WorldWideScience

Sample records for theoretical condensed matter

  1. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  2. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  3. Advances in condensed matter optics

    CERN Document Server

    Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin

    2015-01-01

    This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.

  4. Condensed matter physics aspects of electrochemistry

    International Nuclear Information System (INIS)

    Tosi, M.P.; Kornyshev, A.A.

    1991-01-01

    This volume collects the proceedings of the Working Party on ''Electrochemistry: Condensed Matter, Atomic and Molecular Physics Aspects'', held for two weeks in the summer of 1990 at the International Centre for Theoretical Physics (ICTP) in Trieste. The goal of the meeting was to discuss those areas of electrochemistry that are accessible to the modern methods of theoretical condensed matter, atomic and molecular physics, in order to stimulate insight and deeper involvement by theoretical physicists into the field. The core of the ICTP Working Party was a set of topically grouped plenary lectures, accompanied by contributed seminars and by the formulation of joint research projects. In the tradition of the ICTP, it was not a meeting of pure theoreticians: about half of the lecturers were professional experimentalists - experts in electrochemistry, physical chemistry, surface science, technical applications. A set of topics was chosen for discussion at the meeting: Liquids, solvation, solutions; The interface (structure, characterization, electric properties, adsorption); Electrodynamics, optics, photo-emission; Charge transfer kinetics (homogeneous and heterogeneous reactions and processes); Superconducting electrodes; Fractal electrodes; Applied research (energy conversion and power sources, electrocatalysis, electroanalysis of turbulent flows). Refs, figs and tabs

  5. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    Science.gov (United States)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  6. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  7. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  8. Open problems in condensed matter physics, 1987

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs

  9. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  10. Condensed Matter Physics in Colombia is in its forties

    Science.gov (United States)

    Camacho, Angela

    2015-03-01

    Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties

  11. Noise study in condensed matter physics-Towards extension to surrounding fields

    International Nuclear Information System (INIS)

    Maeda, Atsutaka

    2006-01-01

    I briefly review noise studies in condensed matter physics, such as the shot noise measurement in metals, the dynamic-coherent-volume investigation in charge-density waves, the macroscopic quantum tunneling in superconductors, and the experimental investigation of dynamic phase diagram of driven vortices in high-T c superconductors. With these examples, one finds that the noise studies have played many crucial roles in condensed matter physics. I also discuss a recent theoretical suggestion that noise measurements in Josephson junction may clarify the origin of the dark energy in the universe

  12. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  13. Coherence and chaos in condensed matter

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs

  14. Equation of state of warm condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W., III; Young, D.A.; Rogers, F.J.

    1998-03-01

    Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T{approximately}T{sub Fermi}. We seek to ``connect up`` these two regimes by using ab initio finite temperature methods (including linear-response[1] based phonon calculations) to derive an equation of state of condensed matter for T{<=}T{sub Fermi}. We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T>10{sup 4}K, and compare our results with available experimental data.

  15. Novel Quantum Condensates in Excitonic Matter

    International Nuclear Information System (INIS)

    Littlewood, P. B.; Keeling, J. M. J.; Simons, B. D.; Eastham, P. R.; Marchetti, F. M.; Szymanska, M. H.

    2009-01-01

    These lectures interleave discussion of a novel physical problem of a new kind of condensate with teaching of the fundamental theoretical tools of quantum condensed matter field theory. Polaritons and excitons are light mass composite bosons that can be made inside solids in a number of different ways. As bosonic particles, they are liable to make a phase coherent ground state - generically called a Bose-Einstein condensate (BEC) - and these lectures present some models to describe that problem, as well as general approaches to the theory. The focus is very much to explain how mean-field-like approximations that are often presented heuristically can be derived in a systematic fashion by path integral methods. Going beyond the mean field theory then produces a systematic approach to calculation of the excitation energies, and the derivation of effective low energy theories that can be generalised to more complex dynamical and spatial situations than is practicable for the full theory, as well as to study statistical properties beyond the semi-classical regime. in particular, for the polariton problem, it allows one to connect the regimes of equilibrium BEC and non-equilibrium laser. The lectures are self-sufficient, but not highly detailed. The methodological aspects are covered in standard quantum field theory texts and the presentation here is deliberately cursory: the approach will be closest to the book of Altland and Simons. Since these lectures concern a particular type of condensate, reference should also be made to texts on BEC, for example by Pitaevskii and Stringari. A recent theoretically focussed review of polariton systems covers many of the technical issues associated with the polariton problem in greater depth and provides many further references.

  16. Vortices in a rotating dark matter condensate

    International Nuclear Information System (INIS)

    Yu, Rotha P; Morgan, Michael J

    2002-01-01

    We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)

  17. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  18. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  19. Quark Condensate in the Strange Matter

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Fang; LU" Xiao-Fu

    2003-01-01

    In a nonlinear chiral SU(3) framework, we investigate the quark condensate in the strange matter including N, Σ, Ξ, and Λ, making use of chiral symmetry spontaneous breaking Lagrangian and mean-field approximation. The results show that the chiral symmetry is restored partially when the strange matter density increases and that 〈π→2〉 plays a very important role in the strange matter which may approach the constituents of the neutron stars. In addition, we can find that the strange matter density where the π-condensate emerges leads to the ratio of the nucleon number to baryon number.

  20. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  1. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  2. Physics through the 1990s: Condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed

  3. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  4. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  5. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  6. Gravitational effects of condensate dark matter on compact stellar objects

    International Nuclear Information System (INIS)

    Li, X.Y.; Wang, F.Y.; Cheng, K.S.

    2012-01-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed

  7. Collision of Bose Condensate Dark Matter structures

    International Nuclear Information System (INIS)

    Guzman, F. S.

    2008-01-01

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  8. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  9. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.

  10. Finite temperature effects in Bose-Einstein condensed dark matter halos

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Madarassy, Enikö J.M.

    2012-01-01

    Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates

  11. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  12. Theoretical Studies on Expressions of Condensed-Phase Photoionization Cross Section

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Wang Meishan; Wang Dehua; Qu Zhaojun

    2006-01-01

    A set of general expressions for photoionization cross sections of atoms or molecules embedded in a medium and a dielectric influence function are derived based on Maxwell's equations and the Beer-Lambert's law in this work. The applications are performed for the photoionization process of solid gold both in the Clausius-Mossotti (virtual cavity) model and the Glauber-Lewenstein (real cavity) model firstly. The results show that the present theoretical expressions of photoionization cross section can be used to describe the photoionization process of atoms in condensed matter properly.

  13. Physics through the 1990s: condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations

  14. Slow electron motion in condensed matter: Final progress report for period January 1, 1984-December 31, 1986

    International Nuclear Information System (INIS)

    Fano, U.

    1987-02-01

    A summary is given for theoretical procedures that describe and evaluate the penetration, degradation and diffusion of slow electrons in condensed matter with characteristics relevant to biological systems. 5 refs

  15. Quantum simulation of strongly correlated condensed matter systems

    Science.gov (United States)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  16. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  17. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  18. Dark matter as the Bose-Einstein condensation in loop quantum cosmology

    International Nuclear Information System (INIS)

    Atazadeh, K.; Mousavi, M.; Darabi, F.

    2016-01-01

    We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)

  19. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  20. Condensed matter analogues of cosmology

    Science.gov (United States)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  1. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  2. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  3. Statistical mechanics and applications in condensed matter

    CERN Document Server

    Di Castro, Carlo

    2015-01-01

    This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...

  4. Walter Kohn and the Rise of Condensed Matter Physics T V ...

    Indian Academy of Sciences (India)

    Ramakrishnan T V

    Condensed Matter Physics: ( Physics of condensed matter, which is mostly solid, ... The nature and description of electronic states in solids. ( also with coulomb ... materials, molecular complexes, etc.. (Chemistry, biology, materials science….).

  5. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  6. Interplay between kaon condensation and hyperons in highly dense matter

    International Nuclear Information System (INIS)

    Muto, Takumi

    2008-01-01

    The possible coexistence and/or competition of kaon condensation with hyperons are investigated in hyperonic matter, where hyperons are mixed in the ground state of neutron-star matter. The formulation is based on the effective chiral Lagrangian for the kaon-baryon interaction and the nonrelativistic baryon-baryon interaction model. First, the onset condition of the s-wave kaon condensation realized from hyperonic matter is reexamined. It is shown that the usual assumption of the continuous phase transition is not always kept valid in the presence of the negatively charged hyperons (Σ - ). Second, the equation of state (EOS) of the kaon-condensed phase in hyperonic matter is discussed. In the case of the stronger kaon-baryon attractive interaction, it is shown that a local energy minimum with respect to the baryon number density appears as a result of considerable softening of the EOS due to both kaon condensation and hyperon mixing and recovering of the stiffness of the EOS at very high densities. This result implies a possible existence of self-bound objects with kaon condensates on any scale from an atomic nucleus to a neutron star

  7. Resource Letter HCMP-1: History of Condensed Matter Physics

    Science.gov (United States)

    Martin, Joseph D.

    2017-02-01

    This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.

  8. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  9. New state of matter: Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    70 years after work by the Indian physicist Satyendra Nath Bose led Einstein to predict the existence of a new state of matter, the Bose-Einstein condensate has finally been seen. The discovery was made in July by a team from Colorado, and was followed one month later by a second sighting at Rice University at Houston, Texas. It is Bose's theoretical framework governing the behaviour of the particles we now call bosons which led to Einstein's prediction. Unlike fermions, which obey the Pauli exclusion principle of only one resident particle per allowed quantum state, any number of bosons can pack into an identical quantum state. This led Einstein to suggest that under certain conditions, bosons would lose their individual identities, condensing into a kind of 'superboson'. This condensate forms when the quantum mechanical waves of neighbouring bosons overlap, hiding the identity of the individual particles. Such a condition is difficult to achieve, since most long-lived bosons are composite particles which tend to interact and stick together before a condensate can emerge. Extremely low temperatures and high densities are required to overcome this problem. As bosons lose energy and cool down, their wavelengths become longer, and they can be packed close enough together to merge into a condensate. Up until now, however, the extreme conditions needed have not been attainable. Nevertheless, hints of the Bose- Einstein condensate have been inferred in phenomena such as superconductivity and liquid helium superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several

  10. Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong; Mocanu, Gabriela

    2015-01-01

    The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10 −7 fm

  11. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  12. Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)

  13. Condensed matter studies by nuclear methods

    International Nuclear Information System (INIS)

    Krolas, K.; Tomala, K.

    1988-01-01

    The separate abstract was prepared for 1 of the papers in this volume. The remaining 13 papers dealing with the use but not with advances in the use of nuclear methods in studies of condensed matter, were considered outside the subject scope of INIS. (M.F.W.)

  14. Proton mixing in -condensed phase of neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Takatsuka, Tatsuyuki

    1984-08-01

    The mixing of protons in neutron star matter under the occurrence of condensation is studied in the framework of the ALS (Alternating Layer Spin) model and with the effective interaction approach. It is found that protons are likely to mix under the situation and cause a remarkable energy gain from neutron matter as the density increases. The extent of proton mixing becomes larger by about a factor (1.5-2.5) according to the density rho asymptotically equals (2-5)rho0, rho0 being the nuclear density, as compared with that for the case without pion condensation. The reason can be attributed to the two-dimensional nature of the Fermi gas state characteristic of the nucleon system under condensation.

  15. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  16. Quark condensates in nuclear matter in the global color symmetry model of QCD

    International Nuclear Information System (INIS)

    Liu Yuxin; Gao Dongfeng; Guo Hua

    2003-01-01

    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks

  17. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-01-01

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  18. Experimental and Computational Techniques in Soft Condensed Matter Physics

    Science.gov (United States)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  19. Condensate cosmology: Dark energy from dark matter

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo

    2003-01-01

    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models

  20. Diagrammatics lectures on selected problems in condensed matter theory

    CERN Document Server

    Sadovskii, Michael V

    2006-01-01

    The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection

  1. Condensed matter view of giant resonance phenomena

    International Nuclear Information System (INIS)

    Zangwill, A.

    1987-01-01

    The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures

  2. Phase transition in dense nuclear matter with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ellis, J.; Kapusta, J.I.; Olive, K.A.

    1991-01-01

    Nuclear matter is expected to modify the expectation values of the quark and gluon condensates. We utilize the chiral and scale symmetries of QCD to describe the interaction between these condensates and hadrons. We solve the resulting equations self-consistently in the relativistic mean field approximation. In order that these QCD condensates be driven towards zero at high density their coupling to sigma and vector mesons must be such that the masses of these mesons do not decrease with density. In this case a physically sensible phase transition to quark matter ensures. (orig.)

  3. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have ... The biological matter such as the tiniest of life, an amoeba, is alive ..... and black-holes, nature fascinates physicists. It is the ...

  4. Bright matter wave solitons and their collision in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radha, R.; Ramesh Kumar, V.

    2007-01-01

    We obtain the bright matter wave solitons in Bose-Einstein condensates from a trivial input solution by solving the time dependent Gross-Pitaevskii (GP) equation with quadratic potential and exponentially varying scattering length. We observe that the matter wave density of bright soliton increases with time by virtue of the exponentially increasing scattering length. We also understand that the matter wave densities of bright soliton trains remain finite despite the exchange of atoms during interaction and they travel along different trajectories (diverge) after interaction. We also observe that their amplitudes continue to fluctuate with time. For exponentially decaying scattering lengths, instability sets in the condensates. However, the scattering length can be suitably manipulated without causing the explosion or the collapse of the condensates

  5. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  6. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  7. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  8. Condensation of galactic cold dark matter

    International Nuclear Information System (INIS)

    Visinelli, Luca

    2016-01-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M_χc"2≈10"−"2"4 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  9. Diffusive instability of a kaon condensate in neutron star matter

    International Nuclear Information System (INIS)

    Kubis, Sebastian

    2004-01-01

    The beta equilibrated dense matter with kaon condensate is analyzed with respect to extended stability conditions, including charge fluctuations. This kind of the diffusive instability appeared to be common property in the kaon condensation case. Results for three different nuclear models are presented

  10. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case

    International Nuclear Information System (INIS)

    Bettoni, Dario; Colombo, Mattia; Liberati, Stefano

    2014-01-01

    Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales

  11. PREFACE: 10th Summer School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter'

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2010-03-01

    This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and

  12. Quantum condensates and topological bosons in coupled light-matter excitations

    Energy Technology Data Exchange (ETDEWEB)

    Janot, Alexander

    2016-02-29

    Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.

  13. 13th International Workshop on Condensed Matter Theories

    CERN Document Server

    1990-01-01

    This volume gathers the invited talks of the XIII International Work­ shop on Condensed Matter Theories which took place in Campos do Jordao near Sao Paulo, Brazil, August 6-12, 1989. It contains contributions in a wide variety of fields including neutral quantum and classical fluids, electronic systems, composite materials, plasmas, atoms, molecules and nuclei, and as this year's workshop reflected the natural preoccupation in materials science with its spectacular prospect for mankind, room tempera­ ture super-conductivity. All topics are treated from a common viewpoint: that of many-body physics, whether theoretical or simu1ational. Since the very first workshop, held at the prestigious Instituto de Fisica Teorica in Sao Paulo, and organized by the same organizer of the 1989 workshop, Professor Valdir Casaca Aguilera-Navarro, the meeting has taken place annually six times in Latin America, four in Europe and three in the United States. Its principal objective has been to innitiate and nurture collaborati...

  14. Collective emission of matter-wave jets from driven Bose-Einstein condensates.

    Science.gov (United States)

    Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng

    2017-11-16

    Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.

  15. The research of condensed matter physics by using intense proton accelerator

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1990-01-01

    The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)

  16. Implanted muon studies in condensed matter science

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1986-12-01

    The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)

  17. Dark matter seen as a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Manzoni, Andre; Pires, Marcelo

    2011-01-01

    Full text: Astronomical observations of the stellar angular velocity in galaxies shows the general relativity theory, which considers that the usual matter changes the space-time, unable to describe the angular velocity to the peripheral stars. There are two possibilities to solve this problem, or the general relativity theory is not adequate to the phenomena or another type of matter must be considered in the composition of the galaxies. Many astrophysicists are in agreement considering another type of matter. This matter, called dark matter (DM), must interact very weakly with the barionic matter and, therefore, is invisible to direct observation. Some of them consider this dark matter made up of weakly interacting massive particles (WIMPs), which were not detected yet due to their very thin cross-section. A cloud of these particles is distributed around the galaxy under a low temperature and density. If we consider the cloud as a quantum gas, with the energies and the densities low enough to have binary interactions between particles, the gas can reach temperature condition to take a phase transition to the Bose-Einstein condensate where there are a constructive interference partner of these WIMPs. We performed an investigation about the dark matter being a Bose-Einstein condensate of WIMPs confined in itself gravitational potential. Taking the Thomas-Fermi approximation where the number of WIMPs is big enough to neglect the kinetic contribution in the total energy, we got the state equation of barotropic gas. Fitting this state equation with the data of rotational curves and density profiles taken from astronomical observations of galaxies, we estimated the mass and the scattering length of these WIMPs. (author)

  18. Analysis of condensed matter physics records in databases. Science and technology indicators in condensed matter physics

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-05-01

    An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)

  19. Theory of condensed matter. Lectures presented at an international course

    International Nuclear Information System (INIS)

    1968-01-01

    The International Centre for Theoretical Physics, since its inception, has striven to maintain an interdisciplinary character in its research and training programme as far as different branches of theoretical physics are concerned. in pursuance of this aim the Centre has followed a policy of organizing extended research seminars with a comprehensive and synoptic coverage on varying disciplines. The first of these — lasting over a month — was held in 1964 on fluids of ionized particles and plasma physics; the second, lasting for two months, was concerned with physics of elementary particles and high-energy physics; the third, of three months’ duration, October — December 1966, covered nuclear theory; the fourth, bringing the series through a complete cycle, was a course on condensed matter held from 3 October to 16 December 1967. The present volume records the proceedings of this research seminar. The publication is divided into four parts containing 29 papers. Part I — General Courses, Part II - Dynamical lattice properties; Part III — Liquids and molecules; Part IV — Electronic properties

  20. Muonic Chemistry in Condensed Matter

    CERN Multimedia

    2002-01-01

    When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...

  1. Neutrino emission in inhomogeneous pion condensed quark matter

    International Nuclear Information System (INIS)

    Huang, Xuguang; Wang, Qun; Zhuang, Pengfei

    2008-01-01

    It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated. (author)

  2. Quasiparticles in condensed matter systems

    Science.gov (United States)

    Wölfle, Peter

    2018-03-01

    Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.

  3. Interference of an array of independent Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Hadzibabic, Zoran; Stock, Sabine; Battelier, Baptiste; Bretin, Vincent; Dalibard, Jean

    2004-01-01

    We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interferences were observed after the independent condensates were released from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a simple theoretical model, which generalizes the analysis of the interference of two condensates

  4. Radial oscillations of strange quark stars admixed with condensed dark matter

    Science.gov (United States)

    Panotopoulos, G.; Lopes, Ilídio

    2017-10-01

    We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.

  5. Proceedings of the 9. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1986-01-01

    The 9. National Meeting on Condensed Matter Physics presents works developed in the following fields: amorphous materials, atomic and molecular physics, biophysics, crystallography, defects, growth and critical phenomena, instrumentation, liquid crystals, magnetism, matter science/mechanical properties, metals and alloys, optic, magnetic resonance and semiconductors. (M.C.K.) [pt

  6. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  7. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  8. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  9. STRANGE BARYONIC MATTER AND KAON CONDENSATION

    Czech Academy of Sciences Publication Activity Database

    Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří

    2011-01-01

    Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  10. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia

    1999-01-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report

  11. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  12. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  13. Condensed matter research using pulsed neutron sources: a bibliography

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Stirling, G.C.

    1976-05-01

    This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)

  14. 10th International Workshop on Condensed Matter Theories

    CERN Document Server

    Kalia, Rajiv; Bishop, R

    1987-01-01

    The second volume of Condensed Matter Theories contains the proceedings of the 10th International Workshop held at Argonne National Laboratory, Argonne, IL, U.S.A. during the week of July 21, 1986. The workshop was attended by high-energy, nuclear and condensed-matter physicists as well as materials scientists. This diverse blend of participants was in keeping with the flavor of the previous workshops. This annual series of international workshops was"started in 1977 in Sao Paulo, Brazil. Subsequent'workshops were held in Trieste (Italy), Buenos Aires (Argentina), Caracas (Venezuela), Altenberg (West Germany), Granada (Spain), and San Francisco (U.S.A.). What began as a meeting of the physicists from the Western Hemisphere has expanded in the last three years into an international conference of scientists with diverse interests and backgrounds. This diversity has promoted a healthy exchange of ideas from different branches of physics and also fruitful interactions among the participants. The present volume is...

  15. Springer Handbook of Condensed Matter and Materials Data

    CERN Document Server

    Martienssen, Werner

    2005-01-01

    Condensed Matter and Materials Science are two of the most active fields of applied physics, with a stream of discoveries in areas from superconductivity and magnetism to the optical, electronic and mechanical properties of materials. While a huge amount of data has been compiled and spread over numerous reference works, no single volume compiles the most used information. Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200-page volume. The data, encapsulated in over 750 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the editors of this Springer Handbook. Key Topics Fundamental Constants The International S...

  16. International Workshop on Current Problems in Condensed Matter

    CERN Document Server

    Current Problems in Condensed Matter

    1998-01-01

    This volume contains the papers presented at the International Workshop on the Cur­ rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More­ los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis k...

  17. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia [eds.

    1999-09-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report figs., tabs., refs.

  18. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  19. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  20. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  1. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  2. Soft condensed matter: Polymers, complex fluids, and biomaterials

    International Nuclear Information System (INIS)

    Schaefer, D.

    1995-01-01

    Historians often characterize epochs through their dominant materials, clay, bronze, iron, and steel. From this perspective, the modern era is certainly the age of plastics. The progression from hard to soft materials suggests that the emerging era will be the age of open-quotes soft condensed matter.close quotes

  3. No pion condensate in nuclear matter due to fluctuations

    International Nuclear Information System (INIS)

    Kleinert, H.

    1981-01-01

    We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)

  4. Diquark Bose Condensates in High Density Matter and Instantons

    International Nuclear Information System (INIS)

    Rapp, R.; Shuryak, E.; Schaefer, T.; Velkovsky, M.

    1998-01-01

    Instantons lead to strong correlations between up and down quarks with spin zero and antisymmetric color wave functions. In cold and dense matter, n b >n c ≅1 fm -3 and T c ∼50 thinspthinspMeV, these pairs Bose condense, replacing the usual left-angle bar qq right-angle condensate and restoring chiral symmetry. At high density, the ground state is a color superconductor in which diquarks play the role of Cooper pairs. An interesting toy model is provided by QCD with two colors: it has a particle-antiparticle symmetry which relates left-angle bar qq right-angle and left-angle qq right-angle condensates. copyright 1998 The American Physical Society

  5. The coupling of condensed matter excitations to electron probes

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs

  6. Pion condensation and density isomerism in nuclear matter

    International Nuclear Information System (INIS)

    Hecking, P.; Weise, W.

    1979-01-01

    The possible existence of density isomers in nuclear matter, induced by pion condensation, is discussed; the nuclear equation of state is treated within the framework of the sigma model. Repulsive short-range baryon-baryon correlations, the admixture of Δ (1232) isobars and finite-range pion-baryon vertex form factors are taken into account. The strong dependence of density isomerism on the high density extrapolation of the equation of state for normal nuclear matter is also investigated. We find that, once finite range pion-baryon vertices are introduced, the appearance of density isomers becomes unlikely

  7. Effects of delta degrees of freedom on quark condensate in hot and dense matter

    International Nuclear Information System (INIS)

    Li Lei; Ning Pingzhi

    1996-01-01

    The relativistic mean-field theory is applied to study the quark condensate systematically in nuclear matter at zero and finite temperature in terms of the relative importance of delta degrees of freedom. Calculations have included the high-order contributions to quark condensate in nuclear medium due to the baryon-baryon interactions. Numerical results are presented for the nuclear density up to five times larger than the normal density and temperature up to 120 MeV. It is found that the delta resonance in nuclear matter can cause substantial decreases to in-medium quark condensate

  8. CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR

    Science.gov (United States)

    Durakiewicz, Tomasz

    The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666

  9. The application of SANS to ''soft condensed matter'': the structure of polymer-like lecithin reverse micelles

    International Nuclear Information System (INIS)

    Schurtenberger, P.; Cavaco, C.

    1992-01-01

    ''Complex fluids'' or ''soft condensed matter'' have recently attracted considerable attention both experimentally as well as theoretically. The hypothesis of a water-induced formation of flexible cylindrical micelles and the existence of entanglement networks was largely based on ''low-resolution'' light scattering and rheological measurements and analogies to classical polymer theory. In order to directly confirm this picture and verify the postulated analogy between the structural properties of polymer chains and lecithin reverse micelles we now used a combination of static light scattering and small angle neutron scattering. (author) 2 figs., 3 refs

  10. Hidden Scale Invariance in Condensed Matter

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2014-01-01

    . This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...

  11. Use of ultracold neutrons for condensed-matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  12. Use of ultracold neutrons for condensed-matter studies

    International Nuclear Information System (INIS)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples

  13. Correlations in condensed matter under extreme conditions a tribute to Renato Pucci on the occasion of his 70th birthday

    CERN Document Server

    2017-01-01

    This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.

  14. Bose-Einstein condensate & degenerate Fermi cored dark matter halos

    Science.gov (United States)

    Chung, W.-J.; Nelson, L. A.

    2018-06-01

    There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.

  15. Is a condensed state of nuclear matter possible?

    International Nuclear Information System (INIS)

    D'yakonov, D.I.; Mirlin, A.D.

    1988-01-01

    Nucleon chiral models naturally lead to the concept of ''generalized'' or ''classical'' nucleons which are characterized by a definite orientation in spin-isospin space. Nucleons and Δ resonances are different rotational states of generalized nucleons. Interaction of two generalized nucleons is sharply anisotropic and at a definite relative orientation leads to very strong attraction. This gives an idea of possible existence of a condensed state of nuclear matter, i.e. of a crystal or Fermi liquid with a short-range order which consists of N and Δ coherent superpositions. The variational estimate shows that at densities a few times that of the standard nuclear density this condensed state may be energetically favourable

  16. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Science.gov (United States)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  17. Plutonium metallurgy: The materials science challenges bridging condensed-matter physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov

    2007-10-11

    Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.

  18. Many body quantum physics at the condensed matter

    International Nuclear Information System (INIS)

    Llano, M. de

    1981-01-01

    The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)

  19. Eighteenth Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    CERN Document Server

    Landau, David P; Schüttler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVIII

    2006-01-01

    This volume represents a "status report" emanating from presentations made during the 18th Annual Workshop on Computer Simulations Studies in Condensed Matter Physics at the Center for Simulational Physics at the University of Georgia in March 2005. It provides a broad overview of the most recent advances in the field, spanning the range from statistical physics to soft condensed matter and biological systems. Results on nanostructures and materials are included as are several descriptions of advances in quantum simulations and quantum computing as well as.methodological advances.

  20. Pion condensation in a theory consistent with bulk properties of nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1980-01-01

    A relativistic field theory of nuclear matter is solved for the self-consistent field strengths inthe mean-field approximation. The theory is constrained to reproduce the bulk properties of nuclear matter. A weak pion condensate is compatible with this constraint. At least this is encouraging as concerns the possible existence of a new phase of nuclear matter. In contrast, the Lee-Wick density isomer is probably not compatible with the properties of nuclear matter. 3 figures

  1. Coupled Atom-Polar Molecule Condensate Systems: A Theoretical Adventure

    Science.gov (United States)

    2014-07-14

    second uses the linear-response theory more familiar to people working in the �eld of condensed-matter physics. We have introduced a quasiparticle ...picture and found that in this picture the bare EIT model in Fig. 2 (a) can be compared to a double EIT system shown in Fig. 2 (b). The quasiparticle ...energy levels consists of a particle (with positive quasiparticle energy ) and a hole (with negative quasiparticle energy) branch. The double EIT

  2. Use of ORELA to produce neutrons for scattering studies on condensed matter

    International Nuclear Information System (INIS)

    Peelle, R.W.; Lewis, T.A.; Mihalczo, J.T.; Mook, H.A.; Moon, R.M.

    1975-09-01

    The Oak Ridge Electron Linear Accelerator (ORELA) is evaluated as a source of neutrons for condensed matter research. Two options are assessed: (1) use of the present target arrangement with minor modifications; and (2) the construction of a new target and experiment facility designed for condensed matter research and equipped with a subcritical fission booster. The expected source strength and time behavior are discussed, including the fundamentals of moderator design. The effect on the programs presently using the linac are considered. It is concluded that a special-purpose neutron source facility using pulsed electrons from ORELA and containing a subcritical booster could be built to make a cost-effective neutron scattering facility of great power and utility. (auth)

  3. Holographic techniques for condensed matter systems

    International Nuclear Information System (INIS)

    Herzog, Chistopher

    2009-01-01

    Full text. Gauge/gravity duality, a concept which emerged from string theory, holds promise for revealing the secrets of certain strongly interacting real world condensed matter systems. Historically, string theorists presented their subject as a promising framework for a quantum theory of gravity. More recently, the AdS/CFT correspondence and gauge/gravity dualities have emerged as powerful tools for using what we already know about gravity to investigate the properties of strongly interacting field theories. In this colloquium, I will survey recent developments where black holes are used to calculate the thermodynamic and transport properties of quantum critical systems, superconductors, superfluids, and fermions at unitarity. (author)

  4. Collaboration in Australian condensed matter physics research

    International Nuclear Information System (INIS)

    Cushion, J.D.

    1998-01-01

    Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable

  5. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  6. Proceedings of the 12. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The XII National Meeting on Condensed Matter Physics presented works in the areas: atomic and molecular physics; biophysics; crystallography; defects growth and characterization of crystals; instrumentation; liquid crystals; magnetism; science of materials, metals and alloys; magnetic resonance; semiconductors; superconductivity and; surfaces and thin films. (M.C.K.) [pt

  7. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  8. Lectures on holographic methods for condensed matter physics

    International Nuclear Information System (INIS)

    Hartnoll, Sean A

    2009-01-01

    These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009, and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.

  9. Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities

    Science.gov (United States)

    Reyes, Arneil

    2006-11-01

    Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.

  10. 19th International School on Condensed Matter Physics (ISCMP): Advances in Nanostructured Condensed Matter: Research and Innovations

    International Nuclear Information System (INIS)

    2017-01-01

    We are pleased to introduce the Proceedings of the 19 th International School on Condensed Matter Physics “Advances in Nanostructured Condensed Matter: Research and Innovations” (19 th ISCMP). The school was held from August 28 th till September 2 nd , 2016 in Varna, Bulgaria. It was organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences (ISSP-BAS), and took place at one of the fine resorts on the Bulgarian Black Sea “Saints Constantine and Helena”. The aim of this international school is to bring together top experimentalists and theoreticians, with interests in interdisciplinary areas, with the younger generation of scientists, in order to discuss current research and to communicate new forefront ideas. This year special focus was given to discussions on membrane biophysics and quantum information, also not forgotten were some traditionally covered areas, such as characterization of nanostructured materials. Participants from 12 countries presented 28 invited lectures, 12 short oral talks and 44 posters. The hope of the organizing committee is that the 19 th ISCMP provided enough opportunities for direct scientific contacts, interesting discussions and interactive exchange of ideas between the participants. The nice weather certainly helped a lot in this respect. The editors would like to thank all authors for their high-quality contributions and the members of the international program committee for their commitment. The papers submitted for publication in the Proceedings were refereed according to the publishing standards of the Journal of Physics: Conference Series. The Editorial Committee members are very grateful to the Journal’s staff for the continuous fruitful relations and for giving us the opportunity to present the work from the 19 th ISCMP. Prof. DSc Hassan Chamati, Assist. Prof. Dr. Alexander A. Donkov, Assoc. Prof. Dr. Julia Genova, and Assoc. Prof. Dr. Emilia Pecheva (paper)

  11. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  12. International Symposium on Dynamics of Ordering Processes in Condensed Matter

    CERN Document Server

    Furukawa, H

    1988-01-01

    The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci­ ety of Japan. The symposium was financially supported by the four orga­ nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un­ stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by sim...

  13. Theoretical modeling of steam condensation in the presence of a noncondensable gas in horizontal tubes

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan; Kim, Moo Hwan

    2008-01-01

    A theoretical model was developed to investigate a steam condensation with a noncondensable gas in a horizontal tube. The heat transfer through the vapor/noncondensable gas mixture boundary layer consists of the sensible heat transfer and the latent heat transfer given up by the condensing vapor, and it must equal that from the condensate film to the tube wall. Therefore, the total heat transfer coefficient is given by the film, condensation and sensible heat transfer coefficients. The film heat transfer coefficients of the upper and lower portions of the tube were calculated separately from Rosson and Meyers (1965) correlation. The heat and mass transfer analogy was used to analyze the steam/noncondensable gas mixture boundary layer. Here, the Nusselt and Sherwood numbers in the gas phase were modified to incorporate the effects of condensate film roughness, suction, and developing flow. The predictions of the theoretical model for the experimental heat transfer coefficients at the top and bottom of the tube were reasonable. The calculated heat transfer coefficients at the top of the tube were higher than those at the bottom of it, as experimental results. As the temperature potential at the top of tube was lower than that at the bottom of it, the heat fluxes at the upper and lower portions of the tube were similar to each other. Generally speaking, however, the model predictions showed a good agreement with experimental data. The new empirical correlation proposed by Lee and Kim (2008) for the vertical tube was applied to the condensation of steam/noncondensable mixture in a horizontal tube. Nusselt theory and Chato correlation were used to calculate the heat transfer coefficients at top and bottom of the horizontal tube, respectively. The predictions of the new empirical correlation were good and very similar with the theoretical model. (author)

  14. The 1989 progress report: Physics of the condensed matter

    International Nuclear Information System (INIS)

    Sapoval, B.

    1989-01-01

    The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr

  15. Physics in Brazil in the next decade: condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This book gives a general overview of the present situation in Brazil, concerning research in the different areas of condensed matter physics. The main areas discussed here are: semiconductors, magnetism and magnetic materials, superconductivity liquid crystals and polymers, ceramics, glasses and crystals, statistical physics and solid state physics, crystallography, magnetic resonance and Moessbauer spectroscopy, among others. (A.C.A.S.)

  16. Experimental and theoretical investigations on condensation heat transfer at very low pressure to improve power plant efficiency

    International Nuclear Information System (INIS)

    Berrichon, J.D.; Louahlia-Gualous, H.; Bandelier, Ph.; Bariteau, N.

    2014-01-01

    Highlights: • Theoretical model for condensation heat transfer at very low pressure is developed using only one iterative loop. • Experimental results on steam and air steam condensation heat transfer at very low pressure are presented. • The developed model gives the good predictions for local condensation heat transfer at low pressure. • A maximal deterioration of 50% in condensation heat transfer is obtained at low pressure for air fraction of 4%. • A new correlation including effect of a wavy film surface for steam condensation at low pressure is suggested. - Abstract: This paper presents experimental investigation on the influence of very low pressure on local and average condensation heat transfer in a vertical tube. Furthermore, this paper develops an analytical study for film condensation heat transfer coefficient in the presence of non-condensable gas inside a vertical tube. The condensate film thickness is calculated for each location in a tube using mass and heat transfer analogy. The effects of interfacial shear stress and waves on condensate film surface are included in the model. The comparative studies show that the present model well predicts the experimental data of Khun et al. [1]for local condensation of steam air mixture at high pressure. Different correlations defined for condensation heat transfer are evaluated. It is found that the correlations of Cavallini and Zecchin [2] and Shah [3] are the closest to the calculated steam condensation local heat transfer coefficient. The model gives a satisfactory accuracy with the experimental results for condensation heat transfer at very low pressure. The mean deviation between the predictions of the theoretical model with the measurements for pure saturated vapor is 12%. Experimental data show that the increase of air fraction to 4% deteriorates condensation heat transfer at low pressure up to 50%

  17. Topology and condensed matter physics

    CERN Document Server

    Mj, Mahan; Bandyopadhyay, Abhijit

    2017-01-01

    This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field.  The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...

  18. Vast Antimatter Regions and Scalar Condensate Baryogenesis

    OpenAIRE

    Kirilova, D.; Panayotova, M.; Valchanov, T.

    2002-01-01

    The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.

  19. 24th Condensed Matter Days National Conference (CMDAYS2016)

    International Nuclear Information System (INIS)

    2016-01-01

    The 24 th edition of Condensed Matter Days (CMDAYS) 2016, a National Conference had been decided to be held at Physics Department, Mizoram University, Aizwal, Mizoram, India during 29-31 August 2016. This decision was taken by the General Body meeting of the CMDAYS on 28 August 2015 at Viswa Bharati, Shanti Niketan, West Bengal, India and Prof. R.K. Thapa was proposed as the Convener of CMDAYS-2016. Initiated by the Institute of Physics, Bhubaneswar, Odisa. The CMDAYS conference is held annually in the last week of August. The main objective of the conference was to bring all the researchers/scientists working in the field of Condensed Matter Physics, or related topics, together on a single platform. In this way, they can present, share and discuss their research findings and further plan collaborative works in future. The conference topics were on the theory and experimental research works done on Strongly correlated systems, Soft condensed matter, Magnetism and Magnetic materials, Disordered systems, Phase transition, Materials for energy harvesting, Nanomaterials and applications, Dielectrics and Ferroelectrics, Optoelectronics and devices, Semiconductors and devices, Biophysics, Biomaterials and composites, Superconductivity, Thin films and devices. It was open to all researchers from the research institutes, universities and colleges. Until the last date 1 st June 2016, we have received 1 plenary lecture, 3 Keynote lectures, 8 invited talks and 55 oral contributed papers. In total, there were 10 technical sessions to complete all the contributed papers along with the invited talks. Sessions were very interesting with the young participants interacting extensively with the senior scientists and everybody enjoyed the conference period with two cultural programmes. On the last day after the closing function, a local tour programme was arranged for all the outside participants. We are grateful to Prof. R. Lalthantluanga, Vice Cahncellor, Mizoram University, Aizawl

  20. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    Lebech, B.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  1. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  2. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  3. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  4. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  5. Proceedings 20. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2014-01-01

    The 20. International Conference on Applied Physics of Condensed Matter was held on 25-28 June, 2014 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Forty-six contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  6. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2008-09-01

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  7. The Physics of Life. Part I: The Animate Organism as an Active Condensed Matter Body

    OpenAIRE

    Kukuruznyak , Dmitry ,

    2017-01-01

    Nonequilibrium "active agents" establish bonds with each other and create a quickly evolving condensed state known as active matter. Recently, active matter composed of motile self-organizing biopolymers demonstrated a biotic-like motion similar to cytoplasmic streaming. It was suggested that the active matter could produce cells. However, active matter physics cannot yet define an " organism " and thus make a satisfactory connection to biology. This paper describes an organism made of active...

  8. Condensation for non-relativistic matter in Hořava–Lifshitz gravity

    Directory of Open Access Journals (Sweden)

    Jiliang Jing

    2015-10-01

    Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.

  9. Indus-I beamlines for condensed matter physics

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2001-01-01

    Full text: A 450 MeV electron storage ring Indus-I is now operational. This storage ring gives synchrotron radiation in soft x-ray vacuum ultra violet (VUV) and to visible region. On this storage ring six beamlines are now being set up for atomic and molecular spectroscopy experiments, solid state spectroscopy experiments and soft and VUV reflectivity experiments. In this talk, present status of beamlines which condense matter physicists will be interested in will be given along with some commissioning experiments. These beam lines are based on a toroidal grating monochromators in the range 40 - 1000 A with moderate energy resolution. Some experiments which can be conducted using these beam lines will be discussed

  10. On the existence of combined condensation of neutral and charged pions in neutron matter

    International Nuclear Information System (INIS)

    Muto, Takumi; Tatsumi, Toshitaka

    1987-01-01

    Combined condensation of neutral and charged pions at high-density neutron matter is studied in an approach based on the chiral symmetry. Energy density in the combined π 0 -π c condensed phase to be considered as most energetically favored is derived in a realistic calculation, where we take into account the isobar Δ (1232) degrees of freedom, baryon-baryon short-range correlations described in terms of the Landau-Migdal parameter g', and form factors in the π-baryon vertex. Characteristic features of this phase are discussed in comparison with those of the pure π 0 or the pure π c condensation. The combined π 0 -π c condensed phase sets in at baryon density (3 ∼ 5) times the nuclear density ρ 0 depending on g' after the appearance of the pure π c condensed phase. (author)

  11. Theoretical analysis of film condensation in horizontal microfin tubes; Microfin tsuki suihei kannai gyoshuku no riron kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, H [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study; Nozu, S [Okamaya Prefectural University, Okayama (Japan). Faculty of Computer Science and System Engineering

    2000-10-25

    A theoretical study has been made of film condensation in helically-grooved, horizontal microfin tubes. The annular flow regime and the stratified flow regime were considered. For the annular flow regime, a previously developed theoretical model was applied. For the stratified flow regime, the height of stratified condensate was estimated by a modified Taitel and Dukler model. For the upper part of the tube exposed to the vapor flow, numerical calculation of Laminar film condensation considering the combined effects of gravity and surface tension forces was conducted. The heat transfer coefficient at the lower part of the tube was estimated by an empirical equation for the internally finned tubes developed by Carnavos. The theoretical predictions of the circumferential average heat transfer coefficient by the two theoretical models were compared with available experimental data for four refrigerants and four tubes. Generally, the annular flow model gave a higher heat transfer coefficient than the stratified flow model in the high quality region, whereas the stratified flow model gave a higher heat transfer coefficient in the low quality region. For tubes with fin heights of 0.16 {approx} 0.24 mm, most of the experimental data agreed within {+-} 20% with the higher of the two theoretical predictions. (author)

  12. PREFACE: Topics in the application of scattering methods to investigate the structure and dynamics of soft condensed matter

    Science.gov (United States)

    Chen, Sow-Hsin; Baglioni, Piero

    2006-09-01

    This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of

  13. Inhomogeneous condensates in dilute nuclear matter and BCS-BEC crossovers

    International Nuclear Information System (INIS)

    Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W; Röpke, Gerd

    2014-01-01

    We report on recent progress in understanding pairing phenomena in low-density nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been found comprising various superfluid phases that include a homogeneous and phase-separated BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak coupling, of the condensate wavefunction and the second moment of its density distribution in r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.

  14. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  15. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  16. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  17. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  18. Statistical physics and condensed matter

    International Nuclear Information System (INIS)

    2003-01-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has

  19. A duality web in condensed matter systems

    Science.gov (United States)

    Ma, Chen-Te

    2018-03-01

    We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.

  20. Elements of a dialogue between nonlinear models in condensed matter and biophysics

    International Nuclear Information System (INIS)

    Bishop, A.R.; Lomdahl, P.S.; Kerr, W.C.

    1985-01-01

    We indicate some of the emerging thematic connections between strongly nonlinear effects in condensed matter and biological materials. These are illustrated with model studies of: (1) structural phase transitions in anisotropic lattices; and (2) finite temperature effects on self-trapped states in vibron-phonon models of α-helix proteins. 13 refs., 8 figs

  1. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  2. Proceedings 17. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Pudis, D.; Kubicova, I.; Bury, P.

    2011-01-01

    The 17. International Conference on Applied Physics of Condensed Matter was held on 22-24 June, 2011 in Spa Novy Smokovec, High Tatras, Slovakia. The specialists discussed various aspects of modern problems of nano-science and technology, thin films, MOS structures, optical phenomena, GaN-based heterostructures, simulation methods, heterostructures and devices, solid state characterization and analysis, materials and radiation, sensors and detection methods, and material sciences. Contributions relevant of INIS interest (55 contributions) has been inputted to INIS.

  3. Field theoretic consistency of QCD operator product expansion contributions from chiral non-invariant condensates

    International Nuclear Information System (INIS)

    Elias, V.; Steele, T.G.

    1987-01-01

    Several field theoretic aspects of the operator product expansion (OPE) augmentation of QCD have been examined. Gauge independence of quark self-energies at the mass shell corresponding to the mass m (characterizing the OPE expansion parameter m/p) has been verified to all orders of the OPE for dimension 3 and 5 chiral symmetry breaking condensates. Similarly, the necessary transversality of the quark condensate contribution to the gluon self-energy has been verified, provided that propagator masses appearing in the self-energy are equilibrated with the OPE mass parameter m

  4. Affleck-Dine baryogenesis, condensate fragmentation and gravitino dark matter in gauge-mediation with a large messenger mass

    International Nuclear Information System (INIS)

    Doddato, Francesca; McDonald, John

    2011-01-01

    We study the conditions for successful Affleck-Dine baryogenesis and the origin of gravitino dark matter in GMSB models. AD baryogenesis in GMSB models is ruled out by neutron star stability unless Q-balls are unstable and decay before nucleosynthesis. Unstable Q-balls can form if the messenger mass scale is larger than the flat-direction field Φ when the condensate fragments. We provide an example based on AD baryogenesis along a d = 6 flat direction for the case where m 3/2 ≈ 2GeV, as predicted by gravitino dark matter from Q-ball decay. Using a phenomenological GMSB potential which models the Φ dependence of the SUSY breaking terms, we numerically solve for the evolution of Φ and show that the messenger mass can be sufficiently close to the flat-direction field when the condensate fragments. We compute the corresponding reheating temperature and the baryonic charge of the condensate fragments and show that the charge is large enough to produce late-decaying Q-balls which can be the origin of gravitino dark matter

  5. History of the APS Topical Group on Shock Compression of Condensed Matter

    International Nuclear Information System (INIS)

    Forbes, J W

    2001-01-01

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years

  6. Fundamental problems and perspectives of positron diagnostics of structural imperfections in condensed matter

    International Nuclear Information System (INIS)

    Mukashev, K.M.; Sarsenbinov, Sh. Sh.

    2000-01-01

    Fundamental problems and nature of electron-positron annihilation phenomenon, problems of its application in studies of condensed matter, development of various methodic based on this phenomenon for structural studies in solids, mathematical aspects of experimental deta decoding and program means for computer data processing are discussed. (author)

  7. Proceedings of the international symposium on atomic, molecular, and condensed matter theory and computational methods

    International Nuclear Information System (INIS)

    Loewdin, Per-Olov; Oehrn, N.Y.; Sabin, J.R.; Zerner, M.C.

    1993-01-01

    After an introduction and a personal (World War II and postwar) retrospective by C.C.J. Roothaan, 69 papers are presented in fields of quantum biology, quantum chemistry, and condensed matter physics; topics covered include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems. An author index is included

  8. Neutron research on condensed matter: a study of the facilities and scientific opportunities in the United States

    International Nuclear Information System (INIS)

    1977-01-01

    An in-depth review of the present status and future potential of the applications of low-energy neutron scattering to research in the condensed-matter sciences, including physics, chemistry, biology, and metallurgy is presented. The study shows that neutron scattering technology has proven to be of enormous importance to research in the above areas and especially to those of solid-state physics and chemistry. The main emphasis is on the scattering of low-energy neutrons by condensed matter. Since the same type of neutron source facilities can be used for the study of radiation damage, this related topic has also been included

  9. Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yong Wenmei; Xue Jukui

    2008-01-01

    The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained

  10. Theoretical confirmation of Feynman's hypothesis on the creation of circular vortices in Bose-Einstein condensates: II

    Energy Technology Data Exchange (ETDEWEB)

    Senatorski, A; Infeld, E [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2004-09-15

    In a recent paper (Infeld and Senatorski 2003 J. Phys.: Condens. Matter 15 5865) we confirmed Feynman's hypothesis on how circular vortices can be created from an oppositely polarized linear pair in a Bose-Einstein condensate. This was done by perturbing the original pair numerically, so that a circular vortex (or array of identical circular vortices) was created as a result of reconnection. These circular vortices were then checked against known theoretical relations binding velocities and radii. Agreement to a high degree of accuracy was found. Here in part II, we give examples of the creation of several different vortices from one linear pair. All are checked as above. We also confirm the limit of separation of the line vortices below which mutual attraction, followed by annihilation, prevents the Feynman metamorphosis. Other possible modes of behaviour are illustrated.

  11. Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Directory of Open Access Journals (Sweden)

    Peter A. Horváthy

    2006-12-01

    Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.

  12. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    Science.gov (United States)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  13. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...

  14. Experimental and theoretical study of steam condensation induced water hammer phenomena

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Baranyai, Gabor; Ezsoel, Gyoergy

    2009-01-01

    We investigate steam condensation induced water hammer (waha) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermohydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side waha is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. Experimentally measured and theoretically calculated waha pressure peaks are in qualitative agreement. (author)

  15. Effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak

    2012-01-01

    We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...

  16. The Solar Photosphere: Evidence for Condensed Matter

    Directory of Open Access Journals (Sweden)

    Robitaille P. M.

    2006-04-01

    Full Text Available The stellar equations of state treat the Sun much like an ideal gas, wherein the photosphere is viewed as a sparse gaseous plasma. The temperatures inferred in the solar interior give some credence to these models, especially since it is counterintuitive that an object with internal temperatures in excess of 1 MK could be existing in the liquid state. Nonetheless, extreme temperatures, by themselves, are insufficient evidence for the states of matter. The presence of magnetic fields and gravity also impact the expected phase. In the end, it is the physical expression of a state that is required in establishing the proper phase of an object. The photosphere does not lend itself easily to treatment as a gaseous plasma. The physical evidence can be more simply reconciled with a solar body and a photosphere in the condensed state. A discussion of each physical feature follows: (1 the thermal spectrum, (2 limb darkening, (3 solar collapse, (4 the solar density, (5 seismic activity, (6 mass displacement, (7 the chromosphere and critical opalescence, (8 shape, (9 surface activity, (10 photospheric/coronal flows, (11 photospheric imaging, (12 the solar dynamo, and (13 the presence of Sun spots. The explanation of these findings by the gaseous models often requires an improbable combination of events, such as found in the stellar opacity problem. In sharp contrast, each can be explained with simplicity by the condensed state. This work is an invitation to reconsider the phase of the Sun.

  17. Nuclear and Condensed Matter Physics: VI Regional CRRNSM Conference. AIP Conference Proceedings, No. 513 [APCPCS

    International Nuclear Information System (INIS)

    Messina, A.

    2000-01-01

    This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina

  18. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere I. Continuous Emission and Condensed Matter Within the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoff’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoff’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.

  19. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect

    NARCIS (Netherlands)

    Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim

    2008-01-01

    The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based

  20. Pion Condensation and Alternating Layer Spin Model in Symmetric Nuclear Matter : Use of Extended Effective Nuclear Forces : Nuclear Physics

    OpenAIRE

    Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University

    1985-01-01

    Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...

  1. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  2. Australian and New Zealand Institutes of Physics. Eighteenth annual condensed matter physics meeting

    International Nuclear Information System (INIS)

    Chaplin, D.; Hutchinson, W.; Yazidjoglou, N.; Stewart, G.

    1994-01-01

    The Handbook contains abstracts of oral and poster presentations covering various aspects of condensed matter physics such as magnetism, superconductivity, semiconductor materials and their properties, as well as the use of nuclear techniques in studies of these materials. 162 contributions have been considered to be in the INIS subject scope and were indexed separately

  3. Strangeness condensation and ''clearing'' of the vacuum

    International Nuclear Information System (INIS)

    Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook

    1987-01-01

    We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)

  4. Multiple condensation induced water hammer events, experiments and theoretical investigations

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Ezsoel, Gyoergy

    2011-01-01

    We investigate steam condensation induced water hammer (CIWH) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermalhydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side CIWH is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shockcapturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to RELAP5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. New features are the existence of multiple, independent CIWH pressure peaks both in experiments and in simulations. Experimentally measured and theoretically calculated CIWH pressure peaks are in qualitative agreement. However, the computational results are very sensitive against flow velocity. (orig.)

  5. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    Science.gov (United States)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  6. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  7. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, H.; Ipsen, John Hjort; Markvorsen, S

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  8. Self-condensation of n-(N-propyl)butanimine: NMR and mass spectral analyses and investigation by theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Manfrini, Rozangela Magalhaes; Teixeira, Flavia Rodrigues; Pilo-Veloso, Dorila; Alcantara, Antonio Flavio de Carvalho, E-mail: aalcantara@zeus.qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Nelson, David Lee [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Quimica; Siqueira, Ezequias Pessoa de [Centro de Pesquisas Rene Rachou (FIOCRUZ), Belo Horizonte, MG (Brazil)

    2012-07-01

    The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled. (author)

  9. Frustration in Condensed Matter and Protein Folding

    Science.gov (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  10. Condensed matter physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Haas, H.

    1996-01-01

    An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)

  11. Proceedings of the 19th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2013-01-01

    The 19. International Conference on Applied Physics of Condensed Matter was held on 19-21 June, 2013 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  12. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    Science.gov (United States)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  13. Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff

    Energy Technology Data Exchange (ETDEWEB)

    Nicolis, Alberto; Penco, Riccardo [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Piazza, Federico [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Paris Center for Cosmological Physics and Laboratoire APC,Université Paris 7, 75205 Paris (France); CPT, Aix Marseille Université,UMR 7332, 13288 Marseille (France); Rattazzi, Riccardo [Institut de Théorie des Phénomènes Physiques,EPFL Lausanne (Switzerland)

    2015-06-23

    We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincaré-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern — the framid — does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries — and possibly rotational ones — and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and — if they exist — supersolids. A third, “extra-ordinary”, possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincaré group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the “galileids”, for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy 2→2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as E{sup 2}, E{sup 4}, and E{sup 6}. Similarly the energy momentum tensor in the ground state is “trivial' for framids (ρ+p=0), normal for solids (ρ+p>0) and even inhomogenous for galileids.

  14. Applications of holography to condensed matter physics

    Science.gov (United States)

    Ross, Simon F.

    2012-10-01

    Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity

  15. Analysis of the theoretical bias in dark matter direct detection

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2014-01-01

    Fitting the model ''A'' to dark matter direct detection data, when the model that underlies the data is ''B'', introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias

  16. ICTP Summer Course on Low-Dimensional Quantum Field Theories for Condensed Matter Physicists

    CERN Document Server

    Morandi, G; Lu, Y

    1995-01-01

    This volume contains a set of pedagogical reviews covering the most recent applications of low-dimensional quantum field theory in condensed matter physics, written by experts who have made major contributions to this rapidly developing field of research. The main purpose is to introduce active young researchers to new ideas and new techniques which are not covered by the standard textbooks.

  17. Proceedings 21. International Conference on Applied Physics of Condensed Matter and of the Scientific Conference Advanced Fast Reactors

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2015-01-01

    The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.

  18. Mixtures of Charged Bosons Confined in Harmonic Traps and Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reactions and Transmutation Processes in Condensed Matters

    Science.gov (United States)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-02-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.

  19. International Conference on Polarised Neutrons for Condensed Matter Investigations (PNCMI 2016)

    International Nuclear Information System (INIS)

    2017-01-01

    The present volume of the Journal of Physics: Conference Series represents Proceedings of the 11th International Conference on Polarised Neutrons for Condensed Matter Investigation (PNCMI) held in Freising, Germany from July 4–7, 2016. The conference attended by more than 120 scientists from various academic, government, and industrial institutions in Europe, Asia and the Americas was organized by the Jülich Centre for Neutron Science of the Forschungszentrum Jülich. The PNCMI-2016 continuoued the successful previous conferences in this series covering the latest condensed matter investigations using polarised neutrons and state-of-the-art methodologies, from effective polarization of neutron beams to wide-angle polarization analysis, as well as applications for novel instrumentation and experiments, with emphasis on prospects for new science and new instrument concepts. The conference program included invited and contributed oral presentations and posters which demonstrated the activities using polarized neutrons all over the world and showed the deep interest in developing the topic. The presentations tackled all area of science including multiferroic and chirality, strongly correlated electron systems, superconductors, frustrated and disordered systems, magnetic nanomaterials, thin films and multilayers, soft matter and biology, imaging, as well as further developments in polarized neutron techniques and methods, including nuclear polarisation, Larmor techniques and depolarisation methods.. We would like to thank all speakers for their presentations and all attendees for their participation. We would also like to gratefully acknowledge the financial support by J-PARC and AIRBUS DS as Premium Sponsors and Swiss Neutronics, ISIS, LLB, PSI and Mirrotron as Standard Sponsors of this conference. The next PNCMI will take place in Great Britain in 2018 and will be organized by ISIS. Alexander Ioffe (Conference Chair) Thomas Gutberlet (Conference Secretary) (paper)

  20. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  1. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    2010-09-01

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  2. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  3. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  4. Overview. Department of Theoretical Physics. Section 4

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy ππ and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S p (6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars

  5. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  6. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  7. First-principles Theory of Magnetic Multipoles in Condensed Matter Systems

    Science.gov (United States)

    Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.

    2018-04-01

    The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.

  8. Mixtures of charged bosons confined in harmonic traps and Bose-Einstein condensation mechanism for low-energy nuclear reactions and transmutation processes in condensed matters

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim; Zubarev, Alexander L. [Purdue Nuclear and Many-Body Theory Group (PNMBTG) Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)

    2006-07-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + {sup 6}Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)

  9. Mixtures of charged bosons confined in harmonic traps and Bose-Einstein condensation mechanism for low-energy nuclear reactions and transmutation processes in condensed matters

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Zubarev, Alexander L.

    2006-01-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + 6 Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)

  10. 29th Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    International Nuclear Information System (INIS)

    2016-01-01

    Thirty years ago, because of the dramatic increase in the power and utility of computer simulations, The University of Georgia formed the first institutional unit devoted to the application of simulations in research and teaching: The Center for Simulational Physics. Then, as the international simulations community expanded further, we sensed the need for a meeting place for both experienced simulators and newcomers to discuss inventive algorithms and recent results in an environment that promoted lively discussion. As a consequence, the Center for Simulational Physics established an annual workshop series on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's highly interactive workshop was the 29th in the series marking our efforts to promote high quality research in simulational physics. The continued interest shown by the scientific community amply demonstrates the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia from February 22-26, 2016. It served to mark the 30 th Anniversary of the founding of the Center for Simulational Physics. In addition, during this Workshop we celebrated the 60 th birthday of our esteemed colleague Prof. H.-Bernd Schuttler. Bernd has not only contributed to the understanding of strongly correlated electron system, but has made seminal contributions to systems biology through the introduction of modern methods of computational physics. These Proceedings provide a “status report” on a number of important topics. This on-line “volume” is published with the goal of timely dissemination of the material to a wider audience. This program was supported in part by the President's Venture Fund through the generous gifts of the University of Georgia Partners and other donors. We also wish to offer thanks to the Office of the Vice-President for Research, the Franklin College of Arts and Sciences, and the IBM Corporation for partial

  11. Physics in the Andean Countries: A Perspective from Condensed Matter, Novel Materials and Nanotechnology

    Science.gov (United States)

    Prieto, P.

    2009-05-01

    We will discuss the current state of R&D in the fields of condensed matter, novel materials, and nanotechnology in the Andean nations. We will initially consider Latin America and the Caribbean (LAC) to then visualize individual developments, as well as those for the region as a whole in these fields of knowledge in each of the nations constituting the Andean Region (Bolivia, Ecuador, Chile, Venezuela, Peru, and Colombia). Based on Science & Technology watch exercises in the countries involved, along with the Iberian American and Inter-American Science & Technology Network of Indicators (Red de indicadores de Ciencia y Tecnolog'ia (RICYT) iberoamericana e interamericana)1, we will reveal statistical data that will shed light on the development in the fields mentioned. As will be noted, total R&D investment in Latin American and Caribbean countries remained constant since 1997. In spite of having reached a general increase in publications without international collaboration in LAC nations, the countries with greatest research productivity in Latin America (Argentina, Mexico, Brazil, and Chile) have strengthened their international collaboration with the United States, France, Germany, and Italy through close links associated with the formation processes of their researchers. Academic and research integration is evaluated through joint authorship of scientific articles, evidencing close collaboration in fields of research. This principle has been used in the creation of cooperation networks among participating nations. As far as networks of research on condensed matter, novel materials, and nanotechnology, the Andean nations have not consolidated a regional network allowing permanent and effective cooperation in research and technological development; as would be expected, given their idiomatic and cultural similarities, their historical background, and geographical proximity, which have been integrating factors in other research areas or socio-economic aspects. This

  12. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter

    Science.gov (United States)

    Kang, Dongdong; Dai, Jiayu

    2018-02-01

    The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.

  13. Bose-Einstein condensates in atomic gases: simple theoretical results

    International Nuclear Information System (INIS)

    Castin, Y.

    2001-01-01

    The author presents the theory of the Bose-Einstein condensation along with a discussion of experimental tests. The author deals successively with the following topics: - the ideal Bose gas in a trap (first in a harmonic trap and then in a more general trap), - a model for the atomic interaction, - interacting Bose gas in the Hartree-Fock approximation, - properties of the condensate wavefunction, - the Gross-Pitaevskii equation, - Bogoliubov approach and thermodynamical stability, - phase coherence properties at the Bose-Einstein condensate, and - symmetry-breaking description of condensates. (A.C.)

  14. The national conference on theoretical physics. Abstracts

    International Nuclear Information System (INIS)

    Grecu, Dan; Visinescu, Anca;

    2002-01-01

    The first edition of the National Conference on Theoretical Physics held on September 13-16, 2002 in Bucharest, Romania was organized by the Theoretical Physics Department of the Horia Hulubei National Institute of Physics and Nuclear Engineering in cooperation with the Physics Department of the University of Bucharest . There were presented 51 communications grouped in five sections as follows: 1. Quantum Field Theory, Elementary Particles, Gravitation; 2. Atomic, Molecular and Nuclear Theory, Astrophysics; 3. Condensed Matter Theory, Statistical Physics; 4. Computational and Mathematical Physics, Nonlinear Phenomena; 5. Interdisciplinary Fields

  15. Framework for understanding LENR processes, using conventional condensed matter physics

    International Nuclear Information System (INIS)

    Chubb, Scott R.

    2006-01-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  16. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  17. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  18. Textual Condensation in Printed Dictionaries. A Theoretical Draft ...

    African Journals Online (AJOL)

    This article presents an excerpt from a theory of lexicographic texts which deals particularly with dictionary articles. Almost all characteristics of dictionary articles considered as typically lexicographic may be regarded as results of textual condensation processes. A theory of textual condensation in lexicography thus makes it ...

  19. The Color Glass Condensate and the Glasma: Two Lectures.

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2007-08-29

    These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wave function important for high energy processes. The Glasma is matter produced from the Color Glass Condensate in the first instants after a collision of two high energy hadrons. Both types of matter are associated with coherent fields. The Color Glass Condensate is static and related to a hadron wavefunction, where the Glasma is transient and evolves quickly after a collision. I present the properties of such matter, and some aspects of what is known of their properties.

  20. 2nd National Conference on Theoretical Physics. Abstracts Book

    International Nuclear Information System (INIS)

    Grecu, Alexandru Tudor

    2004-01-01

    The 2nd National Conference on Theoretical Physics was held on 26-29 August 2004 in Constanta, Romania. The addressed physics fields within the INIS scope are as follows: classical and quantum mechanics, general physics, physics of elementary particles and fields, nuclear physics and radiation physics, classical and quantum mechanics, general physics, atomic and molecular physics, condensed matter physics

  1. 11th International Workshop on Condensed Matter Theories

    CERN Document Server

    Bishop, R; Manninen, Matti; Condensed Matter Theories : Volume 3

    1988-01-01

    This book is the third volume in an approximately annual series which comprises the proceedings of the International Workshops on Condensed Matter Theories. The first of these meetings took place in 1977 in Sao Paulo, Brazil, and successive workshops have been held in Trieste, Italy (1978), Buenos Aires, Argentina (1979), Caracas, Venezuela (1980), Mexico City, Mexico (1981), St. Louis, USA (1982), Altenberg, Federal Republic of Germany (1983), Granada, Spain (1984), San Francisco, USA (1985), and Argonne, USA (1986). The present volume contains the proceedings of the Eleventh Workshop which took place in Qulu, Finland during the period 27 July - 1 August, 1987. The original motivation and the historical evolution of the series of Workshops have been amply described in the preface to the first volume in the present series. An important objective throughout has been to work against the ever-present trend for physics to fragment into increasingly narrow fields of specialisation, between which communication is d...

  2. Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.

    2004-01-01

    Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate

  3. A theoretical derivation of the condensed history algorithm

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1992-01-01

    Although the Condensed History Algorithm is a successful and widely-used Monte Carlo method for solving electron transport problems, it has been derived only by an ad-hoc process based on physical reasoning. In this paper we show that the Condensed History Algorithm can be justified as a Monte Carlo simulation of an operator-split procedure in which the streaming, angular scattering, and slowing-down operators are separated within each time step. Different versions of the operator-split procedure lead to Ο(Δs) and Ο(Δs 2 ) versions of the method, where Δs is the path-length step. Our derivation also indicates that higher-order versions of the Condensed History Algorithm may be developed. (Author)

  4. Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram

    2017-06-01

    This graduate level textbook on Condensed Matter Physics is written lucidly by two leading luminaries in this field. The volume draws its material from the graduate course in condensed matter physics that has been offered by the authors for several decades at the University of California, Berkeley. Cohen and Louie have done an admirable job of guiding the reader gradually from elementary concepts to advanced topics. The book is divided into four main parts that have four chapters each. Chapter 1 presents models of solids in terms of interacting atoms, which is appropriate for the ground state, and excitations to describe collective effects. Chapter 2 deals with the properties of electrons in crystalline materials. The authors introduce the Born-Oppenheimer approximation and then proceed to the periodic potential approximation. Chapter 3 discusses energy bands in materials and covers concepts from the free electron model to the tight binding model and periodic boundary conditions. Chapter 4 starts with fixed atomic cores and introduces lattice vibrations, phonons, and the concept of density of states. By the end of this part, the student should have a basic understanding of electrons and phonons in materials. Part II presents electron dynamics and the response of materials to external probes. Chapter 5 covers the effective Hamiltonian approximation and the motion of the electron under a perturbation, such as an external field. The discussion moves to many-electron interactions and the exchange-correlation energy in Chapter 6, the widely-used Density Functional Theory (DFT) in chapter 7, and the dielectric response function in Chapter 8. The next two parts of the book cover advanced topics. Part III begins with a discussion of the response of materials to photons in Chapter 9. Chapter 10 goes into the details of electron-phonon interactions in different materials and introduces the polaron. Chapter 11 presents electron dynamics in a magnetic field and Chapter 12

  5. Interference pattern in the collision of structures in the Bose-Einstein condensate dark matter model: Comparison with fluids

    International Nuclear Information System (INIS)

    Gonzalez, J. A; Guzman, F. S.

    2011-01-01

    In order to explore nonlinear effects on the distribution of matter during collisions within the Bose-Einstein condensate (BEC) dark matter model driven by the Schroedinger-Poisson system of equations, we study the head-on collision of structures and focus on the interference pattern formation in the density of matter during the collision process. We explore the possibility that the collision of two structures of fluid matter modeled with an ideal gas equation of state also forms interference patterns and found a negative result. Given that a fluid is the most common flavor of dark matter models, we conclude that one fingerprint of the BEC dark matter model is the pattern formation in the density during a collision of structures.

  6. In-stack condensible particulate matter measurement and permitting issues

    International Nuclear Information System (INIS)

    Corio, L.A.; Sherwell, J.

    1997-01-01

    Based on the results of recent epidemiological studies and assessments of the causes of visibility degradation, EPA is proposing to regulate PM2.5 emissions. PM can be classified as either filterable or condensible PM. Condensible PM includes sulfates, such as sulfuric acid. Sulfates typically account for at least half of the total dry fine PM mass in the atmosphere. Power plant SO x -based emissions make a significant contribution to ambient fine PM levels in the eastern US. Although much of this mass is derived from secondary chemical reactions in the atmosphere, a portion of this sulfate is emitted directly from stacks as condensible PM. The potential condensible PM fraction associated with coal-burning boiler emissions is somewhat uncertain. The characterization of PM emissions from these sources has been, until recently, based on in-stack filterable PM measurements only. To determine the relative magnitude of condensible PM emissions and better understand condensible PM measurement issues, a review and analysis of actual EPA Method 202 results and state-developed hybrid condensible PM methods were conducted. A review of available Method 202 results for several coal-burning boilers showed that the condensible PM, on average, comprises 60% of the total PM10. A review of recent results for state-developed measurement methods for condensible PM for numerous coal-burning boilers indicated that condensible PM accounted for, on average, approximately 49% of total PM. Caution should be exercised in the use of these results because of the seemingly unresolved issue of artifact formation, which may bias the Method 202 and state-developed methods results on the high side. Condensible PM10 measurement results and issues, and potential ramifications of including condensible PM10 emissions in the PSD permit review process are discussed. Selected power plants in Maryland are discussed as examples

  7. Alternative interpretation of low-energy nuclear reaction processes with deuterated metals based on the Bose-Einstein condensation mechanism

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Passell, Thomas O.

    2006-01-01

    Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of ∼ 50, implying that (D + Li) reactions may be occurring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested. (authors)

  8. Alternative Interpretation of Low-Energy Nuclear Reaction Processes with Deuterated Metals Based on the Bose-Einstein Condensation Mechanism

    Science.gov (United States)

    Kim, Yeong E.; Passell, Thomas O.

    2006-02-01

    Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of ~50, implying that (D + Li) reactions may be occuring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested.

  9. Alternative interpretation of low-energy nuclear reaction processes with deuterated metals based on the Bose-Einstein condensation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Passell, Thomas O. [TOP Consulting, PO Box 336, Palo Alto, CA 94302-0336 (United States)

    2006-07-01

    Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of {approx} 50, implying that (D + Li) reactions may be occurring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested. (authors)

  10. Experimental and theoretical study of reflux condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, Knut

    1997-12-31

    This thesis studies the separation of gas mixtures in a reflux condenser. also called a dephlegmator. Reflux condensation is separation of a gas mixture, in reflux flow with condensing liquid, under continuous heat removal. A numerical model of a dephlegmator for binary mixtures was developed. The model may readily be extended to multi-component mixtures, as the solution method is based on a matrix solver. Separation of a binary mixture in a reflux condenser test rig is demonstrated. The test facility contains a single-tube test section that was designed and built as part of the project. Test mixtures of propane and n-butane were used, and a total of 15 experiments are reported. Limited degree of separation was achieved due to limited heat transfer area and narrow boiling point range of the test mixture. The numerical model reproduces the experimental data within reasonable accuracy. Deviation between calculated and measured properties is less than 6% of the measured temperature and less than 5% of the measured flow rate. The model is based on mechanistic models of physical processes and is not calibrated or tuned to fit the experimental data. The numerical model is applied to a number of separation processes. These case studies show that the required heat transfer area increases rapidly with increments in top product composition (light component). Flooding limits the amount of reflux liquid. The dephlegmator is suitable for separation of feed mixtures that are rich in light components. The gliding temperature in the dephlegmation process enables utilization of top product as refrigerant, with subsequent energy saving as a result. 61 refs., 50 figs., 34 tabs.

  11. Linking the gaseous and the condensed phases of matter: The slow electron and its interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1993-01-01

    The interfacing of the gaseous and the condensed phases of matter as effected by interphase and cluster studies on the behavior of key reactions involving slow electrons either as reacting initial particles or as products of the reactions themselves is discussed. Emphasis is placed on the measurement of both the cross sections and the energetics involved, although most of the available information to date is on the latter. The discussion is selectively focussed on electron scattering (especially the role of negative ion states in gases, clusters, and dense matter), ionization, electron attachment and photodetachment. The dominant role of the electric polarization of the medium is emphasized

  12. Framework for understanding LENR processes, using conventional condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)

    2006-07-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  13. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    Science.gov (United States)

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    , present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the C α -H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol -1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.

  14. Condensed matter applications of AdS/CFT (I)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    These lectures will discuss the application of ads/cft techniques to condensed matter systems. After motivating this endeavor, I will review the basic features of the ads/cft correspondence that will be used. I will review the physics of spectral functions and how they can be computed via AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog,  Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy,  Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:0...

