WorldWideScience

Sample records for theoretical ethanol yields

  1. Yield and properties of ethanol biofuel produced from different whole cassava flours.

    Science.gov (United States)

    Ademiluyi, F T; Mepba, H D

    2013-01-01

    The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash point of ethanol produced differ slightly for different cultivars, while the yield of ethanol and electrical conductivity of ethanol from the different cassava cultivars varies significantly. The variation in mineral composition of the different whole cassava flours could also lead to variation in the electrical conductivity of ethanol produced from the different cassava cultivars. The differences in ethanol yield are attributed to differences in starch content, protein content, and dry matter of cassava cultivars. High yield of ethanol from whole cassava flour is best produced from cultivars with high starch content, low protein content, and low fiber.

  2. High ethanol yields using Aspergillus oryzae koji and corn media

    Energy Technology Data Exchange (ETDEWEB)

    Ziffer, J.; Iosif, M.C.

    1982-01-01

    High ethanol and stillage solids were achieved using whole corn mashes. Ethanol yields of 14% (98.5% of theory) and stillage levels of approximately 23% were obtained in 74-90 hours using mild acid pretreatment with A. oryzae wheat bran koji saccharification. High ethanol yields were also obtained with bacterial amylase, instead of the acid treatment, when the sterilization step was omitted. The implications of ethanol fermentation process modifications are explored.

  3. How does petroleum price and corn yield volatility affect ethanol markets with and without an ethanol use mandate?

    International Nuclear Information System (INIS)

    Thompson, Wyatt; Meyer, Seth; Westhoff, Pat

    2009-01-01

    The recent increase in ethanol use in the US strengthens and changes the nature of links between agricultural and energy markets. Here, we explore the interaction of market volatility and the scope for policy to affect this interaction, with a focus on how corn yields and petroleum prices affect ethanol prices. Mandates associated with new US energy legislation may intervene in these links in the medium-term future. We simulate stochastically a structural model that represents these markets, and that includes mandates, in order to assess how shocks to corn or oil markets can affect ethanol price and use. We estimate that the mandate makes ethanol producer prices more sensitive to corn yields and less sensitive to changes in petroleum prices overall. We note a discontinuity in these links that is caused by the mandate. Ethanol use can exceed the mandate if petroleum prices and corn yields are high enough, but the mandate limits downside adjustments in ethanol use to low petroleum prices or corn yields

  4. Hydrogen yield from low temperature steam reforming of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Das, N.K.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering, Catalysis and Chemical Reaction Engineering Laboratories; Ranganathan, R. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2007-02-15

    Interest in the use of ethanol for fuel cell hydrogen production was discussed with particular reference to a study in which the production of hydrogen was maximized through low temperature steam reforming of ethanol in the temperature range of 200 to 360 degrees C. The primary objective of this study was to determine the effect of Mn concentration on a Cu/Al{sub 2}O{sub 3} catalyst for steam reforming of ethanol to produce hydrogen. The purpose was to maximize ethanol conversion and hydrogen selectivity in the lowest possible reaction temperature for the ideal catalyst activity. The optimum reaction conditions in the presence of a suitable catalyst can produce the desired products of hydrogen and carbon dioxide. Cu/Al{sub 2}O{sub 3} catalysts with six different concentrations ranging from 0 to 10 weight per cent Mn, were prepared, characterized and studied for the ethanol-steam reforming reaction. The effects of different process variables were studied, including water-to-ethanol feed ratio, space time and catalyst reduction temperatures on ethanol conversion and hydrogen yield. Maximum ethanol conversion of 60.7 per cent and hydrogen yield of 3.74 (mol of hydrogen per mol of ethanol converted) were observed at 360 degrees C for a catalyst with 2.5 weight per cent Mn loading. 29 refs., 3 tabs., 12 figs.

  5. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  6. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

    Science.gov (United States)

    Bura, Renata; Vajzovic, Azra; Doty, Sharon L

    2012-07-01

    An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

  7. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane

    Science.gov (United States)

    2014-01-01

    Background The development of ‘energycane’ varieties of sugarcane is underway, targeting the use of both sugar juice and bagasse for ethanol production. The current study evaluated a selection of such ‘energycane’ cultivars for the combined ethanol yields from juice and bagasse, by optimization of dilute acid pretreatment optimization of bagasse for sugar yields. Method A central composite design under response surface methodology was used to investigate the effects of dilute acid pretreatment parameters followed by enzymatic hydrolysis on the combined sugar yield of bagasse samples. The pressed slurry generated from optimum pretreatment conditions (maximum combined sugar yield) was used as the substrate during batch and fed-batch simultaneous saccharification and fermentation (SSF) processes at different solid loadings and enzyme dosages, aiming to reach an ethanol concentration of at least 40 g/L. Results Significant variations were observed in sugar yields (xylose, glucose and combined sugar yield) from pretreatment-hydrolysis of bagasse from different cultivars of sugarcane. Up to 33% difference in combined sugar yield between best performing varieties and industrial bagasse was observed at optimal pretreatment-hydrolysis conditions. Significant improvement in overall ethanol yield after SSF of the pretreated bagasse was also observed from the best performing varieties (84.5 to 85.6%) compared to industrial bagasse (74.5%). The ethanol concentration showed inverse correlation with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-hydrolysis. The overall assessment of the cultivars showed greater improvement in the final ethanol concentration (26.9 to 33.9%) and combined ethanol yields per hectare (83 to 94%) for the best performing varieties with respect to industrial sugarcane. Conclusions These results suggest that the selection of sugarcane variety to optimize ethanol

  8. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1 Experimental

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-08-01

    Full Text Available Abstract Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20% enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation

  9. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2015-08-01

    Full Text Available Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 °C, 10 min biomass from West Africa, including bamboo wood, rubber wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS was only slightly lower than by the wheat straw (33.1 g/100 g TS, while the ethanol yield (16.1 g/100 g TS was higher than that of the straw (15.26 g/100 g TS. All other local biomass types studied exhibited sugar and ethanol yields below 33% and 35% of the theoretical maximum, respectively. Thus, elephant grass is a highly promising biomass source for ethanol production in Africa.

  10. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Dong Xiaoyu; Yuan Yulian; Tang Qian; Dou Shaohua; Di Lanbo; Zhang Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control. (plasma technology)

  11. A theoretical evaluation of growth yields of yeasts

    NARCIS (Netherlands)

    Verduyn, C.; Stouthamer, A.H.; Scheffers, W.A.; Van Dijken, J.P.

    1991-01-01

    Growth yields of Saccharomyces cerevisiae and Candida utilis in carbon-limited chemostat cultures were evaluated. The yields on ethanol and acetate were much lower in S. cerevisiae, in line with earlier reports that site I phosphorylation is absent in this yeast. However, during aerobic growth on

  12. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  13. Direct ethanol conversion of pretreated straw by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (National Technical Univ., Athens (GR). Dept. of Chemical Engineering)

    1991-01-01

    Factors affecting the direct conversion of alkali pretreated straw to ethanol by Fusarium oxysporum F3 were investigated and the alkali level used for pretreatment and the degree of delignification of straw were found to be the most important. A linear correlation between ethanol yield and both the degree of straw delignification and the alkali level was observed. At optimum delignified straw concentration (4% w/v), a maximum ethanol yield of 0.275 g ethanol g{sup -1} of straw was obtained corresponding to 67.8% of the theoretical yield. (author).

  14. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E

    2013-03-28

    Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved

  15. An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mamma, D.; Christakopoulos, P.; Koullas, D.; Kekos, D.; Macris, B.J.; Koukios, E. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

    1995-10-01

    The ethanol fermentation of juice and press case, resulting from the squeezing of sweet sorghum stalks at high pressure was investigated. The juice was fermented by Saccharomyces cerevisiae and yielded 4.8 g ethanol per 100 g of fresh stalks. The press cake was fermented directly to ethanol by a mixed culture of Fusarium oxysporum and Saccharomyces cerevisiae and yielded 5.1 g ethanol per 100 g of fresh stalks. An overall ethanol concentration and yield of 5.6% (w/v) and 9.9 g of ethanol per 100 g of fresh stalks respectively was obtained. Based on soluble carbohydrates, the ethanol yield from press cake was doubled while the overall theoretical yield was enhanced by 20.7% due to the bioconversion of a significant portion of cell wall polysaccharides to ethanol. The process was found promising for further investigation. (Author)

  16. Ethanol yield and energy potential of stems from a spectrum of sorghum biomass types

    Energy Technology Data Exchange (ETDEWEB)

    McBee, G.G.; Creelman, R.A.; Miller, F.R.

    1988-01-01

    Sorghum biomass is a renewable resource that offers significant potential for energy utilization. Six sorghum cultivars, representing an array of stem types, were evaluated for ethanol yield. Ethanol production was individually obtained for both the total stem and the pith of each type by anaerobic yeast fermentation. Value of the energy contained in the rind was determined by calorimetry. The highest yield of ethanol from total stem fermentation was 3418.3 liters ha/sup -1/ produced from Rio. Fermentation of Rio pith to ethanol and combustion of the rind resulted in the highest total energy value of the cultivars. The least and greatest energy values were 6.3 and 44.3 x 10/sup 6/ kcal ha/sup -1/ for SC0056-14 and Rio, respectively. Conversion ratios of potentially fermentable carbohydrates (within the vegetative biomass) to ethanol produced, averaged 0.438 for the pith and 0.406 for total stems.

  17. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    Science.gov (United States)

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum

    Directory of Open Access Journals (Sweden)

    Tran Dang Xuan

    2015-08-01

    Full Text Available The use of biofuels helps to reduce the dependency on fossil fuels and therefore decreases CO2 emission. Ethanol mixed with gasoline in mandatory percentages has been used in many countries. However, production of ethanol mainly depends on food crops, commonly associated with problems such as governmental policies and social controversies. Sweet sorghum (Sorghum bicolor (L. Moench is one of the most potential and appropriate alternative crops for biofuel production because of its high biomass and sugar content, strong tolerance to environmental stress conditions and diseases, and wide adaptability to various soils and climates. The aim of this study was to select prospective varieties of sweet sorghum, optimum sowing times and densities to achieve high yields of ethanol production and to establish stable operational conditions in cultivating this crop. The summer-autumn cropping season combined with the sowing densities of 8.3–10.9 plant m−2 obtained the highest ethanol yield. Among cultivated locations, the soil with pH of 5.5 and contents of Al and Zn of 39.4 and 0.6 g kg−1, respectively, was the best condition to have an ethanol yield >5000 L ha−1. The pH ≥ 6.0 may be responsible for the significant reduction of zinc content in soils, which decreases both biomass of sweet sorghum and ethanol yield, while contents of N, P, K, organic carbon (OC and cation exchange capacity (CEC, and Fe likely play no role. The cultivar 4A was the preferred candidate for ethanol production and resistant to pests and diseases, especially cut worm (Agrotis spp..

  20. Ethanol production from soybean molasses by Zymomonas mobilis

    International Nuclear Information System (INIS)

    Letti, Luiz Alberto Junior; Karp, Susan Grace; Woiciechowski, Adenise Lorenci; Soccol, Carlos Ricardo

    2012-01-01

    This work deals with the utilization of soybean molasses (a low cost byproduct) to produce ethanol, an important biofuel, using the microorganism Zymomonas mobilis NRRL 806, a gram negative bacterium. At the first part of the work, laboratorial scale tests, using 125 mL flasks were performed to evaluate the effect of three variables on ethanol production: soybean molasses concentration (the sole carbon and nitrogen source), pH and period of previous aerobial phase. The optimal soybean concentration was around 200 g L -1 of soluble solids, pH between 6.0 and 7.0, and the period of previous aerobial phase did not provide significant effect. At the second part, kinetic tests were performed to compare the fermentation yields of Zymomonas mobilis NRRL 806 in flasks and in a bench scale batch reactor (it was obtained respectively 78.3% and 96.0% of the maximum theoretical yields, with productions of 24.2 and 29.3 g L -1 of ethanol). The process with a reactor fermentation using Saccharomyces cerevisiae LPB1 was also tested (it was reached 89.3% of the theoretical maximum value). A detailed kinetic behavior of the molasses sugars metabolism for Z. mobilis was also shown, either in reactor or in flasks. This work is a valuable tool for further works in the subject of ethanol production from agro-industrial by-products. -- Highlights: ► Zymomonas mobilis was able to grow and produce ethanol on diluted soybean molasses. ► Best conditions for ethanol production:200g L -1 of soluble solids; pH around 6,5. ► Z. mobilis had better ethanol production and yield when compared to S. cerevisiae. ► In reactor, Z. mobilis produced 29.3 g L -1 of ethanol, 96.0% of the maximum yield.

  1. Effects of Nitrogen Application on Growth and Ethanol Yield of Sweet Sorghum [Sorghum bicolor (L. Moench] Varieties

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Olugbemi

    2016-01-01

    Full Text Available A study was carried out in two locations, Ilorin (8° 29′ N; 4° 35′ E; about 310 m asl and Ejiba (8° 17′ N; 5° 39′ E; about 246 m asl, at the Southern Guinea Savannah agroecological zone of Nigeria to assess the effect of nitrogen fertilizer on the growth and ethanol yield of four sweet sorghum varieties (NTJ-2, 64 DTN, SW Makarfi 2006, and SW Dansadau 2007. Five N fertilizer levels (0, 40, 80, 120, and 160 kg ha−1 were used in a 4 × 5 factorial experiment, laid out in split-plots arrangement. The application of nitrogen fertilizer was shown to enhance the growth of sweet sorghum as observed in the plant height, LAI, CGR, and other growth indices. Nitrogen fertilizer application also enhanced the ethanol yield of the crop, as variations in growth parameters and ethanol yield were observed among the four varieties studied. The variety SW Dansadau 2007 was observed as the most promising in terms of growth and ethanol yield, and the application of 120 kg N ha−1 resulted in the best ethanol yield at the study area.

  2. Production of fuel ethanol from molasses by thermotolerant yeast

    International Nuclear Information System (INIS)

    Hamad, S. H.

    2009-01-01

    A thermotolerant strain of the yeast Kluyveromyces marxians, isolated from Kenana sugar factory in the Sudan, was used for the production of ethanol from molasses. Fermentations were carried out in a bioreactor with 10-litre working volume at three temperatures and three sugar concentrations in batch and at one temperature and three feeding rates in fed-batch processes. In the batch fermentations, the best results were obtained at 40 o C and 20% sugar, where a maximum of 9.2% (w/v) ethanol concentration was produced in 30 hours with a yield of 90% of the theoretical and a maximum ethanol specific productivity of 0.65 g per gramme yeast and hour. In the fed-batch process at 40 o C , the best results were obtained at 0.5 1/h feeding rate of a substrate with 400 g/1 sugar. Under such conditions, the yeast produced up to 9.34% (w/v) ethanol with 91.6% of the theoretical yield in 14 hours of fermentation and a maximum specific ethanol productivity of 0.9 g per gramme yeast and hour. (Author)

  3. Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.

    Science.gov (United States)

    Egg, R P; Sweeten, J M; Coble, C G

    1985-12-01

    Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.

  4. The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Daianova, Lilia; Yan, Jinyue; Thorin, Eva; Dotzauer, Erik

    2012-01-01

    Highlights: ► We model a system with ethanol, power and district heating production. ► Different ethanol yields are investigated from an overall system perspective. ► Yields of ethanol production have less importance for the profitability of the plant. -- Abstract: The development towards high energy efficiency and low environmental impact from human interactions has led to changes at many levels of society. As a result of the introduction of penalties on carbon dioxide emissions and other economic instruments, the energy industry is striving to improve energy efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined heat and power (CHP) plants connected to district heating networks have a need to find uses for the excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector makes a substantial contribution to the increasing CO 2 emissions, which have to be reduced. One promising alternative to address these challenging issues is the integration of vehicle fuel production with biomass-based CHP plants. This paper presents the configuration and operating profits in terms of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity production can be increased when CHP production is integrated with cellulosic ethanol production. The findings also show that the economic benefits of the energy system can be realized with near-term commercially available technology, and that the benefits do not rely solely on ethanol yields.

  5. Experimental and theoretical IR study of methanol and ethanol converson over H-SAPO-34

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Ghysels, A.; Mores, D.; De Wispelaere, K.; Van Speybroeck, V.; Weckhuysen, B.M.; Waroquier, M.

    2011-01-01

    Theoretical and experimental IR data are combined to gain insight into the methanol and ethanol conversion over an acidic H-SAPO-34 catalyst. The theoretical simulations use a large finite cluster and the initial physisorption energy of both alcohols is calculated. Dispersive contributions turn out

  6. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    DEFF Research Database (Denmark)

    Bensah, Edem C.; Kádár, Zsófia; Mensah, Moses Y.

    2015-01-01

    wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3...

  7. Optimization of ethanol production from garcinia cambogia residues and the effects of its medicinal component on production yield

    International Nuclear Information System (INIS)

    Ma, H.; Zhang, F.

    2017-01-01

    Garcinia cambogia, a Chinese herbal medicine, was popular due to its effect for weight loss. The main medical component inside was determined to be hydroxycitric acid (HCA). To realize the resource technology of garcinia cambogia residue, Optimum ethanol production from residues was investigated, and the effects of remaining HCA on the ethanol yield were investigated. A Plackett-Burman experimental design was used to screen the significance of several influencing factors, and cellulase, yeast extract, and KH2PO4 were observed to exert important effects. The optimum ethanol fermentation conditions were determined through an orthogonal design to include a cellulase concentration of 100 U/g, a yeast extract concentration of 15 g/L, and a KH2PO4 concentration of 1.0 g/L. The ethanol concentration obtained under optimal conditions was 4.0 g/L. The remained HCA in the residues showed minimal influences on ethanol fermentation and could even increase ethanol yield at low concentrations. (author)

  8. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Atiya Techaparin

    Full Text Available Abstract The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v, respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ at 40 °C were achieved using the Box-Behnken experimental design (BBD. The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.

  9. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  10. Ethanol production from lignocellulosic byproducts of olive oil extraction.

    Science.gov (United States)

    Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M

    2001-01-01

    The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.

  11. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

    Science.gov (United States)

    Wang, Yanqun; Tang, Yizhen; Shao, Youxiang

    2017-09-01

    Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ethanol production from SPORL-pretreated lodgepole pine : preliminary evaluation of mass balance and process energy efficiency

    Science.gov (United States)

    Junyong Zhu; Wenyuan Zhu; Patricia OBryan; Bruce S. Dien; Shen Tian; Roland Gleisner; X.J. Pan

    2010-01-01

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-...

  13. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Caballero, Antonio; Ramos, Juan Luis

    2017-04-01

    Lignocellulose contains two pentose sugars, l-arabinose and d-xylose, neither of which is naturally fermented by first generation (1G) ethanol-producing Saccharomyces cerevisiae yeast. Since these sugars are inaccessible to 1G yeast, a significant percentage of the total carbon in bioethanol production from plant residues, which are used in second generation (2G) ethanol production, remains unused. Recombinant Saccharomyces cerevisiae strains capable of fermenting d-xylose are available on the market; however, there are few examples of l-arabinose-fermenting yeasts, and commercially, there are no strains capable of fermenting both d-xylose and l-arabinose because of metabolic incompatibilities when both metabolic pathways are expressed in the same cell. To attempt to solve this problem we have tested d-xylose and l-arabinose co-fermentation. To find efficient alternative l-arabinose utilization pathways to the few existing ones, we have used stringent methodology to screen for new genes (metabolic and transporter functions) to facilitate l-arabinose fermentation in recombinant yeast. We demonstrate the feasibility of this approach in a successfully constructed yeast strain capable of using l-arabinose as the sole carbon source and capable of fully transforming it to ethanol, reaching the maximum theoretical fermentation yield (0.43 g g-1). We demonstrate that efficient co-fermentation of d-xylose and l-arabinose is feasible using two different co-cultured strains, and observed no fermentation delays, yield drops or accumulation of undesired byproducts. In this study we have identified a technically efficient strategy to enhance ethanol yields by 10 % in 2G plants in a process based on C5 sugar co-fermentation.

  14. The Potential of Cellulosic Ethanol Production from Grasses in Thailand

    Directory of Open Access Journals (Sweden)

    Jinaporn Wongwatanapaiboon

    2012-01-01

    Full Text Available The grasses in Thailand were analyzed for the potentiality as the alternative energy crops for cellulosic ethanol production by biological process. The average percentage composition of cellulose, hemicellulose, and lignin in the samples of 18 types of grasses from various provinces was determined as 31.85–38.51, 31.13–42.61, and 3.10–5.64, respectively. The samples were initially pretreated with alkaline peroxide followed by enzymatic hydrolysis to investigate the enzymatic saccharification. The total reducing sugars in most grasses ranging from 500–600 mg/g grasses (70–80% yield were obtained. Subsequently, 11 types of grasses were selected as feedstocks for the ethanol production by simultaneous saccharification and cofermentation (SSCF. The enzymes, cellulase and xylanase, were utilized for hydrolysis and the yeasts, Saccharomyces cerevisiae and Pichia stipitis, were applied for cofermentation at 35°C for 7 days. From the results, the highest yield of ethanol, 1.14 g/L or 0.14 g/g substrate equivalent to 32.72% of the theoretical values was obtained from Sri Lanka ecotype vetiver grass. When the yields of dry matter were included in the calculations, Sri Lanka ecotype vetiver grass gave the yield of ethanol at 1,091.84 L/ha/year, whereas the leaves of dwarf napier grass showed the maximum yield of 2,720.55 L/ha/year (0.98 g/L or 0.12 g/g substrate equivalent to 30.60% of the theoretical values.

  15. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.

    Science.gov (United States)

    Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E

    2015-05-22

    We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme  gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced Ethanol Production with Mixed Lignocellulosic Substrates from Commercial Furfural and Cassava Residues

    Directory of Open Access Journals (Sweden)

    Li Ji

    2015-01-01

    Full Text Available Simultaneous saccharification and fermentation (SSF is an attractive process configuration for bio-ethanol production. Further reductions in process cost of SSF are expected with the use of waste agricultural or industrial materials as feedstock. In the current study, two industrial lignocellulosic wastes, cassava residues (CR and furfural residues (FR, were combined during SSF for ethanol production due to their value-added applications and positive environmental impacts. After CR were liquefied and saccharified, saccharification liquid was added to SSF of FR. The effect of substrate fractions was investigated in terms of ethanol yield, byproduct concentration and the number of yeast cells. Besides, a natural surfactant, Gleditsia saponin, was added to investigate the effect of FR lignin on SSF with 20% substrate concentration. The results showed that increasing the ratio of CR/FR improved the ethanol yield and that the ethanol yield was also increased gradually by increasing the substrate concentration from 6% to 12%. A high ethanol concentration of 36.0 g/L was obtained under the condition of CR:FR = 2:1 with 12% substrate concentration, reaching 71.1% of the theoretical yield. However, Gleditsia saponin did not affect the ethanol yield, indicating the insignificant effect of lignin in SSF with low lignin content in the reaction system.

  17. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    Directory of Open Access Journals (Sweden)

    Blake L Joyce

    Full Text Available Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1 to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2 to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass. Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  18. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    Science.gov (United States)

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  19. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  20. Optimization studies for the bioconversion of Jerusalem artichoke tubers to ethanol and microbial biomass

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.; Cannell, E.

    1981-01-01

    A total of 8 yeast and other microbial cultures were grown in the extract derived from the tubers of Jerusalem artichoke (Helianthus tuberosus) and screened according to the following optimization criteria: rates and yields of ethanol production, rates and yields of biomass production, and percent of original sugars utilized during fermentation. Batch growth kinetic parameters were also determined for the cultures studied. Kluyveromyces marxianus UCD (FST) 55-82 had the highest specific growth rate, 0.41/h, with a high ethanol yield, 88% of theoretical.

  1. Direct conversion of sorghum carbohydrates to ethanol by a mixed microbial culture

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, Paul; Lianwu Li; Kekos, Dimitris; Macris, B.J. (National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering)

    1993-01-01

    The carbohydrates of sweet sorghum were directly converted to ethanol by a mixed culture of Fusarium oxysporum F3 and Saccharomyces cerevisiae 2541. A number of factors affecting this bioconversion was studied. Optimum ethanol yields of 33.2 g/100 g of total sorghum carbohydrates, corresponding to 10.3 g/100 g of fresh stalks, were obtained. These values represented 68.6% of the theoretical yield based on total polysaccharides and exceeded that based on oligosaccharides of sorghum by 53.7%. The results demonstrated that more than half of the sorghum polysaccharides were directly fermented to ethanol, thus making the process worthy of further investigation. (author)

  2. Selection of yeast able to produce ethanol from glucose at 40/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Hacking, A J; Taylor, I W.F.; Hanas, C M

    1984-05-01

    A total of 55 yeast strains selected from 7 genera known to ferment carbohydrates to ethanol were screened for their ability to ferment glucose to ethanol in shaken flask culture at 37/sup 0/, 40/sup 0/ and 45/sup 0/C. Yields of more than 50% of the theoretical maximum were obtained with 28 strains at 37/sup 0/C, but only 12 at 40/sup 0/C. Only 6 could grow at 45/sup 0/C, but they produced poor yields. In general Kluyveromyces strains were more thermotolerant than Saccharomyces and Candida strains, but Saccharomyces strains produced higher ethanol yields. The 8 strains with the highest yields at 40/sup 0/C were evaluated in batch fermentations. Three of these, two Saccharomyces and one Candida, were able to meet minimum commercial targets set at 8% (v/v) ethanol from 14% (w/v) glucose at 40/sup 0/C.

  3. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    Science.gov (United States)

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  4. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  6. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Evidence for the existence of water:ethanol clusters from o-Ps yields

    International Nuclear Information System (INIS)

    Smith, F.A.; Beling, C.D.

    1982-01-01

    Lifetime measurements have been made in mixtures of water and ethanol at 293 K. Fluctuations are observed in both o-Ps yield and decay rate as a function of water concentration with local maxima occurring at molecular ratios (EtOH:H 2 O) of 4:1 and 1:1. The results are interpreted in terms of cluster formation at these concentrations. (Auth.)

  8. Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 C) mixed culture

    DEFF Research Database (Denmark)

    Chenxi, Zhao; Karakashev, Dimitar Borisov; Lu, W.

    2010-01-01

    -xylose corresponding to 55% of the theoretical hydrogen yield based on acetate metabolic pathway. An empirical model was established to reveal the quantitative effect of factors significant for biohydrogen (quadratic model) production and for bioethanol (linear model) production. Changes in hydrogen/ethanol yields...

  9. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta.

    Science.gov (United States)

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-03-07

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49, 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol production with a yield of 0.44 g/g. T. hirsuta was capable of directly fermenting starch, wheat bran and rice straw to ethanol without acid or enzymatic hydrolysis. Maximum ethanol concentrations of 9.1, 4.3 and 3.0 g/l, corresponding to 89.2%, 78.8% and 57.4% of the theoretical yield, were obtained when the fungus was grown in a medium containing 20 g/l starch, wheat bran or rice straw, respectively. The fermentation of rice straw pretreated with ball milling led to a small improvement in the ethanol yield: 3.4 g ethanol/20 g ball-milled rice straw. As T. hirsuta is an efficient microorganism capable of hydrolyzing biomass to fermentable sugars and directly converting them to ethanol, it may represent a suitable microorganism in consolidated bioprocessing applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Theoretical lifetimes and fluorescence yields for multiply-ionized fluorine

    International Nuclear Information System (INIS)

    Tunnell, T.W.; Can, C.; Bhalla, C.P.

    1978-01-01

    Theoretical lifetimes and multiplet partial fluorescence yields for various fluorine ions with a single K-shell vacancy were calculated. For few-electron systems, the lifetimes and line fluorescence yields were computed in the intermediate coupling scheme with the inclusion of the effects arising from configuration interactions. 6 references

  11. Use of continuous lactose fermentation for ethanol production by Kluveromyces marxianus for verification and extension of a biochemically structured model

    DEFF Research Database (Denmark)

    Sansonetti, S.; Hobley, Timothy John; Curcio, S.

    2013-01-01

    A biochemically structured model has been developed to describe the continuous fermentation of lactose to ethanol by Kluveromyces marxianus and allowed metabolic coefficients to be determined. Anaerobic lactose-limited chemostat fermentations at different dilution rates (0.02 – 0.35 h-1) were...... performed. Species specific rates of consumption/formation, as well as yield coefficients were determined. Ethanol yield (0.655 C-mol ethanol*C-mol lactose-1) was as high as 98 % of theoretical. The modeling procedure allowed calculation of maintenance coefficients for lactose consumption and ethanol...

  12. Production of fuel ethanol from steam-explosion pretreated olive tree pruning

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal Cara; Encarnacion Ruiz; Mercedes Ballesteros; Paloma Manzanares; Ma Jose Negro; Eulogio Castro [University of Jaen, Jaen (Spain). Department of Chemical, Environmental and Materials Engineering

    2008-05-15

    This work deals with the production of fuel ethanol from olive tree pruning. This raw material is a renewable, low cost, largely available, and lacking of economic alternatives agricultural residue. Olive tree pruning was submitted to steam explosion pre-treatment in the temperature range 190-240{sup o}C, with or without previous impregnation by water or sulphuric acid solutions. The influence of both pre-treatment temperature and impregnation conditions on sugar and ethanol yields was investigated by enzymatic hydrolysis and simultaneous saccharification and fermentation on the pretreated solids. Results show that the maximum ethanol yield (7.2 g ethanol/100 g raw material) is obtained from water impregnated, steam pretreated residue at 240{sup o}C. Nevertheless if all sugars solubilized during pre-treatment are taken into account, up to 15.9 g ethanol/100 g raw material may be obtained (pre-treatment conditions: 230{sup o}C and impregnation with 1% w/w sulphuric acid concentration), assuming theoretical conversion of these sugars to ethanol. 29 refs., 2 figs., 5 tabs.

  13. Solid phase fermentation of Helianthus tuberosus for ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Baerwald, G.; Hamad, S.H.

    1989-01-01

    The direct fermentation of pure inulin and hammer mill crushed Helianthus tuberosus tubers (topinambur, Jerusalem artichoke) was studied using two heat-tolerant yeasts, namely Kluyveromyces marxianus and Candida kefyr. A Saccharomyces cerevisiae was included in the study so as to compare the yields of these two yeasts with that of a commercial distiller's yeast. The inulin fermentation was carried out in an 18-L bioreactor using the fed-batch and the batch-fermentation methods. The final ethanol concentration was 6.1% (L/L) which represents 82% of the theoretical yield. Commercial scale experiments with hammer mill crushed tubers gave yields lower than those found in the laboratory: 69% of the theoretical yield for direct fermentation without enzyme addition, and about 91% when cellolytic enzymes were added.

  14. Impact of various storage conditions on enzymatic activity, biomass components and conversion to ethanol yields from sorghum biomass used as a bioenergy crop.

    Science.gov (United States)

    Rigdon, Anne R; Jumpponen, Ari; Vadlani, Praveen V; Maier, Dirk E

    2013-03-01

    With increased mandates for biofuel production in the US, ethanol production from lignocellulosic substrates is burgeoning, highlighting the need for thorough examination of the biofuel production supply chain. This research focused on the impact storage has on biomass, particularly photoperiod-sensitive sorghum biomass. Biomass quality parameters were monitored and included biomass components, cellulose, hemicellulose and lignin, along with extra-cellular enzymatic activity (EEA) responsible for cellulose and hemicellulose degradation and conversion to ethanol yields. Analyses revealed dramatic decreases in uncovered treatments, specifically reduced dry matter content from 88% to 59.9%, cellulose content from 35.3% to 25%, hemicellulose content from 23.7% to 16.0% and ethanol production of 0.20 to 0.02gL(-1) after 6months storage along with almost double EEA activities. In contrast, biomass components, EEA and ethanol yields remained relatively stable in covered treatments, indicating covering of biomass during storage is essential for optimal substrate retention and ethanol yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ethanol from softwood. Process development based on steam pretreatment and SSF

    Energy Technology Data Exchange (ETDEWEB)

    Stenberg, Kerstin

    1999-05-01

    Fuel ethanol can be produced from lignocellulosics by the enzymatic hydrolysis process, which consists of a pretreatment step prior to hydrolysis, followed by fermentation and finally refining. This thesis deals with the development of the enzymatic process using softwood as raw material. The focus has not only been on how to obtain high yields, but also on how to solve problems, which can arise in an industrial process, such as inhibition and contamination. The pretreatment step was evaluated using steam-pretreatment and impregnation with an acid catalyst, either SO{sub 2} or H{sub 2}SO{sub 4}. Both impregnation methods resulted in approximately the same yield, 65% of the theoretical of fermentable sugars, i.e. glucose and mannose, after enzymatic hydrolysis. However, impregnation with SO{sub 2}, resulted in higher ethanol productivity and yield in the fermentation. Simultaneous saccharification and fermentation (SSF) was investigated using various substrate and cellulase concentrations. An overall ethanol yield of 70% of the theoretical was obtained using the whole slurry from the pretreatment step at an insoluble dry weight content of 5%, which was shown to be optimal. SSF resulted in both higher productivity and higher ethanol yield than in separate hydrolysis and fermentation, but proved to be more sensitive to infection by lactic aid bacteria. More complex process integration, in the form of recirculation of process streams, which is desirable in an industrial process, was investigated using bench-scale equipment. A reduction in the fresh-water demand of 50%, from 3 kg/kg dry raw material to 1.5 kg/kg dry raw material, was found to be possible without any negative effects on either hydrolysis or fermentation. A techno-economic evaluation of different process configurations in a process applying SSF was also performed. It was found that the ethanol production cost could be reduced by 20% by internal energy integration and by another 15% by recirculation to the

  16. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing.

    Science.gov (United States)

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-05-01

    The aim of this study is to develop a scheme of cell recycle batch fermentation (CRBF) of high-solid lignocellulosic materials. Two-phase separation consisting of rough removal of lignocellulosic residues by low-speed centrifugation and solid-liquid separation enabled effective collection of Saccharomyces cerevisiae cells with decreased lignin and ash. Five consecutive batch fermentation of 200 g/L rice straw hydrothermally pretreated led to an average ethanol titer of 34.5 g/L. Moreover, the display of cellulases on the recombinant yeast cell surface increased ethanol titer to 42.2 g/L. After, five-cycle fermentation, only 3.3 g/L sugar was retained in the fermentation medium, because cellulase displayed on the cell surface hydrolyzed cellulose that was not hydrolyzed by commercial cellulases or free secreted cellulases. Fermentation ability of the recombinant strain was successfully kept during a five-cycle repeated batch fermentation with 86.3% of theoretical yield based on starting biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Steam pretreatment of dry and ensiled industrial hemp for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Sipos, Balint; Reczey, Kati [Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Szt. Gellert ter 4., H-1111 Budapest (Hungary); Kreuger, Emma; Bjoernsson, Lovisa [Lund University, Department of Biotechnology, P.O. Box 124, SE-221 00 Lund (Sweden); Svensson, Sven-Erik [Swedish University of Agricultural Sciences, Department of Agriculture - Farming Systems, Technology and Product Quality, P.O. Box 104, SE-230 53 Alnarp (Sweden); Zacchi, Guido [Lund University, Department of Chemical Engineering, P.O. Box 124, SE-221 00 Lund (Sweden)

    2010-12-15

    Biomass can be converted into liquid and gaseous biofuels with good efficiency. In this study, the conversion of industrial hemp (Cannabis sativa L.), a biomass source that can be cultivated with a high biomass yield per hectare, was used. Steam pretreatment of dry and ensiled hemp was investigated prior to ethanol production. The pretreatment efficiency was evaluated in terms of sugar recovery and polysaccharide conversion in the enzymatic hydrolysis step. For both materials, impregnation with 2% SO{sub 2} followed by steam pretreatment at 210 C for 5 min were found to be the optimal conditions leading to the highest overall yield of glucose. Simultaneous saccharification and fermentation experiments carried out with optimised pretreatment conditions resulted in ethanol yields of 163 g kg{sup -1} ensiled hemp (dry matter) (71% of the theoretical maximum) and 171 g kg{sup -1} dry hemp (74%), which corresponds to 206-216 l Mg{sup -1} ethanol based on initial dry material. (author)

  18. A Shortcut to the Production of High Ethanol Concentration from Jerusalem Artichoke Tubers

    Directory of Open Access Journals (Sweden)

    Wei-Guo Zhang

    2005-01-01

    Full Text Available Aspergillus niger SL-09, a newly isolated exoinulinase-hyperproducing strain, and Saccharomyces cerevisiae Z-06, with high ethanol tolerance, were used in a fed-batch process for simultaneous saccharification and fermentation of Jerusalem artichoke tuber mash and flour. S. cerevisiae Z-06 utilized 98 % of the total sugar and produced 19.6 % of ethanol in 48 h. In this process the conversion efficiency of the fermentation of Jerusalem artichoke and the production of ethanol were 90 % of the theoretical ethanol yield and the cost of the production of flour was cut nearly into half.

