WorldWideScience

Sample records for themarine actinomycete salinispora

  1. Genome sequencing reveals complex secondary metabolome in themarine actinomycete Salinispora tropica

    Energy Technology Data Exchange (ETDEWEB)

    Udwary, Daniel W.; Zeigler, Lisa; Asolkar, Ratnakar; Singan,Vasanth; Lapidus, Alla; Fenical, William; Jensen, Paul R.; Moore, BradleyS.

    2007-05-01

    Recent fermentation studies have identified actinomycetes ofthe marine-dwelling genus Salinispora as prolific natural productproducers. To further evaluate their biosynthetic potential, we analyzedall identifiable secondary natural product gene clusters from therecently sequenced 5,184,724 bp S. tropica CNB-440 circular genome. Ouranalysis shows that biosynthetic potential meets or exceeds that shown byprevious Streptomyces genome sequences as well as other naturalproduct-producing actinomycetes. The S. tropica genome features ninepolyketide synthase systems of every known formally classified family,non-ribosomal peptide synthetases and several hybrid clusters. While afew clusters appear to encode molecules previously identified inStreptomyces species,the majority of the 15 biosynthetic loci are novel.Specific chemical information about putative and observed natural productmolecules is presented and discussed. In addition, our bioinformaticanalysis was critical for the structure elucidation of the novelpolyenemacrolactam salinilactam A. This study demonstrates the potentialfor genomic analysis to complement and strengthen traditional naturalproduct isolation studies and firmly establishes the genus Salinispora asa rich source of novel drug-like molecules.

  2. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora

    National Research Council Canada - National Science Library

    Nadine Ziemert; Anna Lechner; Matthias Wietz; Natalie Millán-Aguiñaga; Krystle L. Chavarria; Paul Robert Jensen

    2014-01-01

    .... Here we analyze genome sequence data derived from 75 strains of the marine actinomycete genus Salinispora for pathways associated with polyketide and nonribosomal peptide biosynthesis, the products...

  3. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora.

    Science.gov (United States)

    Ziemert, Nadine; Lechner, Anna; Wietz, Matthias; Millán-Aguiñaga, Natalie; Chavarria, Krystle L; Jensen, Paul Robert

    2014-03-25

    Access to genome sequence data has challenged traditional natural product discovery paradigms by revealing that the products of most bacterial biosynthetic pathways have yet to be discovered. Despite the insight afforded by this technology, little is known about the diversity and distributions of natural product biosynthetic pathways among bacteria and how they evolve to generate structural diversity. Here we analyze genome sequence data derived from 75 strains of the marine actinomycete genus Salinispora for pathways associated with polyketide and nonribosomal peptide biosynthesis, the products of which account for some of today's most important medicines. The results reveal high levels of diversity, with a total of 124 pathways identified and 229 predicted with continued sequencing. Recent horizontal gene transfer accounts for the majority of pathways, which occur in only one or two strains. Acquired pathways are incorporated into genomic islands and are commonly exchanged within and between species. Acquisition and transfer events largely involve complete pathways, which subsequently evolve by gene gain, loss, and duplication followed by divergence. The exchange of similar pathway types at the precise chromosomal locations in different strains suggests that the mechanisms of integration include pathway-level homologous recombination. Despite extensive horizontal gene transfer there is clear evidence of species-level vertical inheritance, supporting the concept that secondary metabolites represent functional traits that help define Salinispora species. The plasticity of the Salinispora secondary metabolome provides an effective mechanism to maximize population-level secondary metabolite diversity while limiting the number of pathways maintained within any individual genome.

  4. Identification of Sare0718 as an alanine-activating adenylation domain in marine actinomycete Salinispora arenicola CNS-205.

    Science.gov (United States)

    Xia, Sisi; Ma, Yanlin; Zhang, Wei; Yang, Yi; Wu, Shaowen; Zhu, Minzhe; Deng, Lingfu; Li, Bing; Liu, Zhonglai; Qi, Chao

    2012-01-01

    Amino acid adenylation domains (A domains) are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during nonribosomal peptide (NRP) biosynthesis. NRPs represent a large group of valuable natural products that are widely applied in medicine, agriculture, and biochemical research. Salinispora arenicola CNS-205 is a representative strain of the first discovered obligate marine actinomycete genus, whose genome harbors a large number of cryptic secondary metabolite gene clusters. In order to investigate cryptic NRP-related metabolites in S. arenicola CNS-205, we cloned and identified the putative gene sare0718 annotated "amino acid adenylation domain". Firstly, the general features and possible functions of sare0718 were predicted by bioinformatics analysis, which suggested that Sare0718 is a soluble protein with an AMP-binding domain contained in the sequence and its cognate substrate is L-Val. Then, a GST-tagged fusion protein was expressed and purified to further explore the exact adenylation activity of Sare0718 in vitro. By a newly mentioned nonradioactive malachite green colorimetric assay, we found that L-Ala but not L-Val is the actual activated amino acid substrate and the basic kinetic parameters of Sare0718 for it are K(m) = 0.1164±0.0159 (mM), V(max) = 3.1484±0.1278 (µM/min), k(cat) = 12.5936±0.5112 (min(-1)). By revealing the biochemical role of sare0718 gene, we identified an alanine-activating adenylation domain in marine actinomycete Salinispora arenicola CNS-205, which would provide useful information for next isolation and function elucidation of the whole cryptic nonribosomal peptide synthetase (NRPS)-related gene cluster covering Sare0718. And meanwhile, this work also enriched the biochemical data of A domain substrate specificity in newly discovered marine actinomycete NRPS system, which bioinformatics prediction will largely depend on.

  5. Comparative genomics reveals evidence of marine adaptation in Salinispora species

    Science.gov (United States)

    2012-01-01

    Background Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Results Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. Conclusions The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed. PMID:22401625

  6. Targeted search for actinomycetes from near-shore and deep-sea marine sediments

    Science.gov (United States)

    Prieto-Davó, Alejandra; Villarreal-Gómez, Luis Jesús; Forschner-Dancause, Stephanie; Bull, Alan T.; Stach, James E. M.; Smith, David C.; Rowley, Dave C.; Jensen, Paul R.

    2013-01-01

    Sediment samples collected off the coast of San Diego were analyzed for actinomycete diversity using culture independent techniques. Eight new operational taxonomic units (OTUs) in the Streptomycetaceae were identified as well as new diversity within previously cultured marine OTUs. Sequences belonging to the marine actinomycete genus Salinispora were also detected, despite the fact that this genus has only been reported from more tropical environments. Independent analyses of marine sediments from the Canary Basin (3814 m) and the South Pacific Gyre (5126 and 5699 m) also revealed Salinispora sequences providing further support for the occurrence of this genus in deep-sea sediments. Efforts to culture Salinispora spp. from these samples have yet to be successful. This is the first report of Salinispora spp. from marine sediments >1100m and suggests that the distribution of this genus is broader than previously believed. PMID:23360553

  7. Effects of salinity on antibiotic production in sponge-derived Salinispora actinobacteria.

    Science.gov (United States)

    Ng, Y K; Hodson, M P; Hewavitharana, A K; Bose, U; Shaw, P N; Fuerst, J A

    2014-07-01

    To investigate the effects of growth conditions related to marine habitat on antibiotic production in sponge-derived Salinispora actinobacteria. Media with varying salt concentration were used to investigate the effects of salinity in relation to Salinispora growth and rifamycin production. The chemotypic profiles of the model strain Salinispora arenicola M413 was then assessed using metabolomic fingerprints from high-pressure liquid chromatography with diode array detection (HPLC-DAD) and multivariate data analysis, before extending this approach to two other strains of S. arenicola. Fingerprint data were generated from extracts of S. arenicola broth cultures grown in media of varying salt (NaCl) concentrations. These fingerprints were then compared using multivariate analysis methods such as principal components analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). