical modelling of nuclear waste flows - 16377

    International Nuclear Information System (INIS)

    Adams, J.F.; Biggs, S.R.; Fairweather, M.; Njobuenwu, D.; Yao, J.

    2009-01-01

    A large amount of nuclear waste is stored in tailings ponds as a solid-liquid slurry, and liquid flows containing suspensions of solid particles are encountered in the treatment and disposal of this waste. In processing this waste, it is important to understand the behaviour of particles within the flow in terms of their settling characteristics, their propensity to form solid beds, and the re-suspension characteristics of particles from a bed. A clearer understanding of such behaviour would allow the refinement of current approaches to waste management, potentially leading to reduced uncertainties in radiological impact assessments, smaller waste volumes and lower costs, accelerated clean-up, reduced worker doses, enhanced public confidence and diminished grounds for objection to waste disposal. Mathematical models are of significant value in nuclear waste processing since the extent of characterisation of wastes is in general low. Additionally, waste processing involves a diverse range of flows, within vessels, ponds and pipes. To investigate experimentally all waste form characteristics and potential flows of interest would be prohibitively expensive, whereas the use of mathematical models can help to focus experimental studies through the more efficient use of existing data, the identification of data requirements, and a reduction in the need for process optimisation in full-scale experimental trials. Validated models can also be used to predict waste transport behaviour to enable cost effective process design and continued operation, to provide input to process selection, and to allow the prediction of operational boundaries that account for the different types and compositions of particulate wastes. In this paper two mathematical modelling techniques, namely Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), have been used to investigate particle-laden flows in a straight square duct and a duct with a bend. The flow solutions provided by

  13. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  14. How prayer heals: a theoretical model.

    Science.gov (United States)

    Levin, J S

    1996-01-01

    This article presents a theoretical model that outlines various possible explanations for the healing effects of prayer. Four classes of mechanisms are defined on the basis of whether healing has naturalistic or supernatural origins and whether it operates locally or nonlocally. Through this framework, most of the currently proposed hypotheses for understanding absent healing and other related phenomena-hypotheses that invoke such concepts as subtle energy, psi, consciousness, morphic fields, and extended mind-are shown to be no less naturalistic than the Newtonian, mechanistic forces of allopathic biomedicine so often derided for their materialism. In proposing that prayer may heal through nonlocal means according to mechanisms and theories proposed by the new physics, Dossey is almost alone among medical scholars in suggesting the possible limitations and inadequacies of hypotheses based on energies, forces, and fields. Yet even such nonlocal effects can be conceived of as naturalistic; that is, they are explained by physical laws that may be unbelievable or unfamiliar to most physicians but that are nonetheless becoming recognized as operant laws of the natural universe. The concept of the supernatural, however, is something altogether different, and is, by definition, outside of or beyond nature. Herein may reside an either wholly or partly transcendent Creator-God who is believed by many to heal through means that transcend the laws of the created universe, both its local and nonlocal elements, and that are thus inherently inaccessible to and unknowable by science. Such an explanation for the effects of prayer merits consideration and, despite its unprovability by medical science, should not be dismissed out of hand.

  15. Assessing a Theoretical Model on EFL College Students

    Science.gov (United States)

    Chang, Yu-Ping

    2011-01-01

    This study aimed to (1) integrate relevant language learning models and theories, (2) construct a theoretical model of college students' English learning performance, and (3) assess the model fit between empirically observed data and the theoretical model proposed by the researchers of this study. Subjects of this study were 1,129 Taiwanese EFL…

  16. Models and simulations

    International Nuclear Information System (INIS)

    Lee, M.J.; Sheppard, J.C.; Sullenberger, M.; Woodley, M.D.

    1983-09-01

    On-line mathematical models have been used successfully for computer controlled operation of SPEAR and PEP. The same model control concept is being implemented for the operation of the LINAC and for the Damping Ring, which will be part of the Stanford Linear Collider (SLC). The purpose of this paper is to describe the general relationships between models, simulations and the control system for any machine at SLAC. The work we have done on the development of the empirical model for the Damping Ring will be presented as an example

  17. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  18. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  19. K. Sridhar Moorthy's Theoretical Modelling in Marketing - A Review ...

    African Journals Online (AJOL)

    K. Sridhar Moorthy's Theoretical Modelling in Marketing - A Review. ... Modelling has become a visible tool in many disciplines including marketing and several marketing models have ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Modelling in Accounting. Theoretical and Practical Dimensions

    OpenAIRE

    Teresa Szot -Gabryś

    2010-01-01

    Accounting in the theoretical approach is a scientific discipline based on specific paradigms. In the practical aspect, accounting manifests itself through the introduction of a system for measurement of economic quantities which operates in a particular business entity. A characteristic of accounting is its flexibility and ability of adaptation to information needs of information recipients. One of the main currents in the development of accounting theory and practice is to cover by economic...

  1. Expanding Panjabi's stability model to express movement: a theoretical model.

    Science.gov (United States)

    Hoffman, J; Gabel, P

    2013-06-01

    Novel theoretical models of movement have historically inspired the creation of new methods for the application of human movement. The landmark theoretical model of spinal stability by Panjabi in 1992 led to the creation of an exercise approach to spinal stability. This approach however was later challenged, most significantly due to a lack of favourable clinical effect. The concepts explored in this paper address and consider the deficiencies of Panjabi's model then propose an evolution and expansion from a special model of stability to a general one of movement. It is proposed that two body-wide symbiotic elements are present within all movement systems, stability and mobility. The justification for this is derived from the observable clinical environment. It is clinically recognised that these two elements are present and identifiable throughout the body in different joints and muscles, and the neural conduction system. In order to generalise the Panjabi model of stability to include and illustrate movement, a matching parallel mobility system with the same subsystems was conceptually created. In this expanded theoretical model, the new mobility system is placed beside the existing stability system and subsystems. The ability of both stability and mobility systems to work in harmony will subsequently determine the quality of movement. Conversely, malfunction of either system, or their subsystems, will deleteriously affect all other subsystems and consequently overall movement quality. For this reason, in the rehabilitation exercise environment, focus should be placed on the simultaneous involvement of both the stability and mobility systems. It is suggested that the individual's relevant functional harmonious movements should be challenged at the highest possible level without pain or discomfort. It is anticipated that this conceptual expansion of the theoretical model of stability to one with the symbiotic inclusion of mobility, will provide new understandings

  2. Information-Theoretic Approaches for Evaluating Complex Adaptive Social Simulation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Ganguly, Auroop R [ORNL; Jiao, Yu [ORNL

    2009-01-01

    In this paper, we propose information-theoretic approaches for comparing and evaluating complex agent-based models. In information theoretic terms, entropy and mutual information are two measures of system complexity. We used entropy as a measure of the regularity of the number of agents in a social class; and mutual information as a measure of information shared by two social classes. Using our approaches, we compared two analogous agent-based (AB) models developed for regional-scale social-simulation system. The first AB model, called ABM-1, is a complex AB built with 10,000 agents on a desktop environment and used aggregate data; the second AB model, ABM-2, was built with 31 million agents on a highperformance computing framework located at Oak Ridge National Laboratory, and fine-resolution data from the LandScan Global Population Database. The initializations were slightly different, with ABM-1 using samples from a probability distribution and ABM-2 using polling data from Gallop for a deterministic initialization. The geographical and temporal domain was present-day Afghanistan, and the end result was the number of agents with one of three behavioral modes (proinsurgent, neutral, and pro-government) corresponding to the population mindshare. The theories embedded in each model were identical, and the test simulations focused on a test of three leadership theories - legitimacy, coercion, and representative, and two social mobilization theories - social influence and repression. The theories are tied together using the Cobb-Douglas utility function. Based on our results, the hypothesis that performance measures can be developed to compare and contrast AB models appears to be supported. Furthermore, we observed significant bias in the two models. Even so, further tests and investigations are required not only with a wider class of theories and AB models, but also with additional observed or simulated data and more comprehensive performance measures.

  3. Modeling opinion dynamics: Theoretical analysis and continuous approximation

    International Nuclear Information System (INIS)

    Pinasco, Juan Pablo; Semeshenko, Viktoriya; Balenzuela, Pablo

    2017-01-01

    Highlights: • We study a simple model of persuasion dynamics with long range pairwise interactions. • The continuous limit of the master equation is a nonlinear, nonlocal, first order partial differential equation. • We compute the analytical solutions to this equation, and compare them with the simulations of the dynamics. - Abstract: Frequently we revise our first opinions after talking over with other individuals because we get convinced. Argumentation is a verbal and social process aimed at convincing. It includes conversation and persuasion and the agreement is reached because the new arguments are incorporated. Given the wide range of opinion formation mathematical approaches, there are however no models of opinion dynamics with nonlocal pair interactions analytically solvable. In this paper we present a novel analytical framework developed to solve the master equations with non-local kernels. For this we used a simple model of opinion formation where individuals tend to get more similar after each interactions, no matter their opinion differences, giving rise to nonlinear differential master equation with non-local terms. Simulation results show an excellent agreement with results obtained by the theoretical estimation.

  4. Death of a Simulated Pediatric Patient: Toward a More Robust Theoretical Framework.

    Science.gov (United States)

    McBride, Mary E; Schinasi, Dana Aronson; Moga, Michael Alice; Tripathy, Shreepada; Calhoun, Aaron

    2017-12-01

    A theoretical framework was recently proposed that encapsulates learner responses to simulated death due to action or inaction in the pediatric context. This framework, however, was developed at an institution that allows simulated death and thus does not address the experience of those centers at which this technique is not used. To address this, we performed a parallel qualitative study with the intent of augmenting the initial framework. We conducted focus groups, using a constructivist grounded theory approach, using physicians and nurses who have experienced a simulated cardiac arrest. The participants were recruited via e-mail. Transcripts were analyzed by coders blinded to the original framework to generate a list of provisional themes that were iteratively refined. These themes were then compared with the themes from the original article and used to derive a consensus model that incorporated the most relevant features of each. Focus group data yielded 7 themes. Six were similar to those developed in the original framework. One important exception was noted; however, those learners not exposed to patient death due to action or inaction often felt that the mannequin's survival was artificial. This additional theme was incorporated into a revised framework. The original framework addresses most aspects of learner reactions to simulated death. Our work suggests that adding the theme pertaining to the lack of realism that can be perceived when the mannequin is unexpectedly saved results in a more robust theoretical framework transferable to centers that do not allow mannequin death.

  5. Theoretical simulation of small scale psychometric solar water desalination system in semi-arid region

    International Nuclear Information System (INIS)

    Shatat, Mahmoud; Omer, Siddig; Gillott, Mark; Riffat, Saffa

    2013-01-01

    Many countries around the world suffer from water scarcity. This is especially true in remote and semi-arid regions in the Middle East and North Africa (MENA) where per capita water supplies decline as populations increase. This paper presents the results of a theoretical simulation of an affordable small scale solar water desalination plant using the psychometric humidification and dehumidification process coupled with an evacuated tube solar collector with an area of about 2 m 2 . A mathematical model was developed to describe the system's operation. Then a computer program using Simulink Matlab software was developed to provide the governing equations for the theoretical calculations of the humidification and dehumidification processes. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. After the experimental calibration of the mathematical model, a model simulating solar radiation under the climatic conditions in the Middle East region proved that the performance of the system could be improved to produce a considerably higher amount of fresh water, namely up to 17.5 kg/m 2 day. This work suggests that utilizing the concept of humidification and dehumidification, a compact water desalination unit coupled with solar collectors would significantly increase the potable water supply in remote area. It could be a unique solution of water shortages in such areas. -- Highlights: • An affordable small scale desalination system is proposed. • A mathematical model of the desalination system is developed and programmed using Matlab Simulink. • The model describes the psychometric process based on humidification and dehumidification. • The model is used in optimal selection of elements and operating conditions for solar desalination system. • The use of solar water desalination contributes significantly to reducing global warming

  6. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    Science.gov (United States)

    Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei

    2014-03-01

    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  7. Chaotic advection at large Péclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions

    International Nuclear Information System (INIS)

    Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel; Cuevas, Sergio; Ramos, Eduardo

    2014-01-01

    We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors

  8. CHEMICAL STRUCTURES AND THEORETICAL MODELS OF ...

    African Journals Online (AJOL)

    Preferred Customer

    structure of the flames was computed by a simulation code with three ... When all intermediate species were eluted from the Porapak column, the molecular sieve ... This compression greatly enhances the detection limit which .... reduced, to reproduce the sampling conditions, a marked reduction in the thermocouple signal.

  9. Information Theoretic Tools for Parameter Fitting in Coarse Grained Models

    KAUST Repository

    Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A.; Plechac, Petr

    2015-01-01

    We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics

  10. POSITIVE LEADERSHIP MODELS: THEORETICAL FRAMEWORK AND RESEARCH

    Directory of Open Access Journals (Sweden)

    Javier Blanch, Francisco Gil

    2016-09-01

    Full Text Available The objective of this article is twofold; firstly, we establish the theoretical boundaries of positive leadership and the reasons for its emergence. It is related to the new paradigm of positive psychology that has recently been shaping the scope of organizational knowledge. This conceptual framework has triggered the development of the various forms of positive leadership (i.e. transformational, servant, spiritual, authentic, and positive. Although the construct does not seem univocally defined, these different types of leadership overlap and share a significant affinity. Secondly, we review the empirical evidence that shows the impact of positive leadership in organizations and we highlight the positive relationship between these forms of leadership and key positive organizational variables. Lastly, we analyse future research areas in order to further develop this concept.

  11. How faith heals: a theoretical model.

    Science.gov (United States)

    Levin, Jeff

    2009-01-01

    This paper summarizes theoretical perspectives from psychology supportive of a healing effect of faith. First, faith is defined as a congruence of belief, trust, and obedience in relation to God or the divine. Second, evidence for a faith-healing association is presented, empirically and in theory. To exemplify religiously sanctioned affirmation of such a connection, selected passages are cited from the Jewish canon attesting to biblical and rabbinic support for a faith factor in longevity, disease risk, mental health and well-being, disease prevention, and healing. Third, reference to theories of hope, learned optimism, positive illusions, and opening up or disclosure, and to theory and research on psychoneuroimmunology and placebos, demonstrates that contemporary psychology can accommodate a healing power of faith. This is summarized in a typology of five hypothesized mechanisms underlying a faith-healing association, termed behavioral/conative, interpersonal, cognitive, affective, and psychophysiological. Finally, implications are discussed for the rapprochement of religion and medicine.

  12. Simulation - modeling - experiment

    International Nuclear Information System (INIS)

    2004-01-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  13. Wake modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Aagaard Madsen, H.; Larsen, T.J.; Troldborg, N.

    2008-07-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering (DWM) model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the DWM model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. A computationally low cost model is developed for this purpose. Likewise, the character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by a simple semi-empirical model essentially based on an eddy viscosity philosophy. Contrary to previous attempts to model wake loading, the DWM approach opens for a unifying description in the sense that turbine power- and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as well as of control strategies for the individual turbine. To establish an integrated modeling tool, the DWM methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjaereborg wind farm, have

  14. A Theoretical Model for Metal Corrosion Degradation

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2010-01-01

    Full Text Available Many aluminum and stainless steel alloys contain thin oxide layers on the metal surface which greatly reduce the corrosion rate. Pitting corrosion, a result of localized breakdown of such films, results in accelerated dissolution of the underlying metal through pits. Many researchers have studied pitting corrosion for several decades and the exact governing equation for corrosion pit degradation has not been obtained. In this study, the governing equation for corrosion degradation due to pitting corrosion behavior was derived from solid-state physics and some solutions and simulations are presented and discussed.

  15. Theoretical study on optical model potential

    International Nuclear Information System (INIS)

    Lim Hung Gi.

    1984-08-01

    The optical model potential of non-local effect on the rounded edge of the potential is derived. On the basis of this potential the functional form of the optical model potential, the energy dependence and relationship of its parameters, and the dependency of the values of the parameters on energy change are shown in this paper. (author)

  16. Biomolecular modelling and simulations

    CERN Document Server

    Karabencheva-Christova, Tatyana

    2014-01-01

    Published continuously since 1944, the Advances in Protein Chemistry and Structural Biology series is the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics. Describes advances in biomolecular modelling and simulations Chapters are written by authorities in their field Targeted to a wide audience of researchers, specialists, and students The information provided in the volume is well supported by a number of high quality illustrations, figures, and tables.

  17. Theoretical Models of Neutrino Mixing Recent Developments

    CERN Document Server

    Altarelli, Guido

    2009-01-01

    The data on neutrino mixing are at present compatible with Tri-Bimaximal (TB) mixing. If one takes this indication seriously then the models that lead to TB mixing in first approximation are particularly interesting and A4 models are prominent in this list. However, the agreement of TB mixing with the data could still be an accident. We discuss a recent model based on S4 where Bimaximal mixing is instead valid at leading order and the large corrections needed to reproduce the data arise from the diagonalization of charged leptons. The value of $\\theta_{13}$ could distinguish between the two alternatives.

  18. Modeling Organizational Design - Applying A Formalism Model From Theoretical Physics

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2008-06-01

    Full Text Available Modern organizations are exposed to diverse external environment influences. Currently accepted concepts of organizational design take into account structure, its interaction with strategy, processes, people, etc. Organization design and planning aims to align this key organizational design variables. At the higher conceptual level, however, completely satisfactory formulation for this alignment doesn’t exist. We develop an approach originating from the application of concepts of theoretical physics to social systems. Under this approach, the allocation of organizational resources is analyzed in terms of social entropy, social free energy and social temperature. This allows us to formalize the dynamic relationship between organizational design variables. In this paper we relate this model to Galbraith's Star Model and we also suggest improvements in the procedure of the complex analytical method in organizational design.

  19. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  20. Development of theoretical oxygen saturation calibration curve based on optical density ratio and optical simulation approach

    Science.gov (United States)

    Jumadi, Nur Anida; Beng, Gan Kok; Ali, Mohd Alauddin Mohd; Zahedi, Edmond; Morsin, Marlia

    2017-09-01

    The implementation of surface-based Monte Carlo simulation technique for oxygen saturation (SaO2) calibration curve estimation is demonstrated in this paper. Generally, the calibration curve is estimated either from the empirical study using animals as the subject of experiment or is derived from mathematical equations. However, the determination of calibration curve using animal is time consuming and requires expertise to conduct the experiment. Alternatively, an optical simulation technique has been used widely in the biomedical optics field due to its capability to exhibit the real tissue behavior. The mathematical relationship between optical density (OD) and optical density ratios (ODR) associated with SaO2 during systole and diastole is used as the basis of obtaining the theoretical calibration curve. The optical properties correspond to systolic and diastolic behaviors were applied to the tissue model to mimic the optical properties of the tissues. Based on the absorbed ray flux at detectors, the OD and ODR were successfully calculated. The simulation results of optical density ratio occurred at every 20 % interval of SaO2 is presented with maximum error of 2.17 % when comparing it with previous numerical simulation technique (MC model). The findings reveal the potential of the proposed method to be used for extended calibration curve study using other wavelength pair.

  1. From theoretical model to practical use:

    DEFF Research Database (Denmark)

    Bjørk, Ida Torunn; Lomborg, Kirsten; Nielsen, Carsten Munch

    2013-01-01

    involving both the creation and application of knowledge in several phases. The case presented in this paper is the translation of the Model of Practical Skill Performance into education and practice. Advantages and problems with the use of this model and its adaptation and tailoring to local contexts...... of the model and to tailor the implementation of knowledge to the users. Implications for nursing. This article illustrates the need for enduring collaboration between stakeholders to promote the process of knowledge translation. Translation of research knowledge into practice is a time-consuming process...... that is enhanced when appropriate support is given by leaders in the involved facilities. Conclusion. Knowledge translation is a time-consuming and collaborative endeavour. On the basis of our experience we advocate the implementation and use of a conceptual framework for the entire process of knowledge...

  2. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  3. Theoretical modelling of carbon deposition processes

    International Nuclear Information System (INIS)

    Marsh, G.R.; Norfolk, D.J.; Skinner, R.F.

    1985-01-01

    Work based on capsule experiments in the BNL Gamma Facility, aimed at elucidating the chemistry involved in the formation of carbonaceous deposit on CAGR fuel pin surfaces is described. Using a data-base derived from capsule experiments together with literature values for the kinetics of the fundamental reactions, a chemical model of the gas-phase processes has been developed. This model successfully reproduces the capsule results, whilst preliminary application to the WAGR coolant circuit indicates the likely concentration profiles of various radical species within the fuel channels. (author)

  4. Theoretical Modelling of Intercultural Communication Process

    Directory of Open Access Journals (Sweden)

    Mariia Soter

    2016-08-01

    Full Text Available The definition of the concepts of “communication”, “intercultural communication”, “model of communication” are analyzed in the article. The basic components of the communication process are singled out. The model of intercultural communication is developed. Communicative, behavioral and complex skills for optimal organization of intercultural communication, establishment of productive contact with a foreign partner to achieve mutual understanding, searching for acceptable ways of organizing interaction and cooperation for both communicants are highlighted in the article. It is noted that intercultural communication through interaction between people affects the development of different cultures’ aspects.

  5. Classical solutions of some field theoretic models

    International Nuclear Information System (INIS)

    Zakrzewski, W.J.

    1982-01-01

    In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)

  6. SOME THEORETICAL MODELS EXPLAINING ADVERTISING EFFECTS

    Directory of Open Access Journals (Sweden)

    Vasilica Magdalena SOMEŞFĂLEAN

    2014-06-01

    Full Text Available Persuade clients is still the main focus of the companies, using a set of methods and techniques designed to influence their behavior, in order to obtain better results (profits over a longer period of time. Since the late nineteenth - early twentieth century, the american E.St.Elmo Lewis, considered a pioneer in advertising and sales, developed the first theory, AIDA model, later used by marketers and advertisers to develop a marketing communications strategy. Later studies have developed other models that are the main subject of this research, which explains how and why persuasive communication works, to understand why some approaches are effective and others are not.

  7. Delusions of reference: a new theoretical model.

    Science.gov (United States)

    Startup, Mike; Bucci, Sandra; Langdon, Robyn

    2009-03-01

    Although delusions of reference are one of the most common psychotic symptoms, they have been the focus of little research, possibly because they have been considered to be integral to persecutory delusions. Evidence has now emerged that there are two kinds of delusion of reference. One of these, referential delusions of communication, which involves beliefs that others are communicating in subtle, nonverbal ways, is the focus of this paper. We present a new model designed to account for the four crucial aspects of the phenomenology of these delusions: (1) that neutral stimuli are experienced as having personal significance; (2) that the neutral stimuli are experienced as communicating a message nonverbally; (3) that the content of the message concerns the self; (4) that the experience of a self-referent communication is believed rather than being dismissed as implausible. We used PsycINFO and Scopus, using the term "delusion* of reference", to search for publications with a bearing on our model. The amount of research we found that was designed to test aspects of this model is small but other published research appears to provide some support for its various steps. Much of this research was not explicitly intended to provide an account of delusions of reference but its relevance nevertheless seems clear. There is preliminary support for the plausibility of our model but much additional research is needed. We conclude by summarising what we consider to be the main desiderata.

  8. Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Buck, D. R. [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by

  9. Theoretical Tinnitus framework: A Neurofunctional Model

    Directory of Open Access Journals (Sweden)

    Iman Ghodratitoostani

    2016-08-01

    Full Text Available Subjective tinnitus is the conscious (attended awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional tinnitus model to indicate that the conscious perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional tinnitus model includes the peripheral auditory system, the thalamus, the limbic system, brain stem, basal ganglia, striatum and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the sourceless sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general

  10. Theoretical Tinnitus Framework: A Neurofunctional Model.

    Science.gov (United States)

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be

  11. Explaining clinical behaviors using multiple theoretical models

    OpenAIRE

    Eccles, Martin P; Grimshaw, Jeremy M; MacLennan, Graeme; Bonetti, Debbie; Glidewell, Liz; Pitts, Nigel B; Steen, Nick; Thomas, Ruth; Walker, Anne; Johnston, Marie

    2012-01-01

    Abstract Background In the field of implementation research, there is an increased interest in use of theory when designing implementation research studies involving behavior change. In 2003, we initiated a series of five studies to establish a scientific rationale for interventions to translate research findings into clinical practice by exploring the performance of a number of different, commonly used, overlapping behavioral theories and models. We reflect on the strengths and weaknesses of...

  12. Voronoi cell patterns: Theoretical model and applications

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  13. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  14. Theoretical modeling of diluted antiferromagnetic systems

    International Nuclear Information System (INIS)

    Pozo, J; Elgueta, R; Acevedo, R

    2000-01-01

    Some magnetic properties of a Diluted Antiferromagnetic System (DAFS) are studied. The model of the two sub-networks for antiferromagnetism is used and a Heisenberg Hamiltonian type is proposed, where the square operators are expressed in terms of boson operators with the approach of spin waves. The behavior of the diluted system's fundamental state depends basically on the competition effect between the anisotropy field and the Weiss molecular field. The approach used allows the diluted system to be worked for strong anisotropies as well as when these are very weak

  15. An introduction to game-theoretic modelling

    CERN Document Server

    Mesterton-Gibbons, Mike

    2000-01-01

    This is an introduction to game theory and applications with an emphasis on self-discovery from the perspective of a mathematical modeller. The book deals in a unified manner with the central concepts of both classical and evolutionary game theory. The key ideas are illustrated throughout by a wide variety of well-chosen examples of both human and non-human behavior, including car pooling, price fixing, food sharing, sex allocation and competition for territories or oviposition sites. There are numerous exercises with solutions.

  16. A Rational Model In Theoretical Genetics

    Directory of Open Access Journals (Sweden)

    Karl Javorszky

    2008-07-01

    Full Text Available This model connects information processing in biological organisms with methods and concepts used in classical, technical information processing. The central concept shows copying and regulatory interaction between a logical sequence consisting of triplets and the amount of constituents of a set. The basic mathematical model of information processing within a biological cell has been worked out. The cell in the model copies its present state into a sequence and reads it off the sequence. The sequence comes in triplets and is not one sequence but appears in two almost identical varieties. We treat consecutive and contemporary assemblies of information carrying media as equally suited to contain information. Methods used so far utilised the consecutive property of media, while in biology one observes the concurrent existence of specific realisations of possibilities. Genetics connects the two approaches by using an interplay between consecutively (sequentially ordered logical markers (the DNA and the state of the set engulfing the DNA. Several mathematical tools have been evolved to assemble an interface between sequentially ordered carriers and the same number of carriers if they arrive contemporaneously. Using linguistic theory and formal logic one concludes that measurement(s on a cell are a (set of logical sentence(s relating to an assembly of n objects with group structures among each other. We linearise and count all possible group relations on a set of n objects and introduce the concept of multidimensional partitions hitherto left undefined. We introduce the concept of a maximally structured set by establishing an upper limit to the information carrying capacity of n objects used commutatively and sequentially at the same time (like genetics does. The copying and re-copying mechanism which is the core matter with genetics appears in the model as differing transmission efficiency coefficients of media if the media are used once sequentially

  17. Theoretical model for plasma opening switch

    International Nuclear Information System (INIS)

    Baker, L.