  19. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors.

    Science.gov (United States)

    Vajzovic, Azra; Bura, Renata; Kohlmeier, Kevin; Doty, Sharon L

    2012-10-01

    A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30 g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5 g/l of furfural stimulated production of xylitol to 77 % of theoretical yield (10 % higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3 g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99 % of theoretical yield (15 % higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5 g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.

  20. Production of ethanol from mesquite [Prosopis juliflora (SW) D.C.] pods mash by Zymomonas mobilis in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Celiane Gomes Maia da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Domesticas; Andrade, Samara Alvachian Cardoso; Schuler, Alexandre Ricardo Pereira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Souza, Evandro Leite de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Nutricao; Stamford, Tania Lucia Montenegro [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Nutricao], E-mail: tlmstamford@yahoo.com.br

    2011-01-15

    Mesquite [Prosopis juliflora (SW) D.C.], a perennial tropical plant commonly found in Brazilian semi-arid region, is a viable raw material for fermentative processes because of its low cost and production of pods with high content of hydrolyzable sugars which generate many compounds, including ethanol. This study aimed to evaluate the use of mesquite pods as substrate for ethanol production by Z. mobilis UFPEDA- 205 in a submerged fermentation. The fermentation was assessed for rate of substrate yield to ethanol, rate of ethanol production and efficiency of fermentation. The very close theoretical (170 g L{sup -1}) and experimental (165 g L{sup -1}) maximum ethanol yields were achieved at 36 h of fermentation. The highest counts of Z. mobilis UFEPEDA-205 (both close to 6 Log cfu mL{sup -1}) were also noted at 36 h. Highest rates of substrate yield to ethanol (0.44 g ethanol g glucose{sup -1}), of ethanol production (4.69 g L{sup -1} h{sup -1}) and of efficiency of fermentation (86.81%) were found after 30 h. These findings suggest mesquite pods as an interesting substrate for ethanol production using submerged fermentation by Z. mobilis. (author)

  1. A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Hobley, Timothy John; Calabrò, V.

    2011-01-01

    Anaerobic batch fermentations of ricotta cheese whey (i.e. containing lactose) were performed under different operating conditions. Ethanol concentrations of ca. 22gL−1 were found from whey containing ca. 44gL−1 lactose, which corresponded to up to 95% of the theoretical ethanol yield within 15h......, lactose, biomass and glycerol during batch fermentation could be described within a ca. 6% deviation, as could the yield coefficients for biomass and ethanol produced on lactose. The model structure confirmed that the thermodynamics considerations on the stoichiometry of the system constrain the metabolic...... coefficients within a physically meaningful range thereby providing valuable and reliable insight into fermentation processes....

  2. Determining the potential of inedible weed biomass for bio-energy and ethanol production

    Directory of Open Access Journals (Sweden)

    Siripong Premjet

    2013-02-01

    Full Text Available Surveys of indigenous weeds in six provinces located in the low northern part of Thailand were undertaken to determine the potential of weed biomass for bio-energy and bio-ethanol. The results reveal that most of the weed samples had low moisture contents and high lower heating values (LHVs. The LHVs at the highest level, ranging from 17.7 to 18.9 Mg/kg, and at the second highest level, ranging from 16.4 to 17.6 Mg/kg, were obtained from 11 and 31 weed species, respectively. It was found that most of the collected weed samples contained high cellulose and low lignin contents. Additionally, an estimate of the theoretical ethanol yields based on the amount of cellulose and hemicellulose in each weed species indicated that a high ethanol yield resulted from weed biomasses with high cellulose and hemicellulose contents. Among the collected weed species, the highest level of ethanol yield, ranging from 478.9 to 548.5 L/ton (substrate, was achieved from 11 weed species. It was demonstrated that most of the collected weed species tested have the potential for thermal conversion and can be used as substrates for ethanol production.

  3. Direct Fungal Production of Ethanol from High-Solids Pulps by the Ethanol-fermenting White-rot Fungus Phlebia sp. MG-60

    Directory of Open Access Journals (Sweden)

    Ichiro Kamei

    2014-07-01

    Full Text Available A white-rot fungus, Phlebia sp. MG-60, was applied to the fermentation of high-solid loadings of unbleached hardwood kraft pulp (UHKP without the addition of commercial cellulase. From 4.7% UHKP, 19.6 g L-1 ethanol was produced, equivalent to 61.7% of the theoretical maximum. The highest ethanol concentration (25.9 g L-1, or 46.7% of the theoretical maximum was observed in the culture containing 9.1% UHKP. The highest filter paper activity (FPase was observed in the culture containing 4.7% UHKP, while the production of FPase in the 16.5% UHKP culture was very low. Temporarily removing the silicone plug from Erlenmeyer flasks, which relieved the pressure and allowed a small amount of aeration, improved the yield of ethanol produced from the 9.1% UHKP, which reached as high as 37.3 g L-1. These results indicated that production of cellulase and ensuing saccharification and fermentation by Phlebia sp. MG-60 is affected by water content and benefits from a small amount of aeration.

  4. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21

    Energy Technology Data Exchange (ETDEWEB)

    Verma, G.; Singh, D.; Chaudhary, K. [CCS Haryana Agricultural Univ., Hisar (India). Dept. of Biotechnology and Molecular Biology; Nigam, P. [Ulster Univ., Coleraine, Northern Ireland (United Kingdom). School of Applied Biological and Chemical Sciences

    2000-05-01

    Ethanol production by a coculture of Saccharomyces diastaticus and Saccharomyces cerevisiae 21 was 24.8 g/l using raw unhydrolysed starch in a single-step fermentation. This was 48% higher than the yield obtained with the monoculture of S. diastaticus (16.8 g/l). The maximum ethanol fermentation efficiency was achieved (93% of the theoretical value) using 60 g/l starch concentration. In another coculture fermentation with E. capsularis and S. cerevisiae 21, maximum ethanol yield was 16.0 g/l, higher than the yield with the monoculture of Endomycopsis capsularis. In batch fermentations using cocultures maximum ethanol production occurred in 48 h of fermentation at 30{sup o}C using 60 g/l starch. Fermentation efficiency was found lower in a two-step process using {alpha}-amylase and glucoamylase-treated starch. (Author)

  5. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi

    2012-01-01

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which...... was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude...... glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1 g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol...

  6. Kinetics of ethanol production from Jerusalem artichoke juice with some Kluyveromyces species

    Energy Technology Data Exchange (ETDEWEB)

    Kuvnjak, Z.; Kosaric, N.; Hayes, R.D.

    1981-01-01

    The kinetics of ethanol production by Kluyveromyces marxianus ATCC 12708 and ATCC 10606, K. cicerisporus ATCC 22295 and K. fragilis 105 were studied using raw juice of the Jerusalem artichoke in which the carbohydrates were not hydrolyzed prior to fermentation. This juice contains enough nutrients and can serve as a complete medium without additional nutrients both for growth of the yeasts and for ethanol production. Both specific ethanol productivity and specific glucose uptake rates were the highest with K. marxianus ATCC 12708 (1.68 gg-1 h-1 and 3.78 gg-1h-1, respectively). This microorganism produced an ethanol yield of 87.5% of the theoretical value in 25 hours.

  7. Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karagöz, Pınar; Karakashev, Dimitar Borisov

    2013-01-01

    from the liquid fraction of pretreated rapeseed straw, without any dilution or need for additives. However, when the hydrolysate was used undiluted the ethanol yield was only 37% compared to yield of the control, in which pure sugars in synthetic medium were used. The decrease of ethanol yield...... showed that the two strains together could achieve up to 85% of the theoretical ethanol yield based on the sugar composition of the rapeseed straw, which was 14% and 50% higher compared to the yield with the yeast or the bacteria alone, respectively. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc.......The newly isolated extreme thermophile Thermoanaerobacter pentosaceus was used for ethanol production from alkaline-peroxide pretreated rapeseed straw (PRS). Both the liquid and solid fractions of PRS were used. T. pentosaceus was able to metabolize the typical process inhibitors present...

  8. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  9. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    Science.gov (United States)

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evaluation of three cultivars of sweet sorghum as feedstocks for ethanol production in the Southeast United States

    Directory of Open Access Journals (Sweden)

    Daniel E. Ekefre

    2017-12-01

    Full Text Available Sweet sorghum has become a promising alternative feedstock for biofuel production because it can be grown under reduced inputs, responds to stress more efficiently than traditional crops, and has large biomass production potential. A three-year field study was conducted to evaluate three cultivars of sweet sorghum as bioenergy crops in the Southeast United States (Fort Valley, Georgia: Dale, M81 E and Theis. Parameters evaluated were: plant density, stalk height, and diameter, number of nodes, biomass yield, juice yield, °Bx, sugar production, and theoretical ethanol yields. Yields were measured at 85, 99, and 113 days after planting. Plant fresh weight was the highest for Theis (1096 g and the lowest for Dale (896 g. M81 E reported the highest stalk dry weight (27 Mg ha−1 and Theis reported the lowest (21 Mg ha−1. Theis ranked the highest °Bx (14.9, whereas M81 E was the lowest (13.2. Juice yield was the greatest for M81 E (10915 L ha−1 and the lowest for Dale (6724 L ha−1. Theoretical conservative sugar yield was the greatest for Theis (13 Mg ha−1 and the lowest for Dale (9 Mg ha−1. Theoretical ethanol yield was the greatest for Theis (7619 L ha−1 and the lowest for Dale (5077 L ha−1.

  11. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    Science.gov (United States)

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  12. Continuous Production of Ethanol from Starch Using Glucoamylase and Yeast Co-Immobilized in Pectin Gel

    Science.gov (United States)

    Giordano, Raquel L. C.; Trovati, Joubert; Schmidell, Willibaldo

    This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silicaenzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/1 of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/1 of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/1/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10-4 cm/s.

  13. Autohydrolysis pretreatment assessment in ethanol production from agave bagasse.

    Science.gov (United States)

    Rios-González, Leopoldo J; Morales-Martínez, Thelma K; Rodríguez-Flores, María F; Rodríguez-De la Garza, José A; Castillo-Quiroz, David; Castro-Montoya, Agustín J; Martinez, Alfredo

    2017-10-01

    The aim of the present work was to assess the autohydrolysis pretreatment of Agave tequilana bagasse for ethanol production. The pretreatment was conducted using a one-liter high pressure Parr reactor under different severity factors (SF) at a 1:6w/v ratio (solid:liquid) and 200rpm. The solids obtained under the selected autohydrolysis conditions were subjected to enzymatic hydrolysis with a commercial cellulase cocktail, and the enzymatic hydrolysate was fermented using Saccharomyces cerevisiae. The results obtained from the pretreatment process showed that the glucan content in the pretreated solid was mostly preserved, and an increase in the digestibility was observed for the case with a SF of 4.13 (190°C, 30min). Enzymatic hydrolysis of the pretreated solids showed a yield of 74.3%, with a glucose concentration of 126g/L, resulting in 65.26g/L of ethanol after 10h of fermentation, which represent a 98.4% conversion according to the theoretical ethanol yield value. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Kinetics of ethanol production from Jerusalem artichoke juice with some Klugveromyces species

    Energy Technology Data Exchange (ETDEWEB)

    Duvnjak, Z.; Kosaric, N.; Hayes, R.D.

    1981-01-01

    The kinetics of ethanol produce by Kluyveromyces marxianus ATCC 12708 and ATCC 10606, K. cicerisporus ATCC 22295, and K. fragilis 105 have been studied using raw juice of the Jerusalem artichoke in which the carbohydrates were not hydrolyzed prior to fermentation. The experiments revealed that this juice contains enough nutrients and can serve as a complete medium without additional nutrients both for growth of the yeasts and for ethanol production. It was found that both specific ethanol productivity and specific uptake rates were the highest with K. marxianus ATCC 12708 (1.68 g/g/hour and 3.78 g/g/hour respectively). This microorganism produced an ethanol yield of 87.5% of the theoretical value in 25 hours. (Refs. 15).

  15. Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system

    Directory of Open Access Journals (Sweden)

    Christakopoulos Paul

    2009-02-01

    Full Text Available Abstract Background Brewer's spent grain (BG, a by-product of the brewing process, is attracting increasing scientific interest as a low-cost feedstock for many biotechnological applications. BG in the present study is evaluated as a substrate for lignocellulolytic enzyme production and for the production of ethanol by the mesophilic fungus Fusarium oxysporum under submerged conditions, implementing a consolidated bioconversion process. Fermentation experiments were performed with sugar mixtures simulating the carbohydrate content of BG in order to determine the utilization pattern that could be expected during the fermentation of the cellulose and hemicellulose hydrolysate of BG. The sugar mixture fermentation study focused on the effect of the initial total sugar concentration and on the effect of the aeration rate on fermenting performance of F. oxysporum. The alkali pretreatment of BG and different aeration levels during the ethanol production stage were studied for the optimization of the ethanol production by F. oxysporum. Results Enzyme yields as high as 550, 22.5, 6.5, 3225, 0.3, 1.25 and 3 U per g of carbon source of endoglucanase, cellobiohydrolase, β-D-glucosidase, xylanase, feruloyl esterase, β-D-xylosidase and α-L-arabinofuranosidase respectively, were obtained during the growth stage under optimized submerged conditions. An ethanol yield of 109 g ethanol per kg of dry BG was obtained with alkali-pretreated BG under microaerobic conditions (0.01 vvm, corresponding to 60% of the theoretical yield based on total glucose and xylose content of BG. Conclusion The enzymatic profile of the extracellular extract from F. oxysporum submerged cultures using BG and corn cob as the carbon source was proved efficient for a successful hydrolysis of BG. The fermentation study carried out using sugar mixtures simulating BG's carbohydrates content and consecutively alkali-pretreated and untreated BG, indicates that BG hydrolysis is the bottleneck

  16. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  17. A comparison of ethanol and methane fermentation of currant-and sultana-washing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Athanasopoulos, Nikolaos (Patras Univ. (Greece). Dept. of Chemistry)

    1994-01-01

    Wastewater from currant- and sultana-washing processes was successfully treated in an ethanol fermenter at 33[sup o]C; the pH of the wash water was controlled at 2.8; the reducing sugar content was 38.8 g/litre; commercial baker's yeast was used as inoculum at a concentration of 2.5 g/litre; formaldehyde at a concentration of 150 mg/litre was used as antiseptic; the ethanol yield was 70.6% of the theoretical value in 24 h; the COD removal after a single distillation was 84%. The overall economics of ethanol fermentation are very promising compared to methane fermentation. (author)

  18. Ethanol production from wet oxidized corn straw by simultaneous saccharification and fermentation

    DEFF Research Database (Denmark)

    Zhang, Q.; Yin, Y.; Thygesen, Anders

    2010-01-01

    remained in the solid fraction and recovery of cellulose was 95.87% after pretreatment. After 24 h hydrolysis at 50°C using cellulase, the achieved conversion of cellulose to glucose was about 67.6%. After 142 h of SSF with substrate concentration of 8%, ethanol yield of 79.0% of the theoretical...

  19. Ethanol production by Kluyveromyces marxianus IMB3 during growth on straw-supplemented whiskey distillery spent wash at 45 C

    Energy Technology Data Exchange (ETDEWEB)

    Barron, N.; Mulholland, H.; Boyle, M.; McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom)

    1997-11-01

    The thermotolerant, ethanol-producing yeast strain, Kluyveromyces marxianus IMB3 was grown on media consisting of straw-supplemented distillery spent wash from The Old Bushmill`s Distillery Co. Ltd., Bushmills, Co Antrim, Northern Ireland. Media were supplemented with cellulase activity and fermentations were carried out at 45 C. When pulverized straw was used as substrate in this system at concentrations of 2, 4 and 6% (w/v), ethanol concentrations increased to maxima of 1.45, 2.2 and 3 g/l, respectively. Based on straw containing a maximum of 40% cellulose, these ethanol concentrations accounted for 36, 27 and 24% of the maximum theoretical yield, respectively. When the straw was pre-treated with NaOH and used in the spent wash containing system at concentrations of 2, 4 and 6% (w/v) ethanol, concentrations increased to maxima of 3, 6.2 and 10.5 g/l, respectively and these accounted for 75, 76 and 86% of the maximum theoretical yield. When these results are compared with previously published data relating to the use of straw in laboratory-based media, they suggest that whiskey distillery spent wash may provide an adequate medium for supplementation with complex carbohydrate and subsequent ethanol production in simultaneous saccharification and fermentation processes. (orig.) With 2 figs., 17 refs.

  20. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.

    2008-01-01

    was investigated using 2 1 bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation....... No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage. (C) 2007...

  1. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    Science.gov (United States)

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Adsorption of Saccharomyces cerevisiae onto cellulose and ecteola-cellulose films for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Lueng, K.L.; Joshi, S.; Yamazaki, H.

    1983-05-01

    Epichlorohydrin-triethanolamine (ECTEOLA)-cellulose films (paper and cloth) have been found to bind Saccharomyces cerevisiae cells which were able to develop metabolically active colonies on the surface of the films. Umodified cellulose films also bound the yeast but to a lesser extent. Film fermenters were constructed by coiling a double layer of the cloth and copper screen and vertically placing the resulting cartridge into a column. These film fermenters were able to convert the sugars (14%) in the hydrolysate of a Jerusalem artichoke tuber into ethanol, with 90% of the theoretical yield after 6 hours of fermentation. The bound yeast produced ethanol at a specific rate of 1.0 g ethanol per g cell per hour. (Refs. 4).

  3. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  4. Ethanol demand in Brazil: Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Luciano Charlita de, E-mail: lucianofreitas@hiroshima-u.ac.j [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan); Kaneko, Shinji [Graduate School for International Development and Cooperation, Development Policy, Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8529 (Japan)

    2011-05-15

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: {yields} Article consists of a first insight on regional demand for ethanol in Brazil. {yields} It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. {yields} Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. {yields} Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  5. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  6. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.

    Science.gov (United States)

    Papapetridis, Ioannis; van Dijk, Marlous; Dobbe, Arthur P A; Metz, Benjamin; Pronk, Jack T; van Maris, Antonius J A

    2016-04-26

    Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. Replacement of the native NADP(+)-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD(+)-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15% increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP(+)-dependent acetaldehyde dehydrogenase, led to a 39% increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44% increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13% increase in the ethanol yield on glucose. The combination of NAD(+)-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor

  7. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    Science.gov (United States)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  8. Continuous ethanol production from Jerusalem artichokes stalks using immobilized cells of Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.; Margaritis, A.

    1986-01-01

    Continuous production of ethanol from the extract of Jerusalem artichoke stalks was investigated in a packed bed bioreactor using Kluyveromyces marxianus cells immobilized in calcium alginate gel beds. Maximum conversion of the sugars to ethanol was achieved with a yield of about 98% of the theoretical. Volumetric ethanol productivities of 102 grams of ethanol per litre per hour and 92 grams ethanol per liter per hour were obtained at 87% and 90% conversion respectively for an inlet substrate concentration of 100 gram sugars per liter. The maximum specific ethanol production rate and maximum specific total sugar uptake rate of the immobilized cells were found to be 0.96 gram ethanol per gram immobilized cells per hour and 2.06 gram sugars per gram immobilized cells per hour respectively. The immobilized cell bioreactor was run continuously at a dilution rate of 2.12 per hour for 30 days which resulted in a loss of 30% of the original activity. The half life of the bioreactor was estimated to be about 56 days.

  9. Comparison, artificial neural network modeling and genetic algorithm optimization of the resinoid and potassium yields from white lady’s bedstraw (Galium mollugo L. by conventional, reflux and ultrasound-assisted aqueous-ethanolic extraction

    Directory of Open Access Journals (Sweden)

    Milić Petar S.

    2013-01-01

    Full Text Available In this work, the yields of resinoid and potassium obtained from aerial parts of white lady’s bedstraw (Galium mollugo L. by maceration, reflux extraction and ultrasound-assisted extraction using aqueous ethanol solutions as solvents. The main goal was to define the influence of the extraction technique and the ethanol concentration on the resinoid and potassium yields. The resinoid and potassium yields were determined by the solvent evaporation from the liquid extracts to constant weight and the AAS emission method, respectively. The dependence of resinoid and potassium yields on the ethanol concentration was described by linear and quadratic polynomial models, respectively. The best potassium extraction selectivity of 0.077 g K/g of dry extract was achieved by maceration at the ethanol concentrations of 10 g/100 g. The artificial neural network (ANN was successfully applied to estimate the resinoid and potassium yields based on the ethanol concentration in the extracting solvent and the time duration for all three extraction techniques employed. The response surface methodology was also used to present the dependence of ANN results on the operating factors. The extraction process was optimized using the ANN model coupled with genetic algorithm. The maximum predicted resinoid and potassium yields of 30.4 and 1.67 g/100 g of dry plant were obtained by the ultrasonic extraction (80 min using the 10 g/100 g aqueous ethanol solution.

  10. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    Directory of Open Access Journals (Sweden)

    Mofoluwake M. Ishola

    2015-12-01

    Full Text Available Integrated permeate channel (IPC flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936, a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF. The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches.

  11. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    Science.gov (United States)

    Ishola, Mofoluwake M.; Ylitervo, Päivi; Taherzadeh, Mohammad J.

    2015-01-01

    Integrated permeate channel (IPC) flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR) for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936), a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF). The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches. PMID:26633530

  12. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.

    Science.gov (United States)

    Romaní, Aloia; Pereira, Filipa; Johansson, Björn; Domingues, Lucília

    2015-03-01

    In this work, Saccharomyces cerevisiae strains PE-2 and CAT-1, commonly used in the Brazilian fuel ethanol industry, were engineered for xylose fermentation, where the first fermented xylose faster than the latter, but also produced considerable amounts of xylitol. An engineered PE-2 strain (MEC1121) efficiently consumed xylose in presence of inhibitors both in synthetic and corn-cob hydrolysates. Interestingly, the S. cerevisiae MEC1121 consumed xylose and glucose simultaneously, while a CEN.PK based strain consumed glucose and xylose sequentially. Deletion of the aldose reductase GRE3 lowered xylitol production to undetectable levels and increased xylose consumption rate which led to higher final ethanol concentrations. Fermentation of corn-cob hydrolysate using this strain, MEC1133, resulted in an ethanol yield of 0.47 g/g of total sugars which is 92% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  14. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    Science.gov (United States)

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.

  15. Waste Cooking Oil Conversion To Biodeisel Catalized By Egg Shell Of Purebred Chiken With Ethanol As A Solvent

    Directory of Open Access Journals (Sweden)

    Hellna Tehubijuluw

    2014-08-01

    Full Text Available The synthesis of biodiesel from the waste cooking oil was carried out using the catalyst from egg shell of purebred chiken with ethanol as a solvent. Synthesis of biodiesel was prepared in two steps, esterification and transesterification. Esterification was conducted in mol ratio of ethanol and waste cooking oil of  9:1 with H2SO4 as a catalyst. Mol ratio of ethanol and used cooking oil in the transesterification of  12:1 with the CaO catalyst of shell eggs. CaO catalyst was yielded by calcinations egg shell of purebred chicken on 1000 for two hours. Calcination product was characterized with XRD to determine of CaO. Result of biodiesel was characterized based on FTIR, H-NMR, dan ASTM (American Standard Testing of Materials. Theoretically,yielded of biodiesel was 58% and experiment was 36.779%.

  16. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification.

    Science.gov (United States)

    Tian, S; Luo, X L; Yang, X S; Zhu, J Y

    2010-11-01

    This study reports an ethanol yield of 270L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before fermentation. Detoxification of the pretreatment hydrolysate using overliming or XAD-4 resin before being combined with enzymatic hydrolysate improved ethanol productivity in the first 4h of fermentation and overall fermentation efficiency. However, detoxification did not improve final ethanol yield because of sugar losses. The Y5 strain showed excellent ethanol productivities of 2.0 and 0.8g/L/h averaged over a period of 4 and 24h, respectively, in the undetoxified run. The furan metabolization rates of the Y5 strain were significantly higher for the undetoxified run than those for the detoxidfied runs, suggesting it can tolerate even higher furan concentrations than those studied. Preliminary mass and energy balances were conducted. SPORL produced an excellent monomeric sugar recovery value of about 85% theoretical and a net energy output of 4.05GJ/ton wood with an ethanol energy production efficiency of 178% before distillation.

  18. Theoretical and experimental studies of an ethanol basin solar still

    International Nuclear Information System (INIS)

    Namprakai, P.; Hirunlabh, J.

    2007-01-01

    A transient-state mathematical model for an ethanol basin solar still based on Spalding's work was developed. Driving force B was defined based on the mass balance between the evaporating (S) and condensing (G) surfaces. Mass transfer conductance (g) was obtained from an indoor experiment. Then productivity could be calculated. In order to validate the model an ethanol basin solar still was tested under outdoor conditions. The model had RMSEs of 4% and 23% of the measured mean temperature and productivity. The mean productivity was 0.33 kg/h when the mean solar radiation input was 1.95 MJ/m 2 /h. The simulated distillate concentrations were 74, 59 and 24%v/v for ethanol solution concentrations of 50, 30 and 10%v/v. The monthly means of the simulated daily productivity and total daily solar radiation were linearly correlated. An indoor experimental equipment of the same type as that used for the outdoor experiments was constructed. Ethanol solutions with concentrations of 10-100%v/v were distilled. The ethanol solution temperature varied between 40 and 70 deg. C. The experimental data from the still was then used to find the g used for the above mathematical model. The still height had a slight effect on the productivity. Increasing the ethanol solution concentration by not more than around 80% v/v could improve the still productivity

  19. Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production

    Directory of Open Access Journals (Sweden)

    David Orrego

    2018-03-01

    Full Text Available Coffee, one of the most popular food commodities and beverage ingredients worldwide, is considered as a potential source for food industry and second-generation biofuel due to its various by-products, including mucilage, husk, skin (pericarp, parchment, silver-skin, and pulp, which can be produced during the manufacturing process. A number of research studies have mainly investigated the valuable properties of brewed coffee (namely, beverage, functionalities, and its beneficial effects on cognitive and physical performances; however, other residual by-products of coffee, such as its mucilage, have rarely been studied. In this manuscript, the production of bioethanol from mucilage was performed both in shake flasks and 5 L bio-reactors. The use of coffee mucilage provided adequate fermentable sugars, primarily glucose with additional nutrient components, and it was directly fermented into ethanol using a Saccharomyces cerevisiae strain. The initial tests at the lab scale were evaluated using a two-level factorial experimental design, and the resulting optimal conditions were applied to further tests at the 5 L bio-reactor for scale up. The highest yields of flasks and 5 L bio-reactors were 0.46 g ethanol/g sugars, and 0.47 g ethanol/g sugars after 12 h, respectively, which were equal to 90% and 94% of the theoretically achievable conversion yield of ethanol.

  20. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater.

    Science.gov (United States)

    Yuan, W J; Zhao, X Q; Ge, X M; Bai, F W

    2008-12-01

    To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38 degrees C for growth and inulinase production, and 35 degrees C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l(-1), and the highest ethanol yield of 0.467, or 91.5% of the theoretical value of 0.511, was achieved for the slurry with a solid concentration of 200 g l(-1). Halophilic Jerusalem artichoke can be used for fuel ethanol production. Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.

  1. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  2. Energy yield for the production of ethanol from corn

    International Nuclear Information System (INIS)

    Chavanne, X.; Frangi, J.P.

    2008-01-01

    This article establishes the primary energy balance for making ethanol out of corn in the USA, calculated from the farm to the fuel station, following a methodology described in Chavanne and Frangi (C. R. Geoscience 339 (2007) 519-535). Raw data (direct energy and material consumption as well as their heat value and external costs) come from published papers related to this topic, technical textbooks, as well as reports from the US Departments of Agriculture and Energy. For the 2001 harvest, over the area producing more than 90% of ethanol and for the 2005 network of working refineries, 100 J of ethanol and recovery of by-products (the energy saved by the replacement of animal feed by these by-products is around 12% of the ethanol heat value) needed 86 ± 3 J of energy spending, of which more than 50 J is natural gas and 62 J is used in refineries. A third of the area of Nebraska corn must be irrigated with water pumped from underground, at an added cost of 26 ± 3 J. In 1996, the extra drying required, because of heavy rains, added 6 J. By comparison, 100 J of gasoline cost less than 25 J to be produced out of crude oil. Complementary studies of resource availability are not performed here. The largest possible reduction in energy costs can be achieved at the refinery stage, by fermenting by-products, gas residues, (from 62 J to around 12 J). The article gives also an expression for the expenditure to enable comparison between different energy systems, including everything from biomass to transport. For the ethanol case, the average cost is 130 J for 100 J of corn grain heat. (authors)

  3. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  4. Ethanol production from alfalfa fiber fractions by saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sreenath, H.K. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering; USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Koegel, R.G. [US Department of Agriculture, Madison, WI (United States). Dairy Forage Research Center; Moldes, A.B. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Universidade de Vigo, Ourense (Spain); Jeffries, T.W. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Straub, R.J. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering

    2001-07-01

    This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or 'raffinate'. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions. (author)

  5. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  6. Fermentation of hexoses and pentoses from hydrolyzed soybean hull into ethanol and xylitol by Candida guilliermondii BL 13

    Directory of Open Access Journals (Sweden)

    F. da Cunha-Pereira

    Full Text Available Abstract This work investigated the ability of a recently isolated strain of Candida guilliermondii to convert hexoses and pentoses obtained from acid-enzymatic soybean hull hydrolysates into ethanol and, in smaller amounts, into xylitol. Operational conditions and media formulation were optimized concerning ethanol production using experimental designs (Plackett-Burman and Central Composite Design. Results showed that C. guilliermondii BL 13 was capable of growing in non-supplemented, non-detoxified biomass hydrolysates, and the best culture conditions were determined to be 28 °C, pH 5.0, and 109 CFU mL-1 of inoculum size. Ethanol productivity reached 1.4 g L-1 h-1, and maximal yields of 0.41 g g-1 were obtained, representing 80.4 % of the expected theoretical yields, whereas small amounts of xylitol were also produced. These results suggest that C. guilliermondii BL13 is a potentially useful yeast strain to be applied in second-generation ethanol production from lignocellulosic biomass based on its natural capacity to metabolize C-5 and C-6 sugars.

  7. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  8. Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.; Margaritis, A.

    1987-08-01

    Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.

  9. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: Response surface methodology and artificial neural network

    Directory of Open Access Journals (Sweden)

    Esfahanian Mehri

    2013-01-01

    Full Text Available In this study, the capabilities of response surface methodology (RSM and artificial neural networks (ANN for modeling and optimization of ethanol production from glucoseusing Saccharomyces cerevisiae in batch fermentation process were investigated. Effect of three independent variables in a defined range of pH (4.2-5.8, temperature (20-40ºC and glucose concentration (20-60 g/l on the cell growth and ethanol production was evaluated. Results showed that prediction accuracy of ANN was apparently similar to RSM. At optimum condition of temperature (32°C, pH (5.2 and glucose concentration (50 g/l suggested by the statistical methods, the maximum cell dry weight and ethanol concentration obtained from RSM were 12.06 and 16.2 g/l whereas experimental values were 12.09 and 16.53 g/l, respectively. The present study showed that using ANN as fitness function, the maximum cell dry weight and ethanol concentration were 12.05 and 16.16 g/l, respectively. Also, the coefficients of determination for biomass and ethanol concentration obtained from RSM were 0.9965 and 0.9853 and from ANN were 0.9975 and 0.9936, respectively. The process parameters optimization was successfully conducted using RSM and ANN; however prediction by ANN was slightly more precise than RSM. Based on experimental data maximum yield of ethanol production of 0.5 g ethanol/g substrate (97 % of theoretical yield was obtained.

  10. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    Science.gov (United States)

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Ethanol Production from Different Intermediates of Sugar Beet Processing

    Directory of Open Access Journals (Sweden)

    Mladen Pavlečić

    2010-01-01

    Full Text Available In this investigation, the production of ethanol from the raw sugar beet juice and raw sugar beet cossettes has been studied. For ethanol production from the raw sugar beet juice, batch and fed-batch cultivation techniques in the stirred tank bioreactor were used, while batch ethanol production from the raw sugar beet cossettes was carried out in horizontal rotating tubular bioreactor (HRTB. In both cases, Saccharomyces cerevisiae was used as a production microorganism. During batch ethanol production from the raw sugar beet juice, ethanol yield was 59.89 g/L and production efficiency 78.8 %, and in fed-batch process the yield was 92.78 g/L and efficiency 93.4 %. At the same time, ethanol production in HRTB from the raw sugar beet cossettes with inoculum of 16.7 % V/m (raw sugar beet cossettes resulted in the highest ethanol yield of 54.53 g/L and production efficiency of 79.5 %. The obtained results clearly show that both intermediates of sugar beet processing can be successfully used for ethanol production.

  12. Effect of pretreatment of molasses and recycling of yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Samaniego, R; Srivastas, R L

    1971-01-01

    The effect of pretreatment of molasses and recycling yeast for the removal of calcium, potassium, coloring matter, and colloidal substances on the production of ethanol from the fermentation of molasses was studied. Highest yield of ethanol (9.1%) was obtained from molasses pretreated with egg albumin followed by the treatment with ethanol(8.5%) and H/sub 2/SO/sub 4/ (8.1%) as compared to control (7.9%). Pretreatment with Al/sub 2/(SO/sub 4/)/sub 3/ and activated C did not improve yield. Lowest yield was recorded with tartaric acid. The washing of yeast with HCl (pH 3.5) resulted in higher yields of ethanol as compared to control in all stages of recyclings. Pretreatment of yeast with 5% NaCl retarded the fermentation rate and caused low yield of ethanol. A combined effect of H/sub 2/SO/sub 4/ and HCl showed no essential difference in yields of ethanol except in the third recycling.

  13. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation.

  14. Conversion of bagasse cellulose into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  15. Development of nanosized electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedi, M. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada). Centre de l' Energie, Materiaux et Telecommunications

    2008-07-01

    Fuel cells have been touted as a promising power supply for automotive, portable or stationary use. Although methanol is a strong contender as an alternative fuel, the extensive use of this toxic compound is not practical due to environmental hazards. Ethanol is a good substitute because it has a very positive environmental, health, and safety footprint with no major uncertainties or hazards. Ethanol is a hydrogen-rich liquid which has more energy density than methanol. The C-C bond has a determining effect on fuel cell efficiency and the theoretical energy yield. Therefore, a good electrocatalyst towards the complete oxidation of ethanol must activate the C-C bond breaking while avoiding the poisoning of the catalytic surface by carbon monoxide species that occurs with methanol oxidation. The objective of this study was to develop new catalyst nanoparticles of well-controlled shape, size, and composition with excellent stability and better electrocatalytic activity. This paper described the recent achievements regarding the development of a series of PtxSn100-x catalysts prepared by pulsed laser deposition (PLD). It reported on the effect of several deposition parameters on the structure and properties of the deposited catalysts. It also described how these deposition conditions affect the electrocatalytic response of the resulting materials toward ethanol oxidation. Some interesting periodic oscillations were observed at some catalysts during ethanol electrooxidation. 7 refs., 1 fig.

