WorldWideScience

Sample records for theoretical division progress

  1. Theoretical Division progress report. [October 1976-January 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. (comp.)

    1979-04-01

    This report presents highlights of activities in the Theoretical (T) Division from October 1976-January 1979. The report is divided into three parts. Part I presents an overview of the Division: its unique function at the Los Alamos Scientific Laboratory (LASL) and within the scientific community as a whole; the organization of personnel; the main areas of research; and a survey of recent T-Division initiatives. This overview is followed by a survey of the 13 groups within the Division, their main responsibilities, interests, and expertise, consulting activities, and recent scientific accomplisments. The remainder of the report, Parts II and III, is devoted to articles on selected research activities. Recent efforts on topics of immediate interest to energy and weapons programs at LASL and elsewhere are described in Part II, Major National Programs. Separate articles present T-Divison contributions to weapons research, reactor safety and reactor physics research, fusion research, laser isotope separation, and other energy research. Each article is a compilation of independent projects within T Division, all related to but addressing different aspects of the major program. Part III is organized by subject discipline, and describes recent scientific advances of fundamental interest. An introduction, defining the scope and general nature of T-Division efforts within a given discipline, is followed by articles on the research topics selected. The reporting is done by the scientists involved in the research, and an attempt is made to communicate to a general audience. Some data are given incidentally; more technical presentations of the research accomplished may be found among the 47 pages of references. 110 figures, 5 tables.

  2. Lightning Talks 2015: Theoretical Division

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  3. Theoretical Division annual report, FY 1975. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures. (auth)

  4. Biology Division progress report, October 1, 1991--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, F.C.; Cook, J.S.

    1993-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  5. Ecological Research Division Theoretical Ecology Program. [Contains abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

  6. Physics division. Progress report, January 1, 1995--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R. [eds.] [comps.] [and others

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  7. Biology Division progress report, October 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  8. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  9. Theoretical nuclear structure. Progress report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, W.; Strayer, M.R.

    1997-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops.

  10. Energy Division progress report, fiscal years 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Moser, C.I. [ed.

    1996-06-01

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  11. Biology Division progress report, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The body of this report provides summaries of the aims, scope and progress of the research by groups of investigators in the Division during the period of October 1, 1984, through September 30, 1985. At the end of each summary is a list of publications covering the same period. For convenience, the summaries are assembled under Sections in accordance with the current organizational structure of the Biology Division; each Section begins with an overview. It will be apparent, however, tha crosscurrents run throughout the Division and that the various programs support and interact with each other. In addition, this report includes information on the Division's educational activities, Advisory Committee, seminar program, and international interactions, as well as extramural activities of staff members, abstracts for technical meetings, and funding and personnel levels.

  12. Biology Division. Progress report, August 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Biology Division is the component of the Oak Ridge National Laboratory that investigates the potential adverse health effects of energy-related substances. The body of this report provides summaries of the aims, scope and progress of the research of groups of investigators in the Division during the period of August 1, 1982, through September 30, 1983. At the end of each summary is a list of publications covering the same period (published or accepted for publication). For convenience, the summaries are assembled under Sections in accordance with the current organizational structure of the Biology Division; each Section begins with an overview. It will be apparent, however, that currents run throughout the Division and that the various programs support and interact with each other.

  13. Environmental Research Division technical progress report, January 1984-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter.

  14. Physics Division progress report for period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported.

  15. Physics division. Progress report for period ending September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J. [ed.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.

  16. Generic Theoretical Models to Predict Division Patterns of Cleaving Embryos

    OpenAIRE

    Pierre, Anaëlle; Sallé, Jérémy; Wühr, Martin; Minc, Nicolas

    2016-01-01

    International audience; Life for all animals starts with a precise 3D choreography of reductive divisions of the fertilized egg, known as cleavage patterns. These patterns exhibit conserved geometrical features and striking interspecies invariance within certain animal classes. To identify the generic rules that may govern these morphogenetic events, we developed a 3D-modeling framework that iteratively infers blastomere division positions and orientations, and consequent multicellular arrang...

  17. Physics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described.

  18. Physics Division progress report for period ending June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  19. Physics Division progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source.

  20. Solid State Division progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

  1. Physics Division progress report, January 1, 1984-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Keller, W.E. (comp.)

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.

  2. Physics Division progress report for period ending September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics. (LEW)

  3. Physics Division progress report for period ending September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  4. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  5. Experimental Facilities Division progress report 1996--97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD.

  6. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  7. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  8. Chemical Technology Division progress report, January 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This progress report presents a summary of the missions and activities of the various sections and administrative groups in this Division for this period. Specific projects in areas such as energy research, waste and environmental programs, and radiochemical processing are highlighted, and special programmatic activities conducted by the Division are identified and described. The administrative summary portion features information about publications and presentations of Chemical Technology Division staff, as well as a listing of patents awarded to Division personnel during this period.

  9. The Division of Household Labor: Suggestions for Future Empirical Consideration and Theoretical Development.

    Science.gov (United States)

    Coleman, Marion Tolbert

    1988-01-01

    Reviews findings suggesting qualitative differences between men's and women's work in the household. Presents a gender stratification theoretical framework for examining household and child care division of labor. Discusses "net economic power," and considers the differential impacts of the husband/wife earnings ratio, stability of that…

  10. Environmental Research Division technical progress report: January 1986--October 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  11. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL`s research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  12. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  13. Recent Progress in Space-Division Multiplexed Transmission Technologies

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2013-01-01

    Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber.......Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber....

  14. Metals and Ceramics Division materials science annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1977-09-01

    Progress is reported for research programs in the metals and ceramics division of ORNL. In structure of materials, theoretical research, x-ray diffraction studies, studies of erosion of ceramics, preparation and synthesis of high temperature and special service materials, and studies of stabilities of microphases in high-temperature structural materials. Research into deformation and mechanical properties included physical metallurgy, and grain boundary segregation and embrittlement. Physical properties and transport phenomena were studied and included mechanisms of surface and solid state reactions, and properties of superconducting materials. The radiation effects program, directed at understanding the effects of composition and microstructure on the structure and properties of materials irradiated at elevated temperatures, is also described. (GHT)

  15. Solid State Division progress report for period ending March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  16. Environmental Sciences Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  17. Solid State Division progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. (eds.)

    1991-03-01

    This report covers research progress in the Solid State Division from April 1, 1989, to September 30, 1990. During this period, division research programs were significantly enhanced by the restart of the High-Flux Isotope Reactor (HFIR) and by new initiatives in processing and characterization of materials.

  18. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  19. Theoretical nuclear structure and astrophysics. Progress report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops.

  20. Health, Safety, and Environment Division: Annual progress report 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.A. (comp.)

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  1. Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.

    1995-06-01

    This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

  2. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  3. Physics Division progress report for period ending September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1990-03-01

    This report discusses topics in the following areas: Holifield heavy ion research; Experimental Nuclear physics; The Uniser program; Experimental Atomic Physics; Theoretical Physics; Laser and electro-optics lab; High Energy Physics; compilations and evaluations; and accelerator design and development. (FI)

  4. Physics Division progress report for period ending September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  5. Physics division progress report for period ending September 30 1991

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  6. Physics Division annual progress report, January 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Trela, W.J. (comp.)

    1984-12-01

    The Physics Division is organized into three major research areas: Weapons Physics, Inertial Fusion Physics, and Basic Research. In Weapons Physics, new strategic defensive research initiatives were developed in response to President Reagan's speech in May 1983. Significant advances have been made in high-speed diagnostics including electro-optic technique, fiber-optic systems, and imaging. In Inertial Fusion, the 40-kJ Antares CO/sub 2/ laser facility was completed, and the 1- by 1- by 2-m-long large-aperture module amplifier (LAM) was constructed and operated. In Basic Research, our main emphasis was on development of the Weapons Neutron Research (WNR) facility as a world-class pulsed neutron research facility

  7. Solid State Division progress report for period ending September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  8. Biology Division progress report, June 1, 1980-July 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    Highlights of progress for the period June 1980 through July 1982 are summarized. Discussions of projects are presented under the following headings: molecular and cellular sciences; cellular and comparative mutagenesis; mammalian genetics and teratology; toxicology; and carcinogenesis. In addition this report includes an outline of educational activities. Separate abstracts have been prepared for individual technical reports for inclusion in the Energy Data Base. (RJC)

  9. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.

  10. Physics Division progress report, January 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hollen, G.Y.; Schappert, G.T. [comp.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division`s Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La{sub 2}CuO{sub 4+{delta}} Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  11. Instrumentation and Controls Division annual progress report for period ending September 1, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1976-08-01

    Research progress is described under the following topics: (1) pulse counting and analysis; (2) support for the thermonuclear division ORMAK project; (3) miscellaneous electronics development; (4) detectors of ionizing particles and radiation; (5) radiation monitoring; (6) support for the Oak Ridge Electron Linear Accelerator; (7) automatic control and data acquisition; (8) process instrumentation and control; (9) reactor instrumentation and controls; (10) instrumentation for reactor division experiments and test loops; (11) maintenance and service; and (12) ecological science studies. (WHK)

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  13. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E. (ed.)

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I C Division staff members.

  14. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  15. Biology Division progress report, October 1, 1983-September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Griesmer, R.A.

    1985-01-01

    The report provides summaries of the aims, scope and progress from October 1983 through September 1984. Major interest was focused on the health effects of neutron- and heavy-ion radiations on animals with particular attention to the carcinogenic responses to low dose levels and to the RBE of various forms of radiation. Among chemical agents, activities concentrated on evaluating and understanding the toxicological interations when mammals are exposed to complex mixtures, either concurrently or successively. Separate abstracts have been prepared for individual sections. (ACR)

  16. Engineering Physics Division progress report period ending May 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Progress is described in the following areas: nuclear cross sections and related quantities; methods for generating and validating multigroup cross-section libraries; methods for reactor and shield analysis; methods for sensitivity and uncertainty analysis; integral experiments and nuclear analyses (integral experiments supporting fusion reactor designs, nuclear analyses supporting fusion reactor designs, high-energy particle transport calculations, integral experiments supporting gas-cooled fast breeder reactor designs, nuclear analyses supporting gas-cooled reactor designs, nuclear analyses supporting utilization of light-water reactors, and integral experiment analyses supporting surveillance dosimetry improvement program); energy economics modeling and analysis; safety and reliability assessments for nuclear power reactors; and information analysis and distribution. Publications and papers presented are listed. (WHK)

  17. Metals and Ceramics Division progress report for period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Brogden, I. (ed.)

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneous Activities.

  18. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  19. Solid State Division: Progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  20. Solid State Division progress report for period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. (eds.)

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

  1. Technical Division quarterly progress report, January 1--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Slansky, C.M. (ed.)

    1977-05-01

    Progress is reported in three categories: Fuel Cycle Research and Development, special materials production, and projects supporting energy development. Results are presented on the fluidized-bed calcination of high-level radioactive waste from the reprocessing of spent commercial nuclear fuel, on the post treatment of the calcine, and on the removal of actinide elements from the waste prior to calcination. Other projects include the development of storage technology for /sup 85/Kr waste; a study of the hydrogen mordenite catalyzed reaction between NO/sub x/ and NH/sub 3/; the adsorption and storage of /sup 129/I on silver exchanged mordenite; physical properties, materials of construction, and unit operations studies on the evaporation of high-level waste; the behavior of volatile radionuclides during the combustion of HTGR graphite-based fuel; and the use of fission product ruthenium in age-dating uranium ore bodies. The long-term management of defense waste from the ICPP covers post-calcination treatment of ICPP calcined waste. Improvements are reported on the Fluorinel head end process for Zircaloy-clad fuels. Studies are included on nuclear materials security; application of a liquid-solid fluidized-bed heat exchanger to the recovery of geothermal heat; inplant reactor source term measurements; burnup methods for fast breeder reactor fuels; research on analytical methods; and the behavior of environmental species of iodine.

  2. Environmental Sciences Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  3. Technical Division quarterly progress report, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Plung, D.L. (ed.)

    1978-12-01

    Fuel cycle research and development: results are presented on fluidized-bed calcination and on post-treatment of commercial wastes; study was done on the use of microwave energy in processing wastes and on the use of bidentate compounds for separation of actinides from commercial power reactor reprocessing waste. Work on the krypton-85 storage development program, including the results of rubidium corrosion tests, is reported. In the HTGR fuel reprocessing section, the results of x-ray and Auger spectroscopy analysis of CO oxidation catalyst are reported. Special materials production: the long-term management of high-level ICPP wastes is reported: development of a calcine pelletizing pilot plant, actinide removal, actinide extraction by DHDECMP, and calcined solids retrieval and handling. Design work was completed for the fluorinel pilot-plant upgrade. Other development results reported are on the progress of the Rover plant, and on flowsheet development for electrolytic and second-cycle waste, for Fluorinel waste, and for Tank WM-183. Other results reported include: assistance to the Waste Calcining Facility and to the New Waste Calcining Facility, methods for the monitoring of gaseous effluents, and a mathematical model to describe chloride buildup in the waste calcining scrubbing solution. Other projects supporting energy developments: results are reported on nuclear materials safety, the installation and operation of a geothermal fluidized-bed dryer, the in-plant source-term measurement at the Turkey Point station, burnup methods for fast breeder reactor fuels, absolute thermal fission yields, analytical support to light-water breeder reactor developments, cerium analysis of actinide removal project solutions, a spark source mass spectrometric computer program, and on environmental iodine species behavior.

  4. Environmental Sciences Division annual progress report for period ending September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report.

  5. Environmental Sciences Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report.

  6. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible to summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report.

  7. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  8. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  9. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. [ed.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  10. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  11. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  12. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  13. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Genung, R.K.; Hightower, J.R.; Bell, J.T.

    1993-05-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  14. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  15. Energy Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  16. Energy Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.P. [ed.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  17. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  18. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  19. Instrumentation and Controls Division Progress report, July 1, 1992--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.W.

    1995-06-01

    The Instrumentation and Controls (I&C) Division serves a national laboratory, and as such has an expansive domain: science, industry, and national defense. The core mission is to support the scientific apparatus of the Laboratory and all of the systems that protect the safety and health of people and the environment. Progress is reported for the five sections: photonics and measurements systems, electronic systems, signal processing, controls and systems integration, and technical support.

  20. Chemical Technology Division progress report for the period July 1, 1988 to September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period July 1, 1988, through September 30, 1989. The following major areas are covered: waste management and environmental programs, the Waste Management Technology Center, radiochemical and isotope programs, basic science and technology, Nuclear Regulatory Commission and Electric Power Research Institute severe accident research programs, the Office of Safety and Operational Readiness, and administrative resources and facilities.

  1. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  2. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. (ed.)

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  3. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W. S. [ed.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  4. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  5. Health and Safety Research Division progress report for the period April 1, 1987--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1989-03-01

    The mission of the Health and Safety Research Division (HASRD) is to provide a sound scientific basis for the measurement and assessment of human health impacts of radiological and chemical substances. Our approach to fulfilling this mission is to conduct a broad program of experimental, theoretical, and field research based on a strong foundation of fundamental physical studies that blend into well-established programs in life sciences. Topics include biomedical screening techniques, biological and chemical sensors, risk assessment, health hazards, dosimetry, nuclear medicine, environmental pollution monitoring, electron-molecule interactions, interphase physics, surface physics, data base management, environmental mutagens, carcinogens, and tetratogens.

  6. Metals and ceramics division materials science program. Aunnual progress report for period ending June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.

    1979-10-01

    Progress is reported concerning theoretical studies of metals and alloys, deformation and mechanical properties, physical properties and transport phenomena, radiation effects, and engineering materials. During this period emphasis was shifted from support of nuclear technologies to support of nonnuclear energy systems. (FS)

  7. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  8. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

  9. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  10. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  11. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  12. Biology Division progress report for period of October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-01

    The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessment of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents. This Progress Report is intended to provide both broad perspectives of the Division's research programs and synopses of recent achievements. Readers are invited to contact individual principal investigators for more detailed information, including reprints of publications. 120 refs.

  13. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  14. CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions.

    Science.gov (United States)

    Lee, Yong-Uk; Son, Miseol; Kim, Jiyoung; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine.

  15. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M. (ed.)

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31.

  16. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Two major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs.

  17. Environmental Sciences Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.

  18. E-Division semiannual report. Progress report, June 1--December 31, 1977. [Electronics and Instrumentation Division, LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-03-01

    The status of the programs and projects of the Electronics Division is reported for the period of June through December 1977. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to laboratory and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for Laboratory programs. These goals are reflected in this report. Among the subject areas included are the following: radiation detectors, temperature monitoring, electromagnetic probing, Josephson junction switching devices, fiber optics, high-temperature electronics, HVAC systems, microprocessors, fuel cell-powered vehicles, laser fusion.

  19. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

  20. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  1. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E. [ed.

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I&C Division staff members.

  2. Solid-State Division progress report for period ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  3. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  4. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  5. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  6. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  7. Instrumentation and Controls Division biennial progress report, September 1, 1974--September 1, 1976. Non-LMFBR programs

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1976-11-01

    Research progress and developments are reported in the areas of basic electronics, instruments, radiation monitoring, pulse counting and analysis, electronic engineering support for research facilities, automatic control and data acquisition, reactor instrumentation and controls, fuel reprocessing and shipping, process systems and instrumentation development, thermometry, instrumentation for reactor division experiments and test loops, environmental science studies, miscellaneous engineering studies, services, and developments, and maintenance. (WHK)

  8. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C.G. [ed.

    1995-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  9. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  10. Fiber laser beam combining and power scaling progress: Air Force Research Laboratory Laser Division

    Science.gov (United States)

    Wagner, T. J.

    2012-02-01

    Numerous achievements have been made recently by researchers in the areas of fiber laser beam combining and power scaling. Industry has demonstrated multi-kW power from a single fiber amplifier, and a US national laboratory has coherently combined eight fiber amplifiers totaling 4 kW. This paper will survey the recent literature and then focus on fiber laser results from the Laser Division, Directed Energy Directorate of the Air Force Research Laboratory (AFRL). Progress has been made in the power scaling of narrow-linewidth fiber amplifiers, and we are transitioning lessons learned from PCF power scaling into monolithic architectures. SBS suppression has been achieved using a variety of techniques to lower the Brillioun gain, including acoustically tailored fiber, laser gain competition resulting from multitone seeding and inducing a longitudinal thermal gradient. We recently demonstrated a 32-channel coherent beam combination result using AFRL's phaselocking technique and are focused on exploring the limitations of this technique including linewidth broadening, kW-induced phase nonlinearities and auto-tuning methods for large channel counts. Additionally, we have recently refurbished our High Energy Laser Joint Technology Office-sponsored 16-amplifier fiber testbed to meet strict PER, spatial drift, power stability and beam quality requirements.

  11. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period.

  12. Instrumentation and Controls Division biennial progress report, September 1, 1978-September 1, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1981-06-01

    Brief summaries of research work are presented in the following section: overview of the ORNL Instrumentation and Controls Division activities; new developments and methods; reactor instrumentation and controls; measurement and control engineering; electronic engineering; maintenance; studies; services; and development; and division achievements.

  13. Metals and Ceramics Division progress report for period ending December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative R and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.