    1980-07-01

    The theory of an explosive plasma switch is developed and compared with the experimental results of Pavlovskii and work at Sandia. A simple analytic model is developed, which predicts that such switches may achieve opening times of approximately 100 ns. When the switching time is limited by channel mixing it scales as t = C(m d 0 )/sup 1/2/P 0 2 P/sub e//sup -5/2/ where m is the foil mass per unit area, d 0 the channel thickness and P 0 the channel pressure (at explosive breakout), P/sub e/ the explosive pressure, C a constant of order 10 for c.g.s. units. Thus faster switching times may be achieved by minimizing foil mass and channel pressure, or increasing explosive product pressure, with the scaling exponents as shown suggesting that changes in pressures would be more effective

  18. Theoretical models for the muon spectrum at sea level

    International Nuclear Information System (INIS)

    Abdel-Monem, M.S.; Benbrook, J.R.; Osborne, A.R.; Sheldon, W.R.

    1975-01-01

    The absolute vertical cosmic ray muon spectrum is investigated theoretically. Models of high energy interactions (namely, Maeda-Cantrell (MC), Constant Energy (CE), Cocconi-Koester-Perkins (CKP) and Scaling Models) are used to calculate the spectrum of cosmic ray muons at sea level. A comparison is made between the measured spectrum and that predicted from each of the four theoretical models. It is concluded that the recently available measured muon differential intensities agree with the scaling model for energies less than 100 GeV and with the CKP model for energies greater than 200 GeV. The measured differential intensities (Abdel-Monem et al.) agree with scaling. (orig.) [de

  19. A theoretical model for the control of an enforcement system on emissions of pollutants

    International Nuclear Information System (INIS)

    Villegas, Clara Ines

    2005-01-01

    A theoretical proposal for the development of an enforcement strategy is presented on this paper. The proposal guaranties full compliance of an emission charge system with self-report presence. The proposed models are static, and mostly based on those proposed by Strandlund and Chavez (2000) for a transferable permits system with self -report presence. Theoretical models were developed for three possible violations: self-report violation, maximum emission limits violation and payment violation. Based in theoretical results, a simulation was implemented with hypothetical data: 20 regulated firms with different marginal abatement cost functions. The variation in charge amount, Monitory costs, abatement cost, self-report value and total cost are analyzed, with each of the theoretical models under different scenarios. Our results show that the behavior of the different variables remains unchanged under the three static models, and that the only variations occur inside the scenarios. Our results can serve as a tool for the formulation and design of taxing systems

  20. Theoretical studies of Anderson impurity models

    International Nuclear Information System (INIS)

    Glossop, M.T.

    2000-01-01

    A Local Moment Approach (LMA) is developed for single-particle excitations of a symmetric single impurity Anderson model (SIAM) with a soft-gap hybridization vanishing at the Fermi level, Δ I ∝ vertical bar W vertical bar r with r > 0, and for the generic asymmetric case of the 'normal' (r = 0) SIAM. In all cases we work within a two-self-energy description with local moments introduced explicitly from the outset, and in which single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. For the soft-gap symmetric SIAM, the resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime where it is perturbatively exact for those r-domains in which perturbation theory in U is non-singular. While the primary emphasis is on single-particle dynamics, the quantum phase transition between strong coupling (SC) and local moment (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained, notably for the behaviour of the critical U c (r) separating SC/LM states and the Kondo scale w m (r) characteristic of the SC phase. Results for both single-particle spectra and SG/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies; and a number of further testable predictions are made. Single-particle spectra are examined systematically for both SC and LM states; in particular, for all 0 ≤ r 0 SC phase which, in agreement with conclusions drawn from recent NRG work, may be viewed as a non-trivial but natural generalization of Fermi liquid physics. We also reinvestigate the problem via the NRG in light of the predictions arising from the LMA: all are borne out and excellent agreement is found. For the asymmetric single impurity Anderson model (ASIAM) we establish general conditions which must be satisfied

  1. Theoretical modelling of actinide spectra in solution

    International Nuclear Information System (INIS)

    Danilo, Cecile

    2009-01-01

    The framework of this PhD is the interpretation of Nuclear Magnetic Relaxation Dispersion experiments performed on solvated U"4"+, NpO_2"+ and PuO_2"2"+, which all have a f"2 configuration. Unexpectedly the two actinyl ions have a much higher relaxivity than U"4"+,. One possible explanation is that the electronic relaxation rate is faster for Uranium(IV) than for the actinyl ions. We address this problem by exploring the electronic spectrum of the three compounds in gas phase and in solution with a two-step SOCI (Spin-Orbit Configuration-Interaction) method. The influence of electron correlation (treated in the first step) and spin-orbit relaxation effects (considered in the second step) has been discussed thoroughly. Solvent effects have been investigated as well. Another issue that has been questioned is the accuracy of Density Functional Theory for the study of actinide species. This matter has been discussed by comparing its performance to wave-function based correlated methods. The chemical problem chosen was the water exchange in [UO_2"2"+ (H_2O)_5]. We looked at the associative and at the dissociative mechanisms using a model with one additional water in the second hydration sphere. The last part of the thesis dealt with the spectroscopy of coordinated Uranyl(V). Absorption spectrum of Uranyl(V) with various ligands has been recorded. The first sharp absorption bands in the Near-Infrared region were assigned to the Uranium centered 5f-5f transitions, but uncertainties remained for the assignment of transitions observed in the Visible region. We computed the spectra of naked UO_2"+ and [UO_2(CO_3)_3]"5"- to elucidate the spectral changes induced by the carbonate ligands. (author) [fr

  2. Holistic simulation of geotechnical installation processes theoretical results and applications

    CERN Document Server

    2017-01-01

    This book provides recent developments and improvements in the modeling as well as application examples and is a complementary work to the previous Lecture Notes Vols. 77 and 80. It summarizes the fundamental work from scientists dealing with the development of constitutive models for soils, especially cyclic loading with special attention to the numerical implementation. In this volume the neo-hypoplasticity and the ISA (intergranular strain anisotropy) model in their extended version are presented. Furthermore, new contact elements with non-linear constitutive material laws and examples for their applications are given. Comparisons between the experimental and the numerical results show the effectiveness and the drawbacks and provide a useful and comprehensive pool for all the constitutive model developers and scientists in geotechnical engineering, who like to prove the soundness of new approaches.

  3. Dynamics in Higher Education Politics: A Theoretical Model

    Science.gov (United States)

    Kauko, Jaakko

    2013-01-01

    This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…

  4. Theoretical Modelling Methods for Thermal Management of Batteries

    Directory of Open Access Journals (Sweden)

    Bahman Shabani

    2015-09-01

    Full Text Available The main challenge associated with renewable energy generation is the intermittency of the renewable source of power. Because of this, back-up generation sources fuelled by fossil fuels are required. In stationary applications whether it is a back-up diesel generator or connection to the grid, these systems are yet to be truly emissions-free. One solution to the problem is the utilisation of electrochemical energy storage systems (ESS to store the excess renewable energy and then reusing this energy when the renewable energy source is insufficient to meet the demand. The performance of an ESS amongst other things is affected by the design, materials used and the operating temperature of the system. The operating temperature is critical since operating an ESS at low ambient temperatures affects its capacity and charge acceptance while operating the ESS at high ambient temperatures affects its lifetime and suggests safety risks. Safety risks are magnified in renewable energy storage applications given the scale of the ESS required to meet the energy demand. This necessity has propelled significant effort to model the thermal behaviour of ESS. Understanding and modelling the thermal behaviour of these systems is a crucial consideration before designing an efficient thermal management system that would operate safely and extend the lifetime of the ESS. This is vital in order to eliminate intermittency and add value to renewable sources of power. This paper concentrates on reviewing theoretical approaches used to simulate the operating temperatures of ESS and the subsequent endeavours of modelling thermal management systems for these systems. The intent of this review is to present some of the different methods of modelling the thermal behaviour of ESS highlighting the advantages and disadvantages of each approach.

  5. Theoretical simulation of the multipole seismoelectric logging while drilling

    Science.gov (United States)

    Guan, Wei; Hu, Hengshan; Zheng, Xiaobo

    2013-11-01

    Acoustic logging-while-drilling (LWD) technology has been commercially used in the petroleum industry. However it remains a rather difficult task to invert formation compressional and shear velocities from acoustic LWD signals due to the unwanted strong collar wave, which covers or interferes with signals from the formation. In this paper, seismoelectric LWD is investigated for solving that problem. The seismoelectric field is calculated by solving a modified Poisson's equation, whose source term is the electric disturbance induced electrokinetically by the travelling seismic wave. The seismic wavefield itself is obtained by solving Biot's equations for poroelastic waves. From the simulated waveforms and the semblance plots for monopole, dipole and quadrupole sources, it is found that the electric field accompanies the collar wave as well as other wave groups of the acoustic pressure, despite the fact that seismoelectric conversion occurs only in porous formations. The collar wave in the electric field, however, is significantly weakened compared with that in the acoustic pressure, in terms of its amplitude relative to the other wave groups in the full waveforms. Thus less and shallower grooves are required to damp the collar wave if the seismoelectric LWD signals are recorded for extracting formation compressional and shear velocities.

  6. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  7. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    Science.gov (United States)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has

  8. Modeling theoretical uncertainties in phenomenological analyses for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Jerome [CNRS, Aix-Marseille Univ, Universite de Toulon, CPT UMR 7332, Marseille Cedex 9 (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Niess, Valentin [CNRS/IN2P3, UMR 6533, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Silva, Luiz Vale [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Groupe de Physique Theorique, Institut de Physique Nucleaire, Orsay Cedex (France); J. Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)

    2017-04-15

    The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding p values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive p value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavor physics. (orig.)

  9. Notes on modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.

  10. K. Sridhar Moorthy's Theoretical Modelling in Marketing - A Review

    African Journals Online (AJOL)

    Toshiba

    experimental design for theoretical modelling of sales force compensation is vivid and ... different from the concept of a model in decision support systems and behavioural .... ―refers to the fact that people may not optimize.‖ This, of course, is.

  11. Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

    NARCIS (Netherlands)

    L. Waltman (Ludo)

    2011-01-01

    textabstractThis thesis studies various computational and game-theoretic approaches to economic modeling. Unlike traditional approaches to economic modeling, the approaches studied in this thesis do not rely on the assumption that economic agents behave in a fully rational way. Instead, economic

  12. A theoretical model for predicting neutron fluxes for cyclic Neutron ...

    African Journals Online (AJOL)

    A theoretical model has been developed for prediction of thermal neutron fluxes required for cyclic irradiations of a sample to obtain the same activity previously used for the detection of any radionuclide of interest. The model is suitable for radiotracer production or for long-lived neutron activation products where the ...

  13. Theoretical methods and models for mechanical properties of soft biomaterials

    Directory of Open Access Journals (Sweden)

    Zhonggang Feng

    2017-06-01

    Full Text Available We review the most commonly used theoretical methods and models for the mechanical properties of soft biomaterials, which include phenomenological hyperelastic and viscoelastic models, structural biphasic and network models, and the structural alteration theory. We emphasize basic concepts and recent developments. In consideration of the current progress and needs of mechanobiology, we introduce methods and models for tackling micromechanical problems and their applications to cell biology. Finally, the challenges and perspectives in this field are discussed.

  14. Comparison in Schemes for Simulating Depositional Growth of Ice Crystal between Theoretical and Laboratory Data

    Science.gov (United States)

    Zhai, Guoqing; Li, Xiaofan

    2015-04-01

    The Bergeron-Findeisen process has been simulated using the parameterization scheme for the depositional growth of ice crystal with the temperature-dependent theoretically predicted parameters in the past decades. Recently, Westbrook and Heymsfield (2011) calculated these parameters using the laboratory data from Takahashi and Fukuta (1988) and Takahashi et al. (1991) and found significant differences between the two parameter sets. There are two schemes that parameterize the depositional growth of ice crystal: Hsie et al. (1980), Krueger et al. (1995) and Zeng et al. (2008). In this study, we conducted three pairs of sensitivity experiments using three parameterization schemes and the two parameter sets. The pre-summer torrential rainfall event is chosen as the simulated rainfall case in this study. The analysis of root-mean-squared difference and correlation coefficient between the simulation and observation of surface rain rate shows that the experiment with the Krueger scheme and the Takahashi laboratory-derived parameters produces the best rain-rate simulation. The mean simulated rain rates are higher than the mean observational rain rate. The calculations of 5-day and model domain mean rain rates reveal that the three schemes with Takahashi laboratory-derived parameters tend to reduce the mean rain rate. The Krueger scheme together with the Takahashi laboratory-derived parameters generate the closest mean rain rate to the mean observational rain rate. The decrease in the mean rain rate caused by the Takahashi laboratory-derived parameters in the experiment with the Krueger scheme is associated with the reductions in the mean net condensation and the mean hydrometeor loss. These reductions correspond to the suppressed mean infrared radiative cooling due to the enhanced cloud ice and snow in the upper troposphere.

  15. Audiovisual Rehabilitation in Hemianopia: A Model-Based Theoretical Investigation.

    Science.gov (United States)

    Magosso, Elisa; Cuppini, Cristiano; Bertini, Caterina

    2017-01-01

    Hemianopic patients exhibit visual detection improvement in the blind field when audiovisual stimuli are given in spatiotemporally coincidence. Beyond this "online" multisensory improvement, there is evidence of long-lasting, "offline" effects induced by audiovisual training: patients show improved visual detection and orientation after they were trained to detect and saccade toward visual targets given in spatiotemporal proximity with auditory stimuli. These effects are ascribed to the Superior Colliculus (SC), which is spared in these patients and plays a pivotal role in audiovisual integration and oculomotor behavior. Recently, we developed a neural network model of audiovisual cortico-collicular loops, including interconnected areas representing the retina, striate and extrastriate visual cortices, auditory cortex, and SC. The network simulated unilateral V1 lesion with possible spared tissue and reproduced "online" effects. Here, we extend the previous network to shed light on circuits, plastic mechanisms, and synaptic reorganization that can mediate the training effects and functionally implement visual rehabilitation. The network is enriched by the oculomotor SC-brainstem route, and Hebbian mechanisms of synaptic plasticity, and is used to test different training paradigms (audiovisual/visual stimulation in eye-movements/fixed-eyes condition) on simulated patients. Results predict different training effects and associate them to synaptic changes in specific circuits. Thanks to the SC multisensory enhancement, the audiovisual training is able to effectively strengthen the retina-SC route, which in turn can foster reinforcement of the SC-brainstem route (this occurs only in eye-movements condition) and reinforcement of the SC-extrastriate route (this occurs in presence of survived V1 tissue, regardless of eye condition). The retina-SC-brainstem circuit may mediate compensatory effects: the model assumes that reinforcement of this circuit can translate visual

  16. North west cape-induced electron precipitation and theoretical simulation

    Science.gov (United States)

    Zhang, Zhen-xia; Li, Xin-qiao; Wang, Chen-Yu; Chen, Lun-Jin

    2016-11-01

    Enhancement of the electron fluxes in the inner radiation belt, which is induced by the powerful North West Cape (NWC) very-low-frequency (VLF) transmitter, have been observed and analyzed by several research groups. However, all of the previous publications have focused on NWC-induced > 100-keV electrons only, based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and the Geostationary Operational Environmental Satellite (GOES) satellites. Here, we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time, which were observed by the GOES satellite at night. Similar to the 100-300-keV precipitated-electron behavior, the low energy 30-100-keV electron precipitation is primarily located east of the transmitter. However, the latter does not drift eastward to the same extent as the former, possibly because of the lower electron velocity. The 30-100-keV electrons are distributed in the L = 1.8-2.1 L-shell range, in contrast to the 100-300-keV electrons which are at L = 1.67-1.9. This is consistent with the perspective that the energy of the VLF-wave-induced electron flux enhancement decreases with higher L-shell values. We expand upon the rationality of the simultaneous enhancement of the 30-100- and 100-300-keV electron fluxes through comparison with the cyclotron resonance theory for the quasi-linear wave-particle interaction. In addition, we interpret the asymmetry characteristics of NWC electric power distribution in north and south hemisphere by ray tracing model. Finally, we present considerable discussion and show that good agreement exists between the observation of satellites and theory. Supported by the China Seismo-Electromagnetic Satellite Mission Ground-Based Verification Project of the Administration of Science, Technology, and Industry for National Defense and Asia-Pacific Space Cooperation Organization Project (APSCO-SP/PM-EARTHQUAKE).

  17. A theoretical model on surface electronic behavior: Strain effect

    International Nuclear Information System (INIS)

    Qin, W.G.; Shaw, D.

    2009-01-01

    Deformation from mechanical loading can affect surface electronic behavior. Surface deformation and electronic behavior can be quantitatively expressed using strain and work function, respectively, and their experimental relationship can be readily determined using the Kelvin probing technique. However, the theoretical correlation between work function and strain has been unclear. This study reports our theoretical exploration, for the first time, of the effect of strain on work function. We propose a simple electrostatic action model by considering the effect of a dislocation on work function of a one-dimensional lattice and further extend this model to the complex conditions for the effect of dislocation density. Based on this model, we established successfully a theoretical correlation between work function and strain.

  18. Theoretical Relevance of Neuropsychological Data for Connectionist Modelling

    Directory of Open Access Journals (Sweden)

    Mauricio Iza

    2011-05-01

    Full Text Available The symbolic information-processing paradigm in cognitive psychology has met a growing challenge from neural network models over the past two decades. While neuropsychological
    evidence has been of great utility to theories concerned with information processing, the real question is, whether the less rigid connectionist models provide valid, or enough, information
    concerning complex cognitive structures. In this work, we will discuss the theoretical implications that neuropsychological data posits for modelling cognitive systems.

  19. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operati...

  20. Special course on modern theoretical and experimental approaches to turbulent flow structure and its modelling

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    The large eddy concept in turbulent modeling and techniques for direct simulation are discussed. A review of turbulence modeling is presented along with physical and numerical aspects and applications. A closure model for turbulent flows is presented and routes to chaos by quasi-periodicity are discussed. Theoretical aspects of transition to turbulence by space/time intermittency are covered. The application to interpretation of experimental results of fractal dimensions and connection of spatial temporal chaos are reviewed. Simulation of hydrodynamic flow by using cellular automata is discussed.

  1. A theoretical model of semi-elliptic surface crack growth

    Directory of Open Access Journals (Sweden)

    Shi Kaikai

    2014-06-01

    Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.

  2. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  3. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and field...... trials to investigate the effect of alternative conditions or actions on a specific system. Nonetheless, field trials are expensive and sometimes not possible to conduct, as in case of foot-and-mouth disease (FMD). Instead, simulation models can be a good and cheap substitute for experiments and field...

  4. Advanced training simulator models. Implementation and validation

    International Nuclear Information System (INIS)

    Borkowsky, Jeffrey; Judd, Jerry; Belblidia, Lotfi; O'farrell, David; Andersen, Peter

    2008-01-01

    Modern training simulators are required to replicate plant data for both thermal-hydraulic and neutronic response. Replication is required such that reactivity manipulation on the simulator properly trains the operator for reactivity manipulation at the plant. This paper discusses advanced models which perform this function in real-time using the coupled code system THOR/S3R. This code system models the all fluids systems in detail using an advanced, two-phase thermal-hydraulic a model. The nuclear core is modeled using an advanced, three-dimensional nodal method and also by using cycle-specific nuclear data. These models are configured to run interactively from a graphical instructor station or handware operation panels. The simulator models are theoretically rigorous and are expected to replicate the physics of the plant. However, to verify replication, the models must be independently assessed. Plant data is the preferred validation method, but plant data is often not available for many important training scenarios. In the absence of data, validation may be obtained by slower-than-real-time transient analysis. This analysis can be performed by coupling a safety analysis code and a core design code. Such a coupling exists between the codes RELAP5 and SIMULATE-3K (S3K). RELAP5/S3K is used to validate the real-time model for several postulated plant events. (author)

  5. Theoretical models for development competence of health protection and promotion

    Directory of Open Access Journals (Sweden)

    Cesnaviciene J.

    2014-01-01

    Full Text Available The competence of health protection and promotion are mentioned in various legislative documents that regulate areas of education and health policy. The researches on health conditions of Lithuania Country's population disclosed the deteriorating health status of the society, even of the children. It has also been found that the focus on health education is not adequate. The number of National and International health programmes have been realized and educational methodological tools prepared in Lithuania, however the insufficient attention to the health promotion models is been noticed. The objectiveof this article is to discuss the theoretical models used in health education field. The questions to be answered: what theoretical models are used in order to development competence of health protection and promotion? Who does employ particular models? What are the advantages of various models? What conceptions unite and characterize theoretical models? The analysis of scientific literature revealed the number of diverse health promotion model; however none of them is dominant. Some of the models focus on intrapersonal, others on interpersonal or community level but in general they can be distinguished as cognitive – behavioural models which are characterized by three main conceptions: 1 the healthy living is determined by the perceived health related knowledge: what is known and understood would influence the behaviour; 2 the knowledge in healthy living field is essential but insufficient condition for behaviour change; 3 the great influence to healthy living life style is done by perception, motivation, skills and habits as well as social environment. These are the components that are typical to all theoretical models and that reflect the hole of the conditions influencing healthy living.

  6. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  7. Theoretical-empirical model of the steam-water cycle of the power unit

    Directory of Open Access Journals (Sweden)

    Grzegorz Szapajko

    2010-06-01

    Full Text Available The diagnostics of the energy conversion systems’ operation is realised as a result of collecting, processing, evaluatingand analysing the measurement signals. The result of the analysis is the determination of the process state. It requires a usageof the thermal processes models. Construction of the analytical model with the auxiliary empirical functions built-in brings satisfyingresults. The paper presents theoretical-empirical model of the steam-water cycle. Worked out mathematical simulation model containspartial models of the turbine, the regenerative heat exchangers and the condenser. Statistical verification of the model is presented.

  8. Theoretical modeling and experimental analyses of laminated wood composite poles

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse

    2005-01-01

    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...

  9. Healing from Childhood Sexual Abuse: A Theoretical Model

    Science.gov (United States)

    Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner

    2011-01-01

    Childhood sexual abuse is a prevalent social and health care problem. The processes by which individuals heal from childhood sexual abuse are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from childhood sexual abuse. Community recruitment for an ongoing broader project on sexual…

  10. Organizational Learning and Product Design Management: Towards a Theoretical Model.

    Science.gov (United States)

    Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael

    2003-01-01

    Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…

  11. Organizational Resilience: The Theoretical Model and Research Implication

    Directory of Open Access Journals (Sweden)

    Xiao Lei

    2017-01-01

    Full Text Available Organizations are all subject to a diverse and ever changing and uncertain environment. Under this situation organizations should develop a capability which can resist the emergency and recover from the disruption. Base on lot of literature, the paper provides the main concept of organizational resilience; construct the primary theoretical model and some implications for management.

  12. Testing a theoretical model of clinical nurses' intent to stay.

    Science.gov (United States)

    Cowden, Tracy L; Cummings, Greta G

    2015-01-01

    Published theoretical models of nurses' intent to stay (ITS) report inconsistent outcomes, and not all hypothesized models have been adequately tested. Research has focused on cognitive rather than emotional determinants of nurses' ITS. The aim of this study was to empirically verify a complex theoretical model of nurses' ITS that includes both affective and cognitive determinants and to explore the influence of relational leadership on staff nurses' ITS. The study was a correlational, mixed-method, nonexperimental design. A subsample of the Quality Work Environment Study survey data 2009 (n = 415 nurses) was used to test our theoretical model of clinical nurses' ITS as a structural equation model. The model explained 63% of variance in ITS. Organizational commitment, empowerment, and desire to stay were the model concepts with the strongest effects on nurses' ITS. Leadership practices indirectly influenced ITS. How nurses evaluate and respond to their work environment is both an emotional and rational process. Health care organizations need to be cognizant of the influence that nurses' feelings and views of their work setting have on their intention decisions and integrate that knowledge into the development of retention strategies. Leadership practices play an important role in staff nurses' perceptions of the workplace. Identifying the mechanisms by which leadership influences staff nurses' intentions to stay presents additional focus areas for developing retention strategies.

  13. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  14. Model selection and inference a practical information-theoretic approach

    CERN Document Server

    Burnham, Kenneth P

    1998-01-01

    This book is unique in that it covers the philosophy of model-based data analysis and an omnibus strategy for the analysis of empirical data The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data Kullback-Leibler information represents a fundamental quantity in science and is Hirotugu Akaike's basis for model selection The maximized log-likelihood function can be bias-corrected to provide an estimate of expected, relative Kullback-Leibler information This leads to Akaike's Information Criterion (AIC) and various extensions and these are relatively simple and easy to use in practice, but little taught in statistics classes and far less understood in the applied sciences than should be the case The information theoretic approaches provide a unified and rigorous theory, an extension of likelihood theory, an important application of information theory, and are ...

  15. Theoretical analysis and numerical simulation of Parrondo's paradox game in space

    International Nuclear Information System (INIS)

    Xie Nenggang; Chen Yun; Ye Ye; Xu Gang; Wang Lingang; Wang Chao

    2011-01-01

    Highlights: → A multi-agent spatial Parrondo game model is designed. → Double actions between individual and its neighbors are discussed. → The weak and strong paradox conditions are established by theoretical analysis. → Research results demonstrate some new biological points. → Competition is an adaptive behavior on the population level too. - Abstract: A multi-agent spatial Parrondo game model is designed according to the cooperative Parrondo's paradox proposed by Toral. The model is composed of game A and game B. Game A is a zero-sum game between individuals, reflecting competitive interaction between an individual and its neighbors. The winning or losing probability of one individual in game B depends on its neighbors' winning or losing states, reflecting the dependence that individuals has on microhabitat and the overall constraints that the microhabitat has on individuals. By using the analytical approach based on discrete-time Markov chain, we analyze game A, game B and the random combination of game A+B, and obtain corresponding stationary distribution probability and mathematical expectations. We have established conditions of the weak and strong forms of the Parrondo effect, and compared the computer simulation results with the analytical results so as to verify their validity. The analytical results reflect that competition results in the ratchet effect of game B, which generates Parrondo's Paradox that the combination of the losing games can produce a winning result.

  16. Theoretical analysis and numerical simulation of Parrondo's paradox game in space

    Energy Technology Data Exchange (ETDEWEB)

    Xie Nenggang, E-mail: xienenggang@yahoo.com.cn [School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui Province 243002 (China); Chen Yun; Ye Ye; Xu Gang; Wang Lingang; Wang Chao [School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui Province 243002 (China)

    2011-06-15

    Highlights: > A multi-agent spatial Parrondo game model is designed. > Double actions between individual and its neighbors are discussed. > The weak and strong paradox conditions are established by theoretical analysis. > Research results demonstrate some new biological points. > Competition is an adaptive behavior on the population level too. - Abstract: A multi-agent spatial Parrondo game model is designed according to the cooperative Parrondo's paradox proposed by Toral. The model is composed of game A and game B. Game A is a zero-sum game between individuals, reflecting competitive interaction between an individual and its neighbors. The winning or losing probability of one individual in game B depends on its neighbors' winning or losing states, reflecting the dependence that individuals has on microhabitat and the overall constraints that the microhabitat has on individuals. By using the analytical approach based on discrete-time Markov chain, we analyze game A, game B and the random combination of game A+B, and obtain corresponding stationary distribution probability and mathematical expectations. We have established conditions of the weak and strong forms of the Parrondo effect, and compared the computer simulation results with the analytical results so as to verify their validity. The analytical results reflect that competition results in the ratchet effect of game B, which generates Parrondo's Paradox that the combination of the losing games can produce a winning result.

  17. Comparing simulated and theoretical sampling distributions of the U3 person-fit statistic

    NARCIS (Netherlands)

    Emons, W.H.M.; Meijer, R.R.; Sijtsma, K.

    2002-01-01

    The accuracy with which the theoretical sampling distribution of van der Flier's person-.t statistic U3 approaches the empirical U3 sampling distribution is affected by the item discrimination. A simulation study showed that for tests with a moderate or a strong mean item discrimination, the Type I

  18. Comparing simulated and theoretical sampling distributions of the U3 person-fit statistic

    NARCIS (Netherlands)

    Emons, Wilco H.M.; Meijer, R.R.; Sijtsma, Klaas

    2002-01-01

    The accuracy with which the theoretical sampling distribution of van der Flier’s person-fit statistic U3 approaches the empirical U3 sampling distribution is affected by the item discrimination. A simulation study showed that for tests with a moderate or a strong mean item discrimination, the Type I

  19. Towards a theoretical model on medicines as a health need.

    Science.gov (United States)

    Vargas-Peláez, Claudia Marcela; Soares, Luciano; Rover, Marina Raijche Mattozo; Blatt, Carine Raquel; Mantel-Teeuwisse, Aukje; Rossi Buenaventura, Francisco Augusto; Restrepo, Luis Guillermo; Latorre, María Cristina; López, José Julián; Bürgin, María Teresa; Silva, Consuelo; Leite, Silvana Nair; Mareni Rocha, Farias

    2017-04-01

    Medicines are considered one of the main tools of western medicine to resolve health problems. Currently, medicines represent an important share of the countries' healthcare budget. In the Latin America region, access to essential medicines is still a challenge, although countries have established some measures in the last years in order to guarantee equitable access to medicines. A theoretical model is proposed for analysing the social, political, and economic factors that modulate the role of medicines as a health need and their influence on the accessibility and access to medicines. The model was built based on a narrative review about health needs, and followed the conceptual modelling methodology for theory-building. The theoretical model considers elements (stakeholders, policies) that modulate the perception towards medicines as a health need from two perspectives - health and market - at three levels: international, national and local levels. The perception towards medicines as a health need is described according to Bradshaw's categories: felt need, normative need, comparative need and expressed need. When those different categories applied to medicines coincide, the patients get access to the medicines they perceive as a need, but when the categories do not coincide, barriers to access to medicines are created. Our theoretical model, which holds a broader view about the access to medicines, emphasises how power structures, interests, interdependencies, values and principles of the stakeholders could influence the perception towards medicines as a health need and the access to medicines in Latin American countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modeling and simulation for micro DC motor based on simulink

    Science.gov (United States)

    Shen, Hanxin; Lei, Qiao; Chen, Wenxiang

    2017-09-01

    The micro DC motor has a large market demand but there is a lack of theoretical research for it. Through detailed analysis of the commutation process of micro DC motor commutator, based on micro DC motor electromagnetic torque equation and mechanical torque equation, with the help of Simulink toolkit, a triangle connection micro DC motor simulation model is established. By using the model, a sample micro DC motor are simulated, and an experimental measurements has been carried on the sample micro DC motor. It is found that the simulation results are consistent with theoretical analysis and experimental results.

  1. Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results

    Directory of Open Access Journals (Sweden)

    Hideki Kobayashi

    2017-01-01

    Full Text Available We investigate the conformational properties of polymers in ionic microgels in the presence of salt ions by molecular dynamics simulations and analytical theory. A microgel particle consists of coarse-grained linear polymers, which are tetra-functionally crosslinked. Counterions and salt ions are taken into account explicitly, and charge-charge interactions are described by the Coulomb potential. By varying the charge interaction strength and salt concentration, we characterize the swelling of the polyelectrolytes and the charge distribution. In particular, we determine the amount of trapped mobile charges inside the microgel and the Debye screening length. Moreover, we analyze the polymer extension theoretically in terms of the tension blob model taking into account counterions and salt ions implicitly by the Debye–Hückel model. Our studies reveal a strong dependence of the amount of ions absorbed in the interior of the microgel on the electrostatic interaction strength, which is related to the degree of the gel swelling. This implies a dependence of the inverse Debye screening length κ on the ion concentration; we find a power-law increase of κ with the Coulomb interaction strength with the exponent 3 / 5 for a salt-free microgel and an exponent 1 / 2 for moderate salt concentrations. Additionally, the radial dependence of polymer conformations and ion distributions is addressed.

  2. Progress in modeling and simulation.

    Science.gov (United States)

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  3. Multiscale modeling of complex materials phenomenological, theoretical and computational aspects

    CERN Document Server

    Trovalusci, Patrizia

    2014-01-01

    The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

  4. Recent evolution of theoretical models in inner shell photoionization

    International Nuclear Information System (INIS)

    Combet Farnoux, F.

    1978-01-01

    This paper is a brief review of various atomic theoretical models recently developed to calculate photoionization cross sections in the low energy range (from the far ultraviolet to the soft X ray region). For both inner and outer shells concerned, we emphasize the necessity to go beyond the independent particle models by means of the introduction of correlation effects in both initial and final states. The basic physical ideas of as elaborated models as Random Phase Approximation with exchange, Many Body Perturbation Theory and R matrix Theory are outlined and summarized. As examples, the results of some calculations are shown and compared with experiment

  5. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  6. Theoretical Assessment of the Impact of Climatic Factors in a Vibrio Cholerae Model.

    Science.gov (United States)

    Kolaye, G; Damakoa, I; Bowong, S; Houe, R; Békollè, D

    2018-05-04

    A mathematical model for Vibrio Cholerae (V. Cholerae) in a closed environment is considered, with the aim of investigating the impact of climatic factors which exerts a direct influence on the bacterial metabolism and on the bacterial reservoir capacity. We first propose a V. Cholerae mathematical model in a closed environment. A sensitivity analysis using the eFast method was performed to show the most important parameters of the model. After, we extend this V. cholerae model by taking account climatic factors that influence the bacterial reservoir capacity. We present the theoretical analysis of the model. More precisely, we compute equilibria and study their stabilities. The stability of equilibria was investigated using the theory of periodic cooperative systems with a concave nonlinearity. Theoretical results are supported by numerical simulations which further suggest the necessity to implement sanitation campaigns of aquatic environments by using suitable products against the bacteria during the periods of growth of aquatic reservoirs.

  7. FASTBUS simulation models in VHDL

    International Nuclear Information System (INIS)

    Appelquist, G.

    1992-11-01

    Four hardware simulation models implementing the FASTBUS protocol are described. The models are written in the VHDL hardware description language to obtain portability, i.e. without relations to any specific simulator. They include two complete FASTBUS devices, a full-duplex segment interconnect and ancillary logic for the segment. In addition, master and slave models using a high level interface to describe FASTBUS operations, are presented. With these models different configurations of FASTBUS systems can be evaluated and the FASTBUS transactions of new devices can be verified. (au)

  8. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  9. Theoretical model for investigating the dynamic behaviour of the AST-500 type nuclear heating station reactor

    International Nuclear Information System (INIS)

    Grundmann, U.; Rohde, U.; Naumann, B.

    1985-01-01

    Studies on theoretical simulation of the dynamic behaviour of the AST-500 type reactor primary coolant system are summarized. The first version of a dynamic model in the form of the DYNAST code is described. The DYNAST code is based on a one-dimensional description of the primary coolant circuit including core, draught stack, and intermediate heat exchanger, a vapour dome model, and the point model of neutron kinetics. With the aid of the steady-state computational part of the DYNAST code, studies have been performed on different steady-state operating conditions. Furthermore, some methodological investigations on generalization and improvement of the dynamic model are considered and results presented. (author)

  10. Improving the theoretical foundations of the multi-mode transport model

    International Nuclear Information System (INIS)

    Bateman, G.; Kritz, A.H.; Redd, A.J.; Erba, M.; Rewoldt, G.; Weiland, J.; Strand, P.; Kinsey, J.E.; Scott, B.

    1999-01-01

    A new version of the Multi-Mode transport model, designated MMM98, is being developed with improved theoretical foundations, in an ongoing effort to predict the temperature and density profiles in tokamaks. For transport near the edge of the plasma, MMM98 uses a new model based on 3-D nonlinear simulations of drift Alfven mode turbulence. Flow shear stabilization effects have been added to the Weiland model for Ion Temperature Gradient and Trapped Electron Modes, which usually dominates in most of the plasma core. For transport near the magnetic axis at high beta, a new kinetic ballooning mode model has been constructed based on FULL stability code computations. (author)

  11. Improving the theoretical foundations of the multi-mode transport model

    International Nuclear Information System (INIS)

    Bateman, G.; Kritz, A.H.; Redd, A.J.; Erba, M.; Rewoldt, G.; Weiland, J.; Strand, P.; Kinsey, J.E.; Scott, B.

    2001-01-01

    A new version of the Multi-Mode transport model, designated MMM98, is being developed with improved theoretical foundations, in an ongoing effort to predict the temperature and density profiles in tokamaks. For transport near the edge of the plasma, MMM98 uses a new model based on 3-D nonlinear simulations of drift Alfven mode turbulence. Flow shear stabilization effects have been added to the Weiland model for Ion Temperature Gradient and Trapped Electron Modes, which usually dominates in most of the plasma core. For transport near the magnetic axis at high beta, a new kinetic ballooning mode model has been constructed based on FULL stability code computations. (author)

  12. Greenhouse simulation models.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    A model is a representation of a real system to describe some properties i.e. internal factors of that system (out-puts) as function of some external factors (inputs). It is impossible to describe the relation between all internal factors (if even all internal factors could be defined) and all

  13. A collision model in plasma particle simulations

    International Nuclear Information System (INIS)

    Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing

    2000-01-01

    In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones

  14. Information Theoretic Tools for Parameter Fitting in Coarse Grained Models

    KAUST Repository

    Kalligiannaki, Evangelia

    2015-01-07

    We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.

  15. Validation of theoretical models through measured pavement response

    DEFF Research Database (Denmark)

    Ullidtz, Per

    1999-01-01

    mechanics was quite different from the measured stress, the peak theoretical value being only half of the measured value.On an instrumented pavement structure in the Danish Road Testing Machine, deflections were measured at the surface of the pavement under FWD loading. Different analytical models were...... then used to derive the elastic parameters of the pavement layeres, that would produce deflections matching the measured deflections. Stresses and strains were then calculated at the position of the gauges and compared to the measured values. It was found that all analytical models would predict the tensile...

  16. A VRLA battery simulation model

    International Nuclear Information System (INIS)

    Pascoe, Phillip E.; Anbuky, Adnan H.

    2004-01-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet

  17. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  18. Theoretical and experimental investigations into natural circulation behaviour in a simulated facility of the Indian PHWR under reduced inventory conditions

    International Nuclear Information System (INIS)

    Satish Kumar, N.V.; Nayak, A.K.; Vijayan, P.K.; Pal, A.K.; Saha, D.; Sinha, R.K.

    2004-01-01

    A theoretical and experimental investigation has been carried out to study natural circulation characteristics of an Indian PHWR under reduced inventory conditions. The theoretical model incorporates a quasi-steady state analysis of natural circulation at different system inventories. It predicts the system flow rate under single-phase and two-phase conditions and the inventory at which reflux condensation occurs. The model predictions were compared with test data obtained from FISBE (facility for integral system behaviour experiments), which simulates the thermal hydraulic behaviour of the Indian 220 MWe PHWR. The experimental results were found to be in close agreement with the predictions. It was also found that the natural circulation could be oscillatory under reduced inventory conditions. (orig.)

  19. Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2009-01-01

    This contribution presents an overview of sensitivity analysis of simulation models, including the estimation of gradients. It covers classic designs and their corresponding (meta)models; namely, resolution-III designs including fractional-factorial two-level designs for first-order polynomial

  20. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Theoretical model for plasma expansion generated by hypervelocity impact

    International Nuclear Information System (INIS)

    Ju, Yuanyuan; Zhang, Qingming; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng

    2014-01-01

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T e , n e ) ∝ v p 3 . Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data

  2. Theoretical model for plasma expansion generated by hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Gong, Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)

    2014-09-15

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

  3. Theoretical approach to the WWER core thermomechanical modelling

    International Nuclear Information System (INIS)

    Likhatchev, Y.; Troyanov, V.; Folomeev, V.; Demishonkov, A.

    2003-01-01

    The paper presents studies on the analysis of root causes of fuel assembly bowing under operating conditions; developing of a methodology for fuel assemblies thermomechanical simulation; developing of a calculation technique for thermomechanical modelling of the fuel assemblies bowing in operational conditions. Some examples of calculation results are given

  4. A graph theoretical perspective of a drug abuse epidemic model

    Science.gov (United States)

    Nyabadza, F.; Mukwembi, S.; Rodrigues, B. G.

    2011-05-01

    A drug use epidemic can be represented by a finite number of states and transition rules that govern the dynamics of drug use in each discrete time step. This paper investigates the spread of drug use in a community where some users are in treatment and others are not in treatment, citing South Africa as an example. In our analysis, we consider the neighbourhood prevalence of each individual, i.e., the proportion of the individual’s drug user contacts who are not in treatment amongst all of his or her contacts. We introduce parameters α∗, β∗ and γ∗, depending on the neighbourhood prevalence, which govern the spread of drug use. We examine how changes in α∗, β∗ and γ∗ affect the system dynamics. Simulations presented support the theoretical results.

  5. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  6. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  7. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  8. Numerical simulation of Higgs models

    International Nuclear Information System (INIS)

    Jaster, A.

    1995-10-01

    The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)

  9. Sound transmission through lightweight double-leaf partitions: theoretical modelling

    Science.gov (United States)

    Wang, J.; Lu, T. J.; Woodhouse, J.; Langley, R. S.; Evans, J.

    2005-09-01

    This paper presents theoretical modelling of the sound transmission loss through double-leaf lightweight partitions stiffened with periodically placed studs. First, by assuming that the effect of the studs can be replaced with elastic springs uniformly distributed between the sheathing panels, a simple smeared model is established. Second, periodic structure theory is used to develop a more accurate model taking account of the discrete placing of the studs. Both models treat incident sound waves in the horizontal plane only, for simplicity. The predictions of the two models are compared, to reveal the physical mechanisms determining sound transmission. The smeared model predicts relatively simple behaviour, in which the only conspicuous features are associated with coincidence effects with the two types of structural wave allowed by the partition model, and internal resonances of the air between the panels. In the periodic model, many more features are evident, associated with the structure of pass- and stop-bands for structural waves in the partition. The models are used to explain the effects of incidence angle and of the various system parameters. The predictions are compared with existing test data for steel plates with wooden stiffeners, and good agreement is obtained.

  10. Plasma modelling and numerical simulation

    International Nuclear Information System (INIS)

    Van Dijk, J; Kroesen, G M W; Bogaerts, A

    2009-01-01

    Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)

  11. Theoretical Models and Operational Frameworks in Public Health Ethics

    Science.gov (United States)

    Petrini, Carlo

    2010-01-01

    The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441

  12. Theoretical Models and Operational Frameworks in Public Health Ethics

    Directory of Open Access Journals (Sweden)

    Carlo Petrini

    2010-01-01

    Full Text Available The article is divided into three sections: (i an overview of the main ethical models in public health (theoretical foundations; (ii a summary of several published frameworks for public health ethics (practical frameworks; and (iii a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided.

  13. A theoretical model of the M87 jet

    International Nuclear Information System (INIS)

    Falle, S.A.E.G.; Wilson, M.J.

    1985-01-01

    This paper describes a theoretical model of the knots in the M87 jet based on the idea that it is a steady fluid jet propagating through a non-uniform atmosphere. It is argued that knots D, E and F can be explained by the jet being underexpanded as it emerges from the central source, while knot A is due to reconfinement of the jet. Very high resolution numerical calculations are used to show that good agreement with the observed positions of the knots can be obtained with reasonable jet parameters and an atmosphere consistent with the X-ray observations. (author)

  14. Improving statistical reasoning theoretical models and practical implications

    CERN Document Server

    Sedlmeier, Peter

    1999-01-01

    This book focuses on how statistical reasoning works and on training programs that can exploit people''s natural cognitive capabilities to improve their statistical reasoning. Training programs that take into account findings from evolutionary psychology and instructional theory are shown to have substantially larger effects that are more stable over time than previous training regimens. The theoretical implications are traced in a neural network model of human performance on statistical reasoning problems. This book apppeals to judgment and decision making researchers and other cognitive scientists, as well as to teachers of statistics and probabilistic reasoning.

  15. Tesla Coil Theoretical Model and its Experimental Verification

    OpenAIRE

    Voitkans Janis; Voitkans Arnis

    2014-01-01

    In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple re...

  16. Exploring patient satisfaction predictors in relation to a theoretical model.

    Science.gov (United States)

    Grøndahl, Vigdis Abrahamsen; Hall-Lord, Marie Louise; Karlsson, Ingela; Appelgren, Jari; Wilde-Larsson, Bodil

    2013-01-01

    The aim is to describe patients' care quality perceptions and satisfaction and to explore potential patient satisfaction predictors as person-related conditions, external objective care conditions and patients' perception of actual care received ("PR") in relation to a theoretical model. A cross-sectional design was used. Data were collected using one questionnaire combining questions from four instruments: Quality from patients' perspective; Sense of coherence; Big five personality trait; and Emotional stress reaction questionnaire (ESRQ), together with questions from previous research. In total, 528 patients (83.7 per cent response rate) from eight medical, three surgical and one medical/surgical ward in five Norwegian hospitals participated. Answers from 373 respondents with complete ESRQ questionnaires were analysed. Sequential multiple regression analysis with ESRQ as dependent variable was run in three steps: person-related conditions, external objective care conditions, and PR (p person-related conditions) explained 51.7 per cent of the ESRQ variance. Step 2 (external objective care conditions) explained an additional 2.4 per cent. Step 3 (PR) gave no significant additional explanation (0.05 per cent). Steps 1 and 2 contributed statistical significance to the model. Patients rated both quality-of-care and satisfaction highly. The paper shows that the theoretical model using an emotion-oriented approach to assess patient satisfaction can explain 54 per cent of patient satisfaction in a statistically significant manner.

  17. An Emerging Theoretical Model of Music Therapy Student Development.

    Science.gov (United States)

    Dvorak, Abbey L; Hernandez-Ruiz, Eugenia; Jang, Sekyung; Kim, Borin; Joseph, Megan; Wells, Kori E

    2017-07-01

    Music therapy students negotiate a complex relationship with music and its use in clinical work throughout their education and training. This distinct, pervasive, and evolving relationship suggests a developmental process unique to music therapy. The purpose of this grounded theory study was to create a theoretical model of music therapy students' developmental process, beginning with a study within one large Midwestern university. Participants (N = 15) were music therapy students who completed one 60-minute intensive interview, followed by a 20-minute member check meeting. Recorded interviews were transcribed, analyzed, and coded using open and axial coding. The theoretical model that emerged was a six-step sequential developmental progression that included the following themes: (a) Personal Connection, (b) Turning Point, (c) Adjusting Relationship with Music, (d) Growth and Development, (e) Evolution, and (f) Empowerment. The first three steps are linear; development continues in a cyclical process among the last three steps. As the cycle continues, music therapy students continue to grow and develop their skills, leading to increased empowerment, and more specifically, increased self-efficacy and competence. Further exploration of the model is needed to inform educators' and other key stakeholders' understanding of student needs and concerns as they progress through music therapy degree programs. © the American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Theoretical modeling of critical temperature increase in metamaterial superconductors

    Science.gov (United States)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  19. A Theoretical Model for the Prediction of Siphon Breaking Phenomenon

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young-In; Seo, Jae-Kwang; Kim, Keung Koo; Yoon, Juhyeon

    2014-01-01

    A siphon phenomenon or siphoning often refers to the movement of liquid from a higher elevation to a lower one through a tube in an inverted U shape (whose top is typically located above the liquid surface) under the action of gravity, and has been used in a variety of reallife applications such as a toilet bowl and a Greedy cup. However, liquid drainage due to siphoning sometimes needs to be prevented. For example, a siphon breaker, which is designed to limit the siphon effect by allowing the gas entrainment into a siphon line, is installed in order to maintain the pool water level above the reactor core when a loss of coolant accident (LOCA) occurs in an open-pool type research reactor. In this paper, we develop a theoretical model to predict the siphon breaking phenomenon. In this paper, a theoretical model to predict the siphon breaking phenomenon is developed. It is shown that the present model predicts well the fundamental features of the siphon breaking phenomenon and undershooting height

  20. A Theoretical Model for the Prediction of Siphon Breaking Phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young-In; Seo, Jae-Kwang; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A siphon phenomenon or siphoning often refers to the movement of liquid from a higher elevation to a lower one through a tube in an inverted U shape (whose top is typically located above the liquid surface) under the action of gravity, and has been used in a variety of reallife applications such as a toilet bowl and a Greedy cup. However, liquid drainage due to siphoning sometimes needs to be prevented. For example, a siphon breaker, which is designed to limit the siphon effect by allowing the gas entrainment into a siphon line, is installed in order to maintain the pool water level above the reactor core when a loss of coolant accident (LOCA) occurs in an open-pool type research reactor. In this paper, we develop a theoretical model to predict the siphon breaking phenomenon. In this paper, a theoretical model to predict the siphon breaking phenomenon is developed. It is shown that the present model predicts well the fundamental features of the siphon breaking phenomenon and undershooting height.

  1. Physics of human cooperation: experimental evidence and theoretical models

    Science.gov (United States)

    Sánchez, Angel

    2018-02-01

    In recent years, many physicists have used evolutionary game theory combined with a complex systems perspective in an attempt to understand social phenomena and challenges. Prominent among such phenomena is the issue of the emergence and sustainability of cooperation in a networked world of selfish or self-focused individuals. The vast majority of research done by physicists on these questions is theoretical, and is almost always posed in terms of agent-based models. Unfortunately, more often than not such models ignore a number of facts that are well established experimentally, and are thus rendered irrelevant to actual social applications. I here summarize some of the facts that any realistic model should incorporate and take into account, discuss important aspects underlying the relation between theory and experiments, and discuss future directions for research based on the available experimental knowledge.

  2. Three General Theoretical Models in Sociology: An Articulated ?(Disunity?

    Directory of Open Access Journals (Sweden)

    Thaís García-Pereiro

    2015-01-01

    Full Text Available After merely a brief, comparative reconstruction of the three most general theoretical models underlying contemporary Sociology (atomic, systemic, and fluid it becomes necessary to review the question about the unity or plurality of Sociology, which is the main objective of this paper. To do so, the basic terms of the question are firstly updated by following the hegemonic trends in current studies of science. Secondly the convergences and divergences among the three models discussed are shown. Following some additional discussion, the conclusion is reached that contemporary Sociology is not unitary, and need not be so. It is plural, but its plurality is limited and articulated by those very models. It may therefore be portrayed as integrated and commensurable, to the extent that a partial and unstable (disunity may be said to exist in Sociology, which is not too far off from what happens in the natural sciences.

  3. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  4. The theoretical aspects of UrQMD & AMPT models

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Abhilasha, E-mail: kashvini.abhi@gmail.com [Research Scholar, Department of Physics, Suresh Gyan vihar University, Jaipur (India); Bhardwaj, Sudhir, E-mail: sudhir.hep@gmail.com [Assistant professor, Govt. College of Engineering & Technology, Bikaner (India)

    2016-05-06

    The field of high energy physics is very challenging in carrying out theories and experiments to unlock the secrets of heavy ion collisions and still not cracked and solved completely. There are many theoretical queries; some may be due to the inherent causes like the non-perturbative nature of QCD in the strong coupling limit, also due to the multi-particle production and evolution during the heavy ion collisions which increase the complexity of the phenomena. So for the purpose of understanding the phenomena, variety of theories and ideas are developed which are usually implied in the form of Monte-Carlo codes. The UrQMD model and the AMPT model are discussed here in detail. These methods are useful in modeling the nuclear collisions.

  5. Learning theories and tools for the assessment of core nursing competencies in simulation: A theoretical review.

    Science.gov (United States)

    Lavoie, Patrick; Michaud, Cécile; Bélisle, Marilou; Boyer, Louise; Gosselin, Émilie; Grondin, Myrian; Larue, Caroline; Lavoie, Stéphan; Pepin, Jacinthe

    2018-02-01

    To identify the theories used to explain learning in simulation and to examine how these theories guided the assessment of learning outcomes related to core competencies in undergraduate nursing students. Nurse educators face the challenge of making explicit the outcomes of competency-based education, especially when competencies are conceptualized as holistic and context dependent. Theoretical review. Research papers (N = 182) published between 1999-2015 describing simulation in nursing education. Two members of the research team extracted data from the papers, including theories used to explain how simulation could engender learning and tools used to assess simulation outcomes. Contingency tables were created to examine the associations between theories, outcomes and tools. Some papers (N = 79) did not provide an explicit theory. The 103 remaining papers identified one or more learning or teaching theories; the most frequent were the National League for Nursing/Jeffries Simulation Framework, Kolb's theory of experiential learning and Bandura's social cognitive theory and concept of self-efficacy. Students' perceptions of simulation, knowledge and self-confidence were the most frequently assessed, mainly via scales designed for the study where they were used. Core competencies were mostly assessed with an observational approach. This review highlighted the fact that few studies examined the use of simulation in nursing education through learning theories and via assessment of core competencies. It also identified observational tools used to assess competencies in action, as holistic and context-dependent constructs. © 2017 John Wiley & Sons Ltd.

  6. Accuracy Analysis of a Box-wing Theoretical SRP Model

    Science.gov (United States)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  7. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Science.gov (United States)

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  8. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael Stobb

    Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  9. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Full Text Available Chaotic spreading sequences can increase secrecy and resistance to interception in signal transmission. Chaos-based CDMA systems have been well investigated in the case of flat fading and noise presence in the channel. However, these systems operating in wideband channels, characterized by the frequency selective fading and white Gaussian noise, have not been investigated to the level of understanding their practical applications. This paper presents a detailed mathematical model of a CDMA system based on chaotic spreading sequences. In a theoretical analysis, all signals are represented in the discrete time domain. Using the theory of discrete time stochastic processes, the probability of error expressions are derived in a closed form for a multi-user chaos based CDMA system. For the sake of comparison, the expressions for the probability of error are derived separately for narrowband and wideband channels. The application of the system interleaving technique is investigated in particular, which showed that this technique can substantially improve probability of error in the system.  The system is simulated and the findings of the simulation confirmed theoretically expected results. Possible improvements in the probability of bit error due to multipath channel nature, with and without interleavers, are quantified depending on the random delay and the number of users in the system. In the analyzed system, a simplified version of the wideband channel model, proposed for modern wideband wireless networks, is used. Introduction Over the past years, the demand for wireless communications has increased substantially due to advancements in mobile communication systems and networks. Following these increasing demands, modern communication systems require the ability to handle a large number of users to process and transmit wideband signals through complex frequency selective channels. One of the techniques for transmission of multi-user signals is the

  10. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  11. Simulation data for an estimation of the maximum theoretical value and confidence interval for the correlation coefficient.

    Science.gov (United States)

    Rocco, Paolo; Cilurzo, Francesco; Minghetti, Paola; Vistoli, Giulio; Pedretti, Alessandro

    2017-10-01

    The data presented in this article are related to the article titled "Molecular Dynamics as a tool for in silico screening of skin permeability" (Rocco et al., 2017) [1]. Knowledge of the confidence interval and maximum theoretical value of the correlation coefficient r can prove useful to estimate the reliability of developed predictive models, in particular when there is great variability in compiled experimental datasets. In this Data in Brief article, data from purposely designed numerical simulations are presented to show how much the maximum r value is worsened by increasing the data uncertainty. The corresponding confidence interval of r is determined by using the Fisher r → Z transform.