  16. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis

    OpenAIRE

    Tano,Marcia Sadae; Buzato,João Batista

    2003-01-01

    Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g su...

  17. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  18. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  19. Cusps in K{yields}3{pi} decays: A theoretical framework

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, Juerg, E-mail: gasser@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern (Switzerland); Kubis, Bastian, E-mail: kubis@hiskp.uni-bonn.de [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, Nussallee 14-16, D-53115 Bonn (Germany); Rusetsky, Akaki, E-mail: rusetsky@hiskp.uni-bonn.de [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2011-09-01

    Based on the analysis of 6.031x10{sup 7}K{sup {+-}{yields}{pi}0{pi}0{pi}{+-} }decays, the NA48/2 Collaboration has recently determined the S-wave {pi}{pi} scattering lengths a{sub 0}-a{sub 2} with high precision. In addition, the scattering length a{sub 2} has been independently measured, although less precisely so. The present article discusses in detail one of the theoretical frameworks used in the data analysis.

  20. Sugar palm ethanol. Analysis of economic feasibility and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Van de Staaij, J.; Van den Bos, A.; Hamelinck, C. [Ecofys Netherlands, Utrecht (Netherlands); Martini, E.; Roshetko, J.; Walden, D. [Winrock, Little Rock, AR (United States)

    2011-08-15

    This study evaluates whether sugar palm is a suitable crop for biofuels and how production of ethanol from sugar palm in a large-scale setting is sustainable and economically feasible. Key questions are: Are the assumed high yields realistic in practice for sustained periods in largescale plantations?; Can sugar palm indeed compete economically with other crops for biofuels?; What are the effects of large-scale cultivation and processing of sugar palm for the natural environment and the local community? To answer these questions, Ecofys and Winrock have assessed the feasibility of largescale sugar palm cultivation for the production of ethanol using empirical data from existing sugar palm plantings. We analysed two production models to investigate the range of outcomes when varying important parameters: (1) a conservative system, whereby sugar palms are mixed with other crops and (2) an intensive system to explore the theoretical maximum yield when solely focusing on sugar palm. As background, Chapter 2 first describes the process of sugar palm cultivation, the 'tapping' and conversion into ethanol. Chapter 3 describes the data collection by Winrock. It presents an overview of the collected field data and explains the main empirical findings. Chapter 4 elaborates the two production systems and presents the results of the economic analyses (summarized in cash flow diagrams showing the timing of costs and benefits). Chapter 5 analyses the possible sustainability risks and benefits of sugar palm ethanol and investigates the integration possibilities of sugar palm in agro-forestry systems with other crops. Finally, Chapter 6 concludes by evaluating the potential of sugar palm as a source of biofuel and providing recommendations.

  1. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris [National Technical Univ. of Athens, Zografou (Greece). Biotechnology Lab.

    2012-07-15

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and {beta}-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively. (orig.)

  2. Optimization of fermentation conditions for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F J; Izaguirre, M F; Michelena, V; Moreno, B

    1982-01-01

    Optimal conditions for ethanol production in 7% whey solutions by the yeast Candida pseudotropicalis ATCC 8619 included an initial pH of 4.57 and 30 degrees. Complete fermentation of the available lactose took place without supplementary nutrients; additions of N and P salts, yeast extract, or corn steep liquor resulted in increased yeast production and lower ethanol yields. A possible correlation was observed between increases in yeast inocula and lactose utilization and ethanol production rates; 8.35 g ethanol/L was obtained within 22 hours by using a yeast inoculum of 13.9 g/L. No differences in fermentation rates or ethanol yields were observed when whole or deproteinized whey solutions were used. Concentrated whey permeates, obtained after removal of the valuable proteins from whey, can be effectively fermented for ethanol production.

  3. Sorghum to Ethanol Research Initiative: Cooperative Research and Development Final Report, CRADA Number CRD-08-291

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.

    2011-10-01

    The goal of this project was to investigate the feasibility of using sorghum to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a portion of the feedstocks required to produce renewable domestic transportation fuels.

  4. Anaerobic digestion in combination with 2nd generation ethanol production for maximizing biofuels yield from lignocellulosic biomass – testing in an integrated pilot-scale biorefinery plant

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    An integrated biorefinery concept for 2nd generation bioethanol production together with biogas production from the fermentation effluent was tested in pilot-scale. The pilot plant comprised pretreatment, enzymatic hydrolysis, hexose and pentose fermentation into ethanol and anaerobic digestion......-VS/(m3•d) a methane yield of 340 L/kg-VS was achieved for thermophilic operation while 270 L/kg-VS was obtained under mesophilic conditions. Thermophilic operation was, however, less robust towards further increase of the loading rate and for loading rates higher than 5 kg-VS/(m3•d) the yield was higher...... for mesophilic than for thermophilic operation. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher biofuels yield in the biorefinery compared to a system...

  5. Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)

    Science.gov (United States)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2016-07-01

    A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.

  6. Ethanol production from a biomass mixture of furfural residues with green liquor-peroxide saccarified cassava liquid.

    Science.gov (United States)

    Ji, Li; Zheng, Tianran; Zhao, Pengxiang; Zhang, Weiming; Jiang, Jianxin

    2016-06-01

    As the most abundant renewable resources, lignocellulosic materials are ideal candidates as alternative feedstock for bioethanol production. Cassava residues (CR) are byproducts of the cassava starch industry which can be mixed with lignocellulosic materials for ethanol production. The presence of lignin in lignocellulosic substrates can inhibit saccharification by reducing the cellulase activity. Simultaneous saccharification and fermentation (SSF) of furfural residues (FR) pretreated with green liquor and hydrogen peroxide (GL-H2O2) with CR saccharification liquid was investigated. The final ethanol concentration, yield, initial rate, number of live yeast cells, and the dead yeast ratio were compared to evaluate the effectiveness of combining delignificated lignocellulosic substrates and starchy substrates for ethanol production. Our results indicate that 42.0 % of FR lignin removal was achieved on FR using of 0.06 g H2O2/g-substrate and 9 mL GL/g-substrate at 80 °C. The highest overall ethanol yield was 93.6 % of the theoretical. When the ratio of 0.06 g/g-H2O2-GL-pretreated FR to CR was 5:1, the ethanol concentration was the same with that ratio of untreated FR to CR of 1:1. Using 0.06 g/g-H2O2-GL-pretreated FR with CR at a ratio of 2:1 resulted in 51.9 g/L ethanol concentration. Moreover, FR pretreated with GL-H2O2 decreased the concentration of byproducts in SSF compared with that obtained in the previous study. The lignin in FR would inhibit enzyme activity and GL-H2O2 is an advantageous pretreatment method to treat FR and high intensity of FR pretreatment increased the final ethanol concentration. The efficiency of ethanol fermentation of was improved when delignification increased. GL-H2O2 is an advantageous pretreatment method to treat FR. As the pretreatment dosage of GL-H2O2 on FR increased, the proportion of lignocellulosic substrates was enhanced in the SSF of the substrate mixture of CR and FR as compared with untreated FR. Moreover, the

  7. Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Xia, Liming

    2010-12-15

    Three corn stover hydrolysates, enzymatic hydrolysates prepared from acid and alkaline pretreatments separately and hemicellulosic hydrolysate prepared from acid pretreatment, were evaluated in composition and fermentability. For enzymatic hydrolysate from alkaline pretreatment, ethanol yield on fermentable sugars and fermentation efficiency reached highest among the three hydrolysates; meanwhile, ethanol yield on dry corn stover reached 0.175 g/g, higher than the sum of those of two hydrolysates from acid pretreatment. Fermentation process of the enzymatic hydrolysate from alkaline pretreatment was further investigated using free and immobilized cells of recombinant Saccharomyces cerevisiae ZU-10. Concentrated hydrolysate containing 66.9 g/L glucose and 32.1 g/L xylose was utilized. In the fermentation with free cells, 41.2 g/L ethanol was obtained within 72 h with an ethanol yield on fermentable sugars of 0.416 g/g. Immobilized cells greatly enhanced the ethanol productivity, while the ethanol yield on fermentable sugars of 0.411 g/g could still be reached. Repeated batch fermentation with immobilized cells was further attempted up to six batches. The ethanol yield on fermentable sugars maintained above 0.403 g/g with all glucose and more than 92.83% xylose utilized in each batch. These results demonstrate the feasibility and efficiency of ethanol production from corn stover hydrolysates. (author)

  8. Ethanol production from SPORL-pretreated lodgepole pine. Preliminary evaluation of mass balance and process energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.Y. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Wisconsin Univ., Madison, WI (United States). Dept. of Biological Systems Engineering; Zhu, Wenyuan [South China Univ. of Technology, Guangzhou (China). State Key Lab Pulp and Paper Engineering; OBryan, Patricia; Dien, Bruce S. [USDA Agricultural Research Service, Peoria, IL (United States). National Center for Agricultural Utilization Research; Tian, Shen [Capital Normal Univ., Beijing (China). College of Life Science; Gleisner, Rolland [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Pan, X.J. [Wisconsin Univ., Madison, WI (United States). Dept. of Biological Systems Engineering

    2010-05-15

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-milled; the recovered cellulose substrate was quasi-simultaneously saccharified enzymatically and fermented to ethanol using commercial cellulases and Saccharomyces cerevisiae D5A. The liquor stream from the pretreatment containing hydrolyzed sugars mainly from hemicelluloses was fermented by the same yeast strain after detoxification using an XAD resin column. The SPORL pretreatment was conducted at 180 C for a period of 25 min with a liquor-to-wood ratio of 3:1 (v/w) in a laboratory digester. Three levels of sulfuric acid charge (0.0%, 1.4%, and 2.2% on an oven dried wood basis in w/w) and three levels of sodium bisulfite charge (0.0%, 4.0%, and 8.0% in w/w) were applied. Mechanical and thermal energy consumption for milling and pretreatment were determined. These data were used to determine the efficiency of sugar recoveries and net ethanol energy production values and to formulate a preliminary mass and energy balance. (orig.)

  9. Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency.

    Science.gov (United States)

    Zhu, J Y; Zhu, Wenyuan; Obryan, Patricia; Dien, Bruce S; Tian, Shen; Gleisner, Rolland; Pan, X J

    2010-05-01

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-milled; the recovered cellulose substrate was quais-simultaneously saccharified enzymatically and fermented to ethanol using commercial cellulases and Saccharomyces cerevisiae D5A. The liquor stream from the pretreatment containing hydrolyzed sugars mainly from hemicelluloses was fermented by the same yeast strain after detoxification using an XAD resin column. The SPORL pretreatment was conducted at 180 degrees C for a period of 25 min with a liquor-to-wood ratio of 3:1 (v/w) in a laboratory digester. Three levels of sulfuric acid charge (0.0%, 1.4%, and 2.2% on an oven dried wood basis in w/w) and three levels of sodium bisulfite charge (0.0%, 4.0%, and 8.0% in w/w) were applied. Mechanical and thermal energy consumption for milling and pretreatment were determined. These data were used to determine the efficiency of sugar recoveries and net ethanol energy production values and to formulate a preliminary mass and energy balance.

  10. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation.

    Science.gov (United States)

    Zhao, X Q; Xue, C; Ge, X M; Yuan, W J; Wang, J Y; Bai, F W

    2009-01-01

    The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.

  11. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...

  12. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  13. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid.

    Science.gov (United States)

    Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang

    2016-07-07

    N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.

  14. A combined experimental and theoretical study on ethanol conversion to propylene over Y/ZrO2 catalyst

    Science.gov (United States)

    Wang, Fangfang; Xia, Wei; Mu, Xichuan; Chen, Kun; Si, Huimin; Li, Zhihao

    2018-05-01

    ZrO2-based catalysts doped with Y were prepared by co-precipitation method. The effect of yttrium modification on the selective conversion of bio-ethanol to propylene over ZrO2 catalysts was investigated. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption method, temperature programmed desorption and X-ray diffraction. The maximum yield of propylene reached 44.0% over 0.03Y/ZrO2 catalyst. A coordination of acid-base properties accounts for the remarkable improvement of reaction activities over Y-doped ZrO2 catalysts in this investigation. On the basis of calculation results, it can be concluded that significant charge transfer occurs as a result of introduction of Y or O-vacancy. The adsorption of ethanol and propylene on perfect t-ZrO2 (1 0 1), defect t-ZrO2 (1 0 1) and Y/ZrO2 (1 0 1) surfaces were investigated with density functional theory (DFT). The adsorption for ethanol on Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces are more stable than that on perfect t-ZrO2 (1 0 1). On the defect t-ZrO2 (1 0 1) surface, ethanol dominantly absorbs at the O-vacancy site, indicating that O-vacancy becomes the favorable adsorption site. On the Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces, the adsorption energy of propylene decreases, which makes propylene desorb quickly after formation.

  15. Synthesis of ethanol {sup 14}C-1; Synthese d'ethanol {sup 14}C-1

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R E; Pichat, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The direct reduction by LiAlH{sub 4}, of a suspension of anhydrous sodium acetate in tetra-hydro-furfuryl-oxy-tetra-hydro-pyran is described. This study has shown that the ethanol thus obtained is impure and that the yields are erratic. On the contrary the reduction of acetyl chloride 1-{sup 14}C by LiAlH{sub 4}, in 'diethyl carbitol' leads to ethanol 1-{sup 14}C of satisfactory purity with a yield of about 71 percent. (author) [French] Une etude de la reduction directe par LiAlH{sub 4}, de l'acetate de soude anhydre en suspension dans le tetrahydrofurfuryloxytetrahydropyrane est decrite. Cette etude a montre que l'on obtient de l'ethanol souille d'impuretes, avec un rendement variable. Par contre, la reduction du chlorure d'acetyle {sup 14}C-1 par LiAlH{sub 4}, dans le 'diethyl carbitol' conduit a l'ethanol {sup 14}C-1 de purete convenable avec un rendement de l'ordre de 71 pour cent. (auteur)

  16. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  17. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    Science.gov (United States)

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  18. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    Science.gov (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  19. Production of ethanol from thin stillage by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Gonzalez, Ramon; Campbell, Paul; Wong, Matthew

    2010-03-01

    Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.

  20. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    Science.gov (United States)

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  1. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  2. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  3. Xylose fermentation to ethanol. A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  4. Immobilization of Saccharomyces Cerevisiae in Rice Hulls for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Edita Martini

    2011-05-01

    Full Text Available The whole cell immobilization in ethanol fermentation can be done by using natural carriers or through synthetic carriers. All of these methods have the same purpose of retaining high cell concentrations within a certain defined region of space which leads to higher ethanol productivity. Lignocellulosic plant substance represents one of highly potential sources in ethanol production. Some studies have found that cellulosic substances substances can also be used as a natural carrier in cell immobilization by re-circulating pre-culture medium into a reactor. In this experiment, rice hulls without any treatment were used to immobilize Saccharomyces cerevisiae through semi solid state incubation combined with re-circulating pre-culture medium. The scanning electron microscopy (SEM pictures of the carrier show that the yeast cells are absorbed and embedded to the rice hull pore. In liquid batch fermentation system with an initial sugar concentration of 50 g/L, nearly 100% total sugar was consumed after 48 hours. This resulted in an ethanol yield of 0.32 g ethanol/g glucose, which is 62.7% of the theoretical value. Ethanol productivity of 0.59 g/(L.h is 2.3 fold higher than that of free cells which is 0.26 g/(L.h. An effort to reuse the immobilized cells in liquid fermentation system showed poor results due to cell desorption in the first batch which led to high sugar concentration inhibitory effect in the second batch fermentation. This might be solved by using semi solid fermentation process in the future work.

  5. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets

    Energy Technology Data Exchange (ETDEWEB)

    Celler, A; Hou, X [University of British Columbia, Vancouver, BC, Canada, (Canada); Benard, F; Ruth, T, E-mail: aceller@physics.ubc.ca, E-mail: xinchi@phas.ubc.ca, E-mail: fbenard@bccrc.ca, E-mail: truth@triumf.ca [BC Cancer Agency, Vancouver, BC (Canada)

    2011-09-07

    Recent acute shortage of medical radioisotopes prompted investigations into alternative methods of production and the use of a cyclotron and {sup 100}Mo(p,2n){sup 99m}Tc reaction has been considered. In this context, the production yields of {sup 99m}Tc and various other radioactive and stable isotopes which will be created in the process have to be investigated, as these may affect the diagnostic outcome and radiation dosimetry in human studies. Reaction conditions (beam and target characteristics, and irradiation and cooling times) need to be optimized in order to maximize the amount of {sup 99m}Tc and minimize impurities. Although ultimately careful experimental verification of these conditions must be performed, theoretical calculations can provide the initial guidance allowing for extensive investigations at little cost. We report the results of theoretically determined reaction yields for {sup 99m}Tc and other radioactive isotopes created when natural and enriched molybdenum targets are irradiated by protons. The cross-section calculations were performed using a computer program EMPIRE for the proton energy range 6-30 MeV. A computer graphical user interface for automatic calculation of production yields taking into account various reaction channels leading to the same final product has been created. The proposed approach allows us to theoretically estimate the amount of {sup 99m}Tc and its ratio relative to {sup 99g}Tc and other radioisotopes which must be considered reaction contaminants, potentially contributing to additional patient dose in diagnostic studies.

  6. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets.

    Science.gov (United States)

    Celler, A; Hou, X; Bénard, F; Ruth, T

    2011-09-07

    Recent acute shortage of medical radioisotopes prompted investigations into alternative methods of production and the use of a cyclotron and ¹⁰⁰Mo(p,2n)(99m)Tc reaction has been considered. In this context, the production yields of (99m)Tc and various other radioactive and stable isotopes which will be created in the process have to be investigated, as these may affect the diagnostic outcome and radiation dosimetry in human studies. Reaction conditions (beam and target characteristics, and irradiation and cooling times) need to be optimized in order to maximize the amount of (99m)Tc and minimize impurities. Although ultimately careful experimental verification of these conditions must be performed, theoretical calculations can provide the initial guidance allowing for extensive investigations at little cost. We report the results of theoretically determined reaction yields for (99m)Tc and other radioactive isotopes created when natural and enriched molybdenum targets are irradiated by protons. The cross-section calculations were performed using a computer program EMPIRE for the proton energy range 6-30 MeV. A computer graphical user interface for automatic calculation of production yields taking into account various reaction channels leading to the same final product has been created. The proposed approach allows us to theoretically estimate the amount of (99m)Tc and its ratio relative to (99g)Tc and other radioisotopes which must be considered reaction contaminants, potentially contributing to additional patient dose in diagnostic studies.

  7. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  8. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.

    Science.gov (United States)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris

    2012-07-01

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 °C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively.

  9. Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.

    Science.gov (United States)

    Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan

    2017-01-01

    Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L -1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L -1 , equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. Multifeed SSCF was further developed by means of a

  10. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  11. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Farshid; Younesi, Habibollah; Esmaeili Sari, Abbas [Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, P.O. Box: 64414-356 (Iran); Najafpour, Ghasem [Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol (Iran)

    2011-02-15

    Sodium-alginate immobilized yeast was employed to produce ethanol continuously using cane molasses as a carbon source in an immobilized cell reactor (ICR). The immobilization of Saccharomyces cerevisiae was performed by entrapment of the cell cultured media harvested at exponential growth phase (16 h) with 3% sodium alginate. During the initial stage of operation, the ICR was loaded with fresh beads of mean diameter of 5.01 mm. The ethanol production was affected by the concentration of the cane molasses (50, 100 and 150 g/l), dilution rates (0.064, 0.096, 0.144 and 0.192 h{sup -1}) and hydraulic retention time (5.21, 6.94, 10.42 and 15.63 h) of the media. The pH of the feed medium was set at 4.5 and the fermentation was carried out at an ambient temperature. The maximum ethanol production, theoretical yield (Y{sub E/S}), volumetric ethanol productivity (Q{sub P}) and total sugar consumption was 19.15 g/l, 46.23%, 2.39 g l{sup -1} h{sup -1} and 96%, respectively. (author)

  12. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling.

    Science.gov (United States)

    Białas, Wojciech; Szymanowska, Daria; Grajek, Włodzimierz

    2010-05-01

    A major problem with fermentative ethanol production is the formation of large amounts of numerous organic pollutants. In an industrial distillery, stillage, fermenter and condenser cooling water are the main sources of wastewater. However, the selection of a proper technology makes it possible to almost completely avoid emissions of such kind of wastewater to the environment. This study examines the effect of stillage recirculation on fuel ethanol production. It is based on the use of Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme in a simultaneous saccharification and fermentation process using a native starch obtained from corn flour. It was shown that the yield of the ethanol production was not influenced by the recycled stillage, a mean yield being 83.38% of the theoretical value. No significant trend for change in the ethanol concentration or in the residual starch was observed during any particular run, even after the 75% of fresh water was replaced with stillage. Thus, by applying this new clean technology it is possible to significantly reduce the rate of water consumption and in this way the production of by-products such as stillage. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Improved rapeseed oil extraction yield and quality via cold separation of ethanol miscella

    Directory of Open Access Journals (Sweden)

    Citeau Morgane

    2018-03-01

    Full Text Available In the extraction of vegetable oils, the idea of using ethanol as a solvent, allowing solvent recycling without distillation, can be attested as early as 1948 (Beckel, yet it is now seldom envisaged. The development of organic farming and a growing demand for a more natural diet prompted us to revisit this approach, which takes advantage of the relatively low affinity of ethanol for lipids to produce pure crude oils and meal with higher protein content. This method is based on the change of oil solubility in ethanol with temperature. Rapeseed oil extraction was carried out by hot pressurized ethanol (subcritical extraction condition. Oil was then recovered by cooling the miscella and demixing of two phases, an oil-rich phase and a solvent-rich phase. This study, after verifying the kinetics of extraction, focused on the optimization of the demixing temperature based on the amount and quality of recovered oil. The results show that ethanol extraction followed by cold demixing of the miscella makes it possible to obtain a high quality oil, free of free fatty acids and phospholipids.

  14. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  15. Utilization of concentrate after membrane filtration of sugar beet thin juice for ethanol production.

    Science.gov (United States)

    Kawa-Rygielska, Joanna; Pietrzak, Witold; Regiec, Piotr; Stencel, Piotr

    2013-04-01

    The subject of this study was to investigate the feasibility of the concentrate obtained after membrane ultrafiltration of sugar beet thin juice for ethanol production and selection of fermentation conditions (yeast strain and media supplementation). Resulting concentrate was subjected to batch ethanol fermentation using two strains of Saccharomyces cerevisiae (Ethanol Red and Safdistill C-70). The effect of different forms of media supplementation (mineral salts: (NH4)2SO4, K2HPO4, MgCl2; urea+Mg3(PO4)2 and yeast extract) on the fermentation course was also studied. It was stated that sugar beet juice concentrate is suitable for ethanol production yielding, depending on the yeast strain, ca. 85-87 g L(-1) ethanol with ca. 82% practical yield and more than 95% of sugars consumption after 72 h of fermentation. Nutrients enrichment further increased ethanol yield. The best results were obtained for media supplemented with urea+Mg3(PO4)2 yielding 91.16-92.06 g L(-1) ethanol with practical yield ranging 84.78-85.62% and full sugars consumption. Copyright © 2013. Published by Elsevier Ltd.

  16. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock.

    Science.gov (United States)

    Macrelli, Stefano; Galbe, Mats; Wallberg, Ola

    2014-02-21

    Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol

  17. Ethanol Production from Brewers’ Spent Grain Pretreated by Dilute Phosphoric Acid

    DEFF Research Database (Denmark)

    Rojas-Chamorro, José A.; Cara, Cristóbal; Romero, Inmaculada

    2018-01-01

    of both pretreatment and enzymatic hydrolysis together recovered 92% of total sugars in BSG, mainly solubilized in the prehydrolysate (63%). Escherichia coli SL100 fermented this mixed sugar solution containing hemicellulosic sugars and starchy glucose without previous detoxification with an ethanol yield...... in this work allowed 69% of the total sugars in the BSG to be converted to ethanol....... of 0.40 g/g. Considering also the glucose released from the cellulosic structure and converted to ethanol by a simultaneous saccharification and fermentation process, an overall ethanol yield of 17.9 g of ethanol per 100 g of raw BSG was achieved. Thereby, the process configuration proposed...

  18. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  19. Direct conversion of straw to ethanol by Fusarium oxysporum: effect of cellulose crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (Ethnikon Metsovion Polytechneion, Athens (Greece))

    1991-03-01

    Wheat straw was successfully fermented to ethanol by Fusarium oxysporum F3 in a one-step process. Cellulose crystallinity was found to be a major factor in the bioconversion process. Ethanol yields increased linearly with decreasing crystallinity index. Approximately 80% of straw carbohydrates were converted directly to ethanol with a yield of 0.28 g ethanol/g{sup -1} of straw when the crystallinity index was reduced to 23.6%. (author).

  20. Mixed waste paper to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  1. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes...... for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering......, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  2. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment.

    Science.gov (United States)

    Kang, Hee-Kyoung; Kim, Doman

    2012-01-01

    Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(™), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.

  3. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  4. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    Science.gov (United States)

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.

  5. Continuous high-solids corn liquefaction and fermentation with stripping of ethanol.

    Science.gov (United States)

    Taylor, Frank; Marquez, Marco A; Johnston, David B; Goldberg, Neil M; Hicks, Kevin B

    2010-06-01

    Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous research showed that this approach is feasible. Savings of $0.03 per gallon were predicted at 34% corn dry solids. Greater savings were predicted at higher concentration. Now the feasibility has been demonstrated at over 40% corn dry solids, using a continuous corn liquefaction system. A pilot plant, that continuously fed corn meal at more than one bushel (25 kg) per day, was operated for 60 consecutive days, continuously converting 95% of starch and producing 88% of the maximum theoretical yield of ethanol. A computer simulation was used to analyze the results. The fermentation and stripping systems were not significantly affected when the CO(2) stripping gas was partially replaced by nitrogen or air, potentially lowering costs associated with the gas recycle loop. It was concluded that previous estimates of potential cost savings are still valid. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  6. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  7. optimization of the ethanol fermentation of cassava wastewater

    African Journals Online (AJOL)

    Umo

    production would improve the ethanol yield, and thereby reduce the cost of production. KEYWORDS: Ethanol, cassava ... biomass sources are receiving attention globally. .... HYDROLYZED CASSAVA WASTEWATER. A blank solution ..... A Global Overview of Biomass Potentials ... Pretreatment of Lignocellulosic Wastes.

  8. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wongyao, N. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, A., E-mail: apichai.the@kmutt.ac.t [Fuel Cell and Hydrogen Research and Engineering Center, Clean Energy System Group, PDTI, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, S. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand)

    2011-07-15

    Research highlights: {yields} We examined the performance of direct alcohol fuel cells fed with mixed alcohol. {yields} PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. {yields} Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. {yields} PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  9. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars...... to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from...... widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...

  10. Study on genotypic variation for ethanol production from sweet sorghum juice

    Energy Technology Data Exchange (ETDEWEB)

    Ratnavathi, C.V.; Suresh, K.; Kumar, B.S. Vijay; Pallavi, M.; Komala, V.V.; Seetharama, N. [Directorate of Sorghum Research, Rajendranagar, Hyderabad 500030, Andhra Pradesh (India)

    2010-07-15

    Sugarcane molasses is the main source for ethanol production in India. Sweet sorghum with its juicy stem containing sugars equivalent to that of sugarcane is a very good alternative for bio-ethanol production to meet the energy needs of the country. Sweet sorghum is drought resistant, water logging resistant and saline-alkaline tolerant. Growing sweet sorghum for ethanol production is relatively easy and economical and ethanol produced from sweet sorghum is eco-friendly. In view of this, it is important to identify superior genotypes for ethanol production in terms of percent juice brix, juice extractability, total fermentable sugars, ethanol yield and fermentation efficiency. This paper presents the study on the variability observed for the production of ethanol by various sweet sorghum genotypes in a laboratory fermentor. Five Sweet Sorghum (Sorghum bicolor L. Moench) genotypes were evaluated for ethanol production from stalk juice (Keller, SSV 84, Wray, NSSH 104 and BJ 248). Sweet sorghum juice differs from cane juice mainly in its higher content of starch and aconitic acid. Data were collected for biomass yield; stalk sugar yield and ethanol production in five genotypes. Maximum ethanol production of 9.0%w/v ethanol was obtained with Keller variety (20% sugar concentration was used), and decreased for other genotypes. A distiller's strain of Saccharomyces cerevisiae (gifted by Seagram Distilleries Ltd.) was employed for fermentation. The fermentation efficiency (FE) was 94.7% for this strain. High biomass of yeast was obtained with BJ 248 variety. When the similar experiments were conducted with unsterile sweet sorghum juice (15% sugar concentration) 6.47%w/v ethanol was produced. (author)

  11. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    Science.gov (United States)

    Shrestha, Prachand

    This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed

  12. Investigation of Pleurotus ostreatus pretreatment on switchgrass for ethanol production

    Science.gov (United States)

    Slavens, Shelyn Gehle

    Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for ethanol production was studied. In a small-scale storage study, small switchgrass bales were inoculated with fungal spawn and automatically watered to maintain moisture. Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the xylan and lignin content; glucan was not significantly affected by fungal loading. The glucan, xylan, and lignin contents significantly decreased with increased fungal pretreatment time. The effects of the fungal pretreatment were not highly evident after the LHW pretreatment, showing only changes based on sampling time. Although other biological activity within the bales increased cellulose degradation, the fungal pretreatment successfully reduced the switchgrass lignin and hemicellulose contents. In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. After 40 d, ligninolytic enzyme activities and biomass composition were determined and simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) activity was significantly less in copper-treated samples than in the other fungal-inoculated samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while increasing extractable sugars content. The lowest lignin contents occurred in the water-fungal treated samples and produced the greatest ethanol yields. The greatest lignin contents occurred in the copper-fungal treated samples and produced the lowest ethanol yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from switchgrass

  13. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Rydzak, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Garcia, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Stevenson, David M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Bacteriology; Sladek, Margaret [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Klingeman, Dawn M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Holwerda, Evert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States). Dept. of Bacteriology; Brown, Steven D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Guss, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.

  14. Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jin Seop Bak

    2014-12-01

    Full Text Available In order to overcome the limitation of commercial electron beam irradiation (EBI, lignocellulosic rice straw (RS was pretreated using water soaking-based electron beam irradiation (WEBI. This environment-friendly pretreatment, without the formation (or release of inhibitory compounds (especially hydroxymethylfurfural and furfural, significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100% was treated with WEBI doses of 1 MeV at 80 kGy, 0.12 mA, the glucose yield after 120 h of hydrolysis was 70.4% of the theoretical maximum. This value was predominantly higher than the 29.5% and 52.1% measured from untreated and EBI-treated RS, respectively. Furthermore, after simultaneous saccharification and fermentation for 48 h, the ethanol concentration, production yield, and productivity were 9.3 g/L, 57.0% of the theoretical maximum, and 0.19 g/L h, respectively. Finally, scanning electron microscopy images revealed that WEBI induced significant ultrastructural changes to the surface of lignocellulosic fibers.

  15. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  16. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica.

    Science.gov (United States)

    Saucedo-Luna, Jaime; Castro-Montoya, Agustin Jaime; Martinez-Pacheco, Mauro Manuel; Sosa-Aguirre, Carlos Ruben; Campos-Garcia, Jesus

    2011-06-01

    Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147 °C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40 °C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R (2) = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.

  17. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Theoretical yield studies on the large-scaled tongue sole, Cynoglossus macrolepidotus (Bleeker), from the Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Kutty, M.K.; Qasim, S.Z.

    Theoretical yield values of Cynoglossus macrolepidotus were computed from a simple Beverton and Holt type model using informations on growth and mortality rates The effects of various fishing mortality rates (F) and ages of exploitation (Tp...

  19. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains.

    Science.gov (United States)

    You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin

    2017-01-01

    Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an

  20. The consequence of fetal ethanol exposure and adolescent odor re-exposure on the response to ethanol odor in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Molina Juan C

    2009-01-01

    Full Text Available Abstract Background An epidemiologic predictive relationship exists between fetal ethanol exposure and the likelihood for adolescent use. Further, an inverse relationship exists between the age of first experience and the probability of adult abuse. Whether and how the combined effects of prenatal and adolescent ethanol experiences contribute to this progressive pattern remains unknown. Fetal ethanol exposure directly changes the odor attributes of ethanol important for both ethanol odor preference behavior and ethanol flavor perception. These effects persist only to adolescence. Here we tested whether adolescent ethanol odor re-exposure: (Experiment 1 augments the fetal effect on the adolescent behavioral response to ethanol odor; and/or (Experiment 2 perpetuates previously observed adolescent behavioral and neurophysiological responses into adulthood. Methods Pregnant rats received either an ethanol or control liquid diet. Progeny (observers experienced ethanol odor in adolescence via social interaction with a peer (demonstrators that received an intragastric infusion of either 1.5 g/kg ethanol or water. Social interactions were scored for the frequency that observers followed their demonstrator. Whole-body plethysmography evaluated the unconditioned behavioral response of observers to ethanol odor in adolescence (P37 or adulthood (P90. The olfactory epithelium of adults was also examined for its neural response to five odorants, including ethanol. Results Experiment 1: Relative to fetal or adolescent exposure alone, adolescent re-exposure enhanced the behavioral response to ethanol odor in P37 animals. Compared to animals with no ethanol experience, rats receiving a single experience (fetal or adolescent show an enhanced, yet equivalent, ethanol odor response. Fetal ethanol experience also increased olfactory-guided following of an intoxicated peer. Experiment 2: Combined exposure yielded persistence of the behavioral effects only in adult

  1. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  2. Ethanol production by immobilized cells with forced substrate supply

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Nishizawa, Y.; Nagai, S.

    1984-01-01

    Ethanol fermentation by a forced substrate supply into an immobilized cell layer was carried out to increase the ethanol production rate and to eliminate the diffusion dependency of substrate supply in an ordinary immobilized cell reaction. Saccharomyces cerevisiae IFO 2347 was immobilized in a mixture of k-carrageenan, locust bean gum, and celite (2: 0.5: 40 wt/vol %). A glucose minimal medium was fed into the immobilized cell layer (5 to 22 mm in thickness) at retention times between 0.6 and 2.8 h under pressure. The stable ethanol fermentation could be maintained for more than 3 weeks with an ethanol yield of 0.48 g ethanol/g glucose and ethanol productivity of 63 g.(l gel)/sup -1/.h/sup -1/ at a retention time of 1.5 h. The yeast cells were well distributed through the gel layer with a vertical gradient, and an average cell density was ca. 8.0 X 10/sup 9/ cells/ml gel, 4-fold higher than that of ordinary immobilized cells. A small filter press reactor was constructed to examine the applicability of ethanol fermentation with this forced substrate supply. The operation could be continued for a month at a retention time of 2 h yielding 96 g/l of ethanol from 200 g/l of glucose. 6 references, 5 figures, 3 tables.

  3. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production.

    Science.gov (United States)

    Costa, M A S; Cerri, B C; Ceccato-Antonini, S R

    2018-01-01

    Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed-batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE-2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3-log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must. In Brazilian ethanol-producing industry, water-diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 10 7 to 10 4  CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed-batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass. © 2017 The Society for Applied Microbiology.

  4. Optimization of the Ethanol Fermentation of Cassava Wastewater ...

    African Journals Online (AJOL)

    This research work focused on the optimisation of the cassava wastewater medium for ethanol fermentation. The main thrust was the investigation of the influence of the glucose concentration, nutrient (NH4Cl) level, and cell concentration on the yield of ethanol from cassava wastewater. Twenty experiments based on ...

  5. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform.

    Science.gov (United States)

    Enquist-Newman, Maria; Faust, Ann Marie E; Bravo, Daniel D; Santos, Christine Nicole S; Raisner, Ryan M; Hanel, Arthur; Sarvabhowman, Preethi; Le, Chi; Regitsky, Drew D; Cooper, Susan R; Peereboom, Lars; Clark, Alana; Martinez, Yessica; Goldsmith, Joshua; Cho, Min Y; Donohoue, Paul D; Luo, Lily; Lamberson, Brigit; Tamrakar, Pramila; Kim, Edward J; Villari, Jeffrey L; Gill, Avinash; Tripathi, Shital A; Karamchedu, Padma; Paredes, Carlos J; Rajgarhia, Vineet; Kotlar, Hans Kristian; Bailey, Richard B; Miller, Dennis J; Ohler, Nicholas L; Swimmer, Candace; Yoshikuni, Yasuo

    2014-01-09

    The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.

  6. Continuous ethanol production from sugar beet molasses using an osmotolerant mutant strain of zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.C.; Baratti, J.C. (Univ. de Provence, Marseille (France). Centre National de la Recherche Scientifique)

    1992-01-25

    In conventional alcohol fermentation processes using yeast species, the substrate cost represents a major fraction of the total production cost. Therefore, it may be very attractive to use the bacterium Zymomonas mobilis, since it has shown higher ethanol yields than yeasts when grown on a glucose-based medium. A report is made on the use of mutant strain of Zymomonas mobilis for ethanol production from hydrolyzed sugar beet molasses in a two-stage continuous culture which showed high ethanol yield and an ethanol concentration sufficiently high for economical recovery. A single stage continuous culture was first operated in an attempt to reduce the formation of sorbitol. Further on, a second fermentor was added with additional substrate feeding to increase the effluent ethanol concentration. An ethanol concentration of 59.9g/l was obtained at 97% sugar conversion and at high ethanol yield. The volumetric ethanol productivity was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the ethanol concentration was increased to a level acceptable for economical recovery. 18 refs., 3 figs., 5 tabs.

  7. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Zhang, Jiabei; Zhou, Junhu; Cen, Kefa; Murphy, Jerry D

    2017-09-01

    Interspecies electron transfer between bacteria and archaea plays a vital role in enhancing energy efficiency of anaerobic digestion (AD). Conductive carbon materials (i.e. graphene nanomaterial and activated charcoal) were assessed to enhance AD of ethanol (a key intermediate product after acidogenesis of algae). The addition of graphene (1.0g/L) resulted in the highest biomethane yield (695.0±9.1mL/g) and production rate (95.7±7.6mL/g/d), corresponding to an enhancement of 25.0% in biomethane yield and 19.5% in production rate. The ethanol degradation constant was accordingly improved by 29.1% in the presence of graphene. Microbial analyses revealed that electrogenic bacteria of Geobacter and Pseudomonas along with archaea Methanobacterium and Methanospirillum might participate in direct interspecies electron transfer (DIET). Theoretical calculations provided evidence that graphene-based DIET can sustained a much higher electron transfer flux than conventional hydrogen transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Improved ethanol fermentation of a yeast mutant by C-12 ion beam irradiation

    International Nuclear Information System (INIS)

    Lu Dong; Liu Qingfang; Wu Xin; Wang Ying; Wang Jufang; Ma Shuang; Li Wenjian

    2010-01-01

    The yeast Saccharomyces cerevisiae YY was irradiated with 100 MeV/u 12 C 6+ ion beams. After screening,we obtained the mutant strain C03A of high ethanol yield. The influence of fermentation temperature, pH and concentration of sugar on ethanol fermentation were studied. The range analysis and analysis of variance were applied for the result of orthogonal experiments. The optimal ethanol fermentation conditions are: fermentation temperature 35 degree C, pH value 5.0, and sugar concentration 24%. The results of fermentation in the 10 L bioreactor showed that the ethanol fermentation of the mutant strain could be completed in 36 hours, the production of ethanol was to 13.2%(V/V), which means 12 hours faster and 1.6%(V /V) ethanol yield higher than original strain. (authors)

  9. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li,

    2012-06-01

    Full Text Available Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the treated substrate. The cellulose conversion to glucose yield reached 77.1 to 83.4% after enzymatic hydrolysis of the solids fraction for 48 h at an enzyme loading of 15 FPU cellulase/g cellulose and 30 IU β-glucosidase/g cellulose. The enzymatic hydrolysis rate was significantly accelerated as the ethanol organosolv pretreatment time increased, reaching the highest enzymatic glucose yield of 83.4% after 48 h at 50 °C. The concentrations of fermentation inhibitors such as HMF (5-hydroxy-2-methyl furfural and furfural were 0.96 g/L and 4.38 g/L in the spent liquor after the ethanol organosolv pretreatment, which were slightly lower than the concentrations quantified during H2SO4-water treatment. Spent liquor was diluted with water, and more than 87.2% of lignin in raw bamboo was recovered as ethanol organosolv lignin through the filtration process.

  10. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Rydzak, Thomas; Garcia, David; Stevenson, David M; Sladek, Margaret; Klingeman, Dawn M; Holwerda, Evert K; Amador-Noguez, Daniel; Brown, Steven D; Guss, Adam M

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H 2 ), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum. Copyright © 2017. Published by Elsevier Inc.

  11. Ethanol Production from Lignocellulose by the Dimorphic Fungus Mucor Indicus

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, P.R.; Taherzadeh, M.J. (School of Engineering, Univ. of Boraas, SE-50190, Boraas (Sweden)). e-mail: Patrik.Lennartsson@hb.se; Karimi, K. (Dept. of Chemical Engineering, Isfahan Univ. of Technology, 84156-83111, Isfahan (IR)); Edebo, L. (Dept. of Clinical Bacteriology, Univ. of Goeteborg, SE-41346, Goeteborg (Sweden))

    2008-10-15

    Ethanol production from dilute-acid lignocellulosic hydrolyzate by the dimorphic fungus Mucor indicus was investigated. A mixture of different forest wood chips dominated by spruce was hydrolyzed with 0.5 g/L sulfuric acid at 15 bar for 10 min, yielding different sugars including galactose, glucose, mannose, and xylose, but also different fermentation inhibitors such as acetic acid, furfural, hydroxymethyl furfural (HMF), and phenolic compounds. We induced different morphological growth of M. indicus from purely filamentous, mostly filamentous, mostly yeast-like to purely yeast-like. The different forms were then used to ferment the hydrolyzate. They tolerated the presence of the inhibitors under anaerobic batch cultivation well and the ethanol yield was 430-440 g/kg consumed sugars. The ethanol productivity depended on the morphology. Judging from these results, we conclude that M. indicus, is useful for ethanol production from toxic substrates independent of its morphology. Keywords: bio-ethanol, lignocellulosic materials, dilute acid hydrolysis, Mucor indicus, dimorphic fungi

  12. A study on immobilized ethanol yeast cells by radiation technique

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Bosen

    1994-01-01

    Hydrophilic monomer 2-hydroxyethyl acrylate (HEA) and a series of polyethylene glycol dimethacrylate monomers were copolymerized by radiation technique at low temperature (-78 degree C) and hydrophilic hydrogels were obtained. The immobilization of yeast cells with these copolymer carriers led to a higher ethanol productivity than free cells. Of all copolymer carriers, the ethanol yield with poly (HEA-14 G) was the highest, about 2.45 times as high as that of free yeast cells. In addition, the ethanol productivity of 12 batch repeated reactions with poly (HEA-14G) carrier was all higher than that of free yeast cells. The ethanol productivity of immobilized yeast cells was dependent on the proportion of hydrophilic monomer to other monomers in copolymer systems, the chain length of the bifunctional monomer, the degree of hydration of copolymer carriers, the structure of copolymer carriers and porosity in the internal structure of carriers. The ethanol yield of immobilized cells depended on swelling ability and porosity of copolymer carriers

  13. Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025.

    Science.gov (United States)

    Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; Melo, Vania M M; Gonçalves, Luciana R B; de Macedo, Gorete Ribeiro

    2011-08-01

    The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (μ(max)), overall yields of ethanol based on glucose consumption [Formula: see text] and based on glucose + xylose consumption (Y ( P/S )), overall yield of ethanol based on biomass (Y ( P/X )), and ethanol productivity (P (E)) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l(-1) of ethanol with a volumetric production rate of 0.257 ± 0.002 g l(-1) h(-1) and an ethanol yield of 0.417 ± 0.003 g g(-1) glucose.

  14. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  15. Ethanol production from paper sludge using Kluyveromyces marxianus

    International Nuclear Information System (INIS)

    Madrid, Lina Maria; Quintero Diaz, Juan Carlos

    2011-01-01

    Recycled paper sludge is a promising raw material for ethanol production. In this study, we first evaluated the effects of ethanol concentration, solids load, and cellulose crystallinity on the enzymatic hydrolysis of cellulose to produce reducing sugars. We then evaluated the production of ethanol by either saccharification and simultaneous fermentation (SSF) or separated hydrolysis and fermentation (SHF) using the yeast Kluyveromyces marxianus ATCC 36907. We found that cellulose hydrolysis decreased as ethanol concentrations increased; at 40 g/L ethanol, the reducing sugar production was decreased by 79 %. Hydrolysis also decreased as solids load increased; at 9 % of solids, the cellulose conversion was 76 % of the stoichiometric production. The ethanol yield and cellulose conversion rate were higher with SSF as opposed to SHF processes at 72 h of treatment.

  16. Taste-aversion-prone (TAP) rats and taste-aversion-resistant (TAR) rats differ in ethanol self-administration, but not in ethanol clearance or general consumption.

    Science.gov (United States)

    Orr, T Edward; Whitford-Stoddard, Jennifer L; Elkins, Ralph L

    2004-05-01

    Taste-aversion (TA)-prone (TAP) rats and TA-resistant (TAR) rats have been developed by means of bidirectional selective breeding on the basis of their behavioral responses to a TA conditioning paradigm. The TA conditioning involved the pairing of an emetic-class agent (cyclophosphamide) with a novel saccharin solution as the conditioned stimulus. Despite the absence of ethanol in the selective breeding process, these rat lines differ widely in ethanol self-administration. In the current study, blood alcohol concentrations (BACs) were determined after 9 days of limited (2 h per day) access to a simultaneous, two-bottle choice of a 10% ethanol in water solution [volume/volume (vol./vol.)] or plain water. The BACs correlated highly with ethanol intake among TAR rats, but an insufficient number of TAP rats yielded measurable BACs to make the same comparison within this rat line. The same rats were subsequently exposed to 24-h access of a two-bottle choice (10% ethanol or plain water) for 8 days. Ethanol consumption during the 24-h access period correlated highly with that seen during limited access. Subsequent TA conditioning with these rats yielded line-typical differences in saccharin preferences. In a separate group of rats, ethanol clearance was determined by measuring BACs at 1, 4, and 7 h after injection of a 2.5-g/kg dose of ethanol. Ethanol clearance was not different between the two lines. Furthermore, the lines did not differ with respect to food and water consumption. Therefore, the TAP rat-TAR rat differences in ethanol consumption cannot be attributed to line differences in ethanol metabolism or in general consummatory behavior. The findings support our contention that the line differences in ethanol consumption are mediated by differences in TA-related mechanisms. The findings are discussed with respect to genetically based differences in the subjective experience of ethanol.

  17. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    Science.gov (United States)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  18. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time.

    Science.gov (United States)

    Zhang, Hongdan; Zhang, Shuaishuai; Yuan, Hongyou; Lyu, Gaojin; Xie, Jun

    2018-02-01

    An organosolv pretreatment system consisting of 60% ethanol and 0.025 mol·L -1 FeCl 3 under various temperatures was developed in this study. During the pretreatment, the highest xylose yield was 11.4 g/100 g raw material, representing 49.8% of xylose in sugarcane bagasse. Structural features of raw material and pretreated substrates were characterized to better understand how hemicellulose removal and delignification affected subsequent enzymatic hydrolysis. The 160 °C pretreated solid presented a remarkable glucose yield of 93.8% for 72 h. Furthermore, the influence of different additives on the enzymatic hydrolysis of pretreated solid was investigated. The results indicated that the addition of Tween 80 shortened hydrolysis time to 6 h and allowed a 50% reduction of enzyme loading to achieve the same level of glucose yield. This work suggested that FeCl 3 -catalyzed organosolv pretreatment could improve the enzymatic hydrolysis significantly and reduce the hydrolysis time and enzyme dosage with the addition of Tween 80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis.

    Science.gov (United States)

    Shupe, Alan M; Liu, Shijie

    2012-09-01

    Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100 cm(3) and the agitation rate was set to 150 rpm resulting in an overall mass transfer coefficient (K(L)a) of 0.108 min(-1). A maximum ethanol concentration of 29.7 g/L was achieved after 120 h of fermentation; however, after 90 h of fermentation, the ethanol concentration was only slightly lower at 29.1 g/L with a yield of 0.39 g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25 g/g at 50 rpm and 0.30 g/g at 300 rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130 h of fermentation when the agitation rate was set at 50 rpm, whereas the maximum ethanol concentration was reached after only 68.5 h at 300 rpm.

  20. Deacetylation Followed by Fractionation of Yellow Poplar Sawdust for the Production of Toxicity-Reduced Hemicellulosic Sugar for Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Seong Ju Kim

    2018-02-01

    Full Text Available In order to produce bioethanol from yellow poplar sawdust without detoxification, deacetylation (mild alkali treatment was performed with aqueous ammonia solution. To select the optimal conditions, deacetylation was carried out under different conditions: NH4OH loading (2–10% (w/v and a solid-to-liquid ratio of 1:4–1:10 at 121 °C for 60 min. In order to assess the effectiveness of deacetylation, fractionation of deacetylated yellow poplar sawdust was performed using dilute acid (H2SO4, 0.5–2.0% (w/v at a reaction temperature of 130–150 °C for 10–80 min. The toxicity-reduced hemicellulosic hydrolyzates that were obtained through a two-step treatment at optimized conditions were fermented using Pichia stipitis for ethanol production, without any further detoxification. The maximum ethanol production was 4.84 g/L, corresponding to a theoretical ethanol yield of 82.52%, which is comparable to those of intentionally made hydrolyzates as controls.

  1. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  2. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    Science.gov (United States)

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  3. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  4. Direct Ethanol Production from Breadfruit Starch (Artocarpus communis Forst. by Engineered Simultaneous Saccharification and Fermentation (ESSF using Microbes Consortium

    Directory of Open Access Journals (Sweden)

    Iftachul Farida

    2015-02-01

    Full Text Available Breadfruit (Artocarpus communis Forst. is one of sources for ethanol production, which has high starch content (89%. Ethanol production from breadfruit starch was conducted by Simultaneous Saccharification and Fermentation (SSF technology using microbes consortium. The aim of the research was to examine a method to produce ethanol by SSF technology using microbes consortium at high yield and efficiency. The main research consisted of two treatments, namely normal SSF and enginereed SSF. The results showed that normal SSF using aeration and agitation during cultivation could produce ethanol at 11.15 ± 0.18 g/L, with the yield of product (Yp/s 0.34 g ethanol/g substrate; and yield of biomass (Yx/s 0.29 g cell/g substrate, respectively. A better result was obtained using engineered SSF in which aeration was stopped after biomass condition has reached the end of the exponential phase. The ethanol produced was 12.75 ± 0.04 g/L, with the yields of product (Yp/s 0.41 g ethanol/g substrate, and the yield of cell (Yx/s 0.09 g cell/g substrate.

  5. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  6. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  7. Аbоut a theoretical yield of glucose from starch

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2016-01-01

    Full Text Available Starch is the raw materials for production of crystal food glucose. With at enzyme conversion of the high purity starch, it is possible to receive glucosic syrups of a glucose equivalent (GE 98%, where there is about 95% glucose and maltose and maltotriose – of about 5%. Starch hydrolysis is carried out with a gain of solids. Thus, 100 kg of amylum is possible to give up to 109.81 kg of glucose syrup on dry basis. Taking in account the losses at manufacture steps a yield can decrease to 105.61 kg. The purified glucose syrup is concentrated up to 73–75% of dry matters and goes to a crystallization step. Crystallization of glucose is carried out in a supersaturated solution within 56–70 hours at reduced temperature from 46–48 °C to 24–26 °C, resulting a mixture of glucose crystals and an intercrystal run-off syrup called a massecuite. The crystallization process is stopped when a 50% of crystals content in massecuite is reached. At the same time glucose yield will be 105.61/2 = 52.8%. Crystallization is carried out according to the single-stage scheme, with partial return of the end product – hydrol into the hydrolised syrup. Then the massecuite is sent to a centrifugation step for dividing glucose crystals and a run-off syrup, which is partially returned to the initial syrup to reduce in GE. The second part of the run-off syrup goes to realization. It must be kept in mind: the higher GE of the glucose syrup sent to a crystallization step, the more quantity of a hydrol is possible to be returned to hydrolysed syrup. Therefore, it is in a resulted a higher yield of glucose crystals. On the basis of the carried-out calculations the computer program was made with which it is possible to define a theoretical glucose and a hydrol yield, while changing values of a hydrolysed syrup. The higher GE values of a hydrolysed syrup are the higher yield of crystal glucose and the lower one of hydrol are. So, at 98% GE of a hydrolysed syrup it is

  8. Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, Paloma; Ballesteros, Ignacio; Negro, Maria Jose; Oliva, Jose Miguel; Gonzalez, Alberto; Ballesteros, Mercedes [Renewable Energy Department-CIEMAT, Biofuels Unit, Madrid (Spain)

    2012-06-15

    In this work, forage sorghum biomass was studied as feedstock for ethanol production by a biological conversion process comprising the steps of hydrothermal steam explosion pretreatment, enzymatic hydrolysis with commercial enzymes, and fermentation with the yeast Saccharomyces cerevisiae. Steam explosion conditions were optimized using a response surface methodology considering temperature (180-230 C) and time (2-10 min). Sugar recovery in the pretreatment and the enzymatic digestibility of the pretreated solid were used to determine the optimum conditions, i.e., 220 C and 7 min. At these conditions, saccharification efficiency attained 89 % of the theoretical and the recovery of xylose in the prehydrolyzate accounted for 35 % of the amount of xylose present in raw material. Then, a simultaneous hydrolysis and fermentation (SSF) process was tested at laboratory scale on the solid fraction of forage sorghum pretreated at optimum condition, in order to evaluate ethanol production. The effect of the enzyme dose and the supplementation with xylanase enzyme of the cellulolytic enzyme cocktail was studied at increasing solid concentration up to 18 % (w/w) in SSF media. Results show good performance of SSF in all consistencies tested with a significant effect of increasing enzyme load in SSF yield and final ethanol concentration. Xylanase supplementation allows increasing solid concentration up to 18 % (w/w) with good SSF performance and final ethanol content of 55 g/l after 4-5 days. Based on this result, about 190 l of ethanol could be obtained from 1 t of untreated forage sorghum, which means a transformation yield of 85 % of the glucose contained in the feedstock. (orig.)

  9. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  10. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    Science.gov (United States)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  11. Theoretical estimation of proton induced X-ray emission yield of the trace elements present in the lung and breast cancer

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.

    2013-01-01

    X-rays may be produced following the excitation of target atoms induced by an energetic incident ion beam of protons. Proton induced X-ray emission (PIXE) analysis has been used for many years for the determination of elemental composition of materials using X-rays. Recent interest in the proton induced X-ray emission cross section has arisen due to their importance in the rapidly expanding field of PIXE analysis. One of the steps in the analysis is to fit the measured X-ray spectrum with theoretical spectrum. The theoretical cross section and yields are essential for the evaluation of spectrum. We have theoretically evaluated the PIXE cross sections for trace elements in the lung and breast cancer tissues such as Cl, K, Ca,Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, P, S, Sr, Hg and Pb. The estimated cross section is used in the evaluation of Proton induced X-ray emission spectrum for the given trace elements.We have also evaluated the Proton induced X-ray emission yields in the thin and thick target of the given trace elements. The evaluated Proton induced X-ray emission cross-section, spectrum and yields are graphically represented. Some of these values are also tabulated. Proton induced X-ray emission cross sections and a yield for the given trace elements varies with the energy. PIXE yield depends on a real density and does not on thickness of the target. (author)

  12. Ethanol from residues - Paper tubes and textiles; Etanol ur avfall - Pappersrullar och textilier

    Energy Technology Data Exchange (ETDEWEB)

    Jeihanipour, Azam; Talebnia, Farid; Loren, Anders; Nordman, Roger; Taherzadeh, Mohammad

    2009-06-15

    The aim of this project was to investigate the possibilities to produce ethanol from waste fractions. In this project, the investigation was limited to paper tubes and textiles. Project goals were to study: (a) Is it possible to produce ethanol from the selected waste fractions? (b) Which problems could arise in the hydrolysis and fermentation, and how could these be solved? (c) What yields could be achieved in practice, expressed as kg ethanol per kg waste? Tests have been made in both laboratory scale and in pilot scale. Weak acid hydrolysis was made in laboratory scale and in pilot scale, while enzymatic hydrolysis and SSF (simultaneous saccharification and fermentation), was made in laboratory scale only. Two different acids, phosphoric acid and sulphuric acid were used. The results from the experiments show that phosphoric acid have the best effect on dissolving the crystalline cellulosic structure of the two acids tested. This results in higher glucose yields before fermentation. The tests with paper tubes resulted in ethanol yields of 20-24 % based on dry raw material. Some textiles (jeans material) resulted in yields of 30-40% based on dry raw material. The results from the experiments show that yields of 25-30 l ethanol per 100 kg paper tubes, and 35-50 l ethanol per 100 kg textiles were reached. Waste fractions that were studied in this project are available in whole Sweden, but the relative share of the wastes depends on local conditions. In Boraas, the amount of paper tubes is approximately 300 tons per year, and textiles amounts to about 17 000 tons per year. About 25 % of the textiles are considered to be available for ethanol production. Any negative effects on the ethanol production from additives could not be noted in the experiments. For example, the additive poly-vinylic alcohol, PVA, which is present in the paper tubes, does not hamper the ethanol yield in any large proportion. During the experiments with textiles, comparative fermentation tests

  13. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol

    International Nuclear Information System (INIS)

    Grootscholten, T.I.M.; Kinsky dal Borgo, F.; Hamelers, H.V.M.; Buisman, C.J.N.

    2013-01-01

    In this research we investigate a microbial production process to produce medium chain fatty acids (MCFAs) based on the organic fraction of municipal solid waste (OFMSW). In this microbial production process, called chain elongation, bacteria produce medium chain fatty acids (MCFAs) from ethanol and volatile fatty acids (VFAs). MCFAs could be used as new biomass based building blocks for the chemical and fuel industry. The objective of this article is to investigate whether chain elongation can be promoted during acidification of OFMSW by addition of ethanol. The results show that chain elongation can be promoted during acidification of OFMSW by addition of ethanol. However, the hydrolysis rate and the carboxylic acid yield of the OFMSW in reactors with ethanol additions were lower than the hydrolysis rate and the carboxylic acid yield than in reactors without ethanol additions. Further research is required to determine whether a combined chain elongation and acidification reactor or a separated reactor system is more advantageous for MCFA production from OFMSW. -- Highlights: ► Production of medium chain fatty acids from municipal solid waste and ethanol. ► Insight in production of caproate and consumption of in-situ produced ethanol. ► Ethanol additions reduced propionate, butyrate and valerate concentrations. ► Ethanol additions hardly reduced acetate concentrations. ► Hydrolysis rate was lower in experiments with ethanol additions

  14. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL-pretreated lodgepole pine.

    Science.gov (United States)

    Zhou, Haifeng; Lan, Tianqing; Dien, Bruce S; Hector, Ronald E; Zhu, J Y

    2014-01-01

    The performances of five yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, while intermediate toxicity was represented by the hydrolysate with partial loading of pretreatment spent liquor. The zero toxicity was represented using the enzymatic hydrolysate produced from thoroughly washed SPORL lodgepole pine solids. The results indicate that strains D5A and YRH400 can tolerate the whole pretreated biomass slurry to produce 90.1 and 73.5% theoretical ethanol yield. Strains Y1528, YRH403, and FPL450 did not grow in whole hydrolysate cultures and were observed to have lower ethanol productivities than D5A and YRH400 on the hydrolysate with intermediate toxicity. Both YRH400 and YRH403 were genetically engineered for xylose fermentation but were not able to consume xylose efficiently in hydrolysate. © 2014 American Institute of Chemical Engineers.

  15. Agricultural sector impacts of making ethanol from grain

    Energy Technology Data Exchange (ETDEWEB)

    Hertzmark, D.; Ray, D.; Parvin, G.

    1980-03-01

    This report presents the results of a model of the effects on the agricultural sector of producing ethanol from corn in the United States between 1979 and 1983. The model is aggregated at the national level, and results are given for all of the major food and feed crops, ethanol joint products, farm income, government payment, and agricultural exports. A stochastic simulation was performed to ascertain the impacts of yield and demand variations on aggregate performance figures. Results indicate minimal impacts on the agricultural sector for production levels of less than 1 billion gallons of ethanol per year. For higher production levels, corn prices will rise sharply, the agricultural sector will be more vulnerable to variations in yields and demands, and joint-product values will fall. Possibilities for ameliorating such effects are discussed, and such concepts as net energy and the biomass refinery are explored.

  16. Fuel ethanol production from sweet sorghum using repeated-batch fermentation.

    Science.gov (United States)

    Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou

    2011-04-01

    Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  18. Simultaneous production of bio-ethanol and bleached pulp from red algae.

    Science.gov (United States)

    Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum

    2012-12-01

    The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    Science.gov (United States)

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

  20. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland.

    Science.gov (United States)

    Jessen, Jan Eric; Orlygsson, Johann

    2012-01-01

    Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol) and xylose (1.25 mol/mol). Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose) pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g(-1)) but the lowest on straw (0.8 mM·g(-1)). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g(-1) to 3.3 mM·g(-1) using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g(-1).

  1. Influence of fiber degradation and concentration of fermentable sugars on simultaneous saccharification and fermentation of high-solids spruce slurry to ethanol.

    Science.gov (United States)

    Hoyer, Kerstin; Galbe, Mats; Zacchi, Guido

    2013-10-08

    Saccharification and fermentation of pretreated lignocellulosic materials, such as spruce, should be performed at high solids contents in order to reduce the cost of the produced bioethanol. However, this has been shown to result in reduced ethanol yields or a complete lack of ethanol production. Previous studies have shown inconsistent results when prehydrolysis is performed at a higher temperature prior to the simultaneous saccharification and fermentation (SSF) of steam-pretreated lignocellulosic materials. In some cases, a significant increase in overall ethanol yield was reported, while in others, a slight decrease in ethanol yield was observed. In order to investigate the influence of prehydrolysis on high-solids SSF of steam-pretreated spruce slurry, in the present study, the presence of fibers and inhibitors, degree of fiber degradation and initial fermentable sugar concentration has been studied. SSF of whole steam-pretreated spruce slurry at a solids content of 13.7% water-insoluble solids (WIS) resulted in a very low overall ethanol yield, mostly due to poor fermentation. The yeast was, however, able to ferment the washed slurry and the liquid fraction of the pretreated slurry. Performing prehydrolysis at 48°C for 22 hours prior to SSF of the whole pretreated slurry increased the overall ethanol yield from 3.9 to 62.1%. The initial concentration of fermentable sugars in SSF could not explain the increase in ethanol yield in SSF with prehydrolysis. Although the viscosity of the material did not appear to decrease significantly during prehydrolysis, the degradation of the fibers prior to the addition of the yeast had a positive effect on ethanol yield when using whole steam-pretreated spruce slurry. The results of the present study suggest that the increase in ethanol yield from SSF when performing prehydrolysis is a result of fiber degradation rather than a decrease in viscosity. The increased concentration of fermentable sugars at the beginning of the

  2. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to gro...... product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process. © IWA Publishing 2011....

  3. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças de Almeida; Silva, João Batista de Almeida e; Giulietti, Marco

    2010-05-01

    The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

  4. Sucrose-supplemented distillery spent wash as a medium for production of ethanol at 45 C by free and alginate-immobilized preparations of Kluyveromyces marxianus IMB3

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, P.; Mulholland, H.; Barron, N.; Brady, D.; McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster (United Kingdom)

    1998-04-01

    Ethanol production by the thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3, was compared during growth on sucrose-supplemented laboratory-based media and distillery spent wash from the Old Bushmill`s Distillery Co., Ltd., Co. Antrim, Northern Ireland. Fermentations were carried out using preparations of the free and alginate-immobilized microorganism as inocula in media supplemented with 2 and 10% (w/v) sucrose. Maximum ethanol concentrations accounted for 75-99% of the maximum theoretical yield and in all cases maximum concentrations obtained using the spent wash were similar if not slightly higher than those obtained on the sucrose-supplemented yeast growth media. In addition, the highest concentrations of ethanol were produced by the alginate-immobilized biocatalyst on both types of media. Analysis of exhausted media in the spent wash-based systems demonstrated significant decreases in the total organic carbon content following fermentation. These results confirm our earlier suggestion that ethanol production based on this microorganism in a recycle system may provide a more cost-effective means of disposing of whiskey distillery spent wash. (orig.) With 1 tab., 8 refs.

  5. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Srichuwong, Sathaporn; Fujiwara, Maki; Wang, Xiaohui; Seyama, Tomoko; Shiroma, Riki; Arakane, Mitsuhiro; Tokuyasu, Ken [National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 (Japan); Mukojima, Nobuhiro [National Agricultural Research Center for Hokkaido Region, NARO, 9-4 Shinsei-minami, Memuro-cho, Kasai-gun, Hokkaido 082-0071 (Japan)

    2009-05-15

    Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash, containing 304 g L{sup -1} of dissolved carbohydrates, was carried out for ethanol production. Potato tubers were ground into a mash, which was highly viscous. Mash viscosity was reduced by the pretreatment with mixed enzyme preparations of pectinase, cellulase and hemicellulase. The enzymatic pretreatment established the use of VHG mash with a suitable viscosity. Starch in the pretreated mash was liquefied to maltodextrins by the action of thermo-stable {alpha}-amylase at 85 C. SSF of liquefied mash was performed at 30 C with the simultaneous addition of glucoamylase, yeast (Saccharomyces cerevisiae) and ammonium sulfate as a nitrogen source for the yeast. The optimal glucoamylase loading, ammonium sulfate concentration and fermentation time were 1.65 AGU g{sup -1}, 30.2 mM and 61.5 h, respectively, obtained using the response surface methodology (RSM). Ammonium sulfate supplementation was necessary to avoid stuck fermentation under VHG condition. Using the optimized condition, ethanol yield of 16.61% (v/v) was achieved, which was equivalent to 89.7% of the theoretical yield. (author)

  7. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2016-11-01

    An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Xia, Liming [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2009-10-15

    Bio-ethanol converted from cheap and abundant lignocellulosic materials is a potential renewable resource to replace depleting fossil fuels. Simultaneous saccharification and fermentation (SSF) of alkaline-pretreated corn stover for the production of ethanol was investigated using a recombinant yeast strain Saccharomyces cerevisiae ZU-10. Low cellobiase activity in Trichoderma reesei cellulase resulted in cellobiose accumulation. Supplementing the simultaneous saccharification and fermentation system with cellobiase greatly reduced feedback inhibition caused by cellobiose to the cellulase reaction, thereby increased the ethanol yield. 12 h of enzymatic prehydrolysis at 50 C prior to simultaneous saccharification and fermentation was found to have a negative effect on the overall ethanol yield. Glucose and xylose produced from alkaline-pretreated corn stover could be co-fermented to ethanol effectively by S. cerevisiae ZU-10. An ethanol concentration of 27.8 g/L and the corresponding ethanol yield on carbohydrate in substrate of 0.350 g/g were achieved within 72 h at 33 C with 80 g/L of substrate and enzyme loadings of 20 filter paper activity units (FPU)/g substrate and 10 cellobiase units (CBU)/g substrate. The results are meaningful in co-conversion of cellulose and hemicellulose fraction of lignocellulosic materials to fuel ethanol. (author)

  9. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    Science.gov (United States)

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A novel spiral reactor for biodiesel production in supercritical ethanol

    International Nuclear Information System (INIS)

    Farobie, Obie; Sasanami, Kazuma; Matsumura, Yukihiko

    2015-01-01

    Highlights: • A novel spiral reactor for biodiesel production in supercritical ethanol was proposed. • The spiral reactor employed in this study successfully recovered heat. • The effects of temperature and time on FAEE yield were investigated. • FAEE yield as high as 0.937 mol/mol was obtained at 350 °C after 30 min. • The second-order kinetic model expressed the experimental yield well. - Abstract: A spiral reactor is proposed as a novel reactor design for biodiesel production under supercritical conditions. Since the spiral reactor serves as a heat exchanger, it offers the advantage of reduced apparatus space compared to conventional supercritical equipment. Experimental investigations were carried out at reaction temperatures of 270–400 °C, pressure of 20 MPa, oil-to-ethanol molar ratio of 1:40, and reaction times of 3–30 min. An FAEE yield of 0.937 mol/mol was obtained in a short reaction time of 30 min at 350 °C and oil-to-ethanol molar ratio of 1:40 under a reactor pressure of 20 MPa. The spiral reactor was not only as effective as conventional reactor in terms of transesterification reactor but also was superior in terms of heat recovery. A second-order kinetic model describing the transesterification of canola oil in supercritical ethanol was proposed, and the reaction was observed to follow Arrhenius behavior. The corresponding reaction rate constants and the activation energies as well as pre-exponential factors were determined

  11. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  12. Recent updates on lignocellulosic biomass derived ethanol - A review

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  13. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    Science.gov (United States)

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  14. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  15. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Supercritical CO2 extraction of raw propolis and its dry ethanolic extract

    Directory of Open Access Journals (Sweden)

    L. C. Paviani

    2012-06-01

    Full Text Available Three types of propolis extract were prepared and analyzed with respect to their global extraction yields and with respect to the concentration of the following markers: 3,5-diprenyl-4-hydroxycinnamic acid; 3-prenyl-4-hydroxycinnamic acid; 4-hydroxycinnamic acid and 4-methoxy-3,5,7-trihydroxyflavone. The extract EEP (ethanolic extract of propolis was obtained by the conventional method from raw propolis using ethanol as solvent. The extracts (SFE were obtained by supercritical solvent extraction from the raw propolis using supercritical carbon dioxide (sc-CO2, with and without the addition of ethanol as a co-solvent. The fractionated supercritical extracts (FSCE were obtained by fractionation (extract and raffinate of the dry EEP with sc-CO2. EEP yields of 39.5% were obtained and maximum global extraction yields were 7.3% for SFE with no co-solvent, 51% for SFE with 15% ethanol and 18% for the FSCE extract fraction. The concentrations of the markers in the different extracts differed as a function of the operational parameters, indicating that the addition of co-solvent and the selectivity of sc-CO2 could be manipulated so as to obtain extracts with the yields and concentrations of interest.

  17. Production of Ethanol from Sugars and Lignocellulosic Biomass by Thermoanaerobacter J1 Isolated from a Hot Spring in Iceland

    Directory of Open Access Journals (Sweden)

    Jan Eric Jessen

    2012-01-01

    Full Text Available Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol and xylose (1.25 mol/mol. Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g−1 but the lowest on straw (0.8 mM·g−1. Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g−1 to 3.3 mM·g−1 using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g−1.

  18. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover.

    Science.gov (United States)

    Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos

    2017-11-01

    The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghyun; Karim, Muhammad Nazmul [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

    2011-08-15

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum - endoglucanase (Cel5A), exoglucanase (Cel9E), and {beta}-glucosidase - on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 {+-} 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 {+-} 0.15%. Ethanol production was 0.30 {+-} 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 {+-} 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. (orig.)

  20. DIFFERENCES BETWEEN WHEAT CULTIVARS IN GRAIN PARAMETERS RELATED TO ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Daniela Mikulíková

    2011-12-01

    Full Text Available Wheat grain samples from sixteen winter cultivars originated from four localities were evaluated and compared in traits related to ethanol production as grain yield, grain hardness, content of protein, starch and amylose, and α-amylase activity. Results obtained indicate significant differences between cultivars in amylose content, α-amylase activity, and grain hardness compared to grain yield, protein content, and starch content where differences were not significant. The amylose content, α-amylase activity, and grain hardness were affected by cultivar. Both testing methods for starch fermentation - separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF revealed difference between cultivars in ethanol yield.