  14. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  15. Energy Division annual progress report for period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    This eighth annual report of the Division covers work done during FY 1981 (October 1, 1980, through September 30, 1981). As with these documents in the past, the format follows approximately the organizational structure of the Energy Division. Chapters 2 through 6 summarize the activities of the sections of the Division: Environmental Impact Section, headed by H.E. Zittel; Regional and Urban Studies Section, R.M. Davis; Economic Analysis Section, R.B. Shelton; Data and Analysis Section, A.S. Loebl; and Efficiency and Renewables Research Section, J.W. Michel. In addition, work on a variety of projects which cut across section lines is reported in Chapter 7, Integrated Programs. These activities are under the supervision of T.J. Wilbanks, Associate Director for the Division. Separate abstracts are included for individual projects.

  16. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys.

  17. Metals and Ceramics Division progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  18. Theoretical and experimental research on progressive collapse of RC frame buildings

    Directory of Open Access Journals (Sweden)

    Marin Lupoae

    2013-09-01

    Full Text Available Progressive collapse of the buildings has become an important issue to be studied in recent years due to the catastrophic nature of its effects. This subject can be approached from two different perspectives: one where an ideal collapse of the structure is aimed to be achieved and corresponds to the controlled demolition of buildings and other which treats the mitigation of the potential of progressive collapse of structures. The paper presents the results of theoretical and experimental research conducted by the authors regarding the progressive collapse of RC structures from the two perspectives above mentioned.

  19. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E. (ed.)

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNL by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.

  20. Metals and Ceramics Division progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M C) Division during fiscal year (FY) 1991. The division is organized to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by the US Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial interactions (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in high-temperature applications. Sections I through 5 describe the different functional groups; Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Sect. 7 summarizes external interactions including cooperative research and development programs, educational activities, and technology transfer functions. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings.

  1. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  2. E-Division semiannual report. Progress report, July 1--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1979-01-01

    The status of the programs and projects of the Electronics Division for the period July through December 1978 is reported. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support Branch is to apply advanced technology to Laboratory and material problems. The primary goal of the Technical Services Branch is to provide a technical base and support for Laboratory programs. Most of the individual reports are quite short.

  3. Health and Safety Research Division progress report for period ending April 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1978-08-01

    The research goal of the Health and Safety Research Division is to conduct basic and applied research that contributes new scientific knowledge with emphasis in biophysical areas that lead to a better understanding of how alternative energy-related technologies affect man. Included in the basic research are fundamental processes that are important to understand formation, mobility, toxicity, detection, and characterization of pollutants. The applied research includes the integration of data from basic and applied studies through development of concepts and methodologies that can be used for energy-related assessments with primary focus on the health and safety of man. The division has no responsibilities for on-site health and safety.

  4. Energy Division annual progress report for period ending September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    This report describes work done by staff of the Energy Division of Oak Ridge National Laboratory during FY 1986. The work of the Division is quite diversified, but it can be divided into four research themes: (1) technology for improving the productivity of energy use; (2) technology for electric power systems; (3) analysis and assessment of energy and environmental issues, policies, and technologies; and (4) data systems research and development (R and D). The research is supported by the US Department of Energy (DOE), numerous other federal agencies, and some private organizations. 190 refs., 60 figs., 23 tabs.

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Analytical Chemistry Division has programs in inorganic mass spectrometry, optical spectroscopy, organic mass spectrometry, and secondary ion mass spectrometry. It maintains a transuranium analytical laboratory and an environmental analytical laboratory. It carries out chemical and physical analysis in the fields of inorganic chemistry, organic spectroscopy, separations and synthesis. (WET)

  6. Physics Division annual progress report for period ending June 30, 1977. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Stelson, P.H.

    1977-09-01

    The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)

  7. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

  8. Solid State Division annual progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.K.; Young, F.W. Jr.

    1976-05-01

    Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)

  9. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-12-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.

  10. Engineering Physics Division progress report for period ending November 30, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, F.C.

    1979-01-01

    Research and other activities of the Engineering Physics Division (formerly Neutron Physics Division) of ORNL during the period February 28, 1977 to November 30, 1978, are reported. The format is that of abstracts and summaries of prepared papers. Work is summarized in the following general areas: measurements of neutron cross sections and related quantities; cross-section theory, evaluations, and evaluation techniques; cross-section processing, testing, and sensitivity analyses; integral experiments and their analyses; development of methods for shield and reactor analyses; analyses for specific systems or applications (liquid-metal fast breeder reactor program, gas-cooled reactor program, alternate fuel cycle program, magnetic fusion energy program, high-energy physics program, accelerator breeding studies, miscellaneous studies); and information analysis and distribution. Overviews of each of these areas are included. (RWR)

  11. Biology Division progress report for period of October 1, 1985-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    In keeping with the role of DOE national laboratories in research, the work in biology is fundamental and the new knowledge is intended to form the basis both for understanding and for applications by industry to biotechnology, medicine, and agriculture. Almost all the research of the Division is experimental and utilizes mammalian and sub-mammalian systems to obtain data for predicting and understanding hazards to human health. Among the possible adverse effects of environmental substances on the health of humans, the Division has concentrated its efforts on mutagenesis, heritable genetic effects, and carcinogenesis all of which involve molecular, cellular, and organizational studies of the consequences of damage to genetic materials. Biology also has been assigned the major responsibility by DOE for the investigation of the carcinogenic effects of external high LET radiation (neutron and heavy ion radiation).

  12. Energy Division annual progress report for period ending September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report covers work done during FY 1983 by the staff of the Energy Division and its subcontractors and by colleagues in other Oak Ridge National Laboratory divisions working on Energy Division projects. The work can be divided into four areas: (1) analysis and assessment, (2) models and data systems, (3) research to improve the efficiency of energy use and to improve electric power transmission and distribution, and (4) research utilization. Support came principally from the US Department of Energy (DOE), the US Nuclear Regulatory Commission, and the US Department of Defense, but also from a number of other agencies and organizations. Analysis and assessment included work on (a) environmental issues, including those deriving from the preparation of environmental impact statements; (b) energy and resource analysis; and (c) emergency preparedness. The models and data systems area involved research on evaluating and developing energy, environment, and engineering simulation models and on devising large data management systems, evaluating user data requirements, and compiling data bases. Research on improving the efficiency of energy use was focused primarily on the buildings and electricity sectors. A major effort on heat pump technology, which includes both heat-activated and electrically driven systems, continues. An important aspect of all the work was research utilization. Since the Energy Division is doing applied research, results are, by definition, intended to solve problems or answer questions of DOE and other sponsors. However, there are other users, and research utilization activities include technology transfer, commercialization efforts, outreach to state and regional organizations, and, of course, information dissemination.

  13. Environmental Sciences Division. Annual progress report for period ending September 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The energy crisis and creation of ERDA were dominant factors affecting the activities of the Environmental Sciences Division during the past year. Efforts primarily centered on coal conversion effluents, aquatic effects from power plants, terrestrial modeling of both radioactive and nonradioactive waste transport, mineral cycling, forest management, and information handling codes and techniques. A bibliography of publications, presentation, these, and other professional activities is included. (PCS)

  14. Engineering Physics Division progress report for period ending November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution.

  15. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.

    1993-05-01

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  16. Biology Division progress report for the period of October 1, 1986--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. Accordingly, /approximately/75% of the Division's total budget is derived from the Department of Energy through its Office of Health and Environmental Research. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessment of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents.

  17. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.; Lyon, W.S. (ed.)

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance. (DLC)

  18. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Code Division Multiple Access (CDMA technique which allows communications of multiple users in the same communication system. This is achieved in such a way that each user is assigned a unique code sequence, which is used at the receiver side to discover the information dedicated to that user. These systems belong to the group of communication systems for direct sequence spread spectrum systems. Traditionally, CDMA systems use binary orthogonal spreading codes. In this paper, a mathematical model and simulation of a CDMA system based on the application of non-binary, precisely speaking, chaotic spreading sequences. In their nature, these sequences belong to random sequences with infinite periodicity, and due to that they are appropriate for applications in the systems that provide enhanced security against interception and secrecy in signal transmission. Numerous papers are dedicated to the development of CDMA systems in flat fading channels. This paper presents the results of these systems analysis for the case when frequency selective fading is present in the channel. In addition, the paper investigates a possibility of using interleaving techniques to mitigate fading in a wideband channel with the frequency selective fading. Basic structure of a CDMA communication system and its operation In this paper, a CDMA system block schematic is ppresented and the function of all blocks is explained. Notation  to be used in the paper is introduced. Chaotic sequences are defined and explained in accordance with the method of their generation. A wideband channel with frequency selective fading is defined by its impulse response function. Theoretical analysis of a CDMA system with flat fading in a narrowband channel A narrowband channel and flat fading are defined. A mathematical analysis of the system is conducted by presenting the signal expressions at vital points in the transmitter and receiver. The expression of the signal at the output of the sequence correlator is

  19. Solid State Division Progress Report for period ending March 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

  20. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  1. Chemistry Division annual progress report for period ending April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  2. Health and Safety Research Division progress report, July 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report summarizes progress made for the period July 1984 through September 1985. Sections describe research in health studies, dosimetry and biophysical transport, biological and radiation physics, chemical physics, and risk analysis. (ACR)

  3. Metals and Ceramics Division progress report for period ending June 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This progress report is divided into: engineering materials, high-temperature materials, materials science, program activities, and collaborative research facilities. Very little hard data is presented. The appendices include listings of seminars, publications, and conference papers. (DLC)

  4. Biology Division progress report, October 1, 1978-May 31, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Separate abstracts were prepared for each of the four sections into which this progress report has been divided. The report also contains sections related to interdivision activities and educational activities. (ERB)

  5. Engineering Physics and Mathematics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report provides an archival record of the activities of the Engineering Physics and Mathematics Division during the period June 30, 1985 through September 30, 1987. Work in Mathematical Sciences continues to include applied mathematics research, statistics research, and computer science. Nuclear-data measurements and evaluations continue for fusion reactors, fission reactors, and other nuclear systems. Also discussed are long-standing studies of fission-reactor shields through experiments and related analysis, of accelerator shielding, and of fusion-reactor neutronics. Work in Machine Intelligence continues to feature the development of an autonomous robot. The last descriptive part of this report reflects the work in our Engineering Physics Information Center, which again concentrates primarily upon radiation-shielding methods and related data.

  6. Fusion energy division annual progress report, period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  7. Energy Division annual progress report for period ending September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    A summmary of the work in each section of the Energy Division at ORNL is given and can be characterized by two themes: (1) environmental assessment, including social and economic considerations, and (2) fuel conservation and energy conversion efficiency. The first theme encompasses the preparation of environmental statements and assessments for nuclear power plants and other energy facilities (Chap. 2) as well as regional analyses of social, economic, and environmental effects due to energy system development patterns (Chap. 3). The second theme characterizes a broad scope of conservation-related work, including efforts to understand energy demand patterns and to develop technologies and arrangements for reducing these demands (Chap. 4). This theme also encompasses research directed at improving both high- and low-temperature thermodynamic cycles driven by solar, geothermal, or fossil energy sources (Chaps. 5 and 6). A listing of publications and oral presentations complete the report. A separate abstract was prepared for each major section or program. (MCW)

  8. Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E.E. (ed.)

    1982-12-01

    Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced ..gamma.. and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed. (WHK)

  9. Task A: Research in theoretical elementary particle physics at the University of Florida; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1993-11-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.

  10. Instrumentation and Controls Division biennial progress report, September 1, 1976--September 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (ed.)

    1978-11-01

    Progress is summarized in the following research and development areas: electronic circuits;instruments; radiation monitoring; process systems and instrumentation; thermometry; instrumentation for engineering experiments and test loops; HTGR fuel recycle development; reactor measurements and analysis; automatic control and data acquisition; electronic engineering support for research facilities; miscellaneous engineering services, studies, and developments; maintenance; and environmental science studies.

  11. Health and Safety Research Division progress report, April 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-02-01

    Research progress for the reporting period is briefly summarized for the following sections: (1) health studies, (2) technology assessments, (3) biological and radiation physics, (4) chemical physics, (5) Office of Risk Analysis, and (6) health and environmental risk and analysis. (ACR)

  12. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  13. Neutron Physics Division progress report for period ending February 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, F.C.

    1977-05-01

    Summaries are given of research progress in the following areas: (1) measurements of cross sections and related quantities, (2) cross section evaluations and theory, (3) cross section processing, testing, and sensitivity analysis, (4) integral experiments and their analyses, (5) development of methods for shield and reactor analyses, (6) analyses for specific systems or applications, and (7) information analysis and distribution. (SDF)

  14. Experimental Physics Division of the Los Alamos Project. Progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1943-09-01

    Included in this semi-monthly report written in 1943 are progress with neutron beams, neutron absorption in enriched materials, equipment operation and maintenance reports of the cyclotron neutron source facility, and instrumentation maintenance activities of individuals in the cyclotron group. (GHT)

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included.

  16. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included. (DLC)

  17. Health and Safety Research Division. Progress report, October 1, 1979-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Research progress for the period October 1, 1979 through March 31, 1981 is reported. Research conducted by the Office of Integrated Assessments and Policy Analysis, Health Studies Section, Technology Assessments Section, Biological and Radiation Physics Section, and Chemical Physics Section is summarized. (ACR)

  18. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  19. Physics Division annual progress report for period ending December 31, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report contains information on the Holifield Heavy-Ion Research Facility, nuclear physics, nuclear physics with neutrons, theoretical physics, the Nuclear Data Project, accelerator-based atomic physics, magnetic fusion energy-applied physics research, electron spectroscopy, and high-energy physics, as well as lists of publications, papers presented at meetings, and other general information. Sixty-two items containing significant information were abstracted and indexed individually. (RWR)

  20. Metals and Ceramics Division materials science program. Annual progress report for period ending June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1981-09-01

    Information is presented concerning the theoretical studies of metals and alloys; x-ray diffraction research; structural ceramics; structure of coal; analytical and high-voltage electron microscopy; deformation and mechanical properties; mechanisms of surface and solid-state reactions; physical properties research; metastable materials; neutron radiation effects; charged particle radiation effects; theory and modeling of radiation effects; facility and advanced technique development; fundamentals of welding and joining; and studies in nondestructive evaluation.

  1. [Experimental and theoretical plasma physics program]. Technical progress [in FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Griem, H.

    1981-12-31

    In recent years, members of the Maryland Theory Group have made significant contributions to the national fusion theory programs and in many cases these theoretical development helped to interpret experimental results and to design new experimental programs. In the following, the authors summarize the technical progress in five major areas: (1) rf interaction with plasmas including wave propagation, rf heating, rf induced runaways and current drive; (2) spheromak -- formation, equilibrium, and stability; (3) stability of nonaxisymmetric systems (EBT, mirror, etc.); (4) stability theory of toroidal plasmas -- tokamak, RFP, etc.; and (5) nonlinear theory.

  2. Theoretical nuclear structure and astrophysics. Progress report for 1993--1995

    Energy Technology Data Exchange (ETDEWEB)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-12-31

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops.

  3. Occupational health and environment research 1983: Health, Safety, and Environment Division. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Voelz, G.L. (comp.)

    1985-05-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the workers, the public, and the environment. Evaluation of respiratory protective equipment included the XM-30 and M17A1 military masks, use of MAG-1 spectacles in respirators, and eight self-contained units. The latter units were used in an evaluation of test procedures used for Bureau of Mines approval of breathing apparatuses. Analyses of air samples from field studies of a modified in situ oil shale retorting facility were performed for total cyclohexane extractables and selected polynuclear aromatic hydrocarbons. Aerosols generation and characterization of effluents from oil shale processing were continued as part of an inhalation toxicology study. Additional data on plutonium excretion in urine are presented and point up problems in using the Langham equation to predict plutonium deposition in the body from long-term excretion data. Environmental surveillance at Los Alamos during 1983 showed the highest estimated radiation dose from Laboratory operations to be about 26% of the natural background radiation dose. Several studies on radionuclides and their transport in the Los Alamos environment are described. The chemical quality of surface and ground water near the geothermal hot dry rock facility is described. Short- and long-term consequences to man from releases of radionuclides into the environment can be simulated by the BIOTRAN computer model, which is discussed brirfly.

  4. Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S. (ed.)

    1979-09-01

    Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

  5. Technical analysis support for Transportation Energy Conservation Division of DOE. Tenth progress report for May 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-10

    The work to be performed by the Aerospace Corporation for the DOE/TEC is confined to the following basic task areas: (1) technical support of ongoing research and development programs in energy efficient transportation systems; (2) analysis for the future commercialization of transportation technologies; (3) new concept evaluation program support; (4) technical evaluation of new concepts, inventions, and ideas; (5) assessment of technological and other factors on the implementation and utilization of transportation in the United States; and (6) program planning analysis and documentation. The status of achieved progress through the period ending May 31, 1979 is presented; and the expenditure status is summarized. (WHK)

  6. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B.M. (ed.)

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned.

  7. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-01-01

    Fuel cycle work included hydraulic performance and extraction efficiency of eight-stage centrifugal contactors, flowsheet for the Aralex process, Ru and Zr extraction in a miniature centrifugal contactor, study of Zr aging in the organic phase and its effect on Zr extraction and hydraulic testing of the 9-cm-ID contactor. Work for predicting accident consequences in LWR fuel processing covered the relation between energy input (to subdivide a solid) and the modes of particle size frequency distribution. In the pyrochemical and dry processing program corrosion-testing materials for containment vessels and equipment for studying carbide reactions in bismuth is under way. Analytical studies have been made of salt-transport processes; efforts to spin tungsten crucibles 13 cm dia continue, and other information on tungsten fabrication is being assembled; the process steps of the chloride volatility process have been demonstrated and the thoria powder product used to produce oxide pellets; solubility of UO/sub 2/, PuO/sub 2/, and fission products in molten alkali nitrates is being investigated; work was continued on reprocessing actinide oxides by extracting the actinides into ammonium chloroaluminate from bismuth; the preparation of thorium-uranium carbide from the oxide is being studied as a means of improving the oxide reactivity; studies are in progress on producing uranium metal and decontaminated ThO/sub 2/ by the reaction of (Th,U)O/sub 2/ solid solution in molten salts containing ThCl/sub 4/ and thorium metal chips. In the molten tin process, no basic thermodynamic or kinetic factors have been found that may limit process development.

  8. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    Directory of Open Access Journals (Sweden)

    Yunhou Sun

    2015-01-01

    Full Text Available With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape, crater scaling laws and empirical formulae, and simplified analysis models of crater parameters for spherical projectiles impact on semi-infinite targets were reviewed, so were the long rod penetration state differentiation, penetration depth calculation models for the semifluid, and deformed long rod projectiles. Finally, some research proposals were given for further study.

  9. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.

    Science.gov (United States)

    Bhatt, Mahesh Datt; O'Dwyer, Colm

    2015-02-21

    There is an increasing worldwide demand for high energy density batteries. In recent years, rechargeable Li-ion batteries have become important power sources, and their performance gains are driving the adoption of electrical vehicles (EV) as viable alternatives to combustion engines. The exploration of new Li-ion battery materials is an important focus of materials scientists and computational physicists and chemists throughout the world. The practical applications of Li-ion batteries and emerging alternatives may not be limited to portable electronic devices and circumventing hurdles that include range anxiety and safety among others, to their widespread adoption in EV applications in the future requires new electrode materials and a fuller understanding of how the materials and the electrolyte chemistries behave. Since this field is advancing rapidly and attracting an increasing number of researchers, it is crucial to summarise the current progress and the key scientific challenges related to Li-ion batteries from theoretical point of view. Computational prediction of ideal compounds is the focus of several large consortia, and a leading methodology in designing materials and electrolytes optimized for function, including those for Li-ion batteries. In this Perspective, we review the key aspects of Li-ion batteries from theoretical perspectives: the working principles of Li-ion batteries, the cathodes, anodes, and electrolyte solutions that are the current state of the art, and future research directions for advanced Li-ion batteries based on computational materials and electrolyte design.