  15. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  16. Proceedings of the 18th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2012-01-01

    The 18th International Conference on Applied Physics of Condensed Matter was held on 20-22 June, 2012 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; New materials and structures, nanostructures, thin films, their analysis and applications; Physical properties and structural aspects of solid materials and their influencing; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty-eight contributions) has been inputted to INIS.

  17. 41st Vietnam National Conference on Theoretical Physics

    International Nuclear Information System (INIS)

    2017-01-01

    Preface The 41 st Vietnam National Conference on Theoretical Physics (NCTP-41) was held during 1-4 August 2016 in Nha Trang, Vietnam. The NCTP-41 was organized by the Institute of Physics, Vietnam Academy of Science and Technology (IOP-VAST) under the support of the Vietnamese Theoretical Physics Society (VTPS). This meeting belongs to a series of annual theoretical physics conferences that started in 1976. The conference has covered a wide range of theoretical physics topics from 4 major fields: • Particle, nuclear and astro- physics, • Molecular physics, quantum optics and quantum computation, • Condensed matter physics, • Soft matter, biological and interdisciplinary physics. 115 participants have participated in the conference. 2 invited talks, 22 oral and 75 poster contributions were presented. This volume contains selected papers contributed by the participants. Editors of the NCTP-41 Proceedings Trinh Xuan Hoang, Hoang Anh Tuan and Vu Ngoc Tuoc Information about Organizer, Sponsor, Honorary Chair and Chair and also lists of committees and participants are available in the PDF (paper)

  18. Neutron stars with kaon condensation in relativistic effective model

    International Nuclear Information System (INIS)

    Wu, Chen; Ma, Yugang; Qian, Weiliang; Yang, Jifeng

    2013-01-01

    Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K - in normal nuclear matter U K ≳ -100 MeV, the Kaon condensation phase is absent in the inner cores of the neutron stars. (author)

  19. [Winter workshop on universalities in condensed matter physics, Les Houches, France, March 15-24, 1988]: [Foreign trip report

    International Nuclear Information System (INIS)

    Hu, Bambi.

    1988-01-01

    This paper reports on the travel of Bambi Hu to France for a workshop on Universalities in Condensed Matter Physics. A very brief discussion is given on the workshop. His paper titled ''Problem of Universality in Phase Transitions in Low-Symmetry Systems,'' is included in this report

  20. Bose-Einstein condensation in microgravity.

    Science.gov (United States)

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  1. Polariton condensates

    International Nuclear Information System (INIS)

    Snoke, David; Littlewood, Peter

    2010-01-01

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  2. Proceedings of the specialists' meeting on 'nuclear spectroscopy and condensed matter physics using short-lived nuclei'

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Shibata, Michihiro; Ohkubo, Yoshitaka

    2016-02-01

    The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 2nd symposium under the title of 'Nuclear Spectroscopy and Condensed Matter Physics Using Short-lived Nuclei' was held at the Institute for two days on November 4 and 5 in 2015. We are pleased that many hot discussions were made. The talks were given on the followings: 1) Nuclear spectroscopic experiments, 2) TDPAC (time-differential perturbed angular correlation), 3) β-NMR (nuclear magnetic resonance), 4) Moessbauer spectroscopy, 5) muon, etc. This issue is the collection of 17 papers presented at the entitled meeting. The 6 of the presented papers are indexed individually. (J.P.N.)

  3. Casimir Forces and Quantum Friction from Ginzburg Radiation in Atomic Bose-Einstein Condensates.

    Science.gov (United States)

    Marino, Jamir; Recati, Alessio; Carusotto, Iacopo

    2017-01-27

    We theoretically propose an experimentally viable scheme to use an impurity atom in an atomic Bose-Einstein condensate, in order to realize condensed-matter analogs of quantum vacuum effects. In a suitable atomic level configuration, the collisional interaction between the impurity atom and the density fluctuations in the condensate can be tailored to closely reproduce the electric-dipole coupling of quantum electrodynamics. By virtue of this analogy, we recover and extend the paradigm of electromagnetic vacuum forces to the domain of cold atoms, showing in particular the emergence, at supersonic atomic speeds, of a novel power-law scaling of the Casimir force felt by the atomic impurity, as well as the occurrence of a quantum frictional force, accompanied by the Ginzburg emission of Bogoliubov quanta. Observable consequences of these quantum vacuum effects in realistic spectroscopic experiments are discussed.

  4. Measurement of Viscoelastic Properties of Condensed Matter using Magnetic Resonance Elastography

    Science.gov (United States)

    Gruwel, Marco L. H.; Latta, Peter; Matwiy, Brendon; Sboto-Frankenstein, Uta; Gervai, Patricia; Tomanek, Boguslaw

    2010-01-01

    Magnetic resonance elastography (MRE) is a phase contrast technique that provides a non-invasive means of evaluating the viscoelastic properties of soft condensed matter. This has a profound bio-medical significance as it allows for the virtual palpation of areas of the body usually not accessible to the hands of a medical practitioner, such as the brain. Applications of MRE are not restricted to bio-medical applications, however, the viscoelastic properties of prepackaged food products can also non-invasively be determined. Here we describe the design and use of a modular MRE acoustic actuator that can be used for experiments ranging from the human brain to pre-packaged food products. The unique feature of the used actuator design is its simplicity and flexibility, which allows easy reconfiguration.

  5. Ghost condensation and a consistent IR modification of gravity

    International Nuclear Information System (INIS)

    Arkani Hamed, N.; Cheng, H.S.; Luty, M.A.; Mukohyama, S.

    2004-01-01

    We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation-a background where a scalar field φhas a constant velocity, = M 2 . The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, ρ = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation ω 2 ∼ k 4 /M 2 . If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r 2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M Pl /M 2 and the time scale M Pl 2 /M 3 . This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy. (author)

  6. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    Science.gov (United States)

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  7. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  8. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  9. Characteristic size and mass of galaxies in the Bose–Einstein condensate dark matter model

    Directory of Open Access Journals (Sweden)

    Jae-Weon Lee

    2016-05-01

    Full Text Available We study the characteristic length scale of galactic halos in the Bose–Einstein condensate (or scalar field dark matter model. Considering the evolution of the density perturbation we show that the average background matter density determines the quantum Jeans mass and hence the spatial size of galaxies at a given epoch. In this model the minimum size of galaxies increases while the minimum mass of the galaxies decreases as the universe expands. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass m≃5×10−22 eV. The minimum size is about 6×10−3m/Hλc and the typical rotation velocity of the dwarf galaxies is O(H/m c, where H is the Hubble parameter and λc is the Compton wave length of the particle. We also suggest that ultra compact dwarf galaxies are the remnants of the dwarf galaxies formed in the early universe.

  10. The Mott localization and magnetic properties in condensed fermions systems

    International Nuclear Information System (INIS)

    Wojcik, W.

    1995-01-01

    In the present thesis the Mott localization and magnetic properties in condensed fermions system are considered. The Hubbard model has been used to strongly correlated electron systems and the Skyrme potential to a dense neutron matter with small concentration of protons. A variational approach to the metal-insulator transition is proposed which combines the Mott and Gutzwiller-Brinkman-Rice aspects of the localization. Magnetic properties of strongly correlated electrons are analyzed within the modified spin-rotation-invariant approach in the slow-boson representation. The theoretical prediction for considered systems are presented. 112 refs, 39 figs

  11. Research in the theory of condensed matter and elementary particles: Final report, September 1, 1984-November 30, 1987

    International Nuclear Information System (INIS)

    Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.

    1988-04-01

    Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry

  12. Specific interactions versus counterion condensation. 2. Theoretical treatment within the counterion condensation theory.

    Science.gov (United States)

    Donati, Ivan; Benegas, Julio C; Cesàro, Attilio; Paoletti, Sergio

    2006-05-01

    Polyuronates such as pectate and alginate are very well-known examples of biological polyelectrolytes undergoing, upon addition of divalent cations, an interchain association that acts as the junction of an eventually formed stable hydrogel. In the present paper, a thermodynamic model based on the counterion condensation theory has been developed to account for this cation-induced chain pairing of negatively charged polyelectrolytes. The strong interactions between cross-linking ions and uronate moieties in the specific binding site have been described in terms of chemical bonding, with complete charge annihilation between the two species. The chain-pairing process is depicted as progressively increasing with the concentration of cross-linking counterions and is thermodynamically defined by the fraction of each species. On these bases, the total Gibbs energy of the system has been expressed as the sum of the contributions of the Gibbs energy of the (single) chain stretches and of the (associated) dimers, weighted by their respective fractions 1 - theta and theta. In addition, the model assumes that the condensed divalent counterions exhibit an affinity free-energy for the chain, G(C)(aff,0), and the junction, G(D)(aff,0), respectively. Moreover, a specific Gibbs energy of chemical bonding, G(bond,0), has been introduced as the driving force for the formation of dimers. The model provides the mathematical formalism for calculating the fraction, theta, of chain dimers formed and the amount of ions condensed and bound onto the polyelectrolyte when two different types of counterions (of equal or different valence) are present. The effect of the parameter G(bond,0) has been investigated and, in particular, its difference from G(C,D)(aff,0) was found to be crucial in determining the distribution of the ions into territorial condensation and chemical bonding, respectively. Finally, the effect of the variation of the molar ratio between cross-linking ions and uronic groups

  13. Universal properties of relaxation and diffusion in condensed matter

    International Nuclear Information System (INIS)

    Ngai K L

    2017-01-01

    By and large the research communities today are not fully aware of the remarkable universality in the dynamic properties of many-body relaxation/diffusion processes manifested in experiments and simulations on condensed matter with diverse chemical compositions and physical structures. I shall demonstrate the universality first from the dynamic processes in glass-forming systems. This is reinforced by strikingly similar properties of different processes in contrasting interacting systems all having nothing to do with glass transition. The examples given here include glass-forming systems of diverse chemical compositions and physical structures, conductivity relaxation of ionic conductors (liquid, glassy, and crystalline), translation and orientation ordered phase of rigid molecule, and polymer chain dynamics. Universality is also found in the change of dynamics when dimension is reduced to nanometer size in widely different systems. The remarkable universality indicates that many-body relaxation/diffusion is governed by fundamental physics to be unveiled. One candidate is classical chaos on which the coupling model is based, Universal properties predicted by this model are in accord with diverse experiments and simulations. (paper)

  14. Stopping powers of energetic electrons penetrating condensed matter-theory and application

    International Nuclear Information System (INIS)

    Tan Zhenyu; Xia Yueyuan

    2004-01-01

    In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed. (authors)

  15. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  16. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  17. Universe in the theoretical model «Evolving matter»

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2013-04-01

    Full Text Available The article critically examines modern model of the Universe evolution constructed by efforts of a group of scientists (mathematicians, physicists and cosmologists from the world's leading universities (Oxford and Cambridge Universities, Yale, Columbia, New York, Rutgers and the UC Santa Cruz. The author notes its strengths, but also points to shortcomings. Author believes that this model does not take into account the most important achievements in the field of biochemistry and biology (molecular, physical, developmental, etc., as well as neuroscience and psychology. Author believes that in the construction of model of the Universe evolution, scientists must take into account (with great reservations the impact of living and intelligent matter on space processes. As an example, the author gives his theoretical model "Evolving matter". In this model, he shows not only the general dependence of the interaction of cosmic processes with inert, living and intelligent matter, but also he attempts to show the direct influence of systems of living and intelligent matter on the acceleration of the Universe's expansion.

  18. Condensed Matter Theories: Volume 25

    Science.gov (United States)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    pt. A. Fermi and Bose fluids, exotic systems. Reemergence of the collective mode in [symbol]He and electron layers / H. M. Bohm ... [et al.]. Dissecting and testing collective and topological scenarios for the quantum critical point / J. W. Clark, V. A. Khodel and M. V. Zverev. Helium on nanopatterned surfaces at finite temperature / E. S. Hernandez ... [et al.]. Towards DFT calculations of metal clusters in quantum fluid matrices / S. A. Chin ... [et al.]. Acoustic band gap formation in metamaterials / D. P. Elford ... [et al.]. Dissipative processes in low density strongly interacting 2D electron systems / D. Neilson. Dynamical spatially resolved response function of finite 1-D nano plasmas / T. Raitza, H. Reinholz and G. Ropke. Renormalized bosons and fermions / K. A. Gernoth and M. L. Ristig. Light clusters in nuclear matter / G. Ropke -- pt. B. Quantum magnets, quantum dynamics and phase transitions. Magnetic ordering of antiferromagnets on a spatially anisotropic triangular lattice / R. F. Bishop ... [et al.]. Thermodynamic detection of quantum phase transitions / M. K. G. Kruse ... [et al.]. The SU(2) semi quantum systems dynamics and thermodynamics / C. M. Sarris and A. N. Proto -- pt. C. Physics of nanosystems and nanotechnology. Quasi-one dimensional fluids that exhibit higher dimensional behavior / S. M. Gatica ... [et al.]. Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach / J. Roden, W. T. Strunz and A. Eisfeld. Quantum properties in transport through nanoscopic rings: Charge-spin separation and interference effects / K. Hallberg, J. Rincon and S. Ramasesha. Cooperative localization-delocalization in the high T[symbol] cuprates / J. Ranninger. Thermodynamically stable vortex states in superconducting nanowires / W. M. Wu, M. B. Sobnack and F. V. Kusmartsev.pt. D. Quantum information. Quantum information in optical lattices / A. M. Guzman and M. A. Duenas E. -- pt. E. Theory and applications of molecular

  19. Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves

    Directory of Open Access Journals (Sweden)

    M. Dwornik

    2017-01-01

    Full Text Available We present a comparative confrontation of both the Bose-Einstein Condensate (BEC and the Navarro-Frenk-White (NFW dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB, 6 Low Surface Brightness (LSB, and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.

  20. Proceedings of the thirty first convention of Orissa Physical Society and national seminar on recent trends in condensed matter physics: souvenir

    International Nuclear Information System (INIS)

    2014-01-01

    This conference covers issues relevant to condensed matter physics. The research in this area has laid the foundation for development of science and technology in wide areas of energy, information, communication etc. Papers relevant to INIS are indexed separately

  1. Confinement of quasi-particles in a condensed matter system: an inelastic neutron scattering study

    International Nuclear Information System (INIS)

    Bera, A.K.

    2016-01-01

    The confinement of quasi particles, a well-known phenomenon in particle physics, can also be realized in a condensed matter system. In particle physics, baryons and mesons are produced by the confinement of quarks, where quarks are bound together by a strong interaction (gauge field) that grows stronger with increasing distance and, therefore, the quarks never exist as individual particles. The condensed matter analogue, confinement of magnetic quasiparticles (spinons) can be illustrated in quasi-one-dimensional spin-1/2 chains. We demonstrate experimentally such spinon confinement in the weakly coupled spin-1/2 XXZ antiferromagnetic chain compound SrCo_2V_2O_8 by single crystal inelastic neutron scattering. The compound SrCo_2V_2O_8 belongs to the general family SrM_2V_2O_8 (M = Ni, Co and Mn), having four-fold screw chains of edge sharing MO_6 octahedra along the crystallographic c axis. In the pure 1D magnetic state of SrCo_2V_2O_8 (above the 3D magnetic ordering temperature T_N =5 K) two spinons (excitations of individual chains) are created by a spin flip, and those spinons propagate independently by subsequent spin flips without any cost of energy. However, below the T_N, two spinons are bound together by weak interchain interactions since the separation between them frustrates the interchain interactions. The interchain interactions play the role of an attractive potential (equivalent to the gauge field), proportional to the distance between spinons, and result in confinement of spinons into bound pairs. (author)

  2. QED coherence in matter

    CERN Document Server

    Preparata, Giuliano

    1995-01-01

    Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o

  3. Creation of matter wave Bessel beams and observation of quantized circulation in a Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Ryu, C; Henderson, K C; Boshier, M G

    2014-01-01

    Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because they propagate ‘diffraction-free’ and because they can carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose–Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that the toroidal BEC can only be made to rotate at discrete, equally spaced frequencies, demonstrating that circulation is quantized in atomic BECs. The method used here can be viewed as a form of wavefunction engineering which might be developed to implement cold atom matter wave holography. (paper)

  4. Phase transition from nuclear matter to color superconducting quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W

    2003-06-02

    We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.

  5. Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2001-07-01

    This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10{sup 14} n cm{sup -2} s{sup 1} which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided.

  6. Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit

    2001-01-01

    This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10 14 n cm -2 s 1 which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided

  7. Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications

    Directory of Open Access Journals (Sweden)

    Mark Melnykowycz

    2016-03-01

    Full Text Available A soft condensed matter sensor (SCMS designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB and a thermoplastic elastomer (TPE was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.

  8. Interfacial Charge Transfer States in Condensed Phase Systems

    Science.gov (United States)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  9. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.

    Science.gov (United States)

    Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li

    2013-01-01

    Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Skyrmions in condensed matter

    CERN Document Server

    Han, Jung Hoon

    2017-01-01

    This book summarizes some of the most exciting theoretical developments in the topological phenomena of skyrmions in noncentrosymmetric magnetic systems over recent decades. After presenting pedagogical backgrounds to the Berry phase and homotopy theory, the author systematically discusses skyrmions in the order of their development, from the Ginzburg-Landau theory, CP1 theory, Landau-Lifshitz-Gilbert theory, and Monte Carlo numerical approaches. Modern topics, such as the skyrmion-electron interaction, skyrmion-magnon interaction, and various generation mechanisms of the skyrmion are examined with a focus on their general theoretical aspects. The book concludes with a chapter on the skyrmion phenomena in the cold atom context. The topics are presented at a level accessible to beginning graduate students without a substantial background in field theory. The book can also be used as a text for those who wish to engage in the physics of skyrmions in magnetic systems, or as an introduction to the various theoret...

  11. Thermodynamic entanglement of magnonic condensates

    Science.gov (United States)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  12. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  13. Salamfestschrift. A collection of talks from the conference on highlights of particle and condensed matter physics

    International Nuclear Information System (INIS)

    Ali, A.; Ellis, J.; Randjbar Daemi, S.; eds)

    1994-01-01

    The book contains papers, mainly on particle physics, presented at the meeting held between 8 and 12 March 1993 at the ICTP in Trieste to honor Professor Abdus Salam. The articles have been grouped in 6 chapters: Standard Model (6 papers), Beyond the Standard Model (4 papers), Astro-Particle Physics and Cosmology (3 papers), Strings and Quantum Gravity (5 papers), Mathematical Physics and Condensed Matter (2 papers), Salam's Collaborators and Students (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs

  14. Theoretical study of a melting curve for tin

    International Nuclear Information System (INIS)

    Feng, Xi; Ling-Cang, Cai

    2009-01-01

    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)

  15. Electron Scattering in Solid Matter A Theoretical and Computational Treatise

    CERN Document Server

    Zabloudil, Jan; Szunyogh, Laszlo

    2005-01-01

    Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the Screened Korringa-Kohn-Rostoker method that have emerged during the last 5 – 10 years are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Going beyond ordered matter and translationally invariant systems, special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties...

  16. Stabilization of matter wave solitons in weakly coupled atomic condensates

    International Nuclear Information System (INIS)

    Radha, R.; Vinayagam, P.S.

    2012-01-01

    We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.

  17. Neutron beams for the study of condensed matter: a view of the first half-century

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1982-01-01

    Neutron diffraction was first demonstrated in 1936 but awaited the development of the nuclear reactor before becoming a practical technique for the study of condensed matter. Neutrons have unique advantages for the location of hydrogen atoms, the recognition of magnetic architecture and the study of crystal vibrations and atomic and molecular motions. The techniques available exploit the optical properties of neutrons over a wavelength range from 0.5 to 500 A. Progress has gone hand in hand with a steady increase of reactor flux over 50 years but future improvements may depend on pulsed linear accelerators as the source of neutrons. (author)

  18. Bose-Einstein condensation and indirect excitons: a review.

    Science.gov (United States)

    Combescot, Monique; Combescot, Roland; Dubin, François

    2017-06-01

    We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath

  19. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    Science.gov (United States)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  20. The color class condensate RHIC and HERA

    CERN Document Server

    McLerran, L

    2002-01-01

    In this talk, I discuss a universal form of matter, the color glass condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and RHIC may allow us to probe and study the properties of this matter. (8 refs).

  1. Landau-Migdal parameters and pion condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumi, Toshitaka [Department of Physics, Kyoto Univ., Kyoto (Japan)

    1999-08-01

    The possibility of pion condensation, one of the long-standing issues in nuclear physics, is reexamined in the light of the recent experimental data on the giant Gamow-Teller resonance. The experimental result tells that the coupling of nucleon particle-hole states with {delta} isobar-hole states in the spin-isospin channel should be weaker than that previously believed. It, in turn, implies that nuclear matter has the making of pion condensation at low densities. The possibility and implications of pion condensation in the heavy-ion collisions and neutron stars should be seriously reconsidered. (author)

  2. Models of coherent exciton condensation

    International Nuclear Information System (INIS)

    Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H

    2004-01-01

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers

  3. Models of coherent exciton condensation

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, P B [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Keeling, J M J [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Marchetti, F M [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Simons, B D [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Szymanska, M H [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2004-09-08

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.

  4. Black holes in the ghost condensate

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2005-01-01

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter

  5. Field theories in condensed matter physics

    Science.gov (United States)

    Concha, Andres

    In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.

  6. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    Energy Technology Data Exchange (ETDEWEB)

    Buckle, E.R. [Division of Metallurgy, School of Materials, The University, Mappin Street, Sheffield S1 3JD (United Kingdom); Bowsher, B.R. [Chemistry Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1988-10-15

    A theoretical approach to modelling aerosol nucleation from the vapour phase has been developed by Buckle. In this theory, the condensing vapour species are assumed to be transported from an evaporating source across a one-dimensional stagnant boundary layer into an unreactive vapour-free atmosphere. A slip-flow model for interfacial energy and mass flow is combined with this stagnant boundary layer model to yield a set of parameters that uniquely characterise the evaporative flow process (i.e. pressure, source and sink temperatures, sink concentration, and the flux density of heat or mass from the source). To obtain the initial conditions for nucleation the vapour saturation ratio p/p deg is plotted against temperature and compared with the minimum saturation ratio defined by homogeneous nucleation theory. The co-education be represented by a nucleation threshold (or F) diagram. The mass and energy equations of the flow are solved by introducing the Becker-Doering formula for the nucleation rate, and the Stefan diffusion model for particle growth. This gives the rise and fall of supersaturation and the evolution of the particle size distribution along the flow coordinate. In the present studies, the applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. The model has been used to predict the onset of nucleation and the particle size distribution for single vapour species. Preliminary studies have demonstrated that conditions exist whereby both heterogeneous and homogeneous nucleation can occur simultaneously. This process could account for experimental observations of chemically-different aerosols being formed under severe reactor accident conditions. (author)

  7. Condensation on a cooled plane upright wall

    International Nuclear Information System (INIS)

    Fortier, Andre.

    1975-01-01

    The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr

  8. Gravitational waves as a new probe of Bose–Einstein condensate Dark Matter

    Directory of Open Access Journals (Sweden)

    P.S. Bhupal Dev

    2017-10-01

    Full Text Available There exists a class of ultralight Dark Matter (DM models which could give rise to a Bose–Einstein condensate (BEC in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC-DM halo intervening along the line of sight of a gravitational wave (GW signal could induce an observable change in the speed of GWs, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GWs as a new probe of the BEC-DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC-DM parameter space can be effectively probed by our new method in the near future.

  9. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    Science.gov (United States)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  10. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  11. Bose condensates make quantum leaps and bounds

    International Nuclear Information System (INIS)

    Castin, Y.; Dum, R.; Sinatra, A.

    1999-01-01

    Since the first observation in 1995 of Bose-Einstein condensation in dilute atomic gases, atomic physicists have made extraordinary progress in understanding this unusual quantum state of matter. BOSE-EINSTEIN condensation is a macroscopic quantum phenomenon that was first predicted by Albert Einstein in the 1920s, at a time when quantum theory was still developing and was being applied to microscopic systems, such as individual particles and atoms. Einstein applied the new concept of Bose statistics to an ideal gas of identical atoms that were at thermal equilibrium and trapped in a box. He predicted that at sufficiently low temperatures the particles would accumulate in the lowest quantum state in the box, giving rise to a new state of matter with many unusual properties. The crucial point of Einstein's model is the absence of interactions between the particles in the box. However, this makes his prediction difficult to test in practice. In most real systems the complicating effect of particle interactions causes the gas to solidify well before the temperature for Bose-Einstein condensation is reached. But techniques developed in the past four years have allowed physicists to form Bose-Einstein condensates for a wide range of elements. In this article the authors describe the latest advances in Bose-Einstein condensation. (UK)

  12. Neutron star evolution and the structure of matter at high density

    International Nuclear Information System (INIS)

    Soyeur, Madeleine.

    1981-09-01

    The structure and properties of neutron stars are determined by the state of cold nuclear matter at high density. In order to investigate the behavior of matter inside neutron stars, observables sensitive to their internal structure have to be calculated and confronted to observations. The thermal radiation of neutron stars seems to be a good candidate to be such observable. It can be shown that the neutrino luminosity of neutron stars, responsible for their cooling in the early stages of their evolution is strongly dependent on possible phase transitions to superfluid nucleons, to pion condensation or to quark matter. The specific heat of matter is also not the same in the various phases expected at high density and is particularly sensitive to the nucleon superfluidity. At present, both the theoretical estimates and the observations of the thermal properties of neutron stars are still quite preliminary. In particular, large uncertainties due to possible reheating mechanisms and magnetic field effects make the theoretical interpretation of the steady radiation of pulsars quite difficult

  13. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  14. Bose-Einstein condensation and superfluidity

    CERN Document Server

    Pitaevskii, Lev

    2016-01-01

    This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.

  15. Theoretical Analysis of Effects of Wall Suction on Entropy Generation Rate in Laminar Condensate Layer on Horizontal Tube

    Directory of Open Access Journals (Sweden)

    Tong-Bou Chang

    2014-01-01

    Full Text Available The effects of wall suction on the entropy generation rate in a two-dimensional steady film condensation flow on a horizontal tube are investigated theoretically. In analyzing the liquid flow, the effects of both the gravitational force and the viscous force are taken into account. In addition, a film thickness reduction ratio, Sf, is introduced to evaluate the effect of wall suction on the thickness of the condensate layer. The analytical results show that, the entropy generation rate depends on the Jakob number Ja, the Rayleigh number Ra, the Brinkman number Br, the dimensionless temperature difference ψ, and the wall suction parameter Sw. In addition, it is shown that in the absence of wall suction, a closed-form correlation for the Nusselt number can be derived. Finally, it is shown that the dimensionless entropy generation due to heat transfer, NT, increases with an increasing suction parameter Sw, whereas the dimensionless entropy generation due to liquid film flow friction, NF, decreases.

  16. The Color Glass Condensate: An Intuitive Physical Description

    International Nuclear Information System (INIS)

    McLerran, Larry

    2006-01-01

    I argue that the scattering of very high energy strongly interacting particles is controlled by a new, universal form of matter, the Color Glass Condensate. This matter is predicted by QCD and explains the saturation of gluon densites at small x. I motivate the existence of this matter and describe some of its properties

  17. Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kolomeitsev, E.E. [Matej Bel University, Banska Bystrica (Slovakia); Voskresensky, D.N. [National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-12-15

    The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f{sub 0} in the particle-hole channel. For f{sub 0} > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 < f{sub 0} < 0 there are only damped excitations, and for f{sub 0} < -1 the spectrum becomes unstable against the growth of scalar-mode excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f{sub 0}(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f{sub 0} > -1. (orig.)

  18. Bogoliubov theory of the Hawking effect in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Leonhardt, U; Kiss, T; Oehberg, P

    2003-01-01

    Artificial black holes may demonstrate some of the elusive quantum properties of the event horizon, in particular Hawking radiation. One promising candidate is a sonic hole in a Bose-Einstein condensate. We clarify why Hawking radiation emerges from the condensate and how this condensed-matter analogue reflects some of the intriguing aspects of quantum black holes

  19. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  20. Amorphous physics and materials: Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials

    International Nuclear Information System (INIS)

    Khonik, V A

    2017-01-01

    A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching. (topical review)

  1. 3-sphere fibrations: a tool for analyzing twisted materials in condensed matter

    International Nuclear Information System (INIS)

    Sadoc, J F; Charvolin, J

    2009-01-01

    Chiral molecules, when densely packed in soft condensed matter or biological materials, build organizations which are most often spontaneously twisted. The crystals of 'blue' phases formed by small mesogenic molecules demonstrate the structural importance of such a twist or torsion, and its presence was also recently observed in finite toroidal aggregates formed by long DNA molecules. The formation of these organizations is driven by the fact that compactness, which tends to align the molecules, enters into conflict with torsion, which tends to disrupt this alignment. This conflict of topological nature, or frustration, arises because of the flatness of the Euclidean space, but does not exist in the curved space of the 3-sphere where particular lines, its fibres, can be drawn which are parallel and nevertheless twisted. As these fibrations conciliate compactness and torsion, they can be used as geometrical templates for the analysis of organizations in the Euclidean space. We describe these fibrations, with a particular emphasis on their torsion.

  2. Quantum tunneling time of a Bose-Einstein condensate traversing through a laser-induced potential barrier

    International Nuclear Information System (INIS)

    Duan Zhenglu; Fan Bixuan; Yuan Chunhua; Zhang Weiping; Cheng Jing; Zhu Shiyao

    2010-01-01

    We theoretically study the effect of atomic nonlinearity on the tunneling time in the case of an atomic Bose-Einstein condensate (BEC) traversing the laser-induced potential barrier. The atomic nonlinearity is controlled to appear only in the region of the barrier by employing the Feshbach resonance technique to tune interatomic interaction in the tunneling process. Numerical simulation shows that the atomic nonlinear effect dramatically changes the tunneling behavior of the BEC matter wave packet and results in the violation of the Hartman effect and the occurrence of negative tunneling time.

  3. Textual Condensation in Printed Dictionaries. A Theoretical Draft·

    African Journals Online (AJOL)

    applying procedures of textual condensation in relation to a respective full text. The full text ..... and, if one does not consider the inserted wordforms, of the same number of letters. .... soccer clogging: the match turned into a rough game da32.

  4. Systematic text condensation: a strategy for qualitative analysis.

    Science.gov (United States)

    Malterud, Kirsti

    2012-12-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies. Giorgi's psychological phenomenological analysis is the point of departure and inspiration for systematic text condensation. The basic elements of Giorgi's method and the elaboration of these in systematic text condensation are presented, followed by a detailed description of procedures for analysis according to systematic text condensation. Finally, similarities and differences compared with other frequently applied methods for qualitative analysis are identified, as the foundation of a discussion of strengths and limitations of systematic text condensation. Systematic text condensation is a descriptive and explorative method for thematic cross-case analysis of different types of qualitative data, such as interview studies, observational studies, and analysis of written texts. The method represents a pragmatic approach, although inspired by phenomenological ideas, and various theoretical frameworks can be applied. The procedure consists of the following steps: 1) total impression - from chaos to themes; 2) identifying and sorting meaning units - from themes to codes; 3) condensation - from code to meaning; 4) synthesizing - from condensation to descriptions and concepts. Similarities and differences comparing systematic text condensation with other frequently applied qualitative methods regarding thematic analysis, theoretical methodological framework, analysis procedures, and taxonomy are discussed. Systematic text condensation is a strategy for analysis developed from traditions shared by most of the methods for analysis of qualitative data. The method offers the novice researcher a process of intersubjectivity, reflexivity, and feasibility, while maintaining a responsible level of methodological rigour.

  5. Solar engineering - a condensed course

    Energy Technology Data Exchange (ETDEWEB)

    Broman, Lars

    2011-11-15

    The document represents the material covered in a condensed two-week course focusing on the most important thermal and PV solar energy engineering topics, while also providing some theoretical background.

  6. Theoretical optical spectroscopy of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A. Mosca, E-mail: adriano.mosca.conte@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Violante, C., E-mail: claudia.violante@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Missori, M., E-mail: mauro.missori@isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00016 Monterotondo Scalo (Rome) (Italy); Bechstedt, F., E-mail: bech@ifto.physik.uni-jena.de [Institut fur Festkorpertheorie und -optik, Friedrich-Schiller-Universitat, Max-Wien-Platz 1, 07743 Jena (Germany); Teodonio, L. [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Istituto centrale per il restauro e la conservazione del patrimonio archivistico e librario (IC-RCPAL), Italian Minister for Cultural Heritage, Via Milano 76, 00184 Rome (Italy); Ippoliti, E.; Carloni, P. [German Research School for Simulation Sciences, Julich (Germany); Guidoni, L., E-mail: leonardo.guidoni@univaq.it [Università degli Studi di L’Aquila, Dipartimento di Chimica e Materiali, Via Campo di Pile, 67100 L’Aquila (Italy); Pulci, O., E-mail: olivia.pulci@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy)

    2013-08-15

    Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth.

  7. Theoretical optical spectroscopy of complex systems

    International Nuclear Information System (INIS)

    Conte, A. Mosca; Violante, C.; Missori, M.; Bechstedt, F.; Teodonio, L.; Ippoliti, E.; Carloni, P.; Guidoni, L.; Pulci, O.

    2013-01-01

    Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth

  8. Long range correlations in condensed matter

    International Nuclear Information System (INIS)

    Bochicchio, R.C.

    1990-01-01

    Off diagonal long range order (ODLRO) correlations are strongly related with the generalized Bose-Einstein condensation. Under certain boundary conditions, one implies the other. These phenomena are of great importance in the description of quantum situations with a macroscopic manifestation (superfluidity, superconductivity, etc.). Since ion pairs are not bosons, the definition of ODLRO is modified. The information contained with the 2-particle propagator (electron pairs) and the consequences that lead to pairs statistics are shown in this presentation. The analogy between long range correlations and fluids is also analyzed. (Author). 17 refs

  9. Bose-condensation through resonance decay

    International Nuclear Information System (INIS)

    Ornik, U.; Pluemer, M.; Strottman, D.

    1993-04-01

    We show that a system described by an equation of state which contains a high number of degrees of freedom (resonances) can create a considerable amount of superfluid (condensed) pions through the decay of short-lived resonances, if baryon number and entropy are large and the dense matter decouples from chemical equilibrium earlier than from thermal equilibrium. The system cools down faster in the presence of a condensate, an effect that may partially compensate the enhancement of the lifetime expected in the case of quark-gluon-plasma formation. (orig.). 3 figs

  10. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  11. Parity and isospin in pion condensation and tensor binding

    International Nuclear Information System (INIS)

    Pace, E.; Palumbo, F.

    1978-01-01

    In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)

  12. Baryonic matter and beyond

    OpenAIRE

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  13. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul; Gelis, François; Liao, Jinfeng; McLerran, Larry; Venugopalan, Raju

    2013-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation

  14. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul; Gelis, François [Institut de Physique Théorique (URA 2306 du CNRS), CEA/DSM/Saclay, 91191, Gif-sur-Yvette Cedex (France); Liao, Jinfeng [Physics Department and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Venugopalan, Raju [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2013-05-02

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation.

  15. The dynamics of Affleck-Dine condensate collapse

    International Nuclear Information System (INIS)

    Enqvist, Kari; McDonald, John

    2000-01-01

    In the MSSM, cosmological scalar field condensates formed along flat directions of the scalar potential (Affleck-Dine condensates) are typically unstable with respect to formation of Q-balls, a type of non-topological soliton. We consider the dynamical evolution of the Affleck-Dine condensate in the MSSM. We discuss the creation and linear growth, in F- and D-term inflation models, of the quantum seed perturbations which in the non-linear regime catalyse the collapse of the condensate to non-topological soliton lumps. We study numerically the evolution of the collapsing condensate lumps and show that the solitons initially formed are not in general Q-balls, but Q-axitons, a pseudo-breather which can have very different properties from Q-balls of the same charge. We calculate the energy and charge radiated from a spherically symmetric condensate lump as it evolves into a Q-axiton. We also discuss the implications for baryogenesis and dark matter

  16. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  17. Quark virtuality and QCD vacuum condensates

    International Nuclear Information System (INIS)

    Zhou Lijuan; Ma Weixing

    2004-01-01

    Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions

  18. PREFACE: Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer Celebrating 20 years of Journal of Physics: Condensed Matter—in honour of Richard Palmer

    Science.gov (United States)

    Ferry, David; Dowben, Peter; Inglesfield, John

    2009-11-01

    This year marks the 20th anniversary of the launch of Journal of Physics: Condensed Matter in 1989. The journal was formed from the merger of Journal of Physics C: Solid State Physics and Journal of Physics F: Metal Physics which had separated in 1971. In the 20 years since its launch, Journal of Physics: Condensed Matter has more than doubled in size, while raising standards. Indeed, Journal of Physics: Condensed Matter has become one of the leading scientific journals for our field. This could not have occurred without great leadership at the top. No one has been more responsible for this growth in both size and quality than our Senior Publisher, Richard Palmer. Richard first started work at IOP in March 1971 as an Editorial Assistant with J. Phys. B After a few months, he transferred to J. Phys.C The following year, the Assistant Editor of J. Phys. C, Malcolm Haines, left suddenly in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of J. Phys. C, before being given the job of Assistant Editor permanently. Since J. Phys. C and J. Phys. F re-merged to form Journal of Physics: Condensed Matter, Richard gradually shed his other journal responsibilities, except for Reports on Progress in Physics, to build up Journal of Physics: Condensed Matter. He has worked closely with four Editors-in-Chief of J. Phys. C and five of Journal of Physics: Condensed Matter. When Richard announced his retirement this past winter, we met it with a great deal of both happiness and sadness. Of course, we are happy that he is going to be allowed to enjoy his retirement, but we remain very sad to lose such a valuable member of our team, especially the one who had provided the heart and soul of the journal over its 20 years. We will be able to rely upon the team which Richard ably trained as

  19. Condensational theory of stationary tornadoes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.; Nefiodov, A.V.

    2011-01-01

    Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated. -- Highlights: → Water vapor condensation causes a logarithmic drop of air pressure towards tornado center. → The first ever theoretical description of tornado velocities is obtained. → The maximum vortex velocity grows logarithmically with decreasing tornado eye radius. → Air motion with high velocities can only develop in sufficiently large condensation areas.

  20. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    Science.gov (United States)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG

  1. Theoretical study of steam condensation induced water hammer phenomena in horizontal pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Barna, Imre Ferenc [Hungarian Academy of Sciences, Budapest (Hungary). Wigner Research Center; ELI-HU Nonprofit Kft., Szeged (Hungary); Pocsai, Mihaly Andras [Hungarian Academy of Sciences, Budapest (Hungary). Wigner Research Center; Pecs Univ. (Hungary). Inst. of Physics; Guba, Attila [Hungarian Academy of Sciences, Budapest (Hungary). Energy Research Center; Imre, Attila Rikard [Hungarian Academy of Sciences, Budapest (Hungary). Energy Research Center; Budapest University of Technology and Economics (Hungary). Dept. of Energy Engineering

    2015-11-15

    Steam condensation induced water hammer (CIWH) phenomena are investigated and new theoretical results are presented. We use the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to RELAP5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. This model was validated with different CIWH experiments which were performed in the PMK-2 facility, which is a full-pressure thermohydraulic model of the nuclear power plant of VVER-440/312 type in the Energy Research Center of the Hungarian Academy of Sciences and in the Rosa facility of the Japan Atomic Energy Agency. In our present study we show the first part of a planned large database which will give us the upper and lower flooding mass flow rates for various pipe geometries where CIWH can happen. Such a reliable database would be a great help for future reactor constructions and scheming.

  2. Theoretical study of steam condensation induced water hammer phenomena in horizontal pipelines

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Pocsai, Mihaly Andras; Pecs Univ.; Guba, Attila; Imre, Attila Rikard; Budapest University of Technology and Economics

    2015-01-01

    Steam condensation induced water hammer (CIWH) phenomena are investigated and new theoretical results are presented. We use the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to RELAP5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. This model was validated with different CIWH experiments which were performed in the PMK-2 facility, which is a full-pressure thermohydraulic model of the nuclear power plant of VVER-440/312 type in the Energy Research Center of the Hungarian Academy of Sciences and in the Rosa facility of the Japan Atomic Energy Agency. In our present study we show the first part of a planned large database which will give us the upper and lower flooding mass flow rates for various pipe geometries where CIWH can happen. Such a reliable database would be a great help for future reactor constructions and scheming.

  3. Soft condensed matter approach to cooking of meat

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2007-01-01

    We have viewed cooking meat from the perspective of soft condensed physics and posed that the moisture transport during cooking can be described by Flory-Rehner theory of swelling/shrinking polymer gels. This theory contains the essential physics to describe the transport of liquid moisture due to

  4. Entropy generation in a condenser and related correlations

    Directory of Open Access Journals (Sweden)

    Askowski Rafał

    2015-06-01

    Full Text Available The paper presents an analysis of relations describing entropy generation in a condenser of a steam unit. Connections between entropy generation, condenser ratio, and heat exchanger effectiveness, as well as relations implied by them are shown. Theoretical considerations allowed to determine limits of individual parameters which describe the condenser operation. Various relations for average temperature of the cold fluid were compared. All the proposed relations were verified against data obtained using a simulator and actual measurement data from a 200 MW unit condenser. Based on data from a simulator it was examined how the sum of entropy rates, steam condenser effectiveness, terminal temperature difference and condenser ratio vary with the change in the inlet cooling water temperature, mass flow rate of steam and the cooling water mass flow rate.

  5. Research into condensed matter using large-scale apparatus. Physics, chemistry, biology. Progress report 1992-1995. Summarizing reports

    International Nuclear Information System (INIS)

    1996-01-01

    Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de

  6. Charged ρ Meson Condensate in Neutron Stars within RMF Models

    Directory of Open Access Journals (Sweden)

    Konstantin A. Maslov

    2017-12-01

    Full Text Available Knowledge of the equation of state (EoS of cold and dense baryonic matter is essential for the description of properties of neutron stars (NSs. With an increase of the density, new baryon species can appear in NS matter, as well as various meson condensates. In previous works, we developed relativistic mean-field (RMF models with hyperons and Δ -isobars, which passed the majority of known experimental constraints, including the existence of a 2 M ⊙ neutron star. In this contribution, we present results of the inclusion of ρ − -meson condensation into these models. We have shown that, in one class of the models (so-called KVOR-based models, in which the additional stiffening procedure is introduced in the isoscalar sector, the condensation gives only a small contribution to the EoS. In another class of the models (MKVOR-based models with additional stiffening in isovector sector, the condensation can lead to a first-order phase transition and a substantial decrease of the NS mass. Nevertheless, in all resulting models, the condensation does not spoil the description of the experimental constraints.

  7. Project for a beam line consecrated to soft condensed matter, common heterogeneous materials and non-crystalline materials on soleil

    International Nuclear Information System (INIS)

    Ne, F.; Zemb, T.

    1998-01-01

    This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)

  8. The Mott localization and magnetic properties in condensed fermions systems; Lokalizacja Motta i wlasnosci magnetyczne skondensowanych ukladow fermionowych

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, W. [Politechnika Krakowska, Cracow (Poland)

    1995-12-31

    In the present thesis the Mott localization and magnetic properties in condensed fermions system are considered. The Hubbard model has been used to strongly correlated electron systems and the Skyrme potential to a dense neutron matter with small concentration of protons. A variational approach to the metal-insulator transition is proposed which combines the Mott and Gutzwiller-Brinkman-Rice aspects of the localization. Magnetic properties of strongly correlated electrons are analyzed within the modified spin-rotation-invariant approach in the slow-boson representation. The theoretical prediction for considered systems are presented. 112 refs, 39 figs.

  9. The Mott localization and magnetic properties in condensed fermions systems; Lokalizacja Motta i wlasnosci magnetyczne skondensowanych ukladow fermionowych

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, W [Politechnika Krakowska, Cracow (Poland)

    1996-12-31

    In the present thesis the Mott localization and magnetic properties in condensed fermions system are considered. The Hubbard model has been used to strongly correlated electron systems and the Skyrme potential to a dense neutron matter with small concentration of protons. A variational approach to the metal-insulator transition is proposed which combines the Mott and Gutzwiller-Brinkman-Rice aspects of the localization. Magnetic properties of strongly correlated electrons are analyzed within the modified spin-rotation-invariant approach in the slow-boson representation. The theoretical prediction for considered systems are presented. 112 refs, 39 figs.

  10. Fluegas condensation of domestic fuels. Kotimaisten polttoaineiden savukaasulauhdutus

    Energy Technology Data Exchange (ETDEWEB)

    Kankkunen, A; Fagerholm, N E

    1988-01-01

    The suitability of domestic fuel for condensation heat recovery was studied. With the developed computer program, enthalpies of flue gas as function of temperature were computed and also the theoretical advandages aquired by condensation were compared with different fuels. The maximal advantages of condensation were 39 % with wooden chips and 31 % with peat. The domestic fuels were found to be useful for condensation heat recovery because of the high water content and the high dewpoint of flu egas. Condensation was found to have a purifying effect on flue gases. It was found experimentaly that 30 % the sulfur of the peat dissolved to the condensed liquid. The composition of condensed liquid of peat- and wooden chip flue gases was studied to find out the corrosion and enviromental effects. The risk of corrosion to metallic heat exhanger was concluded from the compositio of peat condensat. Chip condensate was found to be almost neutral. Normally the condensate liquids were fit for sewering without aftertreatment. Heat transfer coefficient from flue gases to the wall of the condenser was measured to be 150-170 W/Km{sup 2}. Heat transfer coefficients were three times higher compared to condensing heat transfer.

  11. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  12. Neutron and synchrotron radiation for condensed matter studies. Volume 1: theory, instruments and methods

    International Nuclear Information System (INIS)

    Baruchel, J.; Hodeau, J.L.; Lehmann, M.S.; Regnard, J.R.; Schlenker, C.

    1993-01-01

    This book provides the basic information required by a research scientist wishing to undertake studies using neutrons or synchrotron radiation at a Large Facility. These lecture notes result from 'HERCULES', a course that has been held in Grenoble since 1991 to train young scientists in these fields. They cover the production of neutrons and synchrotron radiation and describe all aspects of instrumentation. In addition, this work outlines the basics of the various fields of research pursued at these Large Facilities. It consists of a series of chapters written by experts in the particular fields. While following a progression and constituting a lecture course on neutron and x-ray scattering, these chapters can also be read independently. This first volume will be followed by two further volumes concerned with the applications to solid state physics and chemistry, and to biology and soft condensed matter properties

  13. Relativistic Gross-Pitaevskii equation and the cosmological Bose Einstein Condensation-Quantum Structure in Universe

    International Nuclear Information System (INIS)

    Fukuyama, Takeshi; Morikawa, Masahiro

    2006-01-01

    We do not know 96% of the total matter in the universe. A model is proposed in which Dark Energy is identified as Bose-Einstein Condensation. Global cosmic acceleration and rapid local collapse into black holes (Dark Matter) are examined. We also propose a novel mechanism of inflation due to the steady flow of condensation, which is free from slow-roll conditions for the potential

  14. Defect evolution in cosmology and condensed matter quantitative analysis with the velocity-dependent one-scale model

    CERN Document Server

    Martins, C J A P

    2016-01-01

    This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.

  15. Matter rogue waves for the three-component Gross-Pitaevskii equations in the spinor Bose-Einstein condensates.

    Science.gov (United States)

    Sun, Wen-Rong; Wang, Lei

    2018-01-01

    To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.

  16. Condensate bright solitons under transverse confinement

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2002-01-01

    We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schroedinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the 'soliton train' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula

  17. Characteristic aspects of pion-condensed phases

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.

    1993-01-01

    Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)

  18. Surface design for dropwise condensation: A theoretical and experimental study: Paper presented at 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics; 17 to 19 July 2017; Portoroz, Slovenia

    OpenAIRE

    Ahlers, Marieke; Koch, Marcus; Lägel, Bert; Klingel, Steffen; Schlehuber, Dennis; Gehrke, Ilka; Eloo, Christina; Bart, Hans-Jörg

    2017-01-01

    The manipulation of the water wetting properties of heat exchangers into dropwise condensation by the use of microstructured surfaces promises an enhanced heat transfer. In order to design a hydrophobic surface geometry, different theoretical models have been introduced in the past. While these models describe the surface-drop-interaction of sessile drops reasonably well, nucleation and droplet growth in dropwise condensation are not considered. Modifications of roughness based models have be...