  1. Simultaneous or separated; comparison approach for saccharification and fermentation process in producing bio-ethanol from EFB

    Science.gov (United States)

    Bardant, Teuku Beuna; Dahnum, Deliana; Amaliyah, Nur

    2017-11-01

    Simultaneous Saccharification Fermentation (SSF) of palm oil (Elaeis guineensis) empty fruit bunch (EFB) pulp were investigated as a part of ethanol production process. SSF was investigated by observing the effect of substrate loading variation in range 10-20%w, cellulase loading 5-30 FPU/gr substrate and yeast addition 1-2%v to the ethanol yield. Mathematical model for describing the effects of these three variables to the ethanol yield were developed using Response Surface Methodology-Cheminformatics (RSM-CI). The model gave acceptable accuracy in predicting ethanol yield for Simultaneous Saccharification and Fermentation (SSF) with coefficient of determination (R2) 0.8899. Model validation based on data from previous study gave (R2) 0.7942 which was acceptable for using this model for trend prediction analysis. Trend prediction analysis based on model prediction yield showed that SSF gave trend for higher yield when the process was operated in high enzyme concentration and low substrate concentration. On the other hand, even SHF model showed better yield will be obtained if operated in lower substrate concentration, it still possible to operate in higher substrate concentration with slightly lower yield. Opportunity provided by SHF to operate in high loading substrate make it preferable option for application in commercial scale.

  2. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsushika, Akinori; Hoshino, Tamotsu

    2015-12-01

    The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.

  3. Catalytic dehydration of ethanol for poly 13 C compounds synthesis

    International Nuclear Information System (INIS)

    Almasan, Valer; Marginean, Petru; Lazar, Mihaela; Tusa, Florina

    2003-01-01

    Classical methods for the synthesis of organic compounds are not very well applied in the case of 13 C labeled compounds. One of the principal demands is to find the best method to transform a small quantity of isotopic reagent with a very high yield. In this case to obtain 13 C 2 chloroethanol from 13 C 2 ethanol there are two synthesis steps: - catalytic dehydration of ethanol to ethylene; - ethylene double bounding saturation: either via ethylene oxide (30% yield) or in diluted solution of chlorine. For the first step of synthesis we choose the thermal dehydration over alumina catalyst at 400 deg C. There were tested 2 samples of g alumina with 255 m 2 /g and 355 m 2 /g with very good results. In the second step of the synthesis we used the chlorine addition to ethylene in very diluted water solution. We have built a reactor which combined the two steps of this synthesis method to produce 13 C 2 chloroethanol from 13 C 2 ethanol. The global yield of method was 42%. (authors)

  4. Ethanol fermentation of HTST extruded rye grain by bacteria and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, Z [Univ. of Agriculture, Poznan (Poland). Inst. of Food Technology; Nowak, J [Univ. of Agriculture, Poznan (Poland). Inst. of Food Technology

    1997-09-01

    High temperature extrusion cooking of rye was used as a pretreatment for ethanol fermentation, and yeasts and bacteria were compared for their fermentation rates. Extrusion cooking caused, on average, a 7.5% increase in ethanol yield in comparison to autoclaved samples. The best results were achieved for grain with a moisture of 21-23% which was extruded at temperatures of 160-180 C. Extrusion decreased the relative viscosity of rye grain water extracts, so it was possible to mash it without {alpha}-amylase. The efficiency of fermentation of extruded rye without Termamyl was equal to that of autoclaved and traditionally mashed rye (using {alpha}-amylase). The rate of fermentation of extruded rye grain by Zymomonas was higher during the first stage, but the final ethanol yield was similar for the bacterium and the yeast. Through both microorganisms gave good quality distillates, the concentration of compounds other than ethanol achieved from extruded rye mashes, which were fermented by Z. mobilis, was five times lower than for yeasts. (orig.)

  5. Evaluation of sweet sorghum as a potential ethanol crop in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Horton, David Scott

    2011-08-01

    Petroleum prices have made alternative fuel crops a viable option for ethanol production. Sweet sorghum [Sorghum bicolor] is a non-food crop that may produce large quantities of ethanol with minimal inputs. Eleven cultivars were planted in 2008 and 2009 as a half-season crop. Four-row plots 6.9 m by 0.5 m, were monitored bimonthly for °Brix, height, and sugar accumulation. Yield and extractable sap were taken at the end of season. Stalk yield was greatest for the cultivar Sugar Top (4945 kg ha-1) and lowest for Simon (1054 kg ha-1). Dale ranked highest ethanol output (807 L ha-1) while Simon (123 L ha-1) is the lowest. All cultivars peak Brix accumulation occurs in early October. Individual sugar concentrations indicated sucrose is the predominant sugar with glucose and fructose levels dependent on cultivar. Supplemental ethanol in fermented wort was the best preservative tested to halt degradation of sorghum wort.

  6. Recovery of ethanol from municipal solid waste

    International Nuclear Information System (INIS)

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1992-01-01

    Methods for disposal of MSW that reduce the potential for groundwater or air pollution will be essential in the near future. Seventy percent of MSW consists of paper, food waste, yard waste, wood and textiles. These lignocellulosic components may be hydrolyzed to sugars with mineral acids, and the sugars may be subsequently fermented to ethanol or other industrial chemicals. This chapter presents data on the hydrolysis of the lignocellulosic fraction of MSW with concentrated HC1 and the fermentation of the sugars to ethanol. Yields, kinetics, and rates are presented and discussed. Design and economic projections for a commercial facility to produce 20 MM gallons of ethanol per year are developed. Novel concepts to enhance the economics are discussed

  7. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Ning; Bai, Yun; Liu, Chen-Guang; Zhao, Xin-Qing; Xu, Jian-Feng; Bai, Feng-Wu

    2014-03-01

    Whereas Saccharomyces cerevisiae uses the Embden-Meyerhof-Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner-Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ∼100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost-effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Monosaccharides and Ethanol Production from Superfine Ground Sugarcane Bagasse Using Enzyme Cocktail

    Directory of Open Access Journals (Sweden)

    Jingbo Li

    2014-03-01

    Full Text Available In this work, the effect of particle size on the enzymatic hydrolysis of milled and sieved sugarcane bagasse (SCB was studied. The enzymatic hydrolysis and fermentability of superfine ground SCB (SGP400 using an enzyme cocktail strategy were also explored. Particle size reduction improved the enzymatic hydrolysis. The highest glucose yield was 44.75%, which was obtained from SGP400. The enzyme cocktail strategy greatly enhanced the glucose and xylose yield. The maximum glucose and xylose yield was from the enzyme cocktail of cellulase, xylanase, and pectinase. Synergistic action between xylanase and pectinase as well as cellulase and pectinase was quite noticeable. Hydrolysis times affected the degree of synergism. Ethanol production was carried out by employing simultaneous saccharification and fermentation (SSF and semi-SSF using enzymes and their cocktails. Semi-SSF was found to be the better one compared with SSF. Xylanase and pectinase aided the ethanol production in both fermentation modes. Ethanol yield was 7.81 and 7.30 g/L for semi-SSF and SSF, respectively by using an enzyme cocktail of cellulase, β-glucosidase, pectinase, and xylanase.

  10. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  11. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kosugi, Akihiko; Murata, Yoshinori; Arai, Takamitsu; Mori, Yutaka [Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 (Japan); Kondo, Akihiko [Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Nada-ku, Kobe, 657-8501 (Japan); Ueda, Mitsuyoshi [Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Vaithanomsat, Pilanee; Thanapase, Warunee [Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Ladyao, Bangkok 10900 (Thailand)

    2009-05-15

    Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of {alpha}-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140 C for 1 h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively. (author)

  12. SYNTHESIS OF PROPYLENE FROM ETHANOL USING PHOSPHORUS-MODIFIED HZSM-5

    Directory of Open Access Journals (Sweden)

    R. S. Costa

    Full Text Available Abstract Effects of phosphorus addition to HZSM-5 on ethanol conversion to propylene were evaluated. Catalysts were characterized by XRF, XRD, nitrogen adsorption, 27Al and 31P MAS NMR, n-propylamine and ammonia TPD. Increasing P content decreased the strength and density of acid total sites. Ethanol dehydration was carried out in a fixed bed reactor operating at atmospheric pressure. Conversion was around 100% for all catalysts. 1.2 wt% of P catalyst showed the highest propylene yield, and was used to evaluate temperature and ethanol partial pressure effects on the product distribution. The highest propylene accumulated productivity was obtained for an ethanol partial pressure of 0.4 atm. Propylene formation was favored in the temperature range 475-500 °C. Significant changes in the product distribution as a function of time on stream were observed at higher temperatures, suggesting stronger catalyst deactivation. The ethylene yield decreased up to 500 °C, rising significantly at 550 °C, possibly due to heavier product cracking reactions.

  13. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  14. Fate of ethanol during cooking of liquid foods prepared with alcoholic beverages

    DEFF Research Database (Denmark)

    Snitkjær, Pia; Ryapushkina, Julia; Skovenborg, Erik

    2017-01-01

    To obtain an understanding of the ethanol loss during cooking of liquid foods containing alcoholic beverages, ethanol concentration was measured as a function of time and remaining volume in meat stocks prepared with wine and beer. A mathematical model describing the decline in volatile compounds...... like pot dimensions and temperature. When using a lid to cover the pot during cooking, the model was still valid but the ethanol concentrations decreased more steeply, corresponding to a higher exponent. The results provide a theoretical and empirical guideline for predicting the ethanol concentration...... in cooked liquid foods...

  15. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  16. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jae; Hartono, Maria Regina; Chan, Weng Heng; Yeo, Suan Siong [Agency for Science, Technology and Research (A*STAR), Jurong Island (Singapore). Inst. of Chemical and Engineering Sciences

    2011-02-15

    The rapidly expanding market for biodiesel has increased the supply and reduced the cost of glycerol, making it an attractive sustainable feed stock for the fuel and chemical industry. Glycerol-based biorefinery is the microbial fermentation of crude glycerol to produce fuels and chemicals. A major challenge is to obtain microbes tolerant to inhibitors such as salts and organic solvents present in crude glycerol. Microbial screening was attempted to isolate novel strain capable of growing on crude glycerol as a sole carbon source. The newly isolated bacteria, identified as nonpathogenic Kluyvera cryocrescens S26 could convert biodiesel-derived crude glycerol to ethanol with high yield and productivity. The supplementation of nutrients such as yeast extract resulted in distinguished enhancement in cell growth as well as ethanol productivity under anaerobic condition. When glycerol fermentation is performed under microaerobic condition, there is also a remarkable improvement in cell growth, ethanol productivity and yield, compared with those under strict anaerobic condition. In batch fermentation under microaerobic condition, K. cryocrescens S26 produced 27 g/l of ethanol from crude glycerol with high molar yield of 80% and productivity of 0.61 g/l/h. (orig.)

  17. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.

    Science.gov (United States)

    Teh, Kwee-Yan; Lutz, Andrew E

    2010-05-17

    Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.

  18. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    International Nuclear Information System (INIS)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    Highlights: • High solids (30% dry matter) pretreatment, enzymatic hydrolysis and fermentation. • Horizontal rotary reactor for hydrolysis and fermentation. • In situ hydrolysates detoxification using inhibitors adsorbing PEI polymer. • 50% of inhibitors recovered as by-product, recyclability of PEI polymer up to 5 times. • 76% of maximum theoretical ethanol was fermented at final concentration of 51 g/kg. - Abstract: Performing the bioethanol production process at high solids loading is a requirement for economic feasibility at industrial scale. So far this has successfully been achieved using wheat straw and other agricultural residues at 30% of water insoluble solids (WIS), but for softwood species (i.e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to ∼20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings. In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble polyelectrolyte polymer (polyethylenimine, PEI) to absorb inhibitory compounds in the material. On average 50% removal and recovery of the main inhibitors (HMF, furfural, acetic acid and formic acid) was achieved dosing 1.5% w/w of soluble PEI. The use of PEI was compatible with operating the process at high solids loadings and enabled fermentation of hydrolysates, which

  19. Net energy balance of molasses based ethanol. The case of Nepal

    International Nuclear Information System (INIS)

    Khatiwada, Dilip; Silveira, Semida

    2009-01-01

    This paper evaluates life cycle energy analysis of molasses based ethanol (MOE) in Nepal. Net energy value (NEV), net renewable energy value (NREV) and energy yield ratio are used to evaluate the energy balance of MOE in Nepal. Total energy requirements in sugarcane farming, cane milling and ethanol conversion processes are estimated and energy allocation is made between co-products (molasses and sugar) as per their market prices. The result shows negative NEV (-13.05 MJ/L), positive NREV (18.36 MJ/L) and energy yield ratio (7.47). The higher positive value of NREV and energy yield ratio reveal that a low amount of fossil fuels are required to produce 1 L of MOE. However, negative NEV reveals that the total energy consumption (both fossil and renewables) to produce the ethanol is higher than its final energy content. Nevertheless, the renewable energy contribution amounts to 91.7% of total energy requirements. The effect of the increased price of molasses and reduced energy consumption in the sugarcane milling and ethanol conversion are found to be significant in determining the energy values and yield ratio of MOE. In addition, there are clear measures that can be taken to improve efficiency along the production chain. Finally, energy security, scarcity of hard currency for importing fossil fuels and opportunities for regional development are also strong reasons for considering local renewable energy options in developing countries. (author)

  20. The transcription factor Ace2 and its paralog Swi5 regulate ethanol production during static fermentation through their targets Cts1 and Rps4a in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Yao; Du, Jie; Xu, Guoqiang; Jiang, Linghuo

    2016-05-01

    Saccharomyces cerevisiae is the most widely used fermentation organism for ethanol production. However, the gene expression regulatory networks behind the ethanol fermentation are still not fully understood. Using a static fermentation model, we examined the ethanol yields on biomass of deletion mutants for 77 yeast genes encoding nonessential transcription factors, and found that deletion mutants for ACE2 and SWI5 showed dramatically increased ethanol yields. Overexpression of ACE2 or SWI5 in wild type cells reduced their ethanol yields. Furthermore, among the 34 target genes regulated by Ace2 and Swi5, deletion of CTS1,RPS4a,SIC1,EGT2,DSE2, or SCP160 led to increased ethanol yields, with the former two showing higher effects. Overexpression of CTS1 or RPS4a in both ace2/ace2 and swi5/swi5 mutants reduced their ethanol yields. In contrast, deletion of MCR1 or HO significantly decreased ethanol yields, with the former one showing the highest effect. Therefore, Ace2 and Swi5 are two negative regulators of ethanol yield during static fermentation of yeast cells, and both CTS1 and RPS4a are major effectors mediating these two transcription factors in regulating ethanol production. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production.

    Science.gov (United States)

    Qin, Lei; Zhao, Xiong; Li, Wen-Chao; Zhu, Jia-Qing; Liu, Li; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Improving ethanol concentration and reducing enzyme dosage are main challenges in bioethanol refinery from lignocellulosic biomass. Ethylenediamine (EDA) pretreatment is a novel method to improve enzymatic digestibility of lignocellulose. In this study, simultaneous saccharification and co-fermentation (SSCF) process using EDA-pretreated corn stover was analyzed and optimized to verify the constraint factors on ethanol production. Highest ethanol concentration was achieved with the following optimized SSCF conditions at 6% glucan loading: 12-h pre-hydrolysis, 34 °C, pH 5.4, and inoculum size of 5 g dry cell/L. As glucan loading increased from 6 to 9%, ethanol concentration increased from 33.8 to 48.0 g/L, while ethanol yield reduced by 7%. Mass balance of SSCF showed that the reduction of ethanol yield with the increasing solid loading was mainly due to the decrease of glucan enzymatic conversion and xylose metabolism of the strain. Tween 20 and BSA increased ethanol concentration through enhancing enzymatic efficiency. The solid-recycled SSCF process reduced enzyme dosage by 40% (from 20 to 12 mg protein/g glucan) to achieve the similar ethanol concentration (~ 40 g/L) comparing to conventional SSCF. Here, we established an efficient SSCF procedure using EDA-pretreated biomass. Glucose enzymatic yield and yeast viability were regarded as the key factors affecting ethanol production at high solid loading. The extensive analysis of SSCF would be constructive to overcome the bottlenecks and improve ethanol production in cellulosic ethanol refinery.

  2. A Probabilistic Analysis of the Switchgrass Ethanol Cycle

    Directory of Open Access Journals (Sweden)

    Tadeusz W. Patzek

    2010-09-01

    Full Text Available The switchgrass-driven process for producing ethanol has received much popular attention. However, a realistic analysis of this process indicates three serious limitations: (a If switchgrass planted on 140 million hectares (the entire area of active U.S. cropland were used as feedstock and energy source for ethanol production, the net ethanol yield would replace on average about 20% of today’s gasoline consumption in the U.S. (b Because nonrenewable resources are required to produce ethanol from switchgrass, the incremental gas emissions would be on average 55 million tons of equivalent carbon dioxide per year to replace just 10% of U.S. automotive gasoline. (c In terms of delivering electrical or mechanical power, ethanol from 1 hectare (10,000 m2 of switchgrass is equivalent, on average, to 30 m2 of low-efficiency photovoltaic cells. This analysis suggests that investing toward more efficient and durable solar cells, and batteries, may be more promising than investing in a process to convert switchgrass to ethanol.

  3. Bioconversion of Agave tequilana fructans by exo-inulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice.

    Science.gov (United States)

    Huitrón, Carlos; Pérez, Rosalba; Gutiérrez, Luís; Lappe, Patricia; Petrosyan, Pavel; Villegas, Jesús; Aguilar, Cecilia; Rocha-Zavaleta, Leticia; Blancas, Abel

    2013-01-01

    Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme(®) (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.

  4. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  5. Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Martin, Juan Francisco; Bravo, Vicente [Department of Chemical Engineering, University of Granada, Campus Universitario de Fuentenueva, 18071 Granada (Spain); Cuevas, Manuel; Sanchez, Sebastian [Department of Chemical, Environmental and Materials Engineering, University of Jaen, Campus Las Lagunillas, 23071 Jaen (Spain)

    2010-07-15

    Hydrolysates from olive prunings (a renewable, low-cost, easily available, agricultural residue) were fermented with the unconventional yeast Candida tropicalis NBRC 0618 to produce not only ethanol fuel but also xylitol as a by-product, which adds value to the economic viability of the bioprocess. Autohydrolysis took place at 200 C in a stirred stainless-steel tank reactor. The influence of the solid/liquid ratio in the reactor was studied. Fermentation experiments were conducted in a batch-culture reactor at a temperature of 30 C, a stirring rate of 500 rpm and pH values of between 5.0 and 6.5. Under the operating conditions tested the highest yields of ethanol and xylitol were obtained with the hydrolysate fermented at pH 5.0 and solely the airflow that entered via the stirring vortex. Under these conditions, the instantaneous ethanol yield was 0.44 g g{sup -1} and the overall xylitol yield 0.13 g g{sup -1}. (author)

  6. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

    Science.gov (United States)

    Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon

    2013-02-28

    Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor

  7. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  8. Evaluation of ethanol productivity from cellulose by Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Kurose, N; Yagyu, J; Miyazaki, T; Uchida, M; Hanai, S; Obayashi, A

    1986-01-01

    Clostridium thermocellum, a thermophilic anaerobe, directly converts cellulose to EtOH. To estimate its EtOH production from cellulose, we used a new method based on material balance by which the efficiencies of the enzymes that convert cellulose to ethanol were calculated. Using this method, the maximum efficiency of ethanol production of two strains of C. thermocellum was estimated to be 0.05, with 0.67 as the theoretical maximum. 3 references.

  9. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    Science.gov (United States)

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  10. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills.

    Science.gov (United States)

    Kim, Misook; Day, Donal F

    2011-07-01

    A challenge facing the biofuel industry is to develop an economically viable and sustainable biorefinery. The existing potential biorefineries in Louisiana, raw sugar mills, operate only 3 months of the year. For year-round operation, they must adopt other feedstocks, besides sugar cane, as supplemental feedstocks. Energy cane and sweet sorghum have different harvest times, but can be processed for bio-ethanol using the same equipment. Juice of energy cane contains 9.8% fermentable sugars and that of sweet sorghum, 11.8%. Chemical composition of sugar cane bagasse was determined to be 42% cellulose, 25% hemicellulose, and 20% lignin, and that of energy cane was 43% cellulose, 24% hemicellulose, and 22% lignin. Sweet sorghum was 45% cellulose, 27% hemicellulose, and 21% lignin. Theoretical ethanol yields would be 3,609 kg per ha from sugar cane, 12,938 kg per ha from energy cane, and 5,804 kg per ha from sweet sorghum.

  11. Steam explosion treatment for ethanol production from branches pruned from pear trees by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asada, Chikako; Nakamura, Yoshitoshi

    2014-01-01

    This study investigated the production of ethanol from unutilized branches pruned from pear trees by steam explosion pretreatment. Steam pressures of 25, 35, and 45 atm were applied for 5 min, followed by enzymatic saccharification of the extracted residues with cellulase (Cellic CTec2). High glucose recoveries, of 93.3, 99.7, and 87.1%, of the total sugar derived from the cellulose were obtained from water- and methanol-extracted residues after steam explosion at 25, 35, and 45 tm, respectively. These values corresponded to 34.9, 34.3, and 27.1 g of glucose per 100 g of dry steam-exploded branches. Simultaneous saccharification and fermentation experiments were done on water-extracted residues and water- and methanol-extracted residues by Kluyveromyces marxianus NBRC 1777. An overall highest theoretical ethanol yield of 76% of the total sugar derived from cellulose was achieved when 100 g/L of water- and methanol-washed residues from 35 atm-exploded pear branches was used as substrate.

  12. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7"t"h day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9"t"h day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  13. Conversion of bakery wastes to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.E.

    1984-10-04

    The project had the following goals: (1) determine the actual yields of ethanol from the waste products of major bakeries in the Denver area by distillation in a laboratory bench scale distillation column; (2) determine the expected yields of ethanol from the major types of wastes produced by the large bakeries in the Denver area; (3) increase alcohol yields to the maximum possible by identifying any inhibitors and taking steps to remove them; (4) purify the distilled alcohol if necessary to remove any by-products distilled off with the alcohol. The production of alcohol from bakery wastes is feasible. The average yield of the bread type products is 19.8% by weight with yields ranging up to 25%. In other words, on the average, for every 1000 pounds of waste, 198 pounds or 30 gallons of alcohol would be produced. This estimate is conservative since a larger facility would tend to get a better yield (due to the difficulties of getting all the alcohol out of the small batches run). The major variable appeared to be the yeast. Fresh yeast should always be used. No yeast nutrients were tried in these experiments, since the yeast seemed to grow well. However, this could be an area of further investigation. It is possible that the yields could be kept consistently high by providing the yeast with nutrients. Finally, contamination of the alcohol with oils can be a problem, although not necessarily a very significant one. Methods do exist to remove the oil during the actual distillation, as well as, before distillation. Careful distillation also tends to lessen the problem. 7 references, 4 figures, 2 tables.

  14. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol

    International Nuclear Information System (INIS)

    Biktashev, Sh.A.; Usmanov, R.A.; Gabitov, R.R.; Gazizov, R.A.; Gumerov, F.M.; Gabitov, F.R.; Abdulagatov, I.M.; Yarullin, R.S.; Yakushev, I.A.

    2011-01-01

    The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol. -- Highlights: → The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. → The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. → Transesterification of vegetable oil with supercritical alcohols. → Effect of temperature and pressure on conversion yield. → Preliminary ultrasonic treatment of the vegetable oil+methanol mixture.

  15. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes.

    Science.gov (United States)

    Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2017-12-01

    The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Analysis of Physicochemical Properties of Mexican Gasoline and Diesel Reformulated with Ethanol

    Directory of Open Access Journals (Sweden)

    Porfirio Caballero-Mata

    2012-07-01

    Full Text Available High energy prices, environmental issues and increasing importation of fossil fuels has provoked, in some countries, a reorientation of resources towards the development of biofuels that can partially substitute the consumption of fossil fuels. Ethanol is one of the biofuels more commonly used in the world; in the United States, Brazil and Australia gasoline blends that reach up to 85% Ethanol are commercialized. This work presents the results of a physicochemical characterization of commercial Mexican gasoline (Magna and Premium and diesel blends with 10% vol. and 15% vol. anhydrous Ethanol. The analytical testing included: Research Octane Number, Motor Octane Number, Cetane Number, Reid Vapor Pressure, Distillation Curve and Heating Value. The stability of the blends was also evaluated. The theoretical emissions of CO2 were calculated based on the results of the physicochemical characterization. The ethanol-gasoline blends increased their Octane Number with respect to the commercial gasoline, while conserving an appropriate Distillation Index. The Cetane Number of the ethanol-diesel blends showed a substantial decrease, while the heating value of gasoline and diesel blends was negatively affected by the addition of ethanol. Nevertheless, taking into account the credits by the use of a renewable fuel, the use of the reformulated gasoline blends would imply a maximum theoretical reduction of 7.5% in CO2 emissions whereas in the case of ethanol-diesel blends it would represent a 9.2% decrease.

  17. High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifeng [Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao (China); Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Zhu, J. Y., E-mail: jzhu@fs.fed.us; Gleisner, Roland [Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Qiu, Xueqing [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Horn, Eric [BioPulping International, Inc., Madison, WI (United States)

    2015-04-27

    Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L.) wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH 1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS). An estimated combined hydrolysis factor (CHF) of 3.3 was used to scale the sulfite pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L{sup -1} with a yield of 247 L tonne wood{sup -1} was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH) content, though it was less sulfonated and had a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing. The conversion efficiency achieved through process integration and simplification, demonstrated here, has significant importance to the entire supply chain of biofuel production from woody biomass.

  18. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  19. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  20. Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol

    Science.gov (United States)

    Pinheiro, Álvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R.; Gonçalves, Luciana R. B.

    A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L-1 of initial sugar concentration was used. Cell yield (Yx/s) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L-1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.

  1. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Zhuo; Inokuma, Kentaro; Ho, Shih-Hsin; den Haan, Riaan; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-06-01

    Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Selective ethanol production from reducing sugars in a saccharide mixture.

    Science.gov (United States)

    Ohara, Satoshi; Kato, Taku; Fukushima, Yasuhiro; Sakoda, Akiyoshi

    2013-05-01

    Fermentation profiles of four different yeasts reportedly defective in sucrose utilization indicate that all strains tested removed particular sugar via selective conversion to ethanol in a saccharide mixture. At the temperature of pressed sugarcane juice, Saccharomyces dairenensis and Saccharomyces transvaalensis performed better in ethanol production rate and yield, respectively. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Thermodynamic analysis of ethanol reforming for hydrogen production

    International Nuclear Information System (INIS)

    Sun, Shaohui; Yan, Wei; Sun, Peiqin; Chen, Junwu

    2012-01-01

    This work presents the simulated equilibrium compositions of ethanol steam reforming (SR), partial oxidation (POX) and auto-thermal reforming (ATR) at a large temperature range, steam-to-ethanol and oxygen-to-ethanol molar ratios. The simulation work shows that the moles of hydrogen yield per mole ethanol are of this order: SR > ATR > POX. The results are compared with other simulation works and fitted models, which show that all the simulation results obtained with different methods agree well with each other. And the fitted models are in highly consistency with very small deviations. Moreover, the thermal-neutral point in corresponding to temperature, steam-to-ethanol and oxygen-to-ethanol mole ratios of ethanol ATR is estimated. The result shows that with the increasing of oxygen-to-ethanol mole ratio, the T-N point moves to higher temperatures; with the increasing of steam-to-ethanol mole ratio, the T-N point moves to lower temperatures. Furthermore, the energy exchanges of the reforming process and the whole process and the thermal efficiencies are also analyzed in the present work and that the energy demands and generated in the whole process are greater than the reforming process can be obtained. Finally, the optimum reaction conditions are selected. -- Highlights: ► The equilibrium compositions simulated by different researchers with different methods are compared. ► The simulation results are fitted with polynomials for convenient reference. ► The energy balance and thermal efficiencies are analyzed. ► The optimum reaction conditions of ethanol POX, SR and ATR for hydrogen production are selected.

  4. Process Alternatives for Second Generation Ethanol Production from Sugarcane Bagasse

    DEFF Research Database (Denmark)

    F. Furlan, Felipe; Giordano, Roberto C.; Costa, Caliane B. B.

    2015-01-01

    on the economic feasibility of the process. For the economic scenario considered in this study, using bagasse to increase ethanol production yielded higher ethanol production costs compared to using bagasse for electric energy production, showing that further improvements in the process are still necessary.......In ethanol production from sugarcane juice, sugarcane bagasse is used as fuel for the boiler, to meet the steam and electric energy demand of the process. However, a surplus of bagasse is common, which can be used either to increase electric energy or ethanol production. While the first option uses...... already established processes, there are still many uncertainties about the techno-economic feasibility of the second option. In this study, some key parameters of the second generation ethanol production process were analyzed and their influence in the process feasibility assessed. The simulated process...

  5. Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.

    Science.gov (United States)

    Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan

    2013-07-01

    Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.

  6. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    International Nuclear Information System (INIS)

    Mangmeechai, Aweewan; Pavasant, Prasert

    2013-01-01

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510–1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300–2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs

  7. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand); Pavasant, Prasert [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)

    2013-12-15

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  8. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    Energy Technology Data Exchange (ETDEWEB)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  9. Production of 16% ethanol from 35% sucrose

    International Nuclear Information System (INIS)

    Breisha, Gaber Z.

    2010-01-01

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g -1 of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l -1 together with thiamine at a level of 0.2 g l -1 led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm 3 min -1 m 3 of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production.

  10. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  11. Ethanol production from glucose and xylose by immobilized Thermoanaerobacter pentosaceus at 70 °C in an up-flow anaerobic sludge blanket (UASB) reactor

    DEFF Research Database (Denmark)

    Sittijunda, Sureewan; Tomás, Ana Faria; Reungsang, Alissara

    2013-01-01

    The newly isolated extreme thermophilic ethanologen Thermoanaerobacter pentosaceus was immobilized in different support materials in order to improve its ethanol production ability. In batch fermentation, a maximum ethanol yield of 1.36 mol mol-1 consumed sugars was obtained by T. pentosaceus...... occurred at an HRT of 6 h. The maximum ethanol yield and concentration, 1.50 mol mol-1 consumed sugars and 12.4 g l-1, were obtained with an HRT of 12 h. The latter represented an improvement of 60 % in relation to previously obtained results. This indicates that immobilization of T. pentosaceus...... immobilized on rapeseed straw. Additionally, immobilized T. pentosaceus’ ethanol production was improved by 11 % in comparison to free cells. In continuous mode, it was shown that hydraulic retention time (HRT) affected ethanol yield, and a dramatic shift from ethanol to acetate and lactate production...

  12. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe; Raman, Babu; Tschaplinski, Timothy J.; Brown, Steven D.; Davison, Brian H.; Covalla, Sean F.; Sillers, W. Ryan; Xu, Haowen; Tsakraklides, Vasiliki; Hogsett, David A.

    2012-01-24

    This project addressed the need for economical technology for the conversion of lignocellulosic biomass to fuels, specifically the conversion of pretreated hardwood to ethanol. The technology developed is a set of strains of the bacterium Thermoanaerobacterium saccharolyticum and an associated fermentation process for pretreated hardwood. Tools for genetic engineering and analysis of the organism were developed, including a markerless mutation method, a complete genome sequence and a set of gene expression profiles that show the activity of its genes under a variety of conditions relevant to lignocellulose conversion. Improved strains were generated by selection and genetic engineering to be able to produce higher amounts of ethanol (up to 70 g/L) and to be able to better tolerate inhibitory compounds from pretreated hardwood. Analysis of these strains has generated useful insight into the genetic basis for desired properties of biofuel producing organisms. Fermentation conditions were tested and optimized to achieve ethanol production targets established in the original project proposal. The approach proposed was to add cellulase enzymes to the fermentation, a method called Simultaneous Saccharification and Fermentation (SSF). We had reason to think SSF would be an efficient approach because the optimal temperature and pH for the enzymes and bacterium are very close. Unfortunately, we discovered that commercially available cellulases are inactivated in thermophilic SSF by a combination of low redox potential and ethanol. Despite this, progress was made against the fermentation targets using bacterial cellulases. Thermoanaerobacterium saccharolyticum may still prove to be a commercially viable technology should cellulase enzyme issues be addressed. Moreover, the organism was demonstrated to produce ethanol at approximately theoretical yield from oligomeric hemicellulose extracts, an ability that may prove to be uniquely valuable in pretreatment configurations in

  13. Selection of Thai starter components for ethanol production utilizing malted rice from waste paddy

    Directory of Open Access Journals (Sweden)

    Sirilux Chaijamrus

    2011-04-01

    Full Text Available The use of mixed herbs in Thai rice wine starter (Loog-pang were investigated in order to directly maintain theefficiency of the microbial community (Saccharomycopsis fibuligera, Amylomyces sp., Gluconobacter sp. and Pediocccuspentosaceus. The optimum formula was galanga, garlic, long pepper, licorice, and black pepper at the ratio of 0.5:8:1:4:1,respectively. Previously, waste paddy has been used directly as a renewable resource for fuel ethanol production using solidstate fermentation (SSF with Loog-pang. In this study, hydrolyzed malted rice starch was used as the sole nutrient source insubmerged fermentation (SmF to enhance the process yield. The maximum ethanol productivity (4.08 g/kg waste paddy h-1and the highest ethanol concentration (149±7.0 g/kg waste paddy were obtained after 48 hrs of incubation. The resultsindicated that starch saccharification provided a higher ethanol yield (48.38 g/100g sugar consumed than SSF. In addition,the efficiency of ethanol fermentation was 67% which is similar to that of the malted rice made from normal paddy (68%.This result suggests that waste paddy could be used as an alternative raw material for ethanol production.

  14. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  15. Integration of Microbial Electrolysis Cells (MECs) in the Biorefinery for Production of Ethanol, H2 and Phenolics

    DEFF Research Database (Denmark)

    Thygesen, Anders; Thomsen, Anne Belinda; Possemiers, Sam

    2010-01-01

    production. The mass and energy balances as well as the economical evaluations, show that this strategy may be useful for additional generation of hydrogen and lignin, thereby increasing the final yield of this biorefinery. From one ton of straw, the yield of ethanol upon yeast fermentation is estimated......In a biorefinery, biomass is converted into a variety of chemicals, materials and energy. A typical example is the lignocellulosic ethanol biorefinery process, in which substrates such as wheat straw are used as a feedstock for production of ethanol. In this work, an integrated biorefinery...

  16. The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors.

    Science.gov (United States)

    Gabardo, Sabrina; Pereira, Gabriela Feix; Rech, Rosane; Ayub, Marco Antônio Záchia

    2015-09-01

    We investigated the kinetics of whey bioconversion into ethanol by Kluyveromyces marxianus in continuous bioreactors using the "accelerostat technique" (A-stat). Cultivations using free and Ca-alginate immobilized cells were evaluated using two different acceleration rates (a). The kinetic profiles of these systems were modeled using four different unstructured models, differing in the expressions for the specific growth (μ) and substrate consumption rates (r s), taking into account substrate limitation and product inhibition. Experimental data showed that the dilution rate (D) directly affected cell physiology and metabolism. The specific growth rate followed the dilution rate (μ≈D) for the lowest acceleration rate (a = 0.0015 h(-2)), condition in which the highest ethanol yield (0.52 g g(-1)) was obtained. The highest acceleration rate (a = 0.00667 h(-2)) led to a lower ethanol yield (0.40 g g(-1)) in the system where free cells were used, whereas with immobilized cells ethanol yields increased by 23 % (0.49 g g(-1)). Among the evaluated models, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the kinetics of whey bioconversion into ethanol. These results may be useful in scaling up the process for ethanol production from whey.

  17. Analysis of transesterification comparing processes with methanol and ethanol for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    The increasing demand for energy on the industrialized world stimulates researches in a renewable fuel. Biodiesel appears like an alternative and utilizes a vegetable oil or animal fat as raw material. The most common method for conversion of the raw material in fuel that can be utilized in Diesel engines is called transesterification. Brazil has a big agricultural potential to produce grains and oils. One of them is the peanut oil that is predominantly cultivated in the southeast of Brazil. There is a prevision that the peanut production reaches 232 thousand tons this year. In this work was evaluated the methanol transesterification and ethanol transesterification of peanut oil using a basic catalyst. The comparison between reactions with the two alcohols showed that methyl esters yield was greater than ethyl esters, with maximum yield of 88.04% for methanol and 84.64% for ethanol. Besides the higher yield, reactions with methanol are easily conducted than with ethanol, the biodiesel purification treatment of final product is quickly and the separation between esters and glycerol is instantaneous. (author)

  18. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  19. Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production

    Directory of Open Access Journals (Sweden)

    Prem Woli

    2014-12-01

    Full Text Available This study was conducted to identify the crop management options—the combinations of various cultivars, irrigation amounts, planting dates, and soils—that would maximize the energy sustainability and eco-friendliness of maize (Zea mays L. stover-based ethanol production systems in the Mississippi Delta. Stover yields simulated with CERES-Maize were used to compute net energy value (NEV and carbon credit balance (CCB, the indicators of sustainability and eco-friendliness of ethanol production, respectively, for various scenarios. As the results showed, deeper soils with higher water holding capacities had larger NEV and CCB values. Both NEV and CCB had sigmoid relationships with irrigation amount and planting date and could be maximized by planting the crop during the optimum planting window. Stover yield had positive effects on NEV and CCB, whereas travel distance had negative. The influence of stover yield was larger than that of travel distance, indicating that increasing feedstock yields should be emphasized over reducing travel distance. The NEV and CCB values indicated that stover-based ethanol production in the Mississippi Delta is sustainable and environmentally friendly. The study demonstrated that the energy sustainability and eco-friendliness of maize stover-based ethanol production could be increased with alternative crop management options.

  20. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    Science.gov (United States)

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is

  1. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica.

    Science.gov (United States)

    Rahayu, Farida; Kawai, Yuto; Iwasaki, Yuki; Yoshida, Koichiro; Kita, Akihisa; Tajima, Takahisa; Kato, Junichi; Murakami, Katsuji; Hoshino, Tamotsu; Nakashimada, Yutaka

    2017-12-01

    A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.9mol/mol-sugar. The transformant successfully fermented sugars in hydrolysate prepared through the acid hydrolysis of lignocellulose to ethanol, suggesting that this transformant can be used to ferment the sugars in lignocellulosic biomass for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts

    DEFF Research Database (Denmark)

    Johansson, Roger; Hruby, S.L.; Hansen, Jeppe Rass

    2009-01-01

    It is shown that the conversion of ethanol-to-gasoline over an HZSM-5 catalyst yields essentially the same product distribution as for methanol-to-gasoline performed over the same catalyst. Interestingly, there is a significant difference between the identity of the hydrocarbon molecules trapped...... inside the HZSM-5 catalyst when ethanol is used as a feed instead of methanol. In particular, the hydrocarbon pool contains a significant amount of ethylsubstituted aromatics when ethanol is used as feedstock, but there remains only methyl-substituted aromatics in the product slate....

  3. Fate of Fumonisin B1 in Naturally Contaminated Corn during Ethanol Fermentation

    OpenAIRE

    Bothast, R. J.; Bennett, G. A.; Vancauwenberge, J. E.; Richard, J. L.

    1992-01-01

    Two lots of corn naturally contaminated with fumonisin B1 (15 and 36 ppm) and a control lot (no fumonisin B1 detected) were used as substrates for ethanol production in replicate 8.5-liter yeast fermentations. Ethanol yields were 8.8% for both the control and low-fumonisin corn, while the high-fumonisin corn contained less starch and produced 7.2% ethanol. Little degradation of fumonisin occurred during fermentation, and most was recovered in the distillers' grains, thin stillage, and distill...

  4. Effect of operating conditions on direct liquefaction of low-lipid microalgae in ethanol-water co-solvent for bio-oil production

    International Nuclear Information System (INIS)

    Ji, Changhao; He, Zhixia; Wang, Qian; Xu, Guisheng; Wang, Shuang; Xu, Zhixiang; Ji, Hengsong

    2017-01-01

    Highlights: • Low-lipid microalgae was selected as feedstock for DL in ethanol-water co-solvent. • Operating conditions had great influence on product yields and conversion rate. • Bio-oil could be obtained from all three main components. • Ethanol and water showed obviously synergistic effect during the DL of microalgae. • Bio-oil composition from DL of microalgae was different from lignocellulose biomass. - Abstract: In this work, the direct liquefaction (DL) of low-lipid microalgae Spirulina was investigated in a 50 ml autoclave reactor with ethanol and water as co-solvent. The objective of this research was carried out to examine the effect of operating conditions such as reaction temperature, reaction time, solvent/microalgae (S/M) ratio and ethanol-water co-solvent (EWCS) composition on product distribution and bio-oil characterization. The results revealed that the optimal operating conditions for bio-oil yield and conversion rate were reaction temperature of 300 °C, reaction time of 45 min, ethanol content of 50 vol.% and S/M ratio of 40/4 ml/g, which gave the bio-oil yield of 59.5% and conversion rate of 94.73%. Conversion rate in EWCS was significantly higher than that in pure water or ethanol, suggesting the synergistic effect between ethanol and water during microalgae DL. Distinct difference in composition and relative content of compound among bio-oils in different solvents were observed by GC–MS and FT-IR. Compared with hydrothermal liquefaction, the most abundant compounds in bio-oil from both EWCS and pure ethanol were esters. The presence of ethanol could enhance the bio-oil yield and improve bio-oil quality by promoting the formation of esters.

  5. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    Science.gov (United States)

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  7. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta

    NARCIS (Netherlands)

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-01-01

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49. 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol

  8. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    Science.gov (United States)

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.

  9. Techno-economic analysis of corn stover fungal fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Pimphan; Tews, Iva J.; Magnuson, Jon K.; Karagiosis, Sue A.; Jones, Susanne B.

    2013-11-01

    This techno-economic analysis assesses the process economics of ethanol production from lignocellulosic feedstock by fungi in order to identify promising opportunities and the research needed to achieve them. Based on literature derived data, four different ethanologen strains are considered in this study: native and recombinant Saccharomyces cerevisiae, the natural pentose-fermenting yeast, Pichia stipitis and the filamentous fungus Fusarium oxysporum. Organism performance and technology readiness are split into three groups: near-term (<5 years), mid-term (5-10 years) and long-term (>10 years) process deployment. Processes classified as near-term could reasonably be developed in this shorter time frame, as suggested by recent literature. Mid-term technology process models are based on lab-scale experimental data, and yields near the theoretical limit are used to estimate long-term technology goals. Further research and economic evaluation on the integrated production of chemicals and fuels in biorefineries are recommended.

  10. An enzyme to improve the ethanol production; Une enzyme pour ameliorer la production d'ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-07-01

    The American firm Genecor launches a technology which allows to improve the production of ethanol from agricultural resources. This technology involves in particular a decrease of the energy consumption and of the production costs and a best yield. In the process, is used a mixture of enzymes composed of alpha-amylase and gluco-amylase. (O.M.)

  11. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source

    Energy Technology Data Exchange (ETDEWEB)

    Sansonetti, Sascha; Curcio, Stefano; Calabro, Vincenza; Iorio, Gabriele [Department of Engineering Modeling, University of Calabria, Ponte P. Bucci, Cubo 42/A, 87036 Rende, Cosenza (Italy)

    2009-12-15

    The aim of the present paper is to investigate the feasibility of bio-ethanol production by batch fermentation of ricotta cheese whey (''Scotta''), a dairy industry waste characterized by lactose concentration ranging from 4.5% to 5.0% (w/w) and, with respect to traditional (raw) whey, by much lower protein content. Scotta, therefore, could represent an effective non-vegetable source for renewable energy production. The microrganism used to carry out the fermentation processes was the yeast Kluyveromyces marxianus. Preliminary experiments, performed in aerobic conditions on different volumes of scotta, have shown the actual growth of the yeast. The subsequent fermentation experiments were carried out, in anaerobic conditions, on three different substrates: scotta, raw cheese whey and deproteinized whey. The experimental data have demonstrated the process feasibility: scotta is an excellent substrate for fermentation and exhibits better performance with respect to both raw cheese whey and deproteinized whey. Complete lactose consumption, indeed, was observed in the shortest time (13 h) and with the highest ethanol yield (97% of the theoretical value). (author)

  12. The effect of ethanol on the γ radiation induced polymerization of styrene

    International Nuclear Information System (INIS)

    Zhang Xujia; Ha Hongfei; Wu Jilan

    1990-01-01

    The γ radiation induced polymerization of styrene in the presence of ethanol was studied at dose rate of 5 x 10 17 eV/ml min. The result showed that the radiation induced polymerization of styrene was sensitized by ethanol. The experimental results were in agreement with the theoretical calculation of WAS equation. The mechanism of sensitization was proposed as proton transfer reaction

  13. Ethanol production from Dekkera bruxellensis in synthetic media with pentose

    Directory of Open Access Journals (Sweden)

    Carolina B. Codato

    Full Text Available Abstract Ethanol is obtained in Brazil from the fermentation of sugarcane, molasses or a mixture of these. Alternatively, it can also be obtained from products composed of cellulose and hemicellulose, called “second generation ethanol - 2G”. The yeast Saccharomyces cerevisiae, commonly applied in industrial ethanol production, is not efficient in the conversion of pentoses, which is present in high amounts in lignocellulosic materials. This study aimed to evaluate the ability of a yeast strain of Dekkera bruxellensis in producing ethanol from synthetic media, containing xylose or arabinose, xylose and glucose as the sole carbon sources. The results indicated that D. bruxellensis was capable of producing ethanol from xylose and arabinose, with ethanol concentration similar for both carbon sources, 1.9 g L-1. For the fermentations performed with xylose and glucose, there was an increase in the concentration of ethanol to 5.9 g L-1, lower than the standard yeast Pichia stipitis (9.3 g L-1, but with similar maximum yield in ethanol (0.9 g g TOC-1. This proves that the yeast D. bruxellensis produced lower amounts of ethanol when compared with P. stipitis, but showed that is capable of fermenting xylose and can be a promising alternative for ethanol conversion from hydrolysates containing glucose and xylose as carbon source.

  14. Thermo tolerant and ethanol producing saccharomyces cerevisiae mutants using gamma radiation

    International Nuclear Information System (INIS)

    Karima, H.M.; Ismail, A.A.; El-Batal, A.I.

    1997-01-01

    Gene manipulation now plays the main role in fermentation industries. However, throughout ethanol production processes, it appeared the requirements for the selection of higher-producing isolate(s) associated, at the same time, with heat-resistant to overcome higher degrees above 30-35 degree, a step which, actually, will reduce final - producing costs. A total of 43 yeast isolates were selected, after exposure of the strain saccharomyces cervisiae to different doses of gamma radiation. Isolated varied in colony size from the original strain as well as among themselves. These isolates were screened for their ability to grow on glucose and supplemented cane molasses media at 30 degree and 40 degree. Out fo them, only 13 isolates proved to grow well on 40 degree. Furthermore, determination of ethanol production by each of these mutants revealed that yielded in general, 16 to 52.0% increase in alcohol production at 40 degree on cane molasses medium (17.5% w/v initial sugars), compared to the original strain. At 40 degree, maximum ethanol yield was 0.63 coupled with 9.5% ethanol concentration and 85.1% sugar conversion which represents 40, 46.2 and 3.4% increase, respectively from the parental strain

  15. Feasibility assessment of whey-based ethanol facilities

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L P; Pellerin, R A; Rao, A M; Hang, Y D; Kalter, R J; Boisvert, R N; Gabler, E C

    1985-07-01

    In the U.S., corn has been the principal commodity considered for conversion to ethanol. One alternative to using corn and other food crops is to utilize organic wastes, such as food processing waste. Cheese whey is one such waste that holds potential for conversion to ethanol. To ascertain the feasibility of using whey as a feedstock a series of regional studies were conducted by the authors. Results from these studies indicate that the transport of condensed whey to a central processing plant for conversion to ethanol is economically feasible. The energy balance for the plants considered can yield a positive or negative balance depending on whether an energy penalty is assigned for condensing the whey. A net energy gain of 23833 to 26921 kJ/l of ethanol was obtained if energy for whey condensing was not included and a net energy loss ranging from -279 to -686 kJ/l was obtained if whey condensing was included in the energy balance. Plants utilizing continuous fermentation technology showed positive energy balance with or without a penalty for the condensing of the whey.

  16. Catalytic depolymerization of lignin in supercritical ethanol

    NARCIS (Netherlands)

    Huang, X.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2014-01-01

    One-step valorization of soda lignin in supercritical ethanol using a CuMgAlOx catalyst results in high monomer yield (23 wt¿%) without char formation. Aromatics are the main products. The catalyst combines excellent deoxygenation with low ring-hydrogenation activity. Almost half of the monomer

  17. A preliminary investigation of the water use efficiency of sweet ...

    African Journals Online (AJOL)

    Fresh and dry aboveground biomass yield, stalk yield and stalk Brix % were measured at final harvest. Theoretical ethanol yield was calculated from fresh stalk yield and Brix %. Water use for the two growing seasons was 415 mm at Ukulinga and 398 mm at Hatfield. The ethanol water use efficiency (WUE) values for the ...

  18. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  19. Understanding the reductions in US corn ethanol production costs: An experience curve approach

    International Nuclear Information System (INIS)

    Hettinga, W.G.; Junginger, H.M.; Dekker, S.C.; Hoogwijk, M.; McAloon, A.J.; Hicks, K.B.

    2009-01-01

    The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by using the experience curve approach, scrutinizing costs of dry grind ethanol production over the timeframe 1980-2005. Cost reductions are differentiated between feedstock (corn) production and industrial (ethanol) processing. Corn production costs in the US have declined by 62% over 30 years, down to 100$ 2005 /tonne in 2005, while corn production volumes almost doubled since 1975. A progress ratio (PR) of 0.55 is calculated indicating a 45% cost decline over each doubling in cumulative production. Higher corn yields and increasing farm sizes are the most important drivers behind this cost decline. Industrial processing costs of ethanol have declined by 45% since 1983, to below 130$ 2005 /m 3 in 2005 (excluding costs for corn and capital), equivalent to a PR of 0.87. Total ethanol production costs (including capital and net corn costs) have declined approximately 60% from 800$ 2005 /m 3 in the early 1980s, to 300$ 2005 /m 3 in 2005. Higher ethanol yields, lower energy use and the replacement of beverage alcohol-based production technologies have mostly contributed to this substantial cost decline. In addition, the average size of dry grind ethanol plants increased by 235% since 1990. For the future it is estimated that solely due to technological learning, production costs of ethanol may decline 28-44%, though this excludes effects of the current rising corn and fossil fuel costs. It is also concluded that experience curves are a valuable tool to describe both past and potential future cost reductions in US corn-based ethanol production

  20. Heat integrated ethanol dehydration flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van [Univ. of South Carolina, Columbia, SC (United States)

    1995-04-01

    zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essential for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.

  1. Theoretical yields of frequency converters using KDP crystals

    International Nuclear Information System (INIS)

    Adolf, A.

    1982-12-01

    Frequency conversion is operated with power lasers for their interest in laser-matter interaction. Using electromagnetic wave propagation in non linear media; computer codes for different conversion yield rate calculations have been developed. The code utilization allowed to calculate yield rates of frequency doubler and tripler using KDP (potassium dihydrogen phosphate) crystals. The calculation results are presented here [fr

  2. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.

    Science.gov (United States)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-25

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

  3. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol

    International Nuclear Information System (INIS)

    Caspeta, Luis; Caro-Bermúdez, Mario A.; Ponce-Noyola, Teresa; Martinez, Alfredo

    2014-01-01

    Highlights: • Conversion of agave bagasse to fuel ethanol. • Ethanosolv-pretreatment variables were statistically adjusted. • 91% of total sugars found in agave bagasse were recovered. • 225 g/L glucose from 30%-consistency hydrolysis using mini-reactors with peg-mixers. • 0.25 g of ethanol per g of dry agave bagasse was obtained. - Abstract: Agave bagasse is the lignocellulosic residue accumulated during the production of alcoholic beverages in Mexico and is a potential feedstock for the production of biofuels. A factorial design was used to investigate the effect of temperature, residence time and concentrations of acid and ethanol on ethanosolv pretreatment and enzymatic hydrolysis of agave bagasse. This method and the use of a stirred in-house-made mini-reactor increased the digestibility of agave bagasse from 30% observed with the dilute-acid method to 98%; also allowed reducing the quantity of enzymes used to hydrolyze samples with solid loadings of 30% w/w and glucose concentrations up to 225 g/L were obtained in the enzymatic hydrolysates. Overall this process allows the recovery of 91% of the total fermentable sugars contained in the agave bagasse (0.51 g/g) and 69% of total lignin as co-product (0.11 g/g). The maximum ethanol yield under optimal conditions using an industrial yeast strain for the fermentation was 0.25 g/g of dry agave bagasse, which is 86% of the maximum theoretical (0.29 g/g). The effect of the glucose concentration and solid loading on the conversion of cellulose to glucose is discussed, in addition to prospective production of about 50 million liters of fuel ethanol using agave bagasse residues from the tequila industry as a potential solution to the disposal problems

  4. Production of 16% ethanol from 35% sucrose

    Energy Technology Data Exchange (ETDEWEB)

    Breisha, Gaber Z. [Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia (Egypt)

    2010-08-15

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g{sup -1} of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l{sup -1} together with thiamine at a level of 0.2 g l{sup -1} led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm{sup 3} min{sup -1} m{sup 3} of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production. (author)

  5. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    DEFF Research Database (Denmark)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    .e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied...... ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to similar to 20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings....... In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble...

  6. Bio ethanol production from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Muhammad Asyraf Kasim; Nasrin Abu Bakar

    2010-01-01

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  7. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  8. Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers

    Directory of Open Access Journals (Sweden)

    Phoowit Bangrak

    2011-06-01

    Full Text Available A culture of Saccharomyces cerevisiae M30 entrapped in loofa-reinforced alginate was used for continuous ethanol fermentation in a packed-bed reactor with initial sugar concentrations of 200-248 g/L. Maximum ethanol productivity of 11.5 g/(L·h was obtained at an ethanol concentration of 57.4 g/L, an initial sugar concentration of 220 g/L and a dilution rate (D of 0.2 h-1. However, a maximum ethanol concentration of 82.1 g/L (productivity of 9.0 g/(L·h was obtained at a D of 0.11 h-1. Ethanol productivity in the continuous culture was 6-8-fold higher than that in the batch culture. Due to the developed carrier's high biocompatibility, high porosity, and good mechanical strength, advantages such as cell regeneration, reusability, altered mechanical strength, and high capacity to trap active cells in the reactor were achieved in this study. The immobilized cell reactor was successfully operated for 30 days without any loss in ethanol productivity. The average conversion yield was 0.43-0.45 throughout the entire operation, with an immobilization yield of 47.5%. The final total cell concentration in the reactor was 37.3 g/L (17.7 g/L immobilized cells and 19.6 g/L suspended cells. The concentration of suspended cells in the effluent was 0.8 g/L.

  9. Parametric study of hydrogen production from ethanol steam reforming in a membrane microreactor

    Directory of Open Access Journals (Sweden)

    M. de-Souza

    2013-06-01

    Full Text Available Microreactors are miniaturized chemical reaction systems, which contain reaction channels with characteristic dimensions in the range of 10-500 µm. One possible application for microreactors is the conversion of ethanol to hydrogen used in fuel cells to generate electricity. In this paper a rigorous isothermal, steady-state two-dimensional model was developed to simulate the behavior of a membrane microreactor based on the hydrogen yield from ethanol steam reforming. Furthermore, this membrane microreactor is compared to a membraneless microreactor. A potential advantage of the membrane microreactor is the fact that both ethanol steam reforming and the separation of hydrogen by a permselective membrane occur in one single microdevice. The simulation results for steam reforming yields are in agreement with experimental data found in the literature. The results show that the membrane microreactorpermits a hydrogen yield of up to 0.833 which is more than twice that generated by the membraneless reactor. More than 80% of the generated hydrogen permeates through the membrane and, due to its high selectivity, the membrane microreactor delivers high-purity hydrogen to the fuel cell.

  10. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide.

    Science.gov (United States)

    da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte

    2015-03-01

    The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cassava as feedstock for ethanol production in South Africa

    African Journals Online (AJOL)

    Sanette

    2013-07-31

    Jul 31, 2013 ... substitute a minimum of 2% of the country's transportation fuel with biomass based fuels. ... and fermentation (SSF) showed the highest ethanol yield and direct ... of co-immobilized yeast cells to ferment cassava starch.

  12. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  13. Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Murphy, Sean Jean-Loup; Maloney, Marybeth; Lanahan, Anthony; Giannone, Richard J; Hettich, Robert L; Tripathi, Shital A; Beldüz, Ali Osman; Lynd, Lee R; Olson, Daniel G

    2017-01-01

    With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20-31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated with an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE . We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum ; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs -type hydrogenases. Since its discovery by Shaw et al. (JAMA 191:6457-64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms ( T. xylanolyticum and T. thermosaccharolyticum ), the ethanol yields are the highest reported to date.

  14. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    Science.gov (United States)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  15. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    Directory of Open Access Journals (Sweden)

    Bondesson Pia-Maria

    2013-01-01

    Full Text Available Abstract Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min and temperature (190–210°C on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD. Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in

  16. How do ligands influence the quantum yields of cyclometalated platinum(ii) complexes, a theoretical research study.

    Science.gov (United States)

    Yang, Baozhu; Huang, Shuang; Wang, Jianhao

    2017-08-30

    A series of cyclometalated platinum(ii) complexes have been investigated with the TDDFT method. These complexes have similar structures but distinct phosphorescence quantum yields. Theoretical calculations were carried out to explain the differences in quantum yields from the conjugation effect of the cyclometalated ligand, molecular rigidity and ligand-field strength of the monodentate ligand. The radiative decay rate constants (k r ) have been discussed with the oscillator strength (f n ), the strength of the spin-orbit coupling (SOC) interaction between the lowest energy triplet excited state (T 1 ) and singlet excited states (S n ), and the energy gaps between E(T 1 ) and E(S n ). To illustrate the nonradiative decay processes, the transition states (TS) between the triplet metal-centered state ( 3 MC) and T 1 states have been optimized. In addition, the minimum energy crossing points (MECPs) between 3 MC and the ground states (S 0 ) were optimized. Finally, the potential energy curves along the nonradiative decay pathways are simulated. To obtain a phosphorescent complex with a high quantum yield, the complex should retain molecular rigidity well in the S 1 and T 1 states, while showing significant structural distortion at the MECP structure.

  17. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations.

    Science.gov (United States)

    da Cunha-Pereira, Fernanda; Hickert, Lilian Raquel; Sehnem, Nicole Teixeira; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia

    2011-03-01

    The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    Science.gov (United States)

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  19. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    Science.gov (United States)

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  20. Converting Eucalyptus biomass into ethanol: Financial and sensitivity analysis in a co-current dilute acid process. Part II

    International Nuclear Information System (INIS)

    Gonzalez, R.; Treasure, T.; Phillips, R.; Jameel, H.; Saloni, D.; Wright, J.; Abt, R.

    2011-01-01

    The technical and financial performance of high yield Eucalyptus biomass in a co-current dilute acid pretreatment followed by enzymatic hydrolysis process was simulated using WinGEMS registered and Excel registered . Average ethanol yield per dry Mg of Eucalyptus biomass was approximately 347.6 L of ethanol (with average carbohydrate content in the biomass around 66.1%) at a cost of 0.49 L -1 of ethanol, cash cost of ∝0.46 L -1 and CAPEX of 1.03 L -1 of ethanol. The main cost drivers are: biomass, enzyme, tax, fuel (gasoline), depreciation and labor. Profitability of the process is very sensitive to biomass cost, carbohydrate content (%) in biomass and enzyme cost. Biomass delivered cost was simulated and financially evaluated in Part I; here in Part II the conversion of this raw material into cellulosic ethanol using the dilute acid process is evaluated. (author)

  1. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  2. Lignocellulosic ethanol: Technology design and its impact on process efficiency.

    Science.gov (United States)

    Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel

    2015-11-01

    This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use

  3. Grain sorghum is a viable feedstock for ethanol production.

    Science.gov (United States)

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  4. Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  5. Effect of Sugar Concentration in Jerusalem Artichoke Extract on Kluyveromyces marxianus Growth and Ethanol Production

    OpenAIRE

    Margaritis, Argyrios; Bajpai, Pratima

    1983-01-01

    The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h−1 at 50 g of sugar per liter to 0.13 h−1 at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.

  6. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  7. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation.

    Science.gov (United States)

    Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai

    2009-01-01

    A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.

  8. Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty

    Directory of Open Access Journals (Sweden)

    Vicari Kristin J

    2012-04-01

    Full Text Available Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. Results We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS in the biomass slurries. Conclusions We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of

  9. Tri-fuel (diesel-biodiesel-ethanol) emulsion characterization, stability and the corrosion effect

    Science.gov (United States)

    Low, M. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    This paper presents the result of experimenting emulsified tri-fuel in term of stability, physico-chemical properties and corrosion effect on three common metals. The results were interpreted in terms of the impact of five minutes emulsification approach. Tri-fuel emulsions were varied in proportion ratio consist of biodiesel; 0%, 5%, 10%, and ethanol; 5%, 10%, 15%. Fuel characterization includes density, calorific value, flash point, and kinematic viscosity. Flash point of tri-fuel emulsion came with range catalog. Calorific value of tri-fuel emulsion appeared in declining pattern as more ethanol and biodiesel were added. Biodiesel promoted flow resistance while ethanol with opposite effect. 15% ethanol content in tri-fuel emulsion separated faster than 10% ethanol content but ethanol content with 5% yield no phase separation at all. Close cap under static immersion with various ratio of tri-fuel emulsions for over a month, corrosiveness attack was detected via weight loss technique on aluminum, stainless steel and mild steel.

  10. [Optimization of fuel ethanol production from kitchen waste by Plackett-Burman design].

    Science.gov (United States)

    Ma, Hong-Zhi; Gong, Li-Juan; Wang, Qun-Hui; Zhang, Wen-Yu; Xu, Wen-Long

    2008-05-01

    Kitchen garbage was chosen to produce ethanol through simultaneous saccharification and fermentation (SSF) by Zymomonas mobilis. Plackett-Burman design was employed to screen affecting parameters during SSF process. The parameters were divided into two parts, enzymes and nutritions. None of the nutritions added showed significant effect during the experiment, which demonstrated that the kitchen garbage could meet the requirement of the microorganism without extra supplementation. Protease and glucoamylase were determined to be affecting factors for ethanol production. Single factor experiment showed that the optimum usage of these two enzymes were both 100 U/g and the corresponding maximum ethanol was determined to be 53 g/L. The ethanol yield could be as high as 44%. The utilization of kitchen garbage to produce ethanol could reduce threaten of waste as well as improve the protein content of the spent. This method could save the ethanol production cost and benefit for the recycle of kitchen garbage.

  11. Experimental and theoretical investigation of an evaporative fuel system for heat engines

    International Nuclear Information System (INIS)

    Thern, Marcus; Lindquist, Torbjoern; Torisson, Tord

    2007-01-01

    The evaporative gas turbine (EvGT) pilot plant has been in operation at Lund University in Sweden since 1997. This project has led to improved knowledge of evaporative techniques and the concept of introducing fuel into gas turbines by evaporation. This results in, amongst others, power augmentation, efficiency increase and lower emissions. This article presents the experimental and theoretical results of the evaporation of a mixture of ethanol and water into an air stream at elevated pressures and temperatures. A theoretical model has been established for the simultaneous heat and mass transfer occurring in the ethanol humidification tower. The theoretical model has been validated through experiments at several operating conditions. It has been shown that the air, water and ethanol can be calculated throughout the column in a satisfactory way. The height of the column can be estimated within an error of 15% compared with measurements. The results from the model are most sensitive to the properties of diffusion coefficient, viscosity, thermal conductivity and activity coefficient due to the complexity of the polar gas mixture of water and air

  12. Interaction of biogenic amines with ethanol.

    Science.gov (United States)

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  13. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Directory of Open Access Journals (Sweden)

    Thelen Kurt D

    2010-06-01

    Full Text Available Abstract Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS and matured whole corn plants (WCP as feedstocks to produce ethanol using ammonia fiber expansion (AFEX pretreatment followed by enzymatic hydrolysis (at low enzyme loadings and cofermentation (for both glucose and xylose using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan. Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading CS hydrolyzate (resulting

  14. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Science.gov (United States)

    2010-01-01

    Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol

  15. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  16. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    Science.gov (United States)

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process.

    Science.gov (United States)

    Mikulski, D; Kłosowski, G; Rolbiecka, A

    2014-10-01

    Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.

  18. Ethanol production from food waste at high solids content with vacuum recovery technology.

    Science.gov (United States)

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  19. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    Science.gov (United States)

    Du, Ran; Yan, Jianbin; Feng, Quanzhou; Li, Peipei; Zhang, Lei; Chang, Sandra; Li, Shizhong

    2014-01-01

    The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  20. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    Science.gov (United States)

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  1. Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Pfromm, Peter H.; Amanor-Boadu, Vincent; Nelson, Richard; Vadlani, Praveen; Madl, Ronald

    2010-01-01

    Fermentation-derived butanol is a possible alternative to ethanol as a fungible biomass-based liquid transportation fuel. We compare the fermentation-based production of n-butanol vs. ethanol from corn or switchgrass through the liquid fuel yield in terms of the lower heating value (LHV). Industrial scale data on fermentation to n-butanol (ABE fermentation) or ethanol (yeast) establishes a baseline at this time, and puts recent advances in fermentation to butanol in perspective. A dynamic simulation demonstrates the technical, economic and policy implications. The energy yield of n-butanol is about half that of ethanol from corn or switchgrass using current ABE technology. This is a serious disadvantage for n-butanol since feedstock costs are a significant portion of the fuel price. Low yield increases n-butanol's life-cycle greenhouse gas emission for the same amount of LHV compared to ethanol. A given fermenter volume can produce only about one quarter of the LHV as n-butanol per unit time compared to ethanol. This increases capital costs. The sometimes touted advantage of n-butanol being more compatible with existing pipelines is, according to our techno-economic simulations insufficient to alter the conclusion because of the capital costs to connect plants via pipeline.

  2. 2G ethanol from the whole sugarcane lignocellulosic biomass.

    Science.gov (United States)

    Pereira, Sandra Cerqueira; Maehara, Larissa; Machado, Cristina Maria Monteiro; Farinas, Cristiane Sanchez

    2015-01-01

    In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and tops) from commercial sugarcane varieties for the production of 2G ethanol. In addition, the feasibility of using a mixture of these residues from a selected variety was also investigated. The materials were pretreated with dilute acid and hydrolyzed with a commercial enzymatic preparation, after which the hydrolysates were fermented using an industrial strain of Saccharomyces cerevisiae. The susceptibility to enzymatic saccharification was higher for the tops, followed by straw and bagasse. Interestingly, the fermentability of the hydrolysates showed a different profile, with straw achieving the highest ethanol yields, followed by tops and bagasse. Using a mixture of the different sugarcane parts (bagasse-straw-tops, 1:1:1, in a dry-weight basis), it was possible to achieve a 55% higher enzymatic conversion and a 25% higher ethanol yield, compared to use of the bagasse alone. For the four commercial sugarcane varieties evaluated using the same experimental set of conditions, it was found that the variety of sugarcane was not a significant factor in the 2G ethanol production process. Assessment of use of the whole lignocellulosic sugarcane biomass clearly showed that 2G ethanol production could be significantly improved by the combined use of bagasse, straw, and tops, when compared to the use of bagasse alone. The lower susceptibility to saccharification of sugarcane bagasse, as well as the lower fermentability of its hydrolysates, can be compensated by using it in combination with straw

  3. Energy and greenhouse gas balances of cassava-based ethanol

    International Nuclear Information System (INIS)

    Le, Loan T.; Ierland, Ekko C. van; Zhu, Xueqin; Wesseler, Justus

    2013-01-01

    Biofuel production has been promoted to save fossil fuels and reduce greenhouse gas (GHG) emissions. However, there have been concerns about the potential of biofuel to improve energy efficiency and mitigate climate change. This paper investigates energy efficiency and GHG emission saving of cassava-based ethanol as energy for transportation. Energy and GHG balances are calculated for a functional unit of 1 km of road transportation using life-cycle assessment and considering effects of land use change (LUC). Based on a case study in Vietnam, the results show that the energy input for and GHG emissions from ethanol production are 0.93 MJ and 34.95 g carbon dioxide equivalent per megajoule of ethanol respectively. The use of E5 and E10 as a substitute for gasoline results in energy savings, provided that their fuel consumption in terms of liter per kilometer of transportation is not exceeding the consumption of gasoline per kilometer by more than 2.4% and 4.5% respectively. It will reduce GHG emissions, provided that the fuel consumption of E5 and E10 is not exceeding the consumption of gasoline per kilometer by more than 3.8% and 7.8% respectively. The quantitative effects depend on the efficiency in production and on the fuel efficiency of E5 and E10. The variations in results of energy input and GHG emissions in the ethanol production among studies are due to differences in coverage of effects of LUC, CO 2 photosynthesis of cassava, yields of cassava, energy efficiency in farming, and by-product analyses. -- Highlights: ► Cassava-based ethanol substitution for gasoline in form of E5 could save 1.4 MJ km −1 ► Ethanol substitution for gasoline in form of E5 reduces a CO 2 e emission of 156 g km −1 ► We examined changes in fuel efficiency of blends affecting energy and GHG balances. ► LUC and change in soil management lead to a CO 2 e emission of 942 g L −1 of ethanol. ► LUC effects, energy inputs, yields, and by-products explain results among

  4. A CORN STEM AS BIOMATERIAL FOR SACCHAROMYCES CEREVISIAE CELLS IMMOBILIZATION FOR THE ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Vesna Vučurović

    2008-11-01

    Full Text Available This study provides a preliminary contribution to the development of a bioprocess for the production of ethanol using Saccharomyces cerevisiae cells immobilized onto a corn stem. For this purpose, the yeast cells were submitted to the batch tests in situ adsorption onto 0.5 cm long corn stem. Cells immobilization was analyzed by optical microscopy. The number of the yeast cells, fermentation kinetics, the ethanol yield in the presence or the absence of the support in the fermentation medium was investigated. It was determined that the addition of the corn stem led to the abrupt increase of the yeast cells number in substrate, ethanol yield, pH value, a total dissolved salts content and substrate conductivity. The addition of 5 and 10g of the corn stem pith per liter of the medium decreased the amount of residual sugar. The results indicate that a corn stem might be a good carrier for the yeast cell immobilization, and also a cheap alternative recourse of mineral components with the possibility of application for improving ethanol productivities.

  5. Fate of Fumonisin B1 in Naturally Contaminated Corn during Ethanol Fermentation

    Science.gov (United States)

    Bothast, R. J.; Bennett, G. A.; Vancauwenberge, J. E.; Richard, J. L.

    1992-01-01

    Two lots of corn naturally contaminated with fumonisin B1 (15 and 36 ppm) and a control lot (no fumonisin B1 detected) were used as substrates for ethanol production in replicate 8.5-liter yeast fermentations. Ethanol yields were 8.8% for both the control and low-fumonisin corn, while the high-fumonisin corn contained less starch and produced 7.2% ethanol. Little degradation of fumonisin occurred during fermentation, and most was recovered in the distillers' grains, thin stillage, and distillers' solubles fractions. No toxin was detected in the distilled alcohol or centrifuge solids. Ethanol fermentation of fumonisin-contaminated corn coupled with effective detoxification of distillers' grains and aqueous stillage is suggested as a practical process strategy for salvaging contaminated corn. PMID:16348623

  6. Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue.