  10. Experimental and theoretical high energy physics research. Annual progress report, September 1, 1991--September 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.

  11. Constructing the principles: Method and metaphysics in the progress of theoretical physics

    Science.gov (United States)

    Glass, Lawrence C.

    This thesis presents a new framework for the philosophy of physics focused on methodological differences found in the practice of modern theoretical physics. The starting point for this investigation is the longstanding debate over scientific realism. Some philosophers have argued that it is the aim of science to produce an accurate description of the world including explanations for observable phenomena. These scientific realists hold that our best confirmed theories are approximately true and that the entities they propose actually populate the world, whether or not they have been observed. Others have argued that science achieves only frameworks for the prediction and manipulation of observable phenomena. These anti-realists argue that truth is a misleading concept when applied to empirical knowledge. Instead, focus should be on the empirical adequacy of scientific theories. This thesis argues that the fundamental distinction at issue, a division between true scientific theories and ones which are empirically adequate, is best explored in terms of methodological differences. In analogy with the realism debate, there are at least two methodological strategies. Rather than focusing on scientific theories as wholes, this thesis takes as units of analysis physical principles which are systematic empirical generalizations. The first possible strategy, the conservative, takes the assumption that the empirical adequacy of a theory in one domain serves as good evidence for such adequacy in other domains. This then motivates the application of the principle to new domains. The second strategy, the innovative, assumes that empirical adequacy in one domain does not justify the expectation of adequacy in other domains. New principles are offered as explanations in the new domain. The final part of the thesis is the application of this framework to two examples. On the first, Lorentz's use of the aether is reconstructed in terms of the conservative strategy with respect to

  12. Instrumentation and Controls Division Progress Report for the Period of July 1, 1994 to December 31, 1997: Publications, Presentations, Activities, and Awards

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.W.

    1998-04-01

    This report contains a record of publishing and other activities in the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I&C) Division for the period of July 1, 1994, to December31, 1997. It is a companion volume to Working Together on New Horizons: Instrumentation and Controls Division Progress Report for the Period of July 1, 1994, to December 31, 1997 (OR.NLA4-6530). Working Together on New Horizons contains illustrated summaries of some of the projects under way in I&C Division. Both books can be obtained by contacting C. R. Brittain (brittain@ornl. gov), P.O. Box 2008, Oak Ridge, TN 37831-6005. l&C Division Mission and Vision I&C Division develops and maintains techniques, instruments, and systems that lead to a better understanding of nature and harnessing of natural phenomena for the benefit of humankind. We have dedicated ourselves to accelerating the advancement of science and the transfer of those advancements into products and processes that benefit U.S. industry and enhance the security of our citizens.

  13. What One Intelligence Test Measures: A Theoretical Account of the Processing in the Raven Progressive Matrices Test

    Science.gov (United States)

    1990-04-03

    4428017.---0: 11. TITLE (include Security Clasification ) What One Intelligence Test Measures: A Theoretical Account of the Processing in the Raven...that is widely used for adults of higher ability, the Raven Advanced Progressive Matrices. Sets I and II. Set I. consisting of 12 problems, is often...them in their difficulty. The magnitude of the variation is apparent from the error rates (shown in Figure 3) of 2256 British adults . including

  14. 2016 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ferre, Gregoire Robing [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Grantcharov, Vesselin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Krishnapriyan, Aditi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Kurtakoti, Prajvala Kishore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Le Thien, Minh Quan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lim, Jonathan Ng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Low, Thaddeus Song En [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lystrom, Levi Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Nguyen, Hong T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Pogue, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Revard, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Roy, Julien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Sandor, Csanad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Slavkova, Kalina Polet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Weichman, Kathleen Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Wu, Fei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Yang, Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-11-29

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  15. Instrumentation and Controls Division annual progress report for period ending September 1, 1974. Non-LMFBR program

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, G.S. (comp.)

    1976-09-01

    Research projects are summarized under the following categories: (1) basic electronics development; (2) engineering support for research facilities; (3) pulse counting and analysis; (4) radiation detection and monitoring; (5) instrument development; (6) automatic control and data acquisition; (7) process systems and instrumentation development; (8) reactor instrumentation and controls; (9) fuel reprocessing and shipping; (10) standards laboratory; (11) instrumentation for reactor division experiments and test loops; (12) maintenance and service; (13) ecological science studies; and (14) administration and training. (WHK)

  16. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  17. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  18. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  19. Theoretical aspects of electroweak and other interactions in medium energy nuclear physics. Interim progress report

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1994-12-05

    Significant progress has been made in the current project year in the development of chiral soliton model and its applications to the electroweak structure of the nucleon and the Delta (1232) resonance. Further progress also has been made in the application of the perturbative QCD (pQCD) and the study of physics beyond the standard model. The postdoctoral associate and the graduate student working towards his Ph.D. degree have both made good progress. The review panel of the DOE has rated this program as a ``strong, high priority`` one. A total of fifteen research communications -- eight journal papers and, conference reports and seven other communications -- have been made during the project year so far. The principal investigator is a member of the Physics Advisory Committee of two nuclear accelerator facilities.

  20. En route air traffic controllers' use of flight progress strips : a graph-theoretic analysis.

    Science.gov (United States)

    1992-11-01

    In the United States, flight data are represented on a paper Flight Progress Strip (FPS). The role of the FPS has recently attracted attention because of plans to automate this aspect of air traffic control. The communication activities and FPS activ...

  1. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  2. Research in theoretical physics. Annual progress report, April 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Domokos, G.; Kovesi-Domokos, S.

    1992-12-01

    Progress made in the following areas is summarized: simulation of extensive air showers induced by interactions existing beyond the currently accepted ``Standard Model`` of elementary particle interactions; search for physics beyond the ``Standard Model`` in gluonic inclusive decays of heavy quarks; obtaining limits on the applicability of the special theory of relativity; an improved method of obtaining upper limits on the masses of primaries of extensive air showers associated with point sources in the sky. 8 figs., 1 tab., 73 refs.

  3. Theoretical and substantive concept of sustainable close-to-nature managed progress

    Directory of Open Access Journals (Sweden)

    Dušan Plut

    2005-12-01

    Full Text Available Implementation of the principles of sustainability in the economic, social and environmental field means that organisation and (material operation of a society is permanently adapted to the environment. Sustainable close-to-naturemanaged development, or in a broader sense progress, means permanent (sustainable and simultaneous improvement of material, social and environmental quality of life, thus a permanent raise of the welfare in its broader sense of all inhabitants within the capacities (limitations of the environment. The opportunity of geography is to take an active part in the realisation of close-to-nature managed patterns of the spatial organisation of human activity.

  4. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  5. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-01-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

  6. An Examination of the Influence of Institutional Context on Academic Progress Rates at Division I Institutions: A Multilevel Approach

    Science.gov (United States)

    McLaughlin, Jacqueline Elaine

    2012-01-01

    The growing attention given to intercollegiate athletics in recent years amid ongoing controversies highlights the importance of closely examining the implementation and impact of sports policy on college campuses. In an attempt to improve the academic performance and retention of student-athletes, the Academic Progress Rate (APR) was implemented…

  7. A Longitudinal Study of Academic Progress Rate as a Result of Team and Institutional Variables at NCAA Division I Schools

    Science.gov (United States)

    Hale, Jimmie Edwin

    2014-01-01

    This study explained Academic Progress Rate (APR) levels and differences in APR (DAPR) with team and institutional variables. Team variables included team gender, sport profile, and squad size. Institutional variables included individual variables aggregated to the institutional level. The data analyzed in this study was derived from the National…

  8. Theoretical progress on the V_us determination from tau decays

    CERN Document Server

    Gamiz, E; Pich, Antonio; Prades, Joaquim; Schwab, Felix

    2007-01-01

    A very precise determination of V_us can be obtained from the semi-inclusive hadronic decay width of the tau lepton into final states with strangeness. The ratio of the Cabibbo-suppressed and Cabibbo-allowed tau decay widths directly measures (V_us/V_ud)^2, up to very small SU(3)-breaking corrections which can be theoretically estimated with the needed accuracy. Together with previous LEP and CLEO data, the recent measurements by Babar and Belle of some Cabibbo-suppressed tau decays imply V_us= 0.2165 +- 0.0026_exp +- 0.0005_th, which is already competitive with the standard extraction from K_l3 decays. The uncertainty is largely dominated by experimental errors and should be easily reduced with the high statistics of the B factories, providing the most accurate determination of this parameter. A 1% experimental precision on the Cabibbo-suppressed tau decay width would translate into a 0.6% uncertainty on V_us.

  9. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  10. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1997-06-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October-December 1996. The report describes ten tasks conducted in four major areas of research and development within the section. The first major research area -- Chemical Processes for Waste Management -- includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Development and Testing of Inorganic Sorbents, and Sludge Treatment Studies. Within the second research area -- Reactor Fuel Chemistry -- the distribution of iodine in containment during an AP600 design-basis accident was evaluated using models in the TRENDS code. Within the third research area -- Thermodynamics -- efforts continued in the Thermodynamics and Kinetics of energy-Related Materials task. The fourth major research area -- Processes for Waste Management -- includes work on these tasks: Ion-Exchange Process for Heavy Metals Removal, Search for Technetium in Natural Metallurgical Residues, and Waste Form Development and Testing of a Glass- and Cement-Based Dedicated Hot-Cell Facility.

  11. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1996-11-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period April--June 1996. The report describes 12 tasks conducted in 4 major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Sludge Treatment Studies, and Development and Testing of Inorganic Sorbents. Within the second research area--Reactor Fuel Chemistry--a new scope of work for the Technical Assistance in Review of Advanced Reactors task has been established to include assessments of iodine behavior nd pH control in operating nuclear reactor containments as well as in advanced reactor systems. This task is on hold, awaiting finalization of the revised proposal and receipt of the necessary information from Westinghouse to permit the start of the study. Within the third research area--Thermodynamics--the Thermodynamics and Kinetics of Energy-Related Materials task has used a differential thermal analysis (DTA)/thermogravimetric analysis (TGA) to study the phase transitions of phase-pure YBa{sub 2}Cu{sub 3}O{sub 6+x} (123). The fourth major research area--Processes for Waste Management--includes work on these tasks: Ion Exchange Process for Heavy Metals Removal, Hot Cell Cross-Flow Filtration Studies of Gunite Tank Sludges, and Chemical Conversion of Nitrate Directly to Nitrogen Gas: A Feasibility Study.

  12. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-11-01

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for

  14. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  15. Experimental and theoretical high energy physics research. Annual grant progress report (FDP), January 15, 1993--January 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cline, D.B.

    1993-10-01

    Progress on seven tasks is reported. (I)UCLA hadronization model, antiproton decay, PEP4/9 e{sup +}e{sup {minus}} analysis: In addition to these topics, work on CP and CPT phenomenology at a {phi} factory and letters of support on the hadronization project are included. (II)ICARUS detector and rare B decays with hadron beams and colliders: Developments are summarized and some typcial events as shown; in addition, the RD5 collaboration at CERN and the asymmetric {phi} factory project are sketched. (III)Theoretical physics: Feynman diagram calculations in gauge theory; supersymmetric standard model; effects of quantum gravity in breaking of global symmetries; models of quark and lepton substructure; renormalized field theory; large-scale structure in the universe and particle-astrophysics/early universe cosmology. (IV)H dibaryon search at BNL, kaon experiments (E799/KTeV) at Fermilab: Project design and some scatterplots are given. (V)UCLA participation in the experiment CDF at Fermilab. (VI)Detectors for hadron physics at ultrahigh energy colliders: Scintillating fiber and visible light photon counter research. (VII)Administrative support and conference organization.

  16. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  17. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  18. Progress report of a research program in experimental and theoretical high energy physics, 1 June 1992--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, R.; Cutts, D.; Fried, H.M. [and others

    1993-06-01

    The main emphasis in the theoretical program has been in the area of string theory; also investigated were confinement and other aspects of QCD, electroweak symmetry breaking, and electroweak baryogenesis. The research program in computational physics concentrated on the development of the source Galerkin method of numerical quantum field theory. One portion of the experimental program dealt with interactions of leptons and hadrons from accelerator and strophysics sources. A description of the Large Volume Detector at Gran Sasso and its use as a stellar collapse monitor is given, along with an account of research and development on resistive plate counters. The rest of the experimental program concerns hadron collider and neutrino physics, with major emphasis on the D0 experiment at the TeVatron. The commissioning of the D0 detector and its operation are described, along with D0 analysis. Also reported is a novel cryogenic technique utilizing superfluid helium for neutrino calorimetry. 122 refs., 7 tabs., 23 figs.

  19. Theoretical research in intermediate-energy nuclear physics. [Technical progress report, April 1, 1993--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Seki, R.

    1994-09-01

    This paper discusses progress that has been made on the following seven problems: (1) (e, e{prime}p) at high momentum transfer; (2) post,acceleration effects in two-nucleon interferometry of heavy-ion collisions; (3) pion-nucleus interactions above 0.5 GeV; (4) chiral symmetry breaking in nuclei and picnic atom anomaly; (5) atomic screening on nuclear astronomical reactions; (6) QCD related work (coherent pion production from skyrmion-antiskyrmion annihilation, QCD in 1 + 1 dimensions, and correlation functions in the QCD vacuum), and (7) kaonic hydrogen atom experiment. The problems deal with various topics mostly in intermediate-energy nuclear physics. We place priority on (1) and (2), and describe them somewhat in detail below. Other problems are our on-going projects, but we are placing lower priority on them in the second and third year.

  20. Theoretical and experimental studies of elementary physics. Annual technical progress report, November 1, 1992--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.; Orr, L.

    1993-05-01

    The various components of the high-energy physics research program at the University of Rochester are presented. (I)Fixed-target experimentation at FNAL includes studies of direct photon production by p and {pi} on H, Be, and Cu, and hybrid mesons and other physics issues in Coulomb excitation at high energies. (II)The status of the GEM (Gammas, Electrons, and Muons) Experiment at the SSC is given. (III)The D-Zero experiment at FNAL is reviewed. (IV)Deep inelastic lepton--nucleon scattering experiments are summarized: electron scattering experiments at SLAC, FNAL neutrino quad triplet runs, FNAL neutrino sign selected experiments, and SDC cosmic ray test and test beam calibration. (V)Studies of nonlinear QED at SLAC concentrated on a study of QED at critical field strength in intense laser--high-energy electron collisions. (VI)Development work on the Collider Detector at Fermilab (CDF) emphasized the CDF silicon vertex detector, the end plug calorimeter, and the SDC tile/fiber calorimetry. (VII)The theoretical physics effort is sketched.

  1. Instrumentation and Controls Division Progress Report for the Period July 1, 1994, to December 31, 1997: Working Together on New Horizons

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.W.

    1998-04-01

    The ORNL I&C Division was created to support DOE-funded research. We have since broadened our mission to include other sponsors as the need for our services has grown. This report summarizes some of the work we have been conducting on behalf of DOE, other federal agencies, and the private sector during the past three and a half years. Because we take on nearly 750 individual projects every year, much of our work cannot be reported in detail. We hope that these summaries are of interest and demonstrate that our work, rooted in DOE scientific and technological programs, can also benefit the nation, its industry, and its citizens in direct and tangible ways.

  2. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  3. Physics division annual report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2007-03-12

    isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  4. Physics Division annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  5. Home | Division of Cancer Prevention

    Science.gov (United States)

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  6. Fighting Divisions

    Science.gov (United States)

    1945-12-01

    Zekes and Bettys sprayed the beach. 29 The dunes were raked by enemy mortar, machine-gun and small-arms fire. But the 24th landed and kept moving. The...from January to May 1945, that observing its progress was a good deal like watching a lively tennis match. Reaching the European Theater in November...counteroffensive. When Patton rushed over to help the First Army repel the onslaught, the 87th was one of the divi- sions he took with him to smash the drive

  7. PERSONNEL DIVISION BECOMES HUMAN RESOURCES DIVISION

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    In the years to come, CERN faces big challenges in the planning and use of human resources. At this moment, Personnel (PE) Division is being reorganised to prepare for new tasks and priorities. In order to accentuate the purposes of the operation, the name of the division has been changed into Human Resources (HR) Division, with effect from 1st January 2000. Human Resources DivisionTel.73222

  8. Seeking a progressive relationship for learning: A theoretical scheme about the continuity of the student-educator relationship in clinical nursing education.

    Science.gov (United States)

    Yaghoubinia, Fariba; Heydari, Abbas; Latifnejad Roudsari, Robab

    2014-01-01

    The student-educator relationship is an educational tool in nursing education and has long-lasting influence on the professional development of nursing students. Currently, this relationship in clinical settings is different from that in the past due to a paradigm shift in nursing education and its emphasis on the centrality of the relationship. The purpose of this grounded theory study was to explore the continuity of the student-educator relationship in the Iranian context of clinical nursing education. Ten bachelor nursing students and 10 clinical educators at Mashhad University of Medical Sciences, Iran, were selected through purposive and theoretical sampling. The data were collected through semi-structured interviews and participant observation. Interviews were transcribed verbatim, and data analysis was done through open, axial, and selective coding, using MAXQDA ver. 2007 qualitative data analysis software. The core category emerging from the data analysis was "seeking a progressive relationship for learning". Other major categories linked to and embraced within this core category were: "creating emotional connection", "trying to continue the relationship chain", and "adapting the behaviors". The findings indicated that in the Iranian sociocultural context, students and educators gain some action/interaction strategies for continuity of their relationship. It is obvious that the role of the nursing clinical educators and their relationship skills are critical in the relationship continuity of clinical settings. © 2013 The Authors. Japan Journal of Nursing Science © 2013 Japan Academy of Nursing Science.

  9. Lattice sieving and trial division

    OpenAIRE

    Golliver, R. A.; Lenstra, Arjen K.; McCurley, K. S.

    1994-01-01

    Reports on work in progress on our new implementation of the relation collection stage of the general number field sieve integer factoring algorithm. Our experiments indicate that we have achieved a substantial speed-up compared to other implementations that are reported in the literature. The main improvements are a new lattice sieving technique and a trial division method that is based on lattice sieving in a hash table. This also allows us to collect triple and quadruple large prime relati...

  10. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major

  11. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, July-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C. (ed.)

    1981-03-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report also includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions.

  12. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, January-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C. (ed.)

    1981-09-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions.

  13. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  14. Field Division Routing

    Directory of Open Access Journals (Sweden)

    Yuan Lin

    2010-01-01

    Full Text Available Multihop communication objectives and constraints impose a set of challenging requirements that create difficult conditions for simultaneous optimization of features such as scalability and performance. Routing in wireless multihop networks represents a crucial component of the overall network efficacy because it is a lower layer that enables the actual functionality of networks. We have developed field division routing (FDR, a distributed and nonhierarchical routing protocol that aims to coordinated addressing of scalability, topology alternations, latency, throughput, energy efficiency, and local storage requirements. FDR is based upon two optimization mechanisms: a reactive and focused diffusion that collects only network topology information directly required for making localized routing decisions, and a protocol for sharing routing information among neighboring nodes. Routing table initialization and maintenance are scalable in terms of both storage and overhead traffic necessary for building routing tables. FDR provides guaranteed connectivity while providing near-optimal all-node-pairs message delivery. The protocol is also power-efficient to a wide spectrum of topology changes that induce relatively few messages to update routing tables network-wide. We analyzed the new routing protocol both theoretically and using simulation.

