WorldWideScience

Sample records for theoretical flow investigations

  1. Theoretical investigation of flow regime for boiling water two-phase flow in horizontal rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua

    2005-01-01

    The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)

  2. Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2007-01-01

    In this work, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was investigated theoretically and experimentally under the meteorological conditions of Cairo, Egypt. The author's earlier simulation program of wickless heat pipes flat plate solar water heaters was modified to be valid for the present type of wickless heat pipes solar collector by including the solution of the dimensionless governing equations of the present analysis. For verifying the modified simulation program, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was designed, constructed, and tested at different meteorological conditions and operating parameters. These parameters include different cooling water mass flow rates and different inlet cooling water temperatures. The comparison between the experimental results and their corresponding simulated ones showed considerable agreement. Under different climatic conditions, the experimental and theoretical results showed that the optimal mass flow rate is very close to the ASHRAE standard mass flow rate for testing conventional flat plate solar collectors. Also, the experimental and theoretical results indicated that the number of wickless heat pipes has a significant effect on the collector efficiency

  3. Theoretical investigation of shock stand-off distance for non-equilibrium flows over spheres

    KAUST Repository

    Shen, Hua

    2018-02-20

    We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung’s solution and Olivier’s solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas (IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level (which can be very different between different facilities) on the shock stand-off distance.

  4. Theoretical and laboratory investigations of flow through fractures in crystalline rock

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Watkins, D.J.; Tsang, Y.W.

    1981-01-01

    A theoretical model developed for flow through a deformable fracture subject to stresses was successfully tested against laboratory experiments. The model contains no arbitrary parameters and can be used to predict flow rates through a single fracture if the fractional fracture contact area can be estimated and if stress-deformation data are available. These data can be obtained from laboratory or in situ tests. The model has considerable potential for practical application. The permeability of ultralarge samples of fractured crystalline rock as a function of stresses was measured. Results from tests on a pervasively fractured 1-m-diameter specimen of granitic rock showed that drastically simplifying assumptions must be used to apply theoretical models to this type of rock mass. Simple models successfully reproduce the trend of reduced permeability as stress is applied in a direction normal to the fracture plane. The tests also demonstrated how fracture conductivity increases as a result of dilatancy associated with shear displacements. The effect of specimen size on the hydraulic properties of fractured rock was also investigated. Permeability tests were performed on specimens of charcoal black granite containing a single fracture subjected to normal stress. Results are presented for tests performed on a 0.914-m-diameter specimen and on the same specimen after it had been reduced to 0.764 m in diameter. The data show that fracture conductivity is sensitive to stress history and sample disturbance

  5. Theoretical flow investigations of an all glass evacuated tubular collector

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical 14 manifold channel. Three...... the highest efficiency, the optimal inlet flow rate was around 0.4-1 kg/min, the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate, Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most...

  6. Theoretical investigation of shock stand-off distance for non-equilibrium flows over spheres

    KAUST Repository

    Shen, Hua; WEN, Chih-Yung

    2018-01-01

    We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung’s solution and Olivier’s solution. Compared with previous approaches, the main advantage of the present approach

  7. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  8. Three dimensional LDV flow measurements and theoretical investigation in a radial inflow turbine scroll

    Science.gov (United States)

    Malak, Malak Fouad; Hamed, Awatef; Tabakoff, Widen

    1990-01-01

    A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle of a radial inflow turbine scroll. The cold flow experimental results are presented for the velocity field at the scroll tongue. In addition, a total pressure loss of 3.5 percent for the scroll is revealed from the velocity measurements combined with the static pressure readings. Moreover, the measurement of the three normal stresses of the turbulence has showed that the flow is anisotropic. Furthermore, the mean velocity components are compared with a numerical solution of the potential flow field using the finite element technique. The theoretical prediction of the exit flow angle variation agrees well with the experimental results. This variation leads to a higher scroll pattern factor which can be avoided by controlling the scroll cross sectional area distribution.

  9. The Theoretical Investigation of the Magnetic Field Effect on a Liquid Sodium Flow

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2005-01-01

    The liquid sodium coolant is used for LMR such as KALIMER and magnetic field is generated in the electromagnetic pump or flowmeter. The magnetic field takes an effect on the electrically conducting metal flow by the generation of the electromagnetic pressure drop. Therefore, in the present study, the theoretical calculation is carried out for an effect from the external magnetic field and the magnetic field is firstly measured over the electromagnet system manufactured for the magnetohydrodynamic experiments

  10. Theoretical investigations on two-phase flow instability in parallel channels under axial non-uniform heating

    International Nuclear Information System (INIS)

    Lu, Xiaodong; Wu, Yingwei; Zhou, Linglan; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Zhang, Hong

    2014-01-01

    Highlights: • We developed a model based on homogeneous flow model to analyze two-phase flow instability in parallel channels. • The influence of axial non-uniform heating on the system stability has been investigated. • Influences of various factors on system instability under cosine heat flux have been studied. • The system under top-peaked heat flux is the most stable system. - Abstract: Two-phase flow instability in parallel channels heated by axial non-uniform heat flux has been theoretically studied in this paper. The system control equations of parallel channels were established based on the homogeneous flow model in two-phase region. Semi-implicit finite-difference scheme and staggered mesh method were used to discretize the equations, and the difference equations were solved by chasing method. Cosine, bottom-peaked and top-peaked heat fluxes were used to study the influence of non-uniform heating on two-phase flow instability of the parallel channels system. The marginal stability boundaries (MSB) of parallel channels and three-dimensional instability spaces (or instability reefs) under different heat flux conditions have been obtained. Compared with axial uniform heating, axial non-uniform heating will affect the system stability. Cosine and bottom-peaked heat fluxes can destabilize the system stability in high inlet subcooling region, while the opposite effect can be found in low inlet subcooling region. However, top-peaked heat flux can enhance the system stability in the whole region. In addition, for cosine heat flux, increasing the system pressure or inlet resistance coefficient can strengthen the system stability, and increasing the heating power will destabilize the system stability. The influence of inlet subcooling number on the system stability is multi-valued under cosine heat flux

  11. Theoretical investigations on the determination of cavitation-free primary flow after compacting the reactor FRG-1

    International Nuclear Information System (INIS)

    Pihowicz, W.

    1997-01-01

    Basing on an extensive analysis of the influence of compacting the FRG-1 reactor core upon the change in flow, heat exchange, as well as cavitation behavior of the primary circuit the underlying principles of the determination procedure for a cavitations-free primary flow have been developed theoretically. It was found that the problem has to be treated in a complex manner, i.e. considering the coupled flow, temperature, as well as cavitation fields, and that for a successful solution of the problem it is absolutely necessary to simultaneously induce an optimized fixation of the main primary coolant pump. (orig.) [de

  12. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    Science.gov (United States)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1990-05-01

    Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.

  13. Theoretical Study on the Dynamic Behavior of Pipes Conveying Gas-Liquid Flow

    Directory of Open Access Journals (Sweden)

    Enrique Ortiz-Vidal L.

    2018-01-01

    Full Text Available The dynamic behavior of clamped-clamped straight pipes conveying gas-liquid two-phase flow is theoretically investigated, specifically the effect of the flow parameters on the frequency of the system. First, the equation of motion is derived based on the classic Païdoussis formulation. Assuming Euler-Bernoulli beam theory, small-deflection approximation and no-slip homogeneous model, a coupled fluid-structure fourth-order partial differential equation (PDE is obtained. Then, the equation of motion is rendered dimensionless and discretized through Galerkin’s method. That method transforms the PDE into a set of Ordinary Differential Equations (ODEs. The system frequency is obtained by solving the system of ODEs by allowing the determinant to be equal to zero. System frequencies for different geometries, structural properties and flow conditions have been calculated. The results show that the system frequency decreases with increasing two-phase flow velocity. By contrast, the former increases with increasing homogeneous void fraction. These theoretical results are in agreement with experimental findings reported in the literature. Furthermore, even for typical two phase flow conditions, the system can become unstable for inadequate chooses of geometry or material of the pipe.

  14. Multiple condensation induced water hammer events, experiments and theoretical investigations

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Ezsoel, Gyoergy

    2011-01-01

    We investigate steam condensation induced water hammer (CIWH) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermalhydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side CIWH is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shockcapturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to RELAP5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. New features are the existence of multiple, independent CIWH pressure peaks both in experiments and in simulations. Experimentally measured and theoretically calculated CIWH pressure peaks are in qualitative agreement. However, the computational results are very sensitive against flow velocity. (orig.)

  15. Theoretical investigations of the gas flow in ballooning LWR-fuel rods

    International Nuclear Information System (INIS)

    Gaballah, I.

    1978-09-01

    A theory is developed for the calculation of gas flow in a fuel rod simulator or in a fuel rod with round- or cracked pellets. The fundamental equations are formulated, simplified, reformed, and then numerically solved. The numerical investigations show, that a quasi steady incompressible flow model can be used without great error. The effect of the deformation form is studied. A uniform deformation along the whole length causes small pressure difference. A power profile and rod spacers cause non-uniform clad deformation of the fuel rod simulator or the fuel rod. This deformation leads to greater pressure differences. Finally the effect of the cracked pellets is studied. The cracked pellets cause great pressure differences along the fuel rod. (orig.) 891 HP [de

  16. Theoretical background and user's manual for the computer code on groundwater flow and radionuclide transport calculation in porous rock

    International Nuclear Information System (INIS)

    Shirakawa, Toshihiko; Hatanaka, Koichiro

    2001-11-01

    In order to document a basic manual about input data, output data, execution of computer code on groundwater flow and radionuclide transport calculation in heterogeneous porous rock, we investigated the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport which calculates water flow in three dimension, the path of moving radionuclide, and one dimensional radionuclide migration. In this report, based on above investigation we describe the geostatistical background about simulating heterogeneous permeability field. And we describe construction of files, input and output data, a example of calculating of the programs which simulates heterogeneous permeability field, and calculates groundwater flow and radionuclide transport. Therefore, we can document a manual by investigating the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport calculation. And we can model heterogeneous porous rock and analyze groundwater flow and radionuclide transport by utilizing the information from this report. (author)

  17. Investigations on Actuator Dynamics through Theoretical and Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Somashekhar S. Hiremath

    2010-01-01

    Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.

  18. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  19. Three-dimensional attached viscous flow basic principles and theoretical foundations

    CERN Document Server

    Hirschel, Ernst Heinrich; Kordulla, Wilhelm

    2014-01-01

    Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases.   This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.   The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...

  20. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  1. Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang [Halla Univ. Daejeon (Korea, Republic of)

    2017-10-15

    In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the 1st - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

  2. An extension of theoretical analysis for the onset of slugging criterion in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Lee, Byung Ryung

    1997-02-01

    This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%

  3. Theoretical Investigation of Creeping Viscoelastic Flow Transition Around a Rotating Curved Pipe

    OpenAIRE

    Hamza, S. E. E.; El-Bakry, Mostafa Y.

    2015-01-01

    The study of creeping motion of viscoelastic fluid around a rotating rigid torus is investigated. The analysis of the problem is performed using a second-order viscoelastic model. The study is carried out in terms of the bipolar toroidal system of coordinates where the toroid is rotating about its axis of symmetry (z-axis). The problem is solved within the frame of slow flow approximation. Therefore, all variables in the governing equations are expanded in a power series of angular velocity. ...

  4. A theoretical analysis of flow through the nucleating stage in a low pressure steam turbine

    International Nuclear Information System (INIS)

    Skillings, S.A.; Walters, P.T.; Jackson, R.

    1989-01-01

    In order to improve steam turbine efficiency and reliability, the phenomena associated with the formation and growth of water droplets must be understood. This report describes a theoretical investigation into flow behaviour in the nucleating stage, where the predictions of a one-dimensional theory are compared with measured turbine data. Results indicate that droplet sizes predicted by homogeneous condensation theory cannot be reconciled with measurements unless fluctuating shock waves arise. Heterogeneous effects and flow turbulence are also discussed along with their implications for the condensation process. (author)

  5. Experimental investigation of single-phase flow friction in narrow annuli

    International Nuclear Information System (INIS)

    Sun Zhongning; Sun Licheng; Yan Changqi; Huang Weitang

    2004-01-01

    Experimental investigations of water flow friction in horizontal narrow annuli, with gap sizes of 0.57-3.08 mm, were carried out. The tests involved both laminar and turbulent flow regimes. The critical Reynolds number transited from laminar flow to turbulent flow was examed and observed. The friction factors obtained from experiments were compared with conventional correlations evaluated results, and the influences of channel scale and eccentricity on flow friction characteristics were discussed. It was found that fluid friction in turbulent regime could be predicted by conventional correlations with satisfied degree, but both values and varying trend of that vs. r i /r o in laminar regime were obviously departure from theoretically results when the gap sizes were less than 2.0 mm, and the critical Reynolds number was slightly less then 2300 when the gap sizes were less than 1.0 mm

  6. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  7. Investigation of Blade Angle of an Open Cross-Flow Runner

    Science.gov (United States)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  8. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    Science.gov (United States)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  9. Experimental and theoretical studies of buoyant-thermo capillary flow

    International Nuclear Information System (INIS)

    Favre, E.; Blumenfeld, L.; Soubbaramayer

    1996-01-01

    In the AVLIS process, uranium metal is evaporated using a high power electron gun. We have prior discussed the power balance equation in the electron beam evaporation process and pointed out, among the loss terms, the importance of the power loss due to the convective flow in the molten pool driven by buoyancy and thermo capillarity. An empirical formula has been derived from model experiments with cerium, to estimate the latter power loss and that formula can be used practically in engineering calculations. In order to complete the empirical approach, a more fundamental research program of theoretical and experimental studies have been carried out in Cea-France, with the objective of understanding the basic phenomena (heat transport, flow instabilities, turbulence, etc.) occurring in a convective flow in a liquid layer locally heated on its free surface

  10. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  11. Theoretical predictions for glass flow into an evacuated canister

    International Nuclear Information System (INIS)

    Routt, K.R.; Crow, K.R.

    1983-01-01

    Radioactive waste currently stored at the Savannah River Plant in liquid form is to be immobilized by incorporating it into a borosilicate glass. The glass melter for this process will consist of a refractory lined, steel vessel operated at a glass temperature of 1150 0 C. At the end of a two-year projected melter lifetime, the glass inside the melter is to be drained prior to disposition of the melter vessel. One proposed technique for accomplishing this drainage is by sucking the glass into an evacuated canister. The theoretical bases for design of an evacuated canister for draining a glass melter have been developed and tested. The theoretical equations governing transient and steady-state flow were substantiated with both a silicone glass simulant and molten glass

  12. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.

    1991-01-01

    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  13. Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot

    Science.gov (United States)

    Massey, Brian; Morgansen, Kristi; Dabiri, Dana

    2003-11-01

    Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.

  14. Investigation for vertical, two-phase steam-water flow of three turbine models

    International Nuclear Information System (INIS)

    Silverman, S.; Goodrich, L.D.

    1977-01-01

    One of the basic quantities of interest during a loss-of-coolant experiment (LOCE) is the primary system mass flow rate. Presently, there are no transducers commercially available which continuously measure this parameter. Therefore, a transducer was designed at EG and G Idaho, Inc. which combines a drag-disc and turbine into a single unit. The basis for the design was that the drag-disc would measure momentum flux (rhoV 2 ), the turbine would measure velocity and the mass flow rate could then be calculated from the two quantities by assuming a flow profile. For two-phase flow, the outputs are approximately proportional to the desired parameter, but rather large errors can be expected under those assumptions. Preliminary evaluation of the experimental two- and single-phase calibration data has resulted in uncertainty estimates of +-8% of range for the turbine and +-20% of range for the drag-disc. In an effort to reduce the errors, further investigations were made to determine what the drag-disc and turbine really measure. In the present paper, three turbine models for vertical, two-phase, steam/water flow are investigated; the Aya Model, the Rouhani Model, and a volumetric flow model. Theoretical predictions are compared with experimental data for vertical, two-phase steam/water flow. For the purposes of the mass flow calculation, velocity profiles were assumed to be flat for the free-field condition. It is appreciated that this may not be true for all cases investigated, but for an initial inspection, flat profiles were assumed

  15. Continuous infusion thermodilution for assessment of coronary flow: Theoretical background and in vitro validation

    NARCIS (Netherlands)

    Veer, van 't M.; Geven, M.C.F.; Rutten, M.C.M.; Horst, van der A.; Aarnoudse, W.H.; Pijls, N.H.J.; Vosse, van de F.N.

    2009-01-01

    Direct volumetric assessment of coronary flow during cardiac catheterization has not been available so far. In the current study continuous infusion thermodilution, a method based on continuous infusion of saline into a selective coronary artery is evaluated. Theoretically, volumetric flow can be

  16. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  17. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  18. Experimental and theoretical investigation of benzyl-N ...

    Indian Academy of Sciences (India)

    Experimental and theoretical investigation of benzyl-N-pyrrolylketene, one- step procedure for preparing of new β-lactams by [2+2] cycloaddition reaction. MASOUMEH BEHZADI, KAZEM SAIDI. ∗. , MOHAMMAD REZA ISLAMI and. HOJATOLLAH KHABAZZADEH. Department of Chemistry, Shahid Bahonar University of ...

  19. MHD flow in multichannel U-bends: Screening experiments and theoretical analysis

    International Nuclear Information System (INIS)

    Reimann, J.; Molokov, S.; Platnieks, I.; Platacis, E.

    1993-02-01

    In electrically coupled multichannel ducts with a U-bend geometry magnetohydrodynamic effects are expected to cause strongly ununiform distributions of flow rates Q i and pressure drops Δp i in the individual channels. A multichannel U-bend geometry is part of the KfK self-cooled Pb-17 Li blanket design (radial-toroidal-radial channels). However, inserts are proposed which isolate electrically the radial channels (not the toroidal ones). To investigate the multichannel effect (MCE), screening experiments were performed at LAS, Riga, with different flow channel geometries and channel numbers between 1 and 5 and using InGaSn as liquid metal. These experiments were carried out with either Δp i ∼const or Q i ∼const. Hartmann Numbers were varied between 0 and ∼1600 (maximum magnetic field strength: 4.1 T) and Interaction Parameters between 0 and 10000. For experiments with electrically conducting walls between the channels, the volume flow rates in the outer channels are significantly larger than those in the inner channels in the experiments with Δp i ∼const. For Q i ∼const., this tendency is reversed, with the highest pressure drop in the middle channel and the lowest in the outer channels. The flow geometry with electrically separated radial channels, similar to the KfK-design result in a fairly even flow rate and pressure drop distribution. The single channels behave approximately like electrically separated channels; no marked MCE occurrs. A theoretical analysis was carried out to describe the MCE for the multichannel U-bend with thin electrically conducting outside walls. This analysis is based on the Core Flow Approximation (CFA), valid for infinitely large Interaction Parameters and Hartmann Numbers. The theory predicts correctly all tendencies observed for the pressure measurements. Moreover, the method is able to describe in detail the flow structure in the toroidal channel. The most essential result is that the flow rate in the layer close to the

  20. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry

    International Nuclear Information System (INIS)

    Staron, E.

    1996-01-01

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs

  1. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  2. Theoretical investigation of nonequilibrium processes in shock wave in bubbly liquid

    NARCIS (Netherlands)

    Bityurin, V. A.; Velikodnyi, V. Yu.; Bykov, A. A.

    The effects related to a translational nonequilibrium at the shock wave front in a bubbly liquid flow with volume gas contents within 0.3 a parts per thousand currency sign phi a parts per thousand currency sign 0.98 have been theoretically studied. Analytical expressions for the longitudinal and

  3. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  4. Experimental and theoretical investigation of high gradient acceleration

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Bekefi, G.; Chen, C.; Chen, S.C.; Temkin, R.J.

    1993-01-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-AC02-91-ER40648, ''Experimental and Theoretical Investigations of High Gradient Acceleration''. This grant supports three research tasks: Task A consists of the design, fabrication and testing of a 17GHz RF photocathode gun, which can produce 2ps electron pulses with up to 1nC of charge at 2MeV energy and at a 1OHz repetition rate. Task B supports the testing of high gradient acceleration at 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders

  5. Hydrodynamic Instability and Dynamic Burnout in Natural Circulation Two-Phase Flow. An Experimental and Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Jahnberg, S; Haga, I; Hansson, P T; Mathisen, R P

    1964-09-15

    A theoretical model for predicting the threshold of instability for two phase flow in a natural circulation loop is presented. The model calculates the flow transient caused by a step disturbance of the heat input, and is based upon the conservation laws of mass, momentum and energy in one dimensional form. Empirical correlations are used in the model for estimating the void fractions and the two-phase flow pressure drops. The equations are solved numerically in a finite difference approximation coded for a digital computer. An experimental study of the hydrodynamic instability and dynamic burnout in two-phase flow has been performed in a natural circulation loop in the pressure range from 10 to 70 atg. The test sections were round ducts of 20, 30 and 36 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested, the stability of the flow increases with increasing pressure and increasing throttling before the test section, but decreases with increasing Inlet subcooling and increasing throttling after the test section. Comparing the natural circulation burnout steam qualities with corresponding forced circulation data shoved that the former data were low by a factor up to 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data. The present experimental results as well as data available from other sources have been compared with the stability thresholds obtained with the theoretical model. The comparisons included circular, annular and rod cluster geometries, and the agreement between the experimental and theoretical stability limits was good. Finally the application of the experimental and theoretical results on the assessment of boiling heavy water reactor design is discussed.

  6. Hydrodynamic Instability and Dynamic Burnout in Natural Circulation Two-Phase Flow. An Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Jahnberg, S.; Haga, I.; Hansson, P.T.; Mathisen, R.P.

    1964-09-01

    A theoretical model for predicting the threshold of instability for two phase flow in a natural circulation loop is presented. The model calculates the flow transient caused by a step disturbance of the heat input, and is based upon the conservation laws of mass, momentum and energy in one dimensional form. Empirical correlations are used in the model for estimating the void fractions and the two-phase flow pressure drops. The equations are solved numerically in a finite difference approximation coded for a digital computer. An experimental study of the hydrodynamic instability and dynamic burnout in two-phase flow has been performed in a natural circulation loop in the pressure range from 10 to 70 atg. The test sections were round ducts of 20, 30 and 36 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested, the stability of the flow increases with increasing pressure and increasing throttling before the test section, but decreases with increasing Inlet subcooling and increasing throttling after the test section. Comparing the natural circulation burnout steam qualities with corresponding forced circulation data shoved that the former data were low by a factor up to 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data. The present experimental results as well as data available from other sources have been compared with the stability thresholds obtained with the theoretical model. The comparisons included circular, annular and rod cluster geometries, and the agreement between the experimental and theoretical stability limits was good. Finally the application of the experimental and theoretical results on the assessment of boiling heavy water reactor design is discussed

  7. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In

  8. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments

    Directory of Open Access Journals (Sweden)

    Kenneth J. Bagstad

    2014-06-01

    Full Text Available Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service, sinks (biophysical or anthropogenic features that deplete or alter service flows, users (user locations and level of demand, and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems' capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for

  9. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments

    Science.gov (United States)

    Bagstad, Kenneth J.; Villa, Ferdinando; Batker, David; Harrison-Cox, Jennifer; Voigt, Brian; Johnson, Gary W.

    2014-01-01

    Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems’ capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic

  10. Theoretical and Computational Analyses of Bernoulli Levitation Flows

    International Nuclear Information System (INIS)

    Nam, Jong Soon; Kim, Gyu Wan; Kim, Jin Hyeon; Kim, Heuy Dong

    2013-01-01

    Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-ω turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, work piece diameter,and clearance gap between the work piece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force

  11. Theoretical and Computational Analyses of Bernoulli Levitation Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soon; Kim, Gyu Wan; Kim, Jin Hyeon; Kim, Heuy Dong [Andong Nat' l Univ., Andong (Korea, Republic of)

    2013-07-15

    Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-{omega} turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, work piece diameter,and clearance gap between the work piece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

  12. Numerical investigations for insulation particle transport phenomena in water flow

    International Nuclear Information System (INIS)

    Krepper, E.; Grahn, A.; Alt, S.; Kaestner, W.; Kratzsch, A.; Seeliger, A.

    2005-01-01

    The investigation of insulation debris generation, transport and sedimentation gains importance regarding the reactor safety research for PWR and BWR considering the long term behaviour of emergency core coolant systems during all types of LOCA. The insulation debris released near the break during LOCA consists of a mixture of very different particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Open questions of generic interest are e.g. the sedimentation of the insulation debris in a water pool, possible re-suspension, transport in the sump water flow, particle load on strainers and corresponding difference pressure. A joint research project in cooperation with Institute of Process Technology, Process Automation and Measuring Technology (IPM) Zittau deals with the experimental investigation and the development of CFD models for the description of particle transport phenomena in coolant flow. While experiments are performed at the IPM-Zittau, theoretical work is concentrated at Forschungszentrum Rossendorf. In the present paper the basic concepts for CFD modelling are described and first results including feasibility studies are shown. During the ongoing work further results are expected. (author)

  13. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  14. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  15. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    Directory of Open Access Journals (Sweden)

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  16. Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-01-01

    Full Text Available In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratio δ has received much attention, but most of the values of δ are very small (δ<0.1 or relatively small (δ≤0.5. As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.

  17. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

    International Nuclear Information System (INIS)

    Hervieu, Eric

    1988-01-01

    The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

  18. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations.

    Science.gov (United States)

    Ullah, Amm Sharif; Caggiano, Alessandra; Kubo, Akihiko; Chowdhury, M A K

    2018-02-09

    Grinding is one of the essential manufacturing processes for producing brittle or hard materials-based precision parts (e.g., optical lenses). In grinding, a grinding wheel removes the desired amount of material by passing the same area on the workpiece surface multiple times. How the topography of a workpiece surface evolves with these passes is thus an important research issue, which has not yet been addressed elaborately. The present paper tackles this issue from both the theoretical and the experimental points of view. In particular, this paper presents the results of experimental and theoretical investigations on the multi-pass surface grinding operations where the workpiece surface is made of glass and the grinding wheel consists of cBN abrasive grains. Both investigations confirm that a great deal of stochasticity is involved in the grinding mechanism, and the complexity of the workpiece surface gradually increases along with the number of passes.

  19. Theoretical Investigation of an Electrogasdynamic Generator

    Energy Technology Data Exchange (ETDEWEB)

    Palmgren, S

    1968-05-15

    In an electrogasdynamic generator a portion of the enthalpy of a high velocity gas flow is converted directly into electrical energy through forcing unipolar charge carriers against an electric field. In a first attempt we try to describe this process by use of a one-dimensional mathematical model with an adiabatic flow. An exact analytic equation is derived for this case. Assuming the interaction between the charge carriers and the gas to be a perturbation of the first order this equation can be solved analytically. The zero order perturbation, i. e. constant thermodynamic state of the flow, agrees with previous analyses. It is found that this is an adequate approximation for the linear model. A complete analysis of a cylindrical EGD generator must however take into account the radial electric field due to the space charge and the losses due to radial diffusion and mobility. A tentative investigation of a three dimensional axially symmetric model has therefore been made, including a survey and criticism of some earlier analyses.

  20. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations

    Directory of Open Access Journals (Sweden)

    AMM Sharif Ullah

    2018-02-01

    Full Text Available Grinding is one of the essential manufacturing processes for producing brittle or hard materials-based precision parts (e.g., optical lenses. In grinding, a grinding wheel removes the desired amount of material by passing the same area on the workpiece surface multiple times. How the topography of a workpiece surface evolves with these passes is thus an important research issue, which has not yet been addressed elaborately. The present paper tackles this issue from both the theoretical and the experimental points of view. In particular, this paper presents the results of experimental and theoretical investigations on the multi-pass surface grinding operations where the workpiece surface is made of glass and the grinding wheel consists of cBN abrasive grains. Both investigations confirm that a great deal of stochasticity is involved in the grinding mechanism, and the complexity of the workpiece surface gradually increases along with the number of passes.

  1. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  2. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1999-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  3. Theoretical modelling of nuclear waste flows - 16377

    International Nuclear Information System (INIS)

    Adams, J.F.; Biggs, S.R.; Fairweather, M.; Njobuenwu, D.; Yao, J.

    2009-01-01

    A large amount of nuclear waste is stored in tailings ponds as a solid-liquid slurry, and liquid flows containing suspensions of solid particles are encountered in the treatment and disposal of this waste. In processing this waste, it is important to understand the behaviour of particles within the flow in terms of their settling characteristics, their propensity to form solid beds, and the re-suspension characteristics of particles from a bed. A clearer understanding of such behaviour would allow the refinement of current approaches to waste management, potentially leading to reduced uncertainties in radiological impact assessments, smaller waste volumes and lower costs, accelerated clean-up, reduced worker doses, enhanced public confidence and diminished grounds for objection to waste disposal. Mathematical models are of significant value in nuclear waste processing since the extent of characterisation of wastes is in general low. Additionally, waste processing involves a diverse range of flows, within vessels, ponds and pipes. To investigate experimentally all waste form characteristics and potential flows of interest would be prohibitively expensive, whereas the use of mathematical models can help to focus experimental studies through the more efficient use of existing data, the identification of data requirements, and a reduction in the need for process optimisation in full-scale experimental trials. Validated models can also be used to predict waste transport behaviour to enable cost effective process design and continued operation, to provide input to process selection, and to allow the prediction of operational boundaries that account for the different types and compositions of particulate wastes. In this paper two mathematical modelling techniques, namely Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), have been used to investigate particle-laden flows in a straight square duct and a duct with a bend. The flow solutions provided by

  4. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  5. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  6. The current status of theoretically based approaches to the prediction of the critical heat flux in flow boiling

    International Nuclear Information System (INIS)

    Weisman, J.

    1991-01-01

    This paper reports on the phenomena governing the critical heat flux in flow boiling. Inducts which vary with the flow pattern. Separate models are needed for dryout in annular flow, wall overheating in plug or slug flow and formation of a vapor blanket in dispersed flow. The major theories and their current status are described for the annular and dispersed regions. The need for development of the theoretical approach in the plug and slug flow region is indicated

  7. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla

    2009-01-01

    Full Text Available Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’ exhaust pipes. This work also considers how the simulation must be made, based on the previous exploration. The results (presented as e- quations in this first paper show the great influence exerted by pressure wave movement on flow through the engine and there- fore on its final performance.

  8. Theoretical and experimental investigations into natural circulation behaviour in a simulated facility of the Indian PHWR under reduced inventory conditions

    International Nuclear Information System (INIS)

    Satish Kumar, N.V.; Nayak, A.K.; Vijayan, P.K.; Pal, A.K.; Saha, D.; Sinha, R.K.

    2004-01-01

    A theoretical and experimental investigation has been carried out to study natural circulation characteristics of an Indian PHWR under reduced inventory conditions. The theoretical model incorporates a quasi-steady state analysis of natural circulation at different system inventories. It predicts the system flow rate under single-phase and two-phase conditions and the inventory at which reflux condensation occurs. The model predictions were compared with test data obtained from FISBE (facility for integral system behaviour experiments), which simulates the thermal hydraulic behaviour of the Indian 220 MWe PHWR. The experimental results were found to be in close agreement with the predictions. It was also found that the natural circulation could be oscillatory under reduced inventory conditions. (orig.)

  9. Theoretical investigations of fuel behavior during LOCA and ATWS

    International Nuclear Information System (INIS)

    Meyder, R.; Unger, H.

    1976-01-01

    The program system SSYST has been improved. The results of the SSYST-FRAP comparison calculations showed good agreement. In both programs, for instance, ballooning at the hottest spot occurs almost at the same time (appr 8 s). The calculation of the experiments of IRB on ballooning led also to a qualitative good agreement of experimental and theoretical results. The parameters in Nortons creep law are quantitatively not yet satisfactory. Gas gap flow equalizes axial pressure difference already at small gaps. The method of 'Moment Matching' for the statistical analysis needs considerably less computer time than 'Monte Carlo' method, and differs only slightly in expected values and variances. (orig./RW) [de

  10. Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model

    International Nuclear Information System (INIS)

    Wang Weizong; Rong Mingzhe; Yan, Joseph D; Spencer, Joseph W; Murphy, Anthony B

    2013-01-01

    The behaviour of a decaying SF 6 arc, which is representative of the approach to the final current-zero state of switching arcs in a high-voltage circuit breaker, is theoretically investigated by a two-temperature hydrodynamic model, taking into account the possible departure of the plasma state from local thermodynamic equilibrium (LTE). The model couples the plasma flow with electromagnetic fields in a self-consistent manner. The electrons and heavy species are assumed to have different temperatures. The species composition, thermodynamic properties and transport coefficients of the plasma under non-LTE conditions are calculated from fundamental theory. The model is then applied to a two-dimensional axisymmetric SF 6 arc burning in a supersonic nozzle under well-controlled conditions; for this configuration, experimental results are available for comparison. The effect of turbulence is considered using the Prandtl mixing-length model. The edge absorption of the radiation emitted by the arc core is taken into account by a modified net emission coefficient approach. The complete set of conservation equations is discretized and solved using the finite volume method. The evolution of electron and heavy-particle temperatures and the total arc resistance, along with other physical quantities, is carefully analysed and compared with those of the LTE case. It is demonstrated that the electron and heavy-particle temperature diverge at all times in the plasma-cold-flow interaction region, in which strong gas flow exists, and further in the transient current-zero period, in which case the collision energy exchange is ineffective. This study quantitatively analyses the energy exchange mechanisms between electrons and heavy particles in the high-pressure supersonic SF 6 arcs and provides the foundation for further theoretical investigation of transient SF 6 arc behaviour as the current ramps down to zero in gas-blast circuit breakers.

  11. Investigation of bubble flow regimes in nucleate boiling of highly-wetting liquids

    International Nuclear Information System (INIS)

    Tong, W.; Bar-Cohen, A.; Simon, T.W.

    1991-01-01

    This paper describes an investigation of the bubble flow regimes in nucleate boiling of FC-72, a highly-wetting liquid. Theoretically analysis of vapor bubble generation and departure from the heated surface reveals that the heat fluxes required for the merging of consecutive bubbles, for highly-wetting liquids, lie in the upper range of the nucleate boiling heat flux. A visual and photographic study of nucleate boiling from sputtered platinum surfaces has supported the theoretical results and shown that the isolated bubble behavior extends to at least 50-80% of the critical heat flux, considerably higher than observed by others with water. Lateral coalescence of adjacent bubbles has been found to be a more likely cause of the termination of the isolated bubble regime. These findings suggest that thermal transport models which are based on isolated bubble behavior may be applicable to nearly the entire range of nucleate boiling of electronic cooling fluids

  12. Theoretical study on flow-induced vibration of a cylindrical weir due to fluid discharge

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Ito, Tomohiro; Hirota, Kazuo; Kodama, Tetsuhiko

    1994-01-01

    In a FBR, the inside of the reactor vessel is cooled by liquid sodium. Liquid sodium is supplied to the upper plenum from its bottom and discharges over the top of the cylindrical weir down to the lower plenum. The weir is so thin in order to decrease the thermal stress on it that the fluid--structure interaction becomes predominant. A fluidelastic vibration of the weir due to fluid discharge was discovered in a French FBR. In this study, a theoretical model was developed on the ''fluid--elastic mode'' instability of a cylindrical weir due to fluid discharge from the upper plenum to the lower plenum. In the analysis, the fluctuation of both the discharge flow rate over a weir due to the vibration of the cylindrical shell and the pressure in the lower plenum due to fluid discharge were formulated. Instability criteria was derived from the added damping ratio due to fluid discharge using modal analysis. The natural modes and modal mass of the weir were obtained by the analysis using the FEM code taking the fluid - structure interaction into consideration. The theoretical instability range in terms of the fall height and the flow rate is compared with the experimental results. The theoretical values showed a good agreement with the experimental ones

  13. Basic study on an energy conversion system using boiling two-phase flows of temperature-sensitive magnetic fluid. Theoretical analysis based on thermal nonequilibrium model and flow visualization using ultrasonic echo

    International Nuclear Information System (INIS)

    Ishimoto, Jun; Kamiyama, Shinichi; Okubo, Masaaki.

    1995-01-01

    Effects of magnetic field on the characteristics of boiling two-phase pipe flow of temperature-sensitive magnetic fluid are clarified in detail both theoretically and experimentally. Firstly, governing equations of two-phase magnetic fluid flow based on the thermal nonequilibrium two-fluid model are presented and numerically solved considering evaporation and condensation between gas- and liquid-phases. Next, behaviour of vapor bubbles is visualized with ultrasonic echo in the region of nonuniform magnetic field. This is recorded and processed with an image processor. As a result, the distributions of void fraction in the two-phase flow are obtained. Furthermore, detailed characteristics of the two-phase magnetic fluid flow are investigated using a small test loop of the new energy conversion system. From the numerical and experimental results, it is known that the precise control of the boiling two-phase flow and bubble generation is possible by using the nonuniform magnetic field effectively. These fundamental studies on the characteristics of two-phase magnetic fluid flow will contribute to the development of the new energy conversion system using a gas-liquid boiling two-phase flow of magnetic fluid. (author)

  14. Droplet size in flow: Theoretical model and application to polymer blends

    Science.gov (United States)

    Fortelný, Ivan; Jůza, Josef

    2017-05-01

    The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.

  15. Experimental investigation and physical description of stratified flow in horizontal channels

    International Nuclear Information System (INIS)

    Staebler, T.

    2007-05-01

    The interaction between a liquid film and turbulent gas flows plays an important role in many technical applications (e.g. in hydraulic engineering, process engineering and nuclear engineering). The local kinematic and turbulent time-averaged flow quantities for counter-current stratified flows (supercritical and subcritical flows with and without flow reversal) have been measured for the first time. Therefore, the method of Particle Image Velocimetry was applied. By using fluorescent particles in combination with an optical filter it was possible to determine the flow quantities of the liquid phase up to the free surface. Additionally, the gaseous phase was investigated by using the scattering of light of conventional particles. With a further measurement technique the void fraction distribution along the channel height has been determined. For this purpose, a single-tip conductivity probe was developed. Furthermore, water delivery rates and pressure losses along the test section were measured over a wide range of parameters. The measurements also revealed new details on the hysteresis effect after the occurrence of flow reversal. The experimental findings were used to develop and validate a statistical model in which the liquid phase is considered to be an agglomeration of interacting particles. The statistical consideration of the particle interactions delivers a differential equation which can be used to predict the local void fraction distribution with the local turbulent kinematic energies of the liquid phase. Beyond that, an additional statistical description is presented in which the probability density functions of the local void fraction are described by beta-functions. Both theoretical approaches can be used for numerical modelling whereas the statistical model can be used to describe the phase interactions and the statistical description to describe the turbulent fluctuations of the local void fraction. Thus, this work has made available all necessary

  16. A theoretical and numerical study of the flow of granular materials down an inclined plane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K.R.

    1995-12-31

    The mechanics of the flowing granular materials such as coal, agricultural products, at deal of attention as it has fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the modular materials, and theories developed which can explain the experimentally observed facts. As many models have been suggested for describing the behavior of granular materials, from both continuum and kinetic theory viewpoints, we proposed to investigate the validity and usefulness of representative models from both the continuum and kinetic theory points of view, by determining the prediction of such a theory, in a representative flow, with respect to existence, non-existence, multiplicity and stability of solutions. The continuum model to be investigated is an outgrowth of a model due to Goodman and Cowin (1971, 1972) and the kinetic theory models being those due to Jenkins and Richman (1985) and Boyle and Massoudi (1989). In this report we present detailed results regarding the same. Interestingly, we find that the predictions of all the theories, in certain parameter space associated with these models, are qualitatively similar. This ofcourse depends on the values assumed for various material parameters in the models, which as yet are unknown, as reliable experiments have not been carried out as yet for their determination.

  17. A theoretical and numerical study of the flow of granular materials down an inclined plane. [Quarterly progress report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K.R.

    1995-09-01

    The mechanics of the flowing granular materials such as coal, agricultural products, fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the granular materials, and theories developed which can explain the experimentally observed facts. Here we carry out a systematic numerical study of the flow of granular materials down an inclined plane using the models that stem from both the continuum theory approach and the kinetic theory approach. We also look at the existence of solutions, multiplicity and stability of solutions to the governing equations.

  18. Theoretical Investigation of Bismuth-Based Semiconductors for Photocatalytic Applications

    KAUST Repository

    Laradhi, Shaikhah

    2017-11-01

    Converting solar energy to clean fuel has gained remarkable attention as an emerged renewable energy resource but optimum efficiency in photocatalytic applications has not yet been reached. One of the dominant factors is designing efficient photocatalytic semiconductors. The research reveals a theoretical investigation of optoelectronic properties of bismuth-based metal oxide and oxysulfide semiconductors using highly accurate first-principles quantum method based on density functional theory along with the range-separated hybrid HSE06 exchange-correlation functional. First, bismuth titanate compounds including Bi12TiO20, Bi4Ti3O12, and Bi2Ti2O7 were studied in a combined experimental and theoretical approach to prove its photocatalytic activity under UV light. They have unique bismuth layered structure, tunable electronic properties, high dielectric constant and low electron and effective masses in one crystallographic direction allowing for good charge separation and carrier diffusion properties. The accuracy of the investigation was determined by the good agreement between experimental and theoretical values. Next, BiVO4 with the highest efficiency for oxygen evolution was investigated. A discrepancy between the experimental and theoretical bandgap was reported and inspired a systematic study of all intrinsic defects of the material and the corresponding effect on the optical and transport properties. A candidate defective structure was proposed for an efficient photocatalytic performance. To overcome the carrier transport limitation, a mild hydrogen treatment was also introduced. Carrier lifetime was enhanced due to a significant reduction of trap-assisted recombination, either via passivation of deep trap states or reduction of trap state density. Finally, an accurate theoretical approach to design a new family of semiconductors with enhanced optoelectronic properties for water splitting was proposed. We simulated the solid solutions Bi1−xRExCuOS (RE = Y, La

  19. A theoretical model for measuring mass flowrate and quality of two phase flow by the noise of throttling set

    International Nuclear Information System (INIS)

    Tong Yunxian; Wang Wenran

    1992-03-01

    The mass flowrate and steam quality measuring of two phase flowrate is an essential issue in the tests of loss-of-coolant accident (LOCA). The spatial stochastic distribution of phase concentration would cause a differential pressure noise when two phase flow is crossing a throttling set. Under the assumption of that the variance of disperse phase concentration is proportional to its mean phase concentration and by using the separated flow model of two phase flow, it has demonstrated that the variance of noise of differential pressure square root is approximately proportional to the flowrate of disperse phase. Thus, a theoretical model for measuring mass flowrate and quality of two phase flow by noise measurement is developed. It indicates that there is a possibility to measure two phase flowrate and steam quality by using the simple theoretical model and a single throttling set

  20. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad; Chappanda, Karumbaiah N.; Hafiz, Md Abdullah Al; Ramini, Abdallah; Younis, Mohammad I.

    2016-01-01

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever

  1. THEORETICAL AND METHODOLOGICAL APPROACHES TO REGIONAL COMPETITION INVESTIGATION

    Directory of Open Access Journals (Sweden)

    A.I. Tatarkin

    2006-03-01

    Full Text Available The article is dedicated to theoretical-methodological issues of regional economy competitiveness investigation. Economic essence of regional competitiveness is analyzed, its definition is given. The factors that determine relations of competition on medium and macrolevels are proved. The basic differences between world-economical and inter-regional communications are formulated. The specific features of globalization processes as form of competitive struggle are considered.

  2. INVESTIGATIONS OF THE FLOW INTO A STORAGE TANK BY MEANS OF ADVANCED EXPERIMENTAL AND THEORETICAL METHODS

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    that the luminescence intensity depends on the water temperature, the temperature fields in the tank can be visualized and also be recorded with a camera. The measurements were compared with calculations of the flow and temperature fields carried out with the Computational Fluid Dynamics (CFD) tool Fluent. In future...... is to study the influence of the inlet device geometry and of the operating conditions (the flow rate, draw-off volume, and temperatures) on the thermal stratification in the tank. Measurements of the flow and temperature fields were carried out with two visualization techniques: - To visualize the flow field...... a method called Particle Image Velocimetry (PIV) was applied. Particles with a size of 1 to 10 mm were seeded in the water and then illuminated by a laser within a narrow plane. In order to measure the three velocity components of the flow within the plane, the particle displacements between laser pulses...

  3. A theoretical analysis of the weak shock waves propagating through a bubbly flow

    International Nuclear Information System (INIS)

    Jun, Gu Sik; Kim, Heuy Dong; Baek, Seung Cheol

    2004-01-01

    Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data

  4. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    International Nuclear Information System (INIS)

    Gou Junli; Qiu Suizheng; Su Guanghui; Jia Dounan

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. (authors)

  5. Special course on modern theoretical and experimental approaches to turbulent flow structure and its modelling

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    The large eddy concept in turbulent modeling and techniques for direct simulation are discussed. A review of turbulence modeling is presented along with physical and numerical aspects and applications. A closure model for turbulent flows is presented and routes to chaos by quasi-periodicity are discussed. Theoretical aspects of transition to turbulence by space/time intermittency are covered. The application to interpretation of experimental results of fractal dimensions and connection of spatial temporal chaos are reviewed. Simulation of hydrodynamic flow by using cellular automata is discussed.

  6. Critical investigations and model development on countercurrent flow of gas and liquid in horizontal and vertical channels

    International Nuclear Information System (INIS)

    Mewes, D.; Beckmann, H.

    1989-01-01

    Countercurrent flow of steam and water occurs in the horizontal and vertical lines of a PWR in case of a LOCA. In order to predict the emergency core cooling behaviour in case of a large or small break LOCA it is important to calculate the volumetric flow rate of water which will get to the reactor core. Theoretical and experimental results of countercurrent flow in horizontal and vertical channels given by publication and reports are critically reviewed for the purpose of a more physical understanding of the flow phenomena. The influence of geometry, pressure and other boundary conditions are emphasized. The existing models which are developed to calculate the onset of flooding are based on experimental results of small test facilities. The applicability of these models to large geometries and high pressures as well as the consideration of condensation and entrainment are investigated. (orig./HP) [de

  7. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.

    Science.gov (United States)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E

    2011-03-01

    The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.

  8. Theoretical investigation of aspects of radioactive contamination

    International Nuclear Information System (INIS)

    Smith, A.H.; Chandratillake, M.R.; Taylor, J.B.

    1998-01-01

    The BNFL programme of work has investigated theoretical aspects of the mechanisms responsible for the deposition and adherence of contamination to metallic surfaces and the energetics of physical decontamination processes. The work has been conducted in two phases: The theoretical and laboratory study of deposition of species from aqueous media on to stainless steel; Theoretical assessment of the forces causing the attraction of PuO 2 and UO 2 particles to stainless steel in an air environment and comparison of these forces with the energies delivered by physical jetting processes. The first phase produced a model which was found to give good agreement with plant operational experience of the deposition of simple aqueous ions such as Cobalt. Due to the complexities, however, of surface / colloid and surface / particle interactions the model was found not to be successful at predicting deposition for more complex compounds, such as Ruthenium Nitrosyls. At this stage the model had fulfilled its original requirement of underpinning design work on pipework shielding systems and it was decided not to pursue the library of chemical speciation data that would be necessary to model the behaviour of a full spectrum of possible contaminants. The second phase predicts by theoretical analysis that the relation of the energy delivered by jetting techniques to the physical forces causing the adherence of PuO 2 and UO 2 particles will vary considerably with particle size. This is particularly notably for larger PuO 2 particles which are firmly held as a result of high levels of electrostatic charge due to their intense alpha activity. Small particles tend to be difficult to remove due to the low profile that they present to the jetting medium. Large and small PuO 2 particles and small UO 2 particle are thus predicted to be difficult to remove and will present an energy threshold which may not be crossed by all decontamination techniques. (author)

  9. Theoretical investigation of a travelling-wave rf gun

    International Nuclear Information System (INIS)

    Gao, J.

    1991-12-01

    A travelling-wave type rf gun (TW gun) is investigated theoretically. Analytical formulae concerning energy gain, energy spread, and transverse emittance are derived. After showing the corresponding formulae for the standing-wave rf gun (SW gun), comparisons are made between the two types of rf gun. Finally, some numerical results are calculated to demonstrate further the behaviours of the TW gun, and to compare with those from analytical formulae. (author) 11 refs.; 27 figs

  10. THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1996-03-01

    Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.

  11. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Science.gov (United States)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  12. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    International Nuclear Information System (INIS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-01-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s −1 to 3.0 m s −1 with a step of 0.2 m s −1 . The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows. (paper)

  13. Theoretical investigation of non-equilibrium chemistry and optical radiation in hypersonic flow fields

    Science.gov (United States)

    Whiting, Ellis E.

    1990-01-01

    Future space vehicles returning from distant missions or high earth orbits may enter the upper regions of the atmosphere and use aerodynamic drag to reduce their velocity before they skip out of the atmosphere and enter low earth orbit. The Aeroassist Flight Experiment (AFE) is designed to explore the special problems encountered in such entries. A computer code was developed to calculate the radiative transport along line-or-sight in the general 3-D flow field about an arbitrary entry vehicle, if the temperatures and species concentrations along the line-of-sight are known. The radiative heating calculation at the stagnation point of the AFE vehicle along the entry trajectory was performed, including a detailed line-by-line accounting of the radiative transport in the vacuum ultraviolet (below 200 nm) by the atomic N and O lines. A method was developed for making measurements of the haze particles in the Titan atmosphere above 200 km altitude. Several other tasks of a continuing nature, to improve the technical ability to calculate the nonequilibrium gas dynamic flow field and radiative heating of entry vehicles, were completed or advanced.

  14. Theoretical study of rock mass investigation efficiency

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Outters, Nils

    2002-05-01

    The study concerns a mathematical modelling of a fractured rock mass and its investigations by use of theoretical boreholes and rock surfaces, with the purpose of analysing the efficiency (precision) of such investigations and determine the amount of investigations necessary to obtain reliable estimations of the structural-geological parameters of the studied rock mass. The study is not about estimating suitable sample sizes to be used in site investigations.The purpose of the study is to analyse the amount of information necessary for deriving estimates of the geological parameters studied, within defined confidence intervals and confidence level In other words, how the confidence in models of the rock mass (considering a selected number of parameters) will change with amount of information collected form boreholes and surfaces. The study is limited to a selected number of geometrical structural-geological parameters: Fracture orientation: mean direction and dispersion (Fisher Kappa and SRI). Different measures of fracture density (P10, P21 and P32). Fracture trace-length and strike distributions as seen on horizontal windows. A numerical Discrete Fracture Network (DFN) was used for representation of a fractured rock mass. The DFN-model was primarily based on the properties of an actual fracture network investigated at the Aespoe Hard Rock Laboratory. The rock mass studied (DFN-model) contained three different fracture sets with different orientations and fracture densities. The rock unit studied was statistically homogeneous. The study includes a limited sensitivity analysis of the properties of the DFN-model. The study is a theoretical and computer-based comparison between samples of fracture properties of a theoretical rock unit and the known true properties of the same unit. The samples are derived from numerically generated boreholes and surfaces that intersect the DFN-network. Two different boreholes are analysed; a vertical borehole and a borehole that is

  15. Theoretical investigation of aberrations upon ametropic human eyes

    Science.gov (United States)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin

    2003-11-01

    The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.

  16. Theoretical and numerical investigations of TAP experiments. New approaches for variable pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Senechal, U.; Breitkopf, C. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik

    2011-07-01

    Temporal analysis of products (TAP) is a valuable tool for characterization of porous catalytic structures. Established TAP-modeling requires a spatially constant diffusion coefficient and neglect convective flows, which is only valid in Knudsen diffusion regime. Therefore in experiments, the number of molecules per pulse must be chosen accordingly. New approaches for variable process conditions are highly required. Thus, a new theoretical model is developed for estimating the number of molecules per pulse to meet these requirements under any conditions and at any time. The void volume is calculated as the biggest sphere fitting between three pellets. The total number of pulsed molecules is assumed to fill the first void volume at the inlet immediately. Molecule numbers from these calculations can be understood as maximum possible molecules at any time in the reactor to be in Knudsen diffusion regime, i.e., above the Knudsen number of 2. Moreover, a new methodology for generating a full three-dimensional geometrical representation of beds is presented and used for numerical simulations to investigate spatial effects. Based on a freely available open-source game physics engine library (BULLET), beds of arbitrary-sized pellets can be generated and transformed to CFD-usable geometry. In CFD-software (ANSYS CFX registered) a transient diffusive transport equation with time-dependent inlet boundary conditions is solved. Three different pellet diameters were investigated with 1e18 molecules per pulse, which is higher than the limit from the theoretical calculation. Spatial and temporal distributions of transported species show regions inside the reactor, where non-Knudsen conditions exist. From this results, the distance from inlet can be calculated where the theoretical pressure limit (Knudsen number equals 2) is obtained, i.e., from this point to the end of the reactor Knudsen regime can be assumed. Due to linear dependency of pressure and concentration (assuming ideal

  17. An experimental and theoretical investigation of particle–wall impacts in a T-junction

    KAUST Repository

    Vigolo, D.

    2013-07-01

    Understanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar-turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow. © 2013 Cambridge University Press.

  18. An experimental and theoretical investigation of particle–wall impacts in a T-junction

    KAUST Repository

    Vigolo, D.; Griffiths, I. M.; Radl, S.; Stone, H. A.

    2013-01-01

    Understanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar-turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow. © 2013 Cambridge University Press.

  19. Theoretical analysis of effect of ocean condition on natural circulation flow

    International Nuclear Information System (INIS)

    Gong Houjun; Yang Xingtuan; Jiang Shengyao; Liu Zhiyong

    2010-01-01

    According to the simulation loop of Integrated natural circulation reactor,the mathematical model of natural circulation in non-inertial reference system is established, and the influence mechanism of ocean condition upon natural circulation is analyzed. Software is programmed to investigate the behaviors in the cases of rolling without heating power, static state with different power and rolling with heating power, and calculation results show that: the inertia force added by rolling causes the periodical fluctuating of the flow rate of channels, but it is not the direct reason of core flow fluctuation. The heave changes the driving head, and causes the same flow rate fluctuation of all channels. Inclining makes the core flow rate decrease, but the change of flow rate of different channels is different.(authors)

  20. Experimental study and theoretical modelling of two-phase flow in a converging diverging nozzle

    International Nuclear Information System (INIS)

    Selmer-Olsen, Stale

    1991-01-01

    A theoretical and experimental study of high quality two-phase flows in converging-diverging nozzles is presented. The main objectives are the prediction of critical (choked) flow rates and the evolution of characteristic parameters towards the nozzle outlet. First, a thorough analysis of available models shows the importance of a correct modelling of the mechanical and thermal interactions between the gas and liquid phases. As a second step, a purely dispersed flow model is considered. The solution algorithm which is utilized describes accurately the critical (choked) flow conditions as well as the topology of the solutions. The dispersed flow model accounts for effects on the gas flow rate of the upstream and the downstream pressures, the liquid flow rate and the nozzle geometry. The pressure profile along the nozzle and the location of the critical cross-section are also well predicted. The flow is shown to switch from critical to sub-critical when the liquid flow rate is increased, all other control parameters at the inlet and the outlet maintained. This new finding is interpreted as a result of the possible location of the critical cross-section anywhere in the diverging part of the nozzle. Moreover, the experiments show that the critical (choked) gas flow rate depends on the inlet configuration of gas/liquid. In the third step, a careful analysis of the data is used as a basis for proposing a new dispersed-annular flow model. This model accounts for the liquid flowing both as a liquid film and as entrained droplets in the core, non-developed flow is accounted for as well as flow separation in the diffuser. Finally, advanced local measuring techniques of pressure, film thickness and film velocity have been developed in the course of the work. In particular film thickness measurements allowed the development of the flow structure to be understood. (author) [fr

  1. Investigation on the Flow in a Rotor-Stator Cavity with Centripetal Through-Flow

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2017-10-01

    Full Text Available Daily and Nece distinguished four flow regimes in an enclosed rotor-stator cavity, which are dependent on the circumferential Reynolds number and dimensionless axial gap width. A diagram of the different flow regimes including the respective mean profiles for both tangential and radial velocity was developed. The coefficients for the different flow regimes have also been correlated. In centrifugal pumps and turbines, the centripetal through-flow is quite common from the outer radius of the impeller to the impeller eye, which has a strong influence on the radial pressure distribution, axial thrust and frictional torque. The influence of the centripetal through-flow on the cavity flow with different circumferential Reynolds numbers and dimensionless axial gap width is not sufficiently investigated. It is also quite important to convert the 2D Daily and Nece diagram into 3D by introducing the through-flow coefficient. In order to investigate the impact of the centripetal through-flow, a test rig is designed and built up at the University of Duisburg-Essen. The design of the test rig is described. The impact of the above mentioned parameters on the velocity profile, pressure distribution, axial thrust and frictional torque are presented and analyzed in this paper. The 3D Daily and Nece diagram introducing the through-flow coefficient is also organized in this paper.

  2. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... feasibility than the HCG-based ones. Furthermore, the concept of cavity dispersion in vertical cavities is introduced and its importance in the modal properties is numerically investigated. The dispersion curvature of a cavity mode is interpreted as the effective photon mass of the cavity mode. In a vertical...

  3. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    Science.gov (United States)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  4. A theoretical model for flow boiling CHF from short concave heaters

    International Nuclear Information System (INIS)

    Galloway, J.E.; Mudawar, I.

    1995-01-01

    Experiments were performed to enable the development of a new theoretical mode for the enhancement in CHF commonly observed with flow boiling on concave heater as compared to straight heaters. High-speed video imaging and photomicrography were employed to capture the trigger mechanism for CHF each type heater. A wavy vapor layer was observed to engulf the heater surface in each case, permitting liquid access to the surface only in regions where depressions (troughs) in the liquid vapor interface made contact with the surface. CHF in each case occurred when the pressure force exerted upon the wavy vapor-liquid inter ace in the contact region could no longer overcome the momentum of the vapor produced in these regional. Shorter interfacial wavelengths with greater curvature were measured on the curve, heater than on the straight heater, promoting a greater pressure force on the wave interface and a corresponding increase in CHF for the curved heater. A theoretics. CHF model is developed from these observations, based upon a new theory for hydrodynamic instability, along a curved interface. CHF data are predicted with good accuracy for both heaters. 23 refs., 9 figs

  5. Investigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow

    Directory of Open Access Journals (Sweden)

    Seyed mohammadjavad Zeidi

    2015-04-01

    Full Text Available Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001. Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results include the effects of contraction inside nozzle’s orifice, effect of compressibility; effect of injection pressures and several orifice entries are also simulated in this study. For considering the effect of compressibility a user defined function used in this simulation. Cavitation model which is used in this simulation is Singhal et al. cavitation model. Presto discretization method is used for Pressure equation and second upwind discretization method is used for Momentum equation. Converging Singhal et al. cavitation model is very challenging and it needs several efforts and simulations.

  6. Investigation and modelling of thermal conditions in low flow SDHW systems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, L.J.

    1999-07-01

    The purpose of this study was to characterise the thermal conditions in low flow SDHW systems. As the heat storage has proved to be the most important system component, there has been an emphasis on this component in the study. A literature survey revealed that the mantle tank heat storage type is one of the most promising storage designs and therefore only the mantle tank is investigated in this study. To optimise the design of mantle tanks and low flow SDHW systems, it was found necessary to understand how the thermal stratification is built up in the heat storage. In addition, it was necessary to model the flow and heat transfer in the tanks. Due to the complexity of the problems, CFD-models were used to take mantle tanks into calculation. Two CFD programs were used to model the mantle tank: CFX and Fluent. As the CFD-models formed the basis for the theoretical work, they were validated with experiments. In this study, both thermal measurements and experimentally visualised flow patterns were compared with CFD-predictions. The experimental flow visualisation was carried out with Particle image Velocimetry (PIV). With a transparent glass mantle tank, the structures in the mantle were visualised and compared with the CFD-predicted flow structures in the mantle. The results showed that the mantle flow was highly dominated by buoyancy and the CFD-models were able to model this flow. With a steel mantle tank, different dynamic thermal experiments were carried out in a heat storage test facility. These results were used to evaluate the CFD-predicted temperatures. Inner tank and mantle outlet temperatures were compared to the similar CFD-predictions and a good degree of similarity was found between measured and calculated temperatures. With the verified CFX models a parameter analysis was carried out. Based on this analysis, two Nusselt-Rayleigh heat transfer correlations were developed - one for the convective heat transfer in the mantle and one for the convective

  7. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Shuets, G.

    2004-01-01

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators

  8. Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)

    2004-08-01

    The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)

  9. Investigation of transition scenarios in boundary-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.

    1999-11-01

    Laminar-turbulent transition mechanisms triggered by crossflow instability in three-dimensional, accelerated boundary-layer flows are investigated using numerical methods of stability analysis. The investigations are based on the DLR swept plate experiment, where stationary and traveling crossflow modes can be selectively introduced into the flow field. Nonlinear instability analyses employing the parabolized stability equations (PSE) show that unique saturation amplitudes do neither exist for stationary crossflow vortices nor for traveling crossflow waves. This phenomenon is explained by means of a spatial bifurcation model. Using Floquet theory, temporal secondary instability analyses are then performed for the mean flow distorted by primary disturbances. In these analyses, secondary high-frequency disturbances with high growth rates are found. The location of these disturbances correlates well with regions of high shear in the primarily distorted flow field, especially on the back of the primary crossflow vortices. (orig.)

  10. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  11. New theoretical model for two-phase flow discharged from stratified two-phase region through small break

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke; Tasaka, Kanji

    1988-01-01

    A theoretical and experimental study was conducted to understand two-phase flow discharged from a stratified two-phase region through a small break. This problem is important for an analysis of a small break loss-of-coolant accident (LOCA) in a light water reactor (LWR). The present theoretical results show that a break quality is a function of h/h b , where h is the elevation difference between a bulk water level in the upstream region and break and b the suffix for entrainment initiation. This result is consistent with existing eperimental results in literature. An air-water experiment was also conducted changing a break orientation as an experimental parameter to develop and assess the model. Comparisons between the model and the experimental results show that the present model can satisfactorily predict the flow rate and the quality at the break without using any adjusting constant when liquid entrainment occurs in a stratified two-phase region. When gas entrainment occurs, the experimental data are correlated well by using a single empirical constant. (author)

  12. A non-traditional fluid problem: transition between theoretical models from Stokes’ to turbulent flow

    Science.gov (United States)

    Salomone, Horacio D.; Olivieri, Néstor A.; Véliz, Maximiliano E.; Raviola, Lisandro A.

    2018-05-01

    In the context of fluid mechanics courses, it is customary to consider the problem of a sphere falling under the action of gravity inside a viscous fluid. Under suitable assumptions, this phenomenon can be modelled using Stokes’ law and is routinely reproduced in teaching laboratories to determine terminal velocities and fluid viscosities. In many cases, however, the measured physical quantities show important deviations with respect to the predictions deduced from the simple Stokes’ model, and the causes of these apparent ‘anomalies’ (for example, whether the flow is laminar or turbulent) are seldom discussed in the classroom. On the other hand, there are various variable-mass problems that students tackle during elementary mechanics courses and which are discussed in many textbooks. In this work, we combine both kinds of problems and analyse—both theoretically and experimentally—the evolution of a system composed of a sphere pulled by a chain of variable length inside a tube filled with water. We investigate the effects of different forces acting on the system such as weight, buoyancy, viscous friction and drag force. By means of a sequence of mathematical models of increasing complexity, we obtain a progressive fit that accounts for the experimental data. The contrast between the various models exposes the strengths and weaknessess of each one. The proposed experience can be useful for integrating concepts of elementary mechanics and fluids, and is suitable as laboratory practice, stressing the importance of the experimental validation of theoretical models and showing the model-building processes in a didactic framework.

  13. Experimental investigation of flow field around the elastic flag flapping in periodic state

    Science.gov (United States)

    Jia, Yongxia; Jia, Lichao; Su, Zhuang; Yuan, Huijing

    2018-05-01

    The flapping of a flag in the wind is a classical fluid-structure problem that concerns the interaction of elastic bodies with ambient fluid. We focus on the desirable experimental results of the flow around the flapping flag. By immersing the elastic yet self-supporting heavy flag into water flow, we use particle image velocimetry (PIV) techniques to obtain the whole flow field around the midspan of the flag interacting with a fluid in periodic state. A unique PIV image processing method is used to measure near-wall flow velocities around a moving elastic flag. There exists a thin flow circulation region on the suction side of the flag in periodic state. This observation suggests that viscous flow models may be needed to improve the theoretical predictions of the flapping flag in periodic state, especially in a large amplitude.

  14. Comparative experimental and theoretical investigations of the DM neutron moisture probe

    DEFF Research Database (Denmark)

    Ølgaard, Povl Lebeck; Haahr, Vagner

    1967-01-01

    Theoretical and experimental investigations of the Danish produced DM subsurface moisture probe have been carried out at the Research Establishment Risö, and the results obtained are presented in this paper. The DM probe contains an Am-Be fast neutron source and has a glass scintillator containing...

  15. Confined granular flow in silos experimental and numerical investigations

    CERN Document Server

    Tejchman, Jacek

    2013-01-01

      During confined flow of bulk solids in silos some characteristic phenomena can be created, such as: —         sudden and significant increase of wall stresses, —         different flow patterns, —         formation and propagation of wall and interior shear zones, —         fluctuation of pressures and, —         strong autogenous dynamic effects. These phenomena have not been described or explained in detail yet. The main intention of the experimental and theoretical research presented in this book is to explain the above mentioned phenomena in granular bulk solids and to describe them with numerical FE models verified by experimental results.

  16. A theoretical and experimental investigation of the interaction between gas molecules and cryogenic surfaces

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Chiriloaie, N.

    1992-01-01

    The cryo-pumping performance of a cryo-surface subjected to the impingement of low-pressure, thermal-velocity air flow is experimentally and theoretically investigated. Our purpose is to determine the angular dependence of capture coefficients for gas molecules incident on a cryogenic surface under conditions closely approximating those prevailing in cryo-pumped high vacuum chambers. The classical model for the interaction of gas atoms and the solid surface - the 'soft-tube' model - is developed and the basic assumption are examined. Starting from this theory we have calculated the capture coefficient of the Ag - N system and these values are discussed in terms of principal parameters considered. Despite the many simplifying assumptions, this model has the important attribute that it yields closed-form expressions for the capture coefficient of gas molecules. The molecular beam technique offers a direct experimental method for determining the capture coefficient for molecules with given angles of incidence by measuring the incident and reflected molecular fluxes. An experimental setup is also designed and the method for determining these coefficients is proposed. (Author)

  17. Experimental and Theoretical Investigations of a Mechanical Lever System Driven by a DC Motor

    Science.gov (United States)

    Nana, B.; Fautso Kuiate, G.; Yamgoué, S. B.

    This paper presents theoretical and experimental results on the investigation of the dynamics of a nonlinear electromechanical system made of a lever arm actuated by a DC motor and controlled through a repulsive magnetic force. We use the method of harmonic balance to derive oscillatory solutions. Theoretical tools such as, bifurcation diagrams, Lyapunov exponents, phase portraits, are used to unveil the rich nonlinear behavior of the system including chaos and hysteresis. The experimental results are in close accordance with the theoretical predictions.

  18. NACHOS: a finite element computer program for incompressible flow problems. Part I. Theoretical background

    International Nuclear Information System (INIS)

    Gartling, D.K.

    1978-04-01

    The theoretical background for the finite element computer program, NACHOS, is presented in detail. The NACHOS code is designed for the two-dimensional analysis of viscous incompressible fluid flows, including the effects of heat transfer. A general description of the fluid/thermal boundary value problems treated by the program is described. The finite element method and the associated numerical methods used in the NACHOS code are also presented. Instructions for use of the program are documented in SAND77-1334

  19. Theoretical Valuation of Multi-Channel Cyclone to Reduce Gas Flow Dustiness in Agressive Environment

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2016-10-01

    Full Text Available Contaminated gas cleaning from finely divided solids is carried out using a new generation of multi-channel design cyclones. The application of these devices are separated and precipitated particles with a minimum diameter up to 2 micrometers, reaching up to 95% cleaning efficiency. Cyclones of such constructions are usually used under usual conditions at elevated temperature and low humidity. Under aggressive conditions, these devices can be clogged, and their recovery is not possible. Further studies are research into the application of constructive solutions to adapt the cyclone gas cleaning of the particulate matter under aggressive conditions. This theoretical evaluation has described the characteristics change of gas flow and particulate matters at different aggressive environment. Such conditions were loudly describe the gas-flow high-temperature range of 50–200 °C and gas-vapor stream, the humidity reaches 70–100%. Estimated aggressive conditions on the gas flow dynamics forces – pressure, resistance and centrifugal, and particulate mechanical – gravitational and adhesion strength. All parameters are evaluated in comparison with the values under normal conditions.

  20. Detecting Network Vulnerabilities Through Graph TheoreticalMethods

    Energy Technology Data Exchange (ETDEWEB)

    Cesarz, Patrick; Pomann, Gina-Maria; Torre, Luis de la; Villarosa, Greta; Flournoy, Tamara; Pinar, Ali; Meza Juan

    2007-09-30

    Identifying vulnerabilities in power networks is an important problem, as even a small number of vulnerable connections can cause billions of dollars in damage to a network. In this paper, we investigate a graph theoretical formulation for identifying vulnerabilities of a network. We first try to find the most critical components in a network by finding an optimal solution for each possible cutsize constraint for the relaxed version of the inhibiting bisection problem, which aims to find loosely coupled subgraphs with significant demand/supply mismatch. Then we investigate finding critical components by finding a flow assignment that minimizes the maximum among flow assignments on all edges. We also report experiments on IEEE 30, IEEE 118, and WSCC 179 benchmark power networks.

  1. Theoretical Calculations on Sediment Transport on Titan, and the Possible Production of Streamlined Forms

    Science.gov (United States)

    Burr, D. M.; Emery, J. P.; Lorenz, R. D.

    2005-01-01

    The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.

  2. Experimental and theoretical investigation of density and potential fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Electrostatic fluctuations (i.e. the magnetic field is assumed constant) are candidates for the explanation of the anomalous transport of particles and energy in both tokamaks and stellarators. While most theoretical effort has been directed to an explanation of the anomalous transport in the bulk plasma, it is now widely being realized that the anomalous radial transport in the scrape-off layer, determining the width of the power flow channel at limiter or divertor plates, may be equally important to a future reactor experiment. In the divertor tokamak ASDEX density and potential fluctuations in the scrape-off layer were investigated with high temporal and spatial resolution by Langmuir probes and an H{sub {alpha}} diagnostic. Many results of these measurements were reported and are summarized below. Several of these properties of the fluctuations have also been reported from other experiments. (author) 3 refs., 4 figs.

  3. Statistical criterion for Bubbly-slug flow transition

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, J; Elias, E [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    The investigation of flow pattern transitions is still an interesting problem in the research of multiphase Row. It has been studied theoretically, and experimental confirmation of the models has been found by many investigators. The present paper deals with a statistical approach to bubbly-slug transitions in a vertical upward two phase flow and a new transition criterion is deduced from experimental data (authors).

  4. An experimental investigation of turbulent flow heat transfer through ...

    African Journals Online (AJOL)

    An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...

  5. Numerical investigation on turbulence mixing characteristics under thermal striping flows. Investigations on fluid temperature fluctuation phenomena in air and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu

    1999-05-01

    A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)

  6. Predicting Child Abuse Potential: An Empirical Investigation of Two Theoretical Frameworks

    Science.gov (United States)

    Begle, Angela Moreland; Dumas, Jean E.; Hanson, Rochelle F.

    2010-01-01

    This study investigated two theoretical risk models predicting child maltreatment potential: (a) Belsky's (1993) developmental-ecological model and (b) the cumulative risk model in a sample of 610 caregivers (49% African American, 46% European American; 53% single) with a child between 3 and 6 years old. Results extend the literature by using a…

  7. Investigation of the Taylor vortices in electrovortex flow

    Science.gov (United States)

    Vinogradov, D. A.; Ivochkin, Yu P.; Teplyakov, I. O.

    2017-10-01

    The structure of the electrovortex flow appearing when the electric current passing through the liquid metal interacts with own and external magnetic fields was investigated numerically. It was shown that axial external magnetic field leads to the rotation of the liquid and generates secondary flow similar to Taylor vortex. Calculations were carried out for various ratios of electrode sizes.

  8. Numerical investigation of cavitation flow in journal bearing geometry

    Science.gov (United States)

    Riedel, M.; Schmidt, M.; Stücke, P.

    2013-04-01

    The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD) are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.

  9. Numerical investigation of cavitation flow in journal bearing geometry

    Directory of Open Access Journals (Sweden)

    Stücke P.

    2013-04-01

    Full Text Available The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.

  10. Theoretical and experimental investigations of the thermo-hydraulics of deformed wire-wrapped bundles in nominal flow conditions

    International Nuclear Information System (INIS)

    Leteinturier, D.; Cartier, L.

    1979-01-01

    Theoretical and experimental studies undertaken in CEN Cadarache on deformed subassemblies are presented. After the mainlines description of this program first temperature distribution results are given on an in-pile experiment in RAPSODIE (61 pins). Comparison with calculation is made

  11. Investigating Flow Features Near Abrupt Topography in the Mariana Basin

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigating Flow Features Near Abrupt Topography in...waves generated by flow over topography and mesoscale eddies generated by flow past islands. Having identified the prime locations in the region for such

  12. Gas-liquid flow filed in agitated vessels

    International Nuclear Information System (INIS)

    Hormazi, F.; Alaie, M.; Dabir, B.; Ashjaie, M.

    2001-01-01

    Agitated vessels in form of sti reed tank reactors and mixed ferment ors are being used in large numbers of industry. It is more important to develop good, and theoretically sound models for scaling up and design of agitated vessels. In this article, two phase flow (gas-liquid) in a agitated vessel has been investigated numerically. A two-dimensional computational fluid dynamics model, is used to predict the gas-liquid flow. The effects of gas phase, varying gas flow rates and variation of bubbles shape on flow filed of liquid phase are investigated. The numerical results are verified against the experimental data

  13. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo

    2016-01-01

    radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis......A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo...

  14. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  15. Multiphase flow in wells and pipelines

    International Nuclear Information System (INIS)

    Sharma, M.P.; Rohatgi, U.S.

    1992-01-01

    This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor

  16. Experimental investigations of two-phase flow measurement using ultrasonic sensors

    OpenAIRE

    Abbagoni, Baba Musa

    2016-01-01

    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measur...

  17. Theoretical and experimental investigations of CHF in round tubes and rod bundles

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun

    1994-02-01

    A knowledge of the condition leading to critical heat flux (CHF) is of great importance in the design of nuclear reactors. Although many efforts have been devoted to the subject of CHF during the last few decades, information on the burnout phenomenon at low velocity condition is very limited. Furthermore, in most cases, the applicable range of a bundle CHF correlation is restricted to a narrow region mainly due to the limitation of the CHF data base used in the correlation development. In view of these points, theoretical and experimental investigations are performed in this study for round tubes and rod bundles. A CHF prediction model for low velocity conditions is proposed throughout the assessment of CHF data from various sources with mass velocities less than 500 kg/m 2 s. The CHF data base is classified into seven groups with respect to the flow pattern characteristics at CHF conditions. CHF data for each group is analyzed by several CHF prediction models including; the flooding correlations, the flow regime transition criteria, the complete evaporation model, and the empirical correlations. At zero inlet flow or extremely low mass velocity conditions, the flooding correlation can be used for predicting CHF employing appropriate constant. In the slug or churn-turbulent flow regime, CHF seems to occur at the annular flow transition conditions. When CHF occurs at the annular flow region, the empirical correlation such as AECL CHF lookup table gives accurate predictions except for the ranges where density-wave instability is expected. A phenomenological model for the prediction of dryout locations under flooding-limited CHF condition is developed based on the liquid film dryout model and the two-phase mixture level theory. The mass and energy conservation equations are applicable to the liquid film considering no entrainment of liquid droplets from the film region. The variation of the two-phase mixture level after the onset of flooding is calculated based on

  18. Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Zhao, Xudong; Li, Peng; Zhang, Xingxing; Ali, Samira; Tan, Junyi

    2015-01-01

    Aim of the paper is to present a theoretical investigation into the energy performance of a novel PV/T module that employs the MPCM (Micro-encapsulated Phase Change Material) slurry as the working fluid. This involved (1) development of a dedicated mathematical model and computer program; (2) validation of the model by using the published data; (3) prediction of the energy performance of the MPCM (Microencapsulated Phase Change Material) slurry based PV/T module; and (4) investigation of the impacts of the slurry flow state, concentration ratio, Reynolds number and slurry serpentine size onto the energy performance of the PV/T module. It was found that the established model, based on the Hottel–Whillier assumption, is able to predict the energy performance of the MPCM slurry based PV/T system at a very good accuracy, with 0.3–0.4% difference compared to a validated model. Analyses of the simulation results indicated that laminar flow is not a favorite flow state in terms of the energy efficiency of the PV/T module. Instead, turbulent flow is a desired flow state that has potential to enhance the energy performance of PV/T module. Under the turbulent flow condition, increasing the slurry concentration ratio led to the reduced PV cells' temperature and increased thermal, electrical and overall efficiency of the PV/T module, as well as increased flow resistance. As a result, the net efficiency of the PV/T module reached the peak level at the concentration ratio of 5% at a specified Reynolds number of 3,350. Remaining all other parameters fixed, increasing the diameter of the serpentine piping led to the increased slurry mass flow rate, decreased PV cells' temperature and consequently, increased thermal, electrical, overall and net efficiencies of the PV/T module. In overall, the MPCM slurry based PV/T module is a new, highly efficient solar thermal and power configuration, which has potential to help reduce fossil fuel consumption and carbon emission to

  19. Theoretical investigation of the extinction coefficient of magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fang Xiaopeng; Xuan Yimin, E-mail: ymxuan@mail.njust.edu.cn; Li Qiang [Nanjing University of Science and Technology, School of Energy and Power Engineering (China)

    2013-05-15

    A new theoretical approach for calculating the extinction coefficient of magnetic fluid is proposed, which is based on molecular dynamics (MD) simulation and T-matrix method. By means of this approach, the influence of particle diameter, particle volume fraction, and external magnetic filed on the extinction coefficient of magnetic fluid is investigated. The results show that the extinction coefficient of the magnetic fluid linearly increases with increase in the particle volume fraction. For a given particle volume fraction, the extinction coefficient increases with increase in the particle diameter which varies from 5 to 20 nm. When a uniform external magnetic filed is applied to the magnetic fluid, the extinction coefficient of the magnetic fluid presents an anisotropic feature. These results agree well with the reported experimental results. The proposed approach is applicable to investigating the optical properties of magnetic fluids.

