WorldWideScience

Sample records for theodolites

  1. Launch area theodolite system

    Science.gov (United States)

    Bradley, Lester M.; Corriveau, John P.; Tindal, Nan E.

    1991-08-01

    White Sands Missile Range has developed a Launch Area Theodolite (LAT) optical tracking system that provides improved Time-Space-Position-Information (TSPI) for the new class of hyper-velocity missiles being developed by the Army. The LAT system consists of a high- performance optical tracking mount equipped with an 8-12 micrometers Forward Looking Infrared (FLIR) sensor, a newly designed full-frame pin-registered 35-mm film camera, and an auto- focused 50-in. focal length lens. The FLIR has been integrated with the WSMR in-house developed statistical based automatic video tracker to yield a powerful system for the automatic tracking of missiles from a short standoff distance. The LAT has been designed to replace large fixed-camera arrays for test programs on short-range anti-tank missiles. New tracking techniques have been developed to deal with angular tracking rates that exceed one radian in both velocity and acceleration. Special techniques have been developed to shock the tracking mount at the missile launch to match the target motion. An adaptive servo control technique allows a Type III servo to be used to compensate for the high angular accelerations that are generated by the placement of the LAT mounts along the missile flight path. An automated mode selection adjustment is employed as the missile passes a point perpendicular to the tracking mount to compensate for the requirement to rapidly decelerate the tracking mount and keep the target in the field-of-view of the data camera. This paper covers the design concept for a network of eight LAT mounts, the techniques of automatic video tracking using a FLIR sensor, and the architecture of the servo control algorithms that have allowed the LAT system to produce results to a degree never before achieved at White Sands Missile Range.

  2. Seal designing of theodolite used in seaside environment

    Science.gov (United States)

    Jin, Humin; Yan, Xiaoxu; Hao, Wei; Zhou, Sizhong

    2014-08-01

    Based on the environment requirements in seaside there exists static and dynamic seal designing for the photoelectric Theodolite. Static seal designing emphatically includes the designing of o-ring size and mechanical property analysis of o-ring seal, which is difficult to adopt conventional dynamic seal to meet the requirements. According to practical application, the combination of the radial labyrinth seal and high quality felt seal are designed. The combination seal which better solves the seal problem of narrow radial size is a good way of dynamic seal. At the same time, there is engineering practice needing to proof the radial labyrinth seal.

  3. Prvi optički teodoliti : First optical theodolites

    Directory of Open Access Journals (Sweden)

    Nedim Tuno

    2011-12-01

    Full Text Available U radu je dat pregled prvih optičkih teodolita, koji su označili veliku prekretnicu u razvoju i primjeni geodetskih instrumenata. Njihova pojava veže se za ime čuvenog konstruktora Heinricha Wilda i imala je nemjerljivo pozitivan uticaj na cjelokupnu industriju geodetskih instrumenata, koji se osjeća čak i danas. Svrha članka nije komercijalna u smislu reklamiranja pojedinih tehničkih rješenja iz tvornice Wild (Leica, već pokušaj da se prikaže mjerna tehnologija koja je dominirala u prethodnom stoljeću, kroz prizmu legendarnog teodolita T2. : The article gives an overview of the first optical theodolites, which marked a major milestone in the development and use of surveying instruments. Their appearance is connected to the name of the famous constructor Heinrich Wild and had a immeasurably positive impact on the entire industry of surveying instruments, that is still felt today. The purpose of the article is not commercial in terms of advertising of certain technical solutions of the manufacturer Wild (Leica, but an attempt to show the measurement technology that has dominated the previous century, through the lens of legendary T2 theodolite.

  4. Debris flow cartography using differential GNSS and Theodolite measurements

    Science.gov (United States)

    Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma

    2016-04-01

    The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees

  5. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2013-01-01

    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  6. Study of fuzzy PID controller for velocity circuit of optical-electronic theodolite

    Science.gov (United States)

    Li, GengXin; Yang, XiaoJun; He, SaiXian

    2017-02-01

    Two-axis stabilized turntable is an important part of optical-electronic theodolite, it carries various of measuring instruments. In order to improve the response speed of the optical-electronic theodolite when tracking high speed target. In the same time, improve the stability and precision when tracking low speed target. The traditional servo controller is double close-loop structure. On the basis of traditional structure, we use the fuzzy control theory to design the servo control speed loop adjuster as a fuzzy PID controller, and the position loop is designed as a traditional first order adjuster. We introduce the theory and characteristics of PID control and fuzzy control, and discussed the structure of the speed loop fussy controller and the tuning method of the PID parameters. The fuzzy PID controller was studied with simulation on the MATLAB/Simulink platform, the performance indexes and the anti-jamming abilities of the fussy PID controller and the traditional PID controller were compared. The experiment results show that the fussy PID controller has the ability of parameter self-tuning, and its tacking ability is much better than the traditional PID controller.

  7. Theodolite Polar measurements system and definition of the grid-lines method

    Directory of Open Access Journals (Sweden)

    Andréa de Seixas

    2004-12-01

    Full Text Available The requirements of construction quality, mainly in the car and airplane industries, accelerate the development of new 3D-Measurement Systems and Measurement Processes that make possible the automatic object recording and it’s post-processing on the basis, for example, on deformations. The geometrical reconstruction of objects or surface requires a minimal number of points, which abstracts and will be fulfill through interpolation its exact form and quality of the object in each case. The applications of the laser for the active signalization of a point object in combination with the directional measurement make possible in such way the determination of objects or surfaces, including also, places where the use of artificial targets is dangerous or impossible. This work describes the development of such measurement system based on two measurement robots or a reflector-free measuring tachymeter. The system is capable of reaching the intersections points of a grid-line that is defined in an appropriate coordinate system. The aim of this paper is to present the development of measurement methods that can reconstruct unknown three-dimensional and not signalized objects. The existing deformation-measurement, based on Pointer Theodolite and a Video Theodolite Measurement System and the other reflector-free Tachymeter Measurement System in context with the problematic analysis of deformation will be presented. The grid-lines Methods appear a solution and stand as new alternative for the geometrical reconstruction of the object surfaces. Its definition and preparations in a suitable coordinate system are discussed in detail.

  8. Study of CCD Eyepiece on T-4 Theodolite.

    Science.gov (United States)

    1982-11-01

    correction for the mean . .. 2 anomalous refraction, and later, a device incorporating aspects of an astrolabe and the Two-Color Refractometer operating...Eyepiece System was operated in the USNO Astrolabe building. The T-4 was mounted on a special pier modification which attached to the astrolabe pier...In the following photograph, we indicate the Array Eyepiece System enclosure and the astrolabe building. Note the power generator on the back of the

  9. Data from Theodolite Measurements of Creep Rates on San Francisco Bay Region Faults, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The data comprise an archive of repeated surveyed measurements to monitor surface fault creep (a form of gradual tectonic movement) occurring along active faults in...

  10. Data from theodolite measurements of creep rates on San Francisco Bay region faults, California: 1979-2001

    Science.gov (United States)

    Galehouse, Jon S.

    2002-01-01

    My purpose is to make our creep data on San Francisco Bay region active faults available to the scientific research community. My student research assistants and I measured creep (aseismic slip) rates on these faults from 1979 until my retirement from the project in 2001. These data are further described in my final technical report as principal investigator, which summarizes results from 22 September 1979 through 28 February 2001 (Galehouse, 2001). We made over 2,600 creep measurements, about one-third in the ten years prior to the Loma Prieta earthquake (LPEQ) and two-thirds in the 11.4 years following it. The measurements are continuing to be made by members of the Geosciences Department at San Francisco State University (SFSU) under the direction of Karen Grove and John Caskey. A complete analysis of our results obtained on the Hayward fault is presented in Lienkaemper, Galehouse, and Simpson (2001). A formal report based on the entire San Francisco Bay region data set is in preparation. Data sheets for each site along the fault are available for downloading in Excel format to facilitate analysis of the data. They are also available as tab-delimited raw data. The data include all regular measurement sites, SF–1 through SF–34, and the 20 SFSU and U.S. Geological Survey (USGS) afterslip sites on the Hayward fault.

  11. Southern right whales Eubalaena australis visit the coasts of ...

    African Journals Online (AJOL)

    spamer

    theodolite. Field and analytical techniques used for humpback whale observations from the same site have been detailed by Best et al. (1995), and those used for right whales were identical. The average swimming speed was defined as the sum of the distances covered between each theodolite position divided by the time.

  12. Abundance, residency, and habitat utilisation of Hector's dolphins (Cephalorhynchus hectori) in Porpoise Bay, New Zealand

    National Research Council Canada - National Science Library

    Bejder, Lars; Dawson, Steve

    2001-01-01

    Theodolite tracking and boat-based photo-identification surveys were carried out in the austral summers of 1995/96 and 1996/97 to assess abundance, residency, and habitat utilisation of Hector's dolphins...

  13. On Two Color and CCD Methods for the Determination of Astronomic Position.

    Science.gov (United States)

    1986-03-14

    of corrections to the astroposition field measurements which would be made by a T-4 Theodolite or by an Astrolabe . These corrections address the...astrometric instrument, such as a T-4 Theodolite or an Astrolabe . The University of Maryland Two-Color Refractometer attempts to determine the dispersion...Thus it operites 15 in con’junction with a separate astrometric instrument such as the Wilde T-4 Tneodolite or an astrolabe . The first mode of

  14. Model of erosion–landslide interaction in the context of the reservoir ...

    Indian Academy of Sciences (India)

    prises sand, sand with pebbles, sandy loams and loams. This study aims to assess the environmental factors of interacting landslide and gully erosion processes, to estimate their temporal dynamics by com- parative analysis of cartographic models based on the data of repeated theodolite surveys, and to find out what level ...

  15. Measurements of movements of the Perua dam using classic and modern electronic instruments; Erforschung der Verschiebung des Staudammes vom Wasserkraftwerk Peruca mit den klassischen und modernen elektronischen Instrumenten

    Energy Technology Data Exchange (ETDEWEB)

    Bilajbegovic, A. [Zagreb Univ. (Croatia). Geodaetische Fakultaet

    1996-12-31

    With the aim of investigating the moving of the power plant Peruca dam body, measurements with the classical precise theodolite WILD T3 as well as the modern electronic instruments, KERN E2 and WILD T2000S, were carried out in order to choose the most suitable instrumentaria. All three instruments were used in measuring with the same number of horizontal angle rounds; by using the statistical tests, a significant accuracy dependency on the used instrument type was established. The most accurate results were obtained by electronic theodolite Wild T2000S (estimated variance factor {sigma}=0.61), then by KERN E2 {sigma}=1.23, and finally by T3 {sigma}=1.68. Likewise, the use of the deformation analysis, i.e. global and local tests, the highest number of significant movements was established by measuring with the WILD T2000S electronic theodolite. The interior accuracy of straight line measurement of the electronic theodolite E2 was investigated in dependence with the number of horizontal angle rounds. Unfortunately, the war in this country is the reason that the planned measurements with the GPS devices have so far not been carried out. (orig.)

  16. Studi Perbandingan Hasil Pengukuran Alat Teodolit Digital dan Manual: Studi Kasus Pemetaan Situasi Kampus Kijang

    Directory of Open Access Journals (Sweden)

    Andryan Suhendra

    2011-12-01

    Full Text Available Ground measurement helps illustrate a situation of land map to ease a civil engineer determining the center point of a building. From the situation map can determined the further works such as determining the point of building, land leveling, determining the point of the foundation and the volume of work for hoarding the land. A tool used for measurement activities is theodolite. Theodolite serves as a tool to determine the angle formed between the two points at the time of measurement. Drawing a situation map requires the results of the point measurement data. Theodolite is divided into two types, digital and manual. This study compares measurements results using both digital and manual theodolite performed at Kijang Campus, Binus University. From the comparison of data processing generated large differences in the coordinate system on the situation map with ranging from 1.31% to 322.67% on the abscissa axis and 0.39% to 41.83% on the ordinate axis. 

  17. Gantry and isocenter displacements of a linear accelerator caused by an add-on micromultileaf collimator

    DEFF Research Database (Denmark)

    Riis, H. L.; Zimmermann, S. J.; Hjelm-Hansen, M.

    2013-01-01

    -house made rigid holder attached to the gantry head of the accelerator. The pointer positions were measured using a digital theodolite. To quantify the effect of an mu MLC of 50 kg, the measurements were repeated with the mu MLC attached to the gantry head. The displacement of the isocenter due to an add...

  18. Total Stations : the Surveyor's Workhorse

    NARCIS (Netherlands)

    Lemmens, M.J.P.M.

    2016-01-01

    A total station is an angle measuring device, also known as a theodolite, integrated with an electronic distance measurement (EDM) unit. The integration provides the ability to measure horizontal and vertical angles as well as slope distances using the same device at the same time, which benefits

  19. Recent Development in Astronomic Position Determinations.

    Science.gov (United States)

    1984-10-25

    community. The comparison of astronomic position determinations using the DanJon and the VUGTK astrolabes published by the German Geodetic Commission...these tests indicated that astrolabes were capable of precision and accuracy surpassing those obtainable with astronomic theodolites, even though some...the urgent need to replace the base instrument with a precise astrolable designed for.maximum optical efficiency with the CID eyepiece. An astrolabe

  20. Assessment of Means for Determining Deflection of the Vertical.

    Science.gov (United States)

    1982-08-01

    method Gravimetric techniques Astrolabes Theodolites 20. ABSTRACT (Continue on rovetee oldo if necessry aid Identify by block number) ,,;his Interim...120 2.8.1 The Photographic Zenith Tube 2-120 2.8.2 The Automated Astronomic Positioning System 2-127 2.8.3 The Astrolabe 2-129 2.8.4 Alternative...to the T-4 instrument as well as to astrolabe equipment. In addition, the application of geodetic network adjustment procedures to fields of closely

  1. Evaluating winds aloft by a simplified field technique

    Science.gov (United States)

    Melvin K. Hull

    1966-01-01

    A field technique for evaluating winds aloft is described. It can be used at remote places--even at the site of a wildfire. It has proved accurate as any known single theodolite technique, and is time-saving because the winds aloft are evaluated in miles per hour from direct readout. The tools required are much lower in cost, more portable, and more multi-purpose than...

  2. Engineering surveying theory and examination problems for students

    CERN Document Server

    Schofield, W

    2013-01-01

    Engineering Surveying: Theory and Examination Problems for Students, Volume 1, Third Edition discusses topics concerning engineering surveying techniques and instrumentations. The book is comprised of eight chapters that cover several concerns in engineering survey. Chapter 1 discusses the basic concepts of surveying. Chapter 2 deals with simple and precise leveling, while Chapter 3 covers earthworks. The book also talks about the theodolite and its applications, and then discusses optical distance measurement. Curves, underground and hydrographic surveying, and aspects of dimensional control

  3. Advanced Simulation in Undergraduate Pilot Training: Visual Display Development

    Science.gov (United States)

    1975-12-01

    theodolite. Adjustments were made by shimming where required. The structure erection continued with the mounting of joint assemblies on the legs using the...Calif. for the aptlication of a highly efficient anti- reflective coating. In the meantime, the sagged faceplate was dispatched again to Peni , Optical...record was made of all motion tests. The second outer support structure frame was delivered to Singer-SPD on October 27, 1972 and erection was started on

  4. The determination of accuracy in use for electronic tacheometers SOKKIA SET 4010

    OpenAIRE

    Kovač, Peter

    2006-01-01

    In the first part of degree I represent properties, operation and method of reading of the electronic theodolites. Than I describe development, structure and operation of the electronic distance meters. In the second part of degree I represent in greater detail electronic tacheometer SOKKIA SET 4010 – description of instrument, tehnical data, represent the menu and handling with the instrument. In the last part I represent standards for testing geodetic and surveying instrument...

  5. Compact-range coordinate system established using a laser tracker.

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, Floyd H.; Bryce, Edwin Anthony

    2006-12-01

    Establishing a Cartesian coordinate reference system for an existing Compact Antenna Range using the parabolic reflector is presented. A SMX (Spatial Metrix Corporation) M/N 4000 laser-based coordinate measuring system established absolute coordinates for the facility. Electric field characteristics with positional movement correction are evaluated. Feed Horn relocation for alignment with the reflector axis is also described. Reference points are established for follow-on non-laser alignments utilizing a theodolite.

  6. Abundance, behavior, and movement patterns of western gray whales in relation to a 3-D seismic survey, Northeast Sakhalin Island, Russia

    OpenAIRE

    Gailey, Glenn; W?rsig, Bernd; McDonald, Trent L.

    2007-01-01

    A geophysical seismic survey was conducted in the summer of 2001 off the northeastern coast of Sakhalin Island, Russia. The area of seismic exploration was immediately adjacent to the Piltun feeding grounds of the endangered western gray whale (Eschrichtius robustus). This study investigates relative abundance, behavior, and movement patterns of gray whales in relation to occurrence and proximity to the seismic survey by employing scan sampling, focal follow, and theodolite tracking methodolo...

  7. A method of camera calibration based on image processing

    Science.gov (United States)

    Duan, Jin; Kong, Chuiliu; Zhang, Dan; Jing, Wenbo

    2008-03-01

    According to the principle of optical measurement, an effective and simple method to measure the distortion of CCD camera and lens is presented in this paper. The method is based on computer active vision and digital image processing technology. The radial distortion of camera lens is considered in the method, while the camera parameters such as the pixel interval and focus of camera are calibrated. The optoelectronic theodolite is used in our experiment system. The light spot can imaging in CCD camera from the theodolite. The position of the light spot should be changed without the camera's rotation, while the optoelectronic theodolite rotates an angle. All view reference points in the image are worked out by computing the angle between actual point and the optical center where the distortion can be ignored. The error correction parameters are computed, and then the camera parameters are calibrated. The sub-pixel subdivision method is used to improve the point detection precision in our method. The experiment result shows that our method is effective, simple and practical.

  8. Global analytic treatment of terrestrial photogrammetric networks

    CERN Document Server

    Mayoud, M

    1980-01-01

    In order to solve certain special CERN metrology problems, analytical terrestrial photogrammetry may have some advantages which are first discussed along with their drawbacks and limitations. In this application, it is necessary to carry out a rigorous and global adjustment of the observations and simultaneously process all the perspective ray bundles. The basic principles, the least squares solution and the stochastic analysis of the results are presented. However, for the CERN project, one wonders if the production of digital theodolites is going to reduce the advantages of the photogrammetric method. (12 refs).

  9. Semiautomatic sun shots with the WIDIF DIflux

    Science.gov (United States)

    Rasson, Jean L.; Hendrickx, Olivier; Marin, Jean-Luc

    2017-07-01

    The determination of magnetic declination angle entails finding two directions: geographic north and magnetic north. This paper deals with the former. The known way to do it by using the sun's calculable orientation in the sky is improved by using a device based on a WIDIF DIflux theodolite and split photocells positioned on its telescope ocular. Given the WIDIF accurate timing and location provided by the onboard GPS receiver, an astronomical computation can be effected to accurately and quickly determine the sun's azimuth and an auxiliary mark's azimuth. The precise sun's crossing of the split photocell, amplified by the telescope's magnification, allows azimuth accuracies of a few seconds of arc.

  10. Recent development of micro-triangulation for magnet fiducialisation

    CERN Document Server

    Vlachakis, Vasileios; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    The micro-triangulation method is proposed as an alternative for magnet fiducialisation. The main objective is to measure horizontal and vertical angles to fiducial points and stretched wires, utilising theodolites equipped with cameras. This study aims to develop various methods, algorithms and software tools to enable the data acquisition and processing. In this paper, we present the first test measurement as an attempt to demonstrate the feasibility of the method and to evaluate the accuracy. The preliminary results are very promising, with accuracy always better than 20 μm for the wire position, and of about40 μm/m for the wire orientation, compared with a coordinate measuring machine.

  11. Design of orienting and aiming instrument based on fiber optic gyroscope

    Science.gov (United States)

    Zhang, Zhijun; Wang, Limin; Sun, Jiyu

    2007-12-01

    In order to improve the ground viability of missile weapon system, a quick orienting and aiming instrument is cried for the missile launching in modern war. The fiber optic gyroscope (FOG) based on Sagnac effect is a new type of all solid state rotation rate sensor that detects angular changes or angular rates relative to inertial space, which has many fine characteristics compared with traditional mechanical electronic gyro, such as low cost, light weight, long life, high reliability, wide dynamic range, etc. For the need of missile photoelectric aiming facility, It is necessary to design and manufacture a set of orienting and aiming instrument based on single axis FOG, to solve the close quarters aiming of missile launching, to measure the azimuth reference. Based on practical project, the principle of FOG orienting system and laser collimation theodolite aiming system is discussed and studied in this paper. Orienting and aiming system are constructed in the same basement. The influence of platform tilt on the precision of orientation is analyzed. An accelerator is used to compensate deviation caused by base tilt. The aiming precision affected by eccentricity of the encoders for laser collimation theodolite and the FOG orientation system are analyzed. The test results show that the aiming accuracy is 6' in three minutes. It is suitable for missile aiming in short range.

  12. EXPERIMENTAL MEASUREMENTS OF TAILING UNDERWATER SEDIMENTS AND LIQUID INDUSTRIAL WASTES IN STORAGE TANK ON THE BASIS OF ECHOLOCATION AND GPS-SYSTEMS AT JSC “BELARUSKALI”

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2016-01-01

    Full Text Available The paper presents a new approach to calculate volume of tailing underwater sediments and liquid industrial wastes on the basis of innovative technologies. Two theodolites which are set at various points and a boat with a load for measuring water depth have been traditionally used for topographic survey of slime storage bottom. Horizontal directions have been simultaneously measured on the boat marker while using theodolites. Water depth has been determined while using  a 2-kg circular load which was descended into brine solution with the help of rope. In addition to rather large time and labour costs such technology has required synchronization in actions on three participants involved in the work: operators of two theodolites and boat team in every depth measuring point. Methodology has been proposed for more efficient solution of the problem. It presupposes the use of echolocation together with space localization systems (GPS-systems which can be set on a boat with the purpose to measure depth of a storage tank bed. An echolocation transducer has been installed under the boat bottom at the depth of 10 cm from the brine solution level in the slime storage.  An aerial of GPS-receiver has been fixed over the echo-sounder transducer. Horizontal positioning of bottom depth measuring points have been carried out in the local coordinate system. Formation of digital model for slime storage bottom has been executed after data input of the coordinate positioning that corresponded to corrected depths in the software package LISCAD Plus SEE. The formation has been made on the basis of a strict triangulation method.  Creation of the digital model makes it rather easy to calculate a volume between a storage bottom and a selected level (height of filling material. In this context it is possible to determine a volume and an area not only above but also lower of the datum surface. For this purpose it is recommended to use digital models which are developed

  13. Optics Alignment of a Balloon-Borne Far-Infrared Interferometer BETTII

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Sampler, Henry; Juanola Parramon, Roser; Veach, Todd; Fixsen, Dale; Vila Hernandez De Lorenzo, Jor; Silverberg, Robert F.

    2017-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-m baseline far-infrared (FIR: 30 90 micrometer) interferometer providing spatially resolved spectroscopy. The initial scientific focus of BETTII is on clustered star formation, but this capability likely has a much broader scientific application.One critical step in developing an interferometer, such as BETTII, is the optical alignment of the system. We discuss how we determine alignment sensitivities of different optical elements on the interferogram outputs. Accordingly, an alignment plan is executed that makes use of a laser tracker and theodolites for precise optical metrology of both the large external optics and the small optics inside the cryostat. We test our alignment on the ground by pointing BETTII to bright near-infrared sources and obtaining their images in the tracking detectors.

  14. Shooting Star Experiment

    Science.gov (United States)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  15. Detection of mechanical instability in DI-fluxgate sensors

    DEFF Research Database (Denmark)

    Pedersen, Lars W.; Matzka, Jürgen

    2012-01-01

    An important part of the declination-inclination (DI) measurement with the theodolite is to calculate the sensor parameters (horizontal and vertical misalignment, sensor offset). It is crucial to track these parameters over time, since the sensor has to be stable to give correct DI results....... The Danish Meteorological Institute and now DTU Space have formany years produced DI-fluxgate electronics and used fluxgate sensors from Pandect. Some sensors were found to be unstable due to loose ferromagnetic cores inside, i.e., the vertical misalignment changes when the sensor is turned ’upside down......’ during the DI-measurement. We have found a way to glue the ferromagnetic cores within the new sensors to make them mechanically stable. All sensors are tested very carefully before being used. Since the observed erroneous sensor offset due to loose sensor usually is extremely high, we can use a fast...

  16. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  17. Camera calibration in photogrammetric practice, introduction

    Science.gov (United States)

    Kupfer, G.

    Laboratory, stellar and ground calibrations are developed to assess accuracy and reliability of photographic systems and their components. Calibration of photographic systems is based on analytic assessment systems and software and calibration of aerial images in close-range photogrammetry. Algorithms to obtain simultaneous calibration of photographic systems and aerial images are developed. System reproduction, film printing plate flatness, filter glass plane parallelism, and definition of image plane or image coordinate system are calibrated in laboratory with a visual procedure using goniometers, theodolites and lens/mirror systems. Stellar calibration with or without filters is influenced by emulsion sensitivity. Ground calibration is based on image measurement and geodetic observations. Economical application of the different procedures is assessed.

  18. New short-time alignment technique for 70-meter antenna surface panels

    Science.gov (United States)

    Katow, M. S.

    1986-01-01

    With severely limited field modification time for upgrading the 64-m antenna to 70-m diameter, a new shorter time method for aligning the surface panels of the main reflector was needed. For each target on the surface panel, both distance (or range) and elevation angle measurements are made. A new technique for setting the surface panels at zenith look has been devised. This article describes the software required to convert the computed target distortions obtained from the JPL-IDEAS structural analysis computer program (defining the gravity load change from a 45-deg elevation angle to zenith look) into the theodolite reading at zenith look. The technique results in a perfectly shaped reflector at the 45-deg rigging elevation, with acceptable surface error tolerance.

  19. Strain and displacement measurements for the June 9, 1980 Victoria, Mexico Earthquake

    Science.gov (United States)

    Darby, D.; Nyland, E.; Suarez, F.; Chavez, D.; Gonzalez, J.

    A microgeodetic network 22 km south east of Est. Guadalupe Victoria, Baja California Norte, installed in late May 1980, has been resurveyed in an experiment that started 12 hours after the June 9, 1980 Victoria earthquake, which had an epicenter at 10 km depth about 12 km from the network. The resurvey was complete by June 13. Both the initial observations and the resurvey were done with HP3800 distance meter equipment. Some angular control was provided with a Wild T3 theodolite. The network underwent a compressive strain of 7 ± 3 micro strain essentially parallel the Cerro Prieto fault about the time of the earthquake. Strains of this size are associated with simple dislocation models of earthquakes of this magnitude. Its direction appears to be anomalous however. This may indicate compression related to soil liquefaction processes or strain near the end of the slip plane.

  20. The distance from CERN to LNGS

    CERN Document Server

    Jones, M; Crespi, M; Colosimo, G; Mazzoni, A; Durand, S

    2012-01-01

    The calculation of the distance from CERN to Gran Sasso involves the combination of three independent sets of measurements: the calculation of the distance between pillars included in the geodetic reference network at CERN and the Lab Nationale Gran Sasso (LNGS); and the transfer on each site of coordinates, from the geodetic surface network, underground into the tunnel or experiment hall installations. The transfer of coordinates, from the surface, underground at the two sites was not done as part of the CNGS Project. Initial survey concerns for the project were directed towards the orientation of the beamline from CERN to LNGS to within ~100 m. Gyro-theodolite measurements underground were planned at CERN so a transfer would effectively only translate the target point. Given the precision estimated for previous transfers, it was decided not to undertake expensive and time-consuming measurements campaigns for a negligible gain in accuracy. Therefore only GPS measurements at the two sites were carried out. Th...

  1. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

    Science.gov (United States)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

    2013-01-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  2. Magnetic observations at Geophysical Observatory Paratunka IKIR FEB RAS: tasks, possibilities and future prospects

    Directory of Open Access Journals (Sweden)

    Khomutov Sergey Y.

    2017-01-01

    Full Text Available Continuous magnetic measurements at Geophysical Observatory “Paratunka” (PET of IKIR FEB RAS are performed since 1967. In the new millennium analogue magnetometers were modernized to digital, the technologies of absolute observations were changed, the data processing was completely transferred to computers, and the status of INTERMAGNET observatory was obtained. Currently, the observatory uses the following magnetometers: (a for absolute observations – DIflux LEMI-203 (theodolite 3T2KP and Mag-01 (theodolite Wild-T1, Overhauser magnetometers POS-1 and GSM-19W; (b for variation measurements – fluxgate magnetometers FGE-DTU, FRG-601 and MAGDAS (installed under international agreements of IKIR, vector magnetometers dIdD GSM-19FD and POS-4 with Overhauser sensors and coil systems, scalar magnetometer GSM-90 and induction magnetometer STELAB. During Spring-Autumn season dIdD also is installed at remote station “Karymshina” at distance of 15 km from Observatory. There is monitoring system for monitoring of conditions in which magnetic observations are performed, including the semi-professional weather stations Davis Vantage Pro2 and WS2000 and a network of digital temperature sensors DS19B20 located at various points in magnetic pavilions and outdoor. All measurements are synchronized with the UTC. The results of observations are collected by the IKIR data server from the recorders and loggers, including in real-time. Specialized software was developed (based on MATLAB and Octave packages, which allows automatic and semi-automatic processing of data, the comparison of the results from different magnetometers and presenting final data in formats, defined by international standards, including INTERMAGNET. Significant efforts of observatory staff are direct to archive (raw magnetic data, a significant part of which has not been entirely processed, is not presented in international data centers and is still not available to the scientific

  3. Magnetic observations at Geophysical Observatory Paratunka IKIR FEB RAS: tasks, possibilities and future prospects

    Science.gov (United States)

    Khomutov, Sergey Y.

    2017-10-01

    Continuous magnetic measurements at Geophysical Observatory "Paratunka" (PET) of IKIR FEB RAS are performed since 1967. In the new millennium analogue magnetometers were modernized to digital, the technologies of absolute observations were changed, the data processing was completely transferred to computers, and the status of INTERMAGNET observatory was obtained. Currently, the observatory uses the following magnetometers: (a) for absolute observations - DIflux LEMI-203 (theodolite 3T2KP) and Mag-01 (theodolite Wild-T1), Overhauser magnetometers POS-1 and GSM-19W; (b) for variation measurements - fluxgate magnetometers FGE-DTU, FRG-601 and MAGDAS (installed under international agreements of IKIR), vector magnetometers dIdD GSM-19FD and POS-4 with Overhauser sensors and coil systems, scalar magnetometer GSM-90 and induction magnetometer STELAB. During Spring-Autumn season dIdD also is installed at remote station "Karymshina" at distance of 15 km from Observatory. There is monitoring system for monitoring of conditions in which magnetic observations are performed, including the semi-professional weather stations Davis Vantage Pro2 and WS2000 and a network of digital temperature sensors DS19B20 located at various points in magnetic pavilions and outdoor. All measurements are synchronized with the UTC. The results of observations are collected by the IKIR data server from the recorders and loggers, including in real-time. Specialized software was developed (based on MATLAB and Octave packages), which allows automatic and semi-automatic processing of data, the comparison of the results from different magnetometers and presenting final data in formats, defined by international standards, including INTERMAGNET. Significant efforts of observatory staff are direct to archive (raw) magnetic data, a significant part of which has not been entirely processed, is not presented in international data centers and is still not available to the scientific community. Digital images of

  4. Methods for acquiring data on terrain geomorphology, course geometry and kinematics of competitors' runs in alpine skiing: a historical review.

    Science.gov (United States)

    Erdmann, Włodzimierz S; Giovanis, Vassilis; Aschenbrenner, Piotr; Kiriakis, Vaios; Suchanowski, Andrzej

    2017-01-01

    This paper aims at the description and comparison of methods of topographic analysis of racing courses at all disciplines of alpine skiing sports for the purposes of obtaining: terrain geomorphology (snowless and with snow), course geometry, and competitors' runs. The review presents specific methods and instruments according to the order of their historical appearance as follows: (1) azimuth method with the use of a compass, tape and goniometer instruments; (2) optical method with geodetic theodolite, laser and photocells; (3) triangulation method with the aid of a tape and goniometer; (4) image method with the use of video cameras; (5) differential global positioning system and carrier phase global positioning system methods. Described methods were used at homologation procedure, at training sessions, during competitions of local level and during International Ski Federation World Championships or World Cups. Some methods were used together. In order to provide detailed data on course setting and skiers' running it is recommended to analyse course geometry and kinematics data of competitors' running for all important competitions.

  5. A restauração na trajetória de um teodolito do acervo do MAST

    Directory of Open Access Journals (Sweden)

    Marcus Granato

    2011-01-01

    Full Text Available MAST is a science and technology museum located in the grounds and architectural complex belonging to the former National Observatory in Rio de Janeiro. Soon after the museum was created, the historical heritage existing there, relating to a significant period in the history of science in Brazil, was listed by the Brazilian National Heritage Institute (Iphan and the Rio de Janeiro State Cultural Heritage Institute (Inepac in 1986 and 1987, respectively. The studies that preceded the restoration of a theodolite from the MAST collection started with an appraisal of the state of conservation of the institution's scientific instruments collection. Next, a set of pre-established criteria were used to select this object, which was in a critical state of conservation. After this, historical research was undertaken of the instrument, the composition of its main parts was determined, a study was made into its working, and finally the intervention per se was undertaken on the object. The restoration procedure involved three stages: the conservation of parts, the restoration of parts, and the replacement of missing parts. The whole process was photographed exhaustively. The procedure adopted in this study has been replicated in further restoration projects. Studies were undertaken into the conservation of scientific instruments and research was done into the construction of trajectories of objects and collections by the Archive Preservation Group, based at MAST, resulting in the identification of restoration as a singular moment in these trajectories.

  6. Digital Documentation of Ships in Cultural Heritage: a European Review

    Science.gov (United States)

    Colson, A.

    2017-08-01

    Ships of different shapes and times are lying in harbours, on land or in museums, all over the world. Our aim with this paper was to review work done on digital documentation of ships in Cultural Heritage based on different initiatives in Europe using Coordinate Measuring Machine (Newport Ship and Doel 1); Total Station Theodolite (Vasa and Mary-Rose) and Laser scanning (LaScanMar and Traditional boats of Ireland). Our results showed that some discrepancy exist between the projects, in terms of techniques and expertise at hand. Furthermore, few guidelines have been in practice but only for Archaeology and Ethnology. However, no standards are existing. Three focuses have emerged: documentation of single ship elements, monitoring of the long-term deformation processes and the documentation of collections of ships. We discussed the diversity of expert's background and the complexity of comparability between projects. In conclusion, guidelines are necessary to enable a common ground for all professions to work together, e.g. in Architecture. This path must be taken now for digital documentation of ships, if not information and knowledge will be lost on the way.