  15. The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony

    DEFF Research Database (Denmark)

    Arnot, David E; Ronander, Elena; Bengtsson, Dominique C

    2011-01-01

    The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of paras......The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases...... of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard...

  16. Physics Division annual report - 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  17. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    to non Gaussian infinitely divisible processes. First we show that the class of infinitely divisible semimartingales is so large that the natural analog of Stricker's theorem fails to hold. Then, as the main result, we prove that an infinitely divisible semimartingale relative to the filtration generated...... by a random measure admits a unique decomposition into an independent increment process and an infinitely divisible process of finite variation. Consequently, the natural analog of Stricker's theorem holds for all strictly representable processes (as defined in this paper). Since Gaussian processes...... are strictly representable due to Hida's multiplicity theorem, the classical Stricker's theorem follows from our result. Another consequence is that the question when an infinitely divisible process is a semimartingale can often be reduced to a path property, when a certain associated infinitely divisible...

  18. Progress in research, January 1, 1976--December 31, 1976. [Theoretical Nuclear Physics Group, Dept. of Physics, Univ. of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group of the Department of Physics of the University of Texas at Austin during the period January 1, 1976, to December 31, 1976, are described. Most of the work has already been published, or soon will be. 26 figures. (RWR)

  19. Radiation Effects on Fused Biconical Taper Wavelength Division Multiplexers

    Science.gov (United States)

    Gutierrez, Roman C.; Swift, Gary M.; Dubovitsky, Serge; Bartman, Randall K.; Barnes, Charles E.; Dorsky, Leonard

    1994-01-01

    The effects of radiation on fused biconical taper wavelength division multiplexers are presented. A theoretical model indicates that index changes in the fiber are primarily responsible for the degradation of these devices.

  20. Radiation effects on fused biconical taper wavelength division multiplexers

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, R.C.; Swift, G.M.; Dubovitsky, S.; Bartman, R.K.; Barnes, C.E.; Dorsky, L. (California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.)

    1994-12-01

    The effects of radiation on fused biconical taper wavelength division multiplexers are presented. A theoretical model indicates that index changes in the fiber are primarily responsible for the degradation of these devices.

  1. Chemical Sciences Division: Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  2. Division: The Sleeping Dragon

    Science.gov (United States)

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  3. Increasing population growth by asymmetric segregation of a limiting resource during cell division

    National Research Council Canada - National Science Library

    Avraham, Nurit; Soifer, Ilya; Carmi, Miri; Barkai, Naama

    .... Notably, while deletion of WHI5 alleviates daughter cell division arrest in low‐zinc conditions, it results in a lower final population size, as cell division rate becomes progressively slower...

  4. Staff Directory | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. 2013 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. 2017 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. 2014 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. 2016 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. 2015 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. 2018 News Articles | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Nutritional Science Staff | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Divisible ℤ-modules

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2016-03-01

    Full Text Available In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].

  13. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations. Phase 6-B: Experiments with progressing/regressing forced rotor flapping modes

    Science.gov (United States)

    Hohenemser, K. H.; Crews, S. T.

    1972-01-01

    A two bladed 16-inch hingeless rotor model was built and tested outside and inside a 24 by 24 inch wind tunnel test section at collective pitch settings up to 5 deg and rotor advance ratios up to .4. The rotor model has a simple eccentric mechanism to provide progressing or regressing cyclic pitch excitation. The flapping responses were compared to analytically determined responses which included flap-bending elasticity but excluded rotor wake effects. Substantial systematic deviations of the measured responses from the computed responses were found, which were interpreted as the effects of interaction of the blades with a rotating asymmetrical wake.

  14. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations (further experiments with progressing/regressing rotor flapping modes), Phase 7-C

    Science.gov (United States)

    Hohenemser, K. H.; Crews, S. T.

    1973-01-01

    The experiments with progressing/regressing forced rotor flapping modes have been extended in several directions and the data processing method has been considerably refined. The 16 inch hingeless 2-bladed rotor model was equipped with a new set of high precision blades which removed previously encountered tracking difficulties at high advance ratio, so that tests up to .8 rotor advance ratio could be conducted. In addition to data with 1.20 blade natural flapping frequency data at 1.10 flapping frequency were obtained. Outside the wind tunnel, tests with a ground plate located at different distances below the rotor were conducted while recording the dynamic downflow at a station .2R below the rotor plane with a hot wire anemometer.

  15. Asymmetric Divisions in Oogenesis.

    Science.gov (United States)

    Bilinski, Szczepan M; Kubiak, Jacek Z; Kloc, Malgorzata

    In the majority of animals, the oocyte/egg is structurally, molecularly, and functionally asymmetric. Such asymmetry is a prerequisite for a flawless fertilization and faithful segregation of maternal determinants during subsequent embryonic development. The oocyte asymmetry develops during oogenesis and must be maintained during consecutive and obligatorily asymmetric oogonial divisions, which depending on the species lead to the formation of either oocyte alone or oocyte and nurse cell complex. In the following chapter, we summarize current knowledge on the asymmetric oogonial divisions in invertebrate (insects) and vertebrate (Xenopus) species.

  16. Digital Arithmetic: Division Algorithms

    DEFF Research Database (Denmark)

    Montuschi, Paolo; Nannarelli, Alberto

    2017-01-01

    .g., Newton–Raphson) algorithms. The first class of algorithms, the digit-recurrence type, is particularly suitable for hardware implementation as it requires modest resources and provides good performance on contemporary technology. The second class of algorithms, the multiplicative type, requires...... implement it in hardware to not compromise the overall computation performances. This entry explains the basic algorithms, suitable for hardware and software, to implement division in computer systems. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e...

  17. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms o...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....

  18. Asymmetric cell division and its role in cell fate determination in the ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Light micrograph of an asymmetrically dividing T. indica cell at various time intervals. Progress over a 12 hr period, showing that the larger component does not undergo further division. (A) 0 h, cell division at an early stage. (B) 5 h, lower half of cell undergoing further division. (C) 12 h, differentiated ...

  19. Division Level Social Media

    Science.gov (United States)

    2015-06-12

    06-2015 2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From - To) AUG 2014 – JUNE 2015 4. TITLE AND SUBTITLE Division Level Social Media...13. SUPPLEMENTARY NOTES 14. ABSTRACT Social media has become an accepted form of communication in society including the U.S. Army. Currently

  20. Cellular Responses to Auxin: Division versus Expansion

    OpenAIRE

    Perrot-Rechenmann, Catherine

    2010-01-01

    The phytohormone auxin is a major regulator of plant growth and development. Many aspects of these processes depend on the multiple controls exerted by auxin on cell division and cell expansion. The detailed mechanisms by which auxin controls these essential cellular responses are still poorly understood, despite recent progress in the identification of auxin receptors and components of auxin signaling pathways. The purpose of this review is to provide an overview of the present knowledge of ...

  1. Division of Labor

    KAUST Repository

    Oke, Muse

    2014-09-12

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  2. Reconsidering Division Cavalry Squadrons

    Science.gov (United States)

    2017-05-25

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 25-05-2017 2. REPORT TYPE Monograph 3. DATES ...The Big Red One, demonstrate how specific squadrons maintained enduring relationships with parent divisions over time.9 Veteran military officers...Army, 1978); Stephen Bourque, Jayhawk: The VII Corps in the Persian Gulf War (Washington, DC: Department of the Army, 2002); James Wheeler, The Big Red

  3. Podcast: The Electronic Crimes Division

    Science.gov (United States)

    Sept 26, 2016. Chris Lukas, the Special Agent in Charge of the Electronic Crimes Division within the OIG's Office of Investigations talks about computer forensics, cybercrime in the EPA and his division's role in criminal investigations.

  4. 2017 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Abeywardhana, Jayalath AMM [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Colin Mackenzie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carter, Austin Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ducru, Pablo Philippe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duignan, Thomas John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gifford, Brendan Joel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hills, Benjamin Hale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hoffman, Kentaro Jack [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Khair, Adnan Ibne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kochanski, Kelly Anne Pribble [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ledwith, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leveillee, Joshua Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Sina Genevieve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Merians, Hugh Drake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Bryan Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nijjar, Parmeet Kaur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oles, Vladyslav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olszewski, Maciej W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Philipbar, Brad Montgomery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, David Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rufa, Dominic Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sifain, Andrew E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Justin Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Lauren Taylor Wisbey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Svolos, Lampros [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thibault, Joshua Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ushijima-Mwesigwa, Hayato Montezuma [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Claire Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witzen, Wyatt Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zentgraf, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alred, John Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    All members of the T Division Community, students, staff members, group leaders, division management, and other interested individuals are invited to come and support the following student(s) as they present their Lightning Talks.

  5. Easy come-easy go divisible cash

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.; Tsiounis, Y. [Northeastern Univ., Boston, MA (United States). Coll. of Computer Science; Frankel, Y. [Sandia National Labs., Albuquerque, NM (United States)

    1996-10-16

    Recently, there has been an interest in making electronic cash protocols more practical for electronic commerce by developing e-cash which is divisible (e.g., a coin which can be spent incrementally but total purchases are limited to the monetary value of the coin). In Crypto`95, T. Okamoto presented the first practical divisible, untraceable, off-line e-cash scheme, which requires only O(log N) computations for each of the withdrawal, payment and deposit procedures, where N = (total coin value)/(smallest divisible unit). However, Okamoto`s set-up procedure is quite inefficient (on the order of 4,000 multi-exponentiations and depending on the size of the RSA modulus). The authors formalize the notion of range-bounded commitment, originally used in Okamoto`s account establishment protocol, and present a very efficient instantiation which allows one to construct the first truly efficient divisible e-cash system. The scheme only requires the equivalent of one (1) exponentiation for set-up, less than 2 exponentiations for withdrawal and around 20 for payment, while the size of the coin remains about 300 Bytes. Hence, the withdrawal protocol is 3 orders of magnitude faster than Okamoto`s, while the rest of the system remains equally efficient, allowing for implementation in smart-cards. Similar to Okamoto`s, the scheme is based on proofs whose cryptographic security assumptions are theoretically clarified.

  6. Division Quilts: A Measurement Model

    Science.gov (United States)

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  7. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow...... in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters...... introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow...

  8. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... properties. In our framework, the protocols are built from simple instructions that can be executed on a computer. Moreover, we prove an impossibility theorem for truthful mechanisms in the classical query model, which is similar in spirit to the Gibbard-Satterthwaite theorem of social choice theory. We also...

  9. Theoretical Issues

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen

    2007-04-01

    The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.

  10. Maintenance Management in the ST Division

    CERN Document Server

    Rühl, I

    2001-01-01

    The Maintenance Manager Working Group was established in order to revise existing maintenance contracts and to provide comprehensive and applicable tools for the execution of maintenance activities in the ST Division. This was necessary mainly due to the fact that the maintenance plans in the Division have often evolved rather than being consciously set up and in respect to the change towards result orientated contracts. Also, because the decrease of CERN staff and the trend towards outsourcing, a tighter and well-organised maintenance management has to be established. In order to achieve the most realistic and applicable results the technical and commercial aspects must be considered by following the industrial approach. This document will outline the objectives of the working group and will show the progress that has been made by the implementation of already achieved results. Furthermore this paper will show a possible structure of future maintenance management.

  11. Theoretical physics

    CERN Document Server

    Joos, Georg

    1986-01-01

    Among the finest, most comprehensive treatments of theoretical physics ever written, this classic volume comprises a superb introduction to the main branches of the discipline and offers solid grounding for further research in a variety of fields. Students will find no better one-volume coverage of so many essential topics; moreover, since its first publication, the book has been substantially revised and updated with additional material on Bessel functions, spherical harmonics, superconductivity, elastomers, and other subjects.The first four chapters review mathematical topics needed by theo

  12. Deconstructing Calculation Methods, Part 4: Division

    Science.gov (United States)

    Thompson, Ian

    2008-01-01

    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division.…

  13. Bipolarity and the relational division

    OpenAIRE

    Tamani, Nouredine; Lietard, Ludovic; Rocacher, Daniel

    2011-01-01

    International audience; A fuzzy bipolar relation is a relation defined by a fuzzy bipolar condition, which could be interpreted as an association of a constraint and a wish. In this context, the extension of the relational division operation to bipolarity is studied in this paper. Firstly, we define a bipolar division when the involved relations are crisp. Then, we define, from the semantic point of view, several forms of bipolar division when the involved relations are defined by fuzzy bipol...

  14. Phase-coherent all-optical frequency division by three

    NARCIS (Netherlands)

    Lee, Dong-Hoon; Klein, M.E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, P.; Boller, Klaus J.

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier

  15. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  16. Security and Emergency Management Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Security and Emergency Management Division identifies vulnerabilities, risks, and opportunities to improve the security of transportation systems, critical...

  17. Asexual nuclear division in Neocosmospora

    Directory of Open Access Journals (Sweden)

    K. T. van Warmelo

    1977-12-01

    Full Text Available A fungus isolated from soybean stem material showed marked similarities to two existing species of Neocosmospora, i.e. N. vasinfecta E. F. Smith and N. africana von Arx. The processes of somatic nuclear division in authentic cultures of these two species and the new isolate were examined to determine the nature of the mechanism of nuclear division and whether there were any differences among the cultures. No significant differences were observed. The divisions showed asynchronous anaphase disjunction but there was no evidence of aneuploidy or irregular reconstitution of daughter nuclei. Nuclear division was interpreted as being strictly mitotic.

  18. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  19. Situational Awareness and Logistics Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Situational Awareness and Logistics Division researches, develops, implements, and analyzes advanced systems to protect, enhance, and ensure resilienceof the...

  20. High Energy Physics Division semiannual report of research activities, January 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1 - June 30, 1996. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. List of Division publications and colloquia are included.

  1. High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. (eds.)

    1992-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  2. High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

    1999-03-09

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  3. High Energy Physics Division semiannual report of research activities, January 1, 1992--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. (eds.)

    1992-11-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1992--June 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  4. High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

    1993-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  5. High Energy Physics Division semiannual report of research activities, July 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Moonier, P.; Schoessow, P.; Talaga, R.

    1994-05-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1993--December 31, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  6. High Energy Physics Division semiannual report of research activities, January 1, 1993--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. [eds.

    1993-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1993--June 30, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  7. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997.

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R. [eds.

    1998-08-11

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  8. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  9. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  10. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  11. Theoretical Physics 1. Theoretical Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dreizler, Reiner M.; Luedde, Cora S. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2010-07-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)

  12. Grant U01DK048387 | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant U01DK048381 | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant U01DK048375 | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant U01DK048411 | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant U01DK048377 | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant U01DK048349 | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Quarterly report of Biological and Medical Research Division, April 1955

    Energy Technology Data Exchange (ETDEWEB)

    Brues, A.M.

    1955-04-01

    This report is a compilation of 48 investigator prepared summaries of recent progress in individual research programs of the Biology and Medical Division of the Argonne National Laboratory for the quarterly period ending April,1955. Individual reports are about 3-6 pages in length and often contain research data.

  19. Active Breast and Gynecologic Cancer Grants | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Breast and Gynecologic Cancer Staff | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Breast and Gynecologic Cancer Clinical Trials | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Nutritional Science Meetings and Events | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Nutritional Science Funding Opportunities | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Nutritional Science Clinical Trials | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Active Nutritional Science Grants | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  7. Theoretical Mechanics Theoretical Physics 1

    CERN Document Server

    Dreizler, Reiner M

    2011-01-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. - A collection of 74 problems with detailed step-by-step guidance towards the solutions. - A col...

  8. Physics division annual report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  9. E-Division activities report

    Energy Technology Data Exchange (ETDEWEB)

    Barschall, H.H. (comp.)

    1983-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in materials science. In addition, this report describes development work on accelerators and on instrumentation for plasma diagnostics, nitrogen exchange rates in tissue, and breakdown in gases by microwave pulses.

  10. Technical Division quarterly progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Slansky, C.M.; Dickey, B.R.; Musgrave, B.C.; Rohde, K.L.

    1977-07-01

    Fuel Cycle Research and Development: Results are presented on the fluidized-bed calcination of high-level radioactive waste from reprocessing on the post treatment of the calcine, and on the removal of actinide elements from the waste prior to calcination. Other projects include the development of storage technology for /sup 85/Kr waste; a study of the hydrogen mordenite catalyzed reaction between NO/sub x/ and NH/sub 3/; the adsorption and storage of /sup 129/I on silver exchanged mordenite; physical properties, materials of construction, and unit operations studies on the evaporation of high-level waste; the behavior of volatile radionuclides during the combustion of HTGR graphite-based fuel; and the use of the uranium-ruthenium system in age-dating uranium ore bodies. Special Materials Production: The long-term management of defense waste from the ICPP covers postcalcination treatment of ICPP calcined waste; the removal of actinide elements from first-cycle raffinate; the retrieval and handling of calcined waste from ICPP storage vaults; and the preparation of the ''Defense Waste Document''. Process improvements are reported on the Fluorinel headend process for Zircaloy-clad fuels and on uranium accountability measurements. Other development results cover the process for recovering spent Rover fuel, buried pipeline transfer systems, support to the Waste Management Program, and effluent monitoring methods evaluation and development. Other Projects Supporting Energy Development: In this category are studies on nuclear materials security; application of a liquid-solid fluidized-bed heat exchanger to the recovery of geothermal heat; in-plant reactor source term measurements; burnup methods for fast breeder reactor fuels; absolute thermal fission yield measurements; analytical support to light water breeder reactor development; research on analytical methods; and the behavior of environmental species of iodine.

  11. Engineering Physics Division progress report, December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, F.C.

    1984-03-01

    Research summaries are given under the following headings: (1) nuclear data, (2) fission reactor research, (3) fusion reactor research, (4) high-energy accelerator shielding and detector research, (5) studies of nuclear weapons effects, (6) energy economics modeling and analysis, (7) analysis of CO/sub 2/ impact on climate, (8) intelligent control system research, and (9) information analysis and distribution. Publications and seminars are listed. (WHK)

  12. Bio-Organic Division progress report, 1980-1983

    Energy Technology Data Exchange (ETDEWEB)

    Choughuley, A.S.U.; Heble, M.R. (eds.)

    1984-01-01

    Work on natural products both in the in vivo as well as in vitro systems have led to the isolation and characterization of a number of important natural products. Some of the compounds are undergoing detailed screening as anticancer, antiarthritic or antiinflammatory agents. Work on 'Kedarneli' a well known indigenous drug for the cure of jaundice has also been undertaken. Using singly or doubly labelled precursors, biosynthesis of Tylophora alkaloids, physalins, piperamides, bakuchiol and some chromenes and flavones has been accomplished. In the area of plant tissue, organ and cell culture, micropropagation of sandalwood and mulberry have been achieved and success in the propagation of oil palm is in sight. For the program on somatic cell hybridization, work on protoplasts of groundnut, Tylophora and sandalwood has been carried out. Over 350 plants have been screened for their insecticidal, hormonal and antifeedant action. A number of pheromones of insect pests of cotton, forest and orchard trees, potatoes and stored grains have been synthesized. A facile synthesis of n-triacontanol, a plant growth regulator has also been achieved.