  12. Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference

    Science.gov (United States)

    Fu, Yuhang; Bai, Lin; Jin, Yong; Cheng, Yi

    2017-03-01

    Asymmetric droplet breakup under a pressure difference at two outlets of a T-junction is investigated theoretically and numerically in this study. An accurate analysis of the evolution of droplet dynamics during the obstructed breakup process has been conducted. Meanwhile, the lattice Boltzmann method based on color gradient model is employed to simulate the system with the verification of the theoretical results. It is demonstrated that the Zou-He boundary setting at each outlet is advantageous for modifying the pressure drop of the two branches of T-junction. The results reveal that asymmetric breakup of the unequally sized droplets follows two steps, namely, the filling stage and the breakup stage. Then a universal parameter is proposed to describe the asymmetric condition of droplet breakup in T-junction, which plays a key role to characterize the temporal evolution of volume ratio and the droplet length of formed smaller droplets.

  13. NMR relaxation induced by iron oxide particles: testing theoretical models.

    Science.gov (United States)

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  14. Theoretical analysis and numerical simulation of electromagnetic parameters of Fe-C coaxial single fiber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei, E-mail: cslggncl@163.com [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Zhu, Xukun; Kuang, Jiacai [Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, Hunan Province, Changsha University of Science and Technology, Changsha 410114 (China); Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, Changsha 410114 (China); Yi, Shihe; Cheng, Haifeng [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Guo, Zhanhu; He, Qingliang [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    Highlights: • Theoretical formula and calculation results of effective permeability and effective permittivity of the Fe-C coaxial fiber are obtained based on the Maxwell equation. • The coaxial fiber has stronger anisotropy and better electromagnetic dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. • Greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers. - Abstract: Based on the Maxwell equation, the electromagnetic model in the coaxial fiber was described. The interaction with electromagnetic wave was analysed and the theoretical formula of axial permeability (μ{sub ∥}), axial permittivity (ε{sub ∥}), radial permeability (μ{sub ⊥}) and radial permittivity (ε{sub ⊥}) of Fe-C coaxial fiber were derived, and the demagnetization factor (N) of fibrous material was revised. Calculation results indicate that the composite fiber has stronger anisotropy and better EM dissipation performance than the hollow carbon fiber and solid iron fiber with the same volume content. These properties can be enhanced through increasing aspect ratio and carbon content. The μ{sub ‖} is 5.18-4.46i, μ{sub ⊥} is 2.58-0.50i, ε{sub ∥} is 7.63-6.97i, and ε{sub ⊥} is 1.98-0.15i when the electromagnetic wave frequency is 5 GHz with the outer diameter of 0.866 μm, inner diameter of 0.500 μm, and length of 20 μm. The maximum of the imaginary part of μ{sub ∥} and ε{sub ∥} are much larger than that of μ{sub ⊥} and ε{sub ⊥} when the structural parameters change, and the maximum of μ{sub ∥} and ε{sub ∥} can reach 6.429 and 23.59. Simulation results show that greater conductivity, larger aspect ratio, thin iron shell play important roles to improve the electromagnetic matching ability and microwave attenuation for the Fe-C coaxial fibers.

  15. Design theoretic analysis of three system modeling frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Michael James

    2007-05-01

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  16. A Theoretical Model for Meaning Construction through Constructivist Concept Learning

    DEFF Research Database (Denmark)

    Badie, Farshad

    The central focus of this Ph.D. research is on ‘Logic and Cognition’ and, more specifically, this research covers the quintuple (Logic and Logical Philosophy, Philosophy of Education, Educational Psychology, Cognitive Science, Computer Science). The most significant contributions of this Ph.D. di...... of ‘learning’, ‘mentoring’, and ‘knowledge’ within learning and knowledge acquisition systems. Constructivism as an epistemology and as a model of knowing and, respectively as a theoretical model of learning builds up the central framework of this research........D. dissertation are conceptual, logical, terminological, and semantic analysis of Constructivist Concept Learning (specifically, in the context of humans’ interactions with their environment and with other agents). This dissertation is concerned with the specification of the conceptualisation of the phenomena...

  17. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  18. Theoretical models for Type I and Type II supernova

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate 12 C(α,γ) 16 O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs

  19. Category-theoretic models of algebraic computer systems

    Science.gov (United States)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  20. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle; Fredriksson, Anders; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2002-05-01

    In the purpose of studying the possibilities of a Deep Repository for spent fuel, the Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site Investigations. Data collected from these Site Investigations are interpreted and analysed to achieve the full Site Description, which is built up of models from all the disciplines that are considered of importance for the Site Description. One of these models is the Rock Mechanical Descriptive Model,which would be developed for any site in hard crystalline rock, and is a combination and evaluation of the characterisation of rock mass by means of empirical relationships and a theoretical approach based on numerical modelling. The present report describes the theoretical approach. The characterisation of the mechanical properties of the rock mass, viewed as a unit consisting of intact rock and fractures, is achieved by numerical simulations with following input parameters: initial stresses, fracture geometry, distribution of rock mechanical properties, such as deformation and strength parameters, for the intact rock and for the fractures. The numerical modelling was performed with the two-dimensional code UDEC, and the rock block models were generated from 2D trace sections extracted from the 3D Discrete Fracture Network (DFN) model. Assumptions and uncertainties related to the set-up of the model are considered. The numerical model was set-up to simulate a plain strain-loading test. Different boundary conditions were applied on the model for simulating stress conditions (I) in the undisturbed rock mass, and (II) at the proximity of a tunnel. In order to assess the reliability of the model sensitivity analyses have been conducted on some rock block models for defining the dependency of mechanical properties to in situ stresses, the influence of boundary conditions, rock material and joint constitutive models used to simulate the behaviour of intact rock and fractures, domain size and anisotropy. To

  1. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach

    International Nuclear Information System (INIS)

    Staub, Isabelle; Fredriksson, Anders; Outters, Nils

    2002-05-01

    In the purpose of studying the possibilities of a Deep Repository for spent fuel, the Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site Investigations. Data collected from these Site Investigations are interpreted and analysed to achieve the full Site Description, which is built up of models from all the disciplines that are considered of importance for the Site Description. One of these models is the Rock Mechanical Descriptive Model,which would be developed for any site in hard crystalline rock, and is a combination and evaluation of the characterisation of rock mass by means of empirical relationships and a theoretical approach based on numerical modelling. The present report describes the theoretical approach. The characterisation of the mechanical properties of the rock mass, viewed as a unit consisting of intact rock and fractures, is achieved by numerical simulations with following input parameters: initial stresses, fracture geometry, distribution of rock mechanical properties, such as deformation and strength parameters, for the intact rock and for the fractures. The numerical modelling was performed with the two-dimensional code UDEC, and the rock block models were generated from 2D trace sections extracted from the 3D Discrete Fracture Network (DFN) model. Assumptions and uncertainties related to the set-up of the model are considered. The numerical model was set-up to simulate a plain strain-loading test. Different boundary conditions were applied on the model for simulating stress conditions (I) in the undisturbed rock mass, and (II) at the proximity of a tunnel. In order to assess the reliability of the model sensitivity analyses have been conducted on some rock block models for defining the dependency of mechanical properties to in situ stresses, the influence of boundary conditions, rock material and joint constitutive models used to simulate the behaviour of intact rock and fractures, domain size and anisotropy. To

  2. Validation process of simulation model

    International Nuclear Information System (INIS)

    San Isidro, M. J.

    1998-01-01

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  3. Modeling and Simulation for Safeguards

    International Nuclear Information System (INIS)

    Swinhoe, Martyn T.

    2012-01-01

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R and D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  4. Modeling and Simulation of Nanoindentation

    Science.gov (United States)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  5. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    Science.gov (United States)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.

  6. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  7. NRTA simulation by modeling PFPF

    International Nuclear Information System (INIS)

    Asano, Takashi; Fujiwara, Shigeo; Takahashi, Saburo; Shibata, Junichi; Totsu, Noriko

    2003-01-01

    In PFPF, NRTA system has been applied since 1991. It has been confirmed by evaluating facility material accountancy data provided from operator in each IIV that a significant MUF was not generated. In case of throughput of PFPF scale, MUF can be evaluated with a sufficient detection probability by the present NRTA evaluation manner. However, by increasing of throughput, the uncertainty of material accountancy will increase, and the detection probability will decline. The relationship between increasing of throughput and declining of detection probability and the maximum throughput upon application of following measures with a sufficient detection probability were evaluated by simulation of NRTA system. This simulation was performed by modeling of PFPF. Measures for increasing detection probability are shown as follows. Shortening of the evaluation interval. Segmentation of evaluation area. This report shows the results of these simulations. (author)

  8. Pragmatic impact of workplace ostracism: toward a theoretical model

    Directory of Open Access Journals (Sweden)

    Amer Ali Al-Atwi

    2017-07-01

    Full Text Available Purpose - The purpose of this paper is to extend the ostracism literature by exploring the pragmatic impact of ostracism on performance. Design/methodology/approach - Ostracism workplace, social relations and empowerment structures are discussed. The paper then develops a theoretical framework that explains why and under what conditions workplace ostracism undermines employees’ performance. The author proposes that empowerment structures mediate the link between ostracism and in-role and extra-role performance. In addition, it was proposed that relational links buffer the negative relationship between ostracism and empowerment structures on performance and weaken the negative indirect effect of ostracism on performance. Findings - The theoretical arguments provide support for the model showing that empowerment structures mediate the relationship between ostracism and performance, and the mediation effect only occurred when external links were high but not when external links were low. Originality/value - The author has expanded the extant literature by answering recent calls for research exploring the pragmatic impact of workplace ostracism where past research has typically focused solely on the psychological impacts such as psychological needs.

  9. Tesla Coil Theoretical Model and its Experimental Verification

    Directory of Open Access Journals (Sweden)

    Voitkans Janis

    2014-12-01

    Full Text Available In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

  10. Nonlinear local electrovascular coupling. I: A theoretical model.

    Science.gov (United States)

    Riera, Jorge J; Wan, Xiaohong; Jimenez, Juan Carlos; Kawashima, Ryuta

    2006-11-01

    Here we present a detailed biophysical model of how brain electrical and vascular dynamics are generated within a basic cortical unit. The model was obtained from coupling a canonical neuronal mass and an expandable vasculature. In this proposal, we address several aspects related to electroencephalographic and functional magnetic resonance imaging data fusion: (1) the impact of the cerebral architecture (at different physical levels) on the observations; (2) the physiology involved in electrovascular coupling; and (3) energetic considerations to gain a better understanding of how the glucose budget is used during neuronal activity. The model has three components. The first is the canonical neural mass model of three subpopulations of neurons that respond to incoming excitatory synaptic inputs. The generation of the membrane potentials in the somas of these neurons and the electric currents flowing in the neuropil are modeled by this component. The second and third components model the electrovascular coupling and the dynamics of vascular states in an extended balloon approach, respectively. In the first part we describe, in some detail, the biophysical model and establish its face validity using simulations of visually evoked responses under different flickering frequencies and luminous contrasts. In a second part, a recursive optimization algorithm is developed and used to make statistical inferences about this forward/generative model from actual data. Copyright 2006 Wiley-Liss, Inc.

  11. Theoretical Models of Deliberative Democracy: A Critical Analysis

    Directory of Open Access Journals (Sweden)

    Tutui Viorel

    2015-07-01

    Full Text Available Abstract: My paper focuses on presenting and analyzing some of the most important theoretical models of deliberative democracy and to emphasize their limits. Firstly, I will mention James Fishkin‟s account of deliberative democracy and its relations with other democratic models. He differentiates between four democratic theories: competitive democracy, elite deliberation, participatory democracy and deliberative democracy. Each of these theories makes an explicit commitment to two of the following four “principles”: political equality, participation, deliberation, nontyranny. Deliberative democracy is committed to political equality and deliberation. Secondly, I will present Philip Pettit‟s view concerning the main constraints of deliberative democracy: the inclusion constraint, the judgmental constraint and the dialogical constraint. Thirdly, I will refer to Amy Gutmann and Dennis Thompson‟s conception regarding the “requirements” or characteristics of deliberative democracy: the reason-giving requirement, the accessibility of reasons, the binding character of the decisions and the dynamic nature of the deliberative process. Finally, I will discuss Joshua Cohen‟s “ideal deliberative procedure” which has the following features: it is free, reasoned, the parties are substantively equal and the procedure aims to arrive at rationally motivated consensus. After presenting these models I will provide a critical analysis of each one of them with the purpose of revealing their virtues and limits. I will make some suggestions in order to combine the virtues of these models, to transcend their limitations and to offer a more systematical account of deliberative democracy. In the next four sections I will take into consideration four main strategies for combining political and epistemic values (“optimistic”, “deliberative”, “democratic” and “pragmatic” and the main objections they have to face. In the concluding section

  12. Repository simulation model: Final report

    International Nuclear Information System (INIS)

    1988-03-01

    This report documents the application of computer simulation for the design analysis of the nuclear waste repository's waste handling and packaging operations. The Salt Repository Simulation Model was used to evaluate design alternatives during the conceptual design phase of the Salt Repository Project. Code development and verification was performed by the Office of Nuclear Waste Isolation (ONWL). The focus of this report is to relate the experience gained during the development and application of the Salt Repository Simulation Model to future repository design phases. Design of the repository's waste handling and packaging systems will require sophisticated analysis tools to evaluate complex operational and logistical design alternatives. Selection of these design alternatives in the Advanced Conceptual Design (ACD) and License Application Design (LAD) phases must be supported by analysis to demonstrate that the repository design will cost effectively meet DOE's mandated emplacement schedule and that uncertainties in the performance of the repository's systems have been objectively evaluated. Computer simulation of repository operations will provide future repository designers with data and insights that no other analytical form of analysis can provide. 6 refs., 10 figs

  13. Examining Asymmetrical Relationships of Organizational Learning Antecedents: A Theoretical Model

    Directory of Open Access Journals (Sweden)

    Ery Tri Djatmika

    2016-02-01

    Full Text Available Global era is characterized by highly competitive advantage market demand. Responding to the challenge of rapid environmental changes, organizational learning is becoming a strategic way and solution to empower people themselves within the organization in order to create a novelty as valuable positioning source. For research purposes, determining the influential antecedents that affect organizational learning is vital to understand research-based solutions given for practical implications. Accordingly, identification of variables examined by asymmetrical relationships is critical to establish. Possible antecedent variables come from organizational and personal point of views. It is also possible to include a moderating one. A proposed theoretical model of asymmetrical effects of organizational learning and its antecedents is discussed in this article.

  14. Theoretical model for cavitation erosion prediction in centrifugal pump impeller

    International Nuclear Information System (INIS)

    Rayan, M.A.; Mahgob, M.M.; Mostafa, N.H.

    1990-01-01

    Cavitation is known to have great effects on pump hydraulic and mechanical characteristics. These effects are mainly described by deviation in pump performance, increasing vibration and noise level as well as erosion of blade and casing materials. In the present work, only the hydrodynamic aspect of cavitation was considered. The efforts were directed toward the study of cavitation inception, cavity mechanics and material erosion in order to clarify the macrohydrodynamic aspects of cavitation erosive wear in real machines. As a result of this study, it was found that cavitation damage can be predicted from model data. The obtained theoretical results show good agreement with the experimental results obtained in this investigation and with results of some other investigations. The application of the findings of this work will help the design engineer in predicting the erosion rate, according to the different operating conditions. (author)

  15. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  16. Simulating spin models on GPU

    Science.gov (United States)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  17. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  18. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla

    2009-01-01

    Full Text Available Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’ exhaust pipes. This work also considers how the simulation must be made, based on the previous exploration. The results (presented as e- quations in this first paper show the great influence exerted by pressure wave movement on flow through the engine and there- fore on its final performance.

  19. Hartree-Fock-Bogoliubov model: a theoretical and numerical perspective

    International Nuclear Information System (INIS)

    Paul, S.

    2012-01-01

    This work is devoted to the theoretical and numerical study of Hartree-Fock-Bogoliubov (HFB) theory for attractive quantum systems, which is one of the main methods in nuclear physics. We first present the model and its main properties, and then explain how to get numerical solutions. We prove some convergence results, in particular for the simple fixed point algorithm (sometimes called Roothaan). We show that it converges, or oscillates between two states, none of them being a solution. This generalizes to the HFB case previous results of Cances and Le Bris for the simpler Hartree-Fock model in the repulsive case. Following these authors, we also propose a relaxed constraint algorithm for which convergence is guaranteed. In the last part of the thesis, we illustrate the behavior of these algorithms by some numerical experiments. We first consider a system where the particles only interact through the Newton potential. Our numerical results show that the pairing matrix never vanishes, a fact that has not yet been proved rigorously. We then study a very simplified model for protons and neutrons in a nucleus. (author)

  20. A theoretical intellectual capital model applied to cities

    Directory of Open Access Journals (Sweden)

    José Luis Alfaro Navarro

    2013-06-01

    Full Text Available New Management Information Systems (MIS are necessary at local level as the main source of wealth creation. Therefore, tools and approaches that provide a full future vision of any organization should be a strategic priority for economic development. In this line, cities are “centers of knowledge and sources of growth and innovation” and integrated urban development policies are necessary. These policies support communication networks and optimize location structures as strategies that provide opportunities for social and democratic participation for the citizens. This paper proposes a theoretical model to measure and evaluate the cities intellectual capital that allows determine what we must take into account to make cities a source of wealth, prosperity, welfare and future growth. Furthermore, local intellectual capital provides a long run vision. Thus, in this paper we develop and explain how to implement a model to estimate intellectual capital in cities. In this sense, our proposal is to provide a model for measuring and managing intellectual capital using socio-economic indicators for cities. These indicators offer a long term picture supported by a comprehensive strategy for those who occupy the local space, infrastructure for implementation and management of the environment for its development.

  1. A Production Model for Construction: A Theoretical Framework

    Directory of Open Access Journals (Sweden)

    Ricardo Antunes

    2015-03-01

    Full Text Available The building construction industry faces challenges, such as increasing project complexity and scope requirements, but shorter deadlines. Additionally, economic uncertainty and rising business competition with a subsequent decrease in profit margins for the industry demands the development of new approaches to construction management. However, the building construction sector relies on practices based on intuition and experience, overlooking the dynamics of its production system. Furthermore, researchers maintain that the construction industry has no history of the application of mathematical approaches to model and manage production. Much work has been carried out on how manufacturing practices apply to construction projects, mostly lean principles. Nevertheless, there has been little research to understand the fundamental mechanisms of production in construction. This study develops an in-depth literature review to examine the existing knowledge about production models and their characteristics in order to establish a foundation for dynamic production systems management in construction. As a result, a theoretical framework is proposed, which will be instrumental in the future development of mathematical production models aimed at predicting the performance and behaviour of dynamic project-based systems in construction.

  2. Theoretical study on the inverse modeling of deep body temperature measurement

    International Nuclear Information System (INIS)

    Huang, Ming; Chen, Wenxi

    2012-01-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)

  3. Proof of concept of an artificial muscle: theoretical model, numerical model, and hardware experiment.

    Science.gov (United States)

    Haeufle, D F B; Günther, M; Blickhan, R; Schmitt, S

    2011-01-01

    Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices. © 2011 IEEE

  4. Does the U.S. exercise contagion on Italy? A theoretical model and empirical evidence

    Science.gov (United States)

    Cerqueti, Roy; Fenga, Livio; Ventura, Marco

    2018-06-01

    This paper deals with the theme of contagion in financial markets. At this aim, we develop a model based on Mixed Poisson Processes to describe the abnormal returns of financial markets of two considered countries. In so doing, the article defines the theoretical conditions to be satisfied in order to state that one of them - the so-called leader - exercises contagion on the others - the followers. Specifically, we employ an invariant probabilistic result stating that a suitable transformation of a Mixed Poisson Process is still a Mixed Poisson Process. The theoretical claim is validated by implementing an extensive simulation analysis grounded on empirical data. The countries considered are the U.S. (as the leader) and Italy (as the follower) and the period under scrutiny is very large, ranging from 1970 to 2014.

  5. Econometric simulation model of the US market for steam coal

    Energy Technology Data Exchange (ETDEWEB)

    Labys, W C; Paik, S; Liebenthal, A M

    1979-01-01

    An econometric investigation of the historical structure of the U.S. market for steam coal was made to forecast demand, supply, inventory, and price behavior. The structure of the steam coal market is examined and a corresponding theoretical model developed. Consideration is given to alternative simulation models based on various combinations of hypotheses about demand and supply. Results from the models are presented and interpreted. 19 references.

  6. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  7. Theoretical models for MHD turbulence in the solar wind

    International Nuclear Information System (INIS)

    Veltri, P.; Malara, F.

    1997-01-01

    The in situ measurements of velocity, magnetic field, density and temperature fluctuations performed in the solar wind have greatly improved our knowledge of MDH turbulence not only from the point of view of space physics but also from the more general point of view of plasma physics. These fluctuations which extend over a wide range of frequencies (about 5 decades), a fact which seems to be the signature of turbulent nonlinear energy cascade, display, mainly in the trailing edge of high-speed streams, a number of features characteristic of a self-organized situation: i) a high degree of correlation between magnetic and velocity field fluctuations, ii) a very low level of fluctuations in mass density and magnetic-field intensity, iii) a considerable anisotropy revealed by minimum variance analysis of the magnetic-field correlation tensor. Many fundamental processes in plasma physics, which were largely unknown or not understood before their observations in the solar wind, have been explained, by building up analytical models or performing numerical simulations. We discuss the most recent analytical theories and numerical simulations and outline the limits implicit in any analysis which consider the low-frequency solar-wind fluctuations as a superposition of linear modes. The characterization of low-frequency fluctuations during Alfvenic periods, which results from the models discussed, is finally presented

  8. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  9. Theoretical models for asteroseismology of DA white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, P.A. [XTA, MS B220, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1996-09-01

    Because white dwarfs are the most common end state of stellar evolution, determining their internal structure will yield many clues about the final stages of stellar evolution and the physics of matter under extreme conditions. We present the results of our parametric survey of evolutionary models of compositionally stratified white dwarfs with hydrogen surface layers (DA white dwarfs) and provide a comprehensive set of theoretical {ital g}-mode pulsation periods for comparison to observations of pulsating DA white dwarfs. This survey complements the previous survey of helium atmosphere (DB) white dwarf periods of Bradley, Winget, & Wood. We show how to use the periods of low-overtone and/or trapped modes to constrain the internal structure of pulsating DA white dwarfs by utilizing their sensitivity to the total stellar mass and the location of the hydrogen/helium transition zone. We use G117-B15A as an example to demonstrate the potential of our models for asteroseismology; we suggest that G117-B15A has a mass of 0.55 {ital M}{sub {circle_dot}} and a hydrogen layer mass of {approx_equal}1.5{times}10{sup {minus}4} {ital M}{sub {asterisk}}. {copyright} {ital 1996 The American Astronomical Society.}

  10. posttraumatic stress disorder: a theoretical model of the hyperarousal subtype

    Directory of Open Access Journals (Sweden)

    Charles Stewart Weston

    2014-04-01

    Full Text Available Posttraumatic stress disorder (PTSD is a frequent and distressing mental disorder, about which much remains to be learned. It is a heterogeneous disorder; the hyperarousal subtype (about 70% of occurrences and simply termed PTSD in this paper is the topic of this article, but the dissociative subtype (about 30% of occurrences and likely involving quite different brain mechanisms is outside its scope. A theoretical model is presented that integrates neuroscience data on diverse brain regions known to be involved in PTSD, and extensive psychiatric findings on the disorder. Specifically, the amygdala is a multifunctional brain region that is crucial to PTSD, and processes peritraumatic hyperarousal on grounded cognition principles to produce hyperarousal symptoms. Amygdala activity also modulates hippocampal function, which is supported by a large body of evidence, and likewise amygdala activity modulates several brainstem regions, visual cortex, rostral anterior cingulate cortex (rACC, and medial orbitofrontal cortex (mOFC, to produce diverse startle, visual, memory, numbing, anger, and recklessness symptoms. Additional brain regions process other aspects of peritraumatic responses to produce further symptoms. These contentions are supported by neuroimaging, neuropsychological, neuroanatomical, physiological, cognitive, and behavioral evidence. Collectively, the model offers an account of how responses at the time of trauma are transformed into an extensive array of the 20 PTSD symptoms that are specified in the Diagnostic and Statistical Manual of Mental Disorders, 5th edition. It elucidates the neural mechanisms of a specific form of psychopathology, and accords with the Research Domain Criteria framework

  11. Strengthening Theoretical Testing in Criminology Using Agent-based Modeling.

    Science.gov (United States)

    Johnson, Shane D; Groff, Elizabeth R

    2014-07-01

    The Journal of Research in Crime and Delinquency ( JRCD ) has published important contributions to both criminological theory and associated empirical tests. In this article, we consider some of the challenges associated with traditional approaches to social science research, and discuss a complementary approach that is gaining popularity-agent-based computational modeling-that may offer new opportunities to strengthen theories of crime and develop insights into phenomena of interest. Two literature reviews are completed. The aim of the first is to identify those articles published in JRCD that have been the most influential and to classify the theoretical perspectives taken. The second is intended to identify those studies that have used an agent-based model (ABM) to examine criminological theories and to identify which theories have been explored. Ecological theories of crime pattern formation have received the most attention from researchers using ABMs, but many other criminological theories are amenable to testing using such methods. Traditional methods of theory development and testing suffer from a number of potential issues that a more systematic use of ABMs-not without its own issues-may help to overcome. ABMs should become another method in the criminologists toolbox to aid theory testing and falsification.

  12. Experimental Investigation and Theoretical Modeling of Nanosilica Activity in Concrete

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2014-01-01

    Full Text Available This paper presents experimental investigations and theoretical modeling of the hydration reaction of nanosilica blended concrete with different water-to-binder ratios and different nanosilica replacement ratios. The developments of chemically bound water contents, calcium hydroxide contents, and compressive strength of Portland cement control specimens and nanosilica blended specimens were measured at different ages: 1 day, 3 days, 7 days, 14 days, and 28 days. Due to the pozzolanic reaction of nanosilica, the contents of calcium hydroxide in nanosilica blended pastes are considerably lower than those in the control specimens. Compared with the control specimens, the extent of compressive strength enhancement in the nanosilica blended specimens is much higher at early ages. Additionally, a blended cement hydration model that considers both the hydration reaction of cement and the pozzolanic reaction of nanosilica is proposed. The properties of nanosilica blended concrete during hardening were evaluated using the degree of hydration of cement and the reaction degree of nanosilica. The calculated chemically bound water contents, calcium hydroxide contents, and compressive strength were generally consistent with the experimental results.

  13. Hospital nurses' wellbeing at work: a theoretical model.

    Science.gov (United States)

    Utriainen, Kati; Ala-Mursula, Leena; Kyngäs, Helvi

    2015-09-01

    To develop a theoretical model of hospital nurses' wellbeing at work. The concept of wellbeing at work is presented without an exact definition and without considering different contents. A model was developed in a deductive manner and empirical data collected from nurses (n = 233) working in a university hospital. Explorative factor analysis was used. The main concepts were: patients' experience of high-quality care; assistance and support among nurses; nurses' togetherness and cooperation; fluent practical organisation of work; challenging and meaningful work; freedom to express diverse feelings in the work community; well-conducted everyday nursing; status related to the work itself; fair and supportive leadership; opportunities for professional development; fluent communication with other professionals; and being together with other nurses in an informal way. Themes included: collegial relationships; enhancing high-quality patient care; supportive and fair leadership; challenging, meaningful and well organised work; and opportunities for professional development. Object-dependent wellbeing was supported. Managers should focus on strengthening the positive aspect of wellbeing at work, focusing on providing fluently organised work practices, fair and supportive leadership and togetherness while allowing nurses to implement their own ideas and promote the experience of meaningfulness. © 2014 John Wiley & Sons Ltd.