  19. Bose–Einstein condensation of anti-kaons and neutron star twins

    Indian Academy of Sciences (India)

    We investigate the role of Bose–Einstein condensation (BEC) of anti-kaons on the equation of state (EoS) and other properties of compact stars. In the framework of relativistic mean field model we determine the EoS for -stable hyperon matter and compare it to the situation when anti-kaons condense in the system.

  20. International Centre for Theoretical Physics, Trieste. Scientific activities in 1993

    International Nuclear Information System (INIS)

    1994-10-01

    The annual report of the International Centre for Theoretical Physics from Trieste for 1993 contains four parts. Part I gives statistical data on the main activities of the Centre. Part II presents the scientific programme structured as follows: Fundamental physics, Condensed matter physics, Mathematics, Physics and energy, Physics and environment, Physics of the living state, Applied physics, Adriatico Research Conferences, Diploma Course, Laboratories, Long-term visitors, Network of Associate Members and Federal Institutes, Training and research at italian laboratories, External Activities, Science, High Technology and Development Programme, Meeting hosted, Awards. Part III lists the publications issued in 1993. Part IV presents the scientific support services. Tabs

  1. D-wave condensate and essential phenomenological description of some properties of high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Dunne, L.J.; Univ. of Sussex, Falmer; Braendas, E.J.; Murrell, J.N.

    1999-01-01

    The discovery of high T c superconducting cuprates occurred over a decade ago but the cause of the superconducting condensation and electronic structure of such compounds is still a matter of considerable debate. While there is no agreement as to the pairing mechanism, there is, on the other hand, a wide consensus about the main properties which a theoretical description should provide. In this article, a theory is presented which accounts in a straightforward way for many of the essential properties of the high T c cuprate superconductors. Some further developments of the model are suggested, particularly relating to the normal state spin-gap which the model does not currently describe

  2. Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2000-07-01

    This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided.

  3. Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit

    2000-01-01

    This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided

  4. Understanding soft condensed matter via modeling and computation

    CERN Document Server

    Shi, An-Chang

    2011-01-01

    All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.

  5. Latest trends in condensed matter physics

    CERN Document Server

    Singhal, R K

    2011-01-01

    This special issue of ""Solid State Phenomena"" documents some novel experimental and theoretical approaches applied to fascinating materials. Motivated by the increasing need to synthesize and understand the properties of technologically important materials, this issue represents an important step forward in improving our understanding of how modern materials can be optimised for technology and industry. The issue comprises 9 original review papers covering experimental approaches and theoretical modeling. The contributions will be very useful to researchers working in various areas of CMP an

  6. Pion condensation and instabilities: current theory and experiment

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-05-01

    Current calculations of pion condensation phenomena in symmetric nuclear matter are reviewed. The RPA and MFA methods are compared. Latest results [LBL-10572] with a relativistic MFA theory constrained by bulk nuclear properties are presented. The differences between equilibrium (condensation) and nonequilibrium (dynamic) instabilities are discussed. Finally, two-proton correlation experiments aimed at looking for critical scattering phenomena and two-pion correlation experiments aimed at looking for pion field coherence are analyzed. 10 figures, 2 tables

  7. Condensates in quantum chromodynamics and the cosmological constant

    Science.gov (United States)

    Brodsky, Stanley J.; Shrock, Robert

    2011-01-01

    Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  8. Excitonic condensation in systems of strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan

    2015-01-01

    Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  9. Review of the Theoretical and Experimental Status of Dark Matter Identification with Cosmic-Ray Antideuterons

    Science.gov (United States)

    Aramaki, T.; Boggs, S.; Bufalino, S.; Dal, L.; von Doetinchem, P.; Donato, F.; Fornengo, N.; Fuke, H.; Grefe, M.; Hailey, C.; hide

    2016-01-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.

  10. Correlated electrons in quantum matter

    CERN Document Server

    Fulde, Peter

    2012-01-01

    An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap. It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.

  11. Matter-antimatter and matter-matter interactions at intermediate energies

    International Nuclear Information System (INIS)

    Santos, Antonio Carlos Fontes dos

    2002-01-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed

  12. Bose-Einstein Condensation

    International Nuclear Information System (INIS)

    Jaksch, D

    2003-01-01

    The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is

  13. Colored condensates deep inside neutron stars

    Directory of Open Access Journals (Sweden)

    Blaschke David

    2014-01-01

    Full Text Available It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  14. High-efficiency free-form condenser overcoming rotational symmetry limitations.

    Science.gov (United States)

    Miñano, Juan C; Benítez, Pablo; Blen, José; Santamaría, Asunción

    2008-12-08

    Conventional condensers using rotational symmetric devices perform far from their theoretical limits when transferring optical power from sources such as arc lamps or halogen bulbs to the rectangular entrance of homogenizing prisms (target). We present a free-form condenser design (calculated with the SMS method) that overcomes the limitations inherent to rotational devices and can send to the target 1.8 times the power sent by an equivalent elliptical condenser for a 4:1 target aspect ratio and 1.5 times for 16:9 target and for practical values of target etendue.

  15. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  16. Condensation Analysis of Steam/Air Mixtures in Horizontal Tubes

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Bae, Sung Won; Kim, Moo Hwan

    2008-01-01

    Perhaps the most common flow configuration in which a convective condensation occurs is a flow in a horizontal circular tube. This configuration is encountered in air-conditioning and refrigeration condensers as well as condensers in Rankine power cycles. Although a convective condensation is also sometimes contrived to occur in a co-current vertical downward flow, a horizontal flow is often preferred because the flow can be repeatedly passed through the heat exchanger core in a serpentine fashion without trapping liquid or vapor in the return bends. Many researchers have investigated a in-tube condensation for horizontal heat exchangers. However, almost all of them obtained tube section-averaged data without a noncondensable gas. Recently, Wu and Vierow have experimentally studied the condensation of steam in a horizontal heat exchanger with air present. In order to measure the condenser tube inner surface temperatures and to calculate the local heat fluxes, they developed an innovative thermocouple design that allowed for nonintrusive measurements. Here we developed a theoretical model using the heat and mass analogy to analyze a steam condensation with a noncondensable gas in horizontal tubes

  17. Normal matter storage of antiprotons

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1987-01-01

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs

  18. International Centre for Theoretical Physics, Trieste. Scientific activities in 1995

    International Nuclear Information System (INIS)

    1996-10-01

    The annual report of the International Centre for Theoretical Physics from Trieste for 1995 contains three parts. Part 1 includes statistical data on the main activities of the Centre. Part 2 presents the scientific programme in various fields (Physics of Condensed Matter, Physics of High and Intermediate Energies, Mathematics, Physics and Energy, Physics of the Environment, Physics of Living State, Applied Physics and Miscellaneous) as well as other activities such as diploma course, long-term scientific visitors, associate members and federation arrangements, training and research at Italian laboratories, external activities, books and equipment donation programme, awards, and meetings hosted. Part 3 lists the publications issued in 1995 and gives information about the library of the Centre. 6 tabs

  19. International Centre for Theoretical Physics, Trieste. Scientific activities in 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The annual report of the International Centre for Theoretical Physics from Trieste for 1995 contains three parts. Part 1 includes statistical data on the main activities of the Centre. Part 2 presents the scientific programme in various fields (Physics of Condensed Matter, Physics of High and Intermediate Energies, Mathematics, Physics and Energy, Physics of the Environment, Physics of Living State, Applied Physics and Miscellaneous) as well as other activities such as diploma course, long-term scientific visitors, associate members and federation arrangements, training and research at Italian laboratories, external activities, books and equipment donation programme, awards, and meetings hosted. Part 3 lists the publications issued in 1995 and gives information about the library of the Centre. 6 tabs.

  20. Theoretical studying the stability of steady-state regime of a channel with a coolant condensation

    International Nuclear Information System (INIS)

    Savikhin, O.G.

    1987-01-01

    Based on the boiling channel stability theory, the channel steady-state stability with the coolant condensation is studied. Condensable coolants are used in the NPP steam-separator superheaters as well as in cryogenic technique. Under certain conditions the coolant flow rate and temperature fluctuations may be excited in the parallel channel system with coolant condensation, which produce a sufficient effect on the heat exchange equipment operation reliability. To describe unsteady processes of heat and mass transfer in the channel, a homogeneous two-phase flow one dimensional model is used. The results obtained allow one to make a conclusion concerning the effect of some parameters on condensing channel steady-state regime stability: reduction of inlet and outlet unheated communication length, pressure drop increase at the outlet plate and its reduction at the inlet one lead to the increase of stability margin

  1. Diquark condensate and quark interaction with instanton liquid

    International Nuclear Information System (INIS)

    Zinov'ev, G.M.; Molodtsov, S.V.

    2003-01-01

    The interaction of light quarks and instanton liquid is analyzed at finite density of quark/baryon matter and in the phase of nonzero values of diquark (color) condensate. It is shown that instanton liquid perturbation produced by such an interaction results in an essential increase of the critical value of quark chemical potential μ c which provokes the perceptible increase of quark matter density around the expected onset of the color superconductivity phase [ru

  2. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    International Nuclear Information System (INIS)

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  3. Gravitino Condensates in the Early Universe and Inflation

    CERN Document Server

    Mavromatos, Nick E

    2015-01-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local supersymmetry (supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) supersymmetry is "eaten" by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks the local supersymmetry (supergravity) dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-inflation-type phase. The higher-order curvature corrections of the (quantum) effective action of gravitino condensates induced by integrating out massive gravitino degrees of freedom in a curved space-time background, in the broken-supergravity phase, are responsible for inducing a scalar mode which inflates the Universe. The scenario is in agreement with Planck data phenomenology in a natural and phenomen...

  4. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  5. All problems of theoretical physics

    International Nuclear Information System (INIS)

    Park, Bong Yeol

    1991-09-01

    This book introduces particle physics, nuclear physics, and condensed matter physics. It deals with trend of particle physics, gauge theory and renormalisation, Quark-Hadron phase transition, unified field theory and theory of internal string, supersymmetry and supergravity, Berry's connection and Quantum separation of slow versus fast dynamics, giant resonance, intermediate energy nuclear physics, unclear fission reactor physics, atomic structure of metastable defect in semiconductor, dynamics theory of condensation material world, and two-dimensional Ising model revisited.

  6. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  7. Quantum Computing in Condensed Matter Systems

    National Research Council Canada - National Science Library

    Privman, V

    1997-01-01

    Specific theoretical calculations of Hamiltonians corresponding to several quantum logic gates, including the NOT gate, quantum signal splitting, and quantum copying, were obtained and prepared for publication...

  8. Watching ultrafast responses of structure and magnetism in condensed matter with momentum-resolved probes

    Directory of Open Access Journals (Sweden)

    S. L. Johnson

    2017-11-01

    Full Text Available We present a non-comprehensive review of some representative experimental studies in crystalline condensed matter systems where the effects of intense ultrashort light pulses are probed using x-ray diffraction and photoelectron spectroscopy. On an ultrafast (sub-picosecond time scale, conventional concepts derived from the assumption of thermodynamic equilibrium must often be modified in order to adequately describe the time-dependent changes in material properties. There are several commonly adopted approaches to this modification, appropriate in different experimental circumstances. One approach is to treat the material as a collection of quasi-thermal subsystems in thermal contact with each other in the so-called “N-temperature” models. On the other extreme, one can also treat the time-dependent changes as fully coherent dynamics of a sometimes complex network of excitations. Here, we present examples of experiments that fall into each of these categories, as well as experiments that partake of both models. We conclude with a discussion of the limitations and future potential of these concepts.

  9. Realization of Massive Relativistic Spin- 3 / 2 Rarita-Schwinger Quasiparticle in Condensed Matter Systems

    Science.gov (United States)

    Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang

    Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.

  10. 7th International Conference on Physics of Liquid Matter : Modern Problems

    CERN Document Server

    Chalyi, Alexander

    2018-01-01

    This book presents a collection of selected lectures discussing current problems in molecular physics and reviews the main cutting-edge advances in condensed and soft matter physics. It offers deep insights and a powerful basis for scientists and engineers to study complicated problems in physics, chemistry, biology, and medicine. The unification of experimental, theoretical, and computational methods allows milestone results to be achieved in areas such as ionic and ionic-electronic liquids, magnetic liquid systems, liquid systems with nanoparticles, structural phase transitions and critical phenomena, and small-angle neutron and X-ray scattering in liquids and liquid systems.   The lectures selected for this book were held at the 7th International Conference “Physics of Liquid Matter: Modern Problems” (PLMMP-2016), 27–31 May in Kiev, Ukraine.

  11. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Directory of Open Access Journals (Sweden)

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  12. Temperature dependence of the coherence in polariton condensates

    Science.gov (United States)

    Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.

    2018-02-01

    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.

  13. The generation of high-power charge particle micro beams and its interaction with condensed matter

    International Nuclear Information System (INIS)

    Vogel, N.; Skvortsov, V.A.

    1996-01-01

    As has been observed experimentally, the action of a picosecond laser beam on an Al-target in air gives rise to the generation and acceleration of high-power micro electron and ion beams. An original theoretical model for describing the generation and particle acceleration of such micro beams as a result of the micro channeling effect is presented. It was found that extreme states of matter, with compression in the Gbar pressure range, can be produced by such micro beams. (author). 3 figs., 12 refs

  14. Study of 12C second 0+ state based on the α-particle condensation picture

    International Nuclear Information System (INIS)

    Funaki, Yasuro

    2011-01-01

    Structural studies of 12 C(0 2 + ) based on the model wave functions of α-particle condensation are reviewed. The structure of 12 C(0 2 + ) has drawn much attention since the establishment of theoretical models of nuclear synthesis and shell structure. Three α-particle cluster models, i.e., 3αRGM (Resonating Group Method), 3αGCM(Generating Coordinate Method) and 3αOCM(Orthogonality Condition Model), have been developed to explain 12 C(0 + ) successfully. On the other hand, α-particle condensation has been studied in the infinite nuclear matter systems, and even in finite ones. It has come to be considered that there exists condensation-like structure in general. In the present review, the approach based on RGM is explained at first, then THSR(Tohsaki-Horiuch-Schuck-Roepke) α-cluster wave function of α-particle condensate type is described. Calculated results of the binding energies, nuclear radii and monopole transition matrix elements of 0 + states by both THRS wave function and 3αRGM reproduces experiments well and both results almost coincide. Since THRS wave function is included in RGM in principle, this result is natural but noticeable difference of 0 2 + radii between them suggests marked 3α-cluster in THRS. Form factors measured by electron inelastic scattering and energy surface are discussed. THRS wave function gives a new picture of phase transition into the α-particle gas state from the liquid-like ground state. Applications of this concept to 2-α and 4-α cases are discussed finally. (S. Funahashi)

  15. Impact of condensed matter theories on material studies at high pressures

    International Nuclear Information System (INIS)

    Godwal, B.K.; Rao, R.S.; Sikka, S.K.; Chidambaram, R.

    1997-01-01

    We are vigorously pursuing a program to study the behaviour of materials under pressure for the last three decades. Theoretical component has been an important part of our activity. The initial phase of such efforts was devoted to the development of equation of state models at arbitrary temperature and matter density. With the advent of diamond anvil cell device and improvements of the diagnostic technique in dynamic methods, the focus of our studies switched over to the predictions and interpretations of phase transitions. Many times these have led to intense experimental studies and sometimes helped in resolving the controversies. The introduction of linear methods in electron band theory and availability of supercomputers and parallel processors have given boost to the computational physics, and the efforts are now being extended more and more to the ab-initio molecular dynamics simulations. These simulations have a promise to avoid the tedious search for structural stability by trail and error in phase transition studies under pressure or temperature. The current status of our efforts in this direction will be listed with an illustration on liquid sulphur. Our past work on electronic topological transition in zinc led to many experimental and theoretical investigations. The results of electronic structure changes in similar metal cadmium shall be compared with existing understanding in Zn under pressure. Our studies on other compounds (AuIn 2 , YNi 2 B 2 C), which have also been found to display electronic topological transition under pressure, will be discussed. (author)

  16. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  17. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  18. Simulation of condensed matter dynamics in strong femtosecond laser pulses

    International Nuclear Information System (INIS)

    Wachter, G.

    2014-01-01

    Ultrashort custom-tailored laser pulses can be employed to observe and control the motion of electrons in atoms and small molecules on the (sub-) femtosecond time scale. Very recently, efforts are underway to extend these concepts to solid matter. This monograph theoretically explores first applications of electron control by ultrashort laser pulses in three paradigmatic systems of solid-state density: a metal nano-structure (nanometric metal tip), a bulk dielectric (quartz glass), and the buckminsterfullerene molecule (C60) as arguably the smallest possible nano-particle. The electron motion is resolved on the atomic length and time scale by ab-initio simulations based on time-dependent density functional theory. Our quantum simulations are complemented by classical and semi-classical models elucidating the underlying mechanisms. We compare our results to experiments where already available and find good agreement. With increasing laser intensity, we find a transition from vertical photoexcitation to tunneling-like excitation. For nanostructures, that leads to temporally confined electron photoemission and thereby to quantum interferences in the energy spectra of emitted electrons. Similarly, tunneling can be induced between neighboring atoms inside an insulator. This provides a mechanism for ultrafast light-field controlled currents and modification of the optical properties of the solid, promising to eventually realize light-field electronic devices operating on the femtosecond time scale and nanometer length scale. Electron-electron interaction leads to near field enhancement and spatial localization of the non-linear response and is investigated both classically by solving the Maxwell equations near a nanostructure as well as quantum mechanically for the fullerene molecule. For the latter, we discuss scrutiny of the molecular near-field by the attosecond streaking technique. Our results demonstrate that ultrashort laser pulses can be employed to steer the

  19. Depletion of superfluidity in a disordered non-equilibrium quantum condensate

    Energy Technology Data Exchange (ETDEWEB)

    Janot, Alexander; Rosenow, Bernd [Institut fuer Theoretische Physik, Universitaet Leipzig, 04009 Leipzig (Germany); Hyart, Timo [Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Eastham, Paul [School of Physics, Trinity College, Dublin 2 (Ireland)

    2013-07-01

    Observations of quantum coherence in driven systems, e.g. polariton condensates, have strongly stimulated experimental as well as theoretical efforts during the last decade. We analyze the superfluid stiffness of a non-equilibrium quantum-condensate in a disordered environment taking gain and loss of particles into account. To this end a modified effective Gross-Pitaevskii equation is employed. We find that the disorder-driven depletion of superfluidity is strongly enhanced due to the gain-loss mechanism. It turns out that the condensate remains stiff at finite length scales only.

  20. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  1. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  2. QCD under extreme conditions. Inhomogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Achim

    2014-10-15

    Almost 40 years after the first publication on the phase diagram of quantum chromodynamics (QCD) big progress has been made but many questions are still open. This work covers several aspects of low-energy QCD and introduces advanced methods to calculate selected parts of the QCD phase diagram. Spontaneous chiral symmetry breaking as well as its restoration is a major aspect of QCD. Two effective models, the Nambu-Jona-Lasinio (NJL) model and the linear σ-model, are widely used to describe the QCD chiral phase transition. We study the large-N{sub c} behavior of the critical temperature T{sub c} for chiral symmetry restoration in the framework of both models. While in the NJL model T{sub c} is independent of N{sub c} (and in agreement with the expected QCD scaling), the scaling behavior in the linear σ-model reads T{sub c} ∝ N{sup 1/2}{sub c}. However, this mismatch can be corrected: phenomenologically motivated temperature-dependent parameters or the extension with the Polyakov-loop renders the scaling in the linear σ-model compatible with the QCD scaling. The requirement that the chiral condensate which is the order parameter of the chiral symmetry is constant in space is too restrictive. Recent studies on inhomogeneous chiral condensation in cold, dense quark matter suggest a rich crystalline structure. These studies feature models with quark degrees of freedom. In this thesis we investigate the formation of the chiral density wave (CDW) in the framework of the so-called extended linear sigma model (eLSM) at high densities and zero temperature. The eLSM is a modern development of the linear σ-model which contains scalar, pseudoscalar, vector, as well as axial-vector mesons, and in addition, a light tetraquark state. The nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The model describes successfully the vacuum phenomenology and nuclear matter ground-state properties. As a result we find that an inhomogeneous phase

  3. More accurate theory for Bose-Einstein condensation fraction

    International Nuclear Information System (INIS)

    Biswas, Shyamal

    2008-01-01

    Bose-Einstein statistics is derived in the thermodynamic limit when the ratio of system size to thermal de Broglie wavelength goes to infinity. However, according to the experimental setup of Bose-Einstein condensation of harmonically trapped Bose gas of alkali atoms, the ratio near the condensation temperature (T o ) is 30-50. And, at ultralow temperatures well below T o , this ratio becomes comparable to 1. We argue that finite size as well as the ultralow temperature induces corrections to Bose-Einstein statistics. From the corrected statistics we plot condensation fraction versus temperature graph. This theoretical plot satisfies well with the experimental plot [A. Griesmaier et al., Phys. Rev. Lett. 94 (2005) 160401

  4. From Special Relativity to Feynman Diagrams A Course of Theoretical Particle Physics for Beginners

    CERN Document Server

    D'Auria, Riccardo

    2012-01-01

    This books aims at filling a gap between the basics courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. Particular emphasis is given to the role of symmetry in modern theoretical physics. For this reason this book is particularly suited to those students who are interested in a deeper knowledge of modern developments in elementary particle physics and relativity, even if they choose not to specialize in this branch of research. This target of readers includes, besides experimental and applied physicists, also those engineers who need advanced notions of theoretical high energy physics, in view of future research activity in the field theory approach to condensed matter, in accelerator physics and in all those modern technology sectors which require a more advanced and sophisticated theoretical physics background. Courses motivated by these objectives are present in several polytechnic institutes around the world. The last chapters of this book,...

  5. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  6. Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate

    Science.gov (United States)

    Bera, Jayanta; Roy, Utpal

    2018-05-01

    Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.

  7. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose

  8. Development of a condenser for the dual catalyst water recovery system

    Science.gov (United States)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  9. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    Science.gov (United States)

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  10. Water nucleation : wave tube experiments and theoretical considerations

    NARCIS (Netherlands)

    Holten, V.

    2009-01-01

    This work is an experimental and theoretical study of the condensation of water. Condensation consists of nucleation – the formation of droplets – and the subsequent growth of those droplets. In our expansion tube setup, these processes are separated in time with the nucleation pulse principle, in

  11. FOREWORD: 18th International School on Condensed Matter Physics

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.

    2014-12-01

    We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its

  12. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  13. Theoretical challenges in neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1985-07-01

    Topics in the interpretation of neutron scattering experiments from paramagnets and quantum fluids are used to illustrate the puissance of the technique in condensed matter research, and to record some fundamental shortcomings in the available theory of many-particle systems. (author)

  14. Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves

    CERN Document Server

    Westbrook, C; David, F; Coherent Atomic Matter Waves

    2001-01-01

    Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...

  15. Dynamic ultraslow optical-matter wave analog of an event horizon.

    Science.gov (United States)

    Zhu, C J; Deng, L; Hagley, E W; Ge, Mo-Lin

    2014-08-29

    We investigate theoretically the effects of a dynamically increasing medium index on optical-wave propagation in a rubidium condensate. A long pulsed pump laser coupling a D2 line transition produces a rapidly growing internally generated field. This results in a significant optical self-focusing effect and creates a dynamically growing medium index anomaly that propagates ultraslowly with the internally generated field. When a fast probe pulse injected after a delay catches up with the dynamically increasing index anomaly, it is forced to slow down and is prohibited from crossing the anomaly, thereby realizing an ultraslow optical-matter wave analog of a dynamic white-hole event horizon.

  16. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  17. Topological Aspects of Condensed Matter Physics : Lecture Notes of the Les Houches Summer School : Session CIII

    CERN Document Server

    Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F

    2017-01-01

    Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...

  18. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    International Nuclear Information System (INIS)

    Roy, S. B.; Myneni, G. R.

    2015-01-01

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values

  19. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    Science.gov (United States)

    Roy, S. B.; Myneni, G. R.

    2015-12-01

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  20. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  1. Light-like tachyon condensation in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Hellerman, S.; Schnabl, Martin

    2013-01-01

    Roč. 2013, č. 4 (2013), s. 1-34 ISSN 1126-6708 Institutional support: RVO:68378271 Keywords : string field theory * tachyon condensation Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012

  2. Antwerp Advanced Study Institute on Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter

    CERN Document Server

    Camp, Piet

    1985-01-01

    The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material ...

  3. Stability of trapped Bose—Einstein condensates in one-dimensional tilted optical lattice potential

    International Nuclear Information System (INIS)

    Fang Jian-Shu; Liao Xiang-Ping

    2011-01-01

    Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose—Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose—Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable. (general)

  4. Faraday waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Nicolin, Alexandru I.; Carretero-Gonzalez, R.; Kevrekidis, P. G.

    2007-01-01

    Motivated by recent experiments on Faraday waves in Bose-Einstein condensates we investigate both analytically and numerically the dynamics of cigar-shaped Bose-condensed gases subject to periodic modulation of the strength of the transverse confinement. We offer a fully analytical explanation of the observed parametric resonance, based on a Mathieu-type analysis of the non-polynomial Schroedinger equation. The theoretical prediction for the pattern periodicity versus the driving frequency is directly compared to the experimental data, yielding good qualitative and quantitative agreement between the two. These results are corroborated by direct numerical simulations of both the one-dimensional non-polynomial Schroedinger equation and of the fully three-dimensional Gross-Pitaevskii equation

  5. Institut fuer Festkoerperforschung. Scientific report 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The following topics are dealt with: Quantum theory of materials, theoretical soft matter and biophysics, theory of structure formation, scattering methods, neutron scattering, electronic materials, soft condensed matter, microstructure, electronic properties, condensed matter physics, information technology with nanoelectronic systems, large-scale facilities for research with photons, neutrons, and ions. (HSI)

  6. Institut fuer Festkoerperforschung. Scientific report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The following topics are dealt with: Quantum theory of materials, theoretical soft matter and biophysics, theory of structure formation, scattering methods, neutron scattering, electronic materials, soft condensed matter, microstructure, electronic properties, condensed matter physics, information technology with nanoelectronic systems, large-scale facilities for research with photons, neutrons, and ions. (HSI)

  7. Old and new views on the structure of matter and the special case of living matter

    Energy Technology Data Exchange (ETDEWEB)

    Del Giudice, Emilio [INFN - via Celoria 16 - Milan (Italy)

    2007-05-15

    It is shown in the framework of Quantum Field Theory how the dynamics of the phase transition from a gas to a condensed matter could be understood. The case of liquid water is discussed. It is investigated the role of water in the enzyme activity in biological matter.

  8. Stochastic analysis of capillary condensation in disordered mesopores.

    Science.gov (United States)

    Gommes, Cedric J; Roberts, Anthony P

    2018-05-08

    Most mesoporous materials of practical interest are inherently disordered, which has a significant impact on the condensation and evaporation of vapours in their pores. Traditionally, the effect of disorder is theoretically analyzed in a perturbative approach whereby slight elements of disorder (constriction, corrugation) are added to geometrically ideal pores. We propose an alternative approach, which consists of using a stochastic geometrical model to describe both the porous material and the condensate within the pores. This is done through a multiphase generalisation of the standard Gaussian random field model of disordered materials. The model parameters characterising the condensate provide a low-dimensional approximation of its configuration space, and we use a Derjaguin-Broekhoff-de Boer approximation to calculate the free-energy landscape. Our analysis notably questions the existence of vapour-like metastable states in realistically disordered mesoporous materials. Beyond capillary condensation, our general methodology is applicable to a broad array of confined phenomena.

  9. Baryonic 3P2 superfluidity under charged-pion condensation with Δ isobar

    International Nuclear Information System (INIS)

    Takatsuka, T.; Tamagaki, R.

    1999-01-01

    We study the baryonic 3 P 2 superfluidity under charged-pion condensation with isobar (Δ) degrees of freedom. After a remark on motivations of the present study, the outline of theoretical framework is briefly described, typical results of the superfluid critical temperature are shown, and the possibility of coexistence of the superfluid with charged-pion condensation is discussed. (author)

  10. Spin-Orbit Coupled Bose-Einstein Condensates

    Science.gov (United States)

    2016-11-03

    21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new

  11. Spontaneous symmetry breaking in spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Scherer, Manuel; Lücke, Bernd; Peise, Jan

    2013-01-01

    We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...

  12. Antikaon condensation in neutron stars by a new nonlinear mean-field model

    CERN Document Server

    Miyazaki, K

    2005-01-01

    We have investigated both the K^- and \\bar{K}^0 condensations in beta-equilibrated neutron star (NS) matter using the relativistic mean-field model with the renormalized meson-baryon coupling constants. Adopting the antikaon optical potential of -120MeV, our model predicts the K^- condensation as the second-order phase transition inside the neutron star of maximum mass, while the deeper potential than -160MeV is ruled out. This is in contrast to the result of the density-dependent hadron field theory. Our model also predicts remarkable softening of the equation of state by the \\bar{K}^0 condensation at high densities. Although this is contrasted with the result of the nonlinear Walecka model, only the K^- condensation can be formed in NSs.

  13. Humidification Dehumidification Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Shouman, L.; Karameldin, A.; Fadel, D.

    2015-01-01

    Humidification-dehumidification (HDH) is a low grade energy desalination technology. The waste heat from power plant (such NPP) can be used as heat source to preheat water (in evaporator) and air (in condenser) . Hot humid air and cooled spray water in counter current flow with direct contact is theoretically analyzing in the present work. Direct contact spray condenser is studied to provide the effect of various parameters on its performance. A computer programme describing the theoretical model is designed to solve a one-dimensional differential equations by using Rung–Kutta method. The programme predicts the droplet radius, velocity and temperature, besides, the humidity and temperature of air. The results show that, the length of column has great effect on the performance of spray condenser. At column height of 0.762, 2, 5, 10, and 20 m the humidity of the output air decreases by 50%, 72%, 89%, 97%, and 99% respectively. The condensate increases about 35% when the length increase from 5 to 10 m at ΔT = 25°C while increase only 18% at ΔT = 30°C. Also, it is found that, at ΔT = 25°C the condensate decrease from H = 10 to 5 m about 31% and increases from 10 to 20 m about 32%. While these results for ΔT = 25°C are 32% from H = 10 to 5 m and 36% from 10 to 20 m.The increase of both water and air mass fluxes increases the condensate mass flow rate. (author)

  14. Bose condensation in 4He and neutron scattering

    International Nuclear Information System (INIS)

    Silver, R.N.

    1997-01-01

    The discovery of superfluidity in liquid 4 He below T λ = 2.17 K, and its phenomenological characterization since then, has been one of the great success stories of condensed matter physics. The relation of superfluidity to the behavior of atoms was conjectured by F. London in 1938. Superfluidity is a manifestation of the Bose condensation of helium atoms, the extensive occupation of the zero momentum state. Ever since 4 He has been the paradigm in the search for Bose condensates in other systems. At the Pune meeting scientists have heard exciting new evidence for Bose condensates of laser cooled alkali atoms in magnetic traps, of excitons in Cu 2 O, and possibly pre-formed Cooper pairs of electrons in the high T c perovskite superconductors. There remains the holy-grail of forming a Bose condensate in spin-polarized hydrogen. In the current excitement for new types of Bose condensates, and new phenomena such as atom lasers, it may be useful to recall the older story of the experimental verification of a relation between superfluidity and Bose condensation in 4 He. This topic has been investigated over many years by neutron scattering experiments and quantum many-body theory. The authors goal is to illustrate the difficulties of establishing the existence of a Bose condensate in a strongly interacting system, even though its macroscopic effects are manifest. The author assumes readers have access to a review by Silver and Sokol which emphasizes the neutron scattering theory through 1990 and a review by Snow and Sokol of the deep inelastic neutron scattering (DINS) experiments through 1995

  15. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  16. Aldol condensation of furfural and acetone on zeolites

    Czech Academy of Sciences Publication Activity Database

    Kikhtyanin, O.; Kelbichová, V.; Vitvarová, Dana; Kubů, Martin; Kubička, D.

    2014-01-01

    Roč. 227, MAY 2014 (2014), s. 154-162 ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : aldol condensation * oligomerization * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  17. A preliminary investigation: the impact of microscopic condenser on depth of field in cytogenetic imaging

    Science.gov (United States)

    Ren, Liqiang; Qiu, Yuchen; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Wei R.; Liu, Hong

    2013-02-01

    As one of the important components of optical microscopes, the condenser has a considerable impact on system performance, especially on the depth of field (DOF). DOF is a critical technical feature in cytogenetic imaging that may affect the efficiency and accuracy of clinical diagnosis. The purpose of this study is to investigate the influence of microscopic condenser on DOF using a prototype of transmitted optical microscope, based on objective and subjective evaluations. After the description of the relationship between condenser and objective lens and the theoretical analysis of the condenser impact on system numerical aperture and DOF, a standard resolution pattern and several cytogenetic samples are adopted to assess the condenser impact on DOF, respectively. The experimental results of these objective and subjective evaluations are in agreement with the theoretical analysis and show that, under the specific intermediate range of condenser numerical aperture ( NAcond ), the DOF value decreases with the increase of NAcond . Although the above qualitative results are obtained under the experimental conditions with a specific prototype system, the methods presented in this preliminary investigation could offer useful guidelines for optimizing operational parameters in cytogenetic imaging.

  18. Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate

    DEFF Research Database (Denmark)

    Klempt, C.; Topic, O.; Gebreyesus, G.

    2010-01-01

    to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant...... triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter....

  19. International Centre for Theoretical Physics, Trieste. Scientific activities in 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This publication gives a comprehensive overview of the scientific activities during 1994 of the International Centre for Theoretical Physics, Trieste. In particular, it gives (i) a summary of these activities accompanied by statistical data (comparison with 1993, participation by geographical area, breakdown by field of activity, activities held at and outside the ICTP, and participation by activity); (ii) an overview of the scientific programme (fundamental physics, condensed matter physics, mathematics, physics and energy, physics and the environment, physics of the living state, applied physics, diploma courses, and other research) while listing long-term visitors, networks of associate members and federal institutes, training and research at Italian laboratories, external activities, science, the high technology and development programme, the books and equipment programme, award; (iii) a list of publications, and (iv) a list of scientific support services.

  20. International Centre for Theoretical Physics, Trieste. Scientific activities in 1994

    International Nuclear Information System (INIS)

    1995-10-01

    This publication gives a comprehensive overview of the scientific activities during 1994 of the International Centre for Theoretical Physics, Trieste. In particular, it gives (i) a summary of these activities accompanied by statistical data (comparison with 1993, participation by geographical area, breakdown by field of activity, activities held at and outside the ICTP, and participation by activity); (ii) an overview of the scientific programme (fundamental physics, condensed matter physics, mathematics, physics and energy, physics and the environment, physics of the living state, applied physics, diploma courses, and other research) while listing long-term visitors, networks of associate members and federal institutes, training and research at Italian laboratories, external activities, science, the high technology and development programme, the books and equipment programme, award; (iii) a list of publications, and (iv) a list of scientific support services

  1. Multiple atomic dark solitons in cigar-shaped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Theocharis, G.; Kevrekidis, P. G.; Weller, A.; Ronzheimer, J. P.; Gross, C.; Oberthaler, M. K.; Frantzeskakis, D. J.

    2010-01-01

    We consider the stability and dynamics of multiple dark solitons in cigar-shaped Bose-Einstein condensates. Our study is motivated by the fact that multiple matter-wave dark solitons may naturally form in such settings as per our recent work [Phys. Rev. Lett. 101, 130401 (2008)]. First, we study the dark soliton interactions and show that the dynamics of well-separated solitons (i.e., ones that undergo a collision with relatively low velocities) can be analyzed by means of particle-like equations of motion. The latter take into regard the repulsion between solitons (via an effective repulsive potential) and the confinement and dimensionality of the system (via an effective parabolic trap for each soliton). Next, based on the fact that stationary, well-separated dark multisoliton states emerge as a nonlinear continuation of the appropriate excited eigenstates of the quantum harmonic oscillator, we use a Bogoliubov-de Gennes analysis to systematically study the stability of such structures. We find that for a sufficiently large number of atoms, multiple soliton states are dynamically stable, while for a small number of atoms, we predict a dynamical instability emerging from resonance effects between the eigenfrequencies of the soliton modes and the intrinsic excitation frequencies of the condensate. Finally, we present experimental realizations of multisoliton states including a three-soliton state consisting of two solitons oscillating around a stationary one and compare the relevant results to the predictions of the theoretical mean-field model.

  2. String-net condensation: A physical mechanism for topological phases

    International Nuclear Information System (INIS)

    Levin, Michael A.; Wen Xiaogang

    2005-01-01

    We show that quantum systems of extended objects naturally give rise to a large class of exotic phases--namely topological phases. These phases occur when extended objects, called ''string-nets,'' become highly fluctuating and condense. We construct a large class of exactly soluble 2D spin Hamiltonians whose ground states are string-net condensed. Each ground state corresponds to a different parity invariant topological phase. The models reveal the mathematical framework underlying topological phases: tensor category theory. One of the Hamiltonians--a spin-1/2 system on the honeycomb lattice--is a simple theoretical realization of a universal fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions. Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher dimensions

  3. Capillary Condensation in Pores with Rough Walls:

    Czech Academy of Sciences Publication Activity Database

    Bryk, P.; Rżysko, W.; Malijevský, Alexandr; Sokołowski, S.

    2007-01-01

    Roč. 313, č. 1 (2007), s. 41-52 ISSN 0021-9797 Grant - others:TOK(XE) 509249 Institutional research plan: CEZ:AV0Z40720504 Source of funding: R - rámcový projekt EK Keywords : adsorption * pore * capillary condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.309, year: 2007

  4. Cosmic inflation constrains scalar dark matter

    Directory of Open Access Journals (Sweden)

    Tommi Tenkanen

    2015-12-01

    Full Text Available In a theory containing scalar fields, a generic consequence is a formation of scalar condensates during cosmic inflation. The displacement of scalar fields out from their vacuum values sets specific initial conditions for post-inflationary dynamics and may lead to significant observational ramifications. In this work, we investigate how these initial conditions affect the generation of dark matter in the class of portal scenarios where the standard model fields feel new physics only through Higgs-mediated couplings. As a representative example, we will consider a $ Z_2 $ symmetric scalar singlet $ s $ coupled to Higgs via $ \\lambda \\Phi ^\\dagger \\Phi s^2 $. This simple extension has interesting consequences as the singlet constitutes a dark matter candidate originating from non-thermal production of singlet particles out from a singlet condensate, leading to a novel interplay between inflationary dynamics and dark matter properties.

  5. Notes on the production of matter in the Universe

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2012-01-01

    A model of the production of ordinary and dark matter in the decay of a hypothetical antigravitating medium in the form of a condensate of spinless massive particles, which fills the Universe, is proposed. The decays of these particles into baryons, leptons, and dark matter particles are caused by some interaction with the mass scale between the electroweak interaction and the grand unification. The observed dark energy is identified with a portion of the condensate, which has not decayed up to the instant of a measurement. The decay rate of particles of the condensate is expressed through the three parameters - the coupling constant α X , the mass scale M X ; which defines the mass of an X-particle as a mediator of the interaction, and the energy imparted to the decay products. Under the assumption that the decay rate of particles of the condensate is of the same order of magnitude as the Hubble expansion rate, the limits of the possible values of the mass M X are obtained. The cross-sections of the reactions, in which dark matter particles can be produced, are calculated.

  6. Experimental determinations of the turbine condenser operation at Cernavoda NPP Unit 1

    International Nuclear Information System (INIS)

    Romascu, Gabriel; Dragusin, Dumitru; Rogociu, Ioan; Macodean, Luminita; Marciulescu, George

    1999-01-01

    The condenser system represents one of the most important BOP (balance of plant) systems of the CANDU 700 MW Unit at Cernavoda NPP. The paper presents theoretical calculation elements, mathematical model for simulation of condenser operation and the results obtained by model implementation as compared to operation data. The model could be adapted to other turbine and operation regime types. (authors)

  7. Bose-Einstein condensation in atomic alkali gases

    Science.gov (United States)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  8. On-Demand Dark Soliton Train Manipulation in a Spinor Polariton Condensate

    KAUST Repository

    Pinsker, F.

    2014-04-10

    We theoretically demonstrate the generation of dark soliton trains in a one-dimensional exciton-polariton condensate within experimentally accessible schemes. In particular, we show that the frequency of the train can be finely tuned fully optically or electrically to provide a stable and efficient output signal modulation. Taking the polarization of the condensate into account, we elucidate the possibility of forming on-demand half-soliton trains. © 2014 American Physical Society.

  9. Merging and splitting of Bose-Einstein condensates into two translating traps

    International Nuclear Information System (INIS)

    Sun, B; Pindzola, M S

    2009-01-01

    We investigate the process of merging and splitting Bose-Einstein condensates into two slowly translating traps, analogous to a dual input atomic beam splitter. With the help of direct three-dimensional numerical simulations, we explore the dependence of population distributions on the initial relative phase and the trap moving speed. For non-interacting Bose-Einstein condensates, we find that our numerical results are in good agreement with a simple theoretical prediction. However, for interacting Bose-Einstein condensates, our results show striking differences with the non-interacting case: the Bose-Einstein condensates are always split towards 50:50 in the slow translation regime. This bosonic anti-bunching effect is interpreted as a consequence of complicated flow patterns due to atomic interactions.

  10. Theoretical analysis and experimental evaluation of small cyclone separator to remove fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Han Gyul; Kim, Hong Seok [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of 0.5-30{mu}m. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance.

  11. One-nucleon absorption of slow pions by atomic nuclei and π condensation

    International Nuclear Information System (INIS)

    Troitskij, M.A.; Koldaev, M.V.; Chekunaev, N.I.

    1977-01-01

    Solved is a problem of one-nucleon absorption of slow pions by real nuclei. Without ion condensate one-nucleon absorption forbiddenness decreases due to nucleus finiteness, as nucleus finiteness results in nucleon momentum nonconservation. As a result one-nucleon absorption probability differs from a zero and equals the order of 10 -3 . Calculated is one-nucleon absorption probability in nuclear matter as well as in atomic nuclei due to π condensate existence. The condensate part is shown to be considerable in a finite system as well. For heavy nuclei the condensate presence results in this probability increase about 100 times. Experiments on one-nucleon absorption of slow pions may be critical to elucidate a question of π condensate presence in nuclear systems. In conclusion experimental data available on pion absorption are discussed and it is paid attention to the necessity of carrying out further experiments

  12. Synthesis, characterization, Hirshfeld surface and theoretical properties of (C.sub.7./sub.H.sub.10./sub.N).sub.4./sub.[H.sub.2./sub.P.sub.2./sub.Mo.sub.5./sub.O.sub.23./sub.]•H.sub.2./sub.O

    Czech Academy of Sciences Publication Activity Database

    Harchani, A.; Kučeráková, Monika; Dušek, Michal; Haddad, A.

    2017-01-01

    Roč. 8, Sep (2017), s. 1-9, č. článku 1361. ISSN 0974-3626 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : diphosphopentamolybdate * synthesis * crystal structure * physicochemical properties * theoretical study Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.235, year: 2016

  13. Group theoretical methods in Physics

    International Nuclear Information System (INIS)

    Olmo, M.A. del; Santander, M.; Mateos Guilarte, J.M.

    1993-01-01

    The meeting had 102 papers. These was distributed in following areas: -Quantum groups,-Integrable systems,-Physical Applications of Group Theory,-Mathematical Results,-Geometry, Topology and Quantum Field Theory,-Super physics,-Super mathematics,-Atomic, Molecular and Condensed Matter Physics. Nuclear and Particle Physics,-Symmetry and Foundations of classical and Quantum mechanics

  14. Quantum matter

    International Nuclear Information System (INIS)

    Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin

    2008-01-01

    The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)

  15. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  16. Impact of element-level static condensation on iterative solver performance

    KAUST Repository

    Pardo, D.

    2015-10-02

    This paper provides theoretical estimates that quantify and clarify the savings associated to the use of element-level static condensation as a first step of an iterative solver. These estimates are verified numerically. The numerical evidence shows that static condensation at the element level is beneficial for higher-order methods. For lower-order methods or when the number of iterations required for convergence is low, the setup cost of the elimination as well as its implementation may offset the benefits obtained during the iteration process. However, as the iteration count (e.g., above 50) or the polynomial order (e.g., above cubics) grows, the benefits of element-level static condensation are significant.

  17. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  18. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  19. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  20. One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases

    OpenAIRE

    Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.

    2011-01-01

    The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...

  1. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    Science.gov (United States)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  2. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  3. Thermalization of the quark-gluon plasma and dynamical formation of Bose-Einstein Condensate

    International Nuclear Information System (INIS)

    Liao, Jinfeng

    2013-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the pre-equilibrium gluonic matter ( g lasma ) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop the kinetic approach for describing this highly overpopulated system and find approximate scaling solutions as well as numerically study the onset of condensation. Finally we also discuss possible phenomenological implications.

  4. Topics in Theoretical Physics

    International Nuclear Information System (INIS)

    Cohen, Andrew; Schmaltz, Martin; Katz, Emmanuel; Rebbi, Claudio; Glashow, Sheldon; Brower, Richard; Pi, So-Young

    2016-01-01

    This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of

  5. Topics in Theoretical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew [Boston Univ., MA (United States); Schmaltz, Martin [Boston Univ., MA (United States); Katz, Emmanuel [Boston Univ., MA (United States); Rebbi, Claudio [Boston Univ., MA (United States); Glashow, Sheldon [Boston Univ., MA (United States); Brower, Richard [Boston Univ., MA (United States); Pi, So-Young [Boston Univ., MA (United States)

    2016-09-30

    This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of

  6. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  7. Ultra-cold molecules in an atomic Bose-Einstein condensate

    Science.gov (United States)

    Wynar, Roahn Helden

    2000-08-01

    This thesis is about photoassociation of Bose-condensed 87Rb. Most importantly we report that state selected 87Rb2 molecules were created at rest in a condensate of 87Rb using two-photon photoassociation. Additionally, we have identified three weakly bound states of the 87Rb2 S+u3 , potential for the |1, -1> + |1, - 1> collisional channel. The binding energies of these states are 529.4 +/- .07, 636.0094 +/- .0012, and 24.24 +/- .01 MHz respectively. We have also carried out a detailed study of the density dependence of the shift and width of the two-photon lineshape. This shift and width is modeled using the theory of Bohn and Julienne [34] and in addition to the precise measurement of binding energy we also report the first measurement of an atom molecule scattering length, aam, which we conclude is -180 +/- 150 a0, and the inelastic collision rate, Kinel dependent coherent coupling between atoms and molecules. This theory yields two coupled equations, one for the evolution of atomic condensate amplitude and one for the evolution of molecular condensate amplitude. The nature of the atomic-molecular condensate evolution is shown to depend on six, model parameters including the coherent coupling, given by cn . The other five parameters can be interpreted as light-shifts and incoherent loss rates. We present a calculation intended to estimate the values of these six parameters for the 87Rb - 87Rb 2 system. Based on the results of this calculation we identify two locations in the 87Rb2 spectrum where coherent transfer of population from atomic condensate to molecular condensate is plausible. Finally, we examine the credibility of the theoretical model used to estimate the six parameters used by the mean field theory. By comparing the measured Stark shifts of two-color resonances with predictions based on our theoretical model we conclude that the model is satisfactory for the v = 37 level of the S+u3 potential. This work also describes the experimental details of

  8. Chiral condensates and QCD vacuum in two dimensions

    International Nuclear Information System (INIS)

    Christiansen, H.R.

    1997-04-01

    We analyze the chiral symmetries of flavored quantum chromodynamics in two dimensions and show the existence of the chiral condensates within the path-integral approach. The massless and massive cases are discussed as well,for arbitrary finite and infinite number of colors. Our results put forward the question of topological issues when matter is in the fundamental representation of the gauge group. (author)

  9. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  10. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  11. Dynamical Evolution of the Scalar Condensate in Heavy Ion Collisions

    CERN Document Server

    Csernai, Laszlo P.; Jeon, Sangyong; Kapusta, Joseph I.; Csernai, Laszlo P.; Ellis, Paul J.; Jeon, Sangyong; Kapusta, Joseph I.

    2000-01-01

    We derive the effective coarse-grained field equation for the scalar condensate of the linear sigma model in a simple and straightforward manner using linear response theory. In general, the necessary response functions cannot be obtained in perturbation theory but require a summation of ladder diagrams. We estimate these response functions using direct physical reasoning. The field equation is solved for hot matter undergoing either one or three dimensional expansion and cooling in the aftermath of a high energy nuclear collision. The results show that the time constant for returning the scalar condensate to thermal equilibrium is of order 2 fm/c.

  12. Dispersion Engineering of Bose-Einstein Condensates

    Science.gov (United States)

    Khamehchi, Mohammad Amin

    The subject of this dissertation is engineering the dispersion relation for dilute Bose-Einstein condensates (BECs). When a BEC is immersed into suitably tailored laser fields its dispersion can be strongly modified. Prominent examples for such laser fields include optical lattice geometries and Raman dressing fields. The ability to engineer the dispersion of a BEC allows for the investigation of a range of phenomena related to quantum hydrodynamics and condensed matter. In the first context, this dissertation studies the excitation spectrum of a spin-orbit coupled (SOC) BEC. The spin-orbit coupling is generated by " dressing" the atoms with two Raman laser fields. The excitation spectrum has a Roton-like feature that can be altered by tuning the Raman laser parameters. It is demonstrated that the Roton mode can be softened, but it does not reach the ground state energy for the experimental conditions we had. Furthermore, the expansion of SOC BECs in 1D is studied by relaxing the trap allowing the BEC to expand in the SOC direction. Contrary to the findings for optical lattices, it is observed that the condensate partially occupies quasimomentum states with negative effective mass, and therefore an abrupt deceleration is observed although the mean field force is along the direction of expansion. In condensed-matter systems, a periodic lattice structure often plays an important role. In this context, an alternative to the Raman dressing scheme can be realized by coupling the s- and p- bands of a static optical lattice via a weak moving lattice. The bands can be treated as pseudo-spin states. It is shown that similar to the dispersion relation of a Raman dressed SOC, the quasimomentum of the ground state is different from zero. Coherent coupling of the SOC dispersion minima can lead to the realization of the stripe phase even though it is not the thermodynamic ground state of the system. Along the lines of studying the hydrodynamics of BECs, three novel

  13. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Gun; Kim, Sin [Jeju National Univ., Jeju (Korea, Republic of); Jerng, Dong Wook [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  14. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    International Nuclear Information System (INIS)

    Lee, Yeon Gun; Kim, Sin; Jerng, Dong Wook

    2013-01-01

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  15. Simple and efficient generation of gap solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Matuszewski, Michal; Krolikowski, Wieslaw; Trippenbach, Marek; Kivshar, Yuri S.

    2006-01-01

    We suggest an efficient method for generating matter-wave gap solitons in a repulsive Bose-Einstein condensate, when the gap soliton is formed from a condensate cloud in a harmonic trap after turning on a one-dimensional optical lattice. We demonstrate numerically that this approach does not require preparing the initial atomic wave packet in a specific state corresponding to the edge of the Brillouin zone of the spectrum, and losses that occur during the soliton generation process can be suppressed by an appropriate adiabatic switching of the optical lattice

  16. Multistability in an optomechanical system with a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Dong Ying; Ye Jinwu; Pu Han

    2011-01-01

    We investigate a system consisting of a two-component Bose-Einstein condensate interacting dispersively with a Fabry-Perot optical cavity where the two components of the condensate are resonantly coupled to each other by another classical field. The key feature of this system is that the atomic motional degrees of freedom and the internal pseudospin degrees of freedom are coupled to the cavity field simultaneously, hence an effective spin-orbital coupling within the condensate is induced by the cavity. The interplay among the atomic center-of-mass motion, the atomic collective spin, and the cavity field leads to a strong nonlinearity, resulting in multistable behavior in both matter wave and light wave at the few-photon level.

  17. I. Surface properties of neutron-rich nuclei. II. Pion condensation at finite temperature

    International Nuclear Information System (INIS)

    Kolehmainen, K.A.

    1983-01-01

    In part I, the energy density formalism, the Thomas-Fermi approximation, and Skyrme-type interactions were used to describe the energy density of a semi-infinite slab of neturon-rich nuclear matter at zero temperature. The existence of a drip phase at low proton fractions is allowed in addition to the more dense nuclear phase, and various bulk properties of both phases are found when the system is in equilibrium. The usual definition of the surface energy is extended to apply to the case where drip is present. Assuming a Fermi function type density profile, a constrained variational calculation is performed to determine the neutron and proton surface diffuseness parameters, the thickness of the neutron skin, and the surface energy. Results are obtained for proton fractions reanging from 0.5 (symmetric nuclear matter) to zero (pure neutron matter) for most Skyrme-type interactions in common use. The results are in close agreement with the predictions of the droplet model, as well as with the results of more exact calculations in those cases where the more exact results exist (only for symmetric or nearly symmetric matter in most cases). Significantly different asymmetry dependences for different interactions are found. In part II, several simple but increasingly complex models are used to calculate the threshold for charged pion condensation in neutron-rich nuclear matter at finite temperature. Unlike in mean field theory descriptions of pion condensation, the effects of thermal excitations of the pion field are included. The thermal pion excitations have two important effects: first, to modify the phase diagram qualitatively from that predicted by mean field theory, and second, to make the phase transition to a spatially nonuniform condensed state at finite temperature always first, rather than second, order

  18. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    International Nuclear Information System (INIS)

    Iancu, E.; Leonidov, A.; McLerran, L.

    2001-01-01

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory

  19. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  20. Extracting the Condensate Density from Projection Experiments with Fermi Gases

    International Nuclear Information System (INIS)

    Perali, A.; Pieri, P.; Strinati, G.C.

    2005-01-01

    A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus 'projecting' the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of the mean field

  1. Wave function of a microwave-driven Bose-Einstein magnon condensate

    International Nuclear Information System (INIS)

    Rezende, Sergio M.

    2010-01-01

    It has been observed experimentally that a magnon gas in a film of yttrium-iron garnet at room temperature driven by a microwave field exhibits Bose-Einstein condensation (BEC) when the driving power exceeds a critical value. In a previous paper we presented a model for the dynamics of the magnon system in wave-vector space that provides firm theoretical support for the formation of the BEC. Here we show that the wave function of the magnon condensate in configuration space satisfies a Gross-Pitaevskii equation similarly to other BEC systems. The theory is consistent with the previous model in wave-vector space, and its results are in qualitative agreement with recent measurements of the spatial distribution of the magnon condensate driven by a nonuniform microwave field.

  2. Einstein's Gravity and Dark Energy/Matter

    CERN Document Server

    Sarfatti, J

    2003-01-01

    Should Einstein's general relativity be quantized in the usual way even though it is not renormalizable the way the spin 1/2 lepto-quark - spin 1 gauge force boson local field theories are? Condensed matter theorists using P.W. Anderson's "More is different" approach, consistent with Andrei Sakharov's idea of "metric elasticity" with gravity emergent out of quantum electrodynamic zero point vacuum fluctuations, is the approach I take in this paper. The QED vacuum in globally-flat Minkowski space-time is unstable due to exchange of virtual photons between virtual electrons and positron "holes" near the -mc2 Fermi surface well inside the 2mc2 energy gap. This results in a non-perturbative emergence of both Einstein's gravity and a unified dark energy/dark matter w = -1 exotic vacuum zero point fluctuation field controlled by the local macro-quantum vacuum coherent field. The latter is a Bose-Einstein condensate of virtual off-mass-shell bound electron-positron pairs. The dark matter exotic vacuum phase with pos...

  3. Capillary condensation and evaporation in alumina nanopores with controlled modulations.

    Science.gov (United States)

    Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit

    2010-07-20

    Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.

  4. Quark condensation, induced symmetry breaking and color superconductivity at high density

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Rho, Mannque

    1999-01-01

    The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (''ISB''). For a reasonable strength for the effective four-Fermi current-current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the ''ISB'' phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust

  5. Phase transitions in nuclear matter and consequences for neutron stars

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-04-01

    Estimates of the minimal bombarding energy necessary to reach the quark gluon phase in heavy ion collisions are presented within a hydrodynamical scenario. Further, the consequences of first-order phase transitions from nuclear/neutron matter to pion-condensed matter or quark matter are discussed for neutron stars. (author)

  6. Matter-antimatter and matter-matter interactions at intermediate energies; Interacao materia-antimateria e materia-materia a energias intermediarias

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Carlos Fontes dos [Missouri Univ., Rolla, MO (United States). Dept. of Physics]. E-mail: antoniocfs@hotmail.com

    2002-07-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed.

  7. Dynamics of defect-induced dark solitons in an exciton-polariton condensate

    Science.gov (United States)

    Opala, Andrzej; Pieczarka, Maciej; Bobrovska, Nataliya; Matuszewski, Michał

    2018-04-01

    We study theoretically the emission of dark solitons induced by a moving defect in a nonresonantly pumped exciton-polariton condensate. The number of created dark solitons per unit of time is found to be strongly dependent on the pump power. We relate the observed dynamics of this process to the oscillations of the drag force experienced by the condensate. We investigate the stability of the polariton quantum fluid and present various types of dynamics depending on the condensate and moving obstacle parameters. Furthermore, we provide analytical expressions for dark soliton dynamics using the variational method adapted to the nonequilibrium polariton system. The determined dynamical equations are found to be in excellent agreement with the results of numerical simulations.

  8. Theoretical modeling of infrared spectra of twinned lead zirconate

    Czech Academy of Sciences Publication Activity Database

    Dočekalová, Zuzana; Pasciak, Marek; Hlinka, Jiří

    2017-01-01

    Roč. 90, č. 1 (2017), s. 17-23 ISSN 0141-1594 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : domains * IR spectroscopy * dielectric permittivity * lead zirconate * shell model * Born effective charge Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.060, year: 2016

  9. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles

    International Nuclear Information System (INIS)

    Wu, Jiafeng; Zhou, Jiahao; Chen, Yaping; Wang, Mingchao; Dong, Cong; Guo, Ya

    2016-01-01

    Highlights: • Trisection helical baffles are introduced for vertical condenser enhancement. • Condensation in short-section and intermediate drainage is applied in new schemes. • Helical baffles with liquid dam and drainage gaps can promote condenser performance. • Dual-thread baffle scheme is superior to that of single-thread one by about 19%. • Condensation enhancement ratio of helical schemes is 1.5–2.5 over segment one. - Abstract: The vertical condensers have advantages of small occupation area, convenient in assemble or dismantle tube bundle and simple structure etc. However, the low heat transfer performance limits their applications. To enhance the heat transfer, a novel type of vertical condensers was designed by introducing trisection helical baffles with liquid dams and gaps for facilitating condensate drainage. Four configurations of vertical condensers with trisection helical baffle are experimentally studied and compared to a traditional segment baffle condenser. The enhancement ratio of trisection helical baffle schemes is about 1.5–2.5 and the heat transfer coefficient of the dual-thread trisection helical baffle scheme is superior to that of the single-thread one by about 19%. Assistant by the theoretical study, the experimental data is simulated and the condensation enhancement mechanisms by applying trisection helical baffle in vertical condenser are summarized as condensate drainage, short tube construct and reduce steam dead zone functions of the helical baffles.

  10. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  11. Three-mode resonant coupling of collective excitations in a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Ma Yongli; Huang, Guoxiang; Hu Bambi

    2005-01-01

    We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature in a Bose-Einstein condensate (BEC). (i) Based on the Gross-Pitaevskii equation we derive a set of nonlinearly coupled envelope equations for a three-mode resonant interaction (TMRI) by means of a method of multiple scales. (ii) We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-state wave function of the condensate. (iii) We provide the selection rules in mode-mode interaction processes [including TMRI and second-harmonic generation (SHG)] according to the symmetry of the excitations. (iv) By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the present study on the TMRI of collective excitations in a BEC

  12. Application of mixture length turbulence models in the domain of condensation; Application des modeles de turbulence de longueur de melange dans le domaine de la condensation

    Energy Technology Data Exchange (ETDEWEB)

    Louahlia, H.; Panday, P.K. [Institut de Genie Energetique, 90 - Belfort (France)

    1997-12-31

    This paper presents a comparison between turbulence models based on Prandtl theory and applied to the problem of pure fluids condensation. A theoretical model is defined which allows to determine the physical characteristics of condensation between two vertical or horizontal flat plates. The total heat flux exchanged at the wall and the mean Nusselt number are calculated using several closure models in the liquid and vapor phases. Calculation results obtained for the R123 condensation between two vertical plates show that the Pletcher`s model or the Groenwald and Kroeger`s one applied to the vapor flow and the Von Karman`s model used for the liquid film predict thermal fluxes close to the measured ones. It has been noticed also that the condensation heat transfer is underestimated in the laminar model. In the case of the R113 condensation on an horizontal flat plate, the mean Nusselt numbers estimated in the Pletcher`s model applied to both phases are close to the measurements performed by Lu and Suryanarayana. (J.S.) 12 refs.

  13. Quark spin-flavor layered structure with condensed π/sup 0/ field in Chiral bag model

    International Nuclear Information System (INIS)

    Tamagaki, R.; Tatsumi, T.

    1984-01-01

    In order to understand predispositions of high density matter, a new phase possibly arising from the neutron matter under π/sup 0/ condensation is studied in chiral bag model, as a facet in which both quark and pion degrees of freedom are incorporated in a well-developed situation of π/sup 0/ condensation. The aspects of this phase are characterized by the periodic layered structure of the two-dimensional quark matter with a specific spin-flavor order the π/sup 0/ field existent as the Nambu-Goldstone mode between the adjacent layers. Such quark configuration is caused due to the pion-quark coupling at the layer (bag) surface which drastically lowers quark energy. Energy properties of the system are examined, and it is shown that the one-gluon-exchange contribution provides the repulsive effect to prevent the layered structure from collapsing. This model provides an example which can be solved nonperturbatively in the chiral bag model and suggests the possibility of an intermediate stage which may appear prior to the phase transition to uniform quark matter

  14. Quark condensate contributions to the gluon self-energy and the ρ meson sum rule

    International Nuclear Information System (INIS)

    Steele, T.G.

    1989-01-01

    The operator-product expansion will be employed to obtain the lowest-order, quark condensate component of both the gluon self-energy and the ρ meson correlation function to all orders in the quark mass parameter. Field-theoretic aspects of the self-energy and correlation function will be considered, and physical effects to the quark condensate upon gluon mass generation will be examined. (orig.)

  15. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  16. Bose-Einstein condensates in optical lattices: Band-gap structure and solitons

    International Nuclear Information System (INIS)

    Louis, Pearl J. Y.; Kivshar, Yuri S.; Ostrovskaya, Elena A.; Savage, Craig M.

    2003-01-01

    We analyze the existence and stability of spatially extended (Bloch-type) and localized states of a Bose-Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and nonlinear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and analyze their stability in different band gaps, for both repulsive and attractive atomic interactions

  17. A single electron in a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Balewski, Jonathan Benedikt

    2014-01-01

    This thesis deals with the production and study of Rydberg atoms in ultracold quantum gases. Especially a single electron in a Bose-Einstein condensate can be realized. This new idea, its experimental realization and theoretical description, as well as the development of application probabilities in a manifold of fields form the main topic of this thesis.

  18. Spontaneous soliton formation and modulational instability in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    The dynamics of an elongated attractive Bose-Einstein condensate in an axisymmetric harmonic trap is studied. It is shown that density fringes caused by self-interference of the condensate order parameter seed modulational instability. The latter has novel features in contradistinction to the usual homogeneous case known from nonlinear fiber optics. Several open questions in the interpretation of the recent creation of the first matter-wave bright soliton train [K. E. Strecker et al., Nature (London) 417, 150 (2002).] are addressed. It is shown that primary transverse collapse, followed by secondary collapse induced by soliton-soliton interactions, produces bursts of hot atoms at different time scales

  19. On the Froehlich decomposition and the condensate fraction in He II

    International Nuclear Information System (INIS)

    Ghassib, H.B.; Sridhar, R.

    1983-09-01

    The method of extracting the Bose-Einstein condensate fraction in He II within the Froehlich decomposition scheme is revisited. A new simple formula for determining this fraction is derived. Possible experimental and theoretical implications are discussed. (author)

  20. Quantum tunnelling in condensed media

    CERN Document Server

    Kagan, Yu

    1992-01-01

    The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse

  1. Intrinsic localized modes in arrays of atomic-molecular Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Abdullaev, F.Kh.; Konotop, V.V.

    2003-01-01

    The existence of strongly localized matter solitons, intrinsic localized modes (ILM's), in an array of atomic-molecular Bose-Einstein condensates (AMBEC's) is shown. The theory is based on the Wannier function expansion of the system order parameter and predicts the possibility of strong localization of the atomic and molecular components whose relative populations are determined by the Raman detuning parameter and by the atom-molecule conversion rate. ILM's can possess different symmetries and spatial distributions of the components. In this context AMBEC arrays can be viewed as potential compressors and separators of atomic and molecular condensates

  2. An Efficient Implementation of Partial Condensing for Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Frison, Gianluca; Kouzoupis, Dimitris; Jørgensen, John Bagterp

    2016-01-01

    -horizon trade-off is investigated from a theoretical point of view (based on algorithms flop count) as well as by benchmarking (in practice, the performance of linear algebra routines for different matrix sizes plays a key role). Partial condensing can also be seen as a technique to replace many operations...... on small matrices with fewer operations on larger matrices, where linear algebra routines perform better. Therefore, in case of small-scale MPC problems, partial condensing can greatly improve performance beyond the flop count reduction....

  3. Light propagation in disordered media: From Maxwell equations to a spherical p-spin model and light condensation effects

    KAUST Repository

    Toth, Laszlo Daniel

    2013-05-01

    The well-known phenomenon of the formation of a Bose-Einstein condensate (BEC), a striking consequence of the Bose-Einstein statistics, has been traditionally linked to an ensemble of ultra-cold gas molecules. However, classical systems can also exhibit condensation effects; in the field of photonics, for example, signatures of this condensation in the mode dynamics (\\'light condensation\\', LC) have been theoretically investigated and experimentally observed in various types of multimode lasers [1,2 and ref. therein]. © 2013 IEEE.

  4. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  5. Investigation of static and dynamic properties of condensed matter by using neutron scattering

    International Nuclear Information System (INIS)

    Davidovic, M.

    1997-01-01

    Possibilities of using neutron scattering for investigating microscopic properties of materials are analyzed. Basic neutron scattering theory is presented and its use in structure and dynamics analyses of condense systems. (author)

  6. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  7. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    Science.gov (United States)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  8. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    Science.gov (United States)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  9. Particle-beam driven inertial confinement fusion. A theoretical approach of the particle beam-matter interaction

    International Nuclear Information System (INIS)

    Duborgel, Bernard; Dufour, J.M.; Fedotoff, Michel; Gouard, Philippe.

    1981-11-01

    A major difficulty in the relativistic electron beam (REB) inertial confinement approach is the low REB-target coupling resulting from long electron range in the matter. The beam stagnation mechanism, induced in a thin target by macroscopic electric and magnetic fields, can appreciably enhance this coupling. The chapter 2 of the rapport contributes to the theoretical study of this effect. Models and numerical programs are described, which permit to establish the characteristics of this mechanism and evaluate the role of the various parameters. These models were used to interpret thin foils heating experiments performed on CHANTECLAIR generator at the Centre of Valduc. The orientation of particle research to the light ions beams (LIB) has to led to an intensive study of ions-matter interaction. DEPION model described in chapter 3 of the report provides an evaluation of energy deposition characteristics for any ion incident upon a target, taking into account their evolution during the plasma heating phase [fr

  10. Distilling hydrocarbons from coal, shale, and other carbonaceous matter

    Energy Technology Data Exchange (ETDEWEB)

    Imray, J

    1880-08-06

    The coal, etc., is placed in a moderately heated retort, and the distillates are conducted by a pipe to coolers, where they are partially condensed. The condensed matters are collected into suitable vessels, and the uncondensed portions are again passed through by means of a pump or fan until the material in the retort is exhausted.

  11. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  12. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  13. Spontaneous formation of quantized vortices in Bose-Einstein condensates

    Science.gov (United States)

    Weiler, Chad Nathan

    Phase transitions abound in the physical world, from the subatomic length scales of quark condensation to the decoupling forces in the early universe. In the Bose-Einstein condensation phase transition, a gas of trapped bosonic atoms is cooled to a critical temperature. Below this temperature, a macroscopic number of atoms suddenly starts to occupy a single quantum state; these atoms comprise the Bose-Einstein condensate (BEC). The dynamics of the BEC phase transition are the focus of this dissertation and the experiments described here have provided new information on the details of BEC formation. New theoretical developments are proving to be valuable tools for describing BEC phase transition dynamics and interpreting new experimental results. With their amenability to optical manipulation and probing along with the advent of new microscopic theories, BECs provide an important new avenue for gaining insight into the universal dynamics of phase transitions in general. Spontaneous symmetry breaking in the system's order parameter may be one result of cooling through a phase transition. A potential consequence of this is the spontaneous formation of topological defects, which in a BEC appear as vortices. We experimentally observed and characterized the spontaneous formation of vortices during BEC growth. We attribute vortex creation to coherence length limitations during the initial stages of the phase transition. Parallel to these experimental observations, theory collaborators have used the Stochastic Gross-Pitaevski Equation formalism to simulate the growth of a condensate from a thermal cloud. The experimental and theoretical statistical results of the spontaneous formation of vortex cores during the growth of the condensate are in good quantitative agreement with one another, supporting our understanding of the dynamics of the phase transition. We believe that our results are also qualitatively consistent with the Kibble-Zurek mechanism, a universal model for

  14. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Grabenstein, V; Kabelac, S

    2012-01-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  15. Field-induced exciton condensation in LaCoO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Sotnikov, A.; Kuneš, Jan

    2016-01-01

    Roč. 6, Jul (2016), 1-6, č. článku 30510. ISSN 2045-2322 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : exciton condensation * LaCoO 3 * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.259, year: 2016

  16. Physics of condensed matter at extreme conditions

    International Nuclear Information System (INIS)

    Ross, M.

    1988-01-01

    The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied

  17. Dual chiral density wave in quark matter

    International Nuclear Information System (INIS)

    Tatsumi, Toshitaka

    2002-01-01

    We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)

  18. Review of LHC dark matter searches

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix

    2017-02-01

    This review discusses both experimental and theoretical aspects of searches for dark matter at the LHC. An overview of the various experimental search channels is given, followed by a summary of the different theoretical approaches for predicting dark matter signals. A special emphasis is placed on the interplay between LHC dark matter searches and other kinds of dark matter experiments, as well as among different types of LHC searches.

  19. Review of LHC dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix

    2017-02-15

    This review discusses both experimental and theoretical aspects of searches for dark matter at the LHC. An overview of the various experimental search channels is given, followed by a summary of the different theoretical approaches for predicting dark matter signals. A special emphasis is placed on the interplay between LHC dark matter searches and other kinds of dark matter experiments, as well as among different types of LHC searches.

  20. The Art of the Motorcycle and the History of Art (and Condensed Matter Physics)

    Science.gov (United States)

    Falco, Charles

    Many topics in physics are such that they are difficult to present in ways that the general public finds engaging. In this talk I will discuss two topics I have worked on, directly related to my research in optical and condensed matter physics, that continue to have widespread appeal. In 1871 Louis Guillaume Perreaux installed a compact steam engine in a commercial bicycle and thus produced the world's first motorcycle. The 145 years since the Michaux-Perreaux have resulted in standard production motorcycles incorporating such materials as carbon-fiber composites, maraging steels, and ''exotic'' alloys of magnesium, titanium and aluminum that can exceed 190 mph straight from the show room floor. As a result of 'The Art of the Motorcycle' exhibition I co-curated at the Solomon R. Guggenheim Museum the public has learned the evolution of motorcycles is interwoven with developments in materials physics. In a second topic, discoveries I made with the renowned artist David Hockney convincingly demonstrated optical instruments were in use - by artists, not scientists - nearly 200 years earlier than commonly thought possible, and for the first time account for the remarkable transformation in the reality of portraits that occurred early in the 15th century. By learning a few principles of geometrical optics the public gains insight into the working process of artists such as van Eyck, Bellini and Caravaggio. Acknowledgement: Portions of this work done in collaboration with David Hockney.