  13. Regulation of cell division in higher plants. Progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, T.

    1993-09-01

    Recent work on the project has been focused almost exclusively on obtaining and characterizing CDNA clones encoding cylcin-dependent kinases (CDK), and cycling from pea. All of our work up to this time has relied on small PCR-generated CDNA clones of 2 putative pea CDKs and a putative pea mitotic cyclin, as well as anti-CDK antibodies of poor affinity and questionable specificity. Therefore, it has become a high priority for us to generate clones, probes and immunological tools in our own system. As of this writing, we have four putative CDKs (CdkPsl,2,3,& 4) and five putative cyclins (Cyc-Ps1,2,3,4,& 5), the DNA sequences of which have been determined to varying degrees of completeness.

  14. Technical Division quarterly progress report, January 1--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Slansky, C.M. (ed.)

    1978-07-01

    Fuel Cycle Research and Development: Results are presented on the fluidized-bed calcination of simulated waste from the reprocessing of spent commercial nuclear fuel, on the post-treatment of the resultant calcine, and on the use of bidentate extractants for the separation of actinide elements from the high-level waste prior to calcination. In addition, the development of storage technology for krypton-85 waste, and the behavior of RuO/sub 2/ in fluidized-bed combustion of HTGR fuel are reported. Special Materials Production: Reported are the long-term management of defense waste from the ICPP, the chemistry and pilot plant-studies on the removal of actinides and mercury from ICPP first cycle raffinate, the calcined solids retrieval and handling of ICPP waste stored in vaults, and the preparation of environmental impact statements on options given the Defense Waste Document. Process improvements are given on the Fluorinel headend process for zircaloy-clad fuel and on methods for uranium accountability. Other development results reported are on the Rover process for graphite based fuels, on the calcination of sodium-bearing waste, Fluorinel waste, tank WM-183 waste, and electrolytic process waste. Assistance to the Waste Calcination Process Plant is reported as well as support to the New Waste Calcination Process and methods for the monitoring of gaseous effluents. Other Projects Supporting Energy Developments: Results are reported on nuclear materials security, the behavior of liquid-solid fluidized-bed heat exchangers, in-plant reactor source term measurements, burnup methods for fast breeder reactor fuels, absolute thermal fission yields, analytical support to light water breeder reactor development, and species of iodine in the environment. Research on analytical methods cover iodine-129 in calciner feed, computing room improvements, stack gas sampling for particulates, analysis of glassified calcined waste, and specific components in various materials.

  15. Physics Division annual review, 1 April 1985-31 March 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The highlight of the Argonne Physics Division during the past year (1985/86) has been the completion and dedication of the final superconducting linac stages of the ATLAS system and the beginning of the research program that utilizes the full capabilities of that system. The transition to using the full ATLAS and the new experimental area has been a smooth one and the research program is beginning to bear fruit. The experimental facilities have also come into operation with three major components, consisting of the first stage of a gamma detection system incorporating an array of Compton-suppressed germanium detectors and BGO total energy detectors, a magnetic spectrograph of the Enge split-pole design, with a focal-plane detector system adapted to heavy ions, and a new scattering facility with a number of features. Interesting new data are emerging on quasi-elastic processes, on the transition between fission and quasi-fission and the study of nuclear structure at high spin. The past year has also seen the merging of the nuclear research in the Argonne Chemistry Division, mostly in heavy-ion and medium-energy nuclear physics, with the Physics Division. The merger is leading to full cooperation within the larger group and will help broaden and strengthen the total effort in nuclear physics. In medium-energy physics the year has seen the successful execution of an experiment at the SLAC NPAS station to study the delta resonance in nuclei. Progress is being made in the effort at Fermilab on deep inelastic muon scattering, on the development of a tensor polarized gas deuterium target for use with storage rings, and on the LAMPF neutrino oscillation experiment. In theoretical nuclear physics an effort is continuing on investigating the relevant degrees of freedom in the microscopic dynamics of nuclei and the importance of three-body forces. 51 figs., 2 tabs.

  16. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  17. Hanford Engineer Works technical progress letter No. 137, February 9--15, [1947

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A.B.

    1947-02-20

    This technical progress letter contains reports from six Technical Department divisions at the Hanford Engineer Works for February 9, through February 15, 1947. The six reporting divisions are: 100 Areas, 300 Area, 200 Areas, Chemical Development, Laboratories, and Statistical Studies.

  18. Nuclear Science Division 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  19. Defect driven shapes in nematic droplets: analogies with cell division

    CERN Document Server

    Leoni, Marco; Bowick, Mark J; Marchetti, M Cristina

    2016-01-01

    Building on the striking similarity between the structure of the spindle during mitosis in living cells and nematic textures in confined liquid crystals, we use a continuum model of two-dimensional nematic liquid crystal droplets, to examine the physical aspects of cell division. The model investigates the interplay between bulk elasticity of the microtubule assembly, described as a nematic liquid crystal, and surface elasticity of the cell cortex, modelled as a bounding flexible membrane, in controlling cell shape and division. The centrosomes at the spindle poles correspond to the cores of the topological defects required to accommodate nematic order in a closed geometry. We map out the progression of both healthy bipolar and faulty multi-polar division as a function of an effective parameter that incorporates active processes and controls centrosome separation. A robust prediction, independent of energetic considerations, is that the transition from a single cell to daughters cells occurs at critical value...

  20. Physics Division annual report, April 1, 1993--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

  1. Information Theoretic cutting of a cake

    CERN Document Server

    Delgosha, Payam

    2012-01-01

    Cutting a cake is a metaphor for the problem of dividing a resource (cake) among several agents. The problem becomes non-trivial when the agents have different valuations for different parts of the cake (i.e. one agent may like chocolate while the other may like cream). A fair division of the cake is one that takes into account the individual valuations of agents and partitions the cake based on some fairness criterion. Fair division may be accomplished in a distributed or centralized way. Due to its natural and practical appeal, it has been a subject of study in economics under the topic of "Fair Division". To best of our knowledge the role of partial information in fair division has not been studied so far from an information theoretic perspective. In this paper we study two important algorithms in fair division, namely "divide and choose" and "adjusted winner" for the case of two agents. We quantify the benefit of negotiation in the divide and choose algorithm, and its use in tricking the adjusted winner a...

  2. Environmental Transport Division: 1979 report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

  3. Couples' division of employment and household chores and relationship satisfaction: A test of the specialization and equity hypotheses

    NARCIS (Netherlands)

    Blom, N.; Kraaykamp, G.L.M.; Verbakel, C.M.C.

    2017-01-01

    This article investigates associations between couples' divisions of time spent on employment and household chores and respondents’ satisfaction with their partner relationship. Theoretical notions of specialization and equity were used to derive hypotheses. Specialization relates to differentiation

  4. Barrett's Esophagus Translational Research Network (BETRNet) | Division of Cancer Prevention

    Science.gov (United States)

    The goal of BETRNet is to reduce the incidence, morbidity, and mortality of esophageal adenocarcinoma by answering key questions related to the progression of the disease, especially in the premalignant stage. In partnership with NCI’s Division of Cancer Biology, multidisciplinary translational research centers collaborate to better understand the biology of Barrett's esophagus and esophageal adenocarcinoma to improve risk stratification and develop prevention strategies. | Multi-disciplinary, multi-institutional collaboration to enhance understanding of Barrett's esophagus and to prevent esophageal adenocarcinoma.

  5. Evidence for equal size cell divisions during gametogenesis in a marine green alga Monostroma angicava.

    Science.gov (United States)

    Togashi, Tatsuya; Horinouchi, Yusuke; Sasaki, Hironobu; Yoshimura, Jin

    2015-09-03

    In cell divisions, relative size of daughter cells should play fundamental roles in gametogenesis and embryogenesis. Differences in gamete size between the two mating types underlie sexual selection. Size of daughter cells is a key factor to regulate cell divisions during cleavage. In cleavage, the form of cell divisions (equal/unequal in size) determines the developmental fate of each blastomere. However, strict validation of the form of cell divisions is rarely demonstrated. We cannot distinguish between equal and unequal cell divisions by analysing only the mean size of daughter cells, because their means can be the same. In contrast, the dispersion of daughter cell size depends on the forms of cell divisions. Based on this, we show that gametogenesis in the marine green alga, Monostroma angicava, exhibits equal size cell divisions. The variance and the mean of gamete size (volume) of each mating type measured agree closely with the prediction from synchronized equal size cell divisions. Gamete size actually takes only discrete values here. This is a key theoretical assumption made to explain the diversified evolution of isogamy and anisogamy in marine green algae. Our results suggest that germ cells adopt equal size cell divisions during gametogenesis.

  6. Experimental Testing of Game-Theoretic Predictions: The Ultimatum Game

    OpenAIRE

    Matysková, Ludmila

    2011-01-01

    This thesis focuses on testing of game theoretical predictions in the ultimatum game by means of controlled experiments. This game has become one of the most scrutinized games from the area of bargaining game theory. The theoretical division of the reward, which the players bargain over, is such that one player gets virtually all the reward while the second player is left with nothing. Because of such an extreme division of the reward, the game represents a severe test for the theory. In fact...

  7. Health, Safety, and Environment Division

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C [comp.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  8. Savannah River Plant Works Technical Department monthly progress report for May 1958: Deleted Version

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-17

    This progress report by the Atomic Energy Division of the Savannah River Plant covers: Reactor Technology; Separation Technology; Engineering Assistance; Health Physics; and General Laboratory Work. (JT)

  9. Physiographic divisions of the conterminous U. S.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a polygon coverage of Physiographic Divisions in the conterminous United States. It was automated from Fenneman's 1:7,000,000-scale map, "Physical Divisions...

  10. Division of household tasks and financial management

    NARCIS (Netherlands)

    Antonides, G.

    2011-01-01

    Both the standard economic model and bargaining theory make predictions about financial management and the division of household labor between household partners. Using a large Internet survey, we have tested several predictions about task divisions reported by Dutch household partners. The division

  11. Prokaryotic cell division: flexible and diverse

    NARCIS (Netherlands)

    den Blaauwen, T.

    2013-01-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in

  12. Making Connections between Multiplication and Division

    Science.gov (United States)

    Downton, Ann

    2013-01-01

    This paper reports on 13 Grade 3 students' approaches to partitive and quotitive division word problems. Of particular interest was the extent to which students drew on their knowledge of multiplication to solve division problems. The findings suggest that developing a relationship between multiplication and division is more significant than…

  13. 7 CFR 29.16 - Division.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Regulations Definitions § 29.16 Division. Tobacco Division, Agricultural Marketing Service, U.S... 7 Agriculture 2 2010-01-01 2010-01-01 false Division. 29.16 Section 29.16 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  14. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  15. Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish

    DEFF Research Database (Denmark)

    Koltowska, Katarzyna; Lagendijk, Anne Karine; Pichol-Thievend, Cathy

    2015-01-01

    Lymphatic vessels arise chiefly from preexisting embryonic veins. Genetic regulators of lymphatic fate are known, but how dynamic cellular changes contribute during the acquisition of lymphatic identity is not understood. We report the visualization of zebrafish lymphatic precursor cell dynamics...... cell becomes lymphatic and progressively upregulates Prox1, and the other downregulates Prox1 and remains in the vein. Vegfc drives cell division and Prox1 expression in lymphatic daughter cells, coupling signaling dynamics with daughter cell fate restriction and precursor division....

  16. 49 CFR 177.841 - Division 6.1 and Division 2.3 materials.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY PUBLIC HIGHWAY Loading and Unloading § 177.841 Division 6.1 and Division 2.3 materials. (See also § 177... 49 Transportation 2 2010-10-01 2010-10-01 false Division 6.1 and Division 2.3 materials. 177.841...

  17. 75 FR 16843 - Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased...

    Science.gov (United States)

    2010-04-02

    ... Employment and Training Administration Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc..., 2009, applicable to workers of Core Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc... of Core Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc., Division, including leased...

  18. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  19. Physics Division: Annual report, 1 January-31 December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-05-01

    This report summarizes the research programs of the Physics Division of the Lawrence Berkeley Laboratory during calendar 1985. The Division's principal activities are research in theoretical and experimental high energy physics, and the development of tools such as sophisticated detectors to carry out that research. The physics activity also includes a program in astrophysics, and the efforts of the Particle Data Group whose compilations serve the worldwide high energy physics community. Finally, in addition to the physics program, there is a smaller but highly significant research effort in applied mathematics. Some specific topics included in this report are: Research on e/sup +/e/sup -/ annihilation, superconducting super collider, double beta decay, high energy astrophysics and interdisciplinary experiments, detector research and development, electroweak interactions, strong interaction, quantum field theory, superstrings and quantum gravity, vortex methods and turbulence and computational mathematics.

  20. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J [comp.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  1. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  2. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. (comp.)

    1989-08-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1988.

  3. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J [comp.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  4. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  5. An overview of some experimental and theoretical aspects of ...

    Indian Academy of Sciences (India)

    Author Affiliations. D Budker1 B K Sahoo2 D Angom2 B P Das3. Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA; Theoretical Physics Division, Physical Research Laboratory, Ahmedabad 380 009, India; Indian Institute of Astrophysics, Bangalore 560 034, India ...

  6. Theoretical and experimental study of a modular accelerating structure of travelling waves sections for high gradient tests (MECCANO); Etude theorique et experimentale d`une structure acceleratrice a ondes progressives demontable pour des tests fort gradient (Structure dite ``MECCANO``)

    Energy Technology Data Exchange (ETDEWEB)

    Chanudet, M

    1996-06-04

    A modular system, MECCANO, has been developed at the Laboratoire de l`Accelerateur Lineaire d`Orsay to study the physical and technical phenomena of high electric fields in travelling waves structures in the context of future linear colliders which can reach TeV energies. The behaviour of the electric field inside the section MECCANO is considered from the theoretical point of view with numerical simulations and analytical representations and from the experimental side with low and high power measurements. An infinite and uniform structure is classically described by series of RLC resonant circuits. The basic RF properties of the fundamental mode are given. For a finite section, the matching of a forward or backward travelling wave of any phase advance per cell is also represented by means of RLC circuits. The variations of the reflection and transmission properties of the structure with frequency and a new procedure to match couplers have been modelled and experimentally verified. The electromagnetic behaviour of each cavity and of the whole structure have been studied, the fundamental and first high order modes have been simulated by 2D or 3D codes and measured at low power. The matching of the phase, the amplitude and the reflection level of the accelerator is described. This procedure is found to be extremely delicate due to the abrupt changes in the geometry of the cavities. The structure has been tested at fields superior to 150 MV/m. The behaviour of some materials and surface layers subject to high gradients are presented. (author) 46 refs.

  7. Annual progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Research progress is reported for the year 1979-1980. The report is divided into sections dealing individually with the divisions of Biomolecular and Cellular Science, Environmental Biology, and Nuclear Medicine. The sections have been individually entered into EDB. (ACR)

  8. Progress at LAMPF, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, C.M. [ed.

    1994-07-25

    This Progress Report describes the operation of the Los Alamos Meson Physics Facility (LAMPF) and the research programs carried out there for the years 1992 and 1993. The accelerator operated for over 100 days in 1992, providing beams of H{sup +}, H{sup {minus}}, and polarized H{sup {minus}} for a rich and varied research program in nuclear physics. The accelerator had only fair beam availability in 1992 (for example, the average H{sup +} beam availability was 72%), caused largely by problems in the 201-MHz rf system. A major effort was expended to address these problems before the 1993 run. These efforts were rewarded by good beam availability in 1993 and few problems with the 201-MHz system. LAMPF operated remarkably smoothly during 1993, in the midst of a period of great uncertainty in the future of the facility and the downsizing of MP Division, which led to the loss of a large number of key people to positions elsewhere in the Laboratory. The H{sup +} intensity had to be held to no more than {approximately} 800{mu}A because of a vacuum leak in the A2 target. Nevertheless, the accelerator operated very.reliably and the summer run in 1993 proved to be extremely productive. This report discusses the research conducted on: Nuclear and particle physics; atomic physics; radiation effects; materials science; astrophysics; and theoretical physics.

  9. Loss of growth homeostasis by genetic decoupling of cell division from biomass growth: implication for size control mechanisms.

    Science.gov (United States)

    Schmidt-Glenewinkel, Hannah; Barkai, Naama

    2014-12-23

    Growing cells adjust their division time with biomass accumulation to maintain growth homeostasis. Size control mechanisms, such as the size checkpoint, provide an inherent coupling of growth and division by gating certain cell cycle transitions based on cell size. We describe genetic manipulations that decouple cell division from cell size, leading to the loss of growth homeostasis, with cells becoming progressively smaller or progressively larger until arresting. This was achieved by modulating glucose influx independently of external glucose. Division rate followed glucose influx, while volume growth was largely defined by external glucose. Therefore, the coordination of size and division observed in wild-type cells reflects tuning of two parallel processes, which is only refined by an inherent feedback-dependent coupling. We present a class of size control models explaining the observed breakdowns of growth homeostasis. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  10. P Division monthly report, April 1948

    Energy Technology Data Exchange (ETDEWEB)

    Maider, J.E.

    1948-05-28

    This progress report discusses activities of the P Division for the month of April, 1948. The D and F Piles operated at 275 megawatts throughout April except for scheduled outages. Each operating area had an extended outage to remove a portion of the brick from the wall which runs across the rear edge of the top of the unit and to replace the vertical neoprene seal between the front face and the experimental side shields. This program described in detail under Mechanical Experience. The B-Pile was maintained in standby condition with a water flow of 10,150 gallons/minute. The 100 Area discharge rate continued at 60 tons per month. The exclusive use of lead dipped 4 inch slugs fabricated from alpha rolled or alpha extruded metal was started effective April 1. Work was stated April 12 in the 300 Area on a program of decanning 160 tons of 8 inch gamma extruded triple-dip canned pieces which were not considered good risks for pile operation. The slug recovery operation was placed on a 2 shift per day schedule on April 19 to expedite this work so that the metal can be recast and rolled at the earliest moment. The 300 Area canning production of 90 tons was governed by the receipt of rolled rods. At month end a backlog of about 30 tons of rolled rods was on hand.

  11. Physics Division annual review, April 1, 1992--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1993-08-01

    This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation.

  12. Algorithm for Implementation of Wavelength Division Multiplexing in EPON

    Directory of Open Access Journals (Sweden)

    P. S. Matavulj

    2010-06-01

    Full Text Available Today, implementation of wavelength division multiplexing in the Ethernet passive optical network (EPON is considered as one of the most perspective solutions for the bottleneck problem in the access network. With the development of new applications and services, multimedia applications above all, quality of service (QoS support becomes a major concern in WDM EPON, as it was the case in EPON. In this paper, WDM EPON architecture is presented along with a novel algorithm for wavelength and bandwidth allocation with full QoS support. Besides theoretical analysis, simulation results are presented and they confirm a good performance of presented solution.