    Science.gov (United States)

    He, Jianlong; Zhang, Wenbo; Liu, Xiaoyan; Xu, Ning; Xiong, Peng

    2016-11-01

    Ethanol is a very important industrial chemical. In order to improve ethanol productivity using Saccharomyces cerevisiae in fermentation from furfural process residue, we developed a process of simultaneous saccharification and fermentation (SSF) of furfural process residue, optimizing prehydrolysis cellulase loading concentration, prehydrolysis time, and substrate feeding strategy. The ethanol concentration obtained from the optimized process was 19.3 g/L, corresponding 76.5% ethanol yield, achieved by running SSF for 48 h from 10% furfural process residue with prehydrolysis at 50°C for 4 h and cellulase loading of 15 FPU/g furfural process residue. For higher ethanol concentrations, fed-batch fermentation was performed. The optimized fed-batch process increased the ethanol concentration to 37.6 g/L, 74.5% yield, obtained from 10% furfural process residue with two additions of 5% substrate at 12 and 24 h. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Transformation of Starchy Lignocellulosic Biomass to Ethanol using Ragi Tapai Synergized with Microwave Irradiation Pretreatment

    Directory of Open Access Journals (Sweden)

    Kok Cheang Diong

    2016-01-01

    Full Text Available Ethanol production strategy was studied using multiple strain microbes from microwave irradiation (MI pretreated sago waste. Sago waste (SW was MI-pretreated for reducing sugars production using 2 heating media (water and sulfuric acid under pretreatment conditions including MI power, pretreatment duration, and solid loading. When water was used, the pretreatment parameters were optimized using Box-Behnken Design (BBD. However, gelatinized starch and charring of SW led to an insignificant quadratic model. To mitigate the gelatinization problem while determining the best MI pretreatment conditions, water was substituted by sulfuric acid using single factor method. The highest reducing sugar yield of 261.5 mg/g SW was achieved at 7.5% solid loading, 6 min pretreatment duration, and 300 W MI power. The effectiveness of the pretreatment was ascertained by field-emission scanning electron microscopy (FESEM and chemical-composition analysis. When fermenting MI-pretreated SW using ragi tapai, simultaneous saccharification of starch and ethanol production was evidenced from the sugar/ethanol profile. A resulted yield of 7.24 g ethanol/100 g SW confirmed the fermentability of MI-pretreated SW. The ethanol production was well fitted into the modified Gompertz model.

  8. Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase

    International Nuclear Information System (INIS)

    Ma, Hong-zhi; Xing, Yi; Yu, Miao; Wang, Qunhui

    2014-01-01

    Highlights: • Residue lactic acid in food waste could be converted to pyruvic acid. • Calcium alginate immobilized the lactate oxidase with high pH and thermal stability. • Immobilized enzyme could convert 70% lactic acid to pyruvic acid. • Ethanol yield could be increased by 20% with lactate oxidase added. - Abstract: Adoption of lactic acid bacteria (LAB) into ethanol fermentation from food waste can replace the sterilization process. However, LAB inoculation will convert part of the substrate into lactic acid (LA), not ethanol. This study adopted lactate oxidase to convert the produced LA to pyruvate, and then ethanol fermentation was carried out. The immobilization enzyme was utilized, and corresponding optimum conditions were determined. Results showed that calcium alginate could successfully immobilize the enzyme and improve pH and thermal stability. The optimum pH and temperature were 6.2 and 55 °C, respectively. The utilization of immobilized enzyme with catalytic time of 5 h could convert 70% LA to pyruvate, and the addition of enzyme increased the ethanol yield by 20% more than that of the control. The process could be applied in food waste storage and can help in reducing carbon source consumption

  9. Cellulosic ethanol. Potential, technology and development status

    Energy Technology Data Exchange (ETDEWEB)

    Rarbach, M. [Sued-Chemie AG, Muenchen (Germany)

    2012-07-01

    In times of rising oil prices and a growing energy demand, sustainable alternative energy sources are needed. Cellulosic ethanol is a sustainable biofuel, made from lignocellulosic feedstock such as agricultural residues (corn stover, cereal straw, bagasse) or dedicated energy crops. Its production is almost carbon neutral, doesn't compete with food or feed production and induces no land use changes. It constitutes a new energy source using an already existing renewable feedstock without needing any further production capacity and can thus play a major role on the way to more sustainability in transport and the chemical industry and reducing the dependence on the import of fossil resources. The potential for cellulosic ethanol is huge: In the US, the annual production of agricultural residues (cereal straw and corn stover) reached almost 384 million tons in 2009 and Brazil alone produced more than 670 million tons of sugar cane in 2009 yielding more than 100 million tons of bagasse (dry basis). And alone in the European Union, almost 300 million tons of crop straw are produced annually. The last years have seen success in the development and deployment in the field of cellulosic ethanol production. The main challenge thereby remains to demonstrate that the technology is economically feasible for the up-scaling to industrial scale. Clariant has developed the sunliquid {sup registered} process, a proprietary cellulosic ethanol technology that reaches highest greenhouse gas (GHG) emission savings while cutting production costs to a minimum. The sunliquid {sup registered} process for cellulosic ethanol matches the ambitious targets for economically and ecologically sustainable production and greenhouse gas reduction. It was developed using an integrated design concept. Highly optimized, feedstock and process specific biocatalysts and microorganisms ensure a highly efficient process with improved yields and feedstock-driven production costs. Integrated, on

  10. Net energy value of maize ethanol as a response to different climate and soil conditions in the southeastern USA

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas; Garcia y Garcia, Axel; Paz, Joel O.; Hoogenboom, Gerrit [Department of Biological and Agricultural Engineering, 1109 Experiment Street, The University of Georgia, Griffin, GA 30223 (United States); Jones, James W. [Department of Agricultural and Biological Engineering, Frazier Rogers Hall, University of Florida, Gainesville, FL 32611 (United States)

    2009-08-15

    A recent increase in the demand for bio-ethanol has sparked maize production in the USA and other countries across the world. The net energy value (NEV), i.e. the energy output in ethanol and co-products after accounting for energy input requirements in the production chain of ethanol, is a measure of its sustainability. Grain yield of maize, which varies substantially across different climate and soil conditions, greatly impacts the ethanol NEV. The objectives of this study were to determine i) the NEV of ethanol produced from maize grown in four production regions in the southeastern USA and, ii) the specific impact of local soil variability under the same climate conditions within the four regions on the NEV of maize-ethanol. Maize yield was simulated with the Cropping System Model (CSM)-CERES-Maize model for soil and weather conditions, and management practices representing Bulloch, Floyd, Laurens and Mitchell counties, Georgia, USA. The calculation of ethanol NEV took into account the energy inputs and outputs of the entire ethanol production chain, and was based on the crop simulations. There were statistically significant differences in ethanol NEV among the counties, and within counties due to local soil variability. Differences in ethanol NEV among counties were partially due to different transportation distances. Based on the results of this study, it was concluded that maize-ethanol NEV can be increased by accounting for the soil and climate factors in the feedstock production and by locating ethanol-processing facilities in regions with soil and climate conditions that are favorable for ethanol-maize production. (author)

  11. Bioconversion of potatoes residues or surplus potatoes to ethanol under non axenic conditions [abstract

    Directory of Open Access Journals (Sweden)

    Lamaudière, S.

    2010-01-01

    Full Text Available Biofuels can offer an alternative to fossil fuels in the context of climate change and fossil reserves depletion. With 3 million tons of potatoes produced in 2007 and a high yield per hectare of 47 tons, Belgium is the 19th largest producer in the world. The residual and surplus potatoes could be used to produce bioethanol by fermentation. We examined the feasibility of a simple ethanol fermentation process under non axenic conditions. The substrate was pretreated with commercial amylases or by adding as low as 10% FM (Fresh Matter barley malt. It was then fermented with Saccharomyces cerevisiae. Ethanol and volatile fatty acids were analyzed by GC-FID and soluble sugars were analyzed with the Anthrone method. Starch from potatoes was hydrolyzed to soluble sugars. Hydrolysis seems to continue with 10% FM of barley malt after 48 h while the hydrolysis stopped or decelerated with commercial enzymes. With 10% FM of malt, 3 h of hydrolysis and 7 days of fermentation, an ethanol concentration of 42 g.l-1 was obtained and the conversion yield was 139 gethanol.kg-1 DM. The fermentation conversion yield of soluble sugars to ethanol was > 82% and the endogenous competition was limited. However, starch hydrolyzing seems to be a limiting step under the conditions tested. Commercial enzymes did not provide better results under the same conditions.

  12. Enhanced ethanol and glucosamine production from rice husk by NAOH pretreatment and fermentation by fungus Mucor hiemalis

    Directory of Open Access Journals (Sweden)

    Maryam Omidvar

    2016-09-01

    Full Text Available Ethanol production from rice husk by simultaneous saccharification and fermentation using Mucor hiemalis was investigated. To reach the maximum ethanol production yield, the most important influencing factors in the pretreatment process, including temperature (0-100°C, NaOH concentration (1-3 M, and the pretreatment time (30-180 min, were optimized using an experimental design by a response surface methodology (RSM. The maximum ethanol production yield of 86.7 % was obtained after fungal cultivation on the husk pretreated with 2.6 M NaOH at 67°C for 150 min. This was higher than the yield of 57.7% obtained using Saccharomyces cerevisiae as control. Furthermore, fermentation using M. hiemalis under the optimum conditions led to the production of a highly valuable fungal biomass, containing 60 g glucosamine (GlcN, 410 g protein, and 160 g fungal oil per each kg of the fungal biomass.

  13. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor.

    Science.gov (United States)

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam

    2016-05-01

    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.

  14. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    International Nuclear Information System (INIS)

    Crago, Christine L.; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO 2 is needed to affect competitiveness. (author)

  15. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation

    International Nuclear Information System (INIS)

    Marx, Sanette; Ndaba, Busiswa; Chiyanzu, Idan; Schabort, Corneels

    2014-01-01

    Sweet sorghum is a hardy crop that can be grown on marginal land and can provide both food and energy in an integrated food and energy system. Lignocellulose rich sweet sorghum bagasse (solid left over after starch and juice extraction) can be converted to bioethanol using a variety of technologies. The largest barrier to commercial production of fuel ethanol from lignocellulosic material remains the high processing costs associated with enzymatic hydrolysis and the use of acids and bases in the pretreatment step. In this paper, sweet sorghum bagasse was pretreated and hydrolysed in a single step using microwave irradiation. A total sugar yield of 820 g kg −1 was obtained in a 50 g kg −1 sulphuric acid solution in water, with a power input of 43.2 kJ g −1 of dry biomass (i.e. 20 min at 180 W power setting). An ethanol yield based on total sugar of 480 g kg −1 was obtained after 24 h of fermentation using a mixed culture of organisms. These results show the potential for producing as much as 0.252 m 3  tonne −1 or 33 m 3  ha −1 ethanol using only the lignocellulose part of the stalks, which is high enough to make the process economically attractive. - Highlights: • Different sweet sorghum cultivars were harvested at 3 and 6 months. • Sweet sorghum bagasse was converted to ethanol. • Microwave pretreatment and hydrolysis was done in a single step. • Sugar rich hydrolysates were converted to ethanol using co-fermentation

  16. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-12-03

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.

  17. Theoretical investigations on the high light yield of the LuI3:Ce scintillator

    International Nuclear Information System (INIS)

    Vasil'ev, A.N.; Iskandarova, I.M.; Scherbinin, A.V.; Markov, I.A.; Bagatur'yants, A.A.; Potapkin, B.V.; Srivastava, A.M.; Vartuli, J.S.; Duclos, S.J.

    2009-01-01

    The extremely high scintillation efficiency of lutetium iodide doped by cerium is explained as a result of at least three factors controlling the energy transfer from the host matrix to activator. We propose and theoretically validate the possibility of a new channel of energy transfer to excitons and directly to cerium, namely the Auger process when Lu 4f hole relaxes to the valence band hole with simultaneous creation of additional exciton or excitation of cerium. This process should be efficient in LuI 3 , and inefficient in LuCl 3 . To justify this channel, we perform calculations of density of states using a periodic plane-wave density functional approach. The second factor is the increase of the efficiency of valence hole capture by cerium in the row LuCl 3 -LuBr 3 -LuI 3 . The third one is the increase of the efficiency of energy transfer from self-trapped excitons to cerium ions in the same row. The latter two factors are verified by cluster ab initio calculations. We estimate either the relaxation of these excitations and barriers for the diffusion of self-trapped holes (STH) and self-trapped exciton (STE). The performed estimations theoretically justify the high LuI 3 :Ce 3+ scintillator yield.

  18. Ultrasonic pretreatment for enhanced saccharification and fermentation of ethanol production from corn

    Science.gov (United States)

    Montalbo-Lomboy, Melissa T.

    sonicated samples in terms of ethanol conversion based on theoretical yield. Furthermore, statistical analysis confirmed that there was no significant difference (pcost of installing ultrasonics was higher compared to jet cooker equipment. However, due to the energy needs of jet cooking, a typical 189 million liters (50 million gallon) per year ethanol plant ethanol plant would save about 16% in pretreatment cost by using ultrasonics. Based on these results, ultrasonication is a promising pretreatment method in corn ethanol production, as an alternative to jet cooking.

  19. The state of autotrophic ethanol production in Cyanobacteria.

    Science.gov (United States)

    Dexter, J; Armshaw, P; Sheahan, C; Pembroke, J T

    2015-07-01

    Ethanol production directly from CO2 , utilizing genetically engineered photosynthetic cyanobacteria as a biocatalyst, offers significant potential as a renewable and sustainable source of biofuel. Despite the current absence of a commercially successful production system, significant resources have been deployed to realize this goal. Utilizing the pyruvate decarboxylase from Zymomonas species, metabolically derived pyruvate can be converted to ethanol. This review of both peer-reviewed and patent literature focuses on the genetic modifications utilized for metabolic engineering and the resultant effect on ethanol yield. Gene dosage, induced expression and cassette optimizat-ion have been analyzed to optimize production, with production rates of 0·1-0·5 g L(-1) day(-1) being achieved. The current 'toolbox' of molecular manipulations and future directions focusing on applicability, addressing the primary challenges facing commercialization of cyanobacterial technologies are discussed. © 2015 The Society for Applied Microbiology.

  20. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  1. Enhanced Ethanol and Biogas Production from Pinewood by NMMO Pretreatment and Detailed Biomass Analysis

    Directory of Open Access Journals (Sweden)

    Marzieh Shafiei

    2014-01-01

    Full Text Available N-Methyl morpholine-N-oxide (NMMO is an environmentally friendly and commercially applied cellulose solvent that is suggested for pretreatment of lignocelluloses to improve biofuel productions. However, the underlying mechanisms of the improvements have been poorly understood yet. In an attempt to investigate the mechanisms, pinewood powder and chips were pretreated with 85% (w/w NMMO at 120°C for 1–15 h. The pretreatment improved ethanol production yield from 7.2% (g/g for the untreated wood powder to 68.1–86.1% (g/g and from 1.7% (g/g for the untreated wood chips to 12.6–51.2% (g/g of theoretical yield. Similarly, the biogas yields of untreated wood chips and powder were improved from 21 and 66 (mL/g volatile solids by 3.5–6.8- and 2.6–3.4-folds, respectively. SEM micrographs indicated major increase in the wood porosity by the pretreatment, which would confirm increase in the water swelling capacity as well as enzyme adsorption. The analysis of X-ray diffraction showed considerable reduction in the cellulose crystallinity by the pretreatment, while FTIR spectroscopy results indicated reduction of lignin on the wood surface by the pretreatment.

  2. Evaluation of fresh and preserved herbaceous field crops for biogas and ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, A

    2012-07-01

    In the future, various forms of bioenergy will be increasingly required to replace fossil energy. Globally, transportation uses almost one third of fossil energy resources, and it is thus of great importance to find ethically, economically, and environmentally viable biofuels in near future. Fieldgrown biomass, including energy crops and crop residues, are alternatives to supplement other non-food biofuel raw materials. The aim of this work was to evaluate the potential of five crops, maize (Zea mays L.), fiber hemp (Cannabis sativa L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), and Jerusalem artichoke (Heliantus tuborosus L.) cultivated in boreal conditions as raw materials for methane and ethanol. Climate, cultivation requirements, chemical composition, and recalcitrance are some of the parameters to be considered when choosing energy crops for cultivation and for efficient conversion into biofuels. Among the studied crops, protein-rich legumes (faba bean and white lupin) were attractive options for methane, while hemp and Jerusalem artichoke had high theoretical potential for ethanol. Maize was, however, equally suitable for production of both energy carriers. Preservation of crop materials is essential to preserve and supply biomass material throughout the year. Preservation can be also considered as a mild pretreatment prior to biofuel production. Ensiling was conducted on maize, hemp, and faba bean in this work and additionally hemp was preserved in alkali conditions. Ensiling was found to be most beneficial for hemp when converted to methane, increasing the methane yield by more than 50%, whereas preservation with urea increased the energy yield of hemp as ethanol by 39%. Maize, with a high content of water-soluble carbohydrates (20% of DM), required an acid additive in order to preserve the sugars. Interestingly, hydrothermal pretreatment for maize and hemp prior to methane production was less efficient than ensiling. Enzymatic hydrolysis

  3. Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques.

    Science.gov (United States)

    Corsetti, Stella; Miles, Rachael E H; McDonald, Craig; Belotti, Yuri; Reid, Jonathan P; Kiefer, Johannes; McGloin, David

    2015-12-24

    Using blends of bioethanol and gasoline as automotive fuel leads to a net decrease in the production of harmful emission compared to the use of pure fossil fuel. However, fuel droplet evaporation dynamics change depending on the mixing ratio. Here we use single particle manipulation techniques to study the evaporation dynamics of ethanol/gasoline blend microdroplets. The use of an electrodynamic balance enables measurements of the evaporation of individual droplets in a controlled environment, while optical tweezers facilitate studies of the behavior of droplets inside a spray. Hence, the combination of both methods is perfectly suited to obtain a complete picture of the evaporation process. The influence of adding varied amounts of ethanol to gasoline is investigated, and we observe that droplets with a greater fraction of ethanol take longer to evaporate. Furthermore, we find that our methods are sensitive enough to observe the presence of trace amounts of water in the droplets. A theoretical model, predicting the evaporation of ethanol and gasoline droplets in dry nitrogen gas, is used to explain the experimental results. Also a theoretical estimation of the saturation of the environment, with other aerosols, in the tweezers is carried out.

  4. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    Science.gov (United States)

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

  5. Determination of the efficiency of ethanol oxidation in a proton exchange membrane electrolysis cell

    Science.gov (United States)

    Altarawneh, Rakan M.; Majidi, Pasha; Pickup, Peter G.

    2017-05-01

    Products and residual ethanol in the anode and cathode exhausts of an ethanol electrolysis cell (EEC) have been analyzed by proton NMR and infrared spectrometry under a variety of operating conditions. This provides a full accounting of the fate of ethanol entering the cell, including the stoichiometry of the ethanol oxidation reaction (i.e. the average number of electrons transferred per ethanol molecule), product distribution and the crossover of ethanol and products through the membrane. The reaction stoichiometry (nav) is the key parameter that determines the faradaic efficiency of both EECs and direct ethanol fuel cells. Values determined independently from the product distribution, amount of ethanol consumed, and a simple electrochemical method based on the dependence of the current on the flow rate of the ethanol solution are compared. It is shown that the electrochemical method yields results that are consistent with those based on the product distribution, and based on the consumption of ethanol when crossover is accounted for. Since quantitative analysis of the cathode exhaust is challenging, the electrochemical method provides a valuable alternative for routine determination of nav, and hence the faradaic efficiency of the cell.

  6. Lever conditioned stimulus-directed autoshaping induced by saccharin-ethanol unconditioned stimulus solution: effects of ethanol concentration and trial spacing.

    Science.gov (United States)

    Tomie, Arthur; Festa, Eugene D; Sparta, Dennis R; Pohorecky, Larissa A

    2003-05-01

    Two experiments were designed to evaluate whether brief access to a saccharin-ethanol solution would function as an effective unconditioned stimulus (US) in Pavlovian-autoshaping procedures. In these experiments, the insertion of a lever conditioned stimulus (CS) was followed by the brief presentation of a sipper tube containing saccharin-ethanol US solution. Experience with this Pavlovian-autoshaping procedure engendered lever CS-directed autoshaping conditioned responses (CRs) in all rats. In Experiment 1, the concentration of ethanol [0%, 2%, 4%, 6%, or 8% (vol./vol.)] in 0.1% saccharin was systematically increased within subjects across autoshaping sessions to evaluate the relation between a rat's drinking and lever pressing. In Experiment 2, the mean intertrial interval (ITI) duration (60, 90, 120 s) was systematically increased within subjects across autoshaping sessions to evaluate the effect of ITI duration on drinking and lever pressing. A pseudoconditioning control group received lever CS randomly with respect to the saccharin-ethanol US solution. In Experiment 1, lever-press autoshaping CRs developed in all rats, and the tendency of a rat to drink an ethanol concentration was predictive of the performance of lever-press autoshaping CRs. In Experiment 2, longer ITIs induced more lever CS-directed responding, and CS-US paired procedures yielded more lever CS-directed responding than that observed in CS-US random procedures. Saccharin-ethanol is an effective US in Pavlovian-autoshaping procedures, inducing more CS-directed responding than in pseudoconditioning controls receiving CS-US random procedures. More lever CS-directed responding was observed when there was more drinking of the saccharin-ethanol US solution (Experiment 1); when the CS and US were paired, rather than random (Experiment 2); and with longer mean ITI durations (Experiment 2). This pattern of results is consistent with the hypothesis that lever CS-directed responding reflects performance

  7. Improved performance of a shielded torch using ethanol in inductively coupled plasma–sector field mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tao [State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 (China); Hu, Zhaochu, E-mail: zchu@vip.sina.com [State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 (China); Liu, Shenghua [Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061 (China); Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong [State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 (China)

    2015-04-01

    To improve the accuracy and precision of trace element analysis, higher analytical sensitivity and lower interference are required. In this study, we investigated the effects of the addition of ethanol in combination with a shielded torch on the signal intensities of elements from {sup 7}Li to {sup 238}U, oxide yields, doubly charged ion yields, isobaric interferences and ion distributions in inductively coupled plasma–sector field mass spectrometry (ICP–SFMS). For the 39 investigated elements in this study, using the shielded torch increases the sensitivity by a factor of 17–58. The well-known drawback of using a shielded torch is that it will increase the oxide yield. In this study, the CeO{sup +}/Ce{sup +} ratio is increased by a factor of 3.3 in the GE-on mode compared to that in the GE-off mode at normal conditions (without ethanol). In the GE-on mode, the addition of 4% ethanol in ICP–SFMS is found not only to decrease the CeO{sup +}/Ce{sup +} ratio by a factor of 4 but also to suppress the Ce{sup 2+}/Ce{sup +} ratio by a factor of 4.2. In large contrast, the effect of 2–6% ethanol on the oxide yield and doubly charged ratio is minimal in the GE-off mode. Except for As, Se, Sb, Te and Au, for which the signal intensities are increased by a factor of 1.4–3.7 in the presence of 2–6% ethanol, an increased concentration of ethanol suppresses intensities of other elements. In the GE-off mode, the suppression of the analyte signal due to increased ethanol concentration is more significant than that in the GE-on mode. Compared to the spatial profiles of the ion distributions in the normal mode (without ethanol), the addition of 2–4% ethanol leads to significantly wider axial and radial profiles. The significantly wider axial and radial ion distribution had a dilution effect on the ion densities, which subsequently reduced the ion signal intensities. The addition of 4% ethanol was also found to suppress the interferences of Xe by a factor of 2.8 and

  8. Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-xiang; Tang, Qing-li; Zhu, Zuo-hua [School of Chemical Engineering, Guizhou University, Guizhou, Guiyang 550003 (China); Wang, Feng [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15

    Ethanol production from Canna edulis Ker was successfully carried out by solid state simultaneous saccharification and fermentation. The enzymatic hydrolysis conditions of C. edulis were optimized by Plackett-Burman design. The effect of inert carrier (corncob and rice bran) on ethanol fermentation and the kinetics of solid state simultaneous saccharification and fermentation was investigated. It was found that C. edulis was an alternative substrate for ethanol production, 10.1% (v/v) of ethanol concentration can attained when 40 g corncob and 10 g rice bran per 100 g C. edulis powder were added for ethanol fermentation. No shortage of fermentable sugars was observed during solid state simultaneous saccharification and fermentation. There was no wastewater produced in the process of ethanol production from C. edulis with solid state simultaneous saccharification and fermentation and the ethanol yield of more than 0.28 tonne per one tonne feedstock was achieved. This is first report for ethanol production from C. edulis powder. (author)

  9. Jerusalem artichoke as a platform for inulin, ethanol and feed production in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Anyia, A.O.; Mostafa, H.; Melnichuk, R.; Slaski, J.J. [Alberta Research Council, Vegreville, AB (Canada). Bioresource Technologies Unit

    2009-07-01

    The Alberta Research Council (ARC) is developing an extraction and fermentation process for making ethanol from Jerusalem artichoke (JA). In particular, ARC has collaborated with Olds College in developing an extraction process and an engineering process for the commercial production of inulin, ethanol, polymers and animal feed from JA tubers. Fresh JA tubers contain about 20 per cent of water soluble carbohydrates, which occur primarily in the form of inulin. Several health promoting benefits are associated with intake of inulin. High volumes of dry residual aerial biomass following tuber harvest contain 40 to 50 per cent water soluble carbohydrates that are fermentable to ethanol. Some studies have shown that under optimal climatic conditions, JA can yield more ethanol per ha than sugarcane. ARC has the exclusive North American rights to several high yielding JA cultivars. Jerusalem artichoke is not a designated food crop and has a high biomass yield for soluble sugars. This perennial crop forms tubers, has a deep root system that can be adapted to marginal lands. ARC's research involves a seed to final product technology development approach that includes new variety development, agronomy and processing. ARC applied a hot water extraction technique along with a low liquid to JA stalk ratio to achieve more than 40 per cent total water soluble carbohydrates per gram of biomass that are fermentable to ethanol without the need for weak acid or enzymatic hydrolysis. A 400 hectare plantation of JA in Alberta could produce about 1,500 tonnes of inulin and 1.5 million liters of ethanol per year in a pilot scale bio-refining plant. An economic and market analysis showed that capital investments in an inulin production plant in Alberta will be a profitable venture. ARC has estimated a 5 year Internal Rate of Return (IRR) to range from 10 to 30 per cent and payback period of 4 to 5 years depending on plant location and value of by-products. tabs., figs.

  10. Material and energy balances in the production of ethanol from wood

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, M; Lora, J H; Gulbinas, E

    1978-01-01

    Experimental production of ethanol from aspen wood gave yeilds of 70.7% or 83.4% or theory when acid hydrolysis or enzymatic hydrolysis weere used after autohydrolysis and extraction of lignin. These were, respectively, 58.4 and 68.9 gallons of 95% ethanol per ton of aspen wood (dry basis). In addition 426 lb of lignin with heat of combustion 11,100 Btu/lb were obtained per ton of wood. Gross energy recovery (ethanol + lignin) was 52.4 and 58.0% by thee two processes, or allowing for processing energy, net energy recovery was 36.1 and 42.3% respectively. Multi stage hydrolysis was beneficial for both acid and enzymatic hydrolysis, 80% and over 99% of theoretical yeilds of sugar being obtained by the two processes. Economic estimates show a significant advantage in investment and operating costs for the enzymatic process. Thee price of 95% ethanol, including a reasonable return on investment by this process is estimated at $1.34/gallon. This would be a good price for industrial ethanol, but would be quite high for gasoline use under prevailing circumstance.

  11. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    Science.gov (United States)

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  12. Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions

    Directory of Open Access Journals (Sweden)

    Liu Chen-Guang

    2012-08-01

    Full Text Available Abstract Background Very high gravity (VHG fermentation using medium in excess of 250 g/L sugars for more than 15% (v ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. Results Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at −100 mV, ethanol fermentation with the high gravity (HG media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at −150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. Conclusions No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at −150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG

  13. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48.

    Science.gov (United States)

    Huang, Jun; Chen, Dong; Wei, Yutuo; Wang, Qingyan; Li, Zhenchong; Chen, Ying; Huang, Ribo

    2014-01-01

    Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing.

  14. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature

    International Nuclear Information System (INIS)

    Huang, Rui; Cheng, Jun; Qiu, Yi; Li, Tao; Zhou, Junhu; Cen, Kefa

    2015-01-01

    Highlights: • Ethanol and isopropanol were used for transesterification in wet microalgae cell. • Decreased droplet size and polarity of lipid were observed after transesterification. • Ethanol and isopropanol dosage needed for 95% FAAE yield were 75% of methanol dosage. • Crystallization temperature of crude biodiesel decreased from 2.08 °C to −3.15 °C. - Abstract: Renewable ethanol and isopropanol were employed for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature and reduce the alcohol volume needed for biodiesel production. Decreased droplet size and lipid polarity were observed after transesterification with alcohol in microalgae cells. Such decrease was beneficial in extracting lipid from microalgae with apolar hexane. The effects of reaction temperature, reaction time, and alcohol volume on microwave-assisted transesterification with ethanol and isopropanol were investigated, and results were compared with those with methanol. Microwave-assisted transesterification with ethanol and isopropanol, which were more miscible with lipid in cells, resulted in higher fatty acid alkyl ester (FAAE) yields than that with methanol when the reaction temperature was lower than 90 °C. The ethanol and isopropanol volumes in the transesterification with 95% FAAE yield were only 75% of the methanol volume. The crystallization temperatures (0.19 °C and −3.15 °C) of biodiesels produced from wet microalgae through lipid transesterification in cells with ethanol and isopropanol were lower than that with methanol (2.08 °C), which was favorable for biodiesel flow in cold districts and winter.

  15. DESIGN AND CONSTRUCTION OF A REFLUX COLUMN DISTILLATION UNIT FOR BIO-ETHANOL PRODUCTION FROM SUGARCANE SUBSTRATE

    Directory of Open Access Journals (Sweden)

    J. O. Olaoye

    2011-06-01

    Full Text Available A bio-ethanol distilling tank was designed and constructed to distil ethanol from sugarcane substrate. The machine has a capacity to process 200 litres of substrate at full load of the boiler. The distiller has mlntemalReflux Still Condenser (IRSC that controls the internal re-distillation process and the separation of the final output. The column diameter was 40 mm. An anaerobic fermentation of substrate was adopted before distillation could be carried out. The fermented substrate was adjusted to an optimum pH level value of 4-5 by addition of 0.1 M HjSQ, and the optimum temperature was within the temperature range of 29-38°C. A charcoal pot was used as heat source. The results of the machine evaluation showed that optimum yield occurred at 0.0325 ratio of substrate to ethanol yield. An average distilled product of 2.1 litres was obtained at highest ratio of substrate to ethanol yield of 0.033 when the distillation time was 45 minutes. The total distilled products after 1XA hours of distillation was estimated at 4.25 litres. It was observed that the fermentation and distillation processes were done in situ, and could definitely affect clear separation of the fermentable portion of the fermented sugar solution.

  16. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    Science.gov (United States)

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ethylphenidate as a selective dopaminergic agonist and methylphenidate-ethanol transesterification biomarker.

    Science.gov (United States)

    Patrick, Kennerly S; Corbin, Timothy R; Murphy, Cristina E

    2014-12-01

    We review the pharmaceutical science of ethylphenidate (EPH) in the contexts of drug discovery, drug interactions, biomarker for dl-methylphenidate (MPH)-ethanol exposure, potentiation of dl-MPH abuse liability, contemporary "designer drug," pertinence to the newer transdermal and chiral switch MPH formulations, as well as problematic internal standard. d-EPH selectively targets the dopamine transporter, whereas d-MPH exhibits equipotent actions at dopamine and norepinephrine transporters. This selectivity carries implications for the advancement of tailored attention-deficit/hyperactivity disorder (ADHD) pharmacotherapy in the era of genome-based diagnostics. Abuse of dl-MPH often involves ethanol coabuse. Carboxylesterase 1 enantioselectively transesterifies l-MPH with ethanol to yield l-EPH accompanied by significantly increased early exposure to d-MPH and rapid potentiation of euphoria. The pharmacokinetic component of this drug interaction can largely be avoided using dexmethylphenidate (dexMPH). This notwithstanding, maximal potentiated euphoria occurs following dexMPH-ethanol. C57BL/6 mice model dl-MPH-ethanol interactions: an otherwise depressive dose of ethanol synergistically increases dl-MPH stimulation; a substimulatory dose of dl-MPH potentiates a low, stimulatory dose of ethanol; ethanol elevates blood, brain, and urinary d-MPH concentrations while forming l-EPH. Integration of EPH preclinical neuropharmacology with clinical studies of MPH-ethanol interactions provides a translational approach toward advancement of ADHD personalized medicine and management of comorbid alcohol use disorder. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Ethanol production in China: Potential and technologies

    International Nuclear Information System (INIS)

    Li, Shi-Zhong; Chan-Halbrendt, Catherine

    2009-01-01

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  19. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  20. Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction

    Directory of Open Access Journals (Sweden)

    Bruna Tavares

    Full Text Available ABSTRACT Sunflower is among the major oil seeds crop grown in the world and the by-products generated during the seeds processing represent an attractive source of lignocellulosic biomass for bioprocesses. The conversion of lignocellulosic fibers into fermentable sugars has been considered as a promising alternative to increase the demand for ethanol. The present study aimed to establish the fermentation conditions for ethanol production by Scheffersomyces stipitis ATCC 58376 in sunflower meal hemicellulosic hydrolysate, through a 23 CCRD (Central Composite Rotational Design factorial design. Under the selected conditions (pH 5.25, 29 ºC and 198 rpm the final ethanol concentration was 13.92 g L-1 and the ethanol yield was 0.49 g g-1.

  1. Operant ethanol self-administration in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids.

    Science.gov (United States)

    Lian, Jieni; Chen, Shulin; Zhou, Shuai; Wang, Zhouhong; O'Fallon, James; Li, Chun-Zhu; Garcia-Perez, Manuel

    2010-12-01

    This paper describes a new scheme to convert anhydrosugars found in pyrolysis oils into ethanol and lipids. Pyrolytic sugars were separated from phenols by solvent extraction and were hydrolyzed into glucose using sulfuric acid as a catalyst. Toxicological studies showed that phenols and acids were the main species inhibiting growth of the yeast Saccharomyces cerevisiae. The sulfuric acids, and carboxylic acids from the bio-oils, were neutralized with Ba(OH)(2). The phase rich in sugar was further detoxified with activated carbon. The resulting aqueous phase rich in glucose was fermented with three different yeasts: S. cerevisiae to produce ethanol, and Cryptococcus curvatus and Rhodotorula glutinis to produce lipids. Yields as high as 0.473 g ethanol/g glucose and 0.167 g lipids/g sugar (0.266 g ethanol equivalent/g sugar), were obtained. These results confirm that pyrolytic sugar fermentation to produce ethanol is more efficient than for lipid production. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2014-01-01

    Maintaining cofactor balance is a critical function in microorganisms, but often the native cofactor balance does not match the needs of an engineered metabolic flux state. Here, an optimization procedure is utilized to identify optimal cofactor-specificity "swaps" for oxidoreductase enzymes...... specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast-including l-aspartate, l-lysine, l-isoleucine, l-proline, l-serine, and putrescine-and non-native products in E. coli-including 1...

  4. Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Abedinifar, Sorahi [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran); Karimi, Keikhosro [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran); School of Engineering, University of Boraas, SE-501 90 Boraas (Sweden); Khanahmadi, Morteza [Isfahan Agriculture and Natural Resources Research Centre, Isfahan (Iran); Taherzadeh, Mohammad J. [School of Engineering, University of Boraas, SE-501 90 Boraas (Sweden)

    2009-05-15

    Rice straw was successfully converted to ethanol by separate enzymatic hydrolysis and fermentation by Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. The hydrolysis temperature and pH of commercial cellulase and {beta}-glucosidase enzymes were first investigated and their best performance obtained at 45 C and pH 5.0. The pretreatment of the straw with dilute-acid hydrolysis resulted in 0.72 g g{sup -1} sugar yield during 48 h enzymatic hydrolysis, which was higher than steam-pretreated (0.60 g g{sup -1}) and untreated straw (0.46 g g{sup -1}). Furthermore, increasing the concentration of the dilute-acid pretreated straw from 20 to 50 and 100 g L{sup -1} resulted in 13% and 16% lower sugar yield, respectively. Anaerobic cultivation of the hydrolyzates with M. indicus resulted in 0.36-0.43 g g{sup -1} ethanol, 0.11-0.17 g g{sup -1} biomass, and 0.04-0.06 g g{sup -1} glycerol, which is comparable with the corresponding yields by S. cerevisiae (0.37-0.45 g g{sup -1} ethanol, 0.04-0.10 g g{sup -1} biomass and 0.05-0.07 glycerol). These two fungi produced no other major metabolite from the straw and completed the cultivation in less than 25 h. However, R. oryzae produced lactic acid as the major by-product with yield of 0.05-0.09 g g{sup -1}. This fungus had ethanol, biomass and glycerol yields of 0.33-0.41, 0.06-0.12, and 0.03-0.04 g g{sup -1}, respectively. (author)

  5. From the Cover: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    Science.gov (United States)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. corn | soybean | life-cycle accounting | agriculture | fossil fuel

  6. Sucrose purification and repeated ethanol production from sugars remaining in sweet sorghum juice subjected to a membrane separation process.

    Science.gov (United States)

    Sasaki, Kengo; Tsuge, Yota; Kawaguchi, Hideo; Yasukawa, Masahiro; Sasaki, Daisuke; Sazuka, Takashi; Kamio, Eiji; Ogino, Chiaki; Matsuyama, Hideto; Kondo, Akihiko

    2017-08-01

    The juice from sweet sorghum cultivar SIL-05 (harvested at physiological maturity) was extracted, and the component sucrose and reducing sugars (such as glucose and fructose) were subjected to a membrane separation process to purify the sucrose for subsequent sugar refining and to obtain a feedstock for repeated bioethanol production. Nanofiltration (NF) of an ultrafiltration (UF) permeate using an NTR-7450 membrane (Nitto Denko Corporation, Osaka, Japan) concentrated the juice and produced a sucrose-rich fraction (143.2 g L -1 sucrose, 8.5 g L -1 glucose, and 4.5 g L -1 fructose). In addition, the above NF permeate was concentrated using an ESNA3 NF membrane to provide concentrated permeated sugars (227.9 g L -1 ) and capture various amino acids in the juice, enabling subsequent ethanol fermentation without the addition of an exogenous nitrogen source. Sequential batch fermentation using the ESNA3 membrane concentrate provided an ethanol titer and theoretical ethanol yield of 102.5-109.5 g L -1 and 84.4-89.6%, respectively, throughout the five-cycle batch fermentation by Saccharomyces cerevisiae BY4741. Our results demonstrate that a membrane process using UF and two types of NF membranes has the potential to allow sucrose purification and repeated bioethanol production.

  7. Effects of ethanol extract of Bersama engleriana leaves on oxidative ...

    African Journals Online (AJOL)

    Pesticides are used to improve agricultural yields; meanwhile they have detrimental effects on human and animal reproduction. This study aimed at evaluating the protective effects of ethanol extract of Bersama engleriana leaves against cypermethrin-induced oxidative stress and reproductive toxicity. Fifty male guinea.

  8. Overcoming bacterial contamination of fuel ethanol fermentations -- alterntives to antibiotics

    Science.gov (United States)

    Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is kn...

  9. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    acquired the capability to utilize glycerol as an extra carbon source in the presence of xylose, and utilization of the more reduced substrate glycerol resulted in a higher ethanol yield. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2703-3) contains...

  10. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; TOPICAL

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  11. Co-production of hydrogen and ethanol by Escherichia coli SS1 and its recombinant

    Directory of Open Access Journals (Sweden)

    Chiu-Shyan Soo

    2017-11-01

    Conclusions: HybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.

  12. Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina and H-ZSM-5

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu

    2005-01-01

    Complete text of publication follows. The transformation of methanol has been investigated over alumina and H-ZSM-5 in our previous experiments by 11 C-radioisotope tracing. The main product in methanol conversion over alumina was dimethyl ether due to Lewis acid sites while over H-ZSM-5 mostly hydrocarbons were formed due to both Lewis and Brrnsted acid sites. With increasing temperature first the ethanol was dehydrated to diethyl ether followed by ethene formation over alumina and H-ZSM-5. In this work, 11 C-labelled methanol as radioisotope tracer was added to non-radioactive methanol for investigation of co-reaction with non-radioactive ethanol over alumina and H- ZSM-5. The 11 C-methanol tracer was used to distinguish the methanol derivates and co-reaction derivates of methanol with ethanol against non-radioactive ethanol derivates. The yield of methyl ethyl ether as mixed ether and the influence of ethanol for the yields of C 1 -C 5 hydrocarbons were studied as a function of reaction temperature and contact time. The 11 C-methanol was formed by a radiochemical process from 11 CO 2 produced at cyclotron. The mixture of methanol and ethanol was added to 11 C-methanol and injected to the catalyst. The catalysis was carried out in a glass tube fixed-bed reactor after its pretreatment. The derivates were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector coupled on-line with a radioactivity detector). The comparative analysis of yields of radioactive and non-radioactive products as a function of reaction temperature gives information about the reaction pathways. Over alumina the yields of dimethyl ether and methyl ethyl ether (co-product) as radioactive and diethyl ether with ethene as non-radioactive main products were monitored as a function of reaction temperature and reaction time in the range of 513-593 K. Alongside ethanol derivates the ethene turns into main product in contrast with methyl ethyl ether and diethyl

  13. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media.

    Science.gov (United States)

    Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M

    2018-02-01

    The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.

  14. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    Directory of Open Access Journals (Sweden)

    Ran Du

    Full Text Available The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY. These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  15. Non-conventional yeast species for lowering ethanol content of wines

    Directory of Open Access Journals (Sweden)

    Maurizio eCiani

    2016-05-01

    Full Text Available Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits, identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions, and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must.

  16. Non-conventional Yeast Species for Lowering Ethanol Content of Wines

    Science.gov (United States)

    Ciani, Maurizio; Morales, Pilar; Comitini, Francesca; Tronchoni, Jordi; Canonico, Laura; Curiel, José A.; Oro, Lucia; Rodrigues, Alda J.; Gonzalez, Ramon

    2016-01-01

    Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must. PMID:27199967

  17. The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation.

    Science.gov (United States)

    de Souza, Rafael Barros; dos Santos, Billy Manoel; de Fátima Rodrigues de Souza, Raquel; da Silva, Paula Katharina Nogueira; Lucena, Brígida Thais Luckwu; de Morais, Marcos Antonio

    2012-11-01

    This work describes the effects of the presence of the yeast Dekkera bruxellensis and the bacterium Lactobacillus vini on the industrial production of ethanol from sugarcane fermentation. Both contaminants were quantified in industrial samples, and their presence was correlated to a decrease in ethanol concentration and accumulation of sugar. Then, laboratory mixed-cell fermentations were carried out to evaluate the effects of these presumed contaminants on the viability of Saccharomyces cerevisiae and the overall ethanol yield. The results showed that high residual sugar seemed the most significant factor arising from the presence of D. bruxellensis in the industrial process when compared to pure S. cerevisiae cultures. Moreover, when L. vini was added to S. cerevisiae cultures it did not appear to affect the yeast cells by any kind of antagonistic effect under stable fermentations. In addition, when L. vini was added to D. bruxellensis cultures, it showed signs of being able to stimulate the fermentative activity of the yeast cells in a way that led to an increase in the ethanol yield.

  18. Robust enzymatic hydrolysis of Formiline-pretreated oil palm empty fruit bunches (EFB) for efficient conversion of polysaccharide to sugars and ethanol.

    Science.gov (United States)

    Cui, Xingkai; Zhao, Xuebing; Zeng, Jing; Loh, Soh Kheang; Choo, Yuen May; Liu, Dehua

    2014-08-01

    Oil palm empty fruit bunch (EFB) was pretreated by Formiline process to overcome biomass recalcitrance and obtain hemicellulosic syrup and lignin. Higher formic acid concentration led to more lignin removal but also higher degree of cellulose formylation. Cellulose digestibility could be well recovered after deformylation with a small amount of lime. After digested by enzyme loading of 15 FPU+10 CBU/g solid for 48 h, the polysaccharide conversion could be over 90%. Simultaneous saccharification and fermentation (SSF) results demonstrated that ethanol concentration reached 83.6 g/L with approximate 85% of theoretic yield when performed at an initial dry solid consistency of 20%. A mass balance showed that via Formiline pretreatment 0.166 kg of ethanol could be produced from 1 kg of dry EFB with co-production of 0.14 kg of high-purity lignin and 5.26 kg hemicellulosic syrup containing 2.8% xylose. Formiline pretreatment thus can be employed as an entry for biorefining of EFB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Fedirchuk, I.I.; Demchina, V.P.; Bortyshevsky, V.A.; Korzh, R.V.

    2016-01-01

    This paper presents the study of the influence that air activation rate and reforming temperature have on the gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The analysis of product composition showed that the conversion efficiency of ethanol has a maximum in the studied range of reforming temperatures. Researched system provided high reforming efficiency and high hydrogen energy yield at the lower temperatures than traditional conversion technologies

  20. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques.

    Science.gov (United States)

    Braga, Mara E M; Leal, Patrícia F; Carvalho, João E; Meireles, M Angela A

    2003-10-22

    Turmeric extracts were obtained from two lots of raw material (M and S) using various techniques: hydrodistillation, low pressure solvent extraction, Soxhlet, and supercritical extraction using carbon dioxide and cosolvents. The solvents and cosolvents tested were ethanol, isopropyl alcohol, and their mixture in equal proportions. The composition of the extracts was determined by gas chromatography-flame ionization detection (GC-FID) and UV. The largest yield (27%, weight) was obtained in the Soxhlet extraction (turmeric (S), ethanol = 1:100); the lowest yield was detected in the hydrodistillation process (2.1%). For the supercritical extraction, the best cosolvent was a mixture of ethanol and isopropyl alcohol. Sixty percent of the light fraction of the extracts consisted of ar-turmerone, (Z)-gamma-atlantone, and (E)-gamma-atlantone, except for the Soxhlet extracts (1:100, ethanol), for which only ar-turmeronol and (Z)-alpha-atlantone were detected. The maximum amount of curcuminoids (8.43%) was obtained using Soxhlet extraction (ethanol/isopropyl alcohol). The Soxhlet and low pressure extract exhibited the strongest antioxidant activities.

  1. The productive potentials of sweet sorghum ethanol in China

    International Nuclear Information System (INIS)

    Zhang, Caixia; Xie, Gaodi; Li, Shimei; Ge, Liqiang; He, Tingting

    2010-01-01

    As one of the important non-grain energy crops, sweet sorghum has attracted the attention of scientific community and decision makers of the world since decades. But insufficient study has been done about the spatial suitability distribution and ethanol potential of sweet sorghum in China. This paper attempts to probe into the spatial distribution and ethanol potential of sweet sorghum in China by ArcGIS methods. Data used for the analysis include the spatial data of climate, soil, topography and land use, and literatures relevant for sweet sorghum studies. The results show that although sweet sorghum can be planted in the majority of lands in China, the suitable unused lands for large-scale planting (unit area not less than 100 hm 2 ) are only as much as 78.6 x 10 4 hm 2 ; and the productive potentials of ethanol from these lands are 157.1 x 10 4 -294.6 x 10 4 t/year, which can only meet 24.8-46.4% of current demand for E10 (gasoline mixed with 10% ethanol) in China (assumption of the energy efficiency of E10 is equivalent to that of pure petroleum). If all the common grain sorghum at present were replaced by sweet sorghum, the average ethanol yield of 244.0 x 10 4 t/year can be added, and thus the productive potentials of sweet sorghum ethanol can satisfy 63.2-84.9% of current demand for E10 of China. In general, Heilongjiang, Jilin, Inner Mongolia and Liaoning rank the highest in productive potentials of sweet sorghum ethanol, followed by Hebei, Shanxi, Sichuan, and some other provinces. It is suggested that these regions should be regarded as the priority development zones for sweet sorghum ethanol in China.

  2. Fermentation of starch by Klebsiella oxytoca P2, containing plasmids with {alpha}-amylase and pullulanase genes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, V.L. dos; Araujo, E.F.; Barros, E.G. de; Guimaraes, W.V.

    1999-12-20

    Klebsiella oxytoca P2(pC46), an ethanol-producing recombinant, has been evaluated in fermentation of maltose and starch. The maximum ethanol produced by P2(pC46) was 0.34 g ethanol/g maltose and 0.38, 0.40, or 0.36 g ethanol/g starch in fermentation of 1, 2, or 4% starch, representing 68, 71, and 64% the theoretical yield. The pC46 plasmid transformed to cells of K. oxytoca P2 reduced the ethanol production from maltose and starch. In fermentation of starch after its digestion at 60 C for 24 h, in two-step fermentation, the time for maximum ethanol production was reduced to 12--24 h and the theoretical yield was around 90%. The increase in starch concentration resulted in lower {alpha}-amylase activity but in higher pullulanase activity. The high activity and thermostability of the amylolytic enzymes from this transformant suggest that it has a potential for amylolytic enzymes source.

  3. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    Science.gov (United States)

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  4. Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation.

    Science.gov (United States)

    Zhou, Jilai; Shao, Xiongjun; Olson, Daniel G; Murphy, Sean Jean-Loup; Tian, Liang; Lynd, Lee R

    2017-05-01

    Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60-70%.

  5. Converting developing and mature sugarcane carbohydrates into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Rolz, Carlos; De Leon, Roberto [Biochemical Engineering Center, Research Institute, Universidad del Valle de Guatemala (Guatemala)

    2010-10-15

    Experiments were performed employing cane particles obtained from sugarcane at different growth stages until maturation measuring the amount of ethanol produced and the carbohydrate consumption in order to estimate the sugarcane growth stage where both parameters were optimized. Two non-flowering commercial cane varieties NA56 and PR752002 were cultivated and samples taken at different time intervals. Two Saccharomyces cerevisae strains were also compared in the trials. Sucrose was poorly consumed in young cane, which was an unexpected result. Fructose on the other hand was the hexose that remained in the medium at the end of the fermentations specially when using mature sugarcane. There was an increasing trend in ethanol production as a function of days after planting (DAP) as expected; however, a plateau was reached after 225 DAP and the maximum value obtained was between 300 and 325 DAP. When these figures were compared with the corresponding DAP used for sugar production, only 25 days less were needed in the field for maximum ethanol production. On the other hand, it was clear from the data that cane harvesting for ethanol production should not be done after the recommended DAP for commercial sugar production. If this is done, the excess fructose present will not be completely utilized by yeast. Finally, it was observed that the yeast with more affinity for sugarcane fibers showed better ethanol yields in all samples tested. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  7. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.

    Science.gov (United States)

    Banerjee, Goutami; Car, Suzana; Liu, Tongjun; Williams, Daniel L; Meza, Sarynna López; Walton, Jonathan D; Hodge, David B

    2012-04-01

    Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass-to-ethanol pipeline. Here, the feasibility of scaling-up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H(2) O(2) /g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose- and xylose-utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922-931. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  8. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    Science.gov (United States)

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  9. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    Science.gov (United States)

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effect of oxygen on ethanol fermentation in packed-bed tapered-column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hamamci, H.; Ryu, D.D.Y.

    1988-07-01

    In ethanol production with immobilized yeast a major problem is the provision of nutrients to these highly concentrated cells. O/sub 2/ being one of the nutrients of utmost importance to yeast cells, was fed into a column packed with beads with a cell loading of more than 40 g/l. Since addition of large volume of air or O/sub 2/ to a cylindrical column reactor would aggravate the problems of pressure build up and channelling caused by the evolving CO/sub 2/ gas, a tapered-column reactor and pulsed flow of oxygen gas was used. The supplement of O/sub 2/ gas to the tapered column increased the productivity from 21.1 g ethanol x (l gel x h)/sup -1/ to 26.7 g x (l gelxh)/sup -1/, when the ethanol concentration at the outlet was about 80 g/l. The yield coefficient of ethanol was also increased from 0.41 g ethanol/g glucose to 0.43 after O/sub 2/ supplement was started. The effects of frequency and duration of O/sub 2/ supplement were also determined.

  11. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol.

    Science.gov (United States)

    Jennings, Edward W; Schell, Daniel J

    2011-01-01

    Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Energy and GHG balances of ethanol production from cane molasses in Indonesia

    International Nuclear Information System (INIS)

    Khatiwada, Dilip; Venkata, Bharadwaj K.; Silveira, Semida; Johnson, Francis X.

    2016-01-01

    Highlights: • This study performs LCA analysis of sugarcane-based bioethanol production. • Energy and GHG balances are evaluated in the entire production chain. • Sensitivity analysis is performed to identify key influencing parameters. • Efficient cogeneration and biogas recovery enhances energy and climate gains. • Results of LCA studies and issues related to land use change impact are discussed. - Abstract: This study analyses the sustainability of fuel ethanol production from cane molasses in Indonesia. Life cycle assessment (LCA) is performed to evaluate the net emissions (climate change impact) and energy inputs (resource consumption) in the production chain. The lifecycle greenhouse gas (GHG) emissions in the production and use of ethanol are estimated at 29 gCO 2eq per MJ of ethanol produced which is a 67% reduction in comparison to gasoline emissions. Net Energy Value (NEV) and Net Renewable Energy Value (NREV) are −7 MJ/l and 17.7 MJ/l, while the energy yield ratio (ER) is 6.1. Economic allocation is chosen for dividing environmental burdens and resource consumption between sugar (i.e. main product) and molasses (i.e. co-product used for fuel production). Sensitivity analysis of various parameters is performed. The emissions and energy values are highly sensitive to sugarcane yield, ethanol yield, and the price of molasses. The use of sugarcane biomass residues (bagasse/trash) for efficient cogeneration, and different waste management options for the treatment of spent wash (effluent of distilleries) are also explored. Surplus bioelectricity generation in the efficient cogeneration plant, biogas recovery from wastewater treatment plant, and their use for fossil fuel substitution can help improve energy and environmental gains. The study also compares important results with other relevant international studies and discusses issues related to land use change (LUC) impact.

  13. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol - Comparison of five pretreatment technologies

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Thygesen, Anders; Thomsen, Sune Tjalfe

    2013-01-01

    -assisted pretreatment (PAP) and ball milling (BM), to determine effects of the pretreatment methods on the conversion of C. linum into ethanol by simultaneous saccharification and fermentation (SSF). WO and BM showed the highest ethanol yield of 44. g ethanol/100. g glucan, which was close to the theoretical ethanol......A qualified estimate for pretreatment of the macroalgae Chaetomorpha linum for ethanol production was given, based on the experience of pretreatment of land-based biomass. C. linum was subjected to hydrothermal pretreatment (HTT), wet oxidation (WO), steam explosion (STEX), plasma...... yield of 57. g ethanol/100. g glucan. A 64% higher ethanol yield, based on raw material, was reached after pretreatment with WO and BM compared with unpretreated C. linum, however 50% of the biomass was lost during WO. Results indicated that the right combination of pretreatment and marine macroalgae...

  14. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  15. Indirect determination of thiocyanate with ammonium sulfate and ethanol by extraction-flotation of copper.

    Science.gov (United States)

    Li, Q; Wei, W; Liu, Q

    2000-10-01

    A new method for the indirect determination of thiocyanate with ammonium sulfate and ethanol by extraction-flotation of copper in the presence of ascorbic acid is described. A small amount of Cu(II) is reduced to Cu(I) by ascorbic acid, then Cu(I) is precipitated with SCN-. In the course of phase separation of ethanol from water, the precipitated CuSCN stays in the interface of ethanol and water. A good linear relationship is observed between the flotation yield of Cu(II) and the amount of SCN-. Using 1.0 ml of 1 x 10(-3) M ascorbic acid solution, 50 micrograms of Cu(II), 3.5 g of (NH4)2SO4 and 3.0 ml of ethanol with a total volume of 10 ml, the concentration of thiocyanate could then be determined by determining the flotation yield of Cu(II). The detection limit for thiocyanate is 5 x 10(-5) M. Every parameter was optimized and the reaction mechanism was studied. The method is simple and rapid and it was successfully applied to the determination of thiocyanate in urine and saliva of smokers and non-smokers and in venous blood of patients infused with sodium nitroprusside.

  16. Ethanol adsorption on the {10(1)over-bar4} calcite surface

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Stipp, Susan Louise Svane; Hassenkam, Tue

    2008-01-01

    Preliminary atomic force microscopy investigations of the {10 (1) over bar4} calcite Surface cleaved in ethanol indicate a different surface behaviour than that of the {10 (1) over bar4} surface cleaved in air. The results are consistent with recent theoretical studies and suggest strong ordering...

  17. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  18. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E.

    2010-12-15

    solution was fermented via Simultaneous Saccharification and Fermentation (SSF) assisted by liquefaction step, with Cellubrix L and baker's yeast achieved ethanol yield was 67% based on sugars in raw material (12.5% DM). Optimization of ethanol production from rape straw then focused to enzymatic hydrolysis and benchmarking available commercial enzyme mixtures. It was found that hydrolysis rate increased considerably, if adequate amount of beta-glycosidase is present in enzyme mixture. Best mixture of enzymes was Celluclast 1.5L supplemented by Novozym 188 (5:1 v/v ratio), which in 24 hours it hydrolyzed 77% of pretreated rape straw C6 sugars. In an attempt to produce enzymes from pretreated rape straw, the most promising carbon source was a mixture of cellulose and hemicellulose (81:19 w/w sugars ratio). The produced cellulolytic enzymes in turn hydrolyzed pretreated rape straw by 70% in 24 hours enzyme hydrolysis test. These enzymes were produced after 11 days of fermentation with enzyme yielded 109 FPU/g sugars (pretreated rape straw). Finally, ethanol fermentation was optimized using the selected pretreatment method, and best enzyme mixture. Assessment of optimal fermentation conditions included determination of optimal highest fermenting temperature among three strains; the best pH pattern for maximum ethanol production; and finally assessing potentials of fermentations at increased dry matter. Results have shown that S. cerevisiae has thermotollerance up to 37 deg. C, and that pH was the catalytic factor for the progress of ethanol fermentation as well as contamination by lactic acid bacteria, in both shake flasks and scale up experiments. Highest ethanol yield was 77% achieved with 16% DM at 37 deg. C by an isolate strain from baker' yeast within 120 hours of SSF. (Author)

  19. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E

    2010-12-15

    solution was fermented via Simultaneous Saccharification and Fermentation (SSF) assisted by liquefaction step, with Cellubrix L and baker's yeast achieved ethanol yield was 67% based on sugars in raw material (12.5% DM). Optimization of ethanol production from rape straw then focused to enzymatic hydrolysis and benchmarking available commercial enzyme mixtures. It was found that hydrolysis rate increased considerably, if adequate amount of beta-glycosidase is present in enzyme mixture. Best mixture of enzymes was Celluclast 1.5L supplemented by Novozym 188 (5:1 v/v ratio), which in 24 hours it hydrolyzed 77% of pretreated rape straw C6 sugars. In an attempt to produce enzymes from pretreated rape straw, the most promising carbon source was a mixture of cellulose and hemicellulose (81:19 w/w sugars ratio). The produced cellulolytic enzymes in turn hydrolyzed pretreated rape straw by 70% in 24 hours enzyme hydrolysis test. These enzymes were produced after 11 days of fermentation with enzyme yielded 109 FPU/g sugars (pretreated rape straw). Finally, ethanol fermentation was optimized using the selected pretreatment method, and best enzyme mixture. Assessment of optimal fermentation conditions included determination of optimal highest fermenting temperature among three strains; the best pH pattern for maximum ethanol production; and finally assessing potentials of fermentations at increased dry matter. Results have shown that S. cerevisiae has thermotollerance up to 37 deg. C, and that pH was the catalytic factor for the progress of ethanol fermentation as well as contamination by lactic acid bacteria, in both shake flasks and scale up experiments. Highest ethanol yield was 77% achieved with 16% DM at 37 deg. C by an isolate strain from baker' yeast within 120 hours of SSF. (Author)

  20. Engineering microorganisms to increase ethanol production by metabolic redirection

    Science.gov (United States)

    Deng, Yu; Olson, Daniel G.; van Dijken, Johannes Pieter; Shaw, IV, Arthur J.; Argyros, Aaron; Barrett, Trisha; Caiazza, Nicky; Herring, Christopher D.; Rogers, Stephen R.; Agbogbo, Frank

    2017-10-31

    The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.

  1. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.

    Science.gov (United States)

    Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-04-18

    To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C 2 H 5 OH+OH→Products+H 2 O is also discussed.

  2. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic process

    Directory of Open Access Journals (Sweden)

    Kurantz M

    2010-04-01

    Full Text Available Abstract Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS co-product had extremely low β-glucan (below 0.2% making it suitable for use in both ruminant

  3. Rheology of corn stover slurries during fermentation to ethanol

    Science.gov (United States)

    Ghosh, Sanchari; Epps, Brenden; Lynd, Lee

    2017-11-01

    In typical processes that convert cellulosic biomass into ethanol fuel, solubilization of the biomass is carried out by saccharolytic enzymes; however, these enzymes require an expensive pretreatment step to make the biomass accessible for solubilization (and subsequent fermentation). We have proposed a potentially-less-expensive approach using the bacterium Clostridium thermocellum, which can initiate fermentation without pretreatment. Moreover, we have proposed a ``cotreatment'' process, in which fermentation and mechanical milling occur alternately so as to achieve the highest ethanol yield for the least milling energy input. In order to inform the energetic requirements of cotreatment, we experimentally characterized the rheological properties of corn stover slurries at various stages of fermentation. Results show that a corn stover slurry is a yield stress fluid, with shear thinning behavior well described by a power law model. Viscosity decreases dramatically upon fermentation, controlling for variables such as solids concentration and particle size distribution. To the authors' knowledge, this is the first study to characterize the changes in the physical properties of biomass during fermentation by a thermophilic bacterium.

  4. Cost estimate for the production of ethanol from spent sulphite liquors and wood residues

    International Nuclear Information System (INIS)

    Nguyen, Q.

    1990-03-01

    A Lotus 1-2-3 spreadsheet model for estimating the production cost of 95 wt % ethanol from spent sulfite liquors (SSL) and from a wood hydrolysis front-end is described. The most economically attractive process is the fermentation of softwood SSL (SSSL) by the yeast Saccharomyces cerevisiae, yielding a production cost estimate of $0.47/liter. The cost of producing ethanol from cellulosic waste (clarifier sludge) via acid hydrolysis is approximately $0.55/liter, still below the market price of ca $0.60/liter for industrial ethanol. Neither the fermentation of hardwood SSL nor the conversion of sawdust to ethanol, using current technology, are economically viable. However, these processes can become commercially viable if acetic acid-tolerant xylose-fermenting yeasts can be found. 17 refs., 12 figs., 16 tabs

  5. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.

    Science.gov (United States)

    Basso, Thiago Olitta; Gomes, Fernanda Sgarbosa; Lopes, Mario Lucio; de Amorim, Henrique Vianna; Eggleston, Gillian; Basso, Luiz Carlos

    2014-01-01

    Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.

  6. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  7. Ethanol Production from Waste Potato Mash by Using Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Gulten Izmirlioglu

    2012-10-01

    Full Text Available Bio-ethanol is one of the energy sources that can be produced by renewable sources. Waste potato mash was chosen as a renewable carbon source for ethanol fermentation because it is relatively inexpensive compared with other feedstock considered as food sources. However, a pretreatment process is needed: specifically, liquefaction and saccharification processes are needed to convert starch of potato into fermentable sugars before ethanol fermentation. In this study, hydrolysis of waste potato mash and growth parameters of the ethanol fermentation were optimized to obtain maximum ethanol production. In order to obtain maximum glucose conversions, the relationship among parameters of the liquefaction and saccharification process was investigated by a response surface method. The optimum combination of temperature, dose of enzyme (α-amylase and amount of waste potato mash was 95 °C, 1 mL of enzyme (18.8 mg protein/mL and 4.04 g dry-weight/100 mL DI water, with a 68.86% loss in dry weight for liquefaction. For saccharification, temperature, dose of enzyme and saccharification time were optimized and optimum condition was determined as 60 °C-72 h-0.8 mL (300 Unit/mL of amyloglucosidase combination, yielded 34.9 g/L glucose. After optimization of hydrolysis of the waste potato mash, ethanol fermentation was studied. Effects of pH and inoculum size were evaluated to obtain maximum ethanol. Results showed that pH of 5.5 and 3% inolculum size were optimum pH and inoculum size, respectively for maximum ethanol concentration and production rate. The maximum bio-ethanol production rate was obtained at the optimum conditions of 30.99 g/L ethanol. Since yeast extract is not the most economical nitrogen source, four animal-based substitutes (poultry meal, hull and fines mix, feather meal, and meat and bone meal were evaluated to determine an economical alternative nitrogen source to yeast extract. Poultry meal and feather meal were able to produce 35 g/L and

  8. A histological study of rabbit corneas after transepithelial corneal crosslinking using partial epithelial photoablation or ethanol treatment.

    Science.gov (United States)

    Ozmen, Mehmet Cuneyt; Hondur, Ahmet; Yilmaz, Guldal; Bilgihan, Kamil; Hasanreisoglu, Berati

    2014-01-01

    To evaluate the histological changes after transepithelial corneal crosslinking (CXL) using partial thickness excimer laser ablation or epithelial ethanol application in an experimental rabbit study. Right eyes of twenty-four rabbits were studied. Four eyes received total epithelial debridement (group I). Four eyes received partial thickness epithelial ablation with excimer laser (group II). Twelve eyes were treated with different durations (30s and 60s) and concentrations (18% to 48%) of ethanol (group III). Riboflavin was applied for 30min intervals along with topical proparacaine drops with benzalkonium chloride, and 370 nm irradiation was performed for 30min, while riboflavin was instilled every 3min. Four eyes (group IV) received 48% ethanol for 30s without riboflavin and irradiation. Eyes were collected after 24h and examined histologically. All eyes in group I showed keratocyte loss in the superficial 300 µ of corneal storma. In group II, 1-4 layers of epithelium were preserved and no keratocyte loss occurred. In group III, CXL after treatment with ethanol up to 24% concentration and up to 60s revealed no keratocyte loss. CXL after treatment with 48% and higher ethanol concentrations yielded keratocyte loss in the superficial 200 µ to 300 µ of cornea. Incomplete excimer laser ablation of the epithelium or treatment with ethanol up to 24% concentration and up to 60s duration yielded no stromal keratocyte loss. To get the same histological appearance seen in epithelial debridement group, partial thickness excimer laser epithelial ablation or ethanol application is not adequate for transepithelial CXL.

  9. A histological study of rabbit corneas after transepithelial corneal crosslinking using partial epithelial photoablation or ethanol treatment

    Directory of Open Access Journals (Sweden)

    Mehmet Cuneyt Ozmen

    2014-12-01

    Full Text Available AIM: To evaluate the histological changes after transepithelial corneal crosslinking (CXL using partial thickness excimer laser ablation or epithelial ethanol application in an experimental rabbit study.METHODS: Right eyes of twenty-four rabbits were studied. Four eyes received total epithelial debridement (group I. Four eyes received partial thickness epithelial ablation with excimer laser (group II. Twelve eyes were treated with different durations (30s and 60s and concentrations (18% to 48% of ethanol (group III. Riboflavin was applied for 30min intervals along with topical proparacaine drops with benzalkonium chloride, and 370 nm irradiation was performed for 30min, while riboflavin was instilled every 3min. Four eyes (group IV received 48% ethanol for 30s without riboflavin and irradiation. Eyes were collected after 24h and examined histologically.RESULTS: All eyes in group I showed keratocyte loss in the superficial 300 µ of corneal storma. In group II, 1-4 layers of epithelium were preserved and no keratocyte loss occurred. In group III, CXL after treatment with ethanol up to 24% concentration and up to 60s revealed no keratocyte loss. CXL after treatment with 48% and higher ethanol concentrations yielded keratocyte loss in the superficial 200 µ to 300 µ of cornea.CONCLUSION: Incomplete excimer laser ablation of the epithelium or treatment with ethanol up to 24% concentration and up to 60s duration yielded no stromal keratocyte loss. To get the same histological appearance seen in epithelial debridement group, partial thickness excimer laser epithelial ablation or ethanol application is not adequate for transepithelial CXL.

  10. Acetaldehyde formation from ethanol over titanium dioxide photocatalyst. Nisanka titan hikarishokubai ni yoru ethanol kara no acetaldehyde no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Iseda, K [Government Industrial Research Institute, Nagoya, Nagoya (Japan)

    1990-02-20

    The suspention of TiO {sub 2} (rutile structure, 99.9%, 300 mesh) photocatalyst in ethanol was irradiated under ultraviolet light in an argon atmosphere at 25 centigrade. Acetaldehyde, methane and hydrogen were detected as products. When the photocatalysis of TiO {sub 2} itself was examined comparing with the result of blank test without using catalyst, the activity of TiO {sub 2} was confirmed only for the formation of acetaldehyde among the products. The yields of acetaldehyde increased with increasing addition of catalyst. The increasing rate of methane yields was rather small and the methane yields were lower than those in the blank tests. The hydrogen yields were almost same as in the blank tests. Acetal was formed in the blank test but was not formed with addition of TiO {sub 2}. It was provided that TiO {sub 2} was an effective catalyst for the formation of acetaldehyde. 6 ref., 5 figs.

  11. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  12. Comparison of several ethanol productions using xylanase, inorganic salts, surfactant

    Science.gov (United States)

    Wu, Yan; Lu, Jie; Yang, Rui-feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui

    2017-03-01

    Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. Corn stover was pretreated with liquid hot water (LHW) and then subjected to semi-simultaneous saccharification and fermentation (S-SSF) to obtain high ethanol concentration and yield. The present study aimed to confirm the effect of several additives on the fermentation digestibility of unwashed WIS of corn stover pretreated with LHW. So we also investigated the process, such as enzyme addition, inorganic salts, surfactant and different loading Triton. Results show that high ethanol concentration is necessary to add xylanase in the stage of saccharification. The ethanol concentration increased mainly with magnesium ion on fermentation. Comparing with Tween 80, Span 80 and Polyethylene glycol, Triton is the best surfactant. In contrast to using xylanase and Triton respectively, optimization can make up the lack of stamina and improve effect of single inorganic salts.

  13. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Bodhisatta; Shekhawat, Mitali; Srivastava, Pradeep [Banaras Hindu Univ., Varanasi (India). School of Biochemical Engineering; Rathore, Ankita [Nizam College, Hyderabad (India). Dept. of Biotechnology; Srivastava, Saurav [National Institute of Technology, Durgapur (India). Dept. of Biotechnology

    2011-04-15

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value. (orig.)

  14. Cassava as feedstock for ethanol production in South Africa | Marx ...

    African Journals Online (AJOL)

    It can be grown on marginal lands where frost is not prevalent. In this study, the production of ethanol from unpeeled Cassava roots and cassava peels were investigated. It was found that temperature; pH and biomass loading had a significant effect on glucose yield during hydrolysis. Simultaneous saccharification and ...

  15. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    Science.gov (United States)

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

  16. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    Science.gov (United States)

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the

  17. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts.

    Science.gov (United States)

    Cho, Hyeyoung; Ra, Chae-Hun; Kim, Sung-Koo

    2014-02-28

    For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

  18. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.

    Science.gov (United States)

    Ceccato-Antonini, Sandra Regina

    2018-05-25

    Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.

  19. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    Science.gov (United States)

    Guaza, C; Borrell, S