  14. A theoretical model for analysing gender bias in medicine

    Directory of Open Access Journals (Sweden)

    Johansson Eva E

    2009-08-01

    Full Text Available Abstract During the last decades research has reported unmotivated differences in the treatment of women and men in various areas of clinical and academic medicine. There is an ongoing discussion on how to avoid such gender bias. We developed a three-step-theoretical model to understand how gender bias in medicine can occur and be understood. In this paper we present the model and discuss its usefulness in the efforts to avoid gender bias. In the model gender bias is analysed in relation to assumptions concerning difference/sameness and equity/inequity between women and men. Our model illustrates that gender bias in medicine can arise from assuming sameness and/or equity between women and men when there are genuine differences to consider in biology and disease, as well as in life conditions and experiences. However, gender bias can also arise from assuming differences when there are none, when and if dichotomous stereotypes about women and men are understood as valid. This conceptual thinking can be useful for discussing and avoiding gender bias in clinical work, medical education, career opportunities and documents such as research programs and health care policies. Too meet the various forms of gender bias, different facts and measures are needed. Knowledge about biological differences between women and men will not reduce bias caused by gendered stereotypes or by unawareness of health problems and discrimination associated with gender inequity. Such bias reflects unawareness of gendered attitudes and will not change by facts only. We suggest consciousness-rising activities and continuous reflections on gender attitudes among students, teachers, researchers and decision-makers.

  15. A theoretical model for analysing gender bias in medicine.

    Science.gov (United States)

    Risberg, Gunilla; Johansson, Eva E; Hamberg, Katarina

    2009-08-03

    During the last decades research has reported unmotivated differences in the treatment of women and men in various areas of clinical and academic medicine. There is an ongoing discussion on how to avoid such gender bias. We developed a three-step-theoretical model to understand how gender bias in medicine can occur and be understood. In this paper we present the model and discuss its usefulness in the efforts to avoid gender bias. In the model gender bias is analysed in relation to assumptions concerning difference/sameness and equity/inequity between women and men. Our model illustrates that gender bias in medicine can arise from assuming sameness and/or equity between women and men when there are genuine differences to consider in biology and disease, as well as in life conditions and experiences. However, gender bias can also arise from assuming differences when there are none, when and if dichotomous stereotypes about women and men are understood as valid. This conceptual thinking can be useful for discussing and avoiding gender bias in clinical work, medical education, career opportunities and documents such as research programs and health care policies. Too meet the various forms of gender bias, different facts and measures are needed. Knowledge about biological differences between women and men will not reduce bias caused by gendered stereotypes or by unawareness of health problems and discrimination associated with gender inequity. Such bias reflects unawareness of gendered attitudes and will not change by facts only. We suggest consciousness-rising activities and continuous reflections on gender attitudes among students, teachers, researchers and decision-makers.

  16. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    Science.gov (United States)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  17. Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments. I. Theoretical modeling

    International Nuclear Information System (INIS)

    Holley, W.R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber composed of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and δ rays due to knock-on collisions involving energy transfers > 100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of circ OH, circ H, e aq , etc.; circ OH attack on sugar molecules leading to strand breaks; circ OH attack on bases; direct ionization of the sugar molecules leading to strand breaks; direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 hp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA. 27 refs., 7 figs

  18. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  19. SEMI Modeling and Simulation Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hermina, W.L.

    2000-10-02

    With the exponential growth in the power of computing hardware and software, modeling and simulation is becoming a key enabler for the rapid design of reliable Microsystems. One vision of the future microsystem design process would include the following primary software capabilities: (1) The development of 3D part design, through standard CAD packages, with automatic design rule checks that guarantee the manufacturability and performance of the microsystem. (2) Automatic mesh generation, for 3D parts as manufactured, that permits computational simulation of the process steps, and the performance and reliability analysis for the final microsystem. (3) Computer generated 2D layouts for process steps that utilize detailed process models to generate the layout and process parameter recipe required to achieve the desired 3D part. (4) Science-based computational tools that can simulate the process physics, and the coupled thermal, fluid, structural, solid mechanics, electromagnetic and material response governing the performance and reliability of the microsystem. (5) Visualization software that permits the rapid visualization of 3D parts including cross-sectional maps, performance and reliability analysis results, and process simulation results. In addition to these desired software capabilities, a desired computing infrastructure would include massively parallel computers that enable rapid high-fidelity analysis, coupled with networked compute servers that permit computing at a distance. We now discuss the individual computational components that are required to achieve this vision. There are three primary areas of focus: design capabilities, science-based capabilities and computing infrastructure. Within each of these areas, there are several key capability requirements.

  20. Photovoltaic array performance simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D. F.

    1986-09-15

    The experience of the solar industry confirms that, despite recent cost reductions, the profitability of photovoltaic (PV) systems is often marginal and the configuration and sizing of a system is a critical problem for the design engineer. Construction and evaluation of experimental systems are expensive and seldom justifiable. A mathematical model or computer-simulation program is a desirable alternative, provided reliable results can be obtained. Sandia National Laboratories, Albuquerque (SNLA), has been studying PV-system modeling techniques in an effort to develop an effective tool to be used by engineers and architects in the design of cost-effective PV systems. This paper reviews two of the sources of error found in previous PV modeling programs, presents the remedies developed to correct these errors, and describes a new program that incorporates these improvements.

  1. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis

    International Nuclear Information System (INIS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2015-01-01

    The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to provide better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability

  2. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  3. The neural mediators of kindness-based meditation: a theoretical model

    Directory of Open Access Journals (Sweden)

    Jennifer Streiffer Mascaro

    2015-02-01

    Full Text Available Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another’s affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work.

  4. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    Science.gov (United States)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  5. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  6. Theoretical modeling of cellular and dendritic solidification microstructures

    Science.gov (United States)

    Song, Younggil

    In this dissertation, we use three-dimensional (3D) phase-field (PF) modeling to investigate (i) 3D solid-liquid interface dynamics observed in microgravity experiments, and (ii) array patterns in a thin-sample geometry. In addition, using the two-dimensional (2D) dendritic-needle-network (DNN) model, we explore (iii) secondary sidebranching dynamics. Recently, solidification experiments are carried out in the DSI (Directional Solidification Insert) of the DECLIC (Device for the study of Critical LIquids and Crystallization) facility aboard the International Space Station (ISS). Thus, the directional solidification experiments are achieved under limited convective currents, and the experimental observations reveal unique dynamics of 3D microstructure in a purely diffusive growth regime. In this directional solidification setup, a temperature field between heat sources could evolve due to two main factors: (i) heat transfer within an adiabatic zone and (ii) latent heat rejection at the interface. These two thermal effects are phenomenologically characterized using a time-dependent thermal shift. In addition, we could quantitatively account for these thermal factors using a numerical calculation of the evolution of temperature field. We introduce these phenomenological and quantitative thermal representations into the PF model. The performed simulations using different thermal descriptions are compared to the experimental measurements from the initial planar interface dynamics to the final spacing selection. The DECLIC-DSI experimental observations exhibit complex grain boundary (GB) dynamics between large grains with a small misorientation. In the observations, several large grains with a small misorientation with respect to the temperature gradient are formed during solidification. Specifically, at a convergent GB, a localized group of misoriented cells penetrates into a nearby grain, which yields the morphological instability of grain boundaries. Remarkably, while

  7. Theoretical and experimental determination of mass attenuation coefficients of lead-based ceramics and their comparison with simulation

    Directory of Open Access Journals (Sweden)

    Vejdani-Noghreiyan Alireza

    2016-01-01

    Full Text Available Mass attenuation coefficient of lead-based ceramics have been measured by experimental methods and compared with theoretical and Monte Carlo simulation results. Lead-based ceramics were prepared using mixed oxide method and the X-ray diffraction analysis was done to evaluate the crystal structure of the produced handmade ceramics. The experimental results show good agreement with theoretical and simulation results. However at two gamma ray energies, small differences between experimental and theoretical results have been observed. By adding other additives to ceramics and observing the changes in the shielding properties such as flexibility, one can synthesize and optimize ceramics as a neutron shield.

  8. A P-value model for theoretical power analysis and its applications in multiple testing procedures

    Directory of Open Access Journals (Sweden)

    Fengqing Zhang

    2016-10-01

    Full Text Available Abstract Background Power analysis is a critical aspect of the design of experiments to detect an effect of a given size. When multiple hypotheses are tested simultaneously, multiplicity adjustments to p-values should be taken into account in power analysis. There are a limited number of studies on power analysis in multiple testing procedures. For some methods, the theoretical analysis is difficult and extensive numerical simulations are often needed, while other methods oversimplify the information under the alternative hypothesis. To this end, this paper aims to develop a new statistical model for power analysis in multiple testing procedures. Methods We propose a step-function-based p-value model under the alternative hypothesis, which is simple enough to perform power analysis without simulations, but not too simple to lose the information from the alternative hypothesis. The first step is to transform distributions of different test statistics (e.g., t, chi-square or F to distributions of corresponding p-values. We then use a step function to approximate each of the p-value’s distributions by matching the mean and variance. Lastly, the step-function-based p-value model can be used for theoretical power analysis. Results The proposed model is applied to problems in multiple testing procedures. We first show how the most powerful critical constants can be chosen using the step-function-based p-value model. Our model is then applied to the field of multiple testing procedures to explain the assumption of monotonicity of the critical constants. Lastly, we apply our model to a behavioral weight loss and maintenance study to select the optimal critical constants. Conclusions The proposed model is easy to implement and preserves the information from the alternative hypothesis.

  9. Operations planning simulation: Model study

    Science.gov (United States)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  10. Traffic flow dynamics. Data, models and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)

    2013-07-01

    First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.

  11. Stabilising the global greenhouse. A simulation model

    International Nuclear Information System (INIS)

    Michaelis, P.

    1993-01-01

    This paper investigates the economic implications of a comprehensive approach to greenhouse policies that strives to stabilise the atmospheric concentration of greenhouse gases at an ecolocially determined threshold level. In a theoretical optimisation model conditions for an efficient allocation of abatement effort among pollutants and over time are derived. The model is empirically specified and adapted to a dynamic Gams-algorithm. By various simulation runs for the period of 1990 to 2110, the economics of greenhouse gas accumulation are explored. In particular, the long-run cost associated with the above stabilisation target are evaluated for three different policy scenarios: i) A comprehensive approach that covers all major greenhouse gases simultaneously, ii) a piecemeal approach that is limited to reducing CO 2 emissions, and iii) a ten-year moratorium that postpones abatement effort until new scientific evidence on the greenhouse effect will become available. Comparing the simulation results suggests that a piecemeal approach would considerably increase total cost, whereas a ten-year moratorium might be reasonable even if the probability of 'good news' is comparatively small. (orig.)

  12. Theoretical Biology and Medical Modelling: ensuring continued growth and future leadership.

    Science.gov (United States)

    Nishiura, Hiroshi; Rietman, Edward A; Wu, Rongling

    2013-07-11

    Theoretical biology encompasses a broad range of biological disciplines ranging from mathematical biology and biomathematics to philosophy of biology. Adopting a broad definition of "biology", Theoretical Biology and Medical Modelling, an open access journal, considers original research studies that focus on theoretical ideas and models associated with developments in biology and medicine.

  13. Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble.

    Science.gov (United States)

    Koski, Jason P; Riggleman, Robert A

    2017-04-28

    Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

  14. Confident but not theoretically grounded – experienced simulation educators’ perceptions of their own professional development

    Directory of Open Access Journals (Sweden)

    Allvin R

    2017-01-01

    experienced simulation educators’ perceptions of their own teaching skills, practices, and understanding of teaching over time. Methods: A qualitative exploratory study. Fourteen experienced simulation educators participated in individual open-ended interviews focusing on their development as simulation educators. Data were analyzed using an inductive thematic analysis. Results: Marked educator development was discerned over time, expressed mainly in an altered way of thinking and acting. Five themes were identified: shifting focus, from following to utilizing a structure, setting goals, application of technology, and alignment with profession. Being confident in the role as an instructor seemed to constitute a foundation for the instructor’s pedagogical development. Conclusion: Experienced simulation educators’ pedagogical development was based on self-confidence in the educator role, and not on a deeper theoretical understanding of teaching and learning. This is the first clue to gain increased understanding regarding educational level and possible education needs among simulation educators, and it might generate several lines of research for further studies. Keywords: continuing professional development, interviews, medical simulation, pedagogical development, simulation educator

  15. A Game-Theoretic Model of Marketing Skin Whiteners.

    Science.gov (United States)

    Mendoza, Roger Lee

    2015-01-01

    Empirical studies consistently find that people in less developed countries tend to regard light or "white" skin, particularly among women, as more desirable or superior. This is a study about the marketing of skin whiteners in these countries, where over 80 percent of users are typically women. It proceeds from the following premises: a) Purely market or policy-oriented approaches toward the risks and harms of skin whitening are cost-inefficient; b) Psychosocial and informational factors breed uninformed and risky consumer choices that favor toxic skin whiteners; and c) Proliferation of toxic whiteners in a competitive buyer's market raises critical supplier accountability issues. Is intentional tort a rational outcome of uncooperative game equilibria? Can voluntary cooperation nonetheless evolve between buyers and sellers of skin whiteners? These twin questions are key to addressing the central paradox in this study: A robust and expanding buyer's market, where cheap whitening products abound at a high risk to personal and societal health and safety. Game-theoretic modeling of two-player and n-player strategic interactions is proposed in this study for both its explanatory and predictive value. Therein also lie its practical contributions to the economic literature on skin whitening.

  16. Hybrid empirical--theoretical approach to modeling uranium adsorption

    International Nuclear Information System (INIS)

    Hull, Larry C.; Grossman, Christopher; Fjeld, Robert A.; Coates, John T.; Elzerman, Alan W.

    2004-01-01

    An estimated 330 metric tons of U are buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of U transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of U fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms were measured for 14 sediment samples collected from sedimentary interbeds underlying the SDA. The adsorption data were fit with a Freundlich isotherm. The Freundlich n parameter is statistically identical for all 14 sediment samples and the Freundlich K f parameter is correlated to sediment surface area (r 2 =0.80). These findings suggest an efficient approach to material characterization and implementation of a spatially variable reactive transport model that requires only the measurement of sediment surface area. To expand the potential applicability of the measured isotherms, a model is derived from the empirical observations by incorporating concepts from surface complexation theory to account for the effects of solution chemistry. The resulting model is then used to predict the range of adsorption conditions to be expected in the vadose zone at the SDA based on the range in measured pore water chemistry. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  17. Impulse pumping modelling and simulation

    International Nuclear Information System (INIS)

    Pierre, B; Gudmundsson, J S

    2010-01-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  18. Simulation model of a PWR power plant

    International Nuclear Information System (INIS)

    Larsen, N.

    1987-03-01

    A simulation model of a hypothetical PWR power plant is described. A large number of disturbances and failures in plant function can be simulated. The model is written as seven modules to the modular simulation system for continuous processes DYSIM and serves also as a user example of this system. The model runs in Fortran 77 on the IBM-PC-AT. (author)

  19. Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2010-12-15

    Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.

  20. Game Theoretic Modeling of Water Resources Allocation Under Hydro-Climatic Uncertainty

    Science.gov (United States)

    Brown, C.; Lall, U.; Siegfried, T.

    2005-12-01

    Typical hydrologic and economic modeling approaches rely on assumptions of climate stationarity and economic conditions of ideal markets and rational decision-makers. In this study, we incorporate hydroclimatic variability with a game theoretic approach to simulate and evaluate common water allocation paradigms. Game Theory may be particularly appropriate for modeling water allocation decisions. First, a game theoretic approach allows economic analysis in situations where price theory doesn't apply, which is typically the case in water resources where markets are thin, players are few, and rules of exchange are highly constrained by legal or cultural traditions. Previous studies confirm that game theory is applicable to water resources decision problems, yet applications and modeling based on these principles is only rarely observed in the literature. Second, there are numerous existing theoretical and empirical studies of specific games and human behavior that may be applied in the development of predictive water allocation models. With this framework, one can evaluate alternative orderings and rules regarding the fraction of available water that one is allowed to appropriate. Specific attributes of the players involved in water resources management complicate the determination of solutions to game theory models. While an analytical approach will be useful for providing general insights, the variety of preference structures of individual players in a realistic water scenario will likely require a simulation approach. We propose a simulation approach incorporating the rationality, self-interest and equilibrium concepts of game theory with an agent-based modeling framework that allows the distinct properties of each player to be expressed and allows the performance of the system to manifest the integrative effect of these factors. Underlying this framework, we apply a realistic representation of spatio-temporal hydrologic variability and incorporate the impact of

  1. Theoretical Simulation on the Assembly of Carbon Nanotubes Between Electrodes by AC Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2008-01-01

    Full Text Available Abstract The assembly of single-walled carbon nanotubes (SWCNTs using the AC dielectrophoresis technique is studied theoretically. It is found that the comb electrode bears better position control of SWCNTs compared to the parallel electrode. In the assembly, when some SWCNTs bridge the electrode first, they can greatly alter the local electrical field so as to “screen off” later coming SWCNTs, which contributes to the formation of dispersed SWCNT array. The screening distance scales with the gap width of electrodes and the length of SWCNTs, which provides a way to estimate the assembled density of SWCNTs. The influence of thermal noise on SWCNTs alignment is also analyzed in the simulation. It is shown that the status of the array distribution for SWCNTs is decided by the competition between the thermal noise and the AC electric-field strength. This influence of the thermal noise can be suppressed by using higher AC voltage to assemble the SWCNTs.

  2. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.

    Science.gov (United States)

    Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A

    2010-10-11

    We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.

  3. Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling

    International Nuclear Information System (INIS)

    Welser-Sherrill, L.; Haynes, D.A.; Mancini, R.C.; Cooley, J.H.; Tommasini, R.; Golovkin, I.E.; Sherrill, M.E.; Haan, S.W.

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

  4. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    Science.gov (United States)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  5. Experimental study and theoretical simulation of the cross hardening effect in shape memory alloys

    Science.gov (United States)

    Movchan, A. A.; Sil'chenko, A. L.; Kazarina, S. A.

    2017-10-01

    The shapes and the relative position of martensitic inelasticity and forward transformation diagrams are experimentally studied. The strain dependences of the stress in loading under martensitic inelasticity conditions after an experiment on the accumulation of the forward transformation-induced strain at a constant or variable stress are investigated on titanium nickelide samples. It is found that the hardening of the martensite part of the representative volume of a shape memory alloy (titanium nickelide) after forward transformation under a nonmonotonically changing stress can be nonuniform. The cross hardening phenomenon is theoretically described in terms of the model of nonlinear deformation of a shape memory alloy during phase and structural transformations.

  6. Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

    International Nuclear Information System (INIS)

    Yuan Yi; Li Xiao-Li

    2015-01-01

    Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders. (paper)

  7. GSTARS computer models and their applications, part I: theoretical development

    Science.gov (United States)

    Yang, C.T.; Simoes, F.J.M.

    2008-01-01

    GSTARS is a series of computer models developed by the U.S. Bureau of Reclamation for alluvial river and reservoir sedimentation studies while the authors were employed by that agency. The first version of GSTARS was released in 1986 using Fortran IV for mainframe computers. GSTARS 2.0 was released in 1998 for personal computer application with most of the code in the original GSTARS revised, improved, and expanded using Fortran IV/77. GSTARS 2.1 is an improved and revised GSTARS 2.0 with graphical user interface. The unique features of all GSTARS models are the conjunctive use of the stream tube concept and of the minimum stream power theory. The application of minimum stream power theory allows the determination of optimum channel geometry with variable channel width and cross-sectional shape. The use of the stream tube concept enables the simulation of river hydraulics using one-dimensional numerical solutions to obtain a semi-two- dimensional presentation of the hydraulic conditions along and across an alluvial channel. According to the stream tube concept, no water or sediment particles can cross the walls of stream tubes, which is valid for many natural rivers. At and near sharp bends, however, sediment particles may cross the boundaries of stream tubes. GSTARS3, based on FORTRAN 90/95, addresses this phenomenon and further expands the capabilities of GSTARS 2.1 for cohesive and non-cohesive sediment transport in rivers and reservoirs. This paper presents the concepts, methods, and techniques used to develop the GSTARS series of computer models, especially GSTARS3. ?? 2008 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.

  8. Theoretical approaches to creation of robotic coal mines based on the synthesis of simulation technologies

    Science.gov (United States)

    Fryanov, V. N.; Pavlova, L. D.; Temlyantsev, M. V.

    2017-09-01

    Methodological approaches to theoretical substantiation of the structure and parameters of robotic coal mines are outlined. The results of mathematical and numerical modeling revealed the features of manifestation of geomechanical and gas dynamic processes in the conditions of robotic mines. Technological solutions for the design and manufacture of technical means for robotic mine are adopted using the method of economic and mathematical modeling and in accordance with the current regulatory documents. For a comparative performance evaluation of technological schemes of traditional and robotic mines, methods of cognitive modeling and matrix search for subsystem elements in the synthesis of a complex geotechnological system are applied. It is substantiated that the process of technical re-equipment of a traditional mine with a phased transition to a robotic mine will reduce unit costs by almost 1.5 times with a significant social effect due to a reduction in the number of personnel engaged in hazardous work.

  9. Galaxy Alignments: Theory, Modelling & Simulations

    Science.gov (United States)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  10. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Science.gov (United States)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  11. Optimal pacing strategy: from theoretical modelling to reality in 1500-m speed skating.

    Science.gov (United States)

    Hettinga, F J; De Koning, J J; Schmidt, L J I; Wind, N A C; Macintosh, B R; Foster, C

    2011-01-01

    Athletes are trained to choose the pace which is perceived to be correct during a specific effort, such as the 1500-m speed skating competition. The purpose of the present study was to "override" self-paced (SP) performance by instructing athletes to execute a theoretically optimal pacing profile. Seven national-level speed-skaters performed a SP 1500-m which was analysed by obtaining velocity (every 100 m) and body position (every 200 m) with video to calculate total mechanical power output. Together with gross efficiency and aerobic kinetics, obtained in separate trials, data were used to calculate aerobic and anaerobic power output profiles. An energy flow model was applied to SP, simulating a range of pacing strategies, and a theoretically optimal pacing profile was imposed in a second race (IM). Final time for IM was ∼2 s slower than SP. Total power distribution per lap differed, with a higher power over the first 300 m for IM (637.0 (49.4) vs 612.5 (50.0) W). Anaerobic parameters did not differ. The faster first lap resulted in a higher aerodynamic drag coefficient and perhaps a less effective push-off. Experienced athletes have a well-developed performance template, and changing pacing strategy towards a theoretically optimal fast start protocol had negative consequences on speed-skating technique and did not result in better performance.

  12. THE MARK I BUSINESS SYSTEM SIMULATION MODEL

    Science.gov (United States)

    of a large-scale business simulation model as a vehicle for doing research in management controls. The major results of the program were the...development of the Mark I business simulation model and the Simulation Package (SIMPAC). SIMPAC is a method and set of programs facilitating the construction...of large simulation models. The object of this document is to describe the Mark I Corporation model, state why parts of the business were modeled as they were, and indicate the research applications of the model. (Author)

  13. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  14. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  15. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    Science.gov (United States)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  16. Experimental and theoretical study of magnetohydrodynamic ship models.

    Directory of Open Access Journals (Sweden)

    David Cébron

    Full Text Available Magnetohydrodynamic (MHD ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  17. Experimental and theoretical study of magnetohydrodynamic ship models.

    Science.gov (United States)

    Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  18. Simulation modelling of fynbos ecosystems: Systems analysis and conceptual models

    CSIR Research Space (South Africa)

    Kruger, FJ

    1985-03-01

    Full Text Available -animal interactions. An additional two models, which expand aspects of the FYNBOS model, are described: a model for simulating canopy processes; and a Fire Recovery Simulator. The canopy process model will simulate ecophysiological processes in more detail than FYNBOS...

  19. How Crime Spreads Through Imitation in Social Networks: A Simulation Model

    Science.gov (United States)

    Punzo, Valentina

    In this chapter an agent-based model for investigating how crime spreads through social networks is presented. Some theoretical issues related to the sociological explanation of crime are tested through simulation. The agent-based simulation allows us to investigate the relative impact of some mechanisms of social influence on crime, within a set of controlled simulated experiments.

  20. Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects

    International Nuclear Information System (INIS)

    Sandu, Adrian; Sandu, Corina; Ahmadian, Mehdi

    2006-01-01

    This study explores the use of generalized polynomial chaos theory for modeling complex nonlinear multibody dynamic systems in the presence of parametric and external uncertainty. The polynomial chaos framework has been chosen because it offers an efficient computational approach for the large, nonlinear multibody models of engineering systems of interest, where the number of uncertain parameters is relatively small, while the magnitude of uncertainties can be very large (e.g., vehicle-soil interaction). The proposed methodology allows the quantification of uncertainty distributions in both time and frequency domains, and enables the simulations of multibody systems to produce results with 'error bars'. The first part of this study presents the theoretical and computational aspects of the polynomial chaos methodology. Both unconstrained and constrained formulations of multibody dynamics are considered. Direct stochastic collocation is proposed as less expensive alternative to the traditional Galerkin approach. It is established that stochastic collocation is equivalent to a stochastic response surface approach. We show that multi-dimensional basis functions are constructed as tensor products of one-dimensional basis functions and discuss the treatment of polynomial and trigonometric nonlinearities. Parametric uncertainties are modeled by finite-support probability densities. Stochastic forcings are discretized using truncated Karhunen-Loeve expansions. The companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part II: Numerical Applications' illustrates the use of the proposed methodology on a selected set of test problems. The overall conclusion is that despite its limitations, polynomial chaos is a powerful approach for the simulation of multibody systems with uncertainties

  1. Determining Student Competency in Field Placements: An Emerging Theoretical Model

    Directory of Open Access Journals (Sweden)

    Twyla L. Salm

    2016-06-01

    Full Text Available This paper describes a qualitative case study that explores how twenty-three field advisors, representing three human service professions including education, nursing, and social work, experience the process of assessment with students who are struggling to meet minimum competencies in field placements. Five themes emerged from the analysis of qualitative interviews. The field advisors primary concern was the level of professional competency achieved by practicum students. Related to competency were themes concerned with the field advisor's role in being accountable and protecting the reputation of his/her profession as well as the reputation of the professional program affiliated with the practicum student's professional education. The final theme – teacher-student relationship –emerged from the data, both as a stand-alone and global or umbrella theme. As an umbrella theme, teacher-student relationship permeated each of the other themes as the participants interpreted their experiences of the process of assessment through the mentor relationships. A theoretical model was derived from these findings and the description of the model is presented. Cet article décrit une étude de cas qualitative qui explore comment vingt-trois conseillers de stages, représentant trois professions de services sociaux comprenant l’éducation, les soins infirmiers et le travail social, ont vécu l’expérience du processus d’évaluation avec des étudiants qui ont des difficultés à acquérir les compétences minimales durant les stages. Cinq thèmes ont été identifiés lors de l’analyse des entrevues qualitatives. La préoccupation principale des conseillers de stages était le niveau de compétence professionnelle acquis par les stagiaires. Les thèmes liés à la compétence étaient le rôle des conseillers de stages dans leur responsabilité pour protéger la réputation de leur profession ainsi que la réputation d’un programme professionnel

  2. Lattice Boltzmann model for simulating immiscible two-phase flows

    International Nuclear Information System (INIS)

    Reis, T; Phillips, T N

    2007-01-01

    The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio

  3. An introduction to enterprise modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ostic, J.K.; Cannon, C.E. [Los Alamos National Lab., NM (United States). Technology Modeling and Analysis Group

    1996-09-01

    As part of an ongoing effort to continuously improve productivity, quality, and efficiency of both industry and Department of Energy enterprises, Los Alamos National Laboratory is investigating various manufacturing and business enterprise simulation methods. A number of enterprise simulation software models are being developed to enable engineering analysis of enterprise activities. In this document the authors define the scope of enterprise modeling and simulation efforts, and review recent work in enterprise simulation at Los Alamos National Laboratory as well as at other industrial, academic, and research institutions. References of enterprise modeling and simulation methods and a glossary of enterprise-related terms are provided.