  13. High School Sport Specialization Patterns of Current Division I Athletes.

    Science.gov (United States)

    Post, Eric G; Thein-Nissenbaum, Jill M; Stiffler, Mikel R; Brooks, M Alison; Bell, David R; Sanfilippo, Jennifer L; Trigsted, Stephanie M; Heiderscheit, Bryan C; McGuine, Timothy A

    Sport specialization is a strategy to acquire superior sport performance in 1 sport but is associated with increased injury risk. Currently, the degree of high school specialization among Division I athletes is unknown. College athletes will display increased rates of specialization as they progress through their high school careers. Descriptive epidemiological study. Level 4. Three hundred forty-three athletes (115 female) representing 9 sports from a Midwest Division I University completed a previously utilized sport specialization questionnaire regarding sport participation patterns for each grade of high school. McNemar and chi-square tests were used to investigate associations of grade, sport, and sex with prevalence of sport specialization category (low, moderate, high) (a priori P ≤ 0.05). Specialization increased throughout high school, with 16.9% (n = 58) and 41.1% (n = 141) of athletes highly specialized in 9th and 12th grades, respectively. Football athletes were less likely to be highly specialized than nonfootball athletes for each year of high school ( P 0.23). The majority of Division I athletes were not classified as highly specialized throughout high school, but the prevalence of high specialization increased as athletes progressed through high school. Nonfootball athletes were more likely to be highly specialized than football athletes at each grade level. Most athletes who are recruited to participate in collegiate athletics will eventually specialize in their sport, but it does not appear that early specialization is necessary to become a Division I athlete. Athletes should be counseled regarding safe participation in sport during high school to minimize injury and maximize performance.

  14. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  15. Physics Division annual review, 1 April 1975--31 March 1976. [ANL

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G. T.

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)

  16. Minutes of Technical Division Steering Committee meeting, November 21, 1955 -- Savannah River Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.C.

    1955-11-21

    The topics discussed at this meeting included: the approval for six technical studies, safety concerns, fuel elements for tritium production, and the Mark III fuel assembly. Appendices attached to this report describe the financial status [unreadable], the theoretical physics program, experimental physics program, pile engineering program, and the Technical Division study status.

  17. Experimental and theoretical advances in fluid dynamics

    CERN Document Server

    Klapp, Jaime; Fuentes, Oscar Velasco

    2011-01-01

    The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynam

  18. Fair division theory and climate change policy

    Energy Technology Data Exchange (ETDEWEB)

    Helm, C. [Technical University Darmstadt (Germany). Department of Law and Economics

    2008-09-30

    This paper analyzes the fair division of common property resources when monetary compensations are feasible. A prominent example is the fair division of the atmosphere's limited absorptive capacity for greenhouse gases. I propose a solution that is Pareto efficient and satisfies the axiomatic fair division criteria of individual rationality, stand-alone upper bound, and a version of envy-freeness. The latter criterion is adapted to problems where monetary compensations can be used to facilitate the fair division of the common resource. Applied to climate change, the solution implies that developing countries should participate in emission reduction efforts, but should be fully compensated for their incremental abatement costs.

  19. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  20. Progress Report

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999.......Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999....

  1. Deepening Students' Understanding of Multiplication and Division by Exploring Divisibility by Nine

    Science.gov (United States)

    Young-Loveridge, Jenny; Mills, Judith

    2012-01-01

    This article explores how a focus on understanding divisibility rules can be used to help deepen students' understanding of multiplication and division with whole numbers. It is based on research with seven Year 7-8 teachers who were observed teaching a group of students a rule for divisibility by nine. As part of the lesson, students were shown a…

  2. Israel: the Division before Peace

    Directory of Open Access Journals (Sweden)

    Ferran Izquierdo Brichs

    2000-01-01

    Full Text Available The process of the Middle East peace negotiations at the beginning of the 1990s has its roots in the changes in the international system and in Israeli society. The end of the Cold War, the Gulf War in 1990-1991 and globalization forced all the region’s actors to resituate themselves within the new international context. However, Israeli society neither experienced the international changes in the same way as its neighbors nor did it undergo the same evolutionduring the conflict with the Arabs. Because of this, the debate over peace and the future of the occupied territories became a factor for political and ideological division. Influencing this debate were revised conceptions on security, the economy, and the role Israel should play in the world. The Middle East peace talks began because the strongest side in the conflict, Israel’s Labor government, came to perceive that the maintenance of the status quo was negative forits interests. From the Israeli point of view, the conflict had long been considered a zero-sum game despite the Palestinian’s compromises since the construction of the Palestinian State involved handing over part of the territory claimed by the Jews. Recent changes in the perceptions of Israeli’s own interests, though, led some sectors of Jewish society to re-think and diminish the supposed incompatibility between Palestine nationalism and Zionism, which then opened the doors towards peace. For the Labor government, the territorial occupation of all Palestine was no longer a central objective. In fact, the basic interests of the Labor party’s policies shifted due to the globalization of the international system. For Likud and the Zionist revisionists, however, the occupation and the colonization of Eretz Israel still form the basic ideology of the State –of its reason for being– for which even today both are associated with the national interest, together with Israel’s very survival. Seen this way, Israel

  3. A novel model of magnetorheological damper with hysteresis division

    Science.gov (United States)

    Yu, Jianqiang; Dong, Xiaomin; Zhang, Zonglun

    2017-10-01

    Due to the complex nonlinearity of magnetorheological (MR) behavior, the modeling of MR dampers is a challenge. A simple and effective model of MR damper remains a work in progress. A novel model of MR damper is proposed with force-velocity hysteresis division method in this study. A typical hysteresis loop of MR damper can be simply divided into two novel curves with the division idea. One is the backbone curve and the other is the branch curve. The exponential-family functions which capturing the characteristics of the two curves can simplify the model and improve the identification efficiency. To illustrate and validate the novel phenomenological model with hysteresis division idea, a dual-end MR damper is designed and tested. Based on the experimental data, the characteristics of the novel curves are investigated. To simplify the parameters identification and obtain the reversibility, the maximum force part, the non-dimensional backbone part and the non-dimensional branch part are derived from the two curves. The maximum force part and the non-dimensional part are in multiplication type add-rule. The maximum force part is dependent on the current and maximum velocity. The non-dominated sorting genetic algorithm II (NSGA II) based on the design of experiments (DOE) is employed to identify the parameters of the normalized shape functions. Comparative analysis is conducted based on the identification results. The analysis shows that the novel model with few identification parameters has higher accuracy and better predictive ability.

  4. Division of labour in the yeast

    DEFF Research Database (Denmark)

    Wloch-Salamon, Dominika M.; Fisher, Roberta May; Regenberg, Birgitte

    2017-01-01

    . Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic...

  5. "American Gothic" and the Division of Labor.

    Science.gov (United States)

    Saunders, Robert J.

    1987-01-01

    Provides historical review of gender-based division of labor. Argues that gender-based division of labor served a purpose in survival of tribal communities but has lost meaning today and may be a handicap to full use of human talent and ability in the arts. There is nothing in various art forms which make them more appropriate for males or…

  6. E-Division activities report. [LLL

    Energy Technology Data Exchange (ETDEWEB)

    Barschall, H. H. [comp.

    1979-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics. In addition, this report describes work on accelerators, radiation damage, microwaves, and plasma diagnostics.

  7. The Changing Nature of Division III Athletics

    Science.gov (United States)

    Beaver, William

    2014-01-01

    Non-selective Division III institutions often face challenges in meeting their enrollment goals. To ensure their continued viability, these schools recruit large numbers of student athletes. As a result, when compared to FBS (Football Bowl Division) institutions these schools have a much higher percentage of student athletes on campus and a…

  8. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  9. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  10. On Durkheim's Explanation of Division of Labor.

    Science.gov (United States)

    Rueschemeyer, Dietrich

    1982-01-01

    In De la Division du Travail Social, Durkheim's causal explanation for secular increases in the division of labor and the differentiation of social structure is flawed. His metatheoretical concerns expressed in the critique of utilitarian social theory flawed his contributions to a causal explanation of social differentiation. (Author/AM)

  11. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  12. EDH 'Millionaire' in PS Division

    CERN Document Server

    2001-01-01

    Christmas cheer! Left to right: Gerard Lobeau receives a bottle of Champagne from Derek Mathieson and Jurgen De Jonghe in recognition of EDH's millionth document. At 14:33 on Monday 3 December a technician in PS division, Gerard Lobeau, unwittingly became part of an important event in the life of CERN's Electronic Document Handling system (EDH). While ordering some pieces of aluminum for one of the PS's 10Mhz RF cavities, he created EDH document number 1,000,000. To celebrate the event Derek Mathieson (EDH Project Leader) and Jurgen De Jonghe (Original EDH Project Leader) presented Mr Lobeau with a bottle of champagne. As with 93% of material requests, Mr Lobeau's order was delivered within 24 hours. 'I usually never win anything' said Mr Lobeau as he accepted his prize, 'I initially though there may have been a problem with EDH when the document number had so many zeros in it, and was then surprised to get a phone call from you a few minutes later.' The EDH team had been monitoring the EDH document number ...

  13. Theoretical Investigation into Spectral Coexistence of CDMA and TDMA Systems

    Directory of Open Access Journals (Sweden)

    A.M. Abbosh

    2008-12-01

    Full Text Available The scarcity of available radio spectrum presently limits the extension of modern multimedia systems. This paper presents a theoretical investigation into the possibility of using a frequency overlay of a narrowband Code Division Multiple Access (CDMA System and a Time Division Multiple Access (TDMA System to provide a greater spectral efficiency. This paper shows that under certain conditions the two systems can operate in the same frequency band and in the same area with a considerable improvement in the overall capacity of the whole system.

  14. A dynamic new group within Human Resources Division

    CERN Multimedia

    2003-01-01

    Since 1st May CERN's training and development and personnel management teams have been fused into a new group called Personnel Management and Development. The new Personnel Management and Development Group is responsible for career advancement and management, recruitment, remuneration and for language, communication, management, academic and technical training, keys to a sense of greater well-being and to career progression. The new group was born on 1st May out of the fusion of the "Personnel Management" and "Training and Development" Groups within CERN's Human Resources Division. Its aim is to offer a practical and easily accessible service to assist the members of the personnel and supervisors to manage careers more harmoniously, to make progress and to continue to learn on the job. With Sue Foffano as its Group Leader, the Group comprises four sections: Academic and Technical Training under the guiding hand of Mick Storr; Management, Communication and Language Training headed by Sudeshna Datta-Cockeril...

  15. Progressive Business

    DEFF Research Database (Denmark)

    Christiansen, Christian O.

    2016-01-01

    Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015.......Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015....

  16. Supportive and Palliative Care Research Funding Opportunities | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Supportive and Palliative Care Research Clinical Trials | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Completed Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Active Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Division of Biological and Medical Research annual report, 1979. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.W. (ed.)

    1979-01-01

    Separate abstracts were prepared for 14 of the 20 sections included in this progress report. The other 6 sections include: introductory statements by the division director; descriptions of the animal, computer, electron microscope, and radiation support facilities; a listing of the educational activities, divisional seminars, and oral presentations by staff members; and divisional staff publications. An author index to the report is included. (ERB)

  1. 49 CFR 1242.03 - Made by accounting divisions.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year. ...

  2. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    1979-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  3. Progressive Taxation and Tax Morale

    OpenAIRE

    Doerrenberg, Philipp; Peichl, Andreas

    2010-01-01

    As the link between tax compliance and tax morale is found to be robust, finding the determinants of tax morale can help to understand and fight tax evasion. In this paper we analyze the effect of progressive taxation on tax morale in a cross-country approach - which has not been investigated before. Our theoretical analysis leads to two testable predictions. First, an individual's tax morale is higher, the more progressive the tax schedule is. Second, the impact of tax progressivity on tax m...

  4. Progress in nanophotonics 3

    CERN Document Server

    Yatsui, Takashi

    2015-01-01

    This book focuses on the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology and advanced systems. It reviews light-emitting diodes and lasers made of silicon bulk crystals in which the light emission principle is based on dressed-photon-phonons. Further topics include: theoretical studies of optoelectronic properties of molecular condensates for organic solar cells and light-emitting devices, the basics of topological light beams together with their important properties for laser spectroscopy, spatially localized modes emerging in nonlinear discrete dynamic systems and theoretical methods to explore the dynamics of nanoparticles by the light-induced force of tailored light fields under thermal fluctuations. These topics are reviewed by leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.

  5. Progress in nanophotonics 4

    CERN Document Server

    Yatsui, Takashi

    2017-01-01

    This book presents the recent progress in the field of nanophotonics. It contains review-like chapters focusing on various but mutually related topics in nanophotonics written by the world’s leading scientists. Following the elaboration of the idea of nanophotonics, much theoretical and experimental work has been carried out, and several novel photonic devices, high-resolution fabrication, highly efficient energy conversion, and novel information processing have been developed in these years. Novel theoretical models describing the nanometric light-matter interaction, nonequilibrium statistical mechanical models for photon breeding processes and near-field‐assisted chemical reactions as well as light‐matter interaction are also explained in this book. It describes dressed photon technology and its applications, including implementation of nanophotonic devices and systems, fabrication methods and performance characteristics of ultrathin, ultraflexible organic light‐emitting diodes, organic solar cells ...

  6. Theoretical studies of hydrocarbon combustion chemistry. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H.F. III

    1994-08-01

    The author reports here the results of DZP CISD calculations for methylcarbene. Geometry, symmetry, and vibrational modes for the radical are reported for both the singlet and the triplet state. Future work will focus on the ethyl radical-oxygen interaction relevant to hydrocarbon combustion.

  7. Theoretical particle physics, Task A. Progress report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report briefly discusses the following topics: The Spin Structure of the Nucleon; Solitons and Discrete Symmetries; Baryon Chiral Perturbation Theory; Constituent Quarks as Collective Excitations; Kaon Condensation; Limits on Neutrino Masses; The 17 KeV Neutrino and Majoron Models; The Strong CP Problem; Renormalization of the CP Violating {Theta} Parameter; Weak Scale Baryogenesis; Chiral Charge in Finite Temperature QED; The Heavy Higgs Mass Bound; The Heavy Top Quark Bound; The Heavy Top Quark Condensate; The Heavy Top Quark Vacuum Instability; Phase Diagram of the Lattice Higgs-Yukawa Model; Anomalies and the Standard Model on the Lattice; Constraint Effective Potential in a Finite Box; Resonance Picture in a Finite Box; Fractal Dimension of Critical Clusters; Goldstone Bosons at Finite Temperature; Cluster Algorithms and Scaling in CP(N) Models; Rare Decay Modes of the Z{degrees} Vector Boson; Parity-Odd Spin-Dependent Structure Functions; Radiative Corrections, Top Mass and LEP Data; Supersymmetric Model with the Higgs as a Lepton; Chiral Change Oscillation in the Schwinger Model; Electric Dipole Moment of the Neutron; DOE Grand Challenge Program; and Lattice Quantum Electrodynamics.

  8. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  9. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, Vitalii Lazarevich

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  10. Progressive politics

    African Journals Online (AJOL)

    Daniel Strauss

    Abstract. A purely theoretical analysis of Martha Nussbaum's basis of the capabilities approach in feminist (rather than more broadly liberal humanist) justice yields a philosophical project that may appear inconsistent, if not incoherent. However, I suggest in this paper that when the reader considers the project's.

  11. Biology and Medicine Division: Annual report 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  12. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  13. [Progresses on Neandertal genomics].

    Science.gov (United States)

    Bi, Cai-Li; Guo, Guang-Yan; Zhang, Xiao; Tian, Yan-Hui; Shen, Yin-Zhu

    2012-06-01

    Neandertal is our closest known relative and also an archaic hominid reserving the richest fossils. Whether the Neandertals exchanged their DNA with modern human or not is a matter of debate on the modern human origin. The progresses on the mitochondrial and nuclear genomes of Neandertals in recent years were reviewed in this paper. Recent study has revealed possible genetic contribution of Neandertals to the modern human to some extent, which arose the rethinking of modern human origin. The experiences gained in the research on Neandertals will benefit the study on archaic hominids, unravel the mystery of modern human origin, and enrich the relative theoretical systems in evolutionary biological field.

  14. Chemical and Laser Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    Haines, N. (ed.)

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  15. Civil Remedies Division Administrative Law Judge Decisions

    Data.gov (United States)

    U.S. Department of Health & Human Services — Decisions issued by Administrative Law Judges of the Departmental Appeals Board's Civil Remedies Division concerning fraud and abuse determinations by the Office of...

  16. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    shows that division and square root units based on the digit-recurrence algorithm offer the best tradeoff delay-area-power. Moreover, the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square root unit obtained by overlapping two radix-4 stages......Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work....... The proposed unit is compared to similar solutions based on the digit-recurrence algorithm and it is compared to a unit based on the multiplicative Newton-Raphson algorithm....

  17. Quarterly report: Division of Fishery Biology

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the winter quarter when active field work is normally at a minimum, the field staff of the Division, as shown by the following sectional reports, was...

  18. Spatial Divisions and Fertility in India

    Directory of Open Access Journals (Sweden)

    Vijayan Pillai

    2012-01-01

    Full Text Available The Indian subcontinent can be divided into four geographical divisions. In this paper, we characterize three of the four divisions; the Northern Plains, the Deccan Plateau, and the Northern Mountains or the Himalayan as regions with dissimilar climatic and physical resources. It is argued that human adaptations to these variations would be varied by differences in social organization of production and consumption resulting in differences in fertility differences across the three divisions. We found significant differences in the median age at motherhood as well as in the total family size. The effects of the three selected fertility determinants, age at marriage, years of woman's education, and level of child loss on family size also varied significantly across the three divisions. There is considerable homogeneity with respect to fertility levels within the zones considered in this study.

  19. Accelerator Technology Division: Annual Report FY 1990

    National Research Council Canada - National Science Library

    Schriber, Stanley

    1991-01-01

    The Accelerator Technology (AT) Division continued in fiscal year 1990 to fulfill its mission of developing accelerator science and technology for application to research, defense, energy, and other problems of national interest...

  20. Environmental Research Division's Data Access Program (ERDDAP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ERDDAP (the Environmental Research Division's Data Access Program) is a data server that gives you a simple, consistent way to download subsets of scientific...

  1. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  2. Earth Sciences Division collected abstracts: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  3. Medical Sciences Division report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  4. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  5. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  6. The fencing problem and Coleochaete cell division.

    Science.gov (United States)

    Wang, Yuandi; Dou, Mingya; Zhou, Zhigang

    2015-03-01

    The findings in this study suggest that the solution of a boundary value problem for differential equation system can be used to discuss the fencing problem in mathematics and Coleochaete, a green algae, cell division. This differential equation model in parametric expression is used to simulate the two kinds of cell division process, one is for the usual case and the case with a "dead" daughter cell.

  7. Earth Sciences Division, collected abstracts, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-03-30

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  8. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  9. Urbanism and the division of labour in the Roman Empire.

    Science.gov (United States)

    Hanson, J W; Ortman, S G; Lobo, J

    2017-11-01

    One of the hallmarks of human agglomeration is an increase in the division of labour, but the exact nature of this relationship has been debated among anthropologists, sociologists, economists, and historians and archaeologists. Over the last decade, researchers investigating contemporary urban systems have suggested a novel explanation for the links between the numbers of inhabitants in settlements and many of their most important characteristics, which is grounded in a view of settlements as social networks embedded in built environments. One of the remarkable aspects of this approach is that it is not based on the specific conditions of the modern world (such as capitalism or industrialization), which raises the issue of whether the relationships observed in contemporary urban systems can also be detected in pre-modern urban or even non-urban systems. Here, we present a general model for the relationship between the population and functional diversity of settlements, where the latter is viewed as an indicator of the division of labour. We then explore the applicability of this model to pre-modern contexts, focusing on cities in the Roman Empire, using estimates of their numbers of inhabitants, numbers of documented professional associations, and numbers of recorded inscriptions to develop an index of functional diversity. Our results are consistent with theoretical expectations, adding further support to the view that urban systems in both contemporary and pre-modern contexts reflect a common set of generative processes. © 2017 The Authors.