  20. Characteristics of a micro-fin evaporator: Theoretical analysis and experimental verification

    OpenAIRE

    Zheng Hui-Fan; Fan Xiao-Wei; Wang Fang; Liang Yao-Hua

    2013-01-01

    A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good a...

  1. MP Salsa: a finite element computer program for reacting flow problems. Part 1--theoretical development

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.

    1996-05-01

    The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.

  2. Experimental and Theoretical Investigation of Subnanosecond Pulse Propagation in Graded Index Fibers

    DEFF Research Database (Denmark)

    Nicolaisen, Ejner; Hansen, J. J. Ramskov

    1977-01-01

    The propagation in a fibre which does not exhibit any mode coupling is investigated by varying the launching conditions. It is shown that for this fibre there exists a trade-off between dispersion and power coupling efficiency. The measurements are compared to theoretical calculations taking leak...

  3. Theoretical Investigations of Novel Materials for Nitrogen Fixation

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden

    This thesis is dedicated to the investigation and design of new catalyst materials for electrochemical ammonia production and especially the properties of the under-coordinated reaction sites on nanoparticles has been studied in great detail. Additionally, a universal transition state relation...... choice of reference systems the transition state scaling relations form a universality class that can be approximated with one single linear relation describing the entire range of reactions over all types of surfaces and nanoclusters. Theoretical studies of producing ammonia electrochemically at ambient...... hydrogen and nitrogen. These scaling relations and free energy corrections are used to establish volcanoes describing the onset potential for electrochemical ammonia production and hence describe the potential determining steps for the electrochemical ammonia production. The competing hydrogen evolution...

  4. Experimental and theoretical investigation of droplet dispersion in venturi scrubbers with axial liquid injection

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarian, N.; Talaei, A.; Karimikhosroabadi, M. [Islamic Azad University, Shahreza Branch, Shahreza (Iran); Sadeghi, F. [Chemical Engineering Department, University of Isfahan, Isfahan (Iran); Talaie, M.R.

    2009-05-15

    Droplet dispersion in a Venturi scrubber with axial liquid injection was investigated both experimentally and theoretically. The main objective of this study was to develop a mathematical model to predict droplet dispersion in a Venturi scrubber with axial liquid injection. The effects of the Peclet number and droplet size distribution on droplet dispersion were studied using the developed model. Sampling of the droplets was carried out, isokinetically, in 16 positions at the end of the throat section. The experimental data were used to find the parameters of the developed model, such as the Peclet number. From the results of this study, it was found that the Peclet number was not constant across the cross section of the scrubber channel. In order to achieve a better agreement between the results of the model and the experimental data, it was required to consider Peclet number variations across the Venturi channel. It was also revealed that the parameter representing the width of the Rosin-Rammler distribution of droplet size could not be considered constant and it was influenced significantly by the operating parameters such as liquid flow rate and gas velocity. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Science.gov (United States)

    Azad, E.

    2011-12-01

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.

  6. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Azad, E. [Iranian Research Organization for Science and Technology (IROST), Advanced Materials and Renewable Energy Department, Tehran (Iran, Islamic Republic of)

    2011-12-15

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold. (orig.)

  7. Overview of edge turbulence and zonal flow studies on TEXTOR

    International Nuclear Information System (INIS)

    Xu, Y.; Kraemer-Flecken, A.; Reiser, D.

    2008-01-01

    In the TEXTOR tokamak, the edge turbulence properties and turbulence-associated zonal flows have been systematically investigated both experimentally and theoretically. The experimental results include the investigation of self-organized criticality (SOC) behavior, the intermittent blob transport and the geodesic acoustic mode (GAM) zonal flows. During the Dynamic Ergodic Divertor (DED) operation in TEXTOR, the impact of an ergodized plasma boundary on edge turbulence, turbulent transport and the fluctuation propagation has also been studied in detail. The results show substantial influence by the DED on edge turbulence. The theoretical simulations for TEXTOR parameters show characteristic features of the GAM flows and strong reduction of the blob transport by the DED at the plasma periphery. Moreover, the modelling reveals the importance of the Reynolds stress in driving mean (or zonal) flows at the plasma edge in the ohmic discharge phase in TEXTOR. (author)

  8. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    Science.gov (United States)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed

  9. Experimental and theoretical investigations of shock-induced flow of reactive porous media

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Graham, R.A.; Anderson, M.U. [Sandia National Labs., Albuquerque, NM (United States); Sheffield, S.A.; Gustavsen, R.L. [Los Alamos National Lab., NM (United States)

    1996-11-01

    In this work, the microscale processes of consolidation, deformation and reaction features of shocked porous materials are studied. Time- resolve particle velocities and stress fields associated with dispersive compaction waves are measured in gas-gun experiments. In these tests, a thin porous layer of HMX is shock-loaded at varied levels. At high impact, significant reaction is triggered by the rapid material distortion during compaction. In parallel modeling studies, continuum mixture theory is applied to describe the behavior of averaged wave-fields in heterogeneous media. One-dimensional simulations of gas-gun experiments demonstrate that the wave features and interactions with viscoelastic materials in the gauge package are well described by mixture theory, including reflected wave behavior and conditions where significant reaction is initiated. Numerical simulations of impact on a collection of discrete HMX `crystals` are also presented using shock physics analysis. Three-dimensional simulations indicate that rapid distortion occurs at material contact points; the nature of the dispersive fields includes large amplitude fluctuations of stress with wavelengths of several particle diameters. Localization of energy causes `hot-spots` due to shock focusing and plastic work as material flows into interstitial regions. These numerical experiments demonstrate that `hot-spots` are strongly influenced by multiple crystal interactions. This mesoscale study provides new insights into micromechanical behavior of heterogeneous energetic materials.

  10. Investigation of fluid flow in various geometries related to nuclear reactor using PIV system

    International Nuclear Information System (INIS)

    Kansal, A.K.; Maheshwari, N.K.; Singh, R.K.; Vijayan, P.K.; Saha, D.; Singh, R.K.; Joshi, V.M.

    2011-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive technique for simultaneously measuring the velocities at many points in a fluid flow. The PIV system used is comprised of Nd:YAG laser source, CCD (Charged Coupled Device) camera, timing controller (to control the laser and camera) and software used for analyzing the flow velocities. Several case studies related to nuclear reactor were performed with the PIV system. Some of the cases like flow in circular tube, submerged jet, natural convection in a water pool, flow field of moderator inlet diffuser of 500 MWe Pressurised Heavy Water Reactor (PHWR) and fluidic flow control device (FFCD) used in advanced accumulator of Emergency Core Cooling System (ECCS) have been studied using PIV system. Theoretical studies have been performed and comparisons with PIV results are also given in the present studies. (author)

  11. Contribution to the study of recirculating flows

    International Nuclear Information System (INIS)

    Grand, Dominique

    1975-01-01

    The technology of the integrated primary circuit of French LMFBR type reactors involves many difficulties relating to heat transfer and hydraulics of the sodium masses inside the reactor. The work reported was a basic research supporting said reactor type development. Recirculating flows were studied inside a rectangular cavity, in the presence of body forces. Results given were obtained from numerical simulation, experimental investigation and a formal theoretical analysis. Solutions were obtained using the numerical integration of the conservation equation for a planar isothermal laminar flow driven by a mobile wall. The turbulent flow was experimentally investigated, the fluid being then driven through a mixing layer in common with a channel flow. Local velocity measurements in isothermal flow were effected using a laser-anemometer. In the occurrence of heat transfer, the temperature field only was scanned; complementary data were also obtained from color Schlieren vizualisation. A theoretical study of the flow was done at high Reynolds number. The flow inside the cavity was then separated in two parts: an external part (the non-viscous core) located at the center of the cavity and an internal part, the shear region, about the walls. An inclusive solution connecting both parts was developed in the framework of the laminar flow; results obtained are in good agreement with the numerical data. (author) [fr

  12. On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: physical perspectives and theoretical analysis

    Science.gov (United States)

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Wu, Qisheng

    2018-05-01

    Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a

  13. HYTRAN: hydraulic transient code for investigating channel flow stability

    International Nuclear Information System (INIS)

    Kao, H.S.; Cardwell, W.R.; Morgan, C.D.

    1976-01-01

    HYTRAN is an analytical program used to investigate the possibility of hydraulic oscillations occurring in a reactor flow channel. The single channel studied is ordinarily the hot channel in the reactor core, which is parallel to other channels and is assumed to share a constant pressure drop with other channels. Since the channel of highest thermal state is studied, provision is made for two-phase flow that can cause a flow instability in the channel. HYTRAN uses the CHATA(1) program to establish a steady-state condition. A heat flux perturbation is then imposed on the channel, and the flow transient is calculated as a function of time

  14. Experimental Investigation of a Helicopter Rotor Hub Flow

    Science.gov (United States)

    Reich, David

    The rotor hub system is by far the largest contributor to helicopter parasite drag and a barrier to increasing helicopter forward-flight speed and range. Additionally, the hub sheds undesirable vibration- and instability-inducing unsteady flow over the empennage. The challenges associated with rotor hub flows are discussed, including bluff body drag, interactional aerodynamics, and the effect of the turbulent hub wake on the helicopter empennage. This study was conducted in three phases to quantify model-scale rotor hub flows in water tunnels at The Pennsylvania State University Applied research lab. The first phase investigated scaling and component interaction effects on a 1:17 scale rotor hub model in the 12-inch diameter water tunnel. Effects of Reynolds number, advance ratio, and hub geometry configuration on the drag and wake shed from the rotor hub were quantified using load cell measurements and particle-image velocimetry (PIV). The second phase focused on flow visualization and measurement on a rotor hub and rotor hub/pylon geometry in the 12-inch diameter water tunnel. Stereo PIV was conducted in a cross plane downstream of the hub and flow visualization was conducted using oil paint and fluorescent dye. The third phase concentrated on high accuracy load measurement and prediction up to full-scale Reynolds number on a 1:4.25 scale model in the 48-inch diameter water tunnel. Measurements include 6 degree of freedom loads on the hub and two-component laser-Doppler velocimetry in the wake. Finally, results and conclusions are discussed, followed by recommendations for future investigations.

  15. Experimental and numerical investigation on two-phase flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ruspini, Leonardo Carlos

    2013-03-01

    Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non

  16. The 1989 progress report: theoretical Physics

    International Nuclear Information System (INIS)

    Laval, G.

    1989-01-01

    The 1989 progress report of the laboratory of theoretical Physics of the Polytechnic School (France) is presented. The investigations reported concern the following subjects: the transport of a passive vector by a flow, the conformal field theories, the dynamics of wetting, the electromagnetic properties of composite materials, the neutrino oscillations, the heavy ion collision phenomenology, the laser-plasma interaction, the construction of a code for simulating the evolution of magnetohydrodynamic instabilities in plasmas. The published papers, the conferences and the Laboratory staff are listed [fr

  17. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    Science.gov (United States)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  18. Theoretical and numerical studies of transonic flow of moist air around a thin airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Chang [School of Mechanical Engineering, Andong National University, Kyongbuk (Korea); Rusak, Zvi [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2002-07-01

    Numerical studies of a two-dimensional and steady transonic flow of moist air around a thin airfoil with condensation are presented. The computations are guided by a recent transonic small-disturbance (TSD) theory of Rusak and Lee (2000) on this topic. The asymptotic model provides a simplified framework to investigate the changes in the flow field caused by the heat addition from a nonequilibrium process of condensation of water vapor in the air by homogeneous nucleation. An iterative method which is based on a type-sensitive difference scheme is applied to solve the governing equations. The results demonstrate the similarity rules for transonic flow of moist air and the effects of energy supply by condensation on the flow behavior. They provide a method to formulate various cases with different flow properties that have a sufficiently close behavior and that can be used in future computations, experiments, and design of flow systems operating with moist air. Also, the computations show that the TSD solutions of moist air flows represent the essence of the flow character computed from the inviscid fluid flow equations. (orig.)

  19. Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-12-05

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  20. Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation

    KAUST Repository

    Bouchaala, Adam M.; Nayfeh, Ali H.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  1. Experimental investigation two phase flow in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mat, M. D.; Kaplan, Y.; Celik, S.; Oeztural, A.

    2007-01-01

    Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)

  2. Theoretical Investigation into Spectral Coexistence of CDMA and TDMA Systems

    Directory of Open Access Journals (Sweden)

    A.M. Abbosh

    2008-12-01

    Full Text Available The scarcity of available radio spectrum presently limits the extension of modern multimedia systems. This paper presents a theoretical investigation into the possibility of using a frequency overlay of a narrowband Code Division Multiple Access (CDMA System and a Time Division Multiple Access (TDMA System to provide a greater spectral efficiency. This paper shows that under certain conditions the two systems can operate in the same frequency band and in the same area with a considerable improvement in the overall capacity of the whole system.

  3. Experimental investigation of the mutual interference flow of two circular cylinders by flow visualization

    Science.gov (United States)

    Yokoi, Yoshifumi; Vitkovičová, Rut

    In order to understand the aspect of the mutual interference flow from two circular cylinders, the visual observation experiment was performed by use a water flow apparatus. The purpose of this study is accumulation of the basic image data for comparing with numerical computation or previous experimental results. In this report, the intervals of two circular cylinders were varied, the visualization experiment was performed, and the vortex shedding characteristics and the flow pattern in each case were investigated. The cylinder setting conditions were seven kinds (the position of the rear-side circular cylinder is changed). The cylinder diameter ratios were four kinds (D/d=1.0, 1.67, 2.5 and 5.0). The variation of Reynolds number was three kinds (Re=548.7, 1200 and 2500). The dye oozing streak method was used in this visualization experiment. Although the previous PIV experimental result and present result obtained the same flow feature, the aspect of an interference flow became clear by changing the color of tracer ink.

  4. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    Science.gov (United States)

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  5. A high-pressure plug flow reactor for combustion chemistry investigations

    Science.gov (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.

    2017-10-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  6. A high-pressure plug flow reactor for combustion chemistry investigations

    International Nuclear Information System (INIS)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J

    2017-01-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations. (paper)

  7. Theoretical Investigation of CO{sub 2} Adsorption on Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kunjoon; Kim, Seungjoon [Hannam Univ., Daejeon (Korea, Republic of)

    2013-10-15

    The adsorption of carbon dioxide on graphene sheets was theoretically investigated using density functional theory (DFT) and MP{sub 2} calculations. Geometric parameters and adsorption energies were computed at various levels of theory. The CO{sub 2} chemisorption energies on graphene-C{sub 40} assuming high pressure are predicted to be 71.2-72.1 kcal/mol for the lactone systems depending on various C-O orientations at the UCAM-B3LYP level of theory. Physisorption energies of CO{sub 2} on graphene were predicted to be 2.1 and 3.3 kcal/mol, respectively, at the single-point UMP2/6-31G{sup **} level of theory for perpendicular and parallel orientations.

  8. A game theoretic investigation of deception in network security

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Thomas E.; Grosu, Daniel

    2010-12-03

    We perform a game theoretic investigation of the effects of deception on the interactions between an attacker and a defender of a computer network. The defender can employ camouflage by either disguising a normal system as a honeypot or by disguising a honeypot as a normal system. We model the interactions between defender and attacker using a signaling game, a non-cooperative two player dynamic game of incomplete information. For this model, we determine which strategies admit perfect Bayesian equilibria. These equilibria are refined Nash equilibria in which neither the defender nor the attacker will unilaterally choose to deviate from their strategies. Finally, we discuss the benefits of employing deceptive equilibrium strategies in the defense of a computer network.

  9. Quantitative investigation of the transition process in Taylor-Couette flow

    International Nuclear Information System (INIS)

    Tu, Xin Cheng; Kim, Hyoung Bum Kim; Liu, Dong

    2013-01-01

    The transition process from circular Couette flow to Taylor vortex flow regime was experimentally investigated by measuring the instantaneous velocity vector fields at the annular gap flow region between two concentric cylinders. The proper orthogonal decomposition method, vorticity calculation, and frequency analysis were applied in order to analyze the instantaneous velocity fields to identify the flow characteristics during the transition process. From the results, the kinetic energy and corresponding reconstructed velocity fields were able to detect the onset of the transition process and the alternation of the flow structure. The intermittency and oscillation of the vortex flows during the transition process were also revealed from the analysis of the instantaneous velocity fields. The results can be a measure of identifying the critical Reynolds number of the Taylor-Couette flow from a velocity measurement method.

  10. The influence of flow redistribution on working rat muscle oxygenation.

    NARCIS (Netherlands)

    Hoofd, L.J.C.; Degens, H.

    2009-01-01

    We applied a theoretical model of muscle tissue O2 transport to investigate the effects of flow redistribution on rat soleus muscle oxygenation. The situation chosen was the anaerobic threshold where redistribution of flow is expected to have the largest impact. In the basic situation all

  11. Theoretical and experimental investigation of the destruction of graphites in a flow of dissociated air

    Science.gov (United States)

    Bovina, T. A.; Zviagin, Y. V.; Markelov, N. V.; Chudetskiy, Y. V.

    1986-01-01

    A method is presented for calculating the heating and erosion of blunt bodies made of graphite in a high-enthalpy flow of dissociated air, assuming chemical equilibrium on the surface and taking account of the thermal effects of combustion and sublimation of graphite. The analysis involves the use of a finite difference scheme to solve an equation of unsteady heat conduction. Attention is given to the equilibrium vaporization of C, C2 and C3 molecules. The calculations agree well with experimental data for a wide range of temperatures and stagnation pressures.

  12. Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls

    Science.gov (United States)

    Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew

    2017-11-01

    The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.

  13. Numerical Investigation of the Effect of Bottom Shape on the Flow Field and Particle Suspension in a DTB Crystallizer

    Directory of Open Access Journals (Sweden)

    Hao Pan

    2016-01-01

    Full Text Available The influence of the bottom shape on the flow field distribution and particle suspension in a DTB crystallizer was investigated by Computational Fluid Dynamics (CFD coupled with Two-Fluid Model (Eulerian model. Volume fractions of three sections were monitored on time, and effect on particle suspension could be obtained by analyzing the variation tendency of volume fraction. The results showed that the protruding part of a W type bottom could make the eddies smaller, leading to the increase of velocity in the vortex. Modulating the detailed structure of the W type bottom to make the bottom surface conform to the streamlines can reduce the loss of the kinetic energy of the flow fluid and obtain a larger flow velocity, which made it possible for the particles in the bottom to reach a better suspension state. Suitable shape parameters were also obtained; the concave and protruding surface diameter are 0.32 and 0.373 times of the cylindrical shell diameter, respectively. It is helpful to provide a theoretical guidance for optimization of DTB crystallizer.

  14. Transient thermal hydraulic analysis of the IAEA 10 MW MTR reactor during Loss of Flow Accident to investigate the flow inversion

    International Nuclear Information System (INIS)

    AL-Yahia, Omar S.; Albati, Mohammad A.; Park, Jonghark; Chae, Heetaek; Jo, Daeseong

    2013-01-01

    Highlights: • Transient analyses of a slow and fast LOFA were investigated. • A reactor kinetic and thermal hydraulic coupled model was developed. • Based on force balance, the flow rate during flow inversion was determined. • Flow inversion in a hot channel occurred earlier than in an average channel. • Two temperature peaks were observed during both slow and fast LOFA. - Abstract: Transient analyses of the IAEA 10 MW MTR reactor are investigated during a fast and slow Loss of Flow Accident (LOFA) with a neutron kinetic and thermal hydraulic coupling model. A spatial-dependent thermal hydraulic technique is adopted for analyzing the local thermal hydraulic parameters and hotspot location during a flow inversion. The flow rate through the channel is determined in terms of a balance between driving and preventing forces. Friction and buoyancy forces act as resistance of the flow before a flow inversion while buoyancy force becomes the driving force after a flow inversion. By taking into account the buoyancy effect to determine the flow rate, the difference in the flow inversion time between hot and average channels is investigated: a flow inversion occurs earlier in the hot channel than in an average channel. Furthermore, the movement of the hotspot location before and after a flow inversion is investigated for a slow and fast LOFA. During a flow inversion, two temperature peaks are observed: (1) the first temperature peak is at the initiation of the LOFA, and (2) the second temperature peak is when a flow inversion occurs. The maximum temperature of the cladding is found at the second temperature peak for both LOFA analyses, and is lower than the saturation temperature

  15. Theoretical investigation of radical species formed from L-α-alanine under gamma-irradiation

    International Nuclear Information System (INIS)

    Simion, C.

    2008-01-01

    Gamma-irradiated L-α-alanine used in EPR-coupled dosimetry has a complex EPR spectrum at room temperature. Changing the temperature or other conditions of the irradiated samples leads to varied EPR spectrum, i.e., some components disappear and/or new ones are formed. We used both molecular mechanics (MM+) and semiempirical (AM1) methods to perform a theoretical investigation of the seven radical species that have been experimentally detected. We established their order of priority in the given simulation conditions (at 0 K, in vacuo). The formation stages advanced for these long-lived radical species were characterized by a theoretical determination of the reaction enthalpies. (author)

  16. Numerical investigation of flow instability in parallel channels with supercritical water

    International Nuclear Information System (INIS)

    Shitsi, Edward; Debrah, Seth Kofi; Agbodemegbe, Vincent Yao; Ampomah-Amoako, Emmanuel

    2017-01-01

    Highlights: •Supercritical flow instability in parallel channels is investigated. •Flow dynamics and heat transfer characteristics are analyzed. •Mass flow rate, pressure, heating power, and axial power shape have significant effects on flow instability. •Numerical results are validated with experimental results. -- Abstract: SCWR is one of the selected Gen IV reactors purposely for electricity generation in the near future. It is a promising technology with higher efficiency compared to current LWRs but without the challenges of heat transfer and its associated flow instability. Supercritical flow instability is mainly caused by sharp change in the coolant properties around the pseudo-critical point of the working fluid and research into this phenomenon is needed to address concerns of flow instability at supercritical pressures. Flow instability in parallel channels at supercritical pressures is investigated in this paper using a three dimensional (3D) numerical tool (STAR-CCM+). The dynamics characteristics such as amplitude and period of out-of-phase inlet mass flow oscillation at the heated channel inlet, and heat transfer characteristic such as maximum outlet temperature of the heated channel outlet temperature oscillation are discussed. Influences of system parameters such as axial power shape, pressure, mass flow rate, and gravity are discussed based on the obtained mass flow and temperature oscillations. The results show that the system parameters have significant effect on the amplitude of the mass flow oscillation and maximum temperature of the heated outlet temperature oscillation but have little effect on the period of the mass flow oscillation. The amplitude of mass flow oscillation and maximum temperature of the heated channel outlet temperature oscillation increase with heating power. The numerical results when compared to experiment data show that the 3D numerical tool (STAR-CCM+) could capture dynamics and heat transfer characteristics of

  17. An experimental and theoretical analysis of void fraction dynamics in a boiling channel

    International Nuclear Information System (INIS)

    Romberg, T.M.

    1977-01-01

    This paper describes an experimental and theoretical investigation of the void fraction dynamics at the exit of a test boiling channel which is operated near the 'instability threshold power' (the power level at which coolant flow instabilities occur). Dynamic measurements of the perturbations in channel inlet flow-rate, power input and exit void fraction are analysed using multivariate spectral analysis. The resulting experimental cross-spectral density functions between flow-rate/exit void fraction and power input/exit void fraction agree favourably with those calculated by a linearised hydrodynamic model in the frequency domain. (Author)

  18. Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation

    KAUST Repository

    Bouchaala, Adam M.; Nayfeh, Ali H.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam

  19. Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at off-design conditions

    International Nuclear Information System (INIS)

    Zhao, B J; Chen, H L; Hou, D H; Huang, Z F

    2012-01-01

    The solid-liquid two-phase flow fields in the non-clogging centrifugal pump with a double-channel impeller have been investigated numerically for the design condition and also off-design conditions, in order to study the solid-liquid two-phase flow pattern and non-clogging mechanism in non-clogging centrifugal pumps. The main conclusions include: The sand volume fraction distribution is extremely inhomogeneous in the whole flow channel of the pump at off-design conditions. In the impeller, particles mainly flow along the pressure surface and hub; In the volute, particles mainly accumulate in the region near to the exit of volute, the largest sand volume fraction is observed at the tongue, and a large number of particles collide with volute wall and exit the volute after circling around the volute for several times. When the particle diameter increases, particles tend to accumulate on the pressure side of the impeller, and more particles crash with the pressure side of the blade. And larger sand volume fraction gratitude is also observed in the whole flow channel of the pump. With the decrease of the inlet sand volume fraction, particles tend to accumulate on the suction side of the blade. Compared with the particle diameter, the inlet sand volume fraction has less influence on the sand volume fraction gratitude in the whole channel of the pump. At the large flow rate, the minimum and maximum sand volume fraction in the whole flow channel of the model pump tends to be smaller than that at the small flow rate. Thus, it is concluded that the water transportation capacity increases with the flow rate. This research will strengthen people's understanding of the multiphase flow pattern in non-clogging centrifugal pumps, thus provides a theoretical basis for the optimal design of non-clogging centrifugal pumps.

  20. Theoretical investigation of the secondary ionization in krypton and xenon

    International Nuclear Information System (INIS)

    Saffo, M.E.

    1986-01-01

    A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs

  1. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad

    2016-06-16

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever beams forming the two sides of a capacitor. The experimental and theoretical analysis of the coupled system is carried out and compared against the results of beams actuated with fixed electrodes individually. The pull-in characteristics of the electrostatically coupled beams are studied, including the pull-in time. The dynamics of the coupled dual beams are explored via frequency sweeps around the neighborhood of the natural frequencies of the system for different input voltages. Good agreement is reported among the simulation results and the experimental data. The results show considerable drop in the pull-in values as compared to single microbeam resonators. The dynamics of the coupled beam resonators are demonstrated as a way to increase the bandwidth of the resonator near primary resonance as well as a way to introduce increased frequency shift, which can be promising for resonant sensing applications. Moreover the dynamic pull-in characteristics are also studied and proposed as a way to sense the shift in resonance frequency.

  2. Theoretical and experimental investigation of shock wave stressing of metal powders by an explosion

    Directory of Open Access Journals (Sweden)

    Lukyanov Ya.L.

    2011-01-01

    Full Text Available Joint theoretical and experimental investigations have allowed to realize an approach with use of mathematical and physical modeling of processes of a shock wave loading of powder materials. Hugoniot adiabats of the investigated powder have been measured with a noncontact electromagnetic method. The mathematical model of elastic-plastic deformation of the powder media used in the investigation has been validated. Numerical simulation of shock wave propagation and experimental assembly deformation has been performed.

  3. INVESTIGATION RESULTS PERTAINING TO DETERMINATION OF REVERSE FLOW PRESSURE ON TREATED FLAT SURFACE

    Directory of Open Access Journals (Sweden)

    A. N. Zhuk

    2018-01-01

    Full Text Available The executed investigations have shown that it is possible to prepare sheet-like material for laser cutting economically viable and with small amount of power expenditure while using reverse jet cleaning for surface treatment. As compared to conventional jet cleaning technologies efficiency of the reverse jet cleaning is attributed to significant pressure increase (by 25–50 % when the jet is interacting with the treated surface. The paper proposes a mathematical model on the basis of approximate energy method (upper-bound method and the model is used for calculation of fracture pressure due to action of the reverse jet on the treated surface which consists of a corrosion deposit layer. A variational problem was solved within a framework of the developed model and the problem solution has made it possible to obtain a theoretical dependence for calculation of minimum fracture pressure value pmin in the point reverse jet impact with a barrier oretical dependence and it has taken into account yielding point of the deformed material ss, density of fractured material med material r, jet velocity uстр and parameter of reverse flowing – jet reduction ratio l. Comparison theoretical data and experimental ones (experimental data have been obtained while using a differential pressure transducer ЭДП-30 and a spring dynamometer with measuring limits 25 and 80 MPa, respectively has shown difference by 4–15 %. Determined insignificant difference between a theory and an experiment demonstrates that the obtained theoretical dependence is considered as a quite correct one and it can be used in engineering practice for prediction of power and kinematics parameters which are necessary for selection of the required pump equipment designed for realization of reverse-jet cleaning process.

  4. Theoretical and experimental investigations of frustrated pyrochlore magnets

    International Nuclear Information System (INIS)

    Champion, John Dickon Mathison

    2001-01-01

    This thesis describes the investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Monte Carlo simulations and analytical calculations have been performed on a pyrochlore ferromagnet with local (111) easy-axis anisotropy related to the problem of 'spin ice'. The anisotropy-temperature-magnetic field phase diagram was determined. It contained a tricritical point as well as features related to some real ferroelectrics. A pyrochlore antiferromagnet with local (111) easy-plane anisotropy was studied by Monte Carlo simulation. A general expression for its degenerate ground states was discovered and normal- modes out of the ground states were calculated. Both systems are frustrated yet have a long-range ordered state at low temperature. The degeneracy lifting observed is discussed as well as the reasons for its presence. The rare-earth titanate series Ln 2 Ti 2 O 7 (Ln = rare earth), crystallizes in the Fd3-barm space group, with the magnetic ions situated on the 16c sites which constitute the pyrochlore lattice. Crystal-field effects are known to play a significant role in the frustration observed in these compounds. Powder neutron diffraction was performed on gadolinium and erbium titanate. Both systems are frustrated antiferromagnets yet show long-range magnetic order at ∼ 1 K and ∼ 1.2 K respectively. The magnetic structures of both these compounds have been determined by powder neutron diffraction techniques and related to other theoretical results as well as the theoretical results of the author. Further neutron scattering experiments on the 'spin ice' materials Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 are also described. (author)

  5. Experimental investigation of the mutual interference flow of two circular cylinders by flow visualization

    Directory of Open Access Journals (Sweden)

    Yokoi Yoshifumi

    2017-01-01

    Full Text Available In order to understand the aspect of the mutual interference flow from two circular cylinders, the visual observation experiment was performed by use a water flow apparatus. The purpose of this study is accumulation of the basic image data for comparing with numerical computation or previous experimental results. In this report, the intervals of two circular cylinders were varied, the visualization experiment was performed, and the vortex shedding characteristics and the flow pattern in each case were investigated. The cylinder setting conditions were seven kinds (the position of the rear-side circular cylinder is changed. The cylinder diameter ratios were four kinds (D/d=1.0, 1.67, 2.5 and 5.0. The variation of Reynolds number was three kinds (Re=548.7, 1200 and 2500. The dye oozing streak method was used in this visualization experiment. Although the previous PIV experimental result and present result obtained the same flow feature, the aspect of an interference flow became clear by changing the color of tracer ink.

  6. Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika [Department of Physics, Panjab University Chandigarh-160014, Chandigarh (India); Singh, Sukhwinder [Department of Physics, Govt. College for Girls, Ludhiana-141008, Ludhiana (India)

    2016-05-23

    The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.

  7. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Science.gov (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  8. Hydraulic investigation on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Hu Chen; Gu Hanyang

    2015-01-01

    The formation and control of free surface are the most essential parts in the studies of windowless target in ACCELERATOR-DRIVEN sub-critical system (ADS). Water model experiments and 360° full scale three dimensional simulations were conducted. The experimental study demonstrates that the free surface is significantly affected by the inlet flow velocity and outlet pressure. The length of free surface decreases in the second order with the increase of inlet flow velocity, while it decreases linearly with the outlet pressure. The structure and feature of flow field were investigated. The results show that the free surface is vulnerable to the vortex movement. Transient simulations were performed with volume of fluid (VOF) method, large eddy simulation (LES) and the pressure implicit with splitting of operators (PISO) algorithm. The simulation results agree qualitatively well with the experimental data related to both free surface flow and flow field. These simulation models and methods are proved to be applicable in the hydraulic simulations of liquid heavy metal target. (authors)

  9. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    Energy Technology Data Exchange (ETDEWEB)

    Olczyk, Aleksander [Institute of Turbomachinery, Technical University of Lodz, Wolczanska 219/223, 90-924 Lodz (Poland)], E-mail: aolczyk@p.lodz.pl

    2009-08-15

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate {phi}{sub m} = {rho}v, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  10. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    International Nuclear Information System (INIS)

    Olczyk, Aleksander

    2009-01-01

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate φ m = ρv, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  11. Stability investigations of relaxing molecular gas flows. Results and perspectives

    Science.gov (United States)

    Grigor'ev, Yurii N.; Ershov, Igor V.

    2017-10-01

    This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.

  12. Impact of straight, unconnected, radially-oriented, and tapered mesopores on column efficiency: A theoretical investigation.

    Science.gov (United States)

    Gritti, Fabrice

    2017-02-17

    Superficially porous particles (SPPs) can be prepared from a pseudomorphic transformation (PMT) which produces straight, unconnected, and radially-oriented mesopores (ROMs). ROMs can be either both ends open in fully porous particles (FPPs) or one-end-closed in SPPs. The impact of ROMs on the longitudinal diffusion (B/u), solid-liquid mass transfer resistance (C s u), and on the eddy dispersion (A(u)) height equivalent to a theoretical plate (HETP) of 3D randomly packed columns was investigated based on theoretical viewpoints. Torquato's theory of effective diffusion in packed beds (B term), Giddings' coupling theory of eddy dispersion (A term), and Giddings' generalized nonequilibrium theory (C s term) are applied to make predictions. First, it is found that the A term is nearly independent on the internal structure of the particle. Secondly, in the absence of flow, infinitely narrow and both ends open (no constriction effect) ROMs induce an internal hindrance factor of 23 regarding diffusion along the axial direction. Experimental data reveal that one-end-closed and 80Å wide ROMs in SPPs lead to a measurable internal hindrance factor of 27 regarding diffusion in the porous shell. Thirdly, above the optimum speed, the C s coefficient is dependent on the geometry (cylinders, cones, etc.) of the ROMs: when ROMs are conical in SPPs, C s is expected to decrease by 80% with respect to cylindrical ROMs. From an application perspective, PMT-SPPs prepared with narrow ROMs are well suited for the analysis of small molecules at or below optimum speed (lowest B term) while PMT-SPPs made of wide and conical ROMs are ideal for the analysis of large molecules above optimum speed (smallest C s term). Copyright © 2017. Published by Elsevier B.V.

  13. Phase distribution phenomena in upward cocurrent bubbly flows. A critical review of the experimental and theoretical works

    International Nuclear Information System (INIS)

    Grossetete, C.

    1992-09-01

    The most important and challenging problems in two-phase bubbly flow today are related to the physical understanding and the modeling of multidimensional phenomena such as the distribution of phases in space. We present here a critical review of the available experimental and theoretical studies in gas-liquid adiabatic and non-reactive upward bubbly flows which have been carried out to define and improve the physical models needed to close the three-dimensional two-fluid model equations. It appears that: so far, the axial development of two-phase upward bubbly flows has not been handled thoroughly. Little is known about the way the pressure gradient as well as the gas-liquid mixing conditions affect the distribution of phases, the problems related to the closing of the two-fluid model equations are far from being solved. The physical models proposed seem often to be too much complex considering how little we know about the mechanisms involved, there are still very few multidimensional numerical models whose results have been compared with experimental data on bubbly flows. The boundary conditions introduced in the codes as well as the sensitivity of the results to the parameters of the codes are never precisely stated. To bridge some of those gaps, we propose to perform an experimental and numerical study of the axial development of two-phase air-water upward bubbly flows in vertical pipes

  14. Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models

    Directory of Open Access Journals (Sweden)

    Sanghyeon Kim

    2017-06-01

    Full Text Available In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier–Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k − ε turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.

  15. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Paul Joseph

    2015-12-01

    Full Text Available Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA, oxygen bomb calorimetry, limiting oxygen index measurements (LOI, Underwriters Laboratory 94 (UL-94 tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

  16. Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches.

    Science.gov (United States)

    Joseph, Paul; Tretsiakova-McNally, Svetlana

    2015-12-15

    Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

  17. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  18. Theoretical investigation on the magnetic and electric properties in TbSb compound through an anisotropic microscopic model

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Ribeiro, P. O.; Alho, B. P.; Alvarenga, T. S. T.; Nobrega, E. P.; Caldas, A.; Sousa, V. S. R.; Lopes, P. H. O.; Oliveira, N. A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro–UERJ, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro (RJ) (Brazil); Carvalho, A. Magnus G. [Laboratório Nacional de Luz Síncrotron, CNPEM, 13083-970 Campinas, São Paulo (Brazil)

    2016-05-14

    We report the strong correlations between the magnetoresistivity and the magnetic entropy change in the cubic antiferromagnetic TbSb compound. The theoretical investigation was performed through a microscopic model which takes into account the crystalline electrical field anisotropy, exchange coupling interactions between the up and down magnetic sublattices, and the Zeeman interaction. The easy magnetization directions changes from 〈001〉 to 〈110〉 and then to 〈111〉 observed experimentally was successfully theoretically described. Also, the calculation of the temperature dependence of electric resistivity showed good agreement with the experimental data. Theoretical predictions were calculated for the temperature dependence of the magnetic entropy and resistivity changes upon magnetic field variation. Besides, the difference in the spin up and down sublattices resistivity was investigated.

  19. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...

  20. Experimental investigation of transverse mixing in porous media under helical flow conditions

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2016-01-01

    Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume...

  1. Investigation of spiral blood flow in a model of arterial stenosis

    OpenAIRE

    Paul, M.C.; Larman, A.

    2009-01-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360–1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard κ–ω model is employed for simulation of the blood flow for the...

  2. Investigation of flow in axial turbine stage without shroud-seal

    Directory of Open Access Journals (Sweden)

    Straka Petr

    2015-01-01

    Full Text Available This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the ”mixing plane” interface and the unsteady flow using the ”sliding mesh” interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a positive and b negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.

  3. Manipulating low-Reynolds-number flow by a watermill

    Science.gov (United States)

    Zhu, Lailai; Stone, Howard

    2017-11-01

    Cilia and filaments have evolved in nature to achieve swimming, mixing and pumping at low Reynolds number. Their unique capacity has inspired a variety of biomimetic strategies employing artificial slender structures to manipulate flows in microfluidic devices. Most of them have to rely on an external field, such as magnetic or electric fields to actuate the slender structures actively. In this talk, we will present a new approach of utilizing the underlying flow alone to drive these structures passively. We investigate theoretically and numerically a watermill composing several rigid slender rods in simple flows. Slender body theory with and without considering hydrodynamic interactions is adopted. The theoretical predictions agree qualitatively with the numerical results and quantitatively in certain configurations. A VR International Postdoc Grant from Swedish Research Council ``2015-06334'' (L.Z.) is gratefully acknowledged.

  4. Numerical and theoretical investigations of resistive drift wave turbulence

    International Nuclear Information System (INIS)

    Sunn Pedersen, T.

    1995-07-01

    With regard to the development of thermonuclear fusion utilizing a plasma confined in a magnetic field, anomalous transport is a major problem and is considered to be caused by electrostatic drift wave turbulence. A simplified quasi-two-dimensional slab model of resistive drift wave turbulence is investigated numerically and theoretically. The model (Hasegawa and Wakatani), consists of two nonlinear partial differential equations for the density perturbation n and the electrostatic potential perturbation φ. It includes the effect of a background density gradient perpendicular to the magnetic field and a generalized Ohm's law for the electrons in the direction parallel to the magnetic field. It may be used to model the basic features of electrostatic turbulence and the associated transport in an edge plasma. Model equations are derived and some important properties of the system are discussed. It is described how the Fourier spectral method is applied to the Hasegawa-Wakatani equations, how the time integration is developed to ensure accurate and fast simulations in a large parameter regime, and how the accuracy of the code is checked. Numerical diagnostics are developed to verify and extend the results in publications concerning quasi-stationary turbulent states and to give an overview of the properties of the quasi-stationary turbulent state. The use of analysis tools, not previously applied to the Hasegawa-Wakatani system, and the results obtained are described. Fluid particles are tracked to obtain Lagrangian statistics for the turbulence. A new theoretical analysis of relative dispersion leads to a decomposition criterion for the particles. The significance of this is investigated numerically and characteristic time scales for particles are determined for a range of parameter values. It is indicated that the turbulent state can be characterized in the context of nonlinear dynamics and chaos theory as an attractor with a large basin of attraction. The basic

  5. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  6. Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-08-31

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  7. Theoretical investigations of grout seal longevity - Final report

    International Nuclear Information System (INIS)

    Alcorn, S.; Coons, W.; Christian-Frear, T.; Wallace, M.

    1992-04-01

    Theoretical investigations into the longevity of repository seals have dealt primarily with the development of a methodology to evaluate interactions between portland cement-based grout and groundwater. Evaluation of chemical thermodynamic equilibria between grout and groundwater, and among grout, groundwater, and granitic host rock phases using the geochemical codes EQ3NR/EQ6 suggests that a fracture filled with grout and saturated with groundwater will tend to fill and 'tighten' with time. Results of these investigations suggest that cement grout seals will maintain an acceptable level of performance for tens of thousands to millions of years, provided the repository is sited where groundwater chemistry is compatible with the seals and hydrologic gradients are low. The results of the grout: groundwater: rock calculations suggest that buffering of the fracture seals chemical systems by the granite rock may be important in determining the long-term fate of grout seals and the resulting phase assemblage in the fracture. The similarity of the modelled reaction products to those observed in naturally filled fractures suggests that with time equilibrium will be approached and grouted fractures subject to low hydrologic gradients will continue to seal. If grout injected into fractures materially reduces groundwater flux, the approach to chemical equilibrium will likely be accelerated. In light of this, even very thin or imperfectly grouted fractures would tighten in suitable hydrogeologic environments. (29 refs.) (au)

  8. Flow patterns in vertical two-phase flow

    International Nuclear Information System (INIS)

    McQuillan, K.W.; Whalley, P.B.

    1985-01-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained

  9. Numerical investigation of hub clearance flow in a Kaplan turbine

    Science.gov (United States)

    Wu, H.; Feng, J. J.; Wu, G. K.; Luo, X. Q.

    2012-11-01

    In this paper, the flow field considering the hub clearance flow in a Kaplan turbine has been investigated through using the commercial CFD code ANSYS CFX based on high-quality structured grids generated by ANSYS ICEM CFD. The turbulence is simulated by k-ω based shear stress transport (SST) turbulence model together with automatic near wall treatments. Four kinds of simulations have been conducted for the runner geometry without hub clearance, with only the hub front clearance, with only the rear hub clearance, and with both front and rear clearance. The analysis of the obtained results is focused on the flow structure of the hub clearance flow, the effect on the turbine performance including hydraulic efficiency and cavitation performance, which can improve the understanding on the flow field in a Kaplan turbine.

  10. Numerical investigation of hub clearance flow in a Kaplan turbine

    International Nuclear Information System (INIS)

    Wu, H; Feng, J J; Wu, G K; Luo, X Q

    2012-01-01

    In this paper, the flow field considering the hub clearance flow in a Kaplan turbine has been investigated through using the commercial CFD code ANSYS CFX based on high-quality structured grids generated by ANSYS ICEM CFD. The turbulence is simulated by k-ω based shear stress transport (SST) turbulence model together with automatic near wall treatments. Four kinds of simulations have been conducted for the runner geometry without hub clearance, with only the hub front clearance, with only the rear hub clearance, and with both front and rear clearance. The analysis of the obtained results is focused on the flow structure of the hub clearance flow, the effect on the turbine performance including hydraulic efficiency and cavitation performance, which can improve the understanding on the flow field in a Kaplan turbine.

  11. Theoretical interpretation of SCARABEE single pin in-pile boiling experiments

    International Nuclear Information System (INIS)

    Struwe, D.; Bottoni, M.; Fries, W.; Elbel, H.; Angerer, G.

    1977-01-01

    In the framework of LMFBR safety analysis a theoretical interpretation of some of the most representative of the single pin experiments of the in-pile SCARABEE project has been performed from both viewpoints of thermohydraulic and fuel behaviour using the computer codes CAPRI-2 and SATURN-1. The analysis is aimed at investigating the pin behavior from the preirradiation history, through the observed sequence of events following a coolant mass flow reduction from boiling inception up to pin breakdown. A comparison of theoretical results with experimentally recorded data has allowed a deeper insight into the peculiar features of the experiments and enabled a valuable code verification. (Auth.)

  12. Impaired cerebral blood flow networks in temporal lobe epilepsy with hippocampal sclerosis: A graph theoretical approach.

    Science.gov (United States)

    Sone, Daichi; Matsuda, Hiroshi; Ota, Miho; Maikusa, Norihide; Kimura, Yukio; Sumida, Kaoru; Yokoyama, Kota; Imabayashi, Etsuko; Watanabe, Masako; Watanabe, Yutaka; Okazaki, Mitsutoshi; Sato, Noriko

    2016-09-01

    Graph theory is an emerging method to investigate brain networks. Altered cerebral blood flow (CBF) has frequently been reported in temporal lobe epilepsy (TLE), but graph theoretical findings of CBF are poorly understood. Here, we explored graph theoretical networks of CBF in TLE using arterial spin labeling imaging. We recruited patients with TLE and unilateral hippocampal sclerosis (HS) (19 patients with left TLE, and 21 with right TLE) and 20 gender- and age-matched healthy control subjects. We obtained all participants' CBF maps using pseudo-continuous arterial spin labeling and analyzed them using the Graph Analysis Toolbox (GAT) software program. As a result, compared to the controls, the patients with left TLE showed a significantly low clustering coefficient (p=0.024), local efficiency (p=0.001), global efficiency (p=0.010), and high transitivity (p=0.015), whereas the patients with right TLE showed significantly high assortativity (p=0.046) and transitivity (p=0.011). The group with right TLE also had high characteristic path length values (p=0.085), low global efficiency (p=0.078), and low resilience to targeted attack (p=0.101) at a trend level. Lower normalized clustering coefficient (p=0.081) in the left TLE and higher normalized characteristic path length (p=0.089) in the right TLE were found also at a trend level. Both the patients with left and right TLE showed significantly decreased clustering in similar areas, i.e., the cingulate gyri, precuneus, and occipital lobe. Our findings revealed differing left-right network metrics in which an inefficient CBF network in left TLE and vulnerability to irritation in right TLE are suggested. The left-right common finding of regional decreased clustering might reflect impaired default-mode networks in TLE. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Theoretical Investigation of Trust in Small and Medium Sized Enterprises

    Directory of Open Access Journals (Sweden)

    Valentinas Navickas

    2014-06-01

    Full Text Available The hectic pace of competition pushes the sector of small and medium enterprise to adopt sophisticated marketing ideas. In this context, customers are becoming more and more selective. However, expansion possibilities are burdened by the great variety of limitations. The current study paper aims to investigate the academic perception of trust which is treated as competitive advantage for small and medium enterprises. The object of the article is trust in small and medium enterprises. It has three objectives: to analyse small and medium enterprise characteristics through the academic perspective; to consider trust from the theoretical point of view; and to present the models that centre their attention on the trust as a construct that enhances customer satisfaction. Regarding the novelty of the current study, it brings a novel approach on a great variety of collected understandings of trust and puts an important foundation for future theory and practice investigations.

  14. Theoretical investigation of the weak interaction between graphene and alcohol solvents

    Science.gov (United States)

    Wang, Haining; Chen, Sian; Lu, Shanfu; Xiang, Yan

    2017-05-01

    The dispersion of graphene in five different alcohol solvents was investigated by evaluating the binding energy between graphene and alcohol molecules using DFT-D method. The calculation showed the most stable binding energy appeared at the distance of ∼3.5 Å between graphene and alcohol molecules and increased linearly as changing the alcohol from methanol to 1-pentanol. The weak interaction was further graphically illustrated using the reduced density gradient method. The theoretical study revealed alcohols with more carbon atoms could be a good starting point for screening suitable solvents for graphene dispersion.

  15. Polymer fragmentation in extensional flow

    Energy Technology Data Exchange (ETDEWEB)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech

    2001-06-01

    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments.

  16. Theoretical investigations of quantum correlations in NMR multiple-pulse spin-locking experiments

    Science.gov (United States)

    Gerasev, S. A.; Fedorova, A. V.; Fel'dman, E. B.; Kuznetsova, E. I.

    2018-04-01

    Quantum correlations are investigated theoretically in a two-spin system with the dipole-dipole interactions in the NMR multiple-pulse spin-locking experiments. We consider two schemes of the multiple-pulse spin-locking. The first scheme consists of π /2-pulses only and the delays between the pulses can differ. The second scheme contains φ-pulses (0Quantum discord is obtained for the first scheme of the multiple-pulse spin-locking experiment at different temperatures.

  17. The Effect of the Volume Flow rate on the Efficiency of a Solar Collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...

  18. Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume...... solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical...

  19. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  20. Theoretical and experimental studies on transient heat transfer for forced convection flow of helium gas over a horizontal cylinder

    International Nuclear Information System (INIS)

    Liu Qiusheng; Katsuya Fukuda; Zhang Zheng

    2005-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on

  1. An investigation on how to estimate future cash flows: Evidence from Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Roghayeh Ahmdi Panah Banad Koki

    2014-03-01

    Full Text Available This paper presents an empirical investigation to predict future cash flows using present cash flow and accruals using the information of 96 selected firms listed on Tehran Stock Exchange over the period 2007-2011. The proposed study uses linear regression techniques to forecast future cash flow and the results indicate that cash flow and accruals together could provide more power to forecast cash flow. In addition, accrual provides future cash flow better than cash flow. The survey also performs an investigation on discretionary accrual and finds that the firms with higher accruals maintain lower return compared with firms with lower return. This means there is a clear evidence of discretionary accruals on Tehran Stock Exchange.

  2. Theoretical investigation of adiabatic capillary tubes working with propane/n-butane/iso-butane blends

    International Nuclear Information System (INIS)

    Fatouh, M.

    2007-01-01

    In this paper, a theoretical model is developed to predict the refrigerant flow characteristics in adiabatic capillary tubes using propane/n-butane/iso-butane mixtures as working fluids in a domestic refrigerator. This model is based on the mass, energy and momentum conservation equations for a homogeneous refrigerant flow under different inlet conditions, such as subcooled, saturated and two phase flow. The effects of the inlet pressure (8-16 bar), inlet vapor quality (0.001-15%), inlet subcooling degree (1-15 o C), mass flow rate (1-5 kg/h), propane mass fraction (0.5-0.7), capillary tube inner diameter (0.6-1.0 mm) and the tube surface roughness on the capillary tube length are predicted. The results showed that the present model predicts data that are very close to the available experimental data in the literature with an average error of 2.65%. The pressure of the hydrocarbon mixture (HCM) decreases, while its vapor quality, specific volume and Mach number increase along the capillary tube. Also, the results indicated that the capillary tube length is largely dependent on the capillary tube diameter. Other parameters such as mass flow rate, inlet pressure, subcooling degree (or quality) and relative roughness influence the capillary tube length in that order. The capillary tube length as a function of the significant parameters is presented in equation form. Also, capillary tube selection charts either to predict the mass flow rates of propane/n-butane/iso-butane mixtures through adiabatic capillary tubes or to select the capillary tube size according to the required applications are developed. The comparison between R12, R134a and the hydrocarbon mixture (HCM) of propane/n-butane/iso-butane indicated that for a given mass flow rate, the pressure drop per unit length is about 4.13, 5.0 and 12.0 bar/m for R12, R134a and HCM, respectively. The ratios of the average mass flow rate of the HCM with a propane mass fraction of 0.6 to those of R12 and R134a are about

  3. Base flow investigation of the Apollo AS-202 Command Module

    Science.gov (United States)

    Walpot, Louis M. G.; Wright, Michael J.; Noeding, Peter; Schrijer, Ferry

    2012-01-01

    A major contributor to the overall vehicle mass of re-entry vehicles is the afterbody thermal protection system. This is due to the large acreage (equal or bigger than that of the forebody) to be protected. The present predictive capabilities for base flows are comparatively lower than those for windward flowfields and offer therefore a substantial potential for improving the design of future re-entry vehicles. To that end, it is essential to address the accuracy of high fidelity CFD tools exercised in the US and EU, which motivates a thorough investigation of the present status of hypersonic flight afterbody heating. This paper addresses the predictive capabilities of afterbody flow fields of re-entry vehicles investigated in the frame of the NATO/RTO-RTG-043 task group. First, the verification of base flow topologies on the basis of available wind-tunnel results performed under controlled supersonic conditions (i.e. cold flows devoid of reactive effects) is performed. Such tests address the detailed characterization of the base flow with particular emphasis on separation/reattachment and their relation to Mach number effects. The tests have been performed on an Apollo-like re-entry capsule configuration. Second, the tools validated in the frame of the previous effort are exercised and appraised against flight-test data collected during the Apollo AS-202 re-entry.

  4. Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. II. Theoretical justifications and modeling

    Science.gov (United States)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2017-04-01

    This is the second part of a two-part study on a partially miscible liquid-liquid flow (carbon dioxide and deionized water) that is highly pressurized and confined in a microfluidic T-junction. In the first part of this study, we reported experimental observations of the development of flow regimes under various flow conditions and the quantitative characteristics of the drop flow including the drop length, after-generation drop speed, and periodic spacing development between an emerging drop and the newly produced one. Here in part II we provide theoretical justifications to our quantitative studies on the drop flow by considering (1) C O2 hydration at the interface with water, (2) the diffusion-controlled dissolution of C O2 molecules in water, and (3) the diffusion distance of the dissolved C O2 molecules. Our analyses show that (1) the C O2 hydration at the interface is overall negligible, (2) a saturation scenario of the dissolved C O2 molecules in the vicinity of the interface will not be reached within the contact time between the two fluids, and (3) molecular diffusion does play a role in transferring the dissolved molecules, but the diffusion distance is very limited compared with the channel geometry. In addition, mathematical models for the drop length and the drop spacing are developed based on the observations in part I, and their predictions are compared to our experimental results.

  5. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  6. Visualized investigation on flow regimes for vertical upward steam–water flow in a heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang

    2012-01-01

    Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.

  7. Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport

    Science.gov (United States)

    Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.

    2017-04-01

    Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain

  8. Experimental investigation on premature occurrence of critical heat flux under oscillatory flow

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Dasgupta, A.; Chandraker, D.K.; Nayak, A.K.; Rama Rao, A.; Hegde, Nandan D.

    2016-01-01

    Two-phase natural circulation loops have extensive applications in nuclear and process industries. One of the major concerns with natural circulation is the occurrence of the various types of flow instabilities, which can cause premature boiling crisis due to flow and power oscillations. In this work, experimental investigation on CHF under oscillatory flow was carried out in a facility named CHF and Instability Loop (CHIL). CHIL is a simple rectangular loop having a 10.5 mm ID and 1.1 m long test section. The flow through the test section is controlled by a canned motor pump using a Variable Frequency Drive (VFD). The effect of frequency and amplitude of flow oscillation on occurrence of premature CHF has been investigated for this facility using a transient computer code COPCOS (Code for Prediction of CHF under Oscillating flow and power condition). The code incorporates conduction equation of the fuel and coolant energy equation. For CHF prediction, CHF look-up table developed by Groeneveld is used. Full paper covers description of the facility, experimental procedure, experimental results and data analysis using COPCOS. (author)

  9. Investigation of the tube side flow distribution in heat exchangers

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Pyare, R.

    1977-01-01

    The tube side flow distribution in heat exchangers is being investigated through the solution of the governing equations of fluid mechanics with distributed resistances that simulate the presence of the tubes. The modeling scheme used in the analysis and the numerical methods of solving the governing equations are described. The analysis is applied to the CRBRP-Intermediate Heat Exchanger (IHX), where its tube side plenum is simulated by several models that approximate its spherical boundary. The flow field within the plenum and the distribution of the total flow rate among the tubes are determined by the analysis

  10. An experimental and theoretical investigation of annular steam-water flow in tubes and annuli at 30 to 90 bar

    International Nuclear Information System (INIS)

    Wuertz, J.

    1978-04-01

    Measurements are presented of film flow rates, pressure gradients film thicknesses, wave frequencies and velocities, and burnout heat fluxes in one annular and two tubular geometries. The more than 250 experiments were performed with steam-water at 30 to 90 bar under both adiabatic and diabatic conditions. On the basis of these data a film-flow model for the prediction of burnout is set up. General film roughness and entrainment correlations are derived from the adiabatic, equilibrium data. The capability of the model is demonstrated by several comparisons between calculations and measurements. (author)

  11. Particle Transport and Size Sorting in Bubble Microstreaming Flow

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha

    2014-11-01

    Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.

  12. Theoretical and numerical investigations of inverse patchy colloids in the fluid phase

    International Nuclear Information System (INIS)

    Kalyuzhnyi, Yurij V.; Bianchi, Emanuela; Ferrari, Silvano; Kahl, Gerhard

    2015-01-01

    We investigate the structural and thermodynamic properties of a new class of patchy colloids, referred to as inverse patchy colloids (IPCs) in their fluid phase via both theoretical methods and simulations. IPCs are nano- or micro- meter sized particles with differently charged surface regions. We extend conventional integral equation schemes to this particular class of systems: our approach is based on the so-called multi-density Ornstein-Zernike equation, supplemented with the associative Percus-Yevick approximation (APY). To validate the accuracy of our framework, we compare the obtained results with data extracted from NpT and NVT Monte Carlo simulations. In addition, other theoretical approaches are used to calculate the properties of the system: the reference hypernetted-chain (RHNC) method and the Barker-Henderson thermodynamic perturbation theory. Both APY and RHNC frameworks provide accurate predictions for the pair distribution functions: APY results are in slightly better agreement with MC data, in particular at lower temperatures where the RHNC solution does not converge

  13. Accuracy and Sources of Error for an Angle Independent Volume Flow Estimator

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Hansen, Peter Møller

    2014-01-01

    This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estima tor’s accuracy is performed theoretically and investigated in vivo . Womersley’s model for pulsatile flow is used to simulate velo city profiles and calculate volume flow errors....... A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistu la are measured on B-mode images by rotating the scan plane 90 degrees. The major axis...

  14. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  15. Flow reduction due to degassing and redissolution phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    At the Stripa mine in Sweden, flow and transport experiments in a water-saturated fractured granite were conducted to investigate techniques for site characterization for a geologic nuclear waste repository. In the Simulated Drift Experiment, measured water inflow to an excavated drift with pressure held at 1 bar was only 1/9th the value expected based on inflow to boreholes with pressure held at 2.7 bars. Several physical and chemical mechanisms were hypothesized to be responsible for this reduction in flow. One possibility is that significant degassing of dissolved nitrogen takes place between 2.7 and 1 bars, credating a two-phase regime with an accompanying decrease in fluid mobility, resulting in a decrease in flow to the drift. To investigate this process, theoretical studies on degassing and redissolution phenomena have been carried out, beginning with an idealized model which yields a simple analytical solution, then relaxing some of the simplifying assumptions and using TOUGH2 to study the phenomena numerically. In conjunction with these theoretical studies, laboratory experiments on flow and degassing in transparent fracture replicas are being carried out, and are being used to check the modeling approach. We need to develop a fundamental understanding of degassing and redissolution in particular and two-phase flow phenomena in general for flow in fractures and fracture networks, in order to successfully model conditions around a nuclear waste repository, where long time and large space scales may preclude conclusive field experiments.

  16. Theoretical contributions to solar wind research - a review

    International Nuclear Information System (INIS)

    Cuperman, S.

    1977-01-01

    The theoretical work on the solar wind phenomena done since 1958 can be divided into two main parts: Part I - development and refinement of Parker's initial macroscopic model, the emphasis being placed upon steady state, spherically symmetric flow and the identification of the structure-less background solar wind plasma with the low speed flow. It is in this part that much progress in understanding the solar wind phenomenon has been achieved; Part II - generalization of Parker's initial model such as to include microscopic (kinetic) aspects, temporal variations, deviations from spherically symmetric conditions, complex local magnetic configurations, etc. The last two aspects, in particular, have received considerable attention with the discovery of the coronal holes, their association with high-speed flows and the tentative identification of these flows with the structure-less background solar wind plasma. This review is confined to Part I, as defined above. However, for completeness, several important aspects connected with the subjects enumerated under Part II and which represent the objects of the most recent investigation are also briefly reviewed. (Auth.)

  17. Investigation on flow patterns and transition characteristics in a tube-bundle channel

    International Nuclear Information System (INIS)

    Xiang Wenyuan; Lu Yonghong; Zhao Guisheng

    2012-01-01

    Tube-bundle channels have been widely used in condenser-evaporator and other industrial heat-exchange equipment. The characteristics of two-phase flow patterns and their transitions for refrigerant R-113 through a vertical tube-bundle channel are experimentally investigated using high-speed camera. Experiments show that there are four main flow patterns in the tube-bundle channel, which are bubbly flow, bubbly-churn flow, churn flow and annular flow. And in the same cross-section of tube- bundle channels, it is shown that there might be different flow patterns in different sub-channels. The flow pattern transitions exhibit unsynchronized in different sub-channels. On the basis of experimental research, the flow pattern map is drawn and analyses are made on the comparison of differences between boiling flow patterns in a circular tube and those in a tube-bundle channel. (authors)

  18. Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector

    International Nuclear Information System (INIS)

    Riffat, S.B.; Zhao, X.; Doherty, P.S.

    2005-01-01

    A thin membrane heat-pipe solar collector was designed and constructed to allow heat from solar radiation to be collected at a relatively high efficiency while keeping the capital cost low. A theoretical model incorporating a set of heat balance equations was developed to analyse heat transfer processes occurring in separate regions of the collector, i.e., the top cover, absorber and condenser/manifold areas, and examine their relationship. The thermal performance of the collector was investigated using the theoretical model. The modelling predictions were validated using the experimental data from a referred source. The test efficiency was found to be in the range 40-70%, which is a bitter lower than the values predicted by modelling. The factors influencing these results were investigated

  19. Investigations on cooling with forced flow of He II

    International Nuclear Information System (INIS)

    Srinivasan, R.; Hofmann, A.

    1985-01-01

    Investigations on heat transfer to flowing subcooled He II at a pressure of 7 bar have been carried out. The value of the conductivity function, f(T), at a temperature greater than Tsub(max), drops rapidly with increasing pressure. Below Tsub(max) the change in f(T) with pressure is less drastic. The Gorter-Mellink constant Asub(GM), increases linearly with pressure in the range 1.5-2 K and its pressure coefficient at 1 bar is 0.038+-0.01 per bar, independent of temperature. The temperature distribution in the test section with and without flow is adequately described by the one-dimensional model discussed in Part 1. It is concluded that for heat transfer to He II in forced flow there is no advantage in working at pressures > 1 bar. (author)

  20. Study of electroosmosis-driven two-liquid displacement flow in a microcapillary

    International Nuclear Information System (INIS)

    Gan, H Y; Yang, C; Wan, S Y M; Lim, G C; Lam, Y C

    2006-01-01

    Multi-liquid flow, such as one liquid displacing another liquid, is frequently encountered in practice. This can be achieved by electroosmotic (EO) pumping, which has its own unique characteristics and advantages. This investigation is on EO-driven, two-liquid displacement flow in a microcapillary. A theoretical model was developed to take into consideration the axial step change of velocity flow fields at the time-dependent liquid/liquid interface, continuity requirement, and induced local pressure gradients. The electrical current monitoring method was employed to measure the flowrate and subsequently determine the capillary zeta potentials which are required for the model prediction. The nonlinear change of the electrical current with time under a constant applied voltage was observed during the displacement process. The theoretical and experimental results validated the hypothesis that the non-uniform zeta potential and electric field induce local pressure gradients in the two different liquids. Our experimental results indicated that the time of displacement, and thus the flow velocity, is found to be dependent on the displacing flow direction, which has hitherto not been reported in the literature. The underlying mechanisms were postulated, but demand further investigation

  1. Investigation of turbulent separation in a forward-facing step flow

    International Nuclear Information System (INIS)

    Pearson, D S; Goulart, P J; Ganapathisubramani, B

    2011-01-01

    The relation between the upstream and downstream regions of separation of the flow over a forward-facing step is investigated using experimental data. High-speed Particle Image Velocimetry (PIV) data is used to show a correlation between the wall shear stress of the oncoming boundary layer and the streamwise location of reverse flow upstream of the step. The time delay associated with the correlation is consistent with average convection velocities in the lower boundary layer. This suggests that appropriate addition of momentum into the boundary layer could be used to control the spatial extent of the separation upstream of the step. In addition, low-speed PIV data is used to show statistical relations between the flow characteristics of the recirculation regions in the vicinity of the step face. It is shown that a slower than average flow velocity above the step face is associated with an increase in the wall-normal extent of upstream reverse flow, an increase in the inclination of the flow above the step and an increase in downstream vorticity.

  2. The water dimer II: Theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    2018-03-29

    As the archetype of hydrogen bonding between water molecules, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. In this article, we present a detailed chronological review of the theoretical advances using electronic structure methods pertaining to the structure, hydrogen bonding and vibrational spectroscopy of the water dimer as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interaction in clusters and liquid water.

  3. Experimental investigation of flow over two-dimensional multiple hill models.

    Science.gov (United States)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Theoretical investigation of the doubly stratified flow of an Eyring-Powell nanomaterial via heat generation/absorption

    Science.gov (United States)

    Khan, M. Ijaz; Waqas, M.; Alsaedi, A.; Hayat, T.; Khan, M. Imran

    2017-11-01

    The mixed convective flow of an Eyring-Powell nanomaterial in a doubly stratified medium is addressed in this paper. The stretching surface has varying thickness. The nanofluid model given by Buongiorno is utilized in the formulation of energy and concentration expressions. Heat generation is also retained. Ordinary differential systems are obtained by utilizing the transformations procedure. Homotopy series solutions containing exponentially functions are developed. Significant characteristics of influential variables for velocity, temperature, nanoparticle concentration, skin friction coefficient and Nusselt and Sherwood numbers are reported through graphs and tables. It is found that stratification phenomenon leads to a decay in temperature and nanoparticle concentration.

  5. Viscous flows the practical use of theory

    CERN Document Server

    Brenner, Howard

    1988-01-01

    Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.

  6. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation

    DEFF Research Database (Denmark)

    Asadi, Amin; Asadi, Meisam; Rezaniakolaei, Alireza

    2018-01-01

    efficiency of the nanofluid has been evaluated based on different figures of merit. It is revealed that using this nanofluid instead of the base fluid can be beneficial in all the studied solid concentrations and temperatures for both the internal laminar and turbulent flow regimes except the solid...... concentrations of 1 and 1.5% in internal turbulent flow regimes. The effect of adding nanoparticles on pumping power and convective heat transfer coefficient has also been theoretically investigated.......The main objective of the present study is to assess the heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid over different temperatures (25–50 °C) and solid concentrations (0.125%–1.5%). To this end, first of all, the stability of the nano-oil has been studied through the Zeta...

  7. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role......, such as in dielectric waveguides with gratings and periodic media or photonic crystal structures. The vectorial electromagnetic nature of light is therefore taken into account in the modeling of these diffractive structures. An electromagnetic vector-field model for optical components design based on the classical...... finite-difference time domain method and exact radiation integrals is implemented for the polarization where the electric field vector is perpendicular to the two dimentional plane of symmetry. The computational model solves the full vectorial time domain Maxwell equations with general sources...

  8. An investigation of transient nature of the cavitating flow in injector nozzles

    International Nuclear Information System (INIS)

    He, Zhixia; Zhong, Wenjun; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-01-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. In this paper, with the needle lift curve on the basis of injection rate experimental data, a moving mesh generation strategy was applied for 3D simulation of the nozzle cavitating flow. Based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate simulation. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. The experimental data was obtained to make a comparison to validate the calculated results and good qualitative agreement was shown between them. Afterward, the effects of needle movement on development of the cavitating flow and flow characteristics parameters were investigated. Finally, the influence of fuel temperature on development of the cavitating flow was also studied. Research of the flow characteristics for the diesel and biodiesel revealed that the flow characteristics of the biodiesel with a temperature rise of between 50 K and 60 K in injector nozzles will be similar to those of the diesel fuel. -- Highlights: ► The detailed geometry information was obtained using X-ray radiography. ► A visualization experiment system was setup for validating the numerical models. ► The detailed cavitating flow in nozzles can be gotten with a moving mesh. ► The flow characteristics between the diesel and biodiesel fuel are investigated

  9. Modeling the natural convective flow of micropolar nanofluids

    KAUST Repository

    Bourantas, Georgios

    2014-01-01

    A micropolar model for nanofluidic suspensions is proposed in order to investigate theoretically the natural convection of nanofluids. The microrotation of the nanoparticles seems to play a significant role into flow regime and in that manner it possibly can interpret the controversial experimental data and theoretical numerical results over the natural convection of nanofluids. Natural convection of a nanofluid in a square cavity is studied and computations are performed for Rayleigh number values up to 106, for a range of solid volume fractions (0 ≤ φ ≤ 0.2) and, different types of nanoparticles (Cu, Ag, Al2O3 and TiO 2). The theoretical results show that the microrotation of the nanoparticles in suspension in general decreases overall heat transfer from the heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar fluids, as nanofluids. The validity of the proposed model is depicted by comparing the numerical results obtained with available experimental and theoretical data. © 2013 Elsevier Ltd. All rights reserved.

  10. 'Impulsar': Experimental and Theoretical Investigations

    International Nuclear Information System (INIS)

    Apollonov, V. V.

    2008-01-01

    The Objective of the 'Impulsar' project is to accomplish a circle of experimental, engineering and technological works on creation of a high efficiency laser rocket engine. The project includes many organizations of the rocket industry and Academy of Sciences of Russia. High repetition rate pulse-periodic CO 2 laser system project for launching will be presented. Optical system for 15 MW laser energy delivery and optical matrix of laser engine receiver will by discussed as well. Basic characteristics of the laser-based engine will be compared with theoretical predictions and important stages of further technology implementation (low frequency resonance). Relying on a wide cooperation of different branches of science and industry organizations it is very possible to use the accumulated potential for launching of nano-vehicles during the upcoming 4-5 years

  11. Assessment of theoretical flow pattern maps for vertical upward two-phase flow

    International Nuclear Information System (INIS)

    Khare, Rajesh; Vijayan, P.K.; Saha, D.; Venkat Raj, V.

    1997-04-01

    Taitel-Dukler (1980), Mishima-Ishii (1984) and Solbrig (1986) flow pattern maps have been assessed against an experimental data bank compiled from different sources. The data bank consisted of a total of 1411 data points with 368 bubbly, 474 slug/churn and 545 annular flow points, the rest being transition points. The data bank consisted of mainly steam water data; some amount of air-water data are included as there were no steam-water data at low pressure ( gs - U ls plane. (author)

  12. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    Science.gov (United States)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  13. An experimental and theoretical investigation of creep buckling

    International Nuclear Information System (INIS)

    Ohya, H.

    1977-01-01

    The purpose of the present paper is to investigate creep buckling phenomena and the methods of analysis. Creep buckling experiments were performed on aluminum alloy 2024-T4 cylindrical shells having radius to thickness ratios of 16, 25, 50 and 80, in single, double and triple step axial compression at 250 0 C. It was observed that buckling occurred at one of the edges and the buckling mode depended on the radius to thickness ratio and also on the applied stress level. Thicker cylinders buckled in axisymmetric mode. Thinner ones under higher applied stress levels buckled in the asymmetric mode, whereas they under lower applied stress levels buckled in the axisymmetric mode. Creep buckling times were obtained from end shortening record of the cylinders. Experimental results were compared with theoretical values obtained by the following two methods. One is a simplified method to estimate buckling times, proposed by Gerard et al., Papirno et al. and others. The method is based on the fact that the creep buckling solutions are analogous to those of plastic buckling under a certain assumption. It was found that the bukling times could be reasonably estimated by this simplified method. The other is a finite element computer program for axisymmetric thin shells. This program is based on the incremental theory and can treat thermoelastoplastic creep analysis of axisymmetric thin shells with large deflection. Creep deformation behavior of cylindrical shells under axial compression and buckling times were calculated by the program and the effects of plasticity on buckling times were also investigated

  14. Theoretical investigation of the long-lived metastable AlO{sup 2+} dication in gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Sghaier, Onsi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Abdallah, Hassan H. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Chemistry, College of Education, Salahaddin University, 44001 Erbil (Iraq); Abdullah, Hewa Y. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Physics, College of Education, Salahaddin University, 44001 Erbil (Iraq); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Al Mogren, Muneerah Mogren [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Hochlaf, Majdi, E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2016-09-30

    Highlights: • Theoretical investigation of gas-phase molecular species AlO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of AlO. - Abstract: We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO{sup 2+} using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO{sup 2+} is X{sup 2}Π. The internuclear equilibrium distance of AlO{sup 2+}(X{sup 2}Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  15. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    Science.gov (United States)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  16. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    Science.gov (United States)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  17. Investigation of the cavitating flow in injector nozzles for diesel and biodiesel

    Science.gov (United States)

    Zhong, Wenjun; He, Zhixia; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-07-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. At present the biodiesel is a kind of prospective alternative fuel in diesel engines, the flow characteristics for the biodiesel fuel need to be investigated. In this paper, based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate physical model. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. A high resolution and speed CCD camera equipped with a long distance microscope device was used to acquire flow images of diesel and biodiesel fuel, respectively. Then, the characteristics of cavitating flow and their effects on the fuel atomization characteristics were investigated. The experimental results show that the nozzle cavitating flow of both the diesel and biodiesel fuel could be divided into four regimes: turbulent flow, cavitation inception, development of cavitation and hydraulic flip. The critical pressures of both the cavitating flow and hydraulic flip of biodiesel are higher than those of diesel. The spray cone angle increases as the cavitation occurs, but it decreases when the hydraulic flip appears. Finally, it can be concluded that the Reynolds number decreases with the increase of cavitation number, and the discharge coefficient increases with the increase of cavitation number.

  18. An experimental and theoretical investigation of creep buckling

    International Nuclear Information System (INIS)

    Ohya, H.

    1977-01-01

    Creep buckling is one of the failure modes which must be taken into consideration for the design of structures exposed to elevated temperatures. And, rules are provided in ASME Boiler and Pressure Vessel Code Case 1592 to prevent the creep buckling. However, methods of analysis are not provided in Code Case, and selecting the methods of analysis is left to owners and manufacturers. The purpose of the present paper is to investigate creep buckling phenomena and the methods of analysis. Creep buckling experiments were performed on aluminum alloy 2024-T4 cylindrical shells having radius to thickness ratios of 16, 25, 50 and 80, in single, double and triple step axial compression at 250 0 C. It was observed that buckling occurred at one of the edges and the buckling mode depended on the radius to thickness ratio and also on the applied stress level. Thicker cylinders buckled in axisymmetric mode. Thinner ones under higher applied stress levels buckled in the asymmetric mode, whereas under lower applied stress levels they buckled in the axisymmetric mode. Creep buckling times were obtained from end shortening record of the cylinders. Experimental results were compared with theoretical values obtained by two methods. (Auth.)

  19. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry; Badania teoretyczne i eksperymentalne kryzysu wrzenia w warunkach wrzenia przechlodzonego w przeplywie w kanale pionowym

    Energy Technology Data Exchange (ETDEWEB)

    Staron, E. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs.

  20. Theoretical and experimental studies on critical heat flux in subcooled boiling and vertical flow geometry; Badania teoretyczne i eksperymentalne kryzysu wrzenia w warunkach wrzenia przechlodzonego w przeplywie w kanale pionowym

    Energy Technology Data Exchange (ETDEWEB)

    Staron, E [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1997-12-31

    Critical Heat Flux is a very important subject of interest due to design, operation and safety analysis of nuclear power plants. Every new design of the core must be thoroughly checked. Experimental studies have been performed using freon as a working fluid. The possibility of transferring of results into water equivalents has been proved. The experimental study covers vertical flow, annular geometry over a wide range of pressure, mass flow and temperature at inlet of test section. Theoretical models of Critical Heat Flux have been presented but only those which cover DNB. Computer programs allowing for numerical calculations using theoretical models have been developed. A validation of the theoretical models has been performed in accordance with experimental results. (author). 83 refs, 32 figs, 4 tabs.

  1. Architected squirt-flow materials for energy dissipation

    Science.gov (United States)

    Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia

    2017-12-01

    In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.

  2. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    Science.gov (United States)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  3. Theoretical and Experimental Investigation of Heterojunction Interfaces

    Science.gov (United States)

    1983-11-01

    every two surface atoms at the junction. In terms of our theoretical alchemy one proton must be added for every two surface atoms. Note that this...Chye. I. Lindau. P PianetU, C. M. Gamer , and W E Spicer, Phys Rev. B 17, 2682 11978|. "J. R. Waldrop and R W. Grant. Appl. Phys. Lett. 34. 630

  4. Game-theoretic control of PHEV charging with power flow analysis

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-03-01

    Full Text Available Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs, the charging demand is expected to become a main determinant of the load in future distribution systems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accomplish peak load shifting while maximizing the revenue of the distribution service provider (DSP and PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue expectation of PHEV owners and DSP, respectively. The follower (PHEV owner decides when to start charging based on the pricing schedule provided by the leader (DSP. The DSP can incentivize the charging of PHEV owners to avoid system peak load. The costs associated with power distribution, line loss, and voltage regulation are incorporated in the game model via power flow analysis. Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash equilibrium (SPNE is obtained. A case study is performed based on the IEEE 13-bus test feeder and realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging control scheme can significantly improve the power quality in distribution systems by reducing the peak load and voltage fluctuations.

  5. An Experimental and Theoretical Investigation of a Micromirror Under Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad; Ramini, Abdallah; Carreno, Armando Arpys Arevalo; Younis, Mohammad I.

    2015-01-01

    We present an experimental and theoretical investigation of a micromachined mirror under a mixed-frequency signal composed of two harmonic ac sources. The micromirror is made of polyimide as the main structural layer. The experimental and theoretical dynamics are explored via frequency sweeps in the desired neighborhoods. One frequency is fixed while the other frequency is swept through a wide range to study the dynamic responses. To simulate the behavior of the micromirror, it is modeled as a single degree of freedom system, where the parameters of the model are extracted experimentally. A good agreement is reported among the simulation results and the experimental data. These responses are studied under different frequencies and input voltages. The results show interesting dynamics, where the system exhibits primary resonance and combination resonances of additive and subtractive type. The mixed excitation is demonstrated as a way to increase the bandwidth of the resonator near primary resonance, which can be promising for resonant sensing applications in the effort to increase the signal-noise ratio over extended frequency range.

  6. An Experimental and Theoretical Investigation of a Micromirror Under Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad

    2015-01-12

    We present an experimental and theoretical investigation of a micromachined mirror under a mixed-frequency signal composed of two harmonic ac sources. The micromirror is made of polyimide as the main structural layer. The experimental and theoretical dynamics are explored via frequency sweeps in the desired neighborhoods. One frequency is fixed while the other frequency is swept through a wide range to study the dynamic responses. To simulate the behavior of the micromirror, it is modeled as a single degree of freedom system, where the parameters of the model are extracted experimentally. A good agreement is reported among the simulation results and the experimental data. These responses are studied under different frequencies and input voltages. The results show interesting dynamics, where the system exhibits primary resonance and combination resonances of additive and subtractive type. The mixed excitation is demonstrated as a way to increase the bandwidth of the resonator near primary resonance, which can be promising for resonant sensing applications in the effort to increase the signal-noise ratio over extended frequency range.

  7. Experimental investigation of a two-phase nozzle flow

    International Nuclear Information System (INIS)

    Kedziur, F.; John, H.; Loeffel, R.; Reimann, J.

    1980-07-01

    Stationary two-phase flow experiments with a convergent nozzle are performed. The experimental results are appropriate to validate advanced computer codes, which are applied to the blowdown-phase of a loss-of-coolant accident (LOCA). The steam-water experiments present a broad variety of initial conditions: the pressure varies between 2 and 13 MPa, the void fraction between 0 (subcooled) and about 80%, a great number of critical as well as subcritical experiments with different flow pattern is investigated. Additional air-water experiments serve for the separation of phase transition effects. The transient acceleration of the fluid in the LOCA-case is simulated by a local acceleration in the experiment. The layout of the nozzle and the applied measurement technique allow for a separate testing of blowdown-relevant, physical models and the determination of empirical model parameters, respectively. The measured quantities are essentially the mass flow rate, quality, axial pressure and temperature profiles as well as axial and radial density/void profiles obtained by a γ-ray absorption device. Moreover, impedance probes and a pitot probe are used. Observed phenomena like a flow contraction, radial pressure and void profiles as well as the appearance of two chocking locations are described, because their examination is rather instructive about the refinement of a program. The experimental facilities as well as the data of 36 characteristic experiments are documented. (orig.) [de

  8. Experimental Investigation of Flow Condensation in Microgravity

    Science.gov (United States)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; hide

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  9. Prediction and Theoretical Investigation of the Morphology of ...

    African Journals Online (AJOL)

    Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and ... Keywords: Erythromycin dihydrate, Morphology prediction, Theoretical ... For atomic charge assignments and .... interactions involved in its attachment energy, in.

  10. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  11. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  12. An investigation on how to estimate future cash flows: Evidence from Tehran Stock Exchange

    OpenAIRE

    Roghayeh Ahmdi Panah Banad Koki; Iman Jokar

    2014-01-01

    This paper presents an empirical investigation to predict future cash flows using present cash flow and accruals using the information of 96 selected firms listed on Tehran Stock Exchange over the period 2007-2011. The proposed study uses linear regression techniques to forecast future cash flow and the results indicate that cash flow and accruals together could provide more power to forecast cash flow. In addition, accrual provides future cash flow better than cash flow. The survey also perf...

  13. Investigation of spiral blood flow in a model of arterial stenosis.

    Science.gov (United States)

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  14. Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity

    Science.gov (United States)

    Syrakos, Alexandros; Dimakopoulos, Yannis; Tsamopoulos, John

    2018-03-01

    The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a finite volume method, at various excitation frequencies. The oil is modeled by the Carreau-Yasuda (CY) and Phan-Thien and Tanner (PTT) constitutive equations. Both models account for shear-thinning, but only the PTT model accounts for elasticity. The CY and other generalised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic constitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies, the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from large amplitude oscillatory shear theory. The CY model also overestimates the damper force relative to the PTT model because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity. The consequences of using lower-viscosity silicone oil are also briefly examined.

  15. A multiscale theoretical investigation of electric measurements in living bone : piezoelectricity and electrokinetics.

    Science.gov (United States)

    Lemaire, T; Capiez-Lernout, E; Kaiser, J; Naili, S; Rohan, E; Sansalone, V

    2011-11-01

    This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen-apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how the phenomena propagate from the microscale to the tissue scale, we are able to determine the nature of macroscopically observed electric phenomena in bone.

  16. Experimental Investigation of Rainfall Impact on Overland Flow Driven Erosion Processes and Flow Hydrodynamics on a Steep Hillslope

    Science.gov (United States)

    Tian, P.; Xu, X.; Pan, C.; Hsu, K. L.; Yang, T.

    2016-12-01

    Few attempts have been made to investigate the quantitative effects of rainfall on overland flow driven erosion processes and flow hydrodynamics on steep hillslopes under field conditions. Field experiments were performed in flows for six inflow rates (q: 6-36 Lmin-1m-1) with and without rainfall (60 mm h-1) on a steep slope (26°) to investigate: (1) the quantitative effects of rainfall on runoff and sediment yield processes, and flow hydrodynamics; (2) the effect of interaction between rainfall and overland flow on soil loss. Results showed that the rainfall increased runoff coefficients and the fluctuation of temporal variations in runoff. The rainfall significantly increased soil loss (10.6-68.0%), but this increment declined as q increased. When the interrill erosion dominated (q=6 Lmin-1m-1), the increment in the rill erosion was 1.5 times that in the interrill erosion, and the effect of the interaction on soil loss was negative. When the rill erosion dominated (q=6-36 Lmin-1m-1), the increment in the interrill erosion was 1.7-8.8 times that in the rill erosion, and the effect of the interaction on soil loss became positive. The rainfall was conducive to the development of rills especially for low inflow rates. The rainfall always decreased interrill flow velocity, decreased rill flow velocity (q=6-24 Lmin-1m-1), and enhanced the spatial uniformity of the velocity distribution. Under rainfall disturbance, flow depth, Reynolds number (Re) and resistance were increased but Froude number was reduced, and lower Re was needed to transform a laminar flow to turbulent flow. The rainfall significantly increased flow shear stress (τ) and stream power (φ), with the most sensitive parameters to sediment yield being τ (R2=0.994) and φ (R2=0.993), respectively, for non-rainfall and rainfall conditions. Compared to non-rainfall conditions, there was a reduction in the critical hydrodynamic parameters of mean flow velocity, τ, and φ by the rainfall. These findings

  17. An Experimental and Theoretical Study on Cavitating Propellers.

    Science.gov (United States)

    1982-10-01

    34 And Identfyp eV &to" nMeeJ cascade flow theoretical supercavitating flow performance prediction method partially cavitating flow supercavitating ...the present work was to develop an analytical tool for predicting the off-design performance of supercavitating propellers over a wide range of...operating conditions. Due to the complex nature of the flow phenomena, a lifting line theory sirply combined with the two-dimensional supercavitating

  18. Numerical investigation of incompressible fluid flow and heat transfer across a bluff body in a channel flow

    Directory of Open Access Journals (Sweden)

    Taymaz Imdat

    2015-01-01

    Full Text Available The Lattice Boltzmann Method is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in bluff body. In this study, a triangular prism is taken as the bluff body. Not only the momentum transport, but also the energy transport is modeled by the Lattice Boltzmann Method. A uniform lattice structure with a single time relaxation rule is used. For obtaining a higher flexibility on the computational grid, interpolation methods are applied, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is investigated for different Reynolds numbers, while keeping the Prandtl number at the constant value of 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an assessment of the accuracy of the developed Lattice Boltzmann code, the results are compared with those obtained by a commercial Computational Fluid Dynamics code. It is observed that the present Lattice Boltzmann code delivers results that are of similar accuracy to the well-established Computational Fluid Dynamics code, with much smaller computational time for the prediction of the unsteady phenomena.

  19. Experimental investigations of turbulent flows in rod bundles with and without spacer grids

    International Nuclear Information System (INIS)

    Trippe, G.

    1979-07-01

    In the thermofluiddynamic design of liquid metal cooled reactor fuel elements the lack of experimentally confirmed knowledge of the three-dimensional flow events in rod bundles provided with spacer grids has appeared as a significant problem. To close this gap of knowledge, detailed measurements of the local velocities were made on a 19-rod bundle model. The Pitot method of differential pressure measurements was used as the measuring system. In the first part of the work the fully developed flow regime not influenced by spacers was investigated. A simple relation was derived for distributing the mass flow among the subchannels of a rod bundle; it is but slightly dependent on the Reynolds number. This relation allows a quick, coarse calculation of the distribution of the undisturbed, fully developed mass flow in bundles with similar geometries. By evaluation of further experiments known from the literature, empirical relationships were found for the local velocity distribution within the subchannels of such bundles. In the second part the effect of grid shaped spacers was investigated. The three-dimensional flow events caused by the spacers were completely recorded and interpreted physically. The deeper understanding of these flow processes can now serve to improve the model concept used in the present design computer programs. Single results of the investigations which take primary importance are the quantitative relations existing between the changes of mass flow in the bundle boundary zone, caused by a spacer, and the geometry of this spacer. The transferability to other bundle geometries was discussed and delimited. Moreover, it was shown that the mass flow in the bundle boundary zone can be successively reduced by spacers placed one behind the other in the bundle. A noticeable dependence of flow events on the Reynolds number was not found for the range relevant in practical application (30.000 [de

  20. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  1. Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch

    KAUST Repository

    Ramini, Abdallah; Al Hennawi, Qais M.; Younis, Mohammad I.

    2016-01-01

    We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon

  2. Rarefaction effects in gas flows over curved surfaces

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.

  3. Preliminary Findings in the Development of a Theoretical Framework for Investigating ICT Integration in Teacher Education

    Directory of Open Access Journals (Sweden)

    Suthagar Narasuman

    2012-06-01

    Full Text Available The following report is the result of a preliminary investigation in the development of a theoretical framework for investigating ICT integration, particularly in TESL (Teaching of English as a Second Language teacher training. The study is primarily an empirical effort to develop a theoretical framework for investigating ICT integration in TESL teacher training. In identifying the predictive variables for the framework, the researchers conducted an intensive review of the literature which included a review of various models used in studies on ICT integration. The contributing variables identified in the present study were age, gender, experience, ICT proficiency, attitude, access to ICT infrastructure, support services, and exposure to ICT professional development programmes. In developing the framework, the study sought to determine the extent to which the observed variability in ICT integration could be predicted by these factors. The sample comprised 266 respondents working at the faculty or English Language Unit in various teacher training institutions across the country. The study predominantly employed quantitative methods of data collection. Interview data was used to corroborate information derived from the survey data.

  4. Effect of flow field on open channel flow properties using numerical investigation and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)

    2012-07-01

    In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.

  5. Experimental and theoretical investigations on diffusion process for rare earth ores

    Energy Technology Data Exchange (ETDEWEB)

    He, Ye; Li, Wenzhi Z. [Changchun Univ. (China)

    2013-06-01

    The diffusion reaction kinetics of weathered crust elution-deposited rare earth with mixed ammonium salts was studied. The influence of concentration of reagents and particle size of ore on diffusion rate was investigated. The results showed that the diffusion process and diffusion rate could be improved by increasing reagents concentration and decreasing diffusion flowing rate and particle size. The diffusion process could be explained with the shrinking core Model, which could be controlled by the diffusion rate of reacting reagents in porous solid layer.

  6. Investigating flow patterns in a channel with complex obstacles using the lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yojina, Jiraporn; Ngamsaad, Waipot; Nuttavut, Narin; Triampo, Darapond; Lenbury, Yongwimon; Sriyab, Somchai; Triampo, Wannapong [Faculty of Science, Mahidol University, Bangkok (Thailand); Kanthang, Paisan [Rajamangala University of Technology, Bangkok (Thailand)

    2010-10-15

    In this work, mesoscopic modeling via a computational lattice Boltzmann method (LBM) is used to investigate the flow pattern phenomena and the physical properties of the flow field around one and two square obstacles inside a two-dimensional channel with a fixed blockage ratio,{beta} =14 , centered inside a 2D channel, for a range of Reynolds numbers (Re) from 1 to 300. The simulation results show that flow patterns can initially exhibit laminar flow at low Re and then make a transition to periodic, unsteady, and, finally, turbulent flow as the Re get higher. Streamlines and velocity profiles and a vortex shedding pattern are observed. The Strouhal numbers are calculated to characterize the shedding frequency and flow dynamics. The effect of the layouts or configurations of the obstacles are also investigated, and the possible connection between the mixing process and the appropriate design of a chemical mixing system is discussed

  7. Theoretical and Empirical Review of Asset Pricing Models: A Structural Synthesis

    Directory of Open Access Journals (Sweden)

    Saban Celik

    2012-01-01

    Full Text Available The purpose of this paper is to give a comprehensive theoretical review devoted to asset pricing models by emphasizing static and dynamic versions in the line with their empirical investigations. A considerable amount of financial economics literature devoted to the concept of asset pricing and their implications. The main task of asset pricing model can be seen as the way to evaluate the present value of the pay offs or cash flows discounted for risk and time lags. The difficulty coming from discounting process is that the relevant factors that affect the pay offs vary through the time whereas the theoretical framework is still useful to incorporate the changing factors into an asset pricing models. This paper fills the gap in literature by giving a comprehensive review of the models and evaluating the historical stream of empirical investigations in the form of structural empirical review.

  8. Core-annular flow through a horizontal pipe : Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  9. Vacuum ultraviolet photofragmentation of octadecane: photoionization mass spectrometric and theoretical investigation.

    Science.gov (United States)

    Xu, Jing; Sang, Pengpeng; Zhao, Lianming; Guo, Wenyue; Qi, Fei; Xing, Wei; Yan, Zifeng

    The photoionization and fragmentation of octadecane were investigated with infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IRLD/VUV PIMS) and theoretical calculations. Mass spectra of octadecane were measured at various photon energies. The fragment ions were gradually detected with the increase of photon energy. The main fragment ions were assigned to radical ions (C n H 2 n +1 + , n  = 4-11) and alkene ions (C n H 2 n + , n  = 5-10). The ionization energy of the precursor and appearance energy of ionic fragments were obtained by measuring the photoionization efficiency spectrum. Possible formation pathways of the fragment ions were discussed with the help of density functional theory calculations.

  10. Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)

    International Nuclear Information System (INIS)

    Payri, F.; Broatch, A.; Serrano, J.R.; Piqueras, P.

    2011-01-01

    Wall-flow particulate filters have been placed as a standard technology for Diesel engines because of the increasing restrictions to soot emissions. The inclusion of this system within the exhaust line requires the development of computational tools to properly simulate its flow dynamics and acoustics behaviour. These aspects become the key to understand the influence on engine performance and driveability as a function of the filter placement. Since the pressure drop and the filtration process are strongly depending on the pore structure properties – permeability, porosity and pore size – a reliable definition of these characteristics is essential for model development. In this work a methodology is proposed to determine such properties based on the combination of the pressure drop rement in a steady flow test rig and two theoretical approaches. The later are a lumped model and a one-dimensional (1D) unsteady compressible flow model. The purpose is to simplify the integration of particulate filters into the global engine modelling and development processes avoiding the need to resort to specific and expensive characterisation tests. The proposed methodology was validated against measurements of the response of an uncoated diesel particulate filter (DPF) under different flow conditions as cold steady flow, impulsive flow and hot pulsating flow. -- Highlights: ► Experimental and modelling tools to characterise wall-flow DPFs pressure drop. ► Decomposition of inertial pressure drop contributions in canned DPFs. ► Methodology to define pore structure properties in clean wall-flow DPFs. ► Evaluation of specific permeability, porosity and mean pore diameter. ► Significant influence of slip-flow effect on uncoated wall-flow DPFs.

  11. Theoretical study of flow in a thermal countercurrent centrifuge

    International Nuclear Information System (INIS)

    Durivault, Jean; Louvet, Pierre.

    1976-03-01

    This paper deals with the flow calculation in a thermal countercurrent centrifuge at total reflux. Matched asymptotic expansions are used to find approximate solutions of Navier-Stokes equations which are assumed to be valid in the whole domaine. Convection and viscous dissipation disappear because of linearization, but compressibility is taken into account. Let epsilon be the Ekman number. The equations are solved in the inviscid core, in the horizontal Ekman layers of thickness 0 (epsilonsup(1/2) and in the Stewartson layer of thickness 0 (epsilonsup(1/3)), parallel to the axis. As the thermal convection is neglected, the Stewartson layer of thickness 0 (epsilon sup(1/4)) does not occur. The results show the importance of the recirculating mass-flow rate of order 0 (epsilonsup(1/3)) in front of the countercurrent mass-flow rate of order 0 (epsilonsup(1/2)). The temperature profile rules the pattern and the intensity of the recirculating flow [fr

  12. An Experimental and Theoretical Investigation of Micropiiting in Wind Turbine Gears and Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Ahmet

    2012-03-28

    In this research study, the micro-pitting related contact failures of wind turbine gearbox components were investigated both experimentally and theoretically. On the experimental side, a twin-disk type test machine was used to simulate wind turbine transmission contacts in terms of their kinematic (rolling and sliding speeds), surface roughnesses, material parameters and lubricant conditions. A test matrix that represents the ranges of contact conditions of the wind turbine gear boxes was defined and executed to bring an empirical understanding to the micro-pitting problem in terms of key contact parameters and operating conditions. On the theoretical side, the first deterministic micro-pitting model based on a mixed elastohydrodynamic lubrication formulations and multi-axial near-surface crack initiation model was developed. This physics-based model includes actual instantaneous asperity contacts associated with real surface roughness profiles for predicting the onset of the micro-pit formation. The predictions from the theoretical model were compared to the experimental data for validation of the models. The close agreement between the model and measurements was demonstrated. With this, the proposed model can be deemed suitable for identifying the mechanisms leading to micro-pitting of gear and bearing surfaces of wind turbine gear boxes, including all key material, lubricant and surface engineering aspects of the problem, and providing solutions to these micro-pitting problems.

  13. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... collector fluid, and by increased collector tilt and inlet temperature, the flow distribution gets worse resulting in a decreased collector efficiency and an increased risk of boiling in the upper part of the collector panel. Keywords: Solar collector; Flow distribution; Computational Fluid Dynamics (CFD...

  14. Investigation of slightly forced buoyant flow in a training reactor

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.; Por, G.

    2001-01-01

    A measurement based on the temperature noise analysis method was carried out in the Training Reactor of the Budapest University of Technology and Economics. The main goals were the estimation of the flow velocity immediately above the reactor core and investigation of the thermal-hydraulical conditions of the reactor, mainly in the core. Subsequently 2D and 3D computations were carried out with the aid of the code CFX- 4.3. The main objective of the 2D calculation was to clarify the thermal-hydraulical conditions of the whole reactor tank with a reasonable computing demand. It was also necessary to accomplish 3D numerical investigations of the reactor core and the space above since three dimensional effects of the flow could only be studied in this way. In addition, obtaining certain boundary conditions of the 3D computations was another significant aim of the 2D investigations. It is important that the results of the noise analysis and the operational measuring system of the reactor gave us a basis for verifying our computations.(author)

  15. Investigation of gas flow characteristics in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kwac, Lee Ku; Kim, Hong Gun

    2008-01-01

    An investigation of electrochemical behavior of PEMFC (proton exchange membrane fuel cell) is performed by using a single-phase two-dimensional finite element analysis. Equations of current balance, mass balance, and momentum balance are implemented to simulate the behavior of PEMFC. The analysis results for the co-flow and counterflow mode of gas flow direction are examined in detail in order to compare how the gas flow direction affects quantitatively. The characteristics of internal properties, such as gas velocity distribution, mass fraction of the reactants, fraction of water and current density distribution in PEMFC are illustrated in the electrode and GDL (gas diffusion layer). It is found that the dry reactant gases can be well internally humidified and maintain high performance in the case of the counter-flow mode without external humidification while it is not advantageous for highly humidified or saturated reactant gases. It is also found that the co-flow mode improves the current density distribution with humidified normal condition compared to the counter-flow mode

  16. The Incremental Information Content of the Cash Flow Statement: An Australian Empirical Investigation

    OpenAIRE

    Hadri Kusuma

    2014-01-01

    The general objective of the present study is to investigate and assess the incremental information content of cash flow disclosures as required by the AASB 1026 ¡°Statement of Cash Flows¡±. This test addresses the issue of whether a change in cash flow components has the same relationship with security prices as that in earnings. Several previous studies indicate both income and cash flow statements may be mutually exclusive or mutually inclusive statements. The data to test three hypotheses...

  17. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations.

    Science.gov (United States)

    Ida, Masato; Taniguchi, Nobuyuki

    2003-09-01

    This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.

  18. An investigation of rotor tip leakage flows in the rear-block of a multistage compressor

    Science.gov (United States)

    Brossman, John Richard

    An effective method to improve gas turbine propulsive efficiency is to increase the bypass ratio. With fan diameter reaching a practical limit, increases in bypass ratio can be obtained from reduced core engine size. Decreasing the engine core, results in small, high pressure compressor blading, and large relative tip clearances. At general rule of 1% reduction in compressor efficiency with a 1% increase in tip clearance, a 0.66% change in SFC indicates the entire engine is sensitive to high pressure compressor tip leakage flows. Therefore, further investigations and understanding of the rotor tip leakage flows can help to improve gas turbine engine efficiency. The objectives of this research were to investigate tip leakage flows through computational modeling, examine the baseline experimental steady-stage performance, and acquire unsteady static pressure, over-the rotor to observe the tip leakage flow structure. While tip leakage flows have been investigated in the past, there have been no facilities capable of matching engine representative Reynolds number and Mach number while maintaining blade row interactions, presenting a unique and original flow field to investigate at the Purdue 3-stage axial compressor facility. To aid the design of experimental hardware and determine the influence of clearance geometry on compressor performance, a computational model of the Purdue 3-stage compressor was investigated using a steady RANS CFD analysis. A cropped rotor and casing recess design was investigated to increase the rotor tip clearance. While there were small performance differences between the geometries, the tip leakage flow field was found independent of the design therefore designing future experimental hardware around a casing recess is valid. The largest clearance with flow margin past the design point was 4% tip clearance based on the computational model. The Purdue 3-stage axial compressor facility was rebuilt and setup for high quality, detailed flow

  19. Experimental investigation on isothermal stratified flow mixing in a horizontal T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, Alexander; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)

    2016-10-15

    Turbulent and stratified flows can lead to thermal fatigue in piping systems of nuclear power plants (NPP). Such flows can be investigated in the University of Stuttgart Fluid-Structure-Interaction (FSI) facility with a T-Junction at thermal conditions with temperature differences of up to 255 K and at pressures of maximum 75 bars.

  20. Investigation of cavitating flows by X-ray and optical imaging

    Science.gov (United States)

    Coutier-Delgosha, Olivier; Fuzier, Sylvie; Khlifa, Ilyass; Fezzaa, Kamel

    2015-11-01

    Hydrodynamic cavitation is the partial vaporization of high speed liquid flows. The turbulent, compressible and unsteady character of these flows makes their study unusually complex and challenging. Instabilities generated by the occurrence of cavitation have been investigated in the last years in the LML laboratory by various non-intrusive measurements including X-ray imaging (to obtain the fields of void fraction and velocity in both phases), and PIV with fluorescent particles (to obtain the velocity fields in both phases). It has been shown that cavitation is characterized by significant slip velocities between liquid and vapor, especially in the re-entrant jet area and the cavity wake. This results suggests some possible improvements in the numerical models currently used for CFD of cavitating flows. Professor at Arts et Metiers ParisTech, Director of the LML laboratory.

  1. Neurocognitive mechanisms of the flow state.

    Science.gov (United States)

    Harris, David J; Vine, Samuel J; Wilson, Mark R

    2017-01-01

    While the experience of flow is often described in attentional terms-focused concentration or task absorption-specific cognitive mechanisms have received limited interest. We propose that an attentional explanation provides the best way to advance theoretical models and produce practical applications, as well as providing potential solutions to core issues such as how an objectively difficult task can be subjectively effortless. Recent research has begun to utilize brain-imaging techniques to investigate neurocognitive changes during flow, which enables attentional mechanisms to be understood in greater detail. Some tensions within flow research are discussed; including the dissociation between psychophysiological and experiential measures, and the equivocal neuroimaging findings supporting prominent accounts of hypofrontality. While flow has received only preliminary investigation from a neuroscientific perspective, findings already provide important insights into the crucial role played by higher-order attentional networks, and clear indications of reduced activity in brain regions linked to self-referential processing. The manner in which these processes may benefit sporting performance are discussed. © 2017 Elsevier B.V. All rights reserved.

  2. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization

    International Nuclear Information System (INIS)

    Gheith, R.; Hachem, H.; Aloui, F.; Ben Nasrallah, S.

    2015-01-01

    Highlights: • A Stirling engine was investigated to optimize its operation and its performance. • The porous medium present the highest amount of heat exchanged in a Stirling engine. • The heater characteristics are determinant points to enhance the thermal exchange in Stirling engine. • All operation parameters influence the heater performances. • Thermal and exergy heater efficiencies are sensible to temperature and pressure. - Abstract: The aim of this work is to optimize γ Stirling engine performances with a special care given to the heater. This latter consists of 20 tubes in order to increase the exchange area between the working gas and the hot source. Different parameters were chosen to evaluate numerically and experimentally the heater. The selected four independent parameters are: heating temperature (300–500 °C), initial filling pressure (3–8 bar), cooling water flow rate (0.2–3 l/min) and frequency (2–7 Hz). The amount of energy exchanged in the heater is significantly influenced by the frequency and heating temperature but it is slightly enhanced with the increase in the cooling water flow rate. The thermal and the exergy efficiencies of the heater are very sensible to the temperature and pressure variations.

  3. CONVEC: a computer program for transient incompressible fluid flow based on quadratic finite elements. Part 1: theoretical aspects

    International Nuclear Information System (INIS)

    Laval, H.

    1981-01-01

    This report describes the theoretical and numerical aspects of the finite element computer code CONVEC designed for the transient analysis of two-dimensional plane or three-dimensional axisymmetric incompressible flows including the effects of heat transfer. The governing equations for the above class of problems are the time-dependent incompressible Navier-Stokes equations and the thermal energy equation. The general class of flow problems analysed by CONVEC is discussed and the equations for the initial-boundary value problem are represented. A brief description of the finite element method and the weighted residual formulation is presented. The numerical solution of the incompressible equations is achieved by using a fractional step method. The mass lumping process associated with an explicit time integration scheme is described. The time integration is analysed and the stability conditions are derived. Numerical applications are presented. Standard problems of natural and forced convection are solved and the solutions obtained are compared with other numerical solutions published in the literature

  4. Theoretical and practical investigation of the electromagnetic radiation fields from the Sabborah radio broadcasting station

    International Nuclear Information System (INIS)

    Kharita, M. H.; Abo Kasem, I.; Kattab, A.

    2008-01-01

    This work has special importance as it aims at the investigation of the electromagnetic radiation from the Sabborah radio broadcasting station. The report includes general introduction to the physics of the electromagnetic fields and the biological effects of these fields and consequently its health effects. The bases of the recommended exposure limits according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) have been discussed in addition to the theoretical and practical investigations. This report summarizes the results of this study and the final recommendations. (author)

  5. A new method to measure flow in professional tasks – A FLOW-W questionnaire (FLOW at Work

    Directory of Open Access Journals (Sweden)

    Wolfigiel Beata

    2017-06-01

    Full Text Available The aim of the article is to present a new Polish tool for measuring the flow experience in professional tasks - a FLOW-W Questionnaire. The questionnaire was inspired by Csikszentmihalyi’s (1990 flow theory and flow in Bakker’s work (2008. On its basis a set of positions was established, on which subsequently an exploratory (study 1, N = 101 and confirmatory (study 2, N = 275 factor analysis was conducted. The analysis showed the possibility of a uni- or bifactorial solution. After checking the theoretical and empirical validity of both solutions, the unifactorial solution was adopted. The validity of the questionnaire was examined, i.a. by correlations with theoretically related variables: work engagement with the UWES questionnaire (Szabowska-Walaszczyk, Zawadzka, Wojtaś, 2011 and affect at work (Zalewska, 2002. The studies showed a significant positive correlation between flow at work and work engagement (0.84 and between flow and positive affect (0.74. The reliability of the questionnaire is very high; α = 0.96. The tool has very good psychometric properties.

  6. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    Science.gov (United States)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  7. Theoretical and computational analyses of LNG evaporator

    Science.gov (United States)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  8. An investigation of flow properties of metal matrix composites suspensions for injection molding

    International Nuclear Information System (INIS)

    Ahmad, F.; Bevis, M.J.

    1997-01-01

    Flow properties of metal matrix composites suspensions have significant effects on the fibre orientation during mould filling. The results presented in this paper relate to the flow properties of aluminium powder and glass fibres compounded into a sacrificial thermoplastics binder. For this purpose, a range of aluminium compounds and aluminium composite suspensions were investigated over a wide shear rate range expected to occur during injection mould process. Aluminium composites wee prepared by substituting glass fibres for aluminium in aluminium compound. Aluminium composite containing a maximum critical volume fraction of fibres which did not exhibit an increase n viscosity was determined. The effect of temperature on the flow behaviour of aluminium composite was also investigated. (author)

  9. Investigation of an IC Engine Intake Flow Based on Highly Resolved LES and PIV

    Directory of Open Access Journals (Sweden)

    Buhl Stefan

    2017-05-01

    Full Text Available To reduce emissions and fuel consumption, the current generation of gasoline engines uses technologies such as direct injection, downsizing and supercharging. All of them require a strong vortical in-cylinder charge motion, usually described as “tumble”, to improve fuel-air mixing and enhance flame propagation. The tumble development strongly depends on the flow field during the intake stroke. This flow field is dominated by the intake jet, which has to be captured well in the simulation. This work investigates the intake jet on a steady-state flow bench, especially in the vicinity of the intake valve. At first, the general flow dynamics of the intake jet for three different valve lifts and three different mass flows were investigated experimentally. For the smallest valve lift (3 mm, flow-field measurements using Particle Image Velocimetry (PIV show that the orientation of the intake jet significantly depends on the air flow rate, attaching to the pent roof for low flow rates. This phenomenon is less pronounced for higher valve lifts. An intermediate valve lift and flow rate were chosen for further investigations by scale-resolving simulations. Three different meshes (coarse, medium and fine and two turbulence models (Sigma and Detached Eddy Simulation-Shear Stress Transport (DES-SST are applied to consider their effect on the numerical results. An ad-hoc post-processing methodology based on the ensemble-averaged velocity field is presented capturing the jet centerline’s mean velocity and velocity fluctuations as well as its orientation, curvature and penetration depth. The simulation results are compared to each other as well as to measurements by PIV.

  10. Experimental investigation of flow and slip transition in nanochannels

    Science.gov (United States)

    Li, Zhigang; Li, Long; Mo, Jingwen

    2014-11-01

    Flow slip in nanochannels is sought in many applications, such as sea water desalination and molecular separation, because it can enhance fluid transport, which is essential in nanofluidic systems. Previous findings about the slip length for simple fluids at the nanoscale appear to be controversial. Some experiments and simulations showed that the slip length is independent of shear rate, which agrees with the prediction of classic slip theories. However, there is increasing work showing that slip length is shear rate dependent. In this work, we experimentally investigate the Poiseuille flows in nanochannels. It is found that the flow rate undergoes a transition between two linear regimes as the shear rate is varied. The transition indicates that the non-slip boundary condition is valid at low shear rate. When the shear rate is larger than a critical value, slip takes place and the slip length increases linearly with increasing shear rate before approaching a constant value. The results reported in this work can help advance the understanding of flow slip in nanochannels. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant Nos. 615710 and 615312. J. Mo was partially supported by the Postgraduate Scholarship through the Energy Program at HKUST.

  11. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    Science.gov (United States)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  12. Terahertz Generation in an Electrically Biased Optical Fiber: A Theoretical Investigation

    Directory of Open Access Journals (Sweden)

    Montasir Qasymeh

    2012-01-01

    Full Text Available We propose and theoretically investigate a novel approach for generating terahertz (THz radiation in a standard single-mode fiber. The optical fiber is mediated by an electrostatic field, which induces an effective second-order nonlinear susceptibility via the Kerr effect. The THz generation is based on difference frequency generation (DFG. A dispersive fiber Bragg grating (FBG is utilized to phase match the two interacting optical carriers. A ring resonator is utilized to boost the optical intensities in the biased optical fiber. A mathematical model is developed which is supported by a numerical analysis and simulations. It is shown that a wide spectrum of a tunable THz radiation can be generated, providing a proper design of the FBG and the optical carriers.

  13. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. Z.; Zhu, K., E-mail: zhukun@pku.edu.cn; Huang, S.; Lu, Y. R.; Yuan, Z. X.; Shi, B. L.; Gan, P. P. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Hershcovitch, A. [Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-01-15

    As a new device, plasma window has been designed to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managed to generate arc discharge with argon gas experimentally. The result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.

  14. Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri

    2005-09-27

    The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

  15. Nonlinear dynamics of an electrically actuated mems device: Experimental and theoretical investigation

    KAUST Repository

    Ruzziconi, Laura

    2013-11-15

    This study deals with an experimental and theoretical investigation of an electrically actuated micro-electromechanical system (MEMS). The experimental nonlinear dynamics are explored via frequency sweeps in a neighborhood of the first symmetric natural frequency, at increasing values of electrodynamic excitation. Both the non-resonant branch, the resonant one, the jump between them, and the presence of a range of inevitable escape (dynamic pull-in) are observed. To simulate the experimental behavior, a single degree-offreedom spring mass model is derived, which is based on the information coming from the experimentation. Despite the apparent simplicity, the model is able to catch all the most relevant aspects of the device response. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Nevertheless, the theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because, under realistic conditions, disturbances are inevitably encountered (e.g. discontinuous steps when performing the sweeping, approximations in the modeling, etc.) and give uncertainties to the operating initial conditions. A reliable prediction of the actual (and not only theoretical) response is essential in applications. To take disturbances into account, we develop a dynamical integrity analysis. Integrity profiles and integrity charts are performed. They are able to detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable. Moreover, depending on the magnitude of the expected disturbances, the integrity charts can serve as a design guideline, in order to effectively operate the device in safe condition, according to the desired outcome. Copyright © 2013 by ASME.

  16. Nonlinear dynamics of an electrically actuated mems device: Experimental and theoretical investigation

    KAUST Repository

    Ruzziconi, Laura; Ramini, Abdallah H.; Younis, Mohammad I.; Lenci, Stefano

    2013-01-01

    This study deals with an experimental and theoretical investigation of an electrically actuated micro-electromechanical system (MEMS). The experimental nonlinear dynamics are explored via frequency sweeps in a neighborhood of the first symmetric natural frequency, at increasing values of electrodynamic excitation. Both the non-resonant branch, the resonant one, the jump between them, and the presence of a range of inevitable escape (dynamic pull-in) are observed. To simulate the experimental behavior, a single degree-offreedom spring mass model is derived, which is based on the information coming from the experimentation. Despite the apparent simplicity, the model is able to catch all the most relevant aspects of the device response. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Nevertheless, the theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because, under realistic conditions, disturbances are inevitably encountered (e.g. discontinuous steps when performing the sweeping, approximations in the modeling, etc.) and give uncertainties to the operating initial conditions. A reliable prediction of the actual (and not only theoretical) response is essential in applications. To take disturbances into account, we develop a dynamical integrity analysis. Integrity profiles and integrity charts are performed. They are able to detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable. Moreover, depending on the magnitude of the expected disturbances, the integrity charts can serve as a design guideline, in order to effectively operate the device in safe condition, according to the desired outcome. Copyright © 2013 by ASME.

  17. Experimental and analytical investigations of granular materials: Shear flow and convective heat transfer

    Science.gov (United States)

    Ahn, Hojin

    1989-12-01

    Granular materials flowing down an inclined chute were studied experimentally and analytically. Characteristics of convective heat transfer to granular flows were also investigated experimentally and numerically. Experiments on continuous, steady flows of granular materials in an inclined chute were conducted with the objectives of understanding the characteristics of chute flows and of acquiring information on the rheological behavior of granular material flow. Existing constitutive equations and governing equations were used to solve for fully developed chute flows of granular materials, and thus the boundary value problem was formulated with two parameters (the coefficient of restitution between particles, and the chute inclination) and three boundary values at the chute base wall (the values of solid fraction, granular temperature, and mean velocity at the wall). The boundary value problem was numerically solved by the shooting method. These analytical results were also compared with the present experimental values and with the computer simulations by other investigators in their literature. Experiments on heat transfer to granular flows over a flat heating plate were conducted with three sizes of glass beads, polystyrene beads, and mustard seeds. A modification on the existing model for the convective heat transfer was made using the effective Nusselt number and the effective Peclet number, which include the effects of solid fraction variations. The slightly modified model could describe the heat transfer characteristics of both fast and slow flows (supercritical and subcritical). A numerical analysis of the transfer to granular flows was also performed. The results were compared with the present experimental data, and reasonable agreement was found in the comparison.

  18. Investigating motion and stability of particles in flows using numerical models

    Science.gov (United States)

    Khurana, Nidhi

    The phenomenon of transport of particles in a fluid is ubiquitous in nature and a detailed understanding of its mechanism continues to remain a fundamental question for physicists. In this thesis, we use numerical methods to study the dynamics and stability of particles advected in flows. First, we investigate the dynamics of a single, motile particle advected in a two-dimensional chaotic flow. The particle can be either spherical or ellipsoidal. Particle activity is modeled as a constant intrinsic swimming velocity and stochastic fluctuations in both the translational and rotational motions are also taken into account. Our results indicate that interaction of swimming with flow structures causes a reduction in long-term transport at low speeds. Swimmers can get trapped at the transport barriers of the flow. We show that elongated swimmers respond more strongly to the dynamical structures of the flow field. At low speeds, their macroscopic transport is reduced even further than in the case of spherical swimmers. However, at high speeds these elongated swimmers tend to get attracted to the stable manifolds of hyperbolic fixed points, leading to increased transport. We then investigate the collective dynamics of a system of particles. The particles may interact both with each other and with the background flow. We focus on two different cases. In the fist case, we examine the stability of aggregation models in a turbulent-like flow. We use a simple aggregation model in which a point-like particle moves with a constant intrinsic speed while its velocity vector is reoriented according to the average direction of motion of its neighbors. We generate a strongly fluctuating, spatially correlated background flow using Kinematic Simulation, and show that flocks are highly sensitive to this background flow and break into smaller clusters. Our results indicate that such environmental perturbations must be taken into account for models which aim to capture the collective

  19. Turbulent pattern formation in plane Couette flow: modelling and investigation of mechanisms

    International Nuclear Information System (INIS)

    Rolland, Joran; Manneville, Paul

    2011-01-01

    In the transitional range of Reynolds number, plane Couette flow exhibits oblique turbulent bands. We focus on a Kelvin-Helmholtz instability occurring in the intermediate area between turbulent and laminar flow. The instability is characterised by means of Direct Numerical Simulations (DNS): a short wavelength instability, localised and advected in the spanwise direction. The coherent background flow on which the instability develops is extracted from DNS data, and an analytical formulation for the background flow is proposed. Linear stability analysis is performed to investigate its main mechanisms and its convective or absolute nature, depending on the location in the flow. Both DNS and linear stability analysis indicate that the instability takes place in a confined area 'inside' turbulent streaks. This proceeding sums up the results from an article in preparation (Rolland, 2011).

  20. Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation.

    Science.gov (United States)

    Amirjalayer, Saeed; Tafipolsky, Maxim; Schmid, Rochus

    2014-09-18

    The surface morphology and termination of metal-organic frameworks (MOF) is of critical importance in many applications, but the surface properties of these soft materials are conceptually different from those of other materials like metal or oxide surfaces. Up to now, experimental investigations are scarce and theoretical simulations have focused on the bulk properties. The possible surface structure of the archetypal MOF HKUST-1 is investigated by a first-principles derived force field in combination with DFT calculations of model systems. The computed surface energies correctly predict the [111] surface to be most stable and allow us to obtain an unprecedented atomistic picture of the surface termination. Entropic factors are identified to determine the preferred surface termination and to be the driving force for the MOF growth. On the basis of this, reported strategies like employing "modulators" during the synthesis to tailor the crystal morphology are discussed.

  1. Experimental Investigation of the Performance of Tilt Current Meters in Wave-Dominated Flows

    DEFF Research Database (Denmark)

    Hansen, Asger Bendix; Carstensen, Stefan

    2017-01-01

    In recent years, tilt current meters (TCMs) have received renewed attention as they provide an inexpensive method for measuring currents in the coastal zone. However, previous studies focused mainly on current dominated flows or the current component of the flow. This study investigates the perfo...

  2. Effects of curvature on rarefied gas flows between rotating concentric cylinders

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2013-05-01

    The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

  3. Transport at basin scales: 1. Theoretical framework

    Directory of Open Access Journals (Sweden)

    A. Rinaldo

    2006-01-01

    Full Text Available The paper describes the theoretical framework for a class of general continuous models of the hydrologic response including both flow and transport of reactive solutes. The approach orders theoretical results appeared in disparate fields into a coherent theoretical framework for both hydrologic flow and transport. In this paper we focus on the Lagrangian description of the carrier hydrologic runoff and of the processes embedding catchment-scale generation and transport of matter carried by runoff. The former defines travel time distributions, while the latter defines lifetime distributions, here thought of as contact times between mobile and immobile phases. Contact times are assumed to control mass transfer in a well-mixed approximation, appropriate in cases, like in basin-scale transport phenomena, where the characteristic size of the injection areas is much larger than that of heterogeneous features. As a result, we define general mass-response functions of catchments which extend to transport of matter geomorphologic theories of the hydrologic response. A set of examples is provided to clarify the theoretical results towards a computational framework for generalized applications, described in a companion paper.

  4. Measurement of blowdown flow rates using load cells

    International Nuclear Information System (INIS)

    Dolas, P.K.; Venkat Raj, V.; Ghosh, A.K.; Murty, L.G.K.; Muralidhar Rao, S.

    1980-01-01

    To establish a reliable method for measuring two-phase flow, experiments were planned for measurement of transient single phase flow rates from vessels using load cells. Suitability of lead-zirconate-titanate piezoelectric ceramic discs was examined. Discharge time constant of the disc used was low, leading to large measurement errors. Subsequently, experiments were carried out using strain gauge load cells and these were found satisfactory. The unsteady flow equation has been derived for the system under investigation. The equation has been solved numerically using the fourth order Runge-Kutta method and also by integrating it analytically. The experimental results are compared with the theoretical results and presented in this report. (auth.)

  5. Numerical and Experimental Investigations of the Flow in a Stationary Pelton Bucket

    Science.gov (United States)

    Nakanishi, Yuji; Fujii, Tsuneaki; Kawaguchi, Sho

    A numerical code based on one of mesh-free particle methods, a Moving-Particle Semi-implicit (MPS) Method has been used for the simulation of free surface flows in a bucket of Pelton turbines so far. In this study, the flow in a stationary bucket is investigated by MPS simulation and experiment to validate the numerical code. The free surface flow dependent on the angular position of the bucket and the corresponding pressure distribution on the bucket computed by the numerical code are compared with that obtained experimentally. The comparison shows that numerical code based on MPS method is useful as a tool to gain an insight into the free surface flows in Pelton turbines.

  6. Flow distribution in a solar collector panel with horizontally inclined absorber strips

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontally inclined strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid...... dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  7. A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene

    International Nuclear Information System (INIS)

    Aleman, Carlos; Oliver, Ramon; Brillas, Enric; Casanovas, Jordi; Estrany, Francesc

    2006-01-01

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN - , Cl - , Br - , NO 3 - ClO 3 - andClO 4 - as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X=SCN, Cl, Br, NO 3 , ClO 3 and ClO 4 . The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene

  8. Experimental investigation of flow-induced control-element movements by noise analysis

    International Nuclear Information System (INIS)

    Grunwald, G.; Liewers, P.; Schumann, P.; Weiss, F.P.

    1978-01-01

    The possibility has been reported of separating a single noise component due to flow-induced vibrations of a certain control element from a complex neutron signal which also contained contributions of many other control elements vibrating similarly. One of the basic assumptions for the different methods applied was that the body sound signal originating from touch events with the channel wall is closely correlated with the control-element movement. Some discrepancies between the results of the different methods showed that this assumption may not be entirely fulfilled. This paper investigates this correlation more accurately by measurements of an air flow model of the control-element channel. The pendulum movement of the element, and the body-sound signal due to the touch events with the channel wall, were measured at different flow-rates. The result is that the correlation is not an ideal one. For a constant flow-rate the touch events happen mainly within a small angle region, which means that the touch event marks a certain phase of the movement period and is therefore correlated with the movement. The dispersion of the touch events' angle distribution explains the small discrepancy between the so-called modified averaging method, which uses the sound signal to trigger the averaging procedure, and the partial spectral density method. But not all discrepancies can be explained by these results; they await further investigation. (author)

  9. Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films

    International Nuclear Information System (INIS)

    Cavalcante, L.S.; Gurgel, M.F.C.; Paris, E.C.; Simoes, A.Z.; Joya, M.R.; Varela, J.A.; Pizani, P.S.; Longo, E.

    2007-01-01

    The correlation between experimental data and theoretical calculations have been investigated to explain the photoluminescence at room temperature of Ba(Ti 0.75 Zr 0.25 )O 3 (BTZ) thin films prepared by the polymeric precursor method. The degree of structural order-disorder was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and photoluminescence (PL) measurements. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models. The electronic properties are analyzed and the relevance of the present theoretical and experimental results on the PL behavior is discussed. The presence of localized electronic levels and a charge gradient in the band gap due to a break in symmetry, are responsible for the PL in disordered BTZ lattice

  10. Experimental and theoretical study of steam condensation induced water hammer phenomena

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Baranyai, Gabor; Ezsoel, Gyoergy

    2009-01-01

    We investigate steam condensation induced water hammer (waha) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermohydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side waha is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. Experimentally measured and theoretically calculated waha pressure peaks are in qualitative agreement. (author)

  11. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  12. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  13. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias

    2008-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow

  14. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hohne, Thomas; Prasser, Horst-Michael; Suhnel, Tobias

    2007-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Rossendorf. The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronized with the high-speed camera system. CFD post test simulations of stratified flows were performed using the code ANSYS CFX. The Euler- Euler two fluid model with the free surface option was applied on grids of minimum 4.10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. (authors)

  15. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)], E-mail: c.vallee@fzd.de; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2008-03-15

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10{sup 5} control volumes. The turbulence was modelled separately for each phase using the k-{omega}-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.

  16. A review of investigations on flow instabilities in natural circulation boiling loops

    International Nuclear Information System (INIS)

    Gonella V Durga Prasad; Manmohan Pandey; Manjeet S Kalra

    2005-01-01

    Full text of publication follows: Steam generation systems are subjected to flow instabilities due to parametric fluctuations, inlet conditions etc., which may result in mechanical vibrations of components (called flow induced vibrations) and system control problems. Analysis of these instabilities in natural circulation boiling loops is very important for the safety of nuclear reactors and other boiling systems. This paper presents the state of the art in this area by reviewing over 100 contributions made in the past 30 years. A large number of experimental and numerical investigations have been conducted to study and understand the conditions for inception of flow instabilities, parametric effects of instabilities, and the system behavior under such conditions. Work done on instabilities due to channel thermal-hydraulics as well as neutronics-thermohydraulics coupling has been reviewed. Different methods of analysis used by researchers and results obtained by them have been discussed. Various numerical techniques adopted and computer codes developed have also been discussed. The knowledge obtained from the investigations made in the past three decades has been summarized to present the state of the art of the understanding of flow instabilities. (authors)

  17. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  18. An experimental investigation of flow around a vehicle passing through a tornado

    Science.gov (United States)

    Suzuki, Masahiro; Obara, Kouhei; Okura, Nobuyuki

    2016-03-01

    Flow around a vehicle running through a tornado was investigated experimentally. A tornado simulator was developed to generate a tornado-like swirl flow. PIV study confirmed that the simulator generates two-celled vortices which are observed in the natural tornadoes. A moving test rig was developed to run a 1/40 scaled train-shaped model vehicle under the tornado simulator. The car contained pressure sensors, a data logger with an AD converter to measure unsteady surface pressures during its run through the swirling flow. Aerodynamic forces acting on the vehicle were estimated from the pressure data. The results show that the aerodynamic forces change its magnitude and direction depending on the position of the car in the swirling flow. The asymmetry of the forces about the vortex centre suggests the vehicle itself may deform the flow field.

  19. An experimental investigation of flow around a vehicle passing through a tornado

    Directory of Open Access Journals (Sweden)

    Suzuki Masahiro

    2016-01-01

    Full Text Available Flow around a vehicle running through a tornado was investigated experimentally. A tornado simulator was developed to generate a tornado-like swirl flow. PIV study confirmed that the simulator generates two-celled vortices which are observed in the natural tornadoes. A moving test rig was developed to run a 1/40 scaled train-shaped model vehicle under the tornado simulator. The car contained pressure sensors, a data logger with an AD converter to measure unsteady surface pressures during its run through the swirling flow. Aerodynamic forces acting on the vehicle were estimated from the pressure data. The results show that the aerodynamic forces change its magnitude and direction depending on the position of the car in the swirling flow. The asymmetry of the forces about the vortex centre suggests the vehicle itself may deform the flow field.

  20. An Electrically Actuated Microbeam-Based MEMS Device: Experimental and Theoretical Investigation

    KAUST Repository

    Ruzziconi, Laura

    2017-11-03

    The present paper deals with the dynamic behavior of a microelectromechanical systems (MEMS). The device consists of a clamped-clamped microbeam electrostatically and electrodynamically actuated. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. In the first part of the paper an extensive experimental investigation is conducted. The microbeam is perfectly straight. The first three experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted. The experimental data show the coexistence of the nonresonant and the resonant branch, which perform a bending toward higher frequencies values before undergoing jump or pull-in dynamics. This kind of bending is not particularly common in MEMS. In the second part of the paper, a theoretical single degree-of-freedom model is derived. The unknown parameters are extracted and settled via parametric identification. A single mode reduced-order model is considered, which is obtained via the Galerkin technique. To enhance the computational efficiency, the contribution of the electric force term is computed in advance and stored in a table. Extensive numerical simulations are performed at increasing values of electrodynamic excitation. They are observed to properly predict all the main nonlinear features arising in the device response. This occurs not only at low values of electrodynamic excitation, but also at higher ones

  1. Experimental investigation of flow field in a laboratory-scale compressor

    Directory of Open Access Journals (Sweden)

    Hongwei Ma

    2017-02-01

    Full Text Available The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establish a state-of-the-art design system of turbomachinery. Currently the development of more accurate turbulence models and CFD tools is in urgent need for a high-quality database for validation, especially the advanced CFD tools, such as large eddy simulation (LES. Under this circumstance, this paper presents a detailed experimental investigation on the 3D unsteady flow field inside a laboratory-scale isolated-rotor with multiple advanced measurement techniques, including traditional aerodynamic probes, hotwire probes, unsteady endwall static pressure measurement, and stereo particle image velocimetry (SPIV. The inlet boundary layer profile is measured with both hotwire probe and aerodynamic probe. The steady and unsteady flow fields at the outlet of the rotor are measured with a mini five-hole probe and a single-slanted hotwire probe. The instantaneous flow field in the rotor tip region inside the passage is captured with SPIV, and then a statistical analysis of the spatial distribution of the instantaneous tip leakage vortex/flow is performed to understand its dynamic characteristics. Besides these, the uncertainty analysis of each measurement technique is described. This database is quite sufficient to validate the advanced numerical simulation with LES. The identification process of the tip leakage vortex core in the instantaneous frames obtained from SPIV is performed deliberately. It is concluded that the ensemble-averaged flow field could not represent the tip leakage vortex strength and the trajectory trace. The development of the tip leakage vortex could be clearly cataloged into three phases according to their statistical spatial distribution. The streamwise velocity loss induced by the tip leakage flow increases until the

  2. Experimental and theoretical investigation of bezafibrate binding to serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Gałęcki, Krystian, E-mail: kgalecki87@gmail.com [Technical University of Lodz, Lodz (Poland); Hunter, Kelsey [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom); Daňková, Gabriela [Masarykova Univerzita, Brno (Czech Republic); Rivera, Elsy [University of Houston-Downtown, Houston (United States); Tung, Lo Wing [The Hong Kong Polytechnic University (Hong Kong); Mc Sherry, Kenneth [Trinity College Dublin, Dublin (Ireland)

    2016-09-15

    The purpose of this investigation was to provide insight into the possible mechanism of the intermolecular interactions between antilipemic agent bezafibrate and serum albumins (SAs) including human (HSA) and bovine (BSA). The aim was to indicate the most probable sight of these interactions. Both experimental (spectroscopic) and theoretical methods were applied. It was determined that bezafibrate binds to SAs in one specific binding site, the fatty acid binding site 6. The results obtained from the steady-state and time-resolved fluorescence experiments suggested that existing two distinct stable conformations of the proteins with different exposure to the quencher. The dominate conformer of HSA and BSA characterized by the Stern–Volmer quenching constant (from ratio F{sub 0}/F) equal to 1.24·10{sup 4} and 8.48·10{sup 3} M{sup −1} at 298 K, respectively. The docking results and calculated thermodynamics parameters may be suggested that the binding process is spontaneous and might involve van der Waals and hydrogen bonding forces.

  3. High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Agod, A; Maros, I; Juhasz, R; Nemeth, Zs; Jakab, L; Richter, P

    2006-01-01

    A dielectric barrier Xe discharge lamp producing vacuum-ultraviolet radiation with high efficiency was investigated theoretically and experimentally. The cylindrical glass body of the lamp is equipped with thin strips of metal electrodes applied to diametrically opposite sides of the outer surface. We performed a simulation of discharge plasma properties based on one-dimensional fluid dynamics and also assessed the lamp characteristics experimentally. Simulation and experimental results are analysed and compared in terms of voltage and current characteristics, power input and discharge efficiency. Using the proposed lamp geometry and fast rise-time short square pulses of the driving voltage, an intrinsic discharge efficiency around 56% was predicted by simulation, and more than 60 lm W -1 lamp efficacy (for radiation converted into visible green light by phosphor coating) was demonstrated experimentally

  4. Theoretical analysis of film condensation in horizontal microfin tubes; Microfin tsuki suihei kannai gyoshuku no riron kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, H [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study; Nozu, S [Okamaya Prefectural University, Okayama (Japan). Faculty of Computer Science and System Engineering

    2000-10-25

    A theoretical study has been made of film condensation in helically-grooved, horizontal microfin tubes. The annular flow regime and the stratified flow regime were considered. For the annular flow regime, a previously developed theoretical model was applied. For the stratified flow regime, the height of stratified condensate was estimated by a modified Taitel and Dukler model. For the upper part of the tube exposed to the vapor flow, numerical calculation of Laminar film condensation considering the combined effects of gravity and surface tension forces was conducted. The heat transfer coefficient at the lower part of the tube was estimated by an empirical equation for the internally finned tubes developed by Carnavos. The theoretical predictions of the circumferential average heat transfer coefficient by the two theoretical models were compared with available experimental data for four refrigerants and four tubes. Generally, the annular flow model gave a higher heat transfer coefficient than the stratified flow model in the high quality region, whereas the stratified flow model gave a higher heat transfer coefficient in the low quality region. For tubes with fin heights of 0.16 {approx} 0.24 mm, most of the experimental data agreed within {+-} 20% with the higher of the two theoretical predictions. (author)

  5. Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators

    International Nuclear Information System (INIS)

    Mohamed, A.M.I.; El-Minshawy, N.A.

    2011-01-01

    Highlights: → We evaluated the performance of sea water HDD system powered by solar PTC. → The proposed design to the expected desalination plant performance was introduced. → The collector thermal efficiency was a function of solar radiation value. → The highest fresh water productivity is found to be in the summer season. → The production time reaches 42% of the day time in the summer season. - Abstract: This paper deals with the status of solar energy as a clean and renewable energy applications in desalination. The object of this research is to theoretically investigate the principal operating parameters of a proposed desalination system based on air humidification-dehumidification principles. A parabolic trough solar collector is adapted to drive and optimize the considered desalination system. A test set-up of the desalination system was designed and a theoretical simulation model was constructed to evaluate the performance and productivity of the proposed solar humidification-dehumidification desalination system. The theoretical simulation model was developed in which the thermodynamic models of each component of the considered were set up respectively. The study showed that, parabolic trough solar collector is the suitable to drive the proposed desalination system. A comparison study had been presented to show the effect of the different parameters on the performance and the productivity of the system. The productivity of the proposed system showed also an increase with the increase of the day time till an optimum value and then decreased. The highest fresh water productivity is found to be in the summer season, when high direct solar radiation and long solar time are always expected. The production time reaches a maximum value in the summer season, which is 42% of the day.

  6. Experimental investigation of the check valve behaviour when the flow is reversing

    Directory of Open Access Journals (Sweden)

    Himr D.

    2017-01-01

    Full Text Available Check valve in a pipeline is supposed to prevent the reverse flow and to allow the flow in the positive direction. The construction of check valves follows these requirements, but the check valve must not cause pressure pulsations in transients. It means when the fluid is accelerating or decelerating. The article describes an experimental investigation of a swing check valve when the flow is changing its direction. The check valve was placed in an experimental circuit, where the pressure on the upstream and downstream side of the valve was measured and the current value of flow rate was determined. The goal was to simulate conditions in the real system, where the check valve slam had been observed.

  7. Exploratory investigation of theoretical predictors of nomophobia using the Mobile Phone Involvement Questionnaire (MPIQ)

    OpenAIRE

    Boada-Grau, J.; Argumosa-Villar, L.; Vigil-Colet, A.

    2017-01-01

    Exploratory investigation of theoretical predictors of nomophobia using the Mobile Phone Involvement Questionnaire (MPIQ) DOI: 10.1016/j.adolescence.2017.02.003 URL: http://www.sciencedirect.com/science/article/pii/S0140197117300209 Filiació URV: SI Memòria Despite the advantages that the development of new technologies has brought to our lives, it is also true that the problematic use of technology can have negative effects on some people, as the prevalence of nomophobia, defi...

  8. Palæomagnetism of Hawaiian lava flows

    Science.gov (United States)

    Doell, Richard R.; Cox, Allan

    1961-01-01

    PALÆOMAGNETIC investigations of volcanic rocks extruded in various parts of the world during the past several million years have generally revealed a younger sequence of lava flows magnetized nearly parallel to the field of a theoretical geocentric axial dipole, underlain by a sequence of older flows with exactly the opposite direction of remanent magnetization. A 180-degree reversal of the geomagnetic field, occurring near the middle of the Pleistocene epoch, has been inferred by many workers from such results1–3. This is a preliminary report of an investigation of 755 oriented samples collected from 152 lava flows on the island of Hawaii, selected to represent as many stratigraphic horizons as possible. (Sampling details are indicated in Table 1.) This work was undertaken because Hawaii's numerous thick sequences of lava flows, previously mapped as Pliocene to Historic by Stearns and Macdonald4, and afterwards assigned ages ranging from later Tertiary to Recent, by Macdonald and Davis5, appeared to offer an ideal opportunity to examine the most recent reversal of Earth's field.

  9. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  10. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes

    International Nuclear Information System (INIS)

    Wenzel, H; Crump, P; Pietrzak, A; Wang, X; Erbert, G; Traenkle, G

    2010-01-01

    The factors that limit both the continuous wave (CW) and the pulsed output power of broad-area laser diodes driven at very high currents are investigated theoretically and experimentally. The decrease in the gain due to self-heating under CW operation and spectral holeburning under pulsed operation, as well as heterobarrier carrier leakage and longitudinal spatial holeburning, are the dominant mechanisms limiting the maximum achievable output power.

  11. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    Science.gov (United States)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  12. Investigation of low-frequency-oscillating water flow in metal foam with 10 pores per inch

    Science.gov (United States)

    Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.

    2018-01-01

    In this study, oscillating water flow in metal foam with open cells is investigated experimentally. The metal foam sample has a porosity of 88% and 10 pores. The water was oscillated in the test section with three frequencies between 0.116 Hz and 0.348 Hz, which are considered low for water oscillation, and three flow displacements ranging between 74.35 mm and 111.53 mm. The combinations of frequencies of displacements were studied for their impacts of dimensional and non-dimensional pressure loss quantities. To this purpose, friction factor was correlated as a function of kinetic Reynolds number. The same metal foam sample was studied by exposing it to steady-state water flow to investigate its permeability and drag coefficient in low-velocity flow regimes. The friction factor distribution for oscillating flow was found to be over that found for steady state. The outcomes of the study are important for studying heat transfer under the same flow conditions.

  13. Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

    International Nuclear Information System (INIS)

    Zhu, W J; Shen, W Z; Sørensen, J N

    2014-01-01

    This paper concerns a numerical study of employing an adaptive trailing edge flap to control the lift of an airfoil subject to unsteady inflow conditions. The periodically varying inflow is generated by two oscillating airfoils, which are located upstream of the controlled airfoil. To establish the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical simulations are convincing and may give some highlights for practical implementations of trailing edge flap to a wind turbine rotor blade

  14. INVESTIGATING THE EFFECT OF SLURRY SEAWATER FLOW IN CARBON-STEEL ELBOWS

    Directory of Open Access Journals (Sweden)

    Mohamed Shehadeh

    2013-12-01

    Full Text Available Understanding the failure mechanism due to erosion helps in introducing predictive means for parts that are vulnerable to erosion–corrosion effects, such as elbows. This paper is concerned with studying the behavior of steel elbows working in erosive environments. Rates of iron losses due to both flow rate variations and sand concentration variations were investigated. In order to avoid interference from other parts of the system, a PVC test rig, fitted with only one steel elbow at a time, was constructed. The flow rate was controlled to cover both the laminar and turbulent flow regimes. The sand concentration varied from nil up to 9 grams per liter. A spectrophotometer was utilized to measure the quantity of iron losses. Results showed that the critical sand concentration for the erosion mechanism is 3 g/l. Also an empirical formula was developed for estimating the erosion-corrosion rate in laminar and turbulent flow regimes with different sand contamination levels.

  15. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  16. Mass transfer in counter current flows

    Energy Technology Data Exchange (ETDEWEB)

    Doichinova, Maria D.; Popova, Petya G.; Boyadjiev, Christo B. [Bulgarian Academy of Science, Institute of Chemical Engineering, Sofia (Bulgaria)

    2011-07-01

    A theoretical analysis of gas-liquid counter-current flow in laminar boundary layers with flat phase boundary based on similarity variables method has been done. The obtained numerical results for the energy dissipation, mass transfer rate and their ratio are compared with analogous results for concurrent flows. A diffusion type of model is proposed for modeling of the mass transfer with chemical reaction in the column apparatuses in the cases of circulation zones. The presence of rising and descending flows (the change of the velocity direction) leads to using three coordinate systems. An iterative algorithm for the concentration distribution calculation is proposed. The influence of the zones breadths on the mass transfer efficiency in the column is investigated. Key words: efficiency, mass transfer, velocity distribution, column apparatuses, circulation zones.

  17. Theoretical study on air flow in a solar chimney with real insulation conditions; Estudo teorico do escoamento de ar em uma chamine solar com condicoes reais de insolacao

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Andre Guimaraes; Cortez, Marcio Fonte-Boa; Molina Valle, Ramon; Brasil, Cristiana Santiago [Minas Gerais Univ., Belo Horizonte, MG, (Brazil). Dept. de Engenharia Mecanica]. E-mail: ferreira@demec.ufmg.br

    2000-07-01

    This paper presents a theoretical analysis of the turbulent air flow with real conditions of insulation inside a solar chimney. The flow is described by the mass, momentum and energy conservation equations, besides the transport equations of the quantities in the turbulence model (k and epsilon). Dimensionless parameters are presented at way out the device, as function of time and the insulation conditions, represented by the soil and the roof heating.

  18. Numerical investigation on the energetic performances of conventional and pellet aftertreatment systems in flow-through and reverse-flow designs

    Directory of Open Access Journals (Sweden)

    Morrone Pietropaolo

    2011-01-01

    Full Text Available The aim of the paper is the analysis of the energetic performances of structured and pelletized aftertreatment systems in flow-through and reverse-flow designs (passive and active flow control respectively for diesel internal combustion engines. To this purpose, the influence of the engine operating conditions on the system performances has been investigated adopting a one-dimensional time-dependent model. Specifically, the thermal behaviour and the fuel saving capability of several arrangements have been characterized. The analysis has shown that the active emission control system with pelletized design guarantees higher heat retention capability. Furthermore, the numerical model has revealed the significant influence of the solid and exhaust gas temperature on the energy efficiency of the aftertreatment systems and the large effect of exhaust mass flow rate and unburned hydrocarbons concentration.

  19. Semi-local scaling and turbulence modulation in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Peeters, J.W.R.; Boersma, B.J.; Pecnik, R.

    2015-01-01

    We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and

  20. Experimental investigation of two-phase gas-liquid flow in microchannel with T-junction

    Science.gov (United States)

    Bartkus, German; Kozulin, Igor; Kuznetsov, Vladimir

    2017-10-01

    Using high-speed video recording and the method of dual laser scanning the gas-liquid flow was investigated in rectangular microchannels with an aspect ratio of 2.35 and 1.26. Experiments were earned out for the vertical flow of ethanol-nitrogen mixture in a microchannel with a cross section of 553×235 µm and for the horizontal flow of water-nitrogen mixture in a microchannel with a cross section of 315×250 µm. The T-mixer was used at the channel's inlet for gas-liquid flow formation. It was observed that elongated bubble, transition, and annular flows are the main regimes for a microchannel with a hydraulic diameter substantially less than the capillary constant. Using laser scanning, the maps of flow regimes for ethanol-nitrogen and water-nitrogen mixtures were obtained and discussed.

  1. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    International Nuclear Information System (INIS)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A.

    2004-01-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample

  2. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, A. E-mail: alessandro.vindigni@unifi.it; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M.A

    2004-05-01

    We investigate the relaxation time, {tau}, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of {tau}, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigated temperature range the correlation length exceeds the finite length also in the pure sample.

  3. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  4. Investigation of intrarenal blood flow and urine flow aspects by scintillation camera

    International Nuclear Information System (INIS)

    Kawamura, J.; Hosokawa, S.; Yoshida, O.; Ishii, Y.; Torizuka, K.

    1977-01-01

    In order to clarify intrarenal dynamic processes related to regional distribution in patients with unilateral renal disease, two radioactive tracers, 133 Xe and /sup 99m/Tc-diethylenetriaminepentaacetic acid (/sup 99m/Tc-DTPA) were introduced into a renal artery and intrarenal blood flow and urine flow aspects were observed by scintillation camera. Cortical blood flow decreased and medullary blood flow relatively increased with the advance of renal damage. Urine flow curve from normal cortex showed two phasic patterns. One early phase might correspond to the appearance of the tracer through the proximal tubule and a second phase might correspond to the appearance of the tracer through the loop of Henle to the distal tubule. Under mannitol diuresis, two phasic urine flow curves from the cortex became obscured and the peak time of pelvic curve shifted to the earlier period. These studies were considered to be useful in evaluating unilateral renal function and might offer a good insight for intrarenal physiology concerning blood flow as well as urine flow

  5. Investigation of turbulence models with compressibility corrections for hypersonic boundary flows

    Directory of Open Access Journals (Sweden)

    Han Tang

    2015-12-01

    Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.

  6. A numerical investigation of the resin flow front tracking applied to the RTM process

    Directory of Open Access Journals (Sweden)

    Jeferson Avila Souza

    2011-09-01

    Full Text Available Resin Transfer Molding (RTM is largely used for the manufacturing of high-quality composite components and the key stage during processing is the resin infiltration. The complete understanding of this phenomenon is of utmost importance for efficient mold construction and the fast production of high quality components. This paper investigates the resin flow phenomenon within the mold. A computational application was developed to track the resin flow-front position, which uses a finite volume method to determine the pressure field and a FAN (Flow Analysis Network technique to track the flow front. The mass conservation problem observed with traditional FE-CV (Finite Element-Control Volume methods is also investigated and the use of a finite volume method to minimize this inconsistency is proposed. Three proposed case studies are used to validate the methodology by direct comparison with analytical and a commercial software solutions. The results show that the proposed methodology is highly efficient to determine the resin flow front, showing an improvement regarding mass conservation across volumes.

  7. A low-power high-flow shape memory alloy wire gas microvalve

    International Nuclear Information System (INIS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; Van der Wijngaart, Wouter; Clausi, Donato; Peirs, Jan; Reynaerts, Dominiek

    2012-01-01

    In this paper the use of shape memory alloy (SMA) wire actuators for high gas flow control is investigated. A theoretical model for effective gas flow control is presented and gate microvalve prototypes are fabricated. The SMA wire actuator demonstrates the robust flow control of more than 1600 sccm at a pressure drop of 200 kPa. The valve can be successfully switched at over 10 Hz and at an actuation power of 90 mW. Compared to the current state-of-the-art high-flow microvalves, the proposed solution benefits from a low-voltage actuator with low overall power consumption. This paper demonstrate that SMA wire actuators are well suited for high-pressurehigh-flow applications. (paper)

  8. Silicene: a review of recent experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Houssa, M; Dimoulas, A; Molle, A

    2015-01-01

    Silicene is the silicon counterpart of graphene, i.e. it consists in a single layer of Si atoms with a hexagonal arrangement. We present a review of recent theoretical and experimental works on this novel two dimensional material. We discuss first the structural, electronic and vibrational properties of free-standing silicene, as predicted from first-principles calculations. We next review theoretical studies on the interaction of silicene with different substrates. The growth and experimental characterization of silicene on Ag(1 1 1) is next discussed, providing insights into the different phases or atomic arrangements of silicene observed on this metallic surface, as well as on its electronic structure. Recent experimental findings about the likely formation of hexagonal Si nanosheets on MoS2 are also highlighted. (topical review)

  9. The capture of submicron particles by collector plates - Wind-tunnel investigations

    International Nuclear Information System (INIS)

    Gauthier, Daniel

    1971-01-01

    The deposition of submicron particles on collector plates parallel to the flow was studied experimentally in a wind-tunnel. The validity of a theoretical model based on brownian diffusion was investigated and its Inadequacies tested. The aerosol sample consisted of uranine particles (mean geometrical radius: about 0. 1 μm). The average flow speeds varied from 1 to 10 m/s and the length of the collector plates between 1 and 10 cm. Results showed that capture was mainly due to diffusion and was in good agreement with the theoretical model; however a noticeable deposit of particles on the front part of the collector edge was observed. Sedimentation was insignificant in almost all the cases. (author) [fr

  10. CFD investigation of flow and heat transfer of nanofluids in isoflux spirally fluted tubes

    KAUST Repository

    Salama, Amgad

    2012-01-01

    In this work, the problem of flow and heat transfer of nanofluids in spirally fluted tubes is investigated numerically using the CFD code Fluent. The tube investigated in this work is characterized by the existence of helical ridging which is usually obtained by embossing a smooth tube. A tube of diameter of 15 mm, 1.5 mm groove depth and a single helix with pitch of 64 mm is chosen for simulation. This geometry has been chosen for simulation because it has been investigated experimentally for pure fluids and would, therefore, provide a verification framework with our CFD model. The result of our CFD investigation compares very well with the experimental work conducted on this tube geometry. Interesting patterns are highlighted and investigated including the existence of flow swirl as a result of the existence of the spirally enhanced ridges. This swirl flow enhances heat transfer characteristics of this system as reported in the literatures. This study also shows that further enhancement is achieved if small amount of nanoparticles are introduced to the fluid. These nanoparticles (metallic-based nanoparticles) when introduced to the fluid enhances its heat transfer characteristics.

  11. Theoretical research of helium pulsating heat pipe under steady state conditions

    International Nuclear Information System (INIS)

    Xu, D; Liu, H M; Li, L F; Huang, R J; Wang, W

    2015-01-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied. (paper)

  12. Theoretical research of helium pulsating heat pipe under steady state conditions

    Science.gov (United States)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  13. Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch

    KAUST Repository

    Ramini, Abdallah

    2016-05-02

    We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon micromachined arch is examined and its mechanical behavior is measured using optical techniques. An algorithm is developed to extract the various parameters, such as the induced axial force and the initial rise, needed to model the behavior of the arch. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Dynamic snap-through behavior is also reported for larger range of electric loads. Theoretically, a multi-mode Galerkin reduced order model is utilized to simulate the arch behavior. General agreement is reported among the theoretical and experimental data.

  14. Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES

    International Nuclear Information System (INIS)

    Pavlidis, Dimitrios; Lathouwers, Danny

    2013-01-01

    The very high temperature reactor is one of the designs currently being considered for nuclear power generation. One its variants is the pebble bed reactor in which the coolant passes through complex geometries (pores) at high Reynolds numbers. A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in such reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. coolant flow and heat transfer patterns are investigated

  15. FLOW-INDUCED VIBRATION IN PIPES: CHALLENGESS AND SOLUTIONS - A REVIEW

    Directory of Open Access Journals (Sweden)

    M. SIBA

    2016-03-01

    Full Text Available The Flow-induced vibration has recently been the topic of experimental, numerical, and theoretical studies. It was intended to implement better applications for controlling the flow using orifice technique. Having the flow under control, the orifice becomes an instrument for measuring the flow. The flow of all fluid such as water, oil, gas and vapours through an orifice was tested and mathematical models were developed adequately. The basic theme for these enormous studies was the need for the very accurate flow measurements through orifices. All experimental, theoretical, numerical, and analytical studies have agreed that there is more than one avenue to develop, modify, and enhance such measurements. However, one factor that affects the flow measurements is the vibration which was not treated as required until the mid-20th century due to enormous discoveries that damages could be rooted to vibration. Researchers have studied vibration and then proposed mathematical models in conjunction with the pressure and velocity measurements of the flowing fluids and then the effect of the vibration, induced or not induced, has been under continuous investigation. This paper is an attempt to review the previous studies regarding understanding the nature of the vibration and the possible effects of vibration on the flow and on the piping structure in order to limit the damage caused by the vibration. This study shows that the need for more experimental studies and more comprehensive analytical approaches are, in particular, very essential to develop better results.

  16. A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of {alpha}-tetrathiophene

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Carlos [Departament d' Enginyeria Quimica, E.T.S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.edu; Oliver, Ramon [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain); Brillas, Enric [Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1, Barcelona E-08028 (Spain); Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No. 69, Lleida E-25001 (Spain); Estrany, Francesc [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain)], E-mail: francesc.estrany@upc.edu

    2006-04-21

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene. The results derived from anodic polymerization of {alpha}-tetrathiophene using SCN{sup -}, Cl{sup -}, Br{sup -}, NO{sub 3}{sup -}ClO{sub 3}{sup -}andClO{sub 4}{sup -} as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by {alpha}-tetrathiophene and X=SCN, Cl, Br, NO{sub 3}, ClO{sub 3} and ClO{sub 4}. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene.

  17. Radiogauging to investigate two phase flow. Graduation report

    International Nuclear Information System (INIS)

    Corten, G.P.

    1992-01-01

    New measuring methods are developed and are tested with the small reactor simulator MIDAS (Mini Dodewaard ASsembly). The purpose of this work is to be able to measure accurately as many different properties of the flow as possible in the coming bigger simulator SIDAS (Simulated Dodewaard ASsembly). In SIDAS the flow around a fuel assembly of the Dutch Dodewaard reactor will be simulated. An extensive evaluation of the gamma detection system showed that the detection system could be simplified strongly. The simplified system is used to measure the radial and axial distribution of the void fraction in the core of MIDAS for three different operating conditions. Two new measuring methods have been developed and tested. A method to estimate the probability density of the void fraction in time. Due to the nonlinear relation between transmission and void fraction the determined average value of the void fraction in general will contain a systematic error. In this investigation it is shown that this error can be maximally 7.5% in MIDAS and maximally 25% in SIDAS. Therefore a new measuring method has been developed in which the true probability density of the void fraction in time is approximated by two different values of the void fraction, each with a certain probability. With this new method firstly the average void fraction can be determined much more precisely and secondly it often can be used to determine the flow pattern. (orig./WL)

  18. Radiogauging to investigate two phase flow. Graduation report

    Energy Technology Data Exchange (ETDEWEB)

    Corten, G P

    1992-11-12

    New measuring methods are developed and are tested with the small reactor simulator MIDAS (Mini Dodewaard ASsembly). The purpose of this work is to be able to measure accurately as many different properties of the flow as possible in the coming bigger simulator SIDAS (Simulated Dodewaard ASsembly). In SIDAS the flow around a fuel assembly of the Dutch Dodewaard reactor will be simulated. An extensive evaluation of the gamma detection system showed that the detection system could be simplified strongly. The simplified system is used to measure the radial and axial distribution of the void fraction in the core of MIDAS for three different operating conditions. Two new measuring methods have been developed and tested. A method to estimate the probability density of the void fraction in time. Due to the nonlinear relation between transmission and void fraction the determined average value of the void fraction in general will contain a systematic error. In this investigation it is shown that this error can be maximally 7.5% in MIDAS and maximally 25% in SIDAS. Therefore a new measuring method has been developed in which the true probability density of the void fraction in time is approximated by two different values of the void fraction, each with a certain probability. With this new method firstly the average void fraction can be determined much more precisely and secondly it often can be used to determine the flow pattern. (orig./WL).

  19. An experimental and theoretical investigation of the mechanical behavior of multilayer initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2017-04-07

    We investigate the static and dynamic behavior of a multilayer clamped-free-clamped-free (CFCF) microplate, which is made of polyimide, gold, chromium, and nickel. The microplate is slightly curved away from a stationary electrode and is electrostatically actuated. The free and forced vibrations of the microplate are examined. First, we experimentally investigate the variation of the first natural frequency under the electrostatic DC load. Then, the forced dynamic behavior is investigated by applying a harmonic AC voltage superimposed to a DC voltage. Results are shown demonstrating the transition of the dynamic response of the microplate from hardening to softening as the DC voltage is changed as well the dynamic pull-in phenomenon. For theoretical model, we adopt a dynamic analog of the von-Karman governing equations accounting for initial curvature imperfection. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the mechanical behavior of the microplate. We compare the theoretical results with experimental data and show excellent agreement among the results. We also examine the effect of the initial rise on the natural frequencies of first three symmetric-symmetric modes of the plate.

  20. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid

    DEFF Research Database (Denmark)

    Asadi, Meisam; Asadi, Amin; Aberoumand, Sadegh

    2018-01-01

    The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...... nanofluid is highly efficient in heat transfer applications as a coolant fluid in both the laminar and turbulent flow regimes, although it causes a certain penalty in the pumping power....... efficiency and pumping power in all the studied range of solid concentrations and temperatures have been theoretically investigated, based on the experimental data of dynamic viscosity and thermal conductivity, for both the internal laminar and turbulent flow regimes. It was observed that the studied......The present work aims to study heat transfer performance and pumping power of MgO-MWCNT/ thermal oil hybrid nanofluid. Using a KD2 Pro thermal analyzer, the thermal conductivity of the samples have been measured. The results showed an increasing trend for the thermal conductivity of the nanofluid...

  1. A theoretical study of resin flows for thermosetting materials during prepreg processing

    Science.gov (United States)

    Hou, T. H.

    1984-01-01

    A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.

  2. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    1979-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  3. Tetraphenylpyrimidine-Based AIEgens: Facile Preparation, Theoretical Investigation and Practical Application

    Directory of Open Access Journals (Sweden)

    Junkai Liu

    2017-10-01

    Full Text Available Aggregation-induced emission (AIE has become a hot research area and tremendous amounts of AIE-active luminogens (AIEgens have been generated. To further promote the development of AIE, new AIEgens are highly desirable. Herein, new AIEgens based on tetraphenylpyrimidine (TPPM are rationally designed according to the AIE mechanism of restriction of intramolecular motion, and facilely prepared under mild reaction conditions. The photophysical property of the generated TPPM, TPPM-4M and TPPM-4P are systematically investigated and the results show that they feature the aggregation-enhanced emission (AEE characteristics. Theoretical study shows the high-frequency bending vibrations in the central pyrimidine ring of TPPM derivatives dominate the nonradiative decay channels. Thanks to the AEE feature, their aggregates can be used to detect explosives with super-amplification quenching effects, and the sensing ability is higher than typical AIE-active tetraphenylethene. It is anticipated that TPPM derivatives could serve as a new type of widely used AIEgen based on their facile preparation and good thermo-, photo- and chemostabilities.

  4. Experimental Investigation and Theoretical Modeling of Nanosilica Activity in Concrete

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2014-01-01

    Full Text Available This paper presents experimental investigations and theoretical modeling of the hydration reaction of nanosilica blended concrete with different water-to-binder ratios and different nanosilica replacement ratios. The developments of chemically bound water contents, calcium hydroxide contents, and compressive strength of Portland cement control specimens and nanosilica blended specimens were measured at different ages: 1 day, 3 days, 7 days, 14 days, and 28 days. Due to the pozzolanic reaction of nanosilica, the contents of calcium hydroxide in nanosilica blended pastes are considerably lower than those in the control specimens. Compared with the control specimens, the extent of compressive strength enhancement in the nanosilica blended specimens is much higher at early ages. Additionally, a blended cement hydration model that considers both the hydration reaction of cement and the pozzolanic reaction of nanosilica is proposed. The properties of nanosilica blended concrete during hardening were evaluated using the degree of hydration of cement and the reaction degree of nanosilica. The calculated chemically bound water contents, calcium hydroxide contents, and compressive strength were generally consistent with the experimental results.

  5. Economic Integration and Foreign Direct Investment: Review of Main Theoretical Concepts

    Directory of Open Access Journals (Sweden)

    Adam MARSZK

    2014-10-01

    Full Text Available The objective of the article is to present key theoretical relationships between economic integration and FDI flows. The research method used is a comprehensive literature review. Most influential publications, including books, articles, working papers, etc. contributing to the subject were identified. The review consists of two essential parts: theory of FDI, and theoretical relationships between economic integration and FDI flows. Finally, the outlined publications were discussed and critiqued, including the empirical context, i.e. empirical verification of the presented links.

  6. Improving Organizational Citizenship Behavior based on Flow Experience

    Directory of Open Access Journals (Sweden)

    Alecxandrina Deaconu

    2016-07-01

    Full Text Available Building on previous research on Organizational Citizenship Behavior (OCB and its influence on the performance of SMEs, this article intends to expand the investigation area to the concept of Flow and its relationship with OCB. In this paper we performed an analysis of the two theoretical constructs, we highlighted similarities and complementarities and we formulated arguments supporting the need to implement strategies that promote a state of flow. Our study points out that through these strategies, employees are encouraged to perform an extra role, beyond their formal duties, which generates an increase of OCB and favorable conditions for sustainable development.

  7. Investigation Of Cross-Flow Model Water Turbine

    International Nuclear Information System (INIS)

    Obretenov, V.S.

    1998-01-01

    The research is made with the basic objective of constructing effective stream section of cross-flow turbine. In the research project are presented the results from experimental testing of the cross-flow turbine with various runner. nozzles and draft tubes. The rotational and universal characteristics of the turbine are presented. The experimental results have been analyzed.The results from the research give the possibility to make clear some important aspects of the working process with the cross-flow turbines. The characteristics derived from these tests prove that the stream section of the tested cross-flow turbine can be used as a model in the construction of cross-flow turbines for power electric stations with small capacity

  8. Investigation of two-phase flow instability under SMART-P core conditions

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Lee, Chung Chan

    2005-01-01

    An integral-type advanced light water reactor, named SMART-P, is being continuously studied at KAERI. The reactor core consists of hundreds of closed-channel type fuel assemblies with vertical upward flows. The upper and lower parts of the fuel assembly channels are connected to the common heads. The constant pressure drop imposed on the channel is responsible for the occurrence of density wave oscillations under local boiling and/or natural circulation conditions. The fuel assembly channel with oscillatory flow is highly susceptible to experience the CHF which may cause the fuel failure due to a sudden increase of the cladding temperature. Thus, prevention of the flow instability is an important criterion for the SMART-P core design. Experimental and analytical studies have been conducted in order to investigate the onset of flow instability (OFI) under SMART core conditions. The parallel channel oscillations were observed in a high pressure water-loop test facility. A linear stability analysis model in the frequency-domain was developed for the prediction of the marginal stability boundary (MSB) in the parallel boiling channels

  9. Investigation of the flow through an axial turbine stage

    Energy Technology Data Exchange (ETDEWEB)

    Svensdotter, S.; Wei Ning [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1995-12-31

    In this licentiate thesis the classical turbine theory and experimental results from the test turbine at KTH have been studied. The theory for the data evaluation program has also been studied and the loss models by Traupel and Denton have been investigated and applied to the measured results. The work has been performed to prepare for a theory concerning aerodynamic design of so called compound leaned blades and for future experiments on this non-conventional blade design with a new measurement system. A literature survey shows that the compound lean can be an effective three-dimensional technique in turbine designs, with significantly improved flow conditions, especially near the end-wall regions. A new measurement system, PSI, has been installed and the first preliminary tests shows good agreement with the existing system. The speed of the global measurements has been improved from about 10 minutes to about 12 seconds. The system reliability and documentation is also improved with the PSI system. The accuracy of the PSI-system is significantly better on the pressure measurement side, while the analogue side has somewhat less accuracy for the moment. From the analysis of the measurement results on the 25 mm stage, the tendencies of parameter variation versus pressure and velocity ratios were gained by the authors. The results show high secondary flow loss cores near the end-walls downstream the stator. The result is similar with those from the literature survey. The radial positions of the secondary flow cores change when simulating stator leakage flow. 140 refs, 54 figs, 14 tabs, 14 appendices

  10. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    OpenAIRE

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domai...

  11. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    Science.gov (United States)

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  12. CFD investigation of flow inversion in typical MTR research reactor undergoing thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Salama, Amgad

    2011-01-01

    Highlights: → The 3D, CFD simulation of FLOFA accident in the generic IAEA 10 MW research reactor is carried out. → The different flow and heat transfer mechanisms involved in this process were elucidated. → The transition between these mechanisms during the course of FLOFA is discussed and investigated. → The interesting inversion process upon the transition from downward flow to upward flow is shown. → The temperature field and the friction coefficient during the whole transient process were shown. - Abstract: Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.

  13. Theoretical and experimental investigation of carnosine and its oxygenated adducts. The reaction with the nickel ion

    Energy Technology Data Exchange (ETDEWEB)

    Pavlos, Dimitrios; Petropouleas, Panayiotis; Hatzipanayioti, Despina, E-mail: stambaki@chem.uoa.gr

    2015-11-05

    Highlights: • Study on models of neutral cations and anions of carnosine at the B3LYP/TZVP level. • The {sup 1}O{sub 2}-adducts of these models resulted in oxygenated carnosine. • Theoretical parameters correlated to experimental results for carn and carn-H{sub 2}O{sub 2}. • Theoretical models of Nickel-carn complexes have been investigated. • Isolation and characterization of the solid [Ni(carn){sub 2}(H{sub 2}O){sub 5}] have been performed. - Abstract: DFT theoretical calculations at B3LYP/TZVP or LANL2DZ level of theory, for neutral, zwitterions, protonated and anionic carnosine, were performed. Energies, the structural and spectroscopic parameters were calculated in the gas phase and aqueous medium. Additional H-bonds stabilize the ionized forms of carnosine, creating “nests” into which metal ions or bio-molecules may be sheltered. Based on Fukui functions, the reactivity of the abovementioned forms of carnosine, with {sup 1}O{sub 2}, may lead to oxygenated species. The theoretical spectroscopic parameters have been correlated to our experimental results. The effect of H{sub 2}O{sub 2} and the electrochemistry of aqueous carnosine solutions were examined. Theoretical models containing Ni(II), carnosine and water were constructed. In the isolated mauve solid, formulated [Ni(carn){sub 2}(H{sub 2}O){sub 5}], the COO−, N{sub π} and/or NH{sub 2} were bonded. When H{sub 2}O{sub 2} was added, the imidazole NMR signals disappeared. A redox couple clearly indicates one electron process, the electron coming from either the oxidation of imidazole ring or the nickel(II)/Ni(III) couple.

  14. An Experimental Investigation of an Airfoil Traversing Across a Shear Flow

    Science.gov (United States)

    Hamedani, Borhan A.; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    While the aerodynamics of an airfoil in a uniform approach flow is well understood, less attention has been paid to airfoils in non-uniform flows. An aircraft encounters such flow, for example, during landing through the air wake of an aircraft carrier. The present work is focused on investigating the fundamental aerodynamics of airfoils in such an environment using canonical flow experiments. To generate a shear approach flow, a shaped honeycomb block is employed in a wind tunnel setup. Direct force measurements are performed on a NACA 0012 airfoil, with an aspect ratio of 1.8, as the airfoil traverses steadily across the shear region. Measurements are conducted at a chord Reynolds number Rec 75k, based on the mean approach stream velocity at the center of the shear zone, for a range of airfoil traverse velocities and angles of attack (0 - 12 degree). The results are compared to those obtained for the same airfoil when placed statically at different points along the traverse path inside the shear zone. The comparison enables examination of the applicability of quasi-steady analysis in computing the forces on the moving airfoil. This work is supported by ONR Grant Number N00014-16-1-2760.

  15. Flooding and flow reversal of two-phase annular flow

    International Nuclear Information System (INIS)

    Asahi, Y.

    1978-01-01

    The flooding and flow reversal conditions of two-phase annular flow are mathematically defined in terms of a characteristic function representing a force balance. Sufficiently below the flooding point in counter-current flow, the interface is smooth and the characteristic equation reduces to the Nusselt relationship. Just below flooding point and above the flow reversal point in cocurrent flow, the interface is 'wavy', so that the interfacial shear effect plays an important role. The theoretical analysis is compared with experimental results by others. It is suggested that the various length effects which have been experimentally observed may be accounted for by the spatial variation of the droplet entrainment. (Auth.)

  16. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    Science.gov (United States)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  17. A numerical investigation of turbulent flow in an 18-plate nuclear fuel assembly

    International Nuclear Information System (INIS)

    Yu, R.; Lightstone, M.F.

    2003-01-01

    A numerical simulation of the fluid flow in the core of the McMaster Nuclear Reactor (MNR) was performed. The standard k - ε turbulence model together with a two-layer wall boundary model was used in the current study. A two-dimensional numerical model for the MNR 18-plate nuclear fuel assembly was developed using the advanced commercial computational fluid dynamics (CFD) code CFX-TASCflow. The numerical predictions were compared with experimental data for the MNR 18-plate assembly at the same flow conditions. In general, the code over predicts the pressure drop for the range of the mass flow rate investigated, however, the difference decreases as the mass flow rate (or Reynolds number) increases. Errors of less than 4% were obtained for mass flows greater than 4.0 kg/s. The comparison shows that the predicted flow distribution and velocities are very close to the measured data for the high Reynolds number flows. It is found that the k - ε model with the two-layer wall boundary model can predict the flow in the vertical parallel plate channels in the low Reynolds number region (Re=3000 to 10,000) very well. (author)

  18. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating

    International Nuclear Information System (INIS)

    Kolios, M.C.; Worthington, A.E.; Hunt, J.W.; Holdsworth, D.W.; Sherar, M.D.

    1999-01-01

    Temperature distributions measured during thermal therapy are a major prognostic factor of the efficacy and success of the procedure. Thermal models are used to predict the temperature elevation of tissues during heating. Theoretical work has shown that blood flow through large blood vessels plays an important role in determining temperature profiles of heated tissues. In this paper, an experimental investigation of the effects of large vessels on the temperature distribution of heated tissue is performed. The blood flow dependence of steady state and transient temperature profiles created by a cylindrical conductive heat source and an ultrasound transducer were examined using a fixed porcine kidney as a flow model. In the transient experiments, a 20 s pulse of hot water, 30 deg. C above ambient, heated the tissues. Temperatures were measured at selected locations in steps of 0.1 mm. It was observed that vessels could either heat or cool tissues depending on the orientation of the vascular geometry with respect to the heat source and that these effects are a function of flow rate through the vessels. Temperature gradients of 6 deg. C mm -1 close to large vessels were routinely measured. Furthermore, it was observed that the temperature gradients caused by large vessels depended on whether the heating source was highly localized (i.e. a hot needle) or more distributed (i.e. external ultrasound). The gradients measured near large vessels during localized heating were between two and three times greater than the gradients measured during ultrasound heating at the same location, for comparable flows. Moreover, these gradients were more sensitive to flow variations for the localized needle heating. X-ray computed tomography data of the kidney vasculature were in good spatial agreement with the locations of all of the temperature variations measured. The three-dimensional vessel path observed could account for the complex features of the temperature profiles. The flow

  19. Investigation and prevention of droplet splashing during operation of a sodium free jet flow

    International Nuclear Information System (INIS)

    Stoppel, L.; Gordeev, S.; Wetzel, T.; Fellmoser, F.; Daubner, M.

    2010-01-01

    Many accelerator application concepts consider liquid metal as a windowless target, at which the particle beam does directly hit the liquid. One of such concepts is studied in the European project ''DIRAC-Secondary beams - Design Study''. This project is focused on the preliminary research work for construction of a new international particle accelerator - Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The planned accelerator is aimed to work with high-energy heavy-ions, such as U 238 . One of the key elements of the FAIR facility is a liquid-metal-target, made in the form of a rectangular shaped Lithium jet aligned with the gravity vector. In the course of preliminary investigations the theoretical and practical conditions for a stable liquid-metal-jet conforming to the FAIR-requirements have been studied in the Karlsruhe Liquid Metal Laboratory (KALLA) sodium facility. The acquired scientific and technological results can be transferred to liquid-metal targets in nuclear applications, for example, the IFMIF-Target for the study of fusion reactor materials and the Myrrah/XT-ADS target. The main goals of the KALLA-part of the project were to design and build a facility for experimental research on hydrodynamic phenomena of the free surface liquid metal flow as well as to look at technological problems influencing the hydrodynamic stability of such flows. One of such problems emerged already during the startup of the facility: Splashing of liquid metal drops in the vacuum volume of the target box. As a result of such splashing process, liquid metal droplets are accumulated on various internal constructional elements of the target box, for example, on the inspection windows. This effect prohibits long term operation with the facility. The present paper describes the methods used to reduce the splashing to a minimum. (orig.)

  20. An experimental investigation of flow instability between two heated parallel channels with supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xi; Xiao, Zejun, E-mail: fabulous_2012@sina.com; Yan, Xiao; Li, Yongliang; Huang, Yanping

    2014-10-15

    Highlights: • Flow instability experiment between two heated channels with supercritical water is carried out. • Two kinds of out of phase flow instability are found and instability boundaries under different working conditions are obtained. • Dynamics characteristics of flow instability are analyzed. - Abstract: Super critical water reactor (SCWR) is the generation IV nuclear reactor in the world. Under normal operation, water enters SCWR from cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change of temperature, there is a huge density change in the core, which could result in potential flow instability and the safety of reactor would be threatened consequently. So it is necessary to carry out relevant investigation in this field. An experimental investigation which concerns with out of phase flow instability between two heated parallel channels with supercritical water has been carried out in this paper. Due to two INCONEL 625 pipes with a thickness of 6.5 mm are adopted, more experimental results are attained. To find out the influence of axial power shape on the onset of flow instability, each heated channel is divided into two sections and the heating power of each section can be controlled separately. Finally the instability boundaries are obtained under different inlet temperatures, axial power shapes, total inlet mass flow rates and system pressures. The dynamics characteristics of out of phase oscillation are also analyzed.

  1. Experimental investigation on flow instability of forced circulation in a vertical mini-rectangular channel

    International Nuclear Information System (INIS)

    Yu Zhiting; Tan Sichao; Yuan Hongsheng; Zhuang Nailiang; Chen Hanying

    2015-01-01

    An experimental study was conducted to investigate the flow instability in a vertical mini-rectangular channel with distilled water as the working fluid. The rotational speed of the primary pump is gradually reduced to lower the inlet flow rate until the flow becomes unstable, while maintaining all other thermal parameters unchanged. Three types of instability, characterized by large amplitude oscillation, small amplitude oscillation and flow excursion, were identified from the experimental data. A stability map for the vertical mini-rectangular channel under forced circulation was established based on the Subcooling number and Phase Change number. The oscillation periods were correlated with the fluid transit time and the boiling delay time. A flow pattern map for vertical upward flow in a mini-rectangular channel was applied to confirm the flow patterns during the oscillation. The mechanisms of the three types of instability were obtained by considering several types of flow instabilities and comparing them with the oscillations observed in this work. (author)

  2. Investigation of the mixture flow rates of oil-water two-phase flow using the turbine flow meter

    International Nuclear Information System (INIS)

    Li Donghui; Feng Feifei; Wu Yingxiang; Xu Jingyu

    2009-01-01

    In this work, the mixture flow rate of oil-water flows was studied using the turbine flow-meter. The research emphasis focuses on the effect of oil viscosity and input fluids flow rates on the precision of the meter. Experiments were conducted to measure the in-situ mixture flow rate in a horizontal pipe with 0.05m diameter using seven different viscosities of white oil and tap water as liquid phases. Results showed that both oil viscosity and input oil fraction exert a remarkable effect on measured results, especially when the viscosity of oil phase remained in the area of high value. In addition, for metering mixture flow rate using turbine flow-meter, the results are not sensitive to two-phase flow pattern according to the experimental data.

  3. Investigation of the complex electroviscous effects on electrolyte (single and multiphase) flow in porous medi.

    Science.gov (United States)

    Bolet, A. J. S.; Linga, G.; Mathiesen, J.

    2017-12-01

    Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.

  4. Fluid flow and heat transfer investigation of pebble bed reactors using mesh adaptive large-eddy simulation

    International Nuclear Information System (INIS)

    Pavlidis, D.; Lathouwers, D.

    2011-01-01

    A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in pebble bed reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. Coolant flow and heat transfer patterns are investigated. (author)

  5. Behavior of pumps conveying two-phase liquid flow

    International Nuclear Information System (INIS)

    Grison, Pierre; Lauro, J.-F.

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320 0 C respectively are compared with the theoretical model data [fr

  6. Behavior of pumps conveying two-phase liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou. Direction des Etudes et Recherches

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320/sup 0/C respectively are compared with the theoretical model data.

  7. Origin of electronic properties of PbGa2Se4 crystal: Experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Babuka, T.; Kityk, I.V.; Parasyuk, O.V.; Myronchuk, G.; Khyzhun, O.Y.; Fedorchuk, A.O.; Makowska-Janusik, M.

    2015-01-01

    Graphical abstract: In the presented work the structural and electronic properties of the PbGa 2 Se 4 single crystal were investigated experimentally as well as theoretically. The XPS spectra, Urbach’s rule and steepness parameters of PbGa 2 Se 4 single crystal have been investigated for the first time. The quantum chemical calculations were also never performed before for the studied structure. The theoretically obtained data help to explain the properties of material. - Highlights: • Urbach’s rule and steepness parameters for PbGa 2 Se 4 crystals explored for the first time. • Non-reactivity of the PbGa 2 Se 4 surface was established by XPS. • DFT approach shows its efficiency to describe electronic properties of PbGa 2 Se 4 . • Electronic parameters are affected by existence of electron–phonon interaction. - Abstract: The PbGa 2 Se 4 crystal is a promising material for optoelectronic applications. It is caused by coexistence of the large polarized Pb cations and a huge contribution of anharmonic phonon subsystem caused by chalcogenide anions. In the present work the electronic and optical properties of the mentioned material were studied theoretically as well as experimentally by optical and X-ray photoelectron spectroscopy methods. The DFT approach has been used for the quantum chemical electronic properties calculations. Urbach rule and steepness parameters of the PbGa 2 Se 4 crystal have been evaluated for the first time. These parameters and Urbach energies increase with increasing temperature of the samples that is typical for the semiconducting materials. The XPS measurements of the investigated crystal reveal that all the spectral features are originated from core-level states of the constituent elements. Simultaneously these results also confirm non-reactivity of the PbGa 2 Se 4 surface. However, the titled single crystal possesses a number of intrinsic structural defects and vacancies thereby affecting its electronic properties. The

  8. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  9. Numerical simulations and mathematical models of flows in complex geometries

    DEFF Research Database (Denmark)

    Hernandez Garcia, Anier

    The research work of the present thesis was mainly aimed at exploiting one of the strengths of the Lattice Boltzmann methods, namely, the ability to handle complicated geometries to accurately simulate flows in complex geometries. In this thesis, we perform a very detailed theoretical analysis...... and through the Chapman-Enskog multi-scale expansion technique the dependence of the kinetic viscosity on each scheme is investigated. Seeking for optimal numerical schemes to eciently simulate a wide range of complex flows a variant of the finite element, off-lattice Boltzmann method [5], which uses...... the characteristic based integration is also implemented. Using the latter scheme, numerical simulations are conducted in flows of different complexities: flow in a (real) porous network and turbulent flows in ducts with wall irregularities. From the simulations of flows in porous media driven by pressure gradients...

  10. Experimental Investigation of a Passively Deforming Airfoil Under Dynamic Flow Conditions

    OpenAIRE

    Cordes, Ulrike

    2016-01-01

    A rigid and a passively deforming airfoil, designed to alleviate fatigue causing load fluctuations that appear during normal operation of wind turbines, is investigated under unsteady conditions in two dimensional wind tunnel experiments. In a first series of experiments, a vertical gust encounter is generated by means of an active grid. This approximates the wind turbine blade’s passage through the atmospheric boundary layer and corresponds to the theoretical formulation of the Sears problem...

  11. Investigation and visualization of liquid–liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    International Nuclear Information System (INIS)

    Shad, S; Gates, I D; Maini, B B

    2009-01-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas–liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio

  12. Investigation and visualization of liquid-liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    Science.gov (United States)

    Shad, S.; Gates, I. D.; Maini, B. B.

    2009-11-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.

  13. Investigation of Swirling Flow in Rod Bundle Subchannels Using Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2006-01-01

    The fluid dynamics for turbulent flow through rod bundles representative of those used in pressurized water reactors is examined using computational fluid dynamics (CFD). The rod bundles of the pressurized water reactor examined in this study consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids are often used to create swirling flow in the rod bundle in an effort to improve the heat transfer characteristics for the rod bundle during both normal operating conditions and in accident condition scenarios. Computational fluid dynamics simulations for a two subchannel portion of the rod bundle were used to model the flow downstream of a split-vane pair support grid. A high quality computational mesh was used to investigate the choice of turbulence model appropriate for the complex swirling flow in the rod bundle subchannels. Results document a central swirling flow structure in each of the subchannels downstream of the split-vane pairs. Strong lateral flows along the surface of the rods, as well as impingement regions of lateral flow on the rods are documented. In addition, regions of lateral flow separation and low axial velocity are documented next to the rods. Results of the CFD are compared to experimental particle image velocimetry (PIV) measurements documenting the lateral flow structures downstream of the split-vane pairs. Good agreement is found between the computational simulation and experimental measurements for locations close to the support grid. (authors)

  14. Investigation of vertical slug flow with advanced two-phase flow instrumentation

    International Nuclear Information System (INIS)

    Mi, Y.; Ishii, M.; Tsoukalas, L.H.

    2001-01-01

    Extensive experiments of vertical slug flow were carried out with an electromagnetic flowmeter and an impedance void-meter in an air-water two-phase experimental loop. The basic principles of these instruments in vertical slug flow measurements are discussed. Time series of the liquid velocity and the impedance were separated into two parts corresponding to the Taylor bubble and the liquid slug. Characteristics of slug flow, such as the void fractions, probabilities and lengths of the Taylor bubble and liquid slug, slug unit velocity, area-averaged liquid velocity, and liquid film velocity of the Taylor bubble tail, etc., were obtained. For the first time, the area-averaged liquid velocity of slug flow was revealed by the electromagnetic flowmeter. It is realized that the void fraction of the liquid slug is determined by the turbulent intensity due to the relative liquid motion between the Taylor bubble tail region and its wake region. A correlation of the void fraction of the liquid slug is developed based on experimental results obtained from a test section with 50.8 mm i.d. The results of this study suggest a promising improvement in understanding of vertical slug flow

  15. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  16. experimental investigation of flow pattern around repelling

    African Journals Online (AJOL)

    A. Mahdieh NajafAbadi and M. M. Bateni

    2017-09-01

    Sep 1, 2017 ... FLOW-3D® software used to simulate flow pattern. The simulation was .... separated into separation zone, shear layer, vortices zone, end point of vorticity zone and primary flow zone. In the figure, b1 and b2 denote ... closer to the wall for the attractive spur dike. For case of the repelling spur dike, transverse.

  17. Plasma Electronics. Theoretical and Experimental Investigations of Plasma Nonlinearity in the Powerful Microwave Oscillators

    International Nuclear Information System (INIS)

    Bliokh, Yu.P.

    2001-01-01

    During more than 50 years of Plasma Electronics development a great number of experimental and theoretical results have been achieved. These results allow understanding of physical processes which originate under charged particles beams interaction with a plasma. However, one essential aspect of such interaction remains insufficiently studied. The question is about a correlation between conditions of microwave excitation by a beam in plasma and plasma parameters. Each of these effects, namely the influence of plasma parameters on conditions of microwave excitation by a beam and plasma parameters variations under the influence of propagating microwave radiation are well known and investigated enough. However their common action under beam-plasma instability (BPI) development were not studied systematically, although the role of such reciprocal influence on character of these processes may be very large. The aim of this report is a review of recent theoretical and experimental investigations of such plasma nonlinearity in plasma-filled trawling-wave tubes. N.M.Zemlyansky and E.A.Kornilov have done experiments in Kharkov Institute of Physics and Technology (KhPhTI). Development of the theoretical model was started in KhPhTI (Yu.P.Bliokh, Ya.B.Fainberg, M.G.Lyubarsky, and V.O.Podobinsky) and continues by author in Technion. The developed theory takes into account two main reasons of the plasma density redistribution: high frequency pressure (HFP) force which ''push out'' plasma from the regions with increased microwave amplitude, or microwave discharge, which appears in the region where amplitude is large enough. Displaced (under HFP action) or additionally originating (under (BPD) development) plasma propagates from the disturbance source in the form of slow plasma waves (for example, ion-sound or magneto-sound waves), and the BPI develops in the nonhomogeneous plasma. It changes both magnitude and longitudinal distribution of excited microwave amplitude. As a result

  18. Specific aspects of turbulent flow in rectangular ducts

    Directory of Open Access Journals (Sweden)

    Stanković Branislav D.

    2017-01-01

    Full Text Available The essential ideas of investigations of turbulent flow in a straight rectangular duct are chronologically presented. Fundamentally significant experimental and theoretical studies for mathematical modeling and numerical computations of this flow configuration are analyzed. An important physical aspect of this type of flow is presence of secondary motion in the plane perpendicular to the streamwise direction, which is of interest from both the engineering and the scientific viewpoints. The key facts for a task of turbulence modeling and optimal choice of the turbulence model are obtained through careful examination of physical mechanisms that generate secondary flows. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.TR-33018: Increase in Energy and Ecology Efficiency of Processes in Pulverized Coal-Fired Furnace and Optimization of Utility Steam Boiler Air Pre-heater by Using In-House Developed Software Tools

  19. High-temperature epoxidation of soybean oil in flow : speeding up elemental reactions wanted and unwanted

    NARCIS (Netherlands)

    Cortese, B.; Croon, de M.H.J.M.; Hessel, V.

    2012-01-01

    The soybean oil epoxidation reaction is investigated theoretically through kinetic modeling of temperature effects enabled through flow processing under superheated conditions. Different from previous studies on such processing, here a complex reaction network superimposed by multiphase transport is

  20. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  1. A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of α-tetrathiophene

    International Nuclear Information System (INIS)

    Aleman, Carlos; Oliver, Ramon; Brillas, Enric; Casanovas, Jordi; Estrany, Francesc

    2005-01-01

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. Adherent, insoluble, and black polymeric films were obtained in the presence of LiClO 4 , while no evidence about the formation of polymer was detected with LiCl and LiBr electrolytes. On the other hand, quantum mechanical calculations based on the density functional theory were performed on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = ClO 4 , Cl or Br. The consistency between experimental and theoretical results is discussed

  2. Experimental investigation on cavitating flow shedding over an axisymmetric blunt body

    Science.gov (United States)

    Hu, Changli; Wang, Guoyu; Huang, Biao

    2015-03-01

    Nowadays, most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects, such as 2D/3D hydrofoils, venturi-type section, axisymmetric bodies with different headforms, and so on. But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object. In the present study, two kinds of shedding patterns are investigated experimentally. A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry (PIV) technique in a water tunnel for different cavitation conditions. The U-type cavitating vortex shedding is observed in unsteady cavitating flows. When the cavitation number is 0.7, there is a large scale cavity rolling up and shedding, which cause the instability and dramatic fluctuation of the flows, while at cavitation number of 0.6, the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity, as a result, the final shedding is in the form of small scale cavity and keeps a relatively steady flow field. It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality. When the attached cavity scale is insufficient to overcome the re-entrant flow, it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7. Otherwise, the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of 0.6. This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.

  3. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    Science.gov (United States)

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  4. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    International Nuclear Information System (INIS)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-01-01

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater's upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels

  5. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    Energy Technology Data Exchange (ETDEWEB)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  6. Chlorinated paraffins wrapping of carbon nanotubes: A theoretical investigation

    Science.gov (United States)

    Ding, Qiuyue; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2018-04-01

    How nanomaterials interact with pollutants is the central for understanding their environmental behavior and practical application. In this work, molecular dynamics (MD) and density functional theoretical (DFT) methods were used to investigated the influence of carbon chain length, degree of chlorination, chain configuration, and chirality of chlorinated paraffin (CP) and diameter of single-walled carbon nanotubes (SWNTs) on the interaction between CPs and SWNTs. The simulation results demonstrated that CP chain length and chlorination degree played considerably important roles in determining interaction strength between SWNTs and CPs. The interaction energies increased with increasing chain length and chlorination degree. The chirality of SWNT exerted negligible influence on the interaction energy between SWNTs and CPs. On the contrary, interaction energy increased with increasing radius of SWNTs due to the surface curvatures. This result was rationalized by considering the decrease in SWNT curvature with increasing radius, which resulted in plane-like CNT wall. The negligible influence of CP chain configurations was attributed to relative flexibility of CP carbon chains, which can wrap on tubes through conformational changes with low-energy barriers. MD results indicated that CPs could adsorb on SWNT surface rapidly in aqueous environment. Charge transfer and electronic density results indicated that the interaction between CPs and SWNTs was physisorption in nature. This work provides fundamental information regarding SWNTs as sorbents for CPs extraction and adsorptive removal from environmental water system.

  7. Experimental investigation and CFD validation of Horizontal Air/Water slug flow

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas

    2007-01-01

    For the investigation of co-current two-phase flows at atmospheric pressure and room temperature, the Horizontal Air/Water Channel (HAWAC) was built at Forschungszentrum Dresden-Rossendorf (FZD). At the channel inlet, a special device provides adjustable and well-defined inlet boundary conditions and therefore very good CFD validation possibilities. The HAWAC facility is designed for the application of optical measurement techniques, which deliver the high resolution required for CDF validation. Therefore, the 8 m long acrylic glass test-section with rectangular cross-section provides good observation possibilities. High-speed video observation was applied during slug flow. The camera images show the generation of slug flow from the inlet of the test-section. Parallel to the experiments, CFD calculations were carried out. The aim of the numerical simulations is to validate the prediction of slug flow with the existing multiphase flow models built in the commercial code ANSYS CFX. The Euler-Euler two-fluid model with the free surface option was applied to a grid of 600,000 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, and breaking. The qualitative agreement between calculation and experiment is encouraging, while quantitative comparison show that further model improvement is needed. (author)

  8. Organizational culture and organizational effectiveness: a meta-analytic investigation of the competing values framework's theoretical suppositions.

    Science.gov (United States)

    Hartnell, Chad A; Ou, Amy Yi; Kinicki, Angelo

    2011-07-01

    We apply Quinn and Rohrbaugh's (1983) competing values framework (CVF) as an organizing taxonomy to meta-analytically test hypotheses about the relationship between 3 culture types and 3 major indices of organizational effectiveness (employee attitudes, operational performance [i.e., innovation and product and service quality], and financial performance). The paper also tests theoretical suppositions undergirding the CVF by investigating the framework's nomological validity and proposed internal structure (i.e., interrelationships among culture types). Results based on data from 84 empirical studies with 94 independent samples indicate that clan, adhocracy, and market cultures are differentially and positively associated with the effectiveness criteria, though not always as hypothesized. The findings provide mixed support for the CVF's nomological validity and fail to support aspects of the CVF's proposed internal structure. We propose an alternative theoretical approach to the CVF and delineate directions for future research.

  9. Contribution to the study of critical flow rates in a water-vapour two-phase flow

    International Nuclear Information System (INIS)

    Reocreux, Michel

    1974-01-01

    This research thesis aims at studying and analysing mechanisms involved in critical flows by adopting a theoretical and an experimental approach. After a recall of previous theoretical results and a discussion of their comparison with experimental results, the author outlines the main problems: the flow representation by a realistic model which takes all factors on which depend critical flow as well as many non critical flows into account, and the formulation of conditions to be met for a flow to be critical. Then, after a recall of the properties of critical single-phase flows, the author proposes an equation system. In the next part, he reports the development of an equation system for two-phase flows. The properties of the solutions of this system are studied to establish the general conditions required for a flow described by this system to be critical. These results are then applied to the equation system describing two-phase flows, and results are interpreted and discussed. In a second part, the author reports the experimental study by addressing experimental devices which could well produce the studied phenomenon, instrumentation and measurements, and the presentation and analysis of results [fr

  10. Metropolises in the Twittersphere: An Informetric Investigation of Informational Flows and Networks

    Directory of Open Access Journals (Sweden)

    Thorsten Förster

    2015-09-01

    Full Text Available Information flows on social media platforms are able to show trends and user interests as well as connections between users. In this paper, we present a method how to analyze city related networks on the social media platform Twitter based on the user content. Forty million tweets have been downloaded via Twitter’s REST API (application programming interface and Twitter’s Streaming API. The investigation focuses on two aspects: firstly, trend detection has been done to analyze 31 informational world cities, according the user activity, popularity of shared websites and topics defined by hashtags. Secondly, a hint of how connected informational cities are to each other is given by creating a clustered network based on the number of connections between different city pairs. Tokyo, New York City, London and Paris clearly lead the ranking of the most active cities if compared by the total number of tweets. The investigation shows that Twitter is very frequently used to share content from other services like Instagram or YouTube. The most popular topics in tweets reveal great differences between the cities. In conclusion, the investigation shows that social media services like Twitter also can be a mirror of the society they are used in and bring to light information flows of connected cities in a global network. The presented method can be applied in further research to analyze information flows regarding specific topics and/or geographical locations.

  11. Investigation of technology for monitoring UF6 mass flow

    International Nuclear Information System (INIS)

    Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

    1987-06-01

    The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF 6 concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF 6 and H 2 , a mass flow measurement in conjunction with a measurement of the uranium (or UF 6 ) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF 6 streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF 6 concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs

  12. Flow profiling of a surface acoustic wave nanopump

    OpenAIRE

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-01-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microsc...

  13. Theoretical estimation of Photons flow rate Production in quark gluon interaction at high energies

    Science.gov (United States)

    Al-Agealy, Hadi J. M.; Hamza Hussein, Hyder; Mustafa Hussein, Saba

    2018-05-01

    photons emitted from higher energetic collisions in quark-gluon system have been theoretical studied depending on color quantum theory. A simple model for photons emission at quark-gluon system have been investigated. In this model, we use a quantum consideration which enhances to describing the quark system. The photons current rate are estimation for two system at different fugacity coefficient. We discussion the behavior of photons rate and quark gluon system properties in different photons energies with Boltzmann model. The photons rate depending on anisotropic coefficient : strong constant, photons energy, color number, fugacity parameter, thermal energy and critical energy of system are also discussed.

  14. Contribution to the theoretical study of transient two-phase flows

    International Nuclear Information System (INIS)

    Achard, J.L.

    1978-12-01

    The work presented in this paper has been given rise from the existence of violent boiling phenomena of the coolant that have been revealed by reactor safety studies with water and sodium. The aim as to describe in a basic mammer, one of these phenomena called ''chugging'' or ''choucage''. The experimental part of this work concerns two original works concerning the temperature measurement at the wall; a device is proposed to evaluate the contact resistance and the thermal inertia of the thermocouple; from the measurements that have been obtained, the flux the wall transfers to the flow and the temperature of the internal wall surface are deduced. A statistical method is developed for dispersed two-phase flow study, to establish: 1) a mass transfer law, 2) a law of change of the flow configuration. The proposed model contains: 1) for the dispersed phase (vapor bubbles), the basic momentum transport equations; 2) for the continuous phase (liquid), the transport equations of the classical formulation. The statistical formulation introduces the interaction phenomenon between the phases before applying the operation of the average (homogenization method); it allows to introduce the coalescence phenomena of bubbles. Finally, structures of exchange laws for transient laminar flows are proposed: transient linear momentum exchange law; possible structures of heat exchange laws [fr

  15. Characteristics of a micro-fin evaporator: Theoretical analysis and experimental verification

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2013-01-01

    Full Text Available A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good agreement with the experimental data. The results show that heat capacity and the heat transfer coefficient of the micro-fin evaporator increase with increasing logarithmic mean temperature difference, the water mass flow rate and the refrigerant mass flow rate. Heat capacity of the micro-fin evaporator for diameter 9.52 mm is higher than that of diameter 7.00 mm with using R290 as refrigerant. Heat capacity of the micro-fin evaporator with using R717 as refrigerant is higher than that of R290 as refrigerant. The results of this study can provide useful guidelines for optimal design and operation of micro-fin evaporator in its present or future applications.

  16. CFD investigation of flow and heat transfer of nanofluids in isoflux spirally fluted tubes

    KAUST Repository

    Salama, Amgad; Azamatov, Abdulaziz Irgashevich; El-Amin, Mohamed; Sun, Shuyu; Huang, Huancong

    2012-01-01

    In this work, the problem of flow and heat transfer of nanofluids in spirally fluted tubes is investigated numerically using the CFD code Fluent. The tube investigated in this work is characterized by the existence of helical ridging which

  17. Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine

    Science.gov (United States)

    Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah

    2015-12-01

    In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.

  18. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  19. Investigation of pore-scale flow physics in porous media burners

    Science.gov (United States)

    Sobhani, Sadaf; Muhunthan, Priyanka; Boigne, Emeric; Mohaddes, Danyal; Ihme, Matthias; Stanford University Team

    2017-11-01

    Porous media burners (PMBs) operate on the principle that the solid porous matrix serves as a means of internally recirculating heat from the combustion products upstream to the reactants, enabling a reduction of the lean-flammability limit, higher power dynamic range, and lower NOx and CO emissions as compared to conventional systems. Accurate predictions of the flow features and properties such as pressure loss in reticulated ceramic foams is an important step in the characterization and optimization of combustion in porous media. In this work, an integrated framework is proposed from obtaining the porous sample to performing a computational fluid dynamics simulation, including X-ray microtomography scanning, digital topology rendering, and volume meshing. Three-dimensional numerical simulations of the flow in the complex geometries of porous foams are obtained by solution of the Navier-Stokes equations using an unstructured, finite-volume solver. This capability enables the investigation of pore-scale flow physics in a wide range of porous materials used in PMBs. In this talk, results obtained at pore-scale Reynolds numbers of order 10 to 100 in a Silicone Carbide foam are presented to demonstrate this capability.

  20. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    International Nuclear Information System (INIS)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir

    2012-01-01

    Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.

  1. The nuclear flow and the mass number dependence of the balance point

    International Nuclear Information System (INIS)

    Sebille, F.; de la Mota, V.; Remaud, B.; Schuck, P.

    1990-01-01

    The nuclear flow is studied theoretically with the Landau Vlasov equation in the E/A = 50 to 150 MeV energy domain using the finite range Gogny force. For comparison also other equations of states based on velocity independent mean fields are used. In this paper the mass number dependence of the balance point is investigated. A sensitivity of the flow on the equation of state as a function of mass and energies around and above the balance point can tentatively be advanced

  2. Stability and suppression of turbulence in relaxing molecular gas flows

    CERN Document Server

    Grigoryev, Yurii N

    2017-01-01

    This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...

  3. Towards the conceptualisation of flow in corporate financial reporting theory

    Directory of Open Access Journals (Sweden)

    Antoinette Rehwinkel

    2015-12-01

    Full Text Available Developments in science, technology and sophisticated interconnected social networks increase the speed and volatility of the flow of economic-related energies, such as financial and intellectual capital. These developments require an information theory on corporate financial reporting that is stable at a fundamental level and focused on the disclosure of those systemic attributes that are pivotal to the sustenance of business entities operating in the global economy, or in economies with similar traits. The limited success in attaining stability is caused by, among others, the application of diverse, restricted and even opposing perspectives, resulting in random theoretical development, often unaligned with economic reality. The main aim of the article is to investigate whether the introduction of an underlying concept, principle or theorem, founded on the phenomenon of flow, to general- purpose corporate financial reporting theory could contribute to rendering stable guidance for coherent theoretical development while simultaneously enhancing alignment with the current global economy. As the study was conducted at conceptual level, a qualitative, transdisciplinary theoretical research methodology was applied by taking into account related basic concepts of philosophy, corporate financial reporting theory, economics, management accounting, physics and complexity. The study suggests that the conceptualisation of flow in general-purpose corporate financial reporting theory could contribute to rendering stable guidance for further coherent theoretical development, and improve on the alignment of the theory with the dynamics of the current global economy. This finding creates the opportunity to explore a variety of new reporting approaches from a scientific perspective, which could aid to enhance the disclosure of useful financial information.

  4. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  5. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  6. A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of {alpha}-tetrathiophene

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Carlos [Departament d' Enginyeria Quimica, E.T.S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.es; Oliver, Ramon [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain); Brillas, Enric [Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1, Barcelona E-08028 (Spain); Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No. 69, Lleida E-25001 (Spain); Estrany, Francesc [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain)], E-mail: francesc.estrany@upc.es

    2005-07-18

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene. Adherent, insoluble, and black polymeric films were obtained in the presence of LiClO{sub 4}, while no evidence about the formation of polymer was detected with LiCl and LiBr electrolytes. On the other hand, quantum mechanical calculations based on the density functional theory were performed on 1:1 charge-transfer complexes formed by {alpha}-tetrathiophene and X = ClO{sub 4}, Cl or Br. The consistency between experimental and theoretical results is discussed.

  7. Test for Jet Flow Induced by Steam Jet Condensation Using the GIRLS Facility

    International Nuclear Information System (INIS)

    Kim, Yeon Sik; Yoon, Y. J.; Song, C. H.

    2007-03-01

    To investigate the characteristics of the turbulent jet induced by steam jet condensation in a water tank through a single-hole sparger an experimental investigation was performed using the GIRLS facility. The experiments were conducted with respect to two cases, e.g. horizontal and vertical upward injections. For the measurements, pitot tube and thermocouples were used for turbulent flow velocity and temperatures, respectively. Overall flow shapes of the turbulent jet by the steam jet condensation are similar to those of axially symmetric turbulent jet flows. The angular coefficients of turbulent rays are quantitatively comparable between the traditional turbulent jet flows and the turbulent jet flows induced by the steam jet condensation in this work. Although the turbulent flows were induced by the horizontally injected steam jet condensation, general theory of turbulent jets was found to be applicable to the turbulent flows of this work. But for the vertically upward injection case, experimental data were quite deviated from the theoretical ones, which is considered due to the buoyancy effect

  8. Theoretical and pragmatic modelling of governing equations for a two-phase flow in bubbly and annular flow regimes

    International Nuclear Information System (INIS)

    Bottoni, M.; Sengpiel, W.

    1992-01-01

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs

  9. Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid

    Science.gov (United States)

    Puay, How Tion; Hosoda, Takashi

    In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.

  10. Kelvin-Helmholtz instability in a bounded plasma flow

    International Nuclear Information System (INIS)

    Burinskaya, T. M.

    2008-01-01

    Kelvin-Helmholtz instability in a three-layer plane geometry is investigated theoretically. It is shown that, in a three-layer system (in contrast to the traditionally considered case in which instability develops at the boundary between two plasma flows), instability can develop at an arbitrary ratio of the plasma flow velocity to the ion-acoustic velocity. Perturbations with wavelengths on the order of the flow thickness or longer can increase even at a zero temperature. The system can also be unstable against long-wavelength perturbations if the flow velocity at one of the boundaries is lower than the sum of the Alfven velocities in the flow and the ambient plasma. The possibility of applying the results obtained to interpret the experimental data acquired in the framework of the CLUSTER multisatellite project is discussed. It follows from these data that, in many cases, the propagation of an accelerated particle flow in the plasma-sheet boundary layer of the Earth's magnetotail is accompanied by the generation of magnetic field oscillations propagating with a velocity on the order of the local Alfven velocity.

  11. Investigating the structure of a vortex flow in the closed polygonal containers

    Science.gov (United States)

    Podolskaya, I. Yu; Bakakin, G. V.; Naumov, I. V.

    2018-03-01

    The structure of confined vortex flow generated by a rotating lid in a closed container with polygonal cross-section geometry (eight, six and five angles) has been investigated numerically for different height/radius aspect ratios h from 3.0 to 4.5 and for Reynold numbers ranging from 1500 to 3000. The critical Reynolds numbers at which the flow becomes unsteady were determined numerically by STAR-CCM+ computational fluid dynamics software for pentagonal and hexagonal cross-section configurations. The obtained results were compared with the flow structure in the closed cylindrical container. The boundary of a nonstationarity in polygonal containers is found to shift to the region of smaller aspect ratio and smaller Reynolds numbers with a decrease in the number of angles in the cross-section of the container relative to the boundary in a cylindrical container. It is additionally established that the structure of the flow in the near-axis region remains similar to the vortex structure in the cylinder, therefore the shape of the container does not influence the near-axis region.

  12. Numerical Investigation of the Liquid Film Flows with Evaporation at Thermocapillary Interface

    Directory of Open Access Journals (Sweden)

    Rezanova Ekaterina

    2016-01-01

    Full Text Available Flows of the thin liquid layers on an inclined non-uniformly heated substrate are investigated numerically. The evaporation at the thermocapillary interface is taking into account. The Oberbeck-Boussinesq equations and the generalized kinematic, dynamic and energy conditions on a thermocapillary boundary are used for governing equations. The evolution equation, which determines the position of the interface, is obtained on the basis of the long-wave approximation of the equations for moderate Reynolds numbers. The numerical algorithm for solving of this evolution equation is presented. Comparison of the numerical results of flows of various liquids is presented.

  13. Experimental investigations of the steady flow through an idealized model of a femoral artery bypass

    Directory of Open Access Journals (Sweden)

    Giurgea Corina

    2014-03-01

    Full Text Available The present paper presents the steps taken by the authors in the first stage of an experimental program within a larger national research project whose objective is to characterize the flow through a femoral artery bypass with a view to finding solutions for its optimization. The objective of the stage is to investigate by means of the PIV method the stationary flow through a bypass model with an idealized geometry. A bypass assembly which reunites the idealized geometry models of the proximal and distal anastomoses, and which respects the lengths of a femoral artery bypass was constructed on the basis of data for a real patient provided by medical investigations. With the aim of testing the model and the established experimental set-up with regard to their suitability for the assessment of the velocity field associated to the steady flow through the bypass, three zones that can restore the whole distal anastomosis were PIV investigated. The measurements were taken in the conditions of maintained inflow at the bypass entry of 0.9 l / min (Re = 600. The article presents comparatively the flow spectra and the velocity fields for each zone obtained in two situations: with the femoral artery completely occluded and completely open.

  14. Rolling effects on two-phase flow pattern and void fraction

    International Nuclear Information System (INIS)

    Yan Changqi; Yu Kaiqiu; Luan Feng; Cao Xiaxin

    2008-01-01

    The experimental and theoretical study was carried out for the upward gas-liquid two-phase explained reasonably through the analysis of slip ratio of two-phase flow and theoretical analysis using momentum equation of two-phase flow separating model. (authors)

  15. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ. (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System Inc. (INSS), Fukui (Japan)

    2012-07-01

    Stratified two-phase flows were investigated in two different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimum observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. (orig.)

  16. Investigation of entrance length in circular and noncircular conduits by computational fluid dynamics simulation

    Directory of Open Access Journals (Sweden)

    Pimpun Tongpun

    2014-08-01

    Full Text Available This study estimated entrance length of circular and noncircular conduits, including circle, triangle, square and hexagon cross-sectional conduit, by using computational fluid dynamics (CFD. For simulation condition, the length of noncircular conduit was 10 m and the hydraulic diameter was 0.2 m. The laminar flow with Reynolds number of 500 and turbulent flow with Reynolds number of 50,000 were applied to investigate water flow in conduits. The governing equations were solved iteratively by using ANSYS FLUENT 14.0. For turbulent flow simulation, standard k-epsilon and RNG k-epsilon model were employed to simulate turbulence. The preliminary results were validated by comparison with theoretical data. At first, grid independency was evaluated to optimize the model. Norm* was employed to investigate the entrance length, which is related to velocity. The simulated results revealed that the entrance length for laminar flow was longer than turbulent flow.

  17. Investigation of heat transfer and fluid flow in transitional regime inside a channel with staggered plates heated by radiation for PV/T system

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Abdel-Gaied, S.M.

    2013-01-01

    This study investigates experimentally and theoretically the effects of operating and configuration parameters on convection heat transfer process and fluid flow characteristics for air flowing in transitional regimes through parallel plate channels with staggered plates segments heated by radiant heat flux. This configuration is to be utilized in air heater solar collectors and/or in a combined photovoltaic and air heater solar collector systems (PV/T). The operating parameters tested were Reynolds number (Re) values ranging from 2580 to 4650 with a combination of incident radiation heat flux (q inc ) values of 400, 700, and 1000 W/m 2 , respectively. The experimental results show that the local Nusselt number (Nu x ) is not unique function of the axial distance, in addition, a linear relationship between Re and apparent friction factor (f) was observed. Moreover, the model results show that combination of Re values in the laminar flow regime with proper selection of both plate's length and thickness can lead to enhancement in the heat transfer from the plate segments to the air stream. This is due to self-oscillatory flow mixer in wake zone behind each plate segment. Consequently, this will lead to avoid the need of more pumping power for the case of the flow falling within the transitional regime in the channel. - Highlights: • The local heat transfer coefficient is not unique function in the axial distance. • A linear relationship between Reynolds number and apparent friction factor is observed for Re > 3500. • The plate thickness is the dominant parameter affects both values of the heat transfer and friction factor. • Shorter plates' length, at any plate thickness, leads to periodic boundary layers interruption mechanisms

  18. Analytical and experimental investigations of magnetohydrodynamic flows near the entrance to a strong magnetic field

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Dauzvardis, P.V.; Walker, J.S.

    1986-01-01

    A program of analytical and experimental investigations in MHD flows has been established at Argonne National Lab. (ANL) within the framework of the Blanket Technology Program. An experimental facility for such investigations has been built and is being operated at ANL. The investigations carried out on the Argonne Liquid-Metal engineering EXperiment (ALEX) are complemented by analysis carried out at the Univ. of Illinois. The first phase of the experimental program is devoted to investigations of well-defined cases for which analytical solutions exist. Such testing will allow validation and increased confidence in the theory. Because analytical solutions exist for only a few cases, which do not cover the entire range of anticipated flow behavior, confining testing to these cases will not be an adequate validation of the theory. For this reason, this phase involves testing and a companion analytical effort aimed toward obtaining solutions for a broad range of cases, which, although simple in geometry, are believed to encompass the range of flow phenomena relevant to fusion. This parallel approach is necessary so that analysis will guide and help plan the experiments, whereas the experimental results will provide information needed to validate and/or refine the analysis

  19. Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method

    Science.gov (United States)

    Zhang, Weizhong; Yoshida, Hiroyuki; Ose, Yasuo; Ohnuki, Akira; Akimoto, Hajime; Hotta, Akitoshi; Fujimura, Ken

    In relation to the design of an innovative FLexible-fuel-cycle Water Reactor (FLWR), investigation of thermal-hydraulic performance in tight-lattice rod bundles of the FLWR is being carried out at Japan Atomic Energy Agency (JAEA). The FLWR core adopts a tight triangular lattice arrangement with about 1 mm gap clearance between adjacent fuel rods. In view of importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study presents a statistical evaluation of numerical simulation results obtained by a detailed two-phase flow simulation code, TPFIT, which employs an advanced interface tracking method. In order to clarify mechanisms of cross flow in such tight lattice rod bundles, the TPFIT is applied to simulate water-steam two-phase flow in two modeled subchannels. Attention is focused on instantaneous fluctuation characteristics of cross flow. With the calculation of correlation coefficients between differential pressure and gas/liquid mixing coefficients, time scales of cross flow are evaluated, and effects of mixing section length, flow pattern and gap spacing on correlation coefficients are investigated. Differences in mechanism between gas and liquid cross flows are pointed out.

  20. Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium

    Directory of Open Access Journals (Sweden)

    Shao-Yiu Hsu

    2017-01-01

    Full Text Available In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold is usually high. This may be an obstacle for researchers investigating the two-phase-flow behavior of porous media. A rigid thermoplastic material is a preferable polymer material for microfluidic models because of its high resistance to infiltration and deformation. In this study, cyclic olefin copolymer (COC was selected as the substrate for the micromodel because of its excellent chemical, optical, and mechanical properties. A delicate micromodel with a complex pore geometry that represents a two-dimensional (2D cross-section profile of a fractured rock in a natural oil or groundwater reservoir was developed for two-phase-flow experiments. Using an optical visualization system, we visualized the flow behavior in the micromodel during the processes of imbibition and drainage. The results show that the flow resistance in the main channel (fracture with a large radius was higher than that in the surrounding area with small pore channels when the injection or extraction rates were low. When we increased the flow rates, the extraction efficiency of the water and oil in the mainstream channel (fracture did not increase monotonically because of the complex two-phase-flow dynamics. These findings provide a new mechanism of residual trapping in porous media.

  1. Theoretical and experimental investigation of the performance of solar thermosyphon heat pipe

    International Nuclear Information System (INIS)

    Hamidi, A.A.; Khalji Asadi, M.; Yousefi, L.; Moeini, G.

    2001-01-01

    Thermosyphon is a kind of heat pipe consisting of a tube which after through degassing has been filled with the required working fluid under vacuum, the pipe is equipped with wide fines on both sides in order to absorb solar radiation effectively. In order to eliminate conduction and convection heat transfer phenomena the tube is situated inside an evacuated glass bulb. In order to increase the efficiency and improve the design and working conditions of various types of heat pipes, a fundamental knowledge of the variation of operating parameters inside the heat pipes is necessary. In this paper, effective operating parameters of a thermosyphon heat pipe in uniform and steady condition are studied. These parameters include saturation temperature of the fluid inside the pipe, the variation of liquid and vapor flow rates inside the pipe and finally the pressure drop of liquid and vapor along the length of the pipe. The modeling is first started by writing an energy balance for the control volume of the pipe so that a first approximation for the above mentioned parameters is obtained. In this balance, depending on the type of fluid next to the condenser section and the type of heat transfer phenomena (free or forced convection) and also with due regards to the experimental correlations available, first the Nusselt number and then the heat transfer coefficient is calculated. From the latter, a first estimate of the required values for the liquid and vapor flow rates are found to be 0.222 and 0.0001126 Kg/s, respectively. The thickness of the film was determined to be 0.2 mm. In order to calculate the variations of the above mentioned parameters along the length of the tube, mass heat and momentum balances were written in next step for the control volumes on the liquid film, vapor phase and the system as a whole. Diagrams of these variations were obtained. The results were compared with both the data available in the literature and the experimental findings of a heat

  2. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Mingyue Liu

    2015-09-01

    Full Text Available The Deep Draft Semi-Submersible (DDS concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular- section-cylinder arrays is also discussed in comparison with that of square cylinders.

  3. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    Science.gov (United States)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  4. A Game-Theoretic Approach to Information-Flow Control via Protocol Composition

    Directory of Open Access Journals (Sweden)

    Mário S. Alvim

    2018-05-01

    Full Text Available In the inference attacks studied in Quantitative Information Flow (QIF, the attacker typically tries to interfere with the system in the attempt to increase its leakage of secret information. The defender, on the other hand, typically tries to decrease leakage by introducing some controlled noise. This noise introduction can be modeled as a type of protocol composition, i.e., a probabilistic choice among different protocols, and its effect on the amount of leakage depends heavily on whether or not this choice is visible to the attacker. In this work, we consider operators for modeling visible and hidden choice in protocol composition, and we study their algebraic properties. We then formalize the interplay between defender and attacker in a game-theoretic framework adapted to the specific issues of QIF, where the payoff is information leakage. We consider various kinds of leakage games, depending on whether players act simultaneously or sequentially, and on whether or not the choices of the defender are visible to the attacker. In the case of sequential games, the choice of the second player is generally a function of the choice of the first player, and his/her probabilistic choice can be either over the possible functions (mixed strategy or it can be on the result of the function (behavioral strategy. We show that when the attacker moves first in a sequential game with a hidden choice, then behavioral strategies are more advantageous for the defender than mixed strategies. This contrasts with the standard game theory, where the two types of strategies are equivalent. Finally, we establish a hierarchy of these games in terms of their information leakage and provide methods for finding optimal strategies (at the points of equilibrium for both attacker and defender in the various cases.

  5. Theoretical and experimental investigation for SO3 production in SO2-rich astrophysical environments

    International Nuclear Information System (INIS)

    Bonfim, Víctor de Souza; Pilling, Sergio; Castilho, Roberto B; Baptista, Leonardo

    2015-01-01

    This work presents the results for the irradiation of pure SO 2 sample that was condensed in a preevacuated chamber, from Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP), at low temperature (12 K) and irradiated by ionizing photons which simulate Solar photons in the vacuum ultraviolet (VUV) and soft X-rays range. The infrared spectra of irradiated sample have presented the formation of SO 3 . Experimental formation cross section was determined. Theoretical investigations were performed at Second-order Moller- Plesset perturbation theory (MP2) level and indicate the most likely SO 3 formation channels vary with the reaction supporting medium. (paper)

  6. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael; Müller, Jens [Institute of Physics, Goethe-University Frankfurt, Frankfurt/Main (Germany); Stockem, Irina; Schröder, Christian [Bielefeld Institute for Applied Materials Research, FH Bielefeld-University of Applied Sciences, Bielefeld (Germany)

    2016-10-14

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  7. Investigation of the free flow electrophoretic process. Volume 2: Technical analysis

    Science.gov (United States)

    Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.

    1979-01-01

    The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.

  8. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    Energy Technology Data Exchange (ETDEWEB)

    Xue, M.H.; Su, M.X.; Dong, L.L.; Shang, Z.T.; Cai, X.S. [Shanghai University of Science & Technology, Shanghai (China)

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluated on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.

  9. Application of X-ray CT investigation of CO{sub 2}-brine flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lanlan; Liu, Yu; Song, Yongchen; Yang, Mingjun; Zhao, Yuechao; Zhao, Jiafei; Zhang, Yi; Shen, Zijian [Dalian University of Technology, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian (China); Xue, Ziqiu [Research Institute of Innovative Technology for the Earth, Kizugawa City, Kyoto (Japan); Suekane, Tetsuya [Tokyo Institute Technology, Department of Energy Sciences, Nagatsuta, Yokohama (Japan)

    2015-05-15

    A clear understanding of two-phase flows in porous media is important for investigating CO{sub 2} geological storage. In this study, we conducted an experiment of CO{sub 2}/brine flow process in porous media under sequestration conditions using X-ray CT technique. The flow properties of relative permeability, porosity heterogeneity, and CO{sub 2} saturation were observed in this experiment. The porous media was packed with glass beads having a diameter of 0.2 mm. The porosity distribution along the flow direction is heterogeneous owing to the diameter and shape of glass beads along the flow direction. There is a relationship between CO{sub 2} saturation and porosity distribution, which changes with different flow rates and fractional flows. The heterogeneity of the porous media influences the distribution of CO{sub 2}; moreover, gravity, fractional flows, and flow rates influence CO{sub 2} distribution and saturation. The relative permeability curve was constructed using the steady-state method. The results agreed well with the relative permeability curve simulated using pore-network model. (orig.)

  10. The flow and spray characteristics of gelled fluids; Die Stroemungs- und Verspruehungseigenschaften gelfoermiger Fluide

    Energy Technology Data Exchange (ETDEWEB)

    Madlener, K.

    2008-07-01

    In the present study gelled fluids are investigated concerning their application as propellants in storable and thrust controllable rocket propulsion systems. The correlations between the non-Newtonian viscosity properties and the flow and spray characteristics are discussed. Based on the proposed viscosity model Herschel-Bulkley-Extended (HBE) the laminar pipe flow is calculated for the investigated propellants. With the introduction of a generalized form of the Reynolds number and the presentation of a possibility to determine the critical values of this number it is possible to calculate the laminar-turbulent transition in a pipe flow. The theoretical results are evaluated with experimental data. The spray characteristics of various gelled fluids are examined using an experimental setup with impinging-jet-injectors. (orig.)

  11. Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel

    Science.gov (United States)

    Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration

    2015-11-01

    Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  12. Experimental investigation of the unsteady one-phase flow through perforated plates

    International Nuclear Information System (INIS)

    Casadei, F.

    1982-07-01

    The flow of the coolant through the perforated dip-plate during a hypothetical core-disruptive accident in a sodium-cooled fast breeder reactor was simulated in a one-dimensional model. Several experiments with water as fluid and with various perforation ratios of the dip-plate and different initial heights of the fluid head over the dip plate were run. The pressure drop through the dip-plate and the forces acting on the dip-plate and on the upper plug of the reactor vessel in a wide range of the Reynolds and Strouhal numbers were measured. The flow pattern downstreams the perforated plate was filmed with high-speed cameras. The resistance coefficients for the unsteady flow of the coolant through the perforated plate were obtained as a function of the acceleration. The forces acting on the upper plug and their time integral were compared with those acting on the dip-plate. Finally, using the high-speed film pictures the formation of fluid jets downstream the dip-plate was investigated. (orig.) [de

  13. Computational and theoretical modeling of pH and flow effects on the early-stage non-equilibrium self-assembly of optoelectronic peptides

    Science.gov (United States)

    Mansbach, Rachael; Ferguson, Andrew

    Self-assembling π-conjugated peptides are attractive candidates for the fabrication of bioelectronic materials possessing optoelectronic properties due to electron delocalization over the conjugated peptide groups. We present a computational and theoretical study of an experimentally-realized optoelectronic peptide that displays triggerable assembly in low pH to resolve the microscopic effects of flow and pH on the non-equilibrium morphology and kinetics of assembly. Using a combination of molecular dynamics simulations and hydrodynamic modeling, we quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to influence assembly. We also show that there is a critical pH below which aggregation proceeds irreversibly, and quantify the relationship between pH, charge density, and aggregate size. Our work provides new fundamental understanding of pH and flow of non-equilibrium π-conjugated peptide assembly, and lays the groundwork for the rational manipulation of environmental conditions and peptide chemistry to control assembly and the attendant emergent optoelectronic properties. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0011847, and by the Computational Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign.

  14. Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber

    Science.gov (United States)

    Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong

    2018-01-01

    We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.

  15. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  16. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  17. A fluorescent sensor based on dansyl-diethylenetriamine-thiourea conjugate: a through theoretical investigation

    International Nuclear Information System (INIS)

    Nguyen Khoa Hien; Nguyen Thi Ai Nhung; Duong Tuan Quang; Ho Quoc Dai; Nguyen Tien Trung

    2015-01-01

    A new dansyl-diethylenetriamine-thiourea conjugate (DT) for detection of Hg 2+ ions in aqueous solution has been theoretically designed and compared to our previously published results. The synthetic path, the optimized geometric structure and the characteristics of the DT were found by the theoretical calculations at the B3LYP/LanL2DZ level. Accordingly, the DT can react with Hg 2+ ion to form a product with quenched fluorescence. It is remarkable that the experimental results are in an excellent agreement with the theoretically evaluated data. (author)

  18. Aeroacoustics of rectangular T-junctions subject to combined grazing and bias flows - An experimental investigation

    Science.gov (United States)

    Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2015-03-01

    Scattering matrices are determined experimentally and used to study the low-amplitude interaction, between the acoustic and the hydrodynamic fields in a T-junction of rectangular ducts. In particular, combinations of grazing and bias flows are investigated in the study. It is observed that for all flow combinations, waves incident on the junction at the downstream side only are attenuated, while waves incident at the other branches may be amplified or attenuated, depending on the Strouhal number. When bias in-flow is introduced to a grazing flow, there is first an increase and then a decrease in both amplification and attenuation, as the bias in-flow Mach number is increased. Comparing with T-junctions of circular ducts, the interaction is stronger for rectangular duct junctions.

  19. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine.

    Science.gov (United States)

    Ramadan, Islam A; Bailliet, Hélène; Valière, Jean-Christophe

    2018-01-01

    The influence of both the natural convection and end-effects on Rayleigh streaming pattern in a simple standing-wave thermoacoustic engine is investigated experimentally at different acoustic levels. The axial mean velocity inside the engine is measured using both Laser Doppler Velocimetry and Particle Image Velocimetry. The mean flow patterns are categorized in three different regions referred to as "cold streaming" region, "hot streaming" region, and "end-effects" region. In the cold streaming region, the dominant phenomenon is Rayleigh streaming and the mean velocity measurements correspond well with the theoretical expectations of Rayleigh streaming at low acoustic levels. At higher acoustic levels, the measurements deviate from the theoretical expectations which complies with the literature. In the hot streaming region, temperature measurements reveal that the non-uniformity of the resonator wall temperature is the origin of natural convection flow. Velocity measurements show that natural convection flow superimposes on the Rayleigh streaming flow so that the measured mean velocity deviates from the theoretical expectations of Rayleigh streaming. In the last region, the measured mean velocity is very different from Rayleigh streaming due to the combined effects of both the flow disturbances generated near the extremity of the stack and the natural convection flow.

  20. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    Directory of Open Access Journals (Sweden)

    M.S. Najiha

    2012-12-01

    Full Text Available Minimum quantity lubrication (MQL is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel nozzle, 6.35 mm in diameter. Computational fluid dynamics is used to determine the flow pattern at the tip of the nozzle where the lubricant and compressed air are mixed to form a mist. The lubricant volume flow is approximately 0.08 ml/cycle of the pump. A transient, pressure-based, three-dimensional analysis is performed with a viscous, realizable k-ε model. The results are obtained in the form of vector plots and flow fields. The flow mixing at the tip of the nozzle is wholly shown through the flow fields and vector plots. This study provides an insight into the flow distribution at the tip of the nozzle for a certain pressure to aid modifications in the design of the nozzle for future MQL studies. It attainable aids to determine the correct pressure for the air jet at the nozzle tip.

  1. Modern challenges for flow investigations in model hydraulic turbines on classical test rig

    International Nuclear Information System (INIS)

    Deschênes, C; Houde, S; Aeschlimann, V; Fraser, R; Ciocan, G D

    2014-01-01

    The BulbT project involved several investigations of flow phenomena in different parts of a model bulb turbine installed on the test rig of Laval University Laboratory. The aim is to create a comprehensive data base in order to increase the knowledge of the flow phenomena in this type of turbines and to validate or improve numerical flow simulation strategies. This validation being based on a kinematic comparison between experimental and numerical data, the project had to overcome challenges to facilitate the use of the experimental data for that purpose. Many parameters were checked, such as the test bench repeatability, the intrusiveness of a priori non-intrusive methods, the geometry of the runner and draft tube. This paper illustrates how some of those problematic were solved

  2. Investigating nurse practitioners in the private sector: a theoretically informed research protocol.

    Science.gov (United States)

    Adams, Margaret; Gardner, Glenn; Yates, Patsy

    2017-06-01

    To report a study protocol and the theoretical framework normalisation process theory that informs this protocol for a case study investigation of private sector nurse practitioners. Most research evaluating nurse practitioner service is focused on public, mainly acute care environments where nurse practitioner service is well established with strong structures for governance and sustainability. Conversely, there is lack of clarity in governance for emerging models in the private sector. In a climate of healthcare reform, nurse practitioner service is extending beyond the familiar public health sector. Further research is required to inform knowledge of the practice, operational framework and governance of new nurse practitioner models. The proposed research will use a multiple exploratory case study design to examine private sector nurse practitioner service. Data collection includes interviews, surveys and audits. A sequential mixed method approach to analysis of each case will be conducted. Findings from within-case analysis will lead to a meta-synthesis across all four cases to gain a holistic understanding of the cases under study, private sector nurse practitioner service. Normalisation process theory will be used to guide the research process, specifically coding and analysis of data using theory constructs and the relevant components associated with those constructs. This article provides a blueprint for the research and describes a theoretical framework, normalisation process theory in terms of its flexibility as an analytical framework. Consistent with the goals of best research practice, this study protocol will inform the research community in the field of primary health care about emerging research in this field. Publishing a study protocol ensures researcher fidelity to the analysis plan and supports research collaboration across teams. © 2016 John Wiley & Sons Ltd.

  3. Laboratory Investigation of Rill Erosion on Compost Blankets under Concentrated Flow Conditions

    Science.gov (United States)

    A flume study was conducted using a soil, yard waste compost, and an erosion control compost to investigate the response to concentrated flow and determine if the shear stress model could be used to describe the response. Yard waste compost (YWC) and the bare Cecil soil (CS) cont...

  4. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  5. Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions

    International Nuclear Information System (INIS)

    Le Corre, Jean-Marie; Yao, Shi-Chune; Amon, Cristina H.

    2010-01-01

    A literature review of critical heat flux (CHF) experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available experimental information. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. Even though the selected concept has not received much attention (in term or theoretical developments and applications) as compared to other more popular DNB models, its basis have often been cited by experimental investigators and is considered by the authors as the 'most-likely' mechanism based on the literature review and analysis performed in this work. The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow and has been numerically implemented and validated in bubbly flow and coupled with one- and three-dimensional (CFD) two-phase flow codes, in a companion paper. [Le Corre, J.M., Yao, S.C., Amon, C.H., in this issue. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one and three-dimensional computer codes. Nucl. Eng. Des.].

  6. Experimental Investigation of Subsonic Turbulent Boundary Layer Flow Over a Wall-Mounted Axisymmetric Hill

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2016-01-01

    An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data

  7. Order flow and volatility: An empirical investigation

    NARCIS (Netherlands)

    Opschoor, A.; Taylor, N.; van der Wel, M.; van Dijk, D.

    2014-01-01

    We study the relationship between order flow and volatility. To this end we develop a comprehensive framework that simultaneously controls for the effects of macro announcements and order flow on prices and the effect of macro announcements on volatility. Using high-frequency 30-year U.S. Treasury

  8. Experimental and numerical investigation of electrohydrodynamic flow in a point-to-ring corona discharge

    Science.gov (United States)

    Guan, Yifei; Vaddi, Ravi Sankar; Aliseda, Alberto; Novosselov, Igor

    2018-04-01

    An electrohydrodynamic (EHD) flow in a point-to-ring corona configuration is investigated experimentally and via a multiphysics computational model. The model couples the ion transport equation and the Navier-Stokes equations (NSE) to solve for the spatiotemporal distribution of electric field, flow field, and charge density. The numerical simulation results are validated against experimental measurements of the cathode voltage, ion concentration, and velocity profiles. The maximum flow velocity is at the centerline, and it decays rapidly with radial distance due to the viscous and electric forces acting on the partially ionized gas. To understand this coupling, a nondimensional parameter, X , is formulated as the ratio of the local electric force to the inertial term in the NSE. In the region of X ≥1 , the electric force dominates the flow dynamics, while in the X ≪1 region, the balance of viscous and inertial terms yields traditional pipe flow characteristics. This approach expands on the analytical model of Guan et al. by adding a description of the developing flow region. The approach allows the model to be used for the entire EHD domain, providing insights into the near-field flow in the corona region.

  9. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    International Nuclear Information System (INIS)

    Fiereder, R; Riemann, S; Schilling, R

    2010-01-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  10. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fiereder, R; Riemann, S; Schilling, R, E-mail: fiereder@lhm.mw.tum.d [Department of Fluid Mechanics, Technische Universitaet Muenchen Bolzmannstrasse 15, Garching, 85748 (Germany)

    2010-08-15

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  11. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Science.gov (United States)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  12. Experimental Investigation on Zonal Structure in Drag-Reducing Channel Flow with Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Masaaki Motozawa

    2011-01-01

    Full Text Available The spatial structure of a drag-reducing channel flow with surfactant additives in a two-dimensional channel was investigated experimentally. We carried out detailed measurements of the instantaneous velocity in the streamwise wall-normal plane and streamwise spanwise plane by using particle image velocimetry (PIV. The surfactant used in this experiment is a kind of cationic surfactant CTAC. The weight concentrations of the CTAC solution were 25 and 40 ppm on the flow. We considered the effects of Reynolds number ranging from 10000 to 25000 and the weight concentration of CTAC. The results of this paper showed that in the drag-reducing flow, there appeared an area where the root mean square of streamwise velocity fluctuation and the vorticity fluctuation sharply decreased. This indicated that two layers with different turbulent structure coexisted on the boundary of this area. Moreover, these layers had characteristic flow structures, as confirmed by observation of the instantaneous vorticity fluctuation map.

  13. High-throughput theoretical design of lithium battery materials

    International Nuclear Information System (INIS)

    Ling Shi-Gang; Gao Jian; Xiao Rui-Juan; Chen Li-Quan

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. (topical review)

  14. Theoretical and experimental investigations of stochastic boundaries in tokamaks

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Grosman, A.; Capes, H.

    1996-01-01

    The physics of stochastic boundaries are reviewed. The stochastic properties of magnetic field lines are recalled and related to the spectrum of the radial magnetic perturbation. The stochastic region, referred to as the divertor volume, is shown to be bounded to the edge plasma. Theoretical predictions for the transport of energy, current and particles in the divertor volume are analysed for both the laminar and ergodic regimes. (K.A.)

  15. Theoretical treatment of fluid flow for accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-02-01

    Full Text Available speed or the local flow velocities, in, for example, stellar cores or galactic formation. The inviscid equations are derived using a transformation into a non-inertial rotating frame with scaling factors in time, space, and density for this purpose... was initiated with the derivation of the properties of general linear transforms between arbitrarily moving frames, with relative motion defined by functions of continuous differentiability of class C 2 , in Rn+1 spaces with n spatial dimensions...

  16. Investigation of mixing enhancement in porous media under helical flow conditions: 3-D bench-scale experiments

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Ye, Yu; Cirpka, Olaf A.

    2017-01-01

    us to quantify spreading and dilution of the solute plumes at the outlet cross section. Moreover, we collected direct evidence of plume spiraling and visual proof of helical flow by freezing and slicing the porous medium at different cross sections and observing the dye-tracer distribution. Model...... performed steady-state conservative tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution [4]. Helical flow was created by packing the porous medium in angled stripes of materials...

  17. Self-condensation of n-(N-propyl)butanimine: NMR and mass spectral analyses and investigation by theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Manfrini, Rozangela Magalhaes; Teixeira, Flavia Rodrigues; Pilo-Veloso, Dorila; Alcantara, Antonio Flavio de Carvalho, E-mail: aalcantara@zeus.qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Nelson, David Lee [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Quimica; Siqueira, Ezequias Pessoa de [Centro de Pesquisas Rene Rachou (FIOCRUZ), Belo Horizonte, MG (Brazil)

    2012-07-01

    The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled. (author)

  18. Ultrafast Gain Dynamics in Quantum Dot Amplifiers: Theoretical Analysis and Experimental Investigations

    DEFF Research Database (Denmark)

    Poel, Mike van der; Gehrig, Edeltraud; Hess, Ortwin

    2005-01-01

    Ultrafast gain dynamics in an optical amplifier with an active layer of self-organized quantum dots (QDs) emitting near 1.3$muhbox m$is characterized experimentally in a pump-probe experiment and modeled theoretically on the basis of QD Maxwell–Bloch equations. Experiment and theory are in good......$factor) is theoretically predicted and demonstrated in the experiments. The fundamental analysis reveals the underlying physical processes and indicates limitations to QD-based devices....

  19. Experimental and theoretical investigations on the behaviour of cracks in primary coolant piping

    International Nuclear Information System (INIS)

    Steinbuch, R.; Bartholome, G.; Felski, N.; Kastner, W.

    1981-01-01

    During the investigations of the government-sponsored R+D programs (RS 104 and RS 320) experimental and theoretical work has been performed to describe the leak before break behaviour and the extent of instable crack growth. The test pipes are 300 mm ID pipes made of 20MnMoNi55. Three of them had been welded to a pressure reservoir to simulate the situation of a real system of piping and components as related to hydrodynamics. The instrumentation of the specimen was designed to describe - temperature and pressure during failure - effect of reservoir on depressurisation - motion of the pipe - leakage area as function of time - crack arrest length. At two experiments the pressure dropped to saturation but in others for a short period the pressure was remarkably lower. (orig./GL)

  20. Investigation on countercurrent flow characteristics in vertical tubes

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2001-01-01

    It is found in the experiment that for different air inlet the flooding may be occurred in air inlet or outlet in two-phase countercurrent flow. Since the positions of flooding are difference, the correlation between water flow rate and air flow rate for onset of flooding is difference. This result is of significant meaning for studying the mechanism of onset of flooding. The reason for this difference is analyzed based on two-phase flow characteristics. It is proposed that different correlation should be used to calculate the inlet flooding and outlet flooding