  7. Object tracking with robotic total stations: Current technologies and improvements based on image data

    Science.gov (United States)

    Ehrhart, Matthias; Lienhart, Werner

    2017-09-01

    The importance of automated prism tracking is increasingly triggered by the rising automation of total station measurements in machine control, monitoring and one-person operation. In this article we summarize and explain the different techniques that are used to coarsely search a prism, to precisely aim at a prism, and to identify whether the correct prism is tracked. Along with the state-of-the-art review, we discuss and experimentally evaluate possible improvements based on the image data of an additional wide-angle camera which is available for many total stations today. In cases in which the total station's fine aiming module loses the prism, the tracked object may still be visible to the wide-angle camera because of its larger field of view. The theodolite angles towards the target can then be derived from its image coordinates which facilitates a fast reacquisition of the prism. In experimental measurements we demonstrate that our image-based approach for the coarse target search is 4 to 10-times faster than conventional approaches.

  8. The research on calibration methods of dual-CCD laser three-dimensional human face scanning system

    Science.gov (United States)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong

    2013-09-01

    In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.

  9. Jean Gervaise 1921 -2007

    CERN Multimedia

    2007-01-01

    Jean Gervaise, a pioneer of metrology at CERN, passed away on 10 April. A French geodesist, he was behind the creation and development of CERN's metrology group and was a consistently fervent advocate of innovation to meet the increasingly demanding alignment needs of the accelerators and detectors. Under his leadership, metrology at CERN acquired international renown. Jean Gervaise taking measurements with invar wire and a theodolite on a pillar at the PS. In spite of the disruptions caused by the second world war, Jean Gervaise was able to complete an engineering degree at the Ecole nationale des Sciences géographiques in Paris, which led to a first job in the prestigious Geodesy Department of the Institut géographique national (IGN). This 'queen of disciplines', as he called it, is the most scientific and most complex of the branches of cartography, offering opportunities for exciting and varied - sometimes highly adventurous - missions at home and abroad. The rich experience he acquired here helped to...

  10. Survey and adjustment methods applied on an 11 axes high performance reflectometer for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Eggenstein, F., E-mail: Frank.Eggenstein@helmholtz-berlin.de; Bischoff, P.; Schäfers, F.; Schroeter, T.; Senf, F.; Sokolov, A.; Zeschke, T.; Erko, A. [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, Berlin, Germany, D-12489 (Germany)

    2016-07-27

    At BESSY-II a new UV-and XUV optics beamline [1] has recently been setup with an in-house developed versatile reflectometer [2], [3], [4] for at-wavelength metrology on reflective and diffractive optical elements up to 4 kg mass. High precision measurements of the reflection and polarization properties are feasible by a 360° azimuthal rotation of the sample around the beam of light, where samples can be adjusted reproducibly with a novel UHV-Tripod within arc sec and μm precision. The azimuthal rotation requires an extremely high precision adjustment of the goniometer axis with respect to the incident light beam. Here we describe sophisticated methods with which we achieve nearly perfect agreement of the azimuthal rotation axis and the synchrotron beam in the 30 arc sec range. By using geodetic instruments (lasertracker, theodolite, autocollimator) the quality of the reflectometer UHV-mechanics has been characterized with respect to stiffness and radial run out with highest precision [5].

  11. Calibration Method for IATS and Application in Multi-Target Monitoring Using Coded Targets

    Science.gov (United States)

    Zhou, Yueyin; Wagner, Andreas; Wunderlich, Thomas; Wasmeier, Peter

    2017-06-01

    The technique of Image Assisted Total Stations (IATS) has been studied for over ten years and is composed of two major parts: one is the calibration procedure which combines the relationship between the camera system and the theodolite system; the other is the automatic target detection on the image by various methods of photogrammetry or computer vision. Several calibration methods have been developed, mostly using prototypes with an add-on camera rigidly mounted on the total station. However, these prototypes are not commercially available. This paper proposes a calibration method based on Leica MS50 which has two built-in cameras each with a resolution of 2560 × 1920 px: an overview camera and a telescope (on-axis) camera. Our work in this paper is based on the on-axis camera which uses the 30-times magnification of the telescope. The calibration consists of 7 parameters to estimate. We use coded targets, which are common tools in photogrammetry for orientation, to detect different targets in IATS images instead of prisms and traditional ATR functions. We test and verify the efficiency and stability of this monitoring method with multi-target.

  12. An automatic DI-flux at the Livingston Island geomagnetic observatory, Antarctica: requirements and lessons learned

    Science.gov (United States)

    Marsal, Santiago; José Curto, Juan; Torta, Joan Miquel; Gonsette, Alexandre; Favà, Vicent; Rasson, Jean; Ibañez, Miquel; Cid, Òscar

    2017-07-01

    The DI-flux, consisting of a fluxgate magnetometer coupled with a theodolite, is used for the absolute manual measurement of the magnetic field angles in most ground-based observatories worldwide. Commercial solutions for an automated DI-flux have recently been developed by the Royal Meteorological Institute of Belgium (RMI), and are practically restricted to the AutoDIF and its variant, the GyroDIF. In this article, we analyze the pros and cons of both instruments in terms of its suitability for installation at the partially manned geomagnetic observatory of Livingston Island (LIV), Antarctica. We conclude that the GyroDIF, even if it is less accurate and more power demanding, is more suitable than the AutoDIF for harsh conditions due to the simpler infrastructure that is necessary. Power constraints in the Spanish Antarctic Station Juan Carlos I (ASJI) during the unmanned season require an energy-efficient design of the thermally regulated box housing the instrument as well as thorough power management. Our experiences can benefit the geomagnetic community, which often faces similar challenges.

  13. Status report on the survey and alignment activities at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O' Sheg; /Fermilab

    2004-10-01

    The surveying and alignment activities at Fermilab are the responsibility of the Alignment and Metrology Group. The Group supports and interacts with physicists and engineers working on any particular project, from the facility construction phase to the installation and final alignment of components in the beam line. One of the goals of the Alignment and Metrology Group is to upgrade the old survey networks in the tunnel using modern surveying technology, such as the Laser Tracker for tunnel networks and GPS for the surface networks. According to the job needs, all surveys are done with Laser Trackers and/or Videogrammetry (V-STARS) systems for spatial coordinates; optical and electronic levels are used for elevations, Gyro-Theodolite for azimuths, Mekometer for distances and GPS for baseline vectors. The group has recently purchased two new API Laser Trackers, one INCA3 camera for the V-Stars, and one DNA03 digital level. This report presents the projects and major activities of the Alignment and Metrology Group at Fermilab during the period of 2000 to 2004. It focuses on the most important current projects, especially those that have to be completed during the currently scheduled three-month shutdown period. Future projects, in addition to the status of the current projects, are also presented.

  14. Solar Concentrator Advanced Development Program

    Science.gov (United States)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  15. Solar concentrator advanced development program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knasel, D.; Ehresman, D.

    1989-10-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  16. Monitoring of the Nirano Mud Volcanoes Regional Natural Reserve (North Italy using Unmanned Aerial Vehicles and Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Tommaso Santagata

    2017-09-01

    Full Text Available In the last years, measurement instruments and techniques for three-dimensional mapping as Terrestrial Laser Scanning (TLS and photogrammetry from Unmanned Aerial Vehicles (UAV are being increasingly used to monitor topographic changes on particular geological features such as volcanic areas. In addition, topographic instruments such as Total Station Theodolite (TST and GPS receivers can be used to obtain precise elevation and coordinate position data measuring fixed points both inside and outside the area interested by volcanic activity. In this study, the integration of these instruments has helped to obtain several types of data to monitor both the variations in heights of extrusive edifices within the mud volcano field of the Nirano Regional Natural Reserve (Northern Italy, as well as to study the mechanism of micro-fracturing and the evolution of mud flows and volcanic cones with very high accuracy by 3D point clouds surface analysis and digitization. The large amount of data detected were also analysed to derive morphological information about mud-cracks and surface roughness. This contribution is focused on methods and analysis performed using measurement instruments as TLS and UAV to study and monitoring the main volcanic complexes of the Nirano Natural Reserve as part of a research project, which also involves other studies addressing gases and acoustic measurements, mineralogical and paleontological analysis, organized by the University of Modena and Reggio Emilia in collaboration with the Municipality of Fiorano Modenese.

  17. The evolution of change

    Energy Technology Data Exchange (ETDEWEB)

    Hind, D.J. (Davis Derby Ltd., Derby (United Kingdom))

    The author describes the history of the British mining equipment company Davis Derby, from the time it began to manufacture safety lamps based on Sir Humphrey Davy's design in 1815, up to the present day. Initially the company produced lamps and electric bells, later diversifying into electric lighting systems for mines. Concern about the increasing use of electrical equipment in mines led to the formation of the Institution of Mining Electrical Engineers. In the early part of the 20th century Davis Derby started manufacturing exploders, theodolites and dials, in addition to the older lines, buying licenses for new types of lamps. After the nationalisation of coal the National Coal Board ordered telemetry systems, and Davis Derby moved into coal face signals and communications. The relationship with the National Coal Board - later British Coal, was uneven, and the catastrophic shrinkage of the industry during the late 1980s and 1990s made market conditions very difficult. The company was solid during nationalisation by its parent company, but with a future private coal industry this could prove to be long term advantage. 2 figs., 1 tab.

  18. Analysis of Double Meridian Distance for a Closed Traverse Area towards Developing a Contour Map and Land Title

    Directory of Open Access Journals (Sweden)

    T. U. Ganiron Jr

    2014-07-01

    Full Text Available This research aimed to analyze double meridian distance for a closed traverse area in developing a land title for a propose gymnasium in Qassim University. Theodolite, leveling rod and steel tape plays an important role in measuring elevations, bearings and distances of the boundaries of a lot. Contour map is necessary to determine the traces of level surfaces of successive elevation. This will enable to identify the type of contour map and type of contour lines necessary for this project. Corel draw software is used to draw contour map and guide to interpret the significance of the variables. It is essential to check the error of closure for interior angles and for both latitude and departure before applying the Double Meridian Distance (DMD method to obtain the total area of the lot. Technical descriptions of the land such as distance, bearing, boundaries and area are necessary to visualize the shape & exact location of the land. Developing a land title will be obtained using the technical descriptions of the lot in preparation for the type of gymnasium necessary for Qassim University.

  19. Digital database of channel cross-section surveys, Mount St. Helens, Washington

    Science.gov (United States)

    Mosbrucker, Adam R.; Spicer, Kurt R.; Major, Jon J.; Saunders, Dennis R.; Christianson, Tami S.; Kingsbury, Cole G.

    2015-08-06

    Stream-channel cross-section survey data are a fundamental component to studies of fluvial geomorphology. Such data provide important parameters required by many open-channel flow models, sediment-transport equations, sediment-budget computations, and flood-hazard assessments. At Mount St. Helens, Washington, the long-term response of channels to the May 18, 1980, eruption, which dramatically altered the hydrogeomorphic regime of several drainages, is documented by an exceptional time series of repeat stream-channel cross-section surveys. More than 300 cross sections, most established shortly following the eruption, represent more than 100 kilometers of surveyed topography. Although selected cross sections have been published previously in print form, we present a comprehensive digital database that includes geospatial and tabular data. Furthermore, survey data are referenced to a common geographic projection and to common datums. Database design, maintenance, and data dissemination are accomplished through a geographic information system (GIS) platform, which integrates survey data acquired with theodolite, total station, and global navigation satellite system (GNSS) instrumentation. Users can interactively perform advanced queries and geospatial time-series analysis. An accuracy assessment provides users the ability to quantify uncertainty within these data. At the time of publication, this project is ongoing. Regular database updates are expected; users are advised to confirm they are using the latest version.

  20. Review of FieldWorker Advanced 2.3.5 and FieldWorker Pro 0.91 [Software

    Directory of Open Access Journals (Sweden)

    Nick Ryan

    1997-09-01

    Full Text Available Until quite recently, field data recording directly into a hand-held computer has been a minority practice in archaeology. This is equally true of many other field-based disciplines and professions. Often there has been a very small number of enthusiastic individuals who have successfully used hand-held machines since they first became available. The majority have looked on, some making encouraging or even envious noises, but few have been tempted to follow the pioneers' lead. Most have tended to regard the available systems as too limited, too delicate or too expensive for their needs. One area of field recording where hand-held computers have become established is automated data logging. Many archaeologists will have encountered direct data logging programs used with geophysical instruments, electronic theodolites or GPS survey equipment. Most are designed to work with, at best, a limited range of instruments, and many run only on a specialised hand-held computer, often one supplied with the instrument. When such software is available for more general purpose machines, it is often produced only for laptops running DOS or Windows, although the Psion hand-held range has established a small presence in this area.

  1. THE USE OF GEOTECHNOLOGY IN ANALYSIS OF ENVIRONMENTAL IMPACTS IN SALTO VENTOSO (FARROUPILHA/RS

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Teixeira

    2012-03-01

    Full Text Available This paper is the outcome of a survey on environmental impacts due to visitors in a tourist attraction, using geotechnology as a tool. The study was carried out at Salto Ventoso, Farroupilha, Rio Grande do Sul State (Brazil, a tourist attraction with major importance for the region. At the site, a private area, the attraction is a 60 meters (197 feet height cascade and its scenic landscape. Visitors can also hike through the trail that goes behind the waterfall. The trail was mapped using GPS (Global Positioning System and theodolite, and divided into twelve sections, which were evaluated on the issues of declivity, width, damage to natural resources and infrastructure, drainage problems, number of unofficial trails and amount of waste. The results showed that the site presents a series of environmental impacts resulting from both lack of planning and great amount of visitors. Some strategies for managing the site would be the installation of safety and signing infrastructure, as well as a work on environmental awareness of the visitors and their impacts on site.

  2. Archaeoastronomical Fieldwork in Peru

    Science.gov (United States)

    Zawaski, Mike J.; Malville, J.

    2006-09-01

    During June-July 2005, sets of 14 horizon photographs were obtained at 10 major monumental sites of the Inca as identified in Hemming and Ranney (1982) . The photographs were combined to yield complete 360o panoramas at each of the sites. To calibrate the panoramas a Wild T-2 theodolite was used to obtain 5 pairs of altitude/azimuth measurements of the Sun at each site. The standard deviation of multiple determinations of true north was typically 0.25'to 0.5'. As a check on the sun sights, a line-of-sight azimuth was also established with GPS measurements at each site. Agreement between these baselines and the sun sights are satisfactory. We find evidence of June solstice and/or Pleiades orientations at Llactapata, Sayhuite, and Ollantaytambo; cardinal orientation at Vilcashuman; June solstice established by horizon towers above Urubamba; and both zenith and anti-zenith solar alignments at the tower of Muyuc Marca of Sacsayhuman. Terracing, walls, and water features at Ollantaytambo suggest interest in both June and December solstices. The statistical significance of these orientations is evaluated. A permit was issued by the office of the Institute Cultura National in Cusco for field work at all of these sites. This work was undertook as partial fulfillment of the requirement for a MA degree in Earth Sciences at the University of Northern Colorado. Funding was provided by Sigma Xi and The University of Northern Colorado. Hemming, J. and E. Ranney. 1982. Monuments of the Inca, Boston: Little, Brown

  3. Monitoring of chemical and physical characteristics of stone surfaces by a portable spectroradiometer

    Science.gov (United States)

    Camaiti, Mara; Benvenuti, Marco; Costagliola, Pilar; Di Benedetto, Francesco; Del Ventisette, Chiara; Garfagnoli, Francesca; Lombardi, Luca; Moretti, Sandro; Pecchioni, Elena; Vettori, Silvia

    2013-04-01

    A portable radiometer (ASD-FieldSpec FP Pro spectroradiometer), which continuously and rapidly acquires punctual reflectance spectra in the 350-2500 nm spectral range, has been recently proposed as non-destructive and non-invasive technology for detecting gypsum and other materials (inorganic as well as organic) on surfaces of historical buildings [1,2,3]. The instrument, which is also capable to quantitatively assess physical changes of the surfaces (i. e. color changes), has the potentialities to be used for monitoring the state of conservation of stone surfaces through the monitoring of the relative abundance of some components considered precursor symptoms of decay. The increase of gypsum or the decrease of the relative abundance of organic materials used as protective materials allows, in fact, to control and detect the chemical attack of carbonate surfaces, as well as the efficacy and durability of protective treatments. Although the relative abundance of any compound is theoretically related to the signal intensities of its spectral signature, a quantitative analysis is often compromised by some factors such as the grain dimension of crystals [2 4]. However the monitoring of critical areas may give useful information on the progression of decay provided that the same areas are investigated. The spectroradiometer can operate both in natural light conditions and by a contact probe with fixed illumination and geometry of shot; in this study the second condition was preferred since the same operative conditions can be maintained for all the measurements during the monitoring. Aim of this work was to find an easy to use and accurate system for repositioning the spectroradiometer probe in the same small areas of interest during the long-term monitoring. Two systems (theodolite and distance measuring laser) have been tested and their accuracy has been evaluated on some Florentine historical buildings (Cathedral of Santa Maria del Fiore and Basilica of San Miniato

  4. Measurement of optical refraction, transmission, and turbulence effects in False Bay, South Africa: June 2007

    Science.gov (United States)

    de Jong, Arie N.; Schwering, Piet B. W.; Fritz, Peter J.

    2008-10-01

    Complementary to a measurement campaign of small surface targets in the False Bay, South Africa [1], a set-up could be arranged of atmospheric propagation experiments. This opportunity allowed us to collect another set of transmission data in a coastal area, where the environmental conditions are generally non-homogeneous and rapidly changing. It was found before, that the validity of models, predicting the aerosol size distribution, the vertical temperature profile or the structure constant for the refractive index Cn 2 tends to be questionable in this type of areas [2,3]. Proper knowledge of the relation between the range performance of electro-optical and infrared sensors and in-situ weather parameters is however of key importance for operational use of this type of sensors, so the collection of additional propagation data was very relevant. Refraction data were collected continuously by using a geodetic theodolite with camera system over a 15.7 km path in the False Bay. Transmission- and scintillation data were collected over a 9.6 km path by means of our MSRT (Multi- Spectral Radiometer Transmissometer) and a Celestron telescope (with camera) with a focal length of 1.25 m. Weather parameters were measured at a shore station and on a rock in the bay. The weather was greatly variable with many showers, while the visibility, cloudiness and ASTD (Air-Sea Temperature Difference) conditions were continuously changing. Analysis of the theodolite data delivered absolute AOA (Angle of Arrival) data, which have been compared with predictions from the bulk model for marine boundary layers and from two empirical two-parameter temperature profiles. Transmission data, collected in three spectral bands (around 0.6, 0.9 and 1.5 µm), provided information on the particle size distribution, assumed to be of a Junge type. Knowledge of this information allows the prediction of the atmospheric transmission in other spectral bands, including the IR. The transmission data were

  5. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    Science.gov (United States)

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  6. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): delay lines and alignment

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee

    2016-07-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 μm) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 μm and 60-90 μm), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 μm) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio- spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  7. History of the Munich-Maisach-Fürstenfeldbruck Geomagnetic Observatory

    Science.gov (United States)

    Soffel, H. C.

    2015-07-01

    The Munich-Maisach-Fürstenfeldbruck Geomagnetic Observatory is one of the observatories with the longest recordings of the geomagnetic field. It started with hourly measurements on 1 August 1840. The founder of the observatory in Munich was Johann von Lamont (1805-1879), the Director of the Royal Bavarian Astronomical Observatory. He had been stimulated to build his own observatory by the initiative of the Göttingen Magnetic Union founded in 1834 by Alexander von Humboldt (1769-1859) and Carl Friedrich Gauss (1777-1855). Before 1840 fewer than five observatories existed; the most prominent ones were those in London and Paris. At the beginning Lamont used equipment delivered by Gauss in Göttingen, but soon started to build instruments of his own design. Among them was a nonmagnetic theodolite which allowed precise geomagnetic measurements to be made also in the field. During the 1850s Lamont carried out geomagnetic surveys and produced geomagnetic maps for Germany and many other European countries. At the end of the nineteenth century accurate geomagnetic measurements in Munich became more and more disturbed by the magnetic stray fields from electric tramways and industry. During this period the quality of the data suffered and the measurements had to be interrupted several times. After a provisional solution in Maisach, a village 25 km west of Munich, a final solution could be found in the vicinity of the nearby city of Fürstenfeldbruck. Here the measurements started again on 1 January 1939. Since the 1980s the observatory has been part of INTERMAGNET, an organization providing almost real-time geomagnetic data of the highest quality.

  8. UST-ID robotics: Wireless communication and minimum conductor technology, and end-point tracking technology surveys

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, M.A.

    1993-10-01

    This report is a technology review of the current state-of-the-art in two technologies applicable to the Underground Storage Tank (UST) program at the Hanford Nuclear Reservation. The first review is of wireless and minimal conductor technologies for in-tank communications. The second review is of advanced concepts for independent tool-point tracking. This study addresses the need to provide wireless transmission media or minimum conductor technology for in-tank communications and robot control. At present, signals are conducted via contacting transmission media, i.e., cables. Replacing wires with radio frequencies or invisible light are commonplace in the communication industry. This technology will be evaluated for its applicability to the needs of robotics. Some of these options are radio signals, leaky coax, infrared, microwave, and optical fiber systems. Although optical fiber systems are contacting transmission media, they will be considered because of their ability to reduce the number of conductors. In this report we will identify, evaluate, and recommend the requirements for wireless and minimum conductor technology to replace the present cable system. The second section is a technology survey of concepts for independent end-point tracking (tracking the position of robot end effectors). The position of the end effector in current industrial robots is determined by computing that position from joint information, which is basically a problem of locating a point in three-dimensional space. Several approaches are presently being used in industrial robotics, including: stereo-triangulation with a theodolite network and electrocamera system, photogrammetry, and multiple-length measurement with laser interferometry and wires. The techniques that will be evaluated in this survey are advanced applications of the aforementioned approaches. These include laser tracking (3-D and 5-D), ultrasonic tracking, vision-guided servoing, and adaptive robotic visual tracking.

  9. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  10. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform

    Directory of Open Access Journals (Sweden)

    Guanbing Bai

    2017-01-01

    Full Text Available To address the limitation of the existing UAV (unmanned aerial vehicles photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σ B = 1.63 × 10 − 4 ( ° , σ L = 1.35 × 10 − 4 ( ° , σ H = 15.8 ( m , σ s u m = 27.6 ( m , where σ B represents the longitude error, σ L represents the latitude error, σ H represents the altitude error, and σ s u m represents the error radius.

  11. Development and performance validation of a cryogenic linear stage for SPICA-SAFARI verification

    Science.gov (United States)

    Ferrari, Lorenza; Smit, H. P.; Eggens, M.; Keizer, G.; de Jonge, A. W.; Detrain, A.; de Jonge, C.; Laauwen, W. M.; Dieleman, P.

    2014-07-01

    In the context of the SAFARI instrument (SpicA FAR-infrared Instrument) SRON is developing a test environment to verify the SAFARI performance. The characterization of the detector focal plane will be performed with a backilluminated pinhole over a reimaged SAFARI focal plane by an XYZ scanning mechanism that consists of three linear stages stacked together. In order to reduce background radiation that can couple into the high sensitivity cryogenic detectors (goal NEP of 2•10-19 W/√Hz and saturation power of few femtoWatts) the scanner is mounted inside the cryostat in the 4K environment. The required readout accuracy is 3 μm and reproducibility of 1 μm along the total travel of 32 mm. The stage will be operated in "on the fly" mode to prevent vibrations of the scanner mechanism and will move with a constant speed varying from 60 μm/s to 400 μm/s. In order to meet the requirements of large stroke, low dissipation (low friction) and high accuracy a DC motor plus spindle stage solution has been chosen. In this paper we will present the stage design and stage characterization, describing also the measurements setup. The room temperature performance has been measured with a 3D measuring machine cross calibrated with a laser interferometer and a 2-axis tilt sensor. The low temperature verification has been performed in a wet 4K cryostat using a laser interferometer for measuring the linear displacements and a theodolite for measuring the angular displacements. The angular displacements can be calibrated with a precision of 4 arcsec and the position could be determined with high accuracy. The presence of friction caused higher values of torque than predicted and consequently higher dissipation. The thermal model of the stage has also been verified at 4K.

  12. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform.

    Science.gov (United States)

    Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia

    2017-01-06

    To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σ B = 1.63 × 10 - 4 ( ° ) , σ L = 1.35 × 10 - 4 ( ° ) , σ H = 15.8 ( m ) , σ s u m = 27.6 ( m ) , where σ B represents the longitude error, σ L represents the latitude error, σ H represents the altitude error, and σ s u m represents the error radius.

  13. Calibrating the FloodMap model based on geomorphological fieldwork and terrain analysis to improve the integrated HydroProg-FloodMap system for forecasting inundation

    Science.gov (United States)

    Witek, Matylda; Remisz, Joanna; Swierczynska, Malgorzata; Borowicz, Dorota; Parzoch, Krzysztof; Yu, Dapeng

    2016-04-01

    HydroProg is a novel system (research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland) which produces early warnings against high flows. The system has been experimentally implemented for the upper Nysa Klodzka river basin (SW Poland). HydroProg is also integrated with the well-established hydrodynamic model known as FloodMap. The aim of this integration is to forecast flood inundation (HydroProg is used for computing hydrograph prediction, while FloodMap is utilized for mapping the hydrograph prognosis into spatial domain). The HydroProg-FloodMap solution currently works at four sites (Szalejow Dolny, Zelazno, Gorzuchow and Krosnowice) situated within the Nysa Klodzka river basin in the Southwestern Poland. The FloodMap model has been already calibrated for Zelazno (the Biala Ladecka river), and now we want to obtain model parameters for Gorzuchow (the Scinawka river). We carry out several simulations from the FloodMap model at this site, based on historical and recent flow records, to check where potential inundation may take place. Using the 1-metre LIDAR (Light Detection and Ranging) data we identify old channels of the Scinawka river in this area. In addition, we carried out several field campaigns with the unmanned aerial vehicle (UAV) to produce digital surface model (DSM) which can show morphological changes within an alluvial river valley. This can be perceived as an evidence of past inundations. Both the LIDAR mode and DSM obtained using UAV appeared to be not accurate enough to fully reconstruct the pattern of paleo-fluvial relief. Hence, we additionally performed geodetic survey using a self-reducting theodolite Dhalta 010A. Moreover, to confirm the pattern of the paleochannel of the Scinawka river, paleohydraulic analysis is performed. Finally, calibration of the FloodMap model for the Gorzuchow site becomes possible due to access to newly-acquired data on past inundation episodes.

  14. Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52")

    Science.gov (United States)

    Swithinbank, Charles

    2012-01-01

    Objectives (Slides 2, 12, 21-22) To explore as much as possible of 1 million km2 of unexplored territory. We were the first expedition to winter in Antarctica between 95 E and 57 W - nearly half the coastline of Antarctica. It was understood that we must be self-sufficient in every respect for 2 years. There could be no firm or detailed plans for inland exploration until we found where it was possible to make a landing. Geology (Slide 20) Our two geologists traveled far from the Advance Base during both field seasons. Carrying fuel supplies (dog food) for a month, man food (dehydrated) and rock specimens acquired along the way, they covered a vast area. The surveyor drove his own dogs with the geophysicist as assistant. While the geologists were hacking away at rocks, the survey team lugged a theodolite up peaks to extend a triangulation network. Glaciology (Slides 21-22) The glaciologists each had an assistant from the support staff, so they could either travel together or divided into two parties to cover more ground. At each camp they dug a pit to determine the rate of snow accumulation, drilled (by hand) to a depth of 10 m to measure ice temperatures, and in places set up and surveyed ice-movement markers to be resurveyed the following season. Geophysics (Slides 33, 34-36, 38) The principal object was to determine the thickness of ice by seismic sounding the only means known at the time. After experiments as far as the Advance Base in the 1950-51 summer, both Weasels were devoted to a seismic sounding traverse in 1951-52 as far inland as supplies would allow. The party reached 620 km inland and found ice thicknesses of 2,500 m.

  15. The Photogrammetry Cube

    Science.gov (United States)

    2008-01-01

    We can determine distances between objects and points of interest in 3-D space to a useful degree of accuracy from a set of camera images by using multiple camera views and reference targets in the camera s field of view (FOV). The core of the software processing is based on the previously developed foreign-object debris vision trajectory software (see KSC Research and Technology 2004 Annual Report, pp. 2 5). The current version of this photogrammetry software includes the ability to calculate distances between any specified point pairs, the ability to process any number of reference targets and any number of camera images, user-friendly editing features, including zoom in/out, translate, and load/unload, routines to help mark reference points with a Find function, while comparing them with the reference point database file, and a comprehensive output report in HTML format. In this system, scene reference targets are replaced by a photogrammetry cube whose exterior surface contains multiple predetermined precision 2-D targets. Precise measurement of the cube s 2-D targets during the fabrication phase eliminates the need for measuring 3-D coordinates of reference target positions in the camera's FOV, using for example a survey theodolite or a Faroarm. Placing the 2-D targets on the cube s surface required the development of precise machining methods. In response, 2-D targets were embedded into the surface of the cube and then painted black for high contrast. A 12-inch collapsible cube was developed for room-size scenes. A 3-inch, solid, stainless-steel photogrammetry cube was also fabricated for photogrammetry analysis of small objects.

  16. EXPERIMENTAL MEASUREMENTS OF TOWER CONSTRUCTION TILT USING ELECTRONIC TACHEOMETER

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2015-01-01

    Full Text Available Modern tendencies for assessment of high-rise building deformation state presuppose creation of automated and regular monitoring while using highly-accurate space positioning systems (GPS-systems, a robotic electronic tacheometer, highlyaccurate inclinators (Leica Nivel210/Nivel220-model with measuring accuracy of tilt angle up to 0.09 s, Geomos software complex (Leica Geosystems. Automated system for deformation monitoring requires significant time and material expenditures, special training of specialists so simpler methods and criteria for assessment of building deformation state are also considered as rather actual for this purpose.There are more than ten conventional methods for determining building tilt. All these methods are based on angular measurements from the fixed base while using highly-accurate theodolites. The methods are rather labor-consuming and they do not provide operational efficiency and accuracy in measurements. Introduction of electronic tacheometers with large radius of refractorless measurements of distances has made it possible to calculate coordinates on the building surface with high accuracy and at various sections (heights that results in possibility to obtain 3D model of the building surface. Leica TCRA1201 tacheometer has been set at the good visibility point of a tower construction, device orientation and plane coordinates of the temporary point have been determined with the purpose to assess a tilt value of an exhaust stack having 150 meter height. Then 3D coordinates of six points on the building surface have been measured for every stack section. After that these points have been projected on the horizontal plane. LISCAD PLUS software complex has been used for processing and interpretation of geodetic data.The proposed method permits to obtain data for determination value and direction of a tower construction tilt, immediately carry out in-situ measurements and obtain final results in the automatic mode of

  17. Alignment of off-plane X-ray reflection gratings using optical light

    Science.gov (United States)

    Tutt, James; McEntaffer, Randall; Donovan, Benjamin; Schultz, Ted; DeRoo, Casey; Hertz, Edward; Allured, Ryan

    2017-08-01

    The next generation of high resolution soft X-ray spectrometers require large effective areas and high resolving capability. This can be achieved through the use of off-plane reflection gratings. X-rays will only reflect if they are incident onto a surface at a shallow graze angle; therefore, arrays of off-plane gratings are placed into the converging beam of a telescope to achieve the necessary effective area. To maintain the high resolving power of a single grating across this array, the gratings have to be very precisely aligned to one another and fanned so that they match the convergence of the telescope.Leveraging previous work that co-aligned 4 state of the art gratings into a module, 26 gratings will be co-aligned into a module that will be launched on the sub-orbital rocket WRX-R. The alignment procedure is unchanged, but improvements have been made to stabilize the setup. The alignment procedure was found to be highly temperature dependent and the opto-mechanics suffered from mechanical instabilities. To solve these issues, the new setup uses a high precision temperature control unit and a larger optical bench allowing the setup to be simplified.The alignment method is based around the generation of a light wavefront which reflects off the grating surface. This wavefront is measured using a Shack-Hartmann sensor, which allows the gratings orientation relative to the sensor normal to be found. A hexapod is then used to move the grating, allowing the grating surface to be aligned in pitch, roll and yaw. The x, y and z positions for each grating are constrained through the mechanical tolerance of the alignment mount and high precision stages. The aligned gratings are mounted into an Invar module and a theodolite is used to measure the relative position of the module to the known position of the grating.This poster discusses the improvements made to the grating alignment process and the proposed path towards producing the array of 26 co-aligned gratings that

  18. NASA Tech Briefs, January 2012

    Science.gov (United States)

    2012-01-01

    Contents of this issue are: (1) Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments (2) Handheld Universal Diagnostic Sensor (3) Large-Area Vacuum Ultraviolet Sensors (4) Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures (5) Health-Enabled Smart Sensor Fusion Technology (6) Extended-Range Passive RFID and Sensor Tags (7) Hybrid Collaborative Learning for Classification and Clustering in Sensor Networks (8) Self-Healing, Inflatable, Rigidizable Shelter (9) Improvements in Cold-Plate Fabrication (10) Technique for Radiometer and Antenna Array Calibration - TRAAC (11) Real-Time Cognitive Computing Architecture for Data Fusion in a Dynamic Environment (12) Programmable Digital Controller (13) Use of CCSDS Packets Over SpaceWire to Control Hardware (14) Key Decision Record Creation and Approval Module (15) Enhanced Graphics for Extended Scale Range (16) Debris Examination Using Ballistic and Radar Integrated Software (17) Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) (18) Integration Manager (19) Eclipse-Free-Time Assessment Tool for IRIS (20) Automated and Manual Rocket Crater Measurement Software (21) MATLAB Stability and Control Toolbox Trim and Static Stability Module (22) Patched Conic Trajectory Code (23) Ring Image Analyzer (24) SureTrak Probability of Impact Display (25) Implementation of a Non-Metallic Barrier in an Electric Motor (26) Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover (27) Uniform Dust Distributor for Testing Radiative Emittance of Dust-Coated Surfaces (28) MicroProbe Small Unmanned Aerial System (29) Highly Stable and Active Catalyst for Sabatier Reactions (30) Better Proton-Conducting Polymers for Fuel-Cell Membranes (31) CCD Camera Lens Interface for Real-Time Theodolite Alignment (32) Peregrine 100-km Sounding Rocket Project (33) SOFIA Closed- and Open-Door Aerodynamic Analyses (34

  19. Plume trajectory formation under stack tip self-enveloping

    Science.gov (United States)

    Gribkov, A. M.; Zroichikov, N. A.; Prokhorov, V. B.

    2017-10-01

    The phenomenon of stack tip self-enveloping and its influence upon the conditions of plume formation and on the trajectory of its motion are considered. Processes are described occurring in the initial part of the plume while the interaction between vertically directed flue gases outflowing from the stack and a horizontally directed moving air flow at high wind velocities that lead to the formation of a flag-like plume. Conditions responsible for the origin and evolution of interaction between these flows are demonstrated. For the first time, a plume formed under these conditions without bifurcation is registered. A photo image thereof is presented. A scheme for the calculation of the motion of a plume trajectory is proposed, the quantitative characteristics of which are obtained based on field observations. The wind velocity and direction, air temperature, and atmospheric turbulence at the level of the initial part of the trajectory have been obtained based on data obtained from an automatic meteorological system (mounted on the outer parts of a 250 m high stack no. 1 at the Naberezhnye Chelny TEPP plant) as well as based on the results of photographing and theodolite sighting of smoke puffs' trajectory taking into account their velocity within its initial part. The calculation scheme is supplemented with a new acting force—the force of self-enveloping. Based on the comparison of the new calculation scheme with the previous one, a significant contribution of this force to the development of the trajectory is revealed. A comparison of the natural full-scale data with the results of the calculation according to the proposed new scheme is made. The proposed calculation scheme has allowed us to extend the application of the existing technique to the range of high wind velocities. This approach would make it possible to simulate and investigate the trajectory and full rising height of the calculated the length above the mouth of flue-pipes, depending on various modal

  20. Graeco-Roman Astro-Architecture: The Temples of Pompeii

    Science.gov (United States)

    Tiede, Vance R.

    2014-01-01

    Roman architect Marcus Vetruvius Pollio (ca. 75-15 BC) wrote, “[O]ne who professes himself as an architect should be…acquainted with astronomy and the theory of the heavens…. From astronomy we find the east, west, south, and north, as well as the theory of the heavens, the Equinox, Solstice and courses of the Stars.” (De Architectura Libri Decem I:i:3,10). In order to investigate the role of astronomy in temple orientation, the author conducted a preliminary GIS DEM/Satellite Imaging survey of 11 temples at Pompeii, Italy (N 40d 45', E 14d 29'). The GIS survey measured the true azimuth and horizon altitude of each temple’s major axis and was field checked by a Ground Truth survey with theodolite and GPS, 5-18 April 2013. The resulting 3D vector data was analyzed with Program STONEHENGE (Hawkins 1983, 328) to identify the local skyline declinations aligned with the temple major axes. Analysis suggests that the major axes of the temples of Apollo, Jupiter and Venus are equally as likely to have been oriented to Pompeii’s urban grid, itself oriented NW-SE on Mt. Vesuvius’ slope and hydraulic gradient to optimize urban sewer/street drainage (cf. Hodge 1992). However, the remaining nine temples appear to be oriented to astronomical targets on the local horizon associated with Graeco-Roman calendrics and mythology. TEMPLE/ DATE/ MAJOR AXIS ASTRO-TARGET (Skyline Declination in degrees) Public Lares/AD 50/ Cross-Quarter 7 Nov/3 Feb Sun Set, Last Gleam (-16.5) Vespsian/ AD 69-79/ Cross-Quarter 7 Nov/3 Feb Sun Set, LG (-16.2) Fortuna Augusta/ AD 1/ Winter Solstice Sun Set, LG (-22.9) Aesculapius/ 100 BC/ Perseus Rise (β Persei-Algol = +33.0) & Midsummer Moon Major Stand Still Set, LG (-28.1) Isis/ 100 BC/ Midwinter Moon Major Stand Still Rise, Tangent (+28.5) & Equinox Sun Set, Tangent (-0.3) Jupiter/ 150 BC/ Θ Scorpionis-Sargas Rise (-38.0) Apollo/ 550 (rebuilt 70 BC)/ α Columbae-Phact Rise (-37.1) Venus/ 150 BC (rebuilt 70 BC)/ α Columbae-Phact Rise (-37

  1. Testing the effectiveness of an acoustic deterrent for gray whales along the Oregon coast

    Energy Technology Data Exchange (ETDEWEB)

    Lagerquist, Barbara [Oregon State University Marine Mammal Institute; Winsor, Martha [Oregon State University Marine Mammal Institute; Mate, Bruce [Oregon State University Marine Mammal Institute

    2012-12-31

    This study was conducted to determine whether a low-powered sound source could be effective at deterring gray whales from areas that may prove harmful to them. With increased interest in the development of marine renewal energy along the Oregon coast the concern that such development may pose a collision or entanglement risk for gray whales. A successful acoustic deterrent could act as a mitigation tool to prevent harm to whales from such risks. In this study, an acoustic device was moored on the seafloor in the pathway of migrating gray whales off Yaquina Head on the central Oregon coast. Shore-based observers tracked whales with a theodolite (surveyor’s tool) to accurately locate whales as they passed the headland. Individual locations of different whales/whale groups as well as tracklines of the same whale/whale groups were obtained and compared between times with the acoustic device was transmitting and when it was off. Observations were conducted on 51 d between January 1 and April 15, 2012. A total of 143 individual whale locations were collected for a total of 243 whales, as well as 57 tracklines for a total of 142 whales. Inclement weather and equipment problems resulted in very small sample sizes, especially during experimental periods, when the device was transmitting. Because of this, the results of this study were inconclusive. We feel that another season of field testing is warranted to successfully test the effectiveness of the deterrent, but recommend increasing the zone of influence to 3 km to ensure the collection of adequate sample sizes. Steps have been taken to acquire the necessary federal research permit modification to authorize the increased zone of influence and to modify the acoustic device for the increased power. With these changes we are confident we will be able to determine whether the deterrent is effective at deflecting gray whales. A successful deterrent device may serve as a valuable mitigation tool to protect gray whales, and

  2. Individual killer whale vocal variation during intra-group behavioral dynamics

    Science.gov (United States)

    Grebner, Dawn M.

    The scientific goal of this dissertation was to carefully study the signal structure of killer whale communications and vocal complexity and link them to behavioral circumstances. The overall objective of this research sought to provide insight into killer whale call content and usage which may be conveying information to conspecifics in order to maintain group cohesion. Data were collected in the summers of 2006 and 2007 in Johnstone Strait, British Columbia. For both individuals and small groups, vocalizations were isolated using a triangular hydrophone array and the behavioral movement patterns were captured by a theodolite and video camera positioned on a cliff overlooking the hyrophone locations. This dissertation is divided into four analysis chapters. In Chapter 3, discriminant analysis was used to validate the four N04 call subtypes which were originally parsed due to variations in slope segments. The first two functions of the discriminant analysis explained 97% of the variability. Most of the variability for the N04 call was found in the front convex and the terminal portions of the call, while very little variability was found in the center region of the call. This research revealed that individual killer whales produced multiple subtypes of the N04 call. No correlations of behaviors to acoustic parameters obtained were found. The aim of the Chapter 4 was to determine if killer whale calling behavior varied prior to and after the animals had joined. Pulsed call rates were found to be greater pre- compared to post-joining events. Two-way vocal exchanges were more common occurring 74% of the time during pre-joining events. In Chapter 5, initiated and first response to calls varied between age/sex class groups when mothers were separated from an offspring. Solo mothers and calves initiated pulsed calls more often than they responded. Most of the no vocal responses were due to mothers who were foraging. Finally, observations of the frequency split in N04

  3. THE ROLE OF ASTRO-GEODETIC IN PRECISE GUIDANCE OF LONG TUNNELS

    Directory of Open Access Journals (Sweden)

    M. Mirghasempour

    2015-12-01

    Full Text Available One of prime aspects of surveying projects is guidance of paths of a long tunnel from different directions and finally ending all paths in a specific place. This kind of underground surveying, because of particular condition, has some different points in relation to the ground surveying, including Improper geometry in underground transverse, low precise measurement in direction and length due to condition such as refraction, distinct gravity between underground point and corresponding point on the ground (both value and direction of gravity and etc. To solve this problems, astro-geodetic that is part of geodesy science, can help surveying engineers. In this article, the role of astronomy is defined in two subjects: 1- Azimuth determination of directions from entrance and exit nets of tunnel and also calibration of gyro-theodolite to use them in Underground transvers: By astronomical methods, azimuth of directions can be determine with an accuracy of 0.5 arcsecond, whereas, nowadays, no gyroscope can measure the azimuth in this accuracy; For instance, accuracy of the most precise gyroscope (Gyromat 5000 is 1.2 cm over a distance of one kilometre (2.4 arcsecond. Furthermore, the calibration methods that will be mention in this article, have significance effects on underground transverse. 2- Height relation between entrance point and exit point is problematic and time consuming; For example, in a 3 km long tunnel ( in Arak- Khoram Abad freeway, to relate entrance point to exit point, it is necessary to perform levelling about 90 km. Other example of this boring and time consuming levelling is in Kerman tunnel. This tunnel is 36 km length, but to transfer the entrance point height to exit point, 150 km levelling is needed. According to this paper, The solution for this difficulty is application of astro-geodetic and determination of vertical deflection by digital zenith camera system TZK2-D. These two elements make possible to define geoid profile

  4. LEGO: A Modular Approach to Accelerator Alignment Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    LeCocq, Catherine M

    2003-05-14

    The underlying unity of the numerous surveying computational methods is hidden by many practical differences in data acquisition. Traditional programming languages have added to the confusion by requiring programmers to describe the numeric data in very concrete and low-level structures (mostly arrays). In fact the algorithms behind all coordinate determination from surveying observations come down to basic methods of linear algebra. Lego uses the paradigm of object oriented programming (OOP) to more closely model the fundamental mathematical structures of all geodetic methods. Once the methods are in OOP form, the commonality across them becomes more obvious and a general architecture for a wide range of geodetic treatments becomes possible. This paper describes the fundamental concepts of this architecture and its advantages in terms of clarity (maintainability, testability and multi-author), portability and extensibility (observation types, resolution techniques and storage methods). The very first version of Lego was built in 1994 as a set of C routines to be used for the adjustment of theodolite data and tracker data. The routines were organized into six modules. Each module answered a specific task. The tasks had been identified as followed: general implementation, input, generic surveying formulas, statistical functions, matrix manipulation and specific resolution technique. This organization was the reason for the name Lego, but more seriously the purpose of this separation was to make Lego easily adaptable to any environment and easily expandable to new resolution techniques. At a second look, it was also a cry for being converted into a more modern language. Because C++ is primarily a superset of C, most C++ compilers have no problems compiling regular C code and may also handle a mixture of C and C++. This made the transformation of Lego very fast and painless. Up to now Lego is still using C functions for file access and dynamic memory allocation but is

  5. Context, Biogeochemistry, and Morphology of Diverse and Spatially Extensive Microbial Mats, Little Ambergris Cay, Turks and Caicos Islands, B.W.I.

    Science.gov (United States)

    Grotzinger, J. P.; Knoll, A. H.; Fischer, W. W.; Cantine, M.; Gomes, M. L.; Grotzinger, H. M.; Lingappa, U.; Metcalfe, K.; O'Reilly, S. S.; Orzechowski, E. A.; Quinn, D. P.; Riedman, L. A.; Stein, N.; Strauss, J. V.; Trower, L.

    2016-12-01

    Little Ambergris Cay (21.3 N°, 71.7° W) was the site of an integrated geobiological study conducted during July of 2016. The cay ( 6 km long x 1.6 km wide) is developed on a broad bank marked by converging ooid shoals, influenced by strong westerly trade winds (avg. 7.5 m/s), and culminating in a linear ooid shoal that extends almost 25 km from the western tip of the cay. 54 ooid samples were measured for grain size/shape information, organic geochemistry, and microbial community analysis. Lithified upper shoreface to eolian ooid grainstones form a 2 m high bedrock rim that protects an extensive interior tidal marsh with well-developed microbial mats. The rim is locally breached to allow tidal flows to inundate interior bays floored by microbial mats. Three mat types are observed based on texture: dark toned "blister mat", which flanks the bays where they intersect with the bedrock rim; light-toned "polygonal mat" which covers broad tracts of the bay and is exposed at low tide; and lighter-toned "eps mat" which is generally submerged even at low tide. 30 different mat locations were studied and sampled for groundwater salinity, pH, DNA content, photosynthetic efficiency, C and S isotope composition, lipid biomarkers, and taphonomic state. The island was mapped using multispectral Landsat images (m-scale resolution), Quickbird Earth images (50 cm-scale resolution), and photogrammetry from two UAVs. The UAVs captured more than 1500 nadir images from a 350 m standoff distance and were processed to generate a 3-band visible light mosaic map of the island with 15 cm resolution. The drones also captured images with a 5-20 meter standoff to quantify sub-cm-scale bed textures, including those expressed by the different microbial mats. Topography and nine sedimentologic facies were mapped at cm-scale resolution based on 910 differential GPS data points, and the thickness of the Holocene sediment fill (0 to >2m) was estimated using a depth probe and laser theodolite.