  10. The History of Metals and Ceramics Division

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  11. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  12. Riemann and Theoretical Physics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Riemann and Theoretical Physics. Joseph Samuel. General Article Volume 11 Issue 11 November 2006 pp 56-60. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/011/11/0056-0060. Keywords.

  13. A Linguistic Theoretical Exercise

    African Journals Online (AJOL)

    Nekky Umera

    communication with other people in the environment which they find themselves. This paper aims at carrying out linguistic theoretical exercise as regards the use of the English primary auxiliary verbs. The paper also aims at exposing the rate at which speakers of English Language misuse the. English primary auxiliary ...

  14. Social Assistance: Theoretical Underpinnings

    African Journals Online (AJOL)

    user

    Minas Hiruy. 90. Reflections: Social assistance: theoretical underpinnings. Minas Hiruy. 1. Key words: marginalized community, social assistance, social welfare, MDGs, development. The case of the marginalized and how society regarded or responded to the same has played a significant part in shaping human history ...

  15. Department of Theoretical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    The research done at the Department of Theoretical Physics of the Niewodniczanski Institute of Nuclear Physics in 1993 is presented. The research program includes: - the role of Galilean relativity principle in quantum mechanics, dense and/or hot hadronic matter and the structure of hadrons studied in particle and nuclear interactions.

  16. Department of Theoretical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1992-12-31

    The research done at the Department of Theoretical Physics of the Niewodniczanski Institute of Nuclear Physics in 1991 are presented. The research program includes: the role of Galilean relativity principle in quantum mechanics, dense and/or hot hadronic matter and the structure of hadrons studied in particle and nuclear interactions.

  17. Theoretical Aspects of Translation.

    Science.gov (United States)

    House, Juliane M.

    This study attempts to bring some clarification into the concept of translation, especially into the theoretical problems presented by the difficulties of translation. The following aspects of the question are treated: (1) translation in the past and present, including the controversy over translation as an art or a science, the relevance of…

  18. Malthusian Progress

    DEFF Research Database (Denmark)

    Weisdorf, Jacob Louis

    is a theoretical demonstration that, even though a Malthusian society is inherently stagnant in the sense that sustained economic growth is absent, scattered advances in technology can permanently raise the long-term wage rate. The key reason why new technology can have a short-term as well as a long-term (i.......e. permanent) effect on the wage rate is the fact that a technological development can influence the degree to which the standard of living impacts upon birth and death rates. The second contribution of the dissertation is the empirical illustration that pre-industrial England, in spite of its Malthusian...

  19. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  20. Energy Technology Division research summary -- 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  1. Control of apoptosis by asymmetric cell division.

    Science.gov (United States)

    Hatzold, Julia; Conradt, Barbara

    2008-04-08

    Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  2. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold

    2008-04-01

    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  3. Study on the section-division of superconducting proton linac

    CERN Document Server

    Ouyang Hua Fu

    2002-01-01

    Study on the section-division of superconducting proton linac is carried out in detail, which includes the discussion on the principles of the division, the discussion on the symmetric division and non-symmetric division, the determination of the cell number of the superconducting cavity and the value of the geometric beta sub G

  4. Few-mode fiber technology for mode division multiplexing

    Science.gov (United States)

    Mori, Takayoshi; Sakamoto, Taiji; Wada, Masaki; Yamamoto, Takashi; Nakajima, Kazuhide

    2017-02-01

    We review recent progress on few-mode fiber (FMF) technologies for mode-division multiplexing (MDM) transmission. First, we introduce fibers for use without and with multiple-input multiple-output (MIMO) digital signal processing (DSP) to compensate for modal crosstalk, and briefly report recent work on FMF for use without/with a MIMO DSP system. We next discuss in detail a fiber for MIMO transmission systems, and show numerically that a graded-index core can flexibly tune the differential mode group delay (DMD) and a cladding trench can flexibly control the guiding mode number. We optimized the spacing of the core and trench. Accordingly, we can achieve a 6 LP (10 spatial) mode operation and a low DMD while preventing the high index difference that leads to manufacturing difficulties and any loss increase. We finally describe our experimental results for a 6 LP (10 spatial) mode transmission line for use in a C + L band wavelength-division multiplexing (WDM) MDM transmission with MIMO DSP.

  5. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  6. Measuring progress

    DEFF Research Database (Denmark)

    Wahlberg, Ayo

    2007-01-01

    In recent years, sociological examinations of genetics, therapeutic cloning, neuroscience and tissue engineering have suggested that 'life itself' is currently being transformed through technique with profound implications for the ways in which we understand and govern ourselves and others...... in much the same way that mortality rates, life expectancy or morbidity rates can. By analysing the concrete ways in which human progress has been globally measured and taxonomised in the past two centuries or so, I will show how global stratifications of countries according to their states...

  7. Optimization of Raman-assisted wavelength-division-multiplexing system with arbitrary input signal power spectrum

    Science.gov (United States)

    Sun, Shilin; Chen, Mo; Wang, Jianfei; Meng, Zhou

    2017-06-01

    We analyze the method to uniform the output signal power spectrum for a long-haul wavelength-division-multiplexing (WDM) system using backward multipump Raman amplifiers with arbitrary initial input signal power spectrum. A genetic algorithm is used to optimize the output signal power. The theoretical results show that using variable pump wavelengths is better than using fixed pump wavelengths to decrease the spectral maximum power difference. An experiment is conducted based on the theoretical analysis. The results agree well with the numerical calculations.

  8. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  9. Family division in China's transitional economy.

    Science.gov (United States)

    Chen, Feinian

    2009-03-01

    Using a longitudinal data-set (the China Health and Nutrition Survey) we explored the effect of various economic factors, including household wealth, employment sector, and involvement in a household business on the division of extended families in China's transitional economy. Results from event history analyses suggest that these economic factors act as either a dividing or a unifying force on the extended family. Household wealth reduces the risk of family division, but the effect is weaker for families in which parents have upper secondary education. In addition, an extended family is more likely to divide when married children work in the state sector. Further, the probability of family division is higher in families where daughters-in-law work in the state sector than in those with sons in this sector. Finally, involvement in a household business for married children increases family stability.

  10. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  11. Prokaryotic cell division: flexible and diverse.

    Science.gov (United States)

    den Blaauwen, Tanneke

    2013-12-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in between these. The function of this time delay is unclear, but may partly be explained by competition for Lipid-II between proteins involved in length growth that interact directly with the Z-ring early in the maturation phase and the proteins involved in septum synthesis. A second possible activity of the early Z-ring might be the monitoring of or the active involvement in DNA segregation through proteins such as ZapA and ZapB/MatP and their homologues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cell Division and Evolution of Biological Tissues

    Science.gov (United States)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  13. Theoretical and Experimental Physics

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ann E. [Univ. of Washington, Seattle, WA (United States); Ellis, Stephen D. [Univ. of Washington, Seattle, WA (United States); Karch, Andreas [Univ. of Washington, Seattle, WA (United States); Rosenberg, Leslie [Univ. of Washington, Seattle, WA (United States); Sharpe, Stephene R. [Univ. of Washington, Seattle, WA (United States); Wilkes, R. Jeffrey [Univ. of Washington, Seattle, WA (United States); Yaffe, Laurence G. [Univ. of Washington, Seattle, WA (United States)

    2015-04-07

    We report on progress towards finding axion dark matter, neutrino oscillation parameters, Use of the gravity/gauge correspondence to to calculations in strongly coupled systems, use of jet substructure to search for new physics, use of lattice QCD to compute weak matrix elements, constraints on dark matter interactions from neutron stars, exotic Higgs searches, and new dark matter models.

  14. A SURVEY ON WAVELENGTH DIVISION MULTIPLEXING (WDM NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-03-01

    Full Text Available Communication networks have emerged as a source of empowerment in today’s society. At the global level, the Internet is becoming the backbone of the modern economy. The new generations in developed countries cannot even conceive of a world without broadband access to the Internet. The inability of the current Internet infrastructure to cope with the wide variety and ever growing number of users, emerging networked applications, usage patterns and business models is increasingly being recognized worldwide. The dynamic growth of Internet traffic and its bursty nature requires high transmission rate. With the advances and the progress in Wavelength Division Multiplexing (WDM technology, the amount of raw bandwidth available in fiber links has increased to high magnitude. This paper presents a survey on WDM networks from its development to the current status. Also an analysis on buffer size in optical networks for real time traffic was performed.

  15. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  16. Parkin suppresses Drp1-independent mitochondrial division

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Madhuparna, E-mail: mroy17@jhmi.edu; Itoh, Kie, E-mail: kito5@jhmi.edu; Iijima, Miho, E-mail: miijima@jhmi.edu; Sesaki, Hiromi, E-mail: hsesaki@jhmi.edu

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  17. Maternal filicide theoretical framework.

    Science.gov (United States)

    Mugavin, Marie

    2008-01-01

    The maternal filicide theoretical framework (MFTF) was developed to enrich the understanding of how traumatic experiences during formative years can affect a woman's relationship with her own child. Exposure to a known set of vulnerabilities can foster triggers that predispose a woman to respond impulsively and violently toward her child. Comprehensive assessment of vulnerable families is essential for the prevention of fatal and nonfatal abuse. The MFTF may be applied to both crimes.

  18. Silicene: Recent theoretical advances

    KAUST Repository

    Lew Yan Voon, L. C.

    2016-04-14

    Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.

  19. Robustness - theoretical framework

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.

    2010-01-01

    More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....

  20. Electrochemical kinetics theoretical aspects

    CERN Document Server

    Vetter, Klaus J

    1967-01-01

    Electrochemical Kinetics: Theoretical Aspects focuses on the processes, methodologies, reactions, and transformations in electrochemical kinetics. The book first offers information on electrochemical thermodynamics and the theory of overvoltage. Topics include equilibrium potentials, concepts and definitions, electrical double layer and electrocapillarity, and charge-transfer, diffusion, and reaction overvoltage. Crystallization overvoltage, total overvoltage, and resistance polarization are also discussed. The text then examines the methods of determining electrochemical reaction mechanisms

  1. Theoretical Developments in SUSY

    Science.gov (United States)

    Shifman, M.

    2009-01-01

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.

  2. Theoretical developments in SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)

    2009-01-15

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)

  3. Quantum internet using code division multiple access

    Science.gov (United States)

    Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  4. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  5. Website for the Space Science Division

    Science.gov (United States)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  6. A design study to develop young children's understanding of multiplication and division

    Science.gov (United States)

    Bicknell, Brenda; Young-Loveridge, Jenny; Nguyen, Nhung

    2016-12-01

    This design study investigated the use of multiplication and division problems to help 5-year-old children develop an early understanding of multiplication and division. One teacher and her class of 15 5-year-old children were involved in a collaborative partnership with the researchers. The design study was conducted over two 4-week periods in May-June and October-November. The focus in this article is on three key aspects of classroom teaching: instructional tasks, the use of representations, and discourse, including the mathematics register. Results from selected pre- and post-assessment tasks within a diagnostic interview showed that there were improvements in addition and subtraction as well as multiplication and division, even though the teaching had used multiplication and division problems. Students made progress on all four operational domains, with effect sizes ranging from approximately two thirds of a standard deviation to 2 standard deviations. Most of the improvement in students' number strategies was in moving from `counting all' to `counting on' and `skip counting'. The findings challenge the idea that learning experiences in addition and subtraction should precede those in multiplication and division as suggested in some curriculum documents.

  7. Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte

    Science.gov (United States)

    Dalton, Caroline M.; Carroll, John

    2013-01-01

    Summary A fundamental rule of cell division is that daughter cells inherit half the DNA complement and an appropriate proportion of cellular organelles. The highly asymmetric cell divisions of female meiosis present a different challenge because one of the daughters, the polar body, is destined to degenerate, putting at risk essential maternally inherited organelles such as mitochondria. We have therefore investigated mitochondrial inheritance during the meiotic divisions of the mouse oocyte. We find that mitochondria are aggregated around the spindle by a dynein-mediated mechanism during meiosis I, and migrate together with the spindle towards the oocyte cortex. However, at cell division they are not equally segregated and move instead towards the oocyte-directed spindle pole and are excluded from the polar body. We show that this asymmetrical inheritance in favour of the oocyte is not caused by bias in the spindle itself but is dependent on an intact actin cytoskeleton, spindle–cortex proximity, and cell cycle progression. Thus, oocyte-biased inheritance of mitochondria is a variation on rules that normally govern organelle segregation at cell division, and ensures that essential maternally inherited mitochondria are retained to provide ATP for early mammalian development. PMID:23659999

  8. Hanford Engineer Works technical progress letter No. 138, February 16--22, [1947

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A.B.

    1947-02-27

    This technical progress letter contains reports from six Technical Department divisions at the Hanford Engineer Works for February 16 through February 22, 1947. The six reporting divisions are: 100 Areas, 300 Area, 200 Areas, Chemical Development, Laboratories, and Statistical Studies. (JL)

  9. Research Award: Corporate Strategy and Evaluaon Division

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    These one‐year, paid, in‐house programs of training and mentorship allow award holders to pursue their research goals and work in one of IDRC's dynamic program or division ... Be flexible and willing to work in a collaborave, fast‐paced environment; and. • Strong verbal and wrien communicaons skills. CSED is strongly ...

  10. Wavelet based multicarrier code division multiple access ...

    African Journals Online (AJOL)

    This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...

  11. Academic Achievement of NCAA Division III Athletes

    Science.gov (United States)

    Barlow, Kathy A.; Hickey, Ann

    2014-01-01

    A study of 215 athletes at a small private liberal arts Division III college revealed that athletes (a) begin their college experience with SATs no different from non-athletes; (b) attain GPAs that do not significantly differ from those of nonathletes; (c) achieve GPAs that do not significantly differ between their "in-season" semester…

  12. Research Award: Communications Division Deadline: 12 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... IDRC's Communications Division has undertaken a number of initiatives to promote research results to key stakeholders. These initiatives include a very active book publishing program, media, web and social media strategies, as well as other outreach programs. As a Communications Research Award ...

  13. An electrostatic model for biological cell division

    CERN Document Server

    Faraggi, Eshel

    2010-01-01

    Probably the most fundamental processes for biological systems is their ability to create themselves through the use of cell division and cell differentiation. In this work a simple physical model is proposed for biological cell division. The model consists of a positive ionic gradient across the cell membrane, and concentration of charge at the nodes of the spindle and on the chromosomes. A simple calculation, based on Coulomb's Law, shows that under such circumstances a chromosome will tend to break up to its constituent chromatids and that the chromatids will be separated by a distance that is an order of thirty percent of the distance between the spindle nodes. Further repulsion between the nodes will tend to stretch the cell and eventually break the cell membrane between the separated chromatids, leading to cell division. The importance of this work is in continuing the understanding of the electromagnetic basis of cell division and providing it with an analytical model. A central implication of this and...

  14. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  15. Research Award: CommunicaƟons Division

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    As a member of the Division's team, you will also contribute for half a year to a variety of other communicaon tasks. Your research proposal should address one or more aspects of successful communicaon. For example: • How can the outcomes and impacts of communicaon iniaves be measured (branding, website, media.

  16. Which multivariate gamma distributions are infinitely divisible?

    OpenAIRE

    Bernardoff, Philippe

    2006-01-01

    We define a multivariate gamma distribution on [math] by its Laplace transform [math] , [math] where ¶ [math] ¶ Under [math] , we establish necessary and sufficient conditions on the coefficients of [math] such that the above function is the Laplace transform of some probability distribution, for all [math] thus characterizing all infinitely divisible multivariate gamma distributions on [math

  17. Physics Division activities report, 1986--1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  18. Operational momentum in multiplication and division?

    Science.gov (United States)

    Katz, Curren; Knops, André

    2014-01-01

    Biases are commonly seen in numerical cognition. The operational momentum (OM) effect shows that responses to addition and subtraction problems are biased in the whole-number direction of the operation. It is not known if this bias exists for other arithmetic operations. To determine whether OM exists in scalar operations, we measured response bias in adults performing symbolic (Arabic digits) and non-symbolic (dots) multiplication and division problems. After seeing two operands, with either a multiplication (×) or division (÷) sign, participants chose among five response choices. Both non-random performance profiles and the significant contribution of both operands in a multiple regression analysis predicting the chosen values, suggest that adults were able to use numerical information to approximate the outcomes in both notations, though they were more accurate on symbolic problems. Performance on non-symbolic problems was influenced by the size of the correct choice relative to alternatives. Reminiscent of the bias in addition and subtraction, we found a significant response bias for non-symbolic problems. Non-symbolic multiplication problems were overestimated and division problems were underestimated. These results indicate that operational momentum is present in non-symbolic multiplication and division. Given the influence of the size of the correct choice relative to alternatives, an interaction between heuristic bias and approximate calculation is possible.

  19. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  20. BIGAMOUS MARRIAGE AND THE DIVISION OF COMMON ...

    African Journals Online (AJOL)

    milkii

    The practice of bigamous marriage in rural and urban Ethiopia is deeply ... marriage. Part four analyze appropriate principles and evaluates judicial practices governing the division of common property in case of dissolution bigamous ...... But later on the Regional State legislators are forced to amend this Family Code to.

  1. Encrypted integer division and secure comparison

    NARCIS (Netherlands)

    Veugen, P.J.M.

    2014-01-01

    When processing data in the encrypted domain, homomorphic encryption can be used to enable linear operations on encrypted data. Integer division of encrypted data however requires an additional protocol between the client and the server and will be relatively expensive. We present new solutions for

  2. Division by zero in common meadows

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2014-01-01

    Common meadows are fields expanded with a total inverse function. Division by zero produces an additional value denoted with "a" that propagates through all operations of the meadow signature (this additional value can be interpreted as an error element). We provide a basis theorem for so-called

  3. Division by zero in common meadows

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.; De Nicola, R.; Hennicker, R.

    2015-01-01

    Common meadows are fields expanded with a total inverse function. Division by zero produces an additional value denoted with "a" that propagates through all operations of the meadow signature (this additional value can be interpreted as an error element). We provide a basis theorem for so-called

  4. Clinical Trials Management | Division of Cancer Prevention

    Science.gov (United States)

    Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials. Protocol Information Office The central clearinghouse for clinical trials management within the Division of Cancer Prevention.Read more about the Protocol Information Office. | Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials.

  5. Catholic Schools in Scotland and Divisiveness

    Science.gov (United States)

    McKinney, Stephen J.

    2008-01-01

    Faith schools and divisiveness is one of the key issues in the faith school debates in both England and Wales and Scotland. In Scotland the faith school debate is focused on Catholic schools. This paper, based on a review of relevant literature and the findings of a series of expert interviews, argues that the complexity of this issue of the…

  6. Chemical Biodynamics Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  7. Flexible frontiers for text division into rows

    Directory of Open Access Journals (Sweden)

    Dan L. Lacrămă

    2009-01-01

    Full Text Available This paper presents an original solution for flexible hand-written text division into rows. Unlike the standard procedure, the proposed method avoids the isolated characters extensions amputation and reduces the recognition error rate in the final stage.

  8. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  9. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  10. Information theoretic preattentive saliency

    DEFF Research Database (Denmark)

    Loog, Marco

    2011-01-01

    Employing an information theoretic operational definition of bottom-up attention from the field of computational visual perception a very general expression for saliency is provided. As opposed to many of the current approaches to determining a saliency map there is no need for an explicit data...... of which features, image information is described. We illustrate our result by determining a few specific saliency maps based on particular choices of features. One of them makes the link with the mapping underlying well-known Harris interest points, which is a result recently obtained in isolation...