  4. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  5. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  6. Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers

    Science.gov (United States)

    Wolpert, David H.; Bandari, Esfandiar; Tumer, Kagan

    2001-01-01

    The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains.

  7. Modeling of air-gap membrane distillation process: A theoretical and experimental study

    KAUST Repository

    Alsaadi, Ahmad Salem

    2013-06-03

    A one dimensional (1-D) air gap membrane distillation (AGMD) model for flat sheet type modules has been developed. This model is based on mathematical equations that describe the heat and mass transfer mechanisms of a single-stage AGMD process. It can simulate AGMD modules in both co-current and counter-current flow regimes. The theoretical model was validated using AGMD experimental data obtained under different operating conditions and parameters. The predicted water vapor flux was compared to the flux measured at five different feed water temperatures, two different feed water salinities, three different air gap widths and two MD membranes with different average pore sizes. This comparison showed that the model flux predictions are strongly correlated with the experimental data, with model predictions being within +10% of the experimentally determined values. The model was then used to study and analyze the parameters that have significant effect on scaling-up the AGMD process such as the effect of increasing the membrane length, and feed and coolant flow rates. The model was also used to analyze the maximum thermal efficiency of the AGMD process by tracing changes in water production rate and the heat input to the process along the membrane length. This was used to understand the gain in both process production and thermal efficiency for different membrane surface areas and the resultant increases in process capital and water unit cost. © 2013 Elsevier B.V.

  8. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  9. Theoretical Modeling of the Surface-Enhanced Raman Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Novák, Vít; Šebestík, Jaroslav; Bouř, Petr

    2012-01-01

    Roč. 8, č. 5 (2012), s. 1714-1720 ISSN 1549-9618 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational spectroscopy * absolute-configuration * silver electrode * spectra * scattering * pyridine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  10. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  11. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency

    Science.gov (United States)

    Delle Site, Luigi

    2018-01-01

    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.

  12. Simulation of core melt spreading with lava: theoretical background and status of validation

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Breest, A.; Spengler, C.

    2000-01-01

    The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)

  13. Cell death following BNCT: A theoretical approach based on Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ballarini, F., E-mail: francesca.ballarini@pv.infn.it [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy); Bakeine, J. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy); Bortolussi, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy); Bruschi, P. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy); Cansolino, L.; Clerici, A.M.; Ferrari, C. [University of Pavia, Department of Surgery, Experimental Surgery Laboratory, Pavia (Italy); Protti, N.; Stella, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy); Zonta, A.; Zonta, C. [University of Pavia, Department of Surgery, Experimental Surgery Laboratory, Pavia (Italy); Altieri, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy)

    2011-12-15

    In parallel to boron measurements and animal studies, investigations on radiation-induced cell death are also in progress in Pavia, with the aim of better characterisation of the effects of a BNCT treatment down to the cellular level. Such studies are being carried out not only experimentally but also theoretically, based on a mechanistic model and a Monte Carlo code. Such model assumes that: (1) only clustered DNA strand breaks can lead to chromosome aberrations; (2) only chromosome fragments within a certain threshold distance can undergo misrejoining; (3) the so-called 'lethal aberrations' (dicentrics, rings and large deletions) lead to cell death. After applying the model to normal cells exposed to monochromatic fields of different radiation types, the irradiation section of the code was purposely extended to mimic the cell exposure to a mixed radiation field produced by the {sup 10}B(n,{alpha}) {sup 7}Li reaction, which gives rise to alpha particles and Li ions of short range and high biological effectiveness, and by the {sup 14}N(n,p){sup 14}C reaction, which produces 0.58 MeV protons. Very good agreement between model predictions and literature data was found for human and animal cells exposed to X- or gamma-rays, protons and alpha particles, thus allowing to validate the model for cell death induced by monochromatic radiation fields. The model predictions showed good agreement also with experimental data obtained by our group exposing DHD cells to thermal neutrons in the TRIGA Mark II reactor of University of Pavia; this allowed to validate the model also for a BNCT exposure scenario, providing a useful predictive tool to bridge the gap between irradiation and cell death.

  14. Theory, Modeling and Simulation Annual Report 2000; FINAL

    International Nuclear Information System (INIS)

    Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A

    2001-01-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems

  15. An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles

    Science.gov (United States)

    Amiribavandpour, Parisa; Shen, Weixiang; Mu, Daobin; Kapoor, Ajay

    2015-06-01

    A theoretical electrochemical thermal model combined with a thermal resistive network is proposed to investigate thermal behaviours of a battery pack. The combined model is used to study heat generation and heat dissipation as well as their influences on the temperatures of the battery pack with and without a fan under constant current discharge and variable current discharge based on electric vehicle (EV) driving cycles. The comparison results indicate that the proposed model improves the accuracy in the temperature predication of the battery pack by 2.6 times. Furthermore, a large battery pack with four of the investigated battery packs in series is simulated in the presence of different ambient temperatures. The simulation results show that the temperature of the large battery pack at the end of EV driving cycles can reach to 50 °C or 60 °C in high ambient temperatures. Therefore, thermal management system in EVs is required to maintain the battery pack within the safe temperature range.

  16. Network Modeling and Simulation A Practical Perspective

    CERN Document Server

    Guizani, Mohsen; Khan, Bilal

    2010-01-01

    Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate

  17. Theoretical modeling of electronic transport in molecular devices

    Science.gov (United States)

    Piccinin, Simone

    In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a

  18. Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator

    International Nuclear Information System (INIS)

    Cai Jin-Chi; Chen Huai-Bi; Hu Lin-Lin; Ma Guo-Wu; Chen Hong-Bin; Jin Xiao

    2015-01-01

    In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other. (paper)

  19. A new theoretical model for scattering of electrons by molecules. 1

    International Nuclear Information System (INIS)

    Peixoto, E.M.A.; Mu-tao, L.; Nogueira, J.C.

    1975-01-01

    A new theoretical model for electron-molecule scattering is suggested. The e-H 2 scattering is studied and the superiority of the new model over the commonly used Independent Atom Model (IAM) is demonstrated. Comparing theoretical and experimental data for 40keV electrons scattered by H 2 utilizing the new model, its validity is proved, while Partial Wave and First Born calculations, employing the Independent Atom Model, strongly deviated from the experiment [pt

  20. Theoretical and Experimental Study of Optical Coherence Tomography (OCT) Signals Using an Analytical Transport Model

    International Nuclear Information System (INIS)

    Vazquez Villa, A.; Delgado Atencio, J. A.; Vazquez y Montiel, S.; Cunill Rodriguez, M.; Martinez Rodriguez, A. E.; Ramos, J. Castro; Villanueva, A.

    2010-01-01

    Optical coherence tomography (OCT) is a non-invasive low coherent interferometric technique that provides cross-sectional images of turbid media. OCT is based on the classical Michelson interferometer where the mirror of the reference arm is oscillating and the signal arm contains a biological sample. In this work, we analyzed theoretically the heterodyne optical signal adopting the so called extended Huygens-Fresnel principle (EHFP). We use simulated OCT images with known optical properties to test an algorithm developed by ourselves to recover the scattering coefficient and we recovered the scattering coefficient with a relative error less than 5% for noisy signals. In addition, we applied this algorithm to OCT images from phantoms of known optical properties; in this case curves were indistinguishable. A revision of the validity of the analytical model applied to our system should be done.

  1. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  2. Large-eddy simulation of the temporal mixing layer using the Clark model

    NARCIS (Netherlands)

    Vreman, A.W.; Geurts, B.J.; Kuerten, J.G.M.

    1996-01-01

    The Clark model for the turbulent stress tensor in large-eddy simulation is investigated from a theoretical and computational point of view. In order to be applicable to compressible turbulent flows, the Clark model has been reformulated. Actual large-eddy simulation of a weakly compressible,

  3. Modeling and simulation of large HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H.; Sood, V.K.

    1993-01-01

    This paper addresses the complexity and the amount of work in preparing simulation data and in implementing various converter control schemes and the excessive simulation time involved in modelling and simulation of large HVDC systems. The Power Electronic Circuit Analysis program (PECAN) is used to address these problems and a large HVDC system with two dc links is simulated using PECAN. A benchmark HVDC system is studied to compare the simulation results with those from other packages. The simulation time and results are provided in the paper.

  4. Improved theoretical model of InN optical properties

    International Nuclear Information System (INIS)

    Ferreira da Silva, A.; Chubaci, J.F.D.; Matsuoka, M.; Freitas, J.A. Jr.; Tischler, J.G.; Baldissera, G.; Persson, C.

    2014-01-01

    The optical properties of InN are investigated theoretically by employing the projector augmented wave (PAW) method within Green's function and the screened Coulomb interaction approximation (GW o ). The calculated results are compared to previously reported calculations which use local density approximation combined with the scissors-operator approximation. The results of the present calculation are compared with reported values of the InN bandgap and with low temperature near infrared luminescence measurements of InN films deposited by a modified Ion Beam Assisted Deposition technique. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Theoretical Model of Development of Information Competence among Students Enrolled in Elective Courses

    Science.gov (United States)

    Zhumasheva, Anara; Zhumabaeva, Zaida; Sakenov, Janat; Vedilina, Yelena; Zhaxylykova, Nuriya; Sekenova, Balkumis

    2016-01-01

    The current study focuses on the research topic of creating a theoretical model of development of information competence among students enrolled in elective courses. In order to examine specific features of the theoretical model of development of information competence among students enrolled in elective courses, we performed an analysis of…

  6. The COD Model: Simulating Workgroup Performance

    Science.gov (United States)

    Biggiero, Lucio; Sevi, Enrico

    Though the question of the determinants of workgroup performance is one of the most central in organization science, precise theoretical frameworks and formal demonstrations are still missing. In order to fill in this gap the COD agent-based simulation model is here presented and used to study the effects of task interdependence and bounded rationality on workgroup performance. The first relevant finding is an algorithmic demonstration of the ordering of interdependencies in terms of complexity, showing that the parallel mode is the most simplex, followed by the sequential and then by the reciprocal. This result is far from being new in organization science, but what is remarkable is that now it has the strength of an algorithmic demonstration instead of being based on the authoritativeness of some scholar or on some episodic empirical finding. The second important result is that the progressive introduction of realistic limits to agents' rationality dramatically reduces workgroup performance and addresses to a rather interesting result: when agents' rationality is severely bounded simple norms work better than complex norms. The third main finding is that when the complexity of interdependence is high, then the appropriate coordination mechanism is agents' direct and active collaboration, which means teamwork.

  7. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Directory of Open Access Journals (Sweden)

    Jeon Soohong

    2014-12-01

    Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  8. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Directory of Open Access Journals (Sweden)

    Soohong Jeon

    2014-12-01

    Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive ele- ments, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  9. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  10. Theoretical study and simulation for a nanometer laser based on Gauss–Hermite source expansion

    International Nuclear Information System (INIS)

    Gu, Xiaowei

    2013-01-01

    Recently there has been worldwide interest in constructing a new generation of continuously tunable nanometer lasers for a wide range of scientific applications, including femtosecond science, biological molecules, nanoscience research fields, etc. The high brightness electron beam required by a short wavelength self-amplified spontaneous emission FEL can be reached only with accurate control of the beam dynamics in the facility. Numerical simulation codes are basic tools for designing new nanometer laser devices. We have developed a MATLAB quasi-one-dimensional code based on a reduced model for the FEL. The model uses an envelope description of the transverse dynamics of the laser beam and full longitudinal particle motion. We have optimized the LCLS facility parameters, then given the characteristics of the nanometer laser. (letter)

  11. Theoretical study and simulation for a nanometer laser based on Gauss-Hermite source expansion

    Science.gov (United States)

    Gu, Xiaowei

    2013-07-01

    Recently there has been worldwide interest in constructing a new generation of continuously tunable nanometer lasers for a wide range of scientific applications, including femtosecond science, biological molecules, nanoscience research fields, etc. The high brightness electron beam required by a short wavelength self-amplified spontaneous emission FEL can be reached only with accurate control of the beam dynamics in the facility. Numerical simulation codes are basic tools for designing new nanometer laser devices. We have developed a MATLAB quasi-one-dimensional code based on a reduced model for the FEL. The model uses an envelope description of the transverse dynamics of the laser beam and full longitudinal particle motion. We have optimized the LCLS facility parameters, then given the characteristics of the nanometer laser.

  12. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  13. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation

    International Nuclear Information System (INIS)

    Kavanagh, Brian D.; Secomb, Timothy W.; Hsu, Richard; Lin, P.-S.; Venitz, Jurgen; Dewhirst, Mark W.

    2002-01-01

    Purpose: To develop a theoretical model for oxygen delivery to tumors, and to use the model to simulate the effects of changing the affinity of hemoglobin for oxygen on tumor oxygenation. Methods and Materials: Hemoglobin affinity is expressed in terms of P 50 , the partial pressure of oxygen (Po 2 ) at half saturation. Effects of changing P 50 on arterial Po 2 are predicted using an effective vessel approach to describe diffusive oxygen transport in the lungs, assuming fixed systemic oxygen demand and fixed blood flow rate. The decline in oxygen content of blood as it flows through normal tissue before entering the tumor region is assumed fixed. The hypoxic fraction of the tumor region is predicted using a three-dimensional simulation of diffusion from a network of vessels whose geometry is derived from observations of tumor microvasculature in the rat. Results: In air-breathing rats, predicted hypoxic fraction decreases with moderate increases in P 50 , but increases with further increases of P 50 , in agreement with previous experimental results. In rats breathing hyperoxic gases, and in humans breathing either normoxic or hyperoxic gases, increased P 50 is predicted to improve tumor oxygenation. Conclusions: The results support the administration of synthetic agents to increase P 50 during radiation treatment of tumors

  14. Theoretical simulations of atomic and polyatomic bombardment of an organic overlayer on a metallic substrate

    CERN Document Server

    Krantzman, K D; Delcorte, A; Garrison, B J

    2003-01-01

    Our previous molecular dynamics simulations on initial test systems have laid the foundation for understanding some of the effects of polyatomic bombardment. In this paper, we describe simulations of the bombardment of a more realistic model system, an overlayer of sec-butyl-terminated polystyrene tetramers on a Ag left brace 1 1 1 right brace substrate. We have used this model system to study the bombardment with Xe and SF sub 5 projectiles at kinetic energies ranging from 0.50 to 5.0 keV. SF sub 5 sputters more molecules than Xe, but a higher percentage of these are damaged rather than ejected intact when the bombarding energy is greater than 0.50 keV. Therefore, at energies comparable to experimental values, the efficiency, measured as the yield-to-damage ratio, is greater with Xe than SF sub 5. Stable and intact molecules are generally produced by upward moving substrate atoms, while fragments are produced by the upward and lateral motion of reflected projectile atoms and fragments from the target molecul...

  15. Proposal of a theoretical model for the practical nurse

    Directory of Open Access Journals (Sweden)

    Dolores Abril Sabater

    2010-01-01

    Full Text Available AIM: To determine which model of nursing is proposed by care professionals and the reason for their choice. METHOD: cross-sectional, descriptive study design. The main variable: Nursing Models and Theories. As secondary variables were collected: age, gender, years of work experience, nursing model of basic training, and course/s related. We used a self-elaborated, anonymous questionnaire, passed between April - May, 2006. Not random sample.RESULTS: 546 nurses were invited, answered 205. 38 % response rate. Virginia Henderson was the more selected model (33%, however, 42% left the question blank, 12% indicated that they wanted to work under the guidance of a model. They selected a specifically model: Knowledge of the model to their training, standardization in other centers, the characteristics of the model itself and identification with its philosophy. They are not decided by a model by ignorance, lack of time and usefulness. CONCLUSIONS: The model chosen mostly for their daily work was Virginia Henderson model, so that knowledge of a model is the main reason for their election. Professionals who choose not to use the model in their practice realize offers and calling for resources, besides to explain the lack of knowledge on this topic. To advance the nursing profession is necessary that nurse is thought over widely on the abstract concepts of the theory in our context.

  16. Business model reconfiguration in green construction: A theoretical perspective

    OpenAIRE

    Abuzeinab, Amal; Arif, Mohammed

    2013-01-01

    PhD study Business models describe the business logic of a particular company and green business model is when a company changes part(s) of its business model and thereby both captures economic value and reduces the ecological footprint in a life-cycle perspective. In this paper, business model literature is reviewed with the intention of promoting learning to understand the economic complexity of environmental sustainability in the construction context. Although the green construction lit...

  17. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  18. Theoretical model of an optothermal microactuator directly driven by laser beams

    International Nuclear Information System (INIS)

    Han, Xu; Zhang, Haijun; Xu, Rui; Wang, Shuying; Qin, Chun

    2015-01-01

    This paper proposes a novel method of optothermal microactuation based on single and dual laser beams (spots). The theoretical model of the optothermal temperature distribution of an expansion arm is established and simulated, indicating that the maximum temperature of the arm irradiated by dual laser spots, at the same laser power level, is much lower than that irradiated by one single spot, and thus the risk of burning out and damaging the optothermal microactuator (OTMA) can be effectively avoided. To verify the presented method, a 750 μm long OTMA with a 100 μm wide expansion arm is designed and microfabricated, and single/dual laser beams with a wavelength of 650 nm are adopted to carry out experiments. The experimental results showed that the optothermal deflection of the OTMA under the irradiation of dual laser spots is larger than that under the irradiation of a single spot with the same power, which is in accordance with theoretical prediction. This method of optothermal microactuation may expand the practical applications of microactuators, which serve as critical units in micromechanical devices and micro-opto-electro-mechanical systems (MOEMS). (paper)

  19. A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel

    Directory of Open Access Journals (Sweden)

    Jose Adilson de Castro

    2017-07-01

    Full Text Available We present a numerical simulation procedure for analyzing hydrogen, oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blast furnace, considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However, the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected, beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF, considered as a multiphase reactor, treats the lump solids (sinter, small coke, pellets, granular coke and iron ores, gas, liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum, mass, chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1. Thus, combined injections of varying concentrations of gaseous fuels with H2, O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally, we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.

  20. Model improvements to simulate charging in SEM

    Science.gov (United States)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  1. Deferred Action: Theoretical model of process architecture design for emergent business processes

    Directory of Open Access Journals (Sweden)

    Patel, N.V.

    2007-01-01

    Full Text Available E-Business modelling and ebusiness systems development assumes fixed company resources, structures, and business processes. Empirical and theoretical evidence suggests that company resources and structures are emergent rather than fixed. Planning business activity in emergent contexts requires flexible ebusiness models based on better management theories and models . This paper builds and proposes a theoretical model of ebusiness systems capable of catering for emergent factors that affect business processes. Drawing on development of theories of the ‘action and design’class the Theory of Deferred Action is invoked as the base theory for the theoretical model. A theoretical model of flexible process architecture is presented by identifying its core components and their relationships, and then illustrated with exemplar flexible process architectures capable of responding to emergent factors. Managerial implications of the model are considered and the model’s generic applicability is discussed.

  2. Adaptive supervision: a theoretical model for social workers.

    Science.gov (United States)

    Latting, J E

    1986-01-01

    Two models of leadership styles are prominent in the management field: Blake and Mouton's managerial Grid and Hersey and Blanchard's Situational Leadership Model. Much of the research on supervisory styles in social work has been based on the former. A recent public debate between the two sets of theorists suggests that both have strengths and limitations. Accordingly, an adaptive model of social work supervision that combines elements of both theories is proposed.

  3. Development and application of theoretical models for Rotating Detonation Engine flowfields

    Science.gov (United States)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new

  4. A theoretical model of ultrasonic examination of smooth flat cracks

    International Nuclear Information System (INIS)

    Chapman, R.K.; Coffey, J.M.

    1984-01-01

    This chapter proposes a mathematical model which combines approximate descriptions of the defect, the defect-sound interaction, and the transmission and reception of the sound by the probes, all in a framework of the component geometry. Topics considered include scattering from cracks, a model of the probe beam, the geometry of the inspection, and extensions of the model using generalized ray theory. The objective is to devise a practical, yet accurate and reliable model for the overall inspection process which can be readily adapted to different inspection geometries and conditions, and which does not involve an inordinate amount of computing time

  5. The theoretical foundations for size spectrum models of fish communities

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Jacobsen, Nis Sand; Farnsworth, K.D.

    2016-01-01

    Size spectrum models have emerged from 40 years of basic research on how body size determines individual physiology and structures marine communities. They are based on commonly accepted assumptions and have a low parameter set, which make them easy to deploy for strategic ecosystem oriented impact...... assessment of fisheries. We describe the fundamental concepts in size-based models about food encounter and the bioenergetics budget of individuals. Within the general framework three model types have emerged that differs in their degree of complexity: the food-web, the trait-based and the community model...

  6. Hydrophobic ampersand hydrophilic: Theoretical models of solvation for molecular biophysics

    International Nuclear Information System (INIS)

    Pratt, L.R.; Tawa, G.J.; Hummer, G.; Garcia, A.E.; Corcelli, S.A.

    1996-01-01

    Molecular statistical thermodynamic models of hydration for chemistry and biophysics have advanced abruptly in recent years. With liquid water as solvent, salvation phenomena are classified as either hydrophobic or hydrophilic effects. Recent progress in treatment of hydrophilic effects have been motivated by continuum dielectric models interpreted as a modelistic implementation of second order perturbation theory. New results testing that perturbation theory of hydrophilic effects are presented and discussed. Recent progress in treatment of hydrophobic effects has been achieved by applying information theory to discover models of packing effects in dense liquids. The simplest models to which those ideas lead are presented and discussed

  7. Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models

    Directory of Open Access Journals (Sweden)

    Tomasz Kajdanowicz

    2016-09-01

    Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.

  8. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  9. An educational model for ensemble streamflow simulation and uncertainty analysis

    Directory of Open Access Journals (Sweden)

    A. AghaKouchak

    2013-02-01

    Full Text Available This paper presents the hands-on modeling toolbox, HBV-Ensemble, designed as a complement to theoretical hydrology lectures, to teach hydrological processes and their uncertainties. The HBV-Ensemble can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity. HBV-Ensemble was administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of uncertainty in hydrological modeling.

  10. The Interval Market Model in Mathematical Finance : Game Theoretic Methods

    NARCIS (Netherlands)

    Bernhard, P.; Engwerda, J.C.; Roorda, B.; Schumacher, J.M.; Kolokoltsov, V.; Saint-Pierre, P.; Aubin, J.P.

    2013-01-01

    Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous

  11. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  12. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  13. Simulation modeling for the health care manager.

    Science.gov (United States)

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.

  14. Protein Simulation Data in the Relational Model.

    Science.gov (United States)

    Simms, Andrew M; Daggett, Valerie

    2012-10-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.

  15. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  16. Rigorous theoretical derivation of lumped models to transmission line systems

    International Nuclear Information System (INIS)

    Zhao Jixiang

    2012-01-01

    By virtue of the negative electric parameter concept, i.e. negative lumped resistance, inductance, conductance and capacitance (N-RLGC), the lumped equivalent models of transmission line systems, including the circuit model, two-port π-network and T-network, are given. We start from the N-segment-ladder-like equivalent networks composed distributed parameters, and achieve the input impedance in the form of a continued fraction. Utilizing the continued fraction theory, the expressions of input impedance are obtained under three kinds of extreme cases, i.e. the load impedances are equal to zero, infinity and characteristic impedance, respectively. When the number of segment N is limited to infinity, they are transformed to lumped elements. Comparison between the distributed model and lumped model of transmission lines, the expression of tanh γd, which is the key term in the transmission line equations, are obtained by RLGC, furthermore, according to input admittance, admittance matrix and ABCD matrix of transmission lines, the lumped equivalent circuit models, π-networks and T-networks have been given. The models are verified in the frequency and time domain, respectively, showing that the models are accurate and efficient. (semiconductor integrated circuits)

  17. Behavioral models as theoretical frames to analyze the business objective

    Directory of Open Access Journals (Sweden)

    Hernán Alonso Bafico

    2015-12-01

    Full Text Available This paper examines Pfeffer’s Models of Behavior and connects each of them with attributes of the definition of the firm’s objective, assumed as the maximization of the sustainable, long term valor of the residual claims.Each of the five models of behavior (rational, social, moral, retrospective and cognitive contributes to the decision making and goal setting processes with its particular and complementary elements. From those assuming complete rationality and frictionless markets, to the models emphasizing the role of ethical positions, and the presence of perceptive and cognitive mechanisms. The analysis highlights the main contributions of critical theories and models of behavior, underlining their focus on non-traditional variables, regarded as critical inputs for goal setting processes and designing alternative executive incentive schemes.  The explicit consideration of those variables does not indicate the need for a new definition of corporate objective. The maximization of the long term value of the shareholders’ claims still defines the relevant objective function of the firm, remaining as the main yardstick of corporate performance.Behavioral models are recognized as important tools to help managers direct their attention to long term strategies. In the last part, we comment on the relationship between the objective function and behavioral models, from the practitioners’ perspective.Key words: Firm Objectives, Behavioral Models, Value Maximization, Stakeholder Theory.