  6. A New Sensor for Surface Process Quantification in the Geosciences - Image-Assisted Tacheometers

    Science.gov (United States)

    Vicovac, Tanja; Reiterer, Alexander; Rieke-Zapp, Dirk

    2010-05-01

    -millimeter to millimeter measurements of the same area in the field is demanding. To measure for example current day erosion rates point probing techniques require a rock anchor as reference point disturbing the vicinity of the sampling area and such measurements are only valid for a very limited part of the object. A precise method for quantification of areas larger than 1 m² with sub-millimeter accuracy is "badly needed", but not available off the shelf. The method should be non-contacting as well as non-disturbing and suitable for field use even in remote areas. Image assisted measurement techniques combine the pointing precision of a theodolite with the ability of mass point measurement from stereo imagery. A high-precision contactless detection of chances of surfaces is possible. In comparison with laser scanners, image-assisted tacheometer measure objects with higher accuracy; compared to photogrammetric systems, they can be easier used for on-line measurement processes (e.g. object monitoring) - this will especially be the case if the measurements can be performed with a high degree of automation. Acknowledgments: The presented research has been supported by the Austrian Science Foundation (FWF) Project i-MeaS and by the European Sciences Foundation (ESF) project SedyMONT.

  7. Prototype study of characterization of the impact that produces the diffuser of an industrial discharge into the sea water; Estudio prototipo de caracterizacion del impacto que produce el difusor de una descarga industrial sobre el medio marino

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Gallarza, S. M.; Gil Zurita, A.; Garcia Hernandez, R.; Vergara Mendez, S.; Garcia Leal, M. L. [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)

    2000-09-01

    To establish maximum permissible limits of pollutants discharged into the sea from industrial wastewater, the authorities involved in the environmental protection and regulation had established particular characteristic for their discharges in each enterprise. In addition to taking care of the conservation of those limits, the effect of these substances on the environment needs to be evaluated. Along this line, integral multidisciplinary studies of impact characterization on the marine environment induced by the industry have been carried out. One of the industrial enterprises that discharges into the northwestern coastline of the Gulf of Mexico through a submarine diffuser, requested the execution of the first study of this kind. This prototype study included physical, chemical, biological and geological determinations in a network of 49 sampling sites along six transects positioned from a boat, and with theodolites from the coast; covering five depth levels (surface, 4, 8, 12 and 16 m) during rainy, dry and northern winds seasons. Heavy metals in the water, sediments, and organisms and in combined samples of the industrial discharge were determined. Continuous measurements of marine currents, salinity and temperature in the nozzles of the diffuser were performed by means of two S4 Inter Ocean current meters. Helicopters flights were made to observe the displacement variations of the pollutants plume under various climatic conditions. LANDSAT TM satellite images were acquired to obtain information on diverse regions of the electromagnetic spectrum and to verify observations on the behavior of the discharge plume. Besides the conventional methods of plotting and information processing, tri-dimensional visualization was applied with the purpose of interpreting seasonal and diffusion patterns. Because of the excellent results obtained with this methodology, this study is made available to specialists as a prototype for determining the coastal marine environmental

  8. Análise cinemática tridimensional do movimento de eqüinos em esteira rolante Three-dimensional cinematic analysis of the horse movement in treadmill

    Directory of Open Access Journals (Sweden)

    F.G. Christovão

    2007-08-01

    Full Text Available Adaptou-se uma metodologia utilizada no estudo do movimento humano para analisar o movimento de eqüinos em esteira rolante de alto desempenho, construindo-se um sistema de calibração utilizando-se um teodolito eletrônico de alta precisão e calibradores que demarcavam o espaço ocupado pelo animal. Dessa forma, foram obtidas as coordenadas espaciais dos marcadores presentes nos calibradores, compondo o arquivo de calibração. Duas câmeras de vídeo (60Hz foram posicionadas em vista lateral esquerda, distantes 5m da manta de rolagem da esteira a 1,8m de altura. As imagens foram enquadradas utilizando-se um monitor de vídeo. Para a validação do método, um membro da equipe movimentou, no espaço calibrado, uma haste rígida com marcadores fixados nas suas extremidades, distantes um do outro 43,8cm. Para a análise das imagens, utilizou-se o programa Dvideow, desenvolvido pelo Laboratório de Instrumentação para Biomecânica - UNICAMP. Após a reconstrução tridimensional das imagens utilizou-se um programa matemático para o cálculo do valor médio da distância entre os marcadores. Obteve-se, após a mensuração em 100 quadros, o valor médio de 43,7cm com coeficiente de variação de 0,8%. Estes resultados mostram que a metodologia desenvolvida é precisa e adequada para o estudo da locomoção de eqüinos.A methodology used for the study of human movement was adapted to analyze the movement of equines in a high performance treadmill. An electronic high precision theodolite was used to construct a calibration system to demarcate the volume occupied by the animal. It was taken the three dimensions coordinates of each marker present in the calibrator, composing the calibration archive. Two video cameras (60 Hz were located approximately 5m from the left lateral side of the treadmill at 1.8m height. The images had been fit using a video monitor. For the validation of the method, a member of the team moved into the calibrated space, a

  9. Metrology of Large Parts. Chapter 5

    Science.gov (United States)

    Stahl, H. Philip

    2012-01-01

    in particular to quantify their mechanical properties (such as dimensions, mass, etc); their optical prescription or design (i.e. radius of curvature, conic constant, vertex location, size); and their full part shape. And, just as with small parts, a metrologist accomplishes these tests using distance measuring instruments such as tape measures, inside micrometers, coordinate measuring machines, distance measuring interferometers; angle measuring instruments such as theodolites, autocollimators; and surface measuring instruments including interferometers, stylus profilers, interference microscopes, photogrammetric cameras, or other tools. However, while the methodology may be similar, it is more difficult to test a large object for the simple reason that most metrologists do not have the necessary intuition. The skills used to test small parts or optics in a laboratory do not extrapolate to testing large parts in an industrial setting any more than a backyard gardener might successfully operate a farm. But first, what is a large part? A simple definition might be the part's size or diameter. For optics and diffuse surface parts alike, the driving constraint is ability to illuminate the part's surface. For reflective convex mirrors, large is typically anything greater than 1 meter. But, for refractive optics, flats or convex mirrors, large is typically greater than 0.5 meter. While a size definition is simple, it may be less than universal. A more nuanced definition might be that a large part is any component which cannot be easily tested in a standard laboratory environment, on a standard vibration isolated table using standard laboratory infrastructure. A micro-switch or a precision lens might be easily measured to nanometer levels under a microscope in a lab, but a power turbine spline or a larger telescope mirror will not fit under that microscope and may not even fit on the table.

  10. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    Science.gov (United States)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    dispersive media, the effect of both phase and group indices have to be considered. Taking all these factors into account, a method was developed to measure targets through multiple regions of different materials and produce results that are absolute measurements of target position in three-dimensional space, rather than simply relative position. The environment in which the lidar measurements are taken must be broken down into separate regions of interest and each region solved for separately. In this case, there were three regions of interest: air, fused silica, and vacuum. The angular position of the target inside the chamber is solved using only phase index and phase velocity, while the ranging effects due to travel from air to glass to vacuum/air are solved with group index and group velocity. When all parameters are solved simultaneously, an absolute knowledge of the position of each target within an environmental chamber can be derived. Novel features of this innovation include measuring absolute position of targets through multiple dispersive and non-dispersive media, deconstruction of lidar raw data from a commercial off-the-shelf unit into reworkable parameters, and use of group velocities to reduce range data. Measurement of structures within a vacuum chamber or other harsh environment, such as a furnace, may now be measured as easily as if they were in an ambient laboratory. This analysis permits transformation of the raw data into absolute spatial units (e.g., mm). This technique has also been extended to laser tracker, theodolite, and cathetometer measurements through refractive media.

  11. A COMPARISON OF LASER SCANNING AND STRUCTURE FROM MOTION AS APPLIED TO THE GREAT BARN AT HARMONDSWORTH, UK

    Directory of Open Access Journals (Sweden)

    D. P. Andrews

    2013-07-01

    circumstances. A repeat visit following the clearance of artefacts and with the benefit of access equipment was required to obtain complete coverage, especially for the top surfaces of the timber frame elements. Initial results from the laser scanning were extremely promising, with some historical events (e.g. a major fire at one end of the structure dramatically shown in the intensity data. Comprehensive photographic coverage of the exterior of the barn including the roof was obtained using a Nikon D3X mounted on both a 6m telescopic pole and a conventional tripod. A repeat visit was required to address some exposure problems in shadow areas. A unified control network for both sets of data was obtained through the use of a total station theodolite (TST with reflectorless electromagnetic distance measurement (REDM, incorporating a closed traverse as well as the acquisition of scanner and photogrammetric targets. The control network therefore permits the direct comparison of the results from both survey methods (allowing for systematic errors. A point cloud generated from the photography, using Agisoft Photoscan structure from motion software, was compared with the registered laser scan points with a view to determining any systematic differences, although these were to a large extent ameliorated by the use of the dense control network. The resultant data also has potential downstream use within English Heritage for improving our understanding of Building Information Modelling (BIM as applied to heritage structures rather than new build, and thereby contributing to the formulation of elements of a BIM strategy for English Heritage. There are also a number of hand-measured survey drawings of the barn in existence. A quantitative as well as a qualitative comparison was made with drawings generated from the laser scan data. In general the later drawings were more metrically accurate but exhibited less understanding of the construction techniques employed. A discussion of the

  12. a Comparison of Laser Scanning and Structure from Motion as Applied to the Great Barn at Harmondsworth, UK

    Science.gov (United States)

    Andrews, D. P.; Bedford, J.; Bryan, P. G.

    2013-07-01

    repeat visit following the clearance of artefacts and with the benefit of access equipment was required to obtain complete coverage, especially for the top surfaces of the timber frame elements. Initial results from the laser scanning were extremely promising, with some historical events (e.g. a major fire at one end of the structure) dramatically shown in the intensity data. Comprehensive photographic coverage of the exterior of the barn including the roof was obtained using a Nikon D3X mounted on both a 6m telescopic pole and a conventional tripod. A repeat visit was required to address some exposure problems in shadow areas. A unified control network for both sets of data was obtained through the use of a total station theodolite (TST) with reflectorless electromagnetic distance measurement (REDM), incorporating a closed traverse as well as the acquisition of scanner and photogrammetric targets. The control network therefore permits the direct comparison of the results from both survey methods (allowing for systematic errors). A point cloud generated from the photography, using Agisoft Photoscan structure from motion software, was compared with the registered laser scan points with a view to determining any systematic differences, although these were to a large extent ameliorated by the use of the dense control network. The resultant data also has potential downstream use within English Heritage for improving our understanding of Building Information Modelling (BIM) as applied to heritage structures rather than new build, and thereby contributing to the formulation of elements of a BIM strategy for English Heritage. There are also a number of hand-measured survey drawings of the barn in existence. A quantitative as well as a qualitative comparison was made with drawings generated from the laser scan data. In general the later drawings were more metrically accurate but exhibited less understanding of the construction techniques employed. A discussion of the reasons for