  11. Institute for Theoretical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, S.B.; Ooguri, H.; Peet, A.W.; Schwarz, J.H.

    1998-06-01

    String theory is the only serious candidate for a unified description of all known fundamental particles and interactions, including gravity, in a single theoretical framework. Over the past two years, activity in this subject has grown rapidly, thanks to dramatic advances in understanding the dynamics of supersymmetric field theories and string theories. The cornerstone of these new developments is the discovery of duality which relates apparently different string theories and transforms difficult strongly coupled problems of one theory into weakly coupled problems of another theory.

  12. Theoretical Optics An Introduction

    CERN Document Server

    Römer, Hartmann

    2004-01-01

    Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researche

  13. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  14. Toward Spatially Regulated Division of Protocells: Insights into the E. coli Min System from in Vitro Studies

    Directory of Open Access Journals (Sweden)

    Simon Kretschmer

    2014-12-01

    Full Text Available For reconstruction of controlled cell division in a minimal cell model, or protocell, a positioning mechanism that spatially regulates division is indispensable. In Escherichia coli, the Min proteins oscillate from pole to pole to determine the division site by inhibition of the primary divisome protein FtsZ anywhere but in the cell middle. Remarkably, when reconstituted under defined conditions in vitro, the Min proteins self-organize into spatiotemporal patterns in the presence of a lipid membrane and ATP. We review recent progress made in studying the Min system in vitro, particularly focusing on the effects of various physicochemical parameters and boundary conditions on pattern formation. Furthermore, we discuss implications and challenges for utilizing the Min system for division site placement in protocells.

  15. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  16. Valuation theoretic and model theoretic aspects of local uniformization

    OpenAIRE

    Kuhlmann, Franz-Viktor

    2010-01-01

    This paper gives a survey on a valuation theoretical approach to local uniformization in positive characteristic, the model theory of valued fields in positive characteristic, and their connection with the valuation theoretical phenomenon of defect.

  17. Redefining Division and Corps Competencies: Are Divisions and Corps Training to Fight Joint

    National Research Council Canada - National Science Library

    Abb, William

    2000-01-01

    ...) and most dangerous (high intensity/ major theater war) contingencies drive all subsequent decisions over apportioning limited resources, force structure, training and equipment in an organization where division and corps commanders serve two masters...

  18. Active disturbance rejection control: methodology and theoretical analysis.

    Science.gov (United States)

    Huang, Yi; Xue, Wenchao

    2014-07-01

    The methodology of ADRC and the progress of its theoretical analysis are reviewed in the paper. Several breakthroughs for control of nonlinear uncertain systems, made possible by ADRC, are discussed. The key in employing ADRC, which is to accurately determine the "total disturbance" that affects the output of the system, is illuminated. The latest results in theoretical analysis of the ADRC-based control systems are introduced. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Theoretical physics 3 electrodynamics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...

  20. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  1. Social Security: Theoretical Aspects

    Directory of Open Access Journals (Sweden)

    O. I. Kashnik

    2013-01-01

    Full Text Available The paper looks at the phenomena of security and social security from the philosophical, sociological and psychological perspective. The undertaken analysis of domestic and foreign scientific materials demonstrates the need for interdisciplinary studies, including pedagogy and education, aimed at developing the guidelines for protecting the social system from destruction. The paper defines the indicators, security level indices and their assessment methods singled out from the analytical reports and security studies by the leading Russian sociological centers and international expert organizations, including the United Nations.The research is aimed at finding out the adequate models of personal and social security control systems at various social levels. The theoretical concepts can be applied by the teachers of the Bases of Life Safety course, the managers and researches developing the assessment criteria and security indices of educational environment evaluation, as well as the methods of diagnostics and expertise of educational establishments from the security standpoint. 

  2. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  3. Theoretical Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kamionkowski, Marc [Johns Hopkins Univ., Baltimore, MD (United States)

    2013-08-07

    Abstract: Theoretical Particle Astrophysics. The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  4. Towards A Theoretical Biology: Reminiscences

    Indian Academy of Sciences (India)

    cellular slime molds and interpreting them via theoretical analyses very much in the style of theoretical physics. Among them was V Nanjundiah who was a graduate student in physics. Thus while I cannot testify authoritatively as to the importance of the conferences for the development of theoretical biology generally, I can ...

  5. Investigation of divisibility in a spreadsheet environment

    Directory of Open Access Journals (Sweden)

    Stanislav Lukáč

    2016-07-01

    Full Text Available This classroom note is focused on the application of inquiry approaches to teaching divisibility in the set of whole numbers. The main attention is devoted to the composition of a sequence of questions implemented within the spreadsheet environment, the solution of which should encourage students to actively learn and discover the divisibility rule for number eleven. This is an extra-curricular topic in Slovakia aimed to be taught in extended Mathematics classes as many of their students encounter it in competitions. An important part of the development of the questions on workbook sheets is the implementation of feedback which provides evaluation of students' solutions and auxiliary instructions for the guidance of learning.

  6. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  7. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  8. Division algebras, extended supersymmetries and applications

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2001-03-01

    I present here some new results which make explicit the role of the division algebras R, C, H, O in the construction and classification of, respectively, N= 1, 2, 4, 8 global supersymmetric quantum mechanical and classical dynamical systems. In particular an N=8 Malcev superaffine algebra is introduced and its relation to the non-associative N = 8 SCA is discussed. A list of present and possible future applications is given. (author)

  9. Energy and Environment Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Camp, J.A. (ed.)

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  10. DNR Division of Parks and Trails District Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data shows the DNR Division of Parks and Trails District Boundaries as of May 2010. The boundaries were created by the Division Leadership Team. Boundaries are...

  11. Engineering Research Division publication report, calendar year 1980

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K.; Livingston, P.L.; Rae, D.C. (eds.)

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  12. A theoretical overview of hypernuclear weak decay

    Energy Technology Data Exchange (ETDEWEB)

    Chumillas, C. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, E-08028 Barcelona (Spain); Garbarino, G. [Dipartimento di Fisica Teorica, Universita di Torino and INFN, Sezione di Torino, I-10125 Torino (Italy)], E-mail: garbarin@to.infn.it; Parreno, A.; Ramos, A. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, E-08028 Barcelona (Spain)

    2008-05-15

    The physics of the weak decay of hypernuclei is briefly reviewed from a theoretical point of view. Special regard is devoted to the recent progress concerning the determination of the non-mesonic decay widths and the asymmetry parameters. Convincing evidence has been achieved for a solution of the long-standing puzzle on the ratio {gamma}{sub n}/{gamma}{sub p}. Very recently, it has been shown that the exchange of a {pi}{pi} pair in the weak mechanism plays a crucial role in explaining the discrepancies between theory and experiment on the decay asymmetries.

  13. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  14. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  15. Pancreatic division by electrocautery in pancreatoduodenectomy.

    Science.gov (United States)

    Yamauchi, H; Yamada, Y; Kakizaki, K

    1999-01-01

    To assess whether electrocautery is appropriate for cutting the pancreas in pancreatoduodenectomy, we compared leakage of the pancreatojejunostomy (PJ-stomy) in patients who underwent pancreatic division by electrocautery and with a conventional scalpel, in a retrospective study. Eighty-four patients with invaginating end-to-end PJ-stomies (performed in the period 1986-1996) were enrolled in this study; 34 patients underwent pancreatic division with a conventional scalpel (group A) and 50 by electrocautery (group B). Of the 84 patients, 12 (14%) had leakage from the PJ-stomies. In relation to consistency of the pancreatic parenchyma, the incidence of leakage in patients with hard pancreas (1/28; 3.6%) was significantly lower than that in patients with soft or moderate pancreas consistency (11/56; 20%) (P < 0.05). Nine patients (27%) in group A and 3 (6%) in group B presented with leakage. The incidence of leakage was significantly lower in group B than in group A (P < 0. 05). Even when patients with hard pancreas were excluded, the incidence of leakage was significantly lower in group B (3/34; 9%) than in group A (8/22; 36%) (P < 0.05). These results suggest that pancreatic division by electrocautery can reduce the incidence of leakage from the pancreatojejunostomy and make pancreatoduodenectomy a safer procedure.

  16. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Li

    2015-10-01

    Full Text Available In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression, the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature and divisive normalization contribute to interocular suppression.

  17. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Míriam R. García

    2018-01-01

    Full Text Available A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.

  18. Physics, Computer Science and Mathematics Division. Annual report, 1 January--31 December 1977. [LBL, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during 1977. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics, although there is a relatively small program of medium-energy research. The High Energy Physics research program in the Physics Division is concerned with fundamental research which will enable man to comprehend the nature of the physical world. The major effort is now directed toward experiments with positron-electron colliding beam at PEP. The Medium Energy Physics program is concerned with research using mesons and nucleons to probe the properties of matter. This research is concerned with the study of nuclear structure, nuclear reactions, and the interactions between nuclei and electromagnetic radiation and mesons. The Computer Science and Applied Mathematics Department engages in research in a variety of computer science and mathematics disciplines. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The Computer Center provides large-scale computational support to LBL's scientific programs. Descriptions of the various activities are quite short; references to published results are given. 24 figures. (RWR)

  19. EDITORIAL: Catalysing progress Catalysing progress

    Science.gov (United States)

    Demming, Anna

    2010-01-01

    Examples of the merits of blue-sky research in the history of science are legion. The invention of the laser, celebrating its 50th anniversary this year, is an excellent example. When it was invented it was considered to be 'a solution waiting for a problem', and yet the level to which it has now infiltrated our day-to-day technological landscape speaks volumes. At the same time it is also true to say that the direction of research is also at times rightly influenced by the needs and concerns of the general public. Over recent years, growing concerns about the environment have had a noticeable effect on research in nanotechnology, motivating work on a range of topics from green nanomaterial synthesis [1] to high-efficiency solar cells [2] and hydrogen storage [3]. The impact of the world's energy consumption on the welfare of the planet is now an enduring and well founded concern. In the face of an instinctive reluctance to curtail habits of comfort and convenience and the appendages of culture and consumerism, research into renewable and more efficient energy sources seem an encouraging approach to alleviating an impending energy crisis. Fuel cells present one alternative to traditional combustion cells that have huge benefits in terms of the efficiency of energy conversion and the limited harmful emissions. In last week's issue of Nanotechnology, Chuan-Jian Zhong and colleagues at the State University of New York at Binghamton in the USA presented an overview of research on nanostructured catalysts in fuel cells [4]. The topical review includes insights into the interactions between nanoparticles and between nanoparticles and their substrate as well as control over the composition and nanostructure of catalysts. The review also serves to highlight how the flourishing of nanotechnology research has heralded great progress in the exploitation of catalysts with nanostructures ingeniously controlled to maximize surface area and optimize energetics for synthesis

  20. Actor Networks and the Division of Knowledge in the University.

    Science.gov (United States)

    Busch, Lawrence

    This paper discusses the current division of knowledge at the college and university level, its historical roots, and the application of Actor Network Theory (ANT) to arrive at an explanation of the permanence of the current division of knowledge as well as what form a new division of knowledge might take. It finds fragmentation and disintegration…

  1. Couples' Attitudes, Childbirth, and the Division of Labor

    Science.gov (United States)

    Jansen, Miranda; Liefbroer, Aart C.

    2006-01-01

    In this article, the authors examine effects of partners' attitudes on the timing of the birth of a first child, the division of domestic labor, the division of child care, and the division of paid labor of couples. They use data from the Panel Study of Social Integration in the Netherlands, which includes independent measures of both partners'…

  2. 1997 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L.; Ghezzi, L. [ENEA, Centro Ricerche Frascati, Rome (Italy). Nuclear fusion division

    1997-12-31

    1997 was another year of intense activity for the ENEA Nuclear Fusion Division in the evolving scenario of fusion research. With respect to the International Thermonuclear Experimental Reactor (ITER), a major review process has started, originate by the wide perception that the difficult financial situation affecting some of the parties would make it very difficult, practically impossible, to secure funding for the project as it stands. To scale down the size and cost of the machine by reducing the technical objectives, while keeping to the programmatic goal of constructing a demonstration reactor (DEMO) as the following step, appears achievable. Progress in physics was substantial during 1997. Analysis of the huge existing database, complemented by the latest results, had led to a better, more accurate scaling for the confinement time on which to base extrapolation to ITER. Studies of the very promising advanced regimes have been pursued on many tokamaks. The Frascati Tokamak Upgrade (FTU) is well placed in this respect since it is equipped with the right tools, lower hybrid and electron cyclotron radiofrequency heating and current drive systems, to explore the new promised land of low transport from the plasma core. The main highlights of FTU operation in 1997 were related to providing information relevant to these future developments. Transient production of low transport regimes with electron temperatures of 8-9 keV at the plasma center was obtained by taking advantage of the plasma skin effect and precise electron cyclotron power deposition. High-efficiency current drive at high density using lower hybrid waves was demonstrated. High-confinement pellet-enhanced modes of operation and good ion Bernstein wave coupling through the waveguide-type coupler were also achieved. Concerning the IGNITOR experiment, funds were made available only for continuation of the engineering design activities, and nothing has been released so far for manufacturing the additional

  3. Theoretical Approaches to Coping

    Directory of Open Access Journals (Sweden)

    Sofia Zyga

    2013-01-01

    Full Text Available Introduction: Dealing with stress requires conscious effort, it cannot be perceived as equal to individual's spontaneous reactions. The intentional management of stress must not be confused withdefense mechanisms. Coping differs from adjustment in that the latter is more general, has a broader meaning and includes diverse ways of facing a difficulty.Aim: An exploration of the definition of the term "coping", the function of the coping process as well as its differentiation from other similar meanings through a literature review.Methodology: Three theoretical approaches of coping are introduced; the psychoanalytic approach; approaching by characteristics; and the Lazarus and Folkman interactive model.Results: The strategic methods of the coping approaches are described and the article ends with a review of the approaches including the functioning of the stress-coping process , the classificationtypes of coping strategies in stress-inducing situations and with a criticism of coping approaches.Conclusions: The comparison of coping in different situations is difficult, if not impossible. The coping process is a slow process, so an individual may select one method of coping under one set ofcircumstances and a different strategy at some other time. Such selection of strategies takes place as the situation changes.

  4. Workforce Training and Economic Development Fund: 2015 Annual Progress Report

    Science.gov (United States)

    Iowa Department of Education, 2015

    2015-01-01

    The Department of Education, Division of Community Colleges, will annually provide the State Board of Education with The Workforce Training and Economic Development (WTED) Fund Annual Progress Report. Administration and oversight responsibility for the fund was transferred from the Iowa Economic Development Authority to the Iowa Department of…

  5. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI and ZapB interacted...

  6. Scientific progress without increasing verisimilitude: In response to Niiniluoto.

    Science.gov (United States)

    Rowbottom, Darrell P

    2015-06-01

    First, I argue that scientific progress is possible in the absence of increasing verisimilitude in science's theories. Second, I argue that increasing theoretical verisimilitude is not the central, or primary, dimension of scientific progress. Third, I defend my previous argument that unjustified changes in scientific belief may be progressive. Fourth, I illustrate how false beliefs can promote scientific progress in ways that cannot be explicated by appeal to verisimilitude. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus.

    Science.gov (United States)

    Treuner-Lange, Anke; Aguiluz, Kryssia; van der Does, Chris; Gómez-Santos, Nuria; Harms, Andrea; Schumacher, Dominik; Lenz, Peter; Hoppert, Michael; Kahnt, Jörg; Muñoz-Dorado, José; Søgaard-Andersen, Lotte

    2013-01-01

    Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z-ring at the division site. Here, we show that lack of the ParA-like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome-free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z-rings and incorrect positioning of the few Z-rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z-ring formation and is a spatial regulator of Z-ring formation and cell division. The cell cycle-dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z-ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z-ring formation to this position. © 2012 Blackwell Publishing Ltd.

  8. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  9. The spatial equity principle in the administrative division of the Central European countries.

    Science.gov (United States)

    Halás, Marián; Klapka, Pavel; Bačík, Vladimír; Klobučník, Michal

    2017-01-01

    The paper generally builds on the concept of justice in social science. It attempts to interpret this concept in a geographical and particularly in a spatial context. The paper uses the concept of accessibility to define the principle of spatial equity. The main objective of the paper is to propose an approach with which to assess the level of spatial equity in the administrative division of a territory. In order to fulfil this objective the paper theoretically discusses the concept of spatial equity and relates it to other relevant concepts, such as spatial efficiency. The paper proposes some measures of spatial equity and uses the territory of four Central European countries (Austria, the Czech Republic, Hungary, Slovakia) as example of the application of the proposed measures and the corroboration of the proposed approach. The analysis is based on the administrative division of four countries and is carried out at different hierarchical levels as defined by the Nomenclature of Units for Territorial Statistics (NUTS).

  10. Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information.

    Science.gov (United States)

    Xiao, Shengping; Tong, Cheesan; Yang, Yang; Wu, Min

    2017-11-20

    Dynamic spatial patterns such as traveling waves could theoretically encode spatial information, but little is known about whether or how they are employed by biological systems, especially higher eukaryotes. Here, we show that concentric target or spiral waves of active Cdc42 and the F-BAR protein FBP17 are invoked in adherent cells at the onset of mitosis. These waves predict the future sites of cell divisions and represent the earliest known spatial cues for furrow assembly. Unlike interphase waves, the frequencies and wavelengths of the mitotic waves display size-dependent scaling properties. While the positioning role of the metaphase waves requires microtubule dynamics, spindle and microtubule-independent inhibitory signals are propagated by the mitotic waves to ensure the singularity of furrow formation. Taken together, we propose that metaphase cortical waves integrate positional and cell size information for division-plane specification in adhesion-dependent cytokinesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  12. Divisibility of quantum dynamical maps and collision models

    Science.gov (United States)

    Filippov, S. N.; Piilo, J.; Maniscalco, S.; Ziman, M.

    2017-09-01

    The divisibility of dynamical maps is visualized by trajectories in the parameter space and analyzed within the framework of collision models. We introduce ultimate completely positive (CP) divisible processes, which lose CP divisibility under infinitesimal perturbations, and characterize Pauli dynamical semigroups exhibiting such a property. We construct collision models with factorized environment particles, which realize additivity and multiplicativity of generators of CP divisible maps. A mixture of dynamical maps is obtained with the help of correlated environment. The mixture of ultimate CP divisible processes is shown to result in a class of eternal CP indivisible evolutions. We explicitly find collision models leading to weakly and essentially non-Markovian Pauli dynamical maps.

  13. Section III, Division 5 - Development and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    D. K. Morton; R I Jetter; James E Nestell; T. D. Burchell; T L (Sam) Sham

    2012-07-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development. Portions of this paper were based on Chapter 17 of the Companion Guide to the ASME Boiler & Pressure Vessel Code, Fourth Edition, © ASME, 2012, Reference.

  14. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  15. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  16. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  17. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  18. Time division multiple access for vehicular communications

    CERN Document Server

    Omar, Hassan Aboubakr

    2014-01-01

    This brief focuses on medium access control (MAC) in vehicular ad hoc networks (VANETs), and presents VeMAC, a novel MAC scheme based on distributed time division multiple access (TDMA) for VANETs. The performance of VeMAC is evaluated via mathematical analysis and computer simulations in comparison with other existing MAC protocols, including the IEEE 802.11p standard. This brief aims at proposing TDMA as a suitable MAC scheme for VANETs, which can support the quality-of-service requirements of high priority VANET applications.

  19. Finite-dimensional division algebras over fields

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti

  20. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.