  18. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    Science.gov (United States)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  19. Strategy for a numerical Rock Mechanics Site Descriptive Model. Further development of the theoretical/numerical approach

    International Nuclear Information System (INIS)

    Olofsson, Isabelle; Fredriksson, Anders

    2005-05-01

    The Swedish Nuclear and Fuel Management Company (SKB) is conducting Preliminary Site Investigations at two different locations in Sweden in order to study the possibility of a Deep Repository for spent fuel. In the frame of these Site Investigations, Site Descriptive Models are achieved. These products are the result of an interaction of several disciplines such as geology, hydrogeology, and meteorology. The Rock Mechanics Site Descriptive Model constitutes one of these models. Before the start of the Site Investigations a numerical method using Discrete Fracture Network (DFN) models and the 2D numerical software UDEC was developed. Numerical simulations were the tool chosen for applying the theoretical approach for characterising the mechanical rock mass properties. Some shortcomings were identified when developing the methodology. Their impacts on the modelling (in term of time and quality assurance of results) were estimated to be so important that the improvement of the methodology with another numerical tool was investigated. The theoretical approach is still based on DFN models but the numerical software used is 3DEC. The main assets of the programme compared to UDEC are an optimised algorithm for the generation of fractures in the model and for the assignment of mechanical fracture properties. Due to some numerical constraints the test conditions were set-up in order to simulate 2D plane strain tests. Numerical simulations were conducted on the same data set as used previously for the UDEC modelling in order to estimate and validate the results from the new methodology. A real 3D simulation was also conducted in order to assess the effect of the '2D' conditions in the 3DEC model. Based on the quality of the results it was decided to update the theoretical model and introduce the new methodology based on DFN models and 3DEC simulations for the establishment of the Rock Mechanics Site Descriptive Model. By separating the spatial variability into two parts, one

  20. Computer simulations and theoretical aspects of the depletion interaction in protein-oligomer mixtures.

    Science.gov (United States)

    Boncina, M; Rescic, J; Kalyuzhnyi, Yu V; Vlachy, V

    2007-07-21

    The depletion interaction between proteins caused by addition of either uncharged or partially charged oligomers was studied using the canonical Monte Carlo simulation technique and the integral equation theory. A protein molecule was modeled in two different ways: either as (i) a hard sphere of diameter 30.0 A with net charge 0, or +5, or (ii) as a hard sphere with discrete charges (depending on the pH of solution) of diameter 45.4 A. The oligomers were pictured as tangentially jointed, uncharged, or partially charged, hard spheres. The ions of a simple electrolyte present in solution were represented by charged hard spheres distributed in the dielectric continuum. In this study we were particularly interested in changes of the protein-protein pair-distribution function, caused by addition of the oligomer component. In agreement with previous studies we found that addition of a nonadsorbing oligomer reduces the phase stability of solution, which is reflected in the shape of the protein-protein pair-distribution function. The value of this function in protein-protein contact increases with increasing oligomer concentration, and is larger for charged oligomers. The range of the depletion interaction and its strength also depend on the length (number of monomer units) of the oligomer chain. The integral equation theory, based on the Wertheim Ornstein-Zernike approach applied in this study, was found to be in fair agreement with Monte Carlo results only for very short oligomers. The computer simulations for a model mimicking the lysozyme molecule (ii) are in qualitative agreement with small-angle neutron experiments for lysozyme-dextran mixtures.

  1. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  2. Supersymmetric field-theoretic models on a supermanifold

    Energy Technology Data Exchange (ETDEWEB)

    Franco, D.H.T. [Centro de Estudos de Fisica Teorica, Belo Horizonte, MG (Brazil); Polito, Caio M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas

    2003-04-01

    We propose an extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a super manifold. (author)

  3. Theoretical performance model for single image depth from defocus.

    Science.gov (United States)

    Trouvé-Peloux, Pauline; Champagnat, Frédéric; Le Besnerais, Guy; Idier, Jérôme

    2014-12-01

    In this paper we present a performance model for depth estimation using single image depth from defocus (SIDFD). Our model is based on an original expression of the Cramér-Rao bound (CRB) in this context. We show that this model is consistent with the expected behavior of SIDFD. We then study the influence on the performance of the optical parameters of a conventional camera such as the focal length, the aperture, and the position of the in-focus plane (IFP). We derive an approximate analytical expression of the CRB away from the IFP, and we propose an interpretation of the SIDFD performance in this domain. Finally, we illustrate the predictive capacity of our performance model on experimental data comparing several settings of a consumer camera.

  4. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  5. Exactly solvable field-theoretical model with tachyons

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.

    1988-01-01

    Explicit soliton solutions describing the inelastic interaction between sub- and superluminal particles are found within the framework of a new integrable model of relativistic classical field theory. The corresponding energies are nonnegative irrespective of the choice of reference frame

  6. Theoretical tornado vortex model for nuclear plant design

    International Nuclear Information System (INIS)

    Sun, C.N.; Barnett, R.O.; Burdette, E.G.

    1977-01-01

    A simplified tornado vortex model is defined using fluid dynamics theory. Beginning with the Navier-Stokes equations of motion for an incompressible fluid and simpifying in a way consistent with a tornado wind field, develops the well-known cyclostrophic wind equation referred to by Hoecker and another equation which defines the tangential velocity profile. Together, they define a simplified tornado vertex model of which the Rankine and Hoecker vortices are special cases. Practical implications of the results obtained are discussed. (Auth.)

  7. Theoretical cell alteration model in the context of carcinogenesis

    International Nuclear Information System (INIS)

    Walsh, P.J.

    1976-01-01

    A model incorporating cell survival and alteration is used to discuss the general nature of cellular response to a toxic agent. Cell division and repair are discussed as regards their influence on dose-response relationships to bone-seeking radionuclides. The application of the model in its present form to specific biologic end points depends on the assumption that such end points are the result of some initial alteration

  8. Theoretical model for ultracold molecule formation via adaptive feedback control

    OpenAIRE

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie

    2006-01-01

    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than ...

  9. Theoretic models for recommendation and implementation of assistive technology

    Directory of Open Access Journals (Sweden)

    Ana Cristina de Jesus Alves

    2016-07-01

    Full Text Available Introduction: The latest international researches seek to understand the factors affecting the successful use of assistive technology devices through studies regarding the assessments systematizing; abandonment of devices; or theoric models that consider the aspects of those devices implementation. In Brazil the researches are focused on developing new technologies and there are still not sufficient studies related to the successful use of devices and ways of assistive technology implementation. Objective: To identify conceptual models used for indication and implementation of assistive technology devices. Method: Literature review. The survey was conducted in six databases: CINAHAL, Eric, GALE, LILACS, MEDLINE e PsycInfo. A critical analysis described by Grant and Booth was used. Results: There are no records of a Brazilian survey and among 29 selected articles, 17 conceptual models used in the area of AT were found; of these, 14 were specific to AT. The results showed that the new conceptual models of TA are under development and the conceptual model “Matching Person and Technology – MPT” was the most mentioned. Conclusion: We can observe that the practices related to TA area in international context shows a correlation with conceptual models, thus, we hope this study might have the capacity to contribute for the propagation of this precepts at national level

  10. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling

    International Nuclear Information System (INIS)

    Lucas, G.

    2006-10-01

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  11. Theoretical analysis of transcranial magneto-acoustical stimulation with Hodgkin–Huxley neuron model

    Directory of Open Access Journals (Sweden)

    Yi eYuan

    2016-04-01

    Full Text Available Transcranial magneto-acoustical stimulation (TMAS is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing rhythm remains unknown. To address this problem, we investigated the stimulatory mechanism of TMAS on neurons with a Hodgkin-Huxley neuron model. The simulation results indicate that the magnetostatic field intensity and ultrasonic power can affect the amplitude and interspike interval of neuronal action potential under continuous wave ultrasound. The simulation results also show that the ultrasonic power, duty cycle and repetition frequency can alter the firing rhythm of neural action potential under pulsed ultrasound. This study can help to reveal and explain the biological mechanism of TMAS and to provide a theoretical basis for TMAS in the treatment or rehabilitation of neuropsychiatric disorders.

  12. Simulation models for tokamak plasmas

    International Nuclear Information System (INIS)

    Dimits, A.M.; Cohen, B.I.

    1992-01-01

    Two developments in the nonlinear simulation of tokamak plasmas are described: (A) Simulation algorithms that use quasiballooning coordinates have been implemented in a 3D fluid code and a 3D partially linearized (Δf) particle code. In quasiballooning coordinates, one of the coordinate directions is closely aligned with that of the magnetic field, allowing both optimal use of the grid resolution for structures highly elongated along the magnetic field as well as implementation of the correct periodicity conditions with no discontinuities in the toroidal direction. (B) Progress on the implementation of a likeparticle collision operator suitable for use in partially linearized particle codes is reported. The binary collision approach is shown to be unusable for this purpose. The algorithm under development is a complete version of the test-particle plus source-field approach that was suggested and partially implemented by Xu and Rosenbluth

  13. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  14. A game-theoretical model of private power production

    International Nuclear Information System (INIS)

    Xing, W.; Wu, F.F.

    2001-01-01

    Private power production has sprung up all over the world. The build-operate-transfer (BOT) arrangement has emerged as one of the most important options for private power production, especially in developing countries with rapidly growing demand and financial shortages. Based on oligopoly theory, the paper proposes a Stackelberg game model between a BOT investor and an electric utility whereby they can negotiate a long-term energy contract. Asymmetric pricing schemes are taken into account such that a host utility purchases electricity from a BOT company at its ''avoided cost'', and sells its electricity to end users at its ''average cost''. Our Stackelberg game model is transferred into a two-level optimization problem, and then solved by an iterative algorithm. The game model is demonstrated by an illustrative example. (author)

  15. A game-theoretical model of private power production

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Wu, F.F. [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering

    2001-03-01

    Private power production has sprung up all over the world. The build-operate-transfer (BOT) arrangement has emerged as one of the most important options for private power production, especially in developing countries with rapidly growing demand and financial shortages. Based on oligopoly theory, the paper proposes a Stackelberg game model between a BOT investor and an electric utility whereby they can negotiate a long-term energy contract. Asymmetric pricing schemes are taken into account such that a host utility purchases electricity from a BOT company at its ''avoided cost'', and sells its electricity to end users at its ''average cost''. Our Stackelberg game model is transferred into a two-level optimization problem, and then solved by an iterative algorithm. The game model is demonstrated by an illustrative example. (author)

  16. Fluidelastic instability in a flexible Weir: A theoretical model

    International Nuclear Information System (INIS)

    Aita, S.; Gibert, R.J.

    1986-01-01

    A new type fluidelastic instability was discovered during the hot tests of Superphenix LMFBR. This instability is due to the fluid discharge, over a flexible weir shell which separates two of these fluid sheets (the feeding and restitution collectors). An analytical nonlinear model was realised. The flow and force sources at the top of the collectors are described and projected on the modal basis of the system formed by the collectors and the weir shell. Simplified formulas were extracted allowing a practical prediction of the stability. More generally, the complete model can be used to estimate the vibratory level when a steady state is reached by the effect of nonlinearities. Computer calculation for such a model are made with OSCAR code, part of CASTEM 2000 finite element computer system. (author)

  17. Theoretical modeling of electron mobility in superfluid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, Frédéric; Bonifaci, Nelly [G2ELab-GreEn-ER, Equipe MDE, 21 Avenue des Martyrs, CS 90624, 38031 Grenoble Cedex 1 (France); Haeften, Klaus von [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Eloranta, Jussi, E-mail: Jussi.Eloranta@csun.edu [Department of Chemistry and Biochemistry, California State University at Northridge, 18111 Nordhoff St., Northridge, California 91330 (United States)

    2016-07-28

    The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.

  18. A model management system for combat simulation

    OpenAIRE

    Dolk, Daniel R.

    1986-01-01

    The design and implementation of a model management system to support combat modeling is discussed. Structured modeling is introduced as a formalism for representing mathematical models. A relational information resource dictionary system is developed which can accommodate structured models. An implementation is described. Structured modeling is then compared to Jackson System Development (JSD) as a methodology for facilitating discrete event simulation. JSD is currently better at representin...

  19. Out-of-pile simulation experiments and theoretical analysis on sodium fuel interaction

    International Nuclear Information System (INIS)

    Conti, M.; Luigi, G. Di; Federico, A.; Mennini, G.; Scarano, G.; Tavano, F.

    1978-01-01

    Activities on fuel coolant interaction are being carried out since many years at C.N.E.N. in the frame of the Italian Fast Reactor Program. This paper describes the experimental and theoretical results recently obtained. (author)

  20. Theoretical model estimation of guest diffusion in Metal-Organic Frameworks (MOFs)

    KAUST Repository

    Zheng, Bin

    2015-08-11

    Characterizing molecule diffusion in nanoporous matrices is critical to understanding the novel chemical and physical properties of metal-organic frameworks (MOFs). In this paper, we developed a theoretical model to fastly and accurately compute the diffusion rate of guest molecules in a zeolitic imidazolate framework-8 (ZIF-8). The ideal gas or equilibrium solution diffusion model was modified to contain the effect of periodical media via introducing the possibility of guests passing through the framework gate. The only input in our model is the energy barrier of guests passing through the MOF’s gate. Molecular dynamics (MD) methods were employed to gather the guest density profile, which then was used to deduce the energy barrier values. This produced reliable results that require a simulation time of 5 picoseconds, which is much shorter when using pure MD methods (in the billisecond scale) . Also, we used density functional theory (DFT) methods to obtain the energy profile of guests passing through gates, as this does not require specification of a force field for the MOF degrees of freedom. In the DFT calculation, we only considered one gate of MOFs each time; as this greatly reduced the computational cost. Based on the obtained energy barrier values we computed the diffusion rate of alkane and alcohol in ZIF-8 using our model, which was in good agreement with experimental test results and the calculation values from standard MD model. Our model shows the advantage of obtaining accurate diffusion rates for guests in MOFs for a lower computational cost and shorter calculation time. Thus, our analytic model calculation is especially attractive for high-throughput computational screening of the dynamic performance of guests in a framework.

  1. HVDC System Characteristics and Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)

    2001-07-01

    This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.

  2. Physically realistic modeling of maritime training simulation

    OpenAIRE

    Cieutat , Jean-Marc

    2003-01-01

    Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...

  3. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  4. Theoretical models of drivers behavior on the road

    Directory of Open Access Journals (Sweden)

    Marcin Piotr Biernacki

    2017-06-01

    Full Text Available Understanding of mechanisms and factors responsible for the driver behavior on the road is the subject of ongoing interest to transportation psychologists, occupational doctors and engineers. Models of driver behavior are a key point for the understanding the mechanisms and factors which may cause limitations to the optimal functioning on the road. They also systematize knowledge about the factors responsible for the behavior of the driver and thus constitute a starting point for formulating empirical or diagnostic hypotheses. The aim of this study is to present models of driver behavior from the descriptive and functional perspectives. Med Pr 2017;68(3:401–411

  5. Software-Engineering Process Simulation (SEPS) model

    Science.gov (United States)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  6. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  7. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Mantsinen, M.

    1999-01-01

    toroidal momentum. For a trapped ion, this leads to a change in its radial position. If toroidally asymmetric ICRF waves are used, the resulting spatial drift of the trapped ions is either inwards or outwards depending on the direction of the launched ICRF wave. ICRF heating experiments with different ICRF antenna phasings at JET give first experimental evidence for the presence of this ICRF-induced pinch. Significant differences are observed when the ICRF waves are launched in opposite toroidal directions. Analysis of the experiments with a three-dimensional orbit-averaged Monte Carlo code shows that the observations are consistent with theory. A technique for fast numerical evaluation of the wave-particle interaction in such a code has been developed and implemented. In general, good agreement between the simulations and experimental results has been obtained, which indicates that the present theoretical picture of ICRF heating is consistent with experiments. This gives confidence in simulations of other experiments and in the modelling ICRF heating schemes for future reactor plasmas. However, certain limitations have been identified in the present modelling of mode conversion and high-power ICRF heating in low-density plasmas, which require further investigation. (orig.)

  8. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    toroidal momentum. For a trapped ion, this leads to a change in its radial position. If toroidally asymmetric ICRF waves are used, the resulting spatial drift of the trapped ions is either inwards or outwards depending on the direction of the launched ICRF wave. ICRF heating experiments with different ICRF antenna phasings at JET give first experimental evidence for the presence of this ICRF-induced pinch. Significant differences are observed when the ICRF waves are launched in opposite toroidal directions. Analysis of the experiments with a three-dimensional orbit-averaged Monte Carlo code shows that the observations are consistent with theory. A technique for fast numerical evaluation of the wave-particle interaction in such a code has been developed and implemented. In general, good agreement between the simulations and experimental results has been obtained, which indicates that the present theoretical picture of ICRF heating is consistent with experiments. This gives confidence in simulations of other experiments and in the modelling ICRF heating schemes for future reactor plasmas. However, certain limitations have been identified in the present modelling of mode conversion and high-power ICRF heating in low-density plasmas, which require further investigation. (orig.) 75 refs. The thesis includes also six previous publications by author

  9. A survey of game-theoretic models of cooperative advertising

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Zaccour, G.

    2014-01-01

    environments. We also find that the work on static models is quite homogeneous, in the sense that most papers employ the same basic consumer demand specification and address the same situations of vertical integration and noncooperative games with simultaneous or sequential actions. The work on dynamic...

  10. An Alternative Theoretical Model for Economic Reforms in Africa ...

    African Journals Online (AJOL)

    This paper offers an alternative model for economic reforms in Africa. It proposes that Africa can still get on the pathway of sustained economic growth if economic reforms can focus on a key variable, namely, the price of non-tradables. Prices of non-tradables are generally less in Africa than in advanced economies, and the ...

  11. Self-organized quantum rings : Physical characterization and theoretical modeling

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Koenraad, P.M.; Fomin, V.M.

    2014-01-01

    An adequate modeling of the self-organized quantum rings is possible only on the basis of the modern characterization of those nanostructures.We discuss an atomic-scale analysis of the indium distribution of self-organized InGaAs quantum rings (QRs). The analysis of the shape, size and composition

  12. Theoretical models in the development of advertising for food products

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino; Stacey, Julia

    2005-01-01

    the advertisement influences the target may serve as creative inspiration and as a common frame of reference for those involved in the development of advertisements. The means-end-chain model says that an advertisement is effective by connecting the product's attributes (means) and the target's personal values...

  13. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  14. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-01-01

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models

  15. A Game-Theoretic Model for Distributed Programming by Contract

    DEFF Research Database (Denmark)

    Henriksen, Anders Starcke; Hvitved, Tom; Filinski, Andrzej

    2009-01-01

    We present an extension of the programming-by-contract (PBC) paradigm to a concurrent and distributed environment.  Classical PBC is characterized by absolute conformance of code to its specification, assigning blame in case of failures, and a hierarchical, cooperative decomposition model – none...

  16. Simple Brownian diffusion an introduction to the standard theoretical models

    CERN Document Server

    Gillespie, Daniel T

    2013-01-01

    Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.

  17. A theoretical Markov chain model for evaluating correctional ...

    African Journals Online (AJOL)

    In this paper a stochastic method is applied in the study of the long time effect of confinement in a correctional institution on the behaviour of a person with criminal tendencies. The approach used is Markov chain, which uses past history to predict the state of a system in the future. A model is developed for comparing the ...

  18. Workshop IV – Cosmology-theoretical models/alternative scenarios ...

    Indian Academy of Sciences (India)

    S D Maharaj presented a talk entitled 'Some Einstein–Maxwell models with spherical sym- ... ber of spatial dimensions in the universe may be a variable and considered a ... the probability density of the de Sitter minisuperspace in 3-space as ...

  19. Theoretical foundations: Formalized temporal models for hyperlinked multimedia documents

    NARCIS (Netherlands)

    B. Meixner (Britta)

    2018-01-01

    textabstractConsistent linking and accurate synchronization of multimedia elements in hypervideos or multimedia documents are essential to provide a good quality of experience to viewers. Temporal models are needed to define relationships and constraints between multimedia elements and create an

  20. A theoretical design for learning model addressing the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin; Nielsen, Janni; Sørensen, Birgitte Holm

    2010-01-01

    The transition from the industrial to the networked society produces contradictions that challenges the educational system and force it to adapt to new conditions. In a Danish virtual Master in Information and Communication Technologies and Learning (MIL) these contradictions appear as a field of...... which enables students to develop Networked Society competencies and maintain progression in the learning process also during the online periods. Additionally we suggest that our model contributes to the innovation of a networked society's design for learning....... is continuously decreasing. We teach for deep learning but are confronted by students' cost-benefit strategies when they navigate through the study programme under time pressure. To meet these challenges a Design for Learning Model has been developed. The aim is to provide a scaffold that ensures students......' acquisition of the subject matter within a time limit and at a learning quality that support their deep learning process during a subsequent period of on-line study work. In the process of moving from theory to application the model passes through three stages: 1) Conceptual modelling; 2) Orchestration, and 3...

  1. Model United Nations and Deep Learning: Theoretical and Professional Learning

    Science.gov (United States)

    Engel, Susan; Pallas, Josh; Lambert, Sarah

    2017-01-01

    This article demonstrates that the purposeful subject design, incorporating a Model United Nations (MUN), facilitated deep learning and professional skills attainment in the field of International Relations. Deep learning was promoted in subject design by linking learning objectives to Anderson and Krathwohl's (2001) four levels of knowledge or…

  2. Is BAMM Flawed? Theoretical and Practical Concerns in the Analysis of Multi-Rate Diversification Models.

    Science.gov (United States)

    Rabosky, Daniel L; Mitchell, Jonathan S; Chang, Jonathan

    2017-07-01

    Bayesian analysis of macroevolutionary mixtures (BAMM) is a statistical framework that uses reversible jump Markov chain Monte Carlo to infer complex macroevolutionary dynamics of diversification and phenotypic evolution on phylogenetic trees. A recent article by Moore et al. (MEA) reported a number of theoretical and practical concerns with BAMM. Major claims from MEA are that (i) BAMM's likelihood function is incorrect, because it does not account for unobserved rate shifts; (ii) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and (iii) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA are generally incorrect or unjustified. We first demonstrate that MEA's numerical assessment of the BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that "unobserved rate shifts" appear to be irrelevant for biologically plausible parameterizations of the diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version when conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating diversification rate variation across the ${\\sim}$20% of simulated trees in MEA's data set for which it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those produced by a constant-rate birth-death process and were thus poorly suited for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to address the theoretical foundations of rate-shift models for

  3. Deriving simulators for hybrid Chi models

    NARCIS (Netherlands)

    Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.

    2006-01-01

    The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an

  4. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  5. Toward a Theoretical Model of Employee Turnover: A Human Resource Development Perspective

    Science.gov (United States)

    Peterson, Shari L.

    2004-01-01

    This article sets forth the Organizational Model of Employee Persistence, influenced by traditional turnover models and a student attrition model. The model was developed to clarify the impact of organizational practices on employee turnover from a human resource development (HRD) perspective and provide a theoretical foundation for research on…

  6. Theoretical model of the early phases of an underground explosion

    International Nuclear Information System (INIS)

    Cameron, I.G.; Scorgie, G.C.

    1970-01-01

    Introduction In the early phases of the intense underground explosions contemplated in peaceful applications the rock near the explosive exhibits fluid behaviour; at great distances its behaviour can usefully be investigated in terms of linear elasticity; and at intermediate distances we think of a solid exhibiting various inelastic effects including cracking and tensile fracture. The present paper outlines a mathematical model that attempts to include in some degree the main features of this range of behaviour. A more detailed treatment than is given here, and its relationship to the work of others, is given in a paper by the authors. A computer program ATHENE has been written based on this model and its use is illustrated by examining some aspects of two types of explosions. One is a chemical explosion which eventually formed a crater and the other a nuclear explosion which remained wholly contained

  7. Theoretical model of the early phases of an underground explosion

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, I G; Scorgie, G C [Atomic Weapons Research Establishment, Aldermaston, Berkshire (United Kingdom)

    1970-05-01

    Introduction In the early phases of the intense underground explosions contemplated in peaceful applications the rock near the explosive exhibits fluid behaviour; at great distances its behaviour can usefully be investigated in terms of linear elasticity; and at intermediate distances we think of a solid exhibiting various inelastic effects including cracking and tensile fracture. The present paper outlines a mathematical model that attempts to include in some degree the main features of this range of behaviour. A more detailed treatment than is given here, and its relationship to the work of others, is given in a paper by the authors. A computer program ATHENE has been written based on this model and its use is illustrated by examining some aspects of two types of explosions. One is a chemical explosion which eventually formed a crater and the other a nuclear explosion which remained wholly contained.

  8. System of systems dependability – Theoretical models and applications examples

    International Nuclear Information System (INIS)

    Bukowski, L.

    2016-01-01

    The aim of this article is to generalise the concept of 'dependability' in a way, that could be applied to all types of systems, especially the system of systems (SoS), operating under both normal and abnormal work conditions. In order to quantitatively assess the dependability we applied service continuity oriented approach. This approach is based on the methodology of service engineering and is closely related to the idea of resilient enterprise as well as to the concept of disruption-tolerant operation. On this basis a framework for evaluation of SoS dependability has been developed in a static as well as dynamic approach. The static model is created as a fuzzy logic-oriented advisory expert system and can be particularly useful at the design stage of SoS. The dynamic model is based on the risk oriented approach, and can be useful both at the design stage and for management of SoS. The integrated model of dependability can also form the basis for a new definition of the dependability engineering, namely as a superior discipline to reliability engineering, safety engineering, security engineering, resilience engineering and risk engineering. - Highlights: • A framework for evaluation of system of systems dependability is presented. • The model is based on the service continuity concept and consists of two parts. • The static part can be created as a fuzzy logic-oriented advisory expert system. • The dynamic, risk oriented part, is related to the concept of throughput chain. • A new definition of dependability engineering is proposed.

  9. A coordination theoretic model for three level supply chains using ...

    Indian Academy of Sciences (India)

    city in fashion industry (Lee & Rhee 2007); two period contract model in case of decentralized assembly system (Zou et al 2008); .... p: Price of product qr : Optimal quantity of retailer Q. ∗ sc: Optimal order quantity of supply chain. S(q): Expected sales at the end of period which can be defined as: S(q) = q(1 − F(q)) −. ∫ q. 0.

  10. Theoretical modeling of infrared spectra of twinned lead zirconate

    Czech Academy of Sciences Publication Activity Database

    Dočekalová, Zuzana; Pasciak, Marek; Hlinka, Jiří

    2017-01-01

    Roč. 90, č. 1 (2017), s. 17-23 ISSN 0141-1594 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : domains * IR spectroscopy * dielectric permittivity * lead zirconate * shell model * Born effective charge Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.060, year: 2016

  11. Modeling postpartum depression in rats: theoretic and methodological issues

    Science.gov (United States)

    Ming, LI; Shinn-Yi, CHOU

    2016-01-01

    The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254

  12. Modeling postpartum depression in rats: theoretic and methodological issues

    Directory of Open Access Journals (Sweden)

    Ming LI

    2018-06-01

    Full Text Available The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions.

  13. Magnetosphere Modeling: From Cartoons to Simulations

    Science.gov (United States)

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems

  14. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  15. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  16. Choice of theoretical model for beam scattering at accelerator output foil for particle energy determination

    International Nuclear Information System (INIS)

    Balagyra, V.S.; Ryabka, P.M.

    1999-01-01

    For measuring the charged particle energy calculations of mean square angles of electron beam multiple Coulomb scattering at output combined accelerator target were undertaken according to seven theoretical models. Mollier method showed the best agreement with experiments

  17. Theoretical Model for the Performance of Liquid Ring Pump Based on the Actual Operating Cycle

    Directory of Open Access Journals (Sweden)

    Si Huang

    2017-01-01

    Full Text Available Liquid ring pump is widely applied in many industry fields due to the advantages of isothermal compression process, simple structure, and liquid-sealing. Based on the actual operating cycle of “suction-compression-discharge-expansion,” a universal theoretical model for performance of liquid ring pump was established in this study, to solve the problem that the theoretical models deviated from the actual performance in operating cycle. With the major geometric parameters and operating conditions of a liquid ring pump, the performance parameters such as the actual capacity for suction and discharge, shaft power, and global efficiency can be conveniently predicted by the proposed theoretical model, without the limitation of empiric range, performance data, or the detailed 3D geometry of pumps. The proposed theoretical model was verified by experimental performances of liquid ring pumps and could provide a feasible tool for the application of liquid ring pump.

  18. Algebraic Specifications, Higher-order Types and Set-theoretic Models

    DEFF Research Database (Denmark)

    Kirchner, Hélène; Mosses, Peter David

    2001-01-01

    , and power-sets. This paper presents a simple framework for algebraic specifications with higher-order types and set-theoretic models. It may be regarded as the basis for a Horn-clause approximation to the Z framework, and has the advantage of being amenable to prototyping and automated reasoning. Standard......In most algebraic  specification frameworks, the type system is restricted to sorts, subsorts, and first-order function types. This is in marked contrast to the so-called model-oriented frameworks, which provide higer-order types, interpreted set-theoretically as Cartesian products, function spaces...... set-theoretic models are considered, and conditions are given for the existence of initial reduct's of such models. Algebraic specifications for various set-theoretic concepts are considered....

  19. Theoretical Basis for the CE-QUAL-W2 River Basin Model

    National Research Council Canada - National Science Library

    Wells, Scott

    2000-01-01

    This report describes the theoretical development for CE-QUAL-W2, Version 3, that will allow the application of the model to entire water basins including multiple reservoirs, steeply sloping rivers, and estuaries...

  20. Imitative Modeling as a Theoretical Base for Instructing Language-Disordered Children

    Science.gov (United States)

    Courtright, John A.; Courtright, Illene C.

    1976-01-01

    A modification of A. Bandura's social learning theory (imitative modeling) was employed as a theoretical base for language instruction with eight language disordered children (5 to 10 years old). (Author/SBH)

  1. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... objective of this study is to control the simulation of unsteady flows around structures. ... Aerospace, our results were in good agreement with experimental .... Two-Equation Eddy-Viscosity Turbulence Models for Engineering.

  2. SEIR model simulation for Hepatitis B

    Science.gov (United States)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.

  3. Measures of metacognition on signal-detection theoretic models.

    Science.gov (United States)

    Barrett, Adam B; Dienes, Zoltan; Seth, Anil K

    2013-12-01

    Analyzing metacognition, specifically knowledge of accuracy of internal perceptual, memorial, or other knowledge states, is vital for many strands of psychology, including determining the accuracy of feelings of knowing and discriminating conscious from unconscious cognition. Quantifying metacognitive sensitivity is however more challenging than quantifying basic stimulus sensitivity. Under popular signal-detection theory (SDT) models for stimulus classification tasks, approaches based on Type II receiver-operating characteristic (ROC) curves or Type II d-prime risk confounding metacognition with response biases in either the Type I (classification) or Type II (metacognitive) tasks. A new approach introduces meta-d': The Type I d-prime that would have led to the observed Type II data had the subject used all the Type I information. Here, we (a) further establish the inconsistency of the Type II d-prime and ROC approaches with new explicit analyses of the standard SDT model and (b) analyze, for the first time, the behavior of meta-d' under nontrivial scenarios, such as when metacognitive judgments utilize enhanced or degraded versions of the Type I evidence. Analytically, meta-d' values typically reflect the underlying model well and are stable under changes in decision criteria; however, in relatively extreme cases, meta-d' can become unstable. We explore bias and variance of in-sample measurements of meta-d' and supply MATLAB code for estimation in general cases. Our results support meta-d' as a useful measure of metacognition and provide rigorous methodology for its application. Our recommendations are useful for any researchers interested in assessing metacognitive accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    Science.gov (United States)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  5. A theoretical study of a nickel SPND using Warren's model

    International Nuclear Information System (INIS)

    Mahant, A.K.; Rao, P.S.; Misra, S.C.

    1998-01-01

    Various parameters for a nickel SPND viz. neutron and gamma sensitivity, their dependence on detector dimensions, effect of activity build up during irradiation in the reactor on neutron sensitivity and burn up have been calculated using an analytical model by Warren and Shah. The results show that the main component of neutron sensitivity is due to neutron-induced capture gamma rays (99.93%). Delayed β signal is negligible and signal due to external gamma rays constitute about 0.06%. Low gamma sensitivity to external gamma rays, negligible activity buildup and low burn up rate make it a very promising prompt SPND for power reactors. (orig.)

  6. Maintenance Personnel Performance Simulation (MAPPS) model

    International Nuclear Information System (INIS)

    Siegel, A.I.; Bartter, W.D.; Wolf, J.J.; Knee, H.E.; Haas, P.M.

    1984-01-01

    A stochastic computer model for simulating the actions and behavior of nuclear power plant maintenance personnel is described. The model considers personnel, environmental, and motivational variables to yield predictions of maintenance performance quality and time to perform. The mode has been fully developed and sensitivity tested. Additional evaluation of the model is now taking place

  7. Computer simulations of the random barrier model

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    2002-01-01

    A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented...

  8. Turbine modelling for real time simulators

    International Nuclear Information System (INIS)

    Oliveira Barroso, A.C. de; Araujo Filho, F. de

    1992-01-01

    A model for vapor turbines and its peripherals has been developed. All the important variables have been included and emphasis has been given for the computational efficiency to obtain a model able to simulate all the modeled equipment. (A.C.A.S.)

  9. Rhythm and theoretical perception of climate change during the 21st century using CMIP5 simulations

    Science.gov (United States)

    Chavaillaz, Yann; Joussaume, Sylvie; Braconnot, Pascale; Vautard, Robert

    2014-05-01

    In most studies, climate change is approached by focusing on the evolution between a fixed current baseline and future, emphasizing stronger warming as we move further from the current climate. This long-term vision is used in order to characterize quantitatively the magnitude and expected effects of mitigation policies across the globe. In this study, an alternative approach more focused on adaptation is envisaged. It considers the rhythm of climate change by following it up with a running baseline over periods of 20 years, defining the time evolution of the speed at which climate changes. Comparing this speed with the variability of the previous 20 years, our work also aims to give an idea on how fast the climate changes from the recent year-to-year variability. This represents a theoretical approach of perception of climate change, as a 20-year period can illustrate the memory of a generation. In this way, we also evaluate how much adapting to the recent past 20 years is sufficient to cope with the expected changes of the coming ones. As a result, we estimate the stress on adaptation needs over the 21st century. Here we are mainly interested on mean and variability of surface air temperature and precipitations. A multi-model study based on CMIP5 RCP8.5 scenario is conducted. Over the 21st century, important changes occur in terms of surface air temperature. These are mainly characterized by an increase of warming speed resulting in its doubling at the end of the century (2071-2090) compared to the IPCC current baseline (1986-2005), although models exhibit a different climate sensitivity. Despite an unanimous stronger speed in high latitudes of the Northern Hemisphere than anywhere else, the speed can increase more rapidly in some other regions. When comparing the warming speed with year-to-year variability, the change of surface air temperature appears to be perceived stronger and sooner in tropical areas than in any other regions, especially in South-East Asia

  10. Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications

    Directory of Open Access Journals (Sweden)

    Umberto Iemma

    2016-05-01

    Full Text Available The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire

  11. A Monte Carlo Simulation Framework for Testing Cosmological Models

    Directory of Open Access Journals (Sweden)

    Heymann Y.

    2014-10-01

    Full Text Available We tested alternative cosmologies using Monte Carlo simulations based on the sam- pling method of the zCosmos galactic survey. The survey encompasses a collection of observable galaxies with respective redshifts that have been obtained for a given spec- troscopic area of the sky. Using a cosmological model, we can convert the redshifts into light-travel times and, by slicing the survey into small redshift buckets, compute a curve of galactic density over time. Because foreground galaxies obstruct the images of more distant galaxies, we simulated the theoretical galactic density curve using an average galactic radius. By comparing the galactic density curves of the simulations with that of the survey, we could assess the cosmologies. We applied the test to the expanding-universe cosmology of de Sitter and to a dichotomous cosmology.

  12. Theoretical Modeling of Various Spectroscopies for Cuprates and Topological Insulators

    Science.gov (United States)

    Basak, Susmita

    Spectroscopies resolved highly in momentum, energy and/or spatial dimensions are playing an important role in unraveling key properties of wide classes of novel materials. However, spectroscopies do not usually provide a direct map of the underlying electronic spectrum, but act as a complex 'filter' to produce a 'mapping' of the underlying energy levels, Fermi surfaces (FSs) and excitation spectra. The connection between the electronic spectrum and the measured spectra is described as a generalized 'matrix element effect'. The nature of the matrix element involved differs greatly between different spectroscopies. For example, in angle-resolved photoemission (ARPES) an incoming photon knocks out an electron from the sample and the energy and momentum of the photoemitted electron is measured. This is quite different from what happens in K-edge resonant inelastic X-ray scattering (RIXS), where an X-ray photon is scattered after inducing electronic transitions near the Fermi energy through an indirect second order process, or in Compton scattering where the incident X-ray photon is scattered inelastically from an electron transferring energy and momentum to the scattering electron. For any given spectroscopy, the matrix element is, in general, a complex function of the phase space of the experiment, e.g. energy/polarization of the incoming photon and the energy/momentum/spin of the photoemitted electron in the case of ARPES. The matrix element can enhance or suppress signals from specific states, or merge signals of groups of states, making a good understanding of the matrix element effects important for not only a robust interpretation of the spectra, but also for ascertaining optimal regions of the experimental phase space for zooming in on states of the greatest interest. In this thesis I discuss a comprehensive scheme for modeling various highly resolved spectroscopies of the cuprates and topological insulators (TIs) where effects of matrix element, crystal

  13. The theoretical modelling of aerosol behaviour within containment buildings

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1988-01-01

    The modelling of the deposition of aerosol particles within the containment building plays an important part in determining the effectiveness of the building in reducing releases of activity following accidents. This paper describes attempts to ensure the accuracy of computer codes which model aerosol behaviour, with special reference to the code AEROSIM-M. Code intercomparisons have been used to test the reliability of the coding and the accuracy of the numerical methods. Those codes which assume that the particle size distribution is always lognormal give significantly different results from those which do not make this assumption but instead discretise the range of particle sizes. When the same physical assumptions are made, the predictions of different discrete codes are in reasonable agreement. In comparisons between an earlier version of AEROSIM and sodium fire experiments, the code achieved good agreement on the overall time-scale of deposition. An extensive set of tests of AEROSIM-M against experiments relevant to LWR conditions is underway. (author)

  14. Theoretical model for calculation of molecular stopping power

    International Nuclear Information System (INIS)

    Xu, Y.J.

    1984-01-01

    A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field

  15. A theoretical model of a liquid metal ion source

    International Nuclear Information System (INIS)

    Kingham, D.R.; Swanson, L.W.

    1984-01-01

    A model of liquid metal ion source (LMIS) operation has been developed which gives a consistent picture of three different aspects of LMI sources: (i) the shape and size of the ion emitting region; (ii) the mechanism of ion formation; (iii) properties of the ion beam such as angular intensity and energy spread. It was found that the emitting region takes the shape of a jet-like protrusion on the end of a Taylor cone with ion emission from an area only a few tens of A across, in agreement with recent TEM pictures by Sudraud. This is consistent with ion formation predominantly by field evaporation. Calculated angular intensities and current-voltage characteristics based on our fluid dynamic jet-like protrusion model agree well with experiment. The formation of doubly charged ions is attributed to post-ionization of field evaporated singly charged ions and an apex field strength of about 2.0 V A -1 was calculated for a Ga source. The ion energy spread is mainly due to space charge effects, it is known to be reduced for doubly charged ions in agreement with this post-ionization mechanism. (author)

  16. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model

    OpenAIRE

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S.; Breen, Lauren J.; Witt, Regina R.; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of p...

  17. 4. Valorizations of Theoretical Models of Giftedness and Talent in Defining of Artistic Talent

    OpenAIRE

    Anghel Ionica Ona

    2016-01-01

    Artistic talent has been defined in various contexts and registers a variety of meanings, more or less operational. From the perspective of pedagogical intervention, it is imperative understanding artistic talent trough the theoretical models of giftedness and talent. So, the aim of the study is to realize a review of the most popular of the theoretical models of giftedness and talent, with identification of the place of artistic talent and the new meanings that artistic talent has in each on...

  18. Theory, modeling, and simulation annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  19. Modeling and simulation with operator scaling

    OpenAIRE

    Cohen, Serge; Meerschaert, Mark M.; Rosiński, Jan

    2010-01-01

    Self-similar processes are useful in modeling diverse phenomena that exhibit scaling properties. Operator scaling allows a different scale factor in each coordinate. This paper develops practical methods for modeling and simulating stochastic processes with operator scaling. A simulation method for operator stable Levy processes is developed, based on a series representation, along with a Gaussian approximation of the small jumps. Several examples are given to illustrate practical application...

  20. Theoretical modelling of hot gas ingestion through turbine rim seals

    Directory of Open Access Journals (Sweden)

    J. Michael Owen

    2012-12-01

    The nozzle guide vanes create three-dimensional (3D variations in the distribution of pressure in the mainstream annulus and the turbine blades create unsteady effects. Computational fluid dynamics (CFD is both time-consuming and expensive for these 3D unsteady flows, and engine designers tend to use correlations or simple models to predict ingress. This paper describes the application of simple ‘orifice models’, the analytical solutions of which can be used to calculate the sealing effectiveness of turbine rim seals. The solutions agree well with available data for externally-induced ingress, where the effects of rotation are negligible, for rotationally-induced ingress, where the effects of the external flow are small, and for combined ingress, where the effects of both external flow and rotation are significant.

  1. Theoretical modeling of 'REE's - novel ligand interaction' for waste management

    International Nuclear Information System (INIS)

    Singha, M.; Hareendran, K.N.; Pal, Sangita

    2013-01-01

    Many industrial wastewaters, starting from mining, milling, washing, regeneration, fabrication, operation, reprocessing etc contain valuable metal ions which are mostly present in lean concentration (1 ppm-100 ppb). These metals, especially heavy metals above the permissible limit are toxic and pose a major environmental hazard but are potentially economic and demand a recovery. Thus, the removal/recovery of these lean valuables is important and a technological challenge with respect to cost and safe disposal. In the present study, a neutron absorber (during nuclear reactor shut down) lanthanides e.g., gadolinium sorption was studied with a specially anchored sequestering agent in an extremely hydrophilic three dimensionally cross-linked matrix. In this regard, validation of Langmuir and Freundlich model and intra-molecular diffusion regarding 'Weber Morris' enlightens novel aspects of formation of hydrated sheath and easy diffusion of hydrated metal ion through micro-pores of gel-breathed resin. (author)

  2. Theoretical models of Kapton heating in solar array geometries

    Science.gov (United States)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  3. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  4. Model-free information-theoretic approach to infer leadership in pairs of zebrafish.

    Science.gov (United States)

    Butail, Sachit; Mwaffo, Violet; Porfiri, Maurizio

    2016-04-01

    Collective behavior affords several advantages to fish in avoiding predators, foraging, mating, and swimming. Although fish schools have been traditionally considered egalitarian superorganisms, a number of empirical observations suggest the emergence of leadership in gregarious groups. Detecting and classifying leader-follower relationships is central to elucidate the behavioral and physiological causes of leadership and understand its consequences. Here, we demonstrate an information-theoretic approach to infer leadership from positional data of fish swimming. In this framework, we measure social interactions between fish pairs through the mathematical construct of transfer entropy, which quantifies the predictive power of a time series to anticipate another, possibly coupled, time series. We focus on the zebrafish model organism, which is rapidly emerging as a species of choice in preclinical research for its genetic similarity to humans and reduced neurobiological complexity with respect to mammals. To overcome experimental confounds and generate test data sets on which we can thoroughly assess our approach, we adapt and calibrate a data-driven stochastic model of zebrafish motion for the simulation of a coupled dynamical system of zebrafish pairs. In this synthetic data set, the extent and direction of the coupling between the fish are systematically varied across a wide parameter range to demonstrate the accuracy and reliability of transfer entropy in inferring leadership. Our approach is expected to aid in the analysis of collective behavior, providing a data-driven perspective to understand social interactions.

  5. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  6. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  7. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  8. Simulating a Rotational Inverted Pendulum Model by using Matlab and Easy Java Simulations

    Directory of Open Access Journals (Sweden)

    Oscar O. Rodríguez-Díaz

    2012-06-01

    Full Text Available This paper presents the analysis, design and construction of a virtual simulator, in which the behavior of a non-lineal system as the rotational inverted pendulum is represented graphically in an interface. This uses an Applet of Java that allows users change parameters of the model. The use of this tool is a good alternative for bridging the gap between the theoretical concepts and the actual behaviors of a process. The server uses Matlab/Simulink as a calculation engine, taking advantage of its ease for constructing non-lineal models by using block diagrams. The user interface has been created by a free software tool called Easy Java Simulations that allows designing interactive graphical applications as 3D interfaces. Easy Java results an interesting tool for automatic control system education.

  9. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  10. Description of group-theoretical model of developed turbulence

    International Nuclear Information System (INIS)

    Saveliev, V L; Gorokhovski, M A

    2008-01-01

    We propose to associate the phenomenon of stationary turbulence with the special self-similar solutions of the Euler equations. These solutions represent the linear superposition of eigenfields of spatial symmetry subgroup generators and imply their dependence on time through the parameter of the symmetry transformation only. From this model, it follows that for developed turbulent process, changing the scale of averaging (filtering) of the velocity field is equivalent to composition of scaling, translation and rotation transformations. We call this property a renormalization-group invariance of filtered turbulent fields. The renormalization group invariance provides an opportunity to transform the averaged Navier-Stokes equation over a small scale (inner threshold of the turbulence) to larger scales by simple scaling. From the methodological point of view, it is significant to note that the turbulent viscosity term appeared not as a result of averaging of the nonlinear term in the Navier-Stokes equation, but from the molecular viscosity term with the help of renormalization group transformation.

  11. Opacity and noninear effects on theoretical BL Herculis models

    International Nuclear Information System (INIS)

    Hodson, S.W.; Cox, A.N.; King, D.S.

    1982-01-01

    Linear and nonlinear pulsation models for BL Herculis variables have been constructed to investigate the resonance which seems to occur when the ratio of the second overtone (Pi 2 ) to fundamental (Pi 0 ) radial periods is near 0.5. This resonance is shown to affect the shapes of the light and velocity curves and produce bumps on either ascending or descending light just as far classical Cepheids. Linear theory predicts the resonance to occur at periods between 1.7 and 3.0 days for 0.55 M/sub sun/ and between 2.1 and 4.0 days for 0.75 M/sub sun/ stars at the red and blue edges, respectively, of the stability strip. These periods are rather independent of the composition and opacity tables. However, observations show the resonance to be about 1.7 days for all BL Her variables by noticing that the bump phase switches from descending to ascending light as the period increases. Nonlinear calculations indicate that the linear theory predictions of Pi 2 /Pi 0 are not reliable just at Pi 2 /Pi 0 = 0.5, and the predicted resonance occurs always at the proper period as observed

  12. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining.

    Science.gov (United States)

    Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation

  13. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    International Nuclear Information System (INIS)

    Hołyst, R; Litniewski, M; Jakubczyk, D; Kolwas, K; Kolwas, M; Kowalski, K; Migacz, S; Palesa, S; Zientara, M

    2013-01-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid–vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid–vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417–28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid–vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P 1 /(a + P 2 ), where a is the radius of the evaporating droplet, t is time and P 1 and P 2 are two parameters. P 1 = −λΔT/(q eff ρ L ), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet

  14. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining

    Science.gov (United States)

    Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the

  15. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...

  16. Thermal unit availability modeling in a regional simulation model

    International Nuclear Information System (INIS)

    Yamayee, Z.A.; Port, J.; Robinett, W.

    1983-01-01

    The System Analysis Model (SAM) developed under the umbrella of PNUCC's System Analysis Committee is capable of simulating the operation of a given load/resource scenario. This model employs a Monte-Carlo simulation to incorporate uncertainties. Among uncertainties modeled is thermal unit availability both for energy simulation (seasonal) and capacity simulations (hourly). This paper presents the availability modeling in the capacity and energy models. The use of regional and national data in deriving the two availability models, the interaction between the two and modifications made to the capacity model in order to reflect regional practices is presented. A sample problem is presented to show the modification process. Results for modeling a nuclear unit using NERC-GADS is presented

  17. Plasma disruption modeling and simulation

    International Nuclear Information System (INIS)

    Hassanein, A.

    1994-01-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments

  18. Theoretical investigation of the (e,2e) simulation of photoelectron spectroscopy of polarized atoms

    International Nuclear Information System (INIS)

    Cherepkov, N.A.; Kuznetsov, V.V.

    1992-01-01

    It is shown that the (e, 2e) simulation of the photionization process can be used to perform the complete quantum-mechanical experiment provided the target atoms are polarized. The experimental technique developed earlier for simulation of the photoelectron angular distribution measurements can be used to obtain three additional parameters in the case of polarized atoms. (Author)

  19. Nursing management of sensory overload in psychiatry – Theoretical densification and modification of the framework model

    Science.gov (United States)

    Scheydt, Stefan; Needham, Ian; Behrens, Johann

    2017-01-01

    Background: Within the scope of the research project on the subjects of sensory overload and stimulus regulation, a theoretical framework model of the nursing care of patients with sensory overload in psychiatry was developed. In a second step, this theoretical model should now be theoretically compressed and, if necessary, modified. Aim: Empirical verification as well as modification, enhancement and theoretical densification of the framework model of nursing care of patients with sensory overload in psychiatry. Method: Analysis of 8 expert interviews by summarizing and structuring content analysis methods based on Meuser and Nagel (2009) as well as Mayring (2010). Results: The developed framework model (Scheydt et al., 2016b) could be empirically verified, theoretically densificated and extended by one category (perception modulation). Thus, four categories of nursing care of patients with sensory overload can be described in inpatient psychiatry: removal from stimuli, modulation of environmental factors, perceptual modulation as well as help somebody to help him- or herself / coping support. Conclusions: Based on the methodological approach, a relatively well-saturated, credible conceptualization of a theoretical model for the description of the nursing care of patients with sensory overload in stationary psychiatry could be worked out. In further steps, these measures have to be further developed, implemented and evaluated regarding to their efficacy.

  20. The demand-induced strain compensation model : renewed theoretical considerations and empirical evidence

    NARCIS (Netherlands)

    de Jonge, J.; Dormann, C.; van den Tooren, M.; Näswall, K.; Hellgren, J.; Sverke, M.

    2008-01-01

    This chapter presents a recently developed theoretical model on jobrelated stress and performance, the so-called Demand-Induced Strain Compensation (DISC) model. The DISC model predicts in general that adverse health effects of high job demands can best be compensated for by matching job resources

  1. A game theoretic model of the Northwestern European electricity market-market power and the environment

    NARCIS (Netherlands)

    Lise, W.; Linderhof, V.G.M.; Kuik, O.; Kemfert, C.; Ostling, R.; Heinzow, T.

    2006-01-01

    This paper develops a static computational game theoretic model. Illustrative results for the liberalising European electricity market are given to demonstrate the type of economic and environmental results that can be generated with the model. The model is empirically calibrated to eight

  2. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  3. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  4. A virtual laboratory notebook for simulation models.

    Science.gov (United States)

    Winfield, A J

    1998-01-01

    In this paper we describe how we have adopted the laboratory notebook as a metaphor for interacting with computer simulation models. This 'virtual' notebook stores the simulation output and meta-data (which is used to record the scientist's interactions with the simulation). The meta-data stored consists of annotations (equivalent to marginal notes in a laboratory notebook), a history tree and a log of user interactions. The history tree structure records when in 'simulation' time, and from what starting point in the tree changes are made to the parameters by the user. Typically these changes define a new run of the simulation model (which is represented as a new branch of the history tree). The tree shows the structure of the changes made to the simulation and the log is required to keep the order in which the changes occurred. Together they form a record which you would normally find in a laboratory notebook. The history tree is plotted in simulation parameter space. This shows the scientist's interactions with the simulation visually and allows direct manipulation of the parameter information presented, which in turn is used to control directly the state of the simulation. The interactions with the system are graphical and usually involve directly selecting or dragging data markers and other graphical control devices around in parameter space. If the graphical manipulators do not provide precise enough control then textual manipulation is still available which allows numerical values to be entered by hand. The Virtual Laboratory Notebook, by providing interesting interactions with the visual view of the history tree, provides a mechanism for giving the user complex and novel ways of interacting with biological computer simulation models.

  5. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our...... understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present...... that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both....

  6. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    Science.gov (United States)

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  7. The knowledge-based economy modeled, measured, simulated

    CERN Document Server

    Leydesdorff, Loet

    2006-01-01

    "Challenging, theoretically rich yet anchored in detailed empirical analysis, Loet Leydesdorff's exploration of the dynamics of the knowledge-economy is a major contribution to the field. Drawing on his expertise in science and technology studies, systems theory, and his internationally respected work on the 'triple helix', the book provides a radically new modelling and simulation of knowledge systems, capturing the articulation of structure, communication, and agency therein. This work will be of immense interest to both theorists of the knowledge-economy and practitioners in science policy." Andrew Webster Science & Technology Studies, University of York, UK

  8. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    , and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  9. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  10. Analytical system dynamics modeling and simulation

    CERN Document Server

    Fabien, Brian C

    2008-01-01

    This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.

  11. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  12. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  13. Theoretical aspects of virtual simulators to train crews of fishing fleet

    Science.gov (United States)

    Lisitsyna, L.; Smetyuh, N.

    2018-05-01

    The use of virtual simulators is an important trend in the modern education, including the continuous training of specialists to meet the rapidly changing requirements for their qualification. Modern virtual simulators are multifunctional, i.e. they can be used to develop and enhance the skills as well as to control professional skills and abilities of specialists of diverse profiles under various working conditions. This study is based on the generalization of a large experience in the sphere of applying ready-made multifunctional virtual simulators (MFVS) and developing new ones for the training and retraining of the crews of the Azov-Black Sea fishing vessels. The results of the experimental studies of the MFVS "Fishing Simulator for Trawling and Purse Seining" show that at least 10 sessions are required to develop sustainable purse seining fishing skills. Almost all trainees (95%) successfully cope with the task within the time permitted by the standard requirements (three minutes) after 15 sessions.

  14. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  15. Regional model simulations of New Zealand climate

    Science.gov (United States)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  16. Landscape Modelling and Simulation Using Spatial Data

    Directory of Open Access Journals (Sweden)

    Amjed Naser Mohsin AL-Hameedawi

    2017-08-01

    Full Text Available In this paper a procedure was performed for engendering spatial model of landscape acclimated to reality simulation. This procedure based on combining spatial data and field measurements with computer graphics reproduced using Blender software. Thereafter that we are possible to form a 3D simulation based on VIS ALL packages. The objective was to make a model utilising GIS, including inputs to the feature attribute data. The objective of these efforts concentrated on coordinating a tolerable spatial prototype, circumscribing facilitation scheme and outlining the intended framework. Thus; the eventual result was utilized in simulation form. The performed procedure contains not only data gathering, fieldwork and paradigm providing, but extended to supply a new method necessary to provide the respective 3D simulation mapping production, which authorises the decision makers as well as investors to achieve permanent acceptance an independent navigation system for Geoscience applications.

  17. Chrystal and Proudman resonances simulated with three numerical models

    Science.gov (United States)

    Bubalo, Maja; Janeković, Ivica; Orlić, Mirko

    2018-05-01

    The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).

  18. Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas

    Science.gov (United States)

    Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.

    2016-12-01

    It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)

  19. A Game Theoretic Framework for Incentive-Based Models of Intrinsic Motivation in Artificial Systems

    Directory of Open Access Journals (Sweden)

    Kathryn Elizabeth Merrick

    2013-10-01

    Full Text Available An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players’ optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots.

  20. A game theoretic framework for incentive-based models of intrinsic motivation in artificial systems.

    Science.gov (United States)

    Merrick, Kathryn E; Shafi, Kamran

    2013-01-01

    An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players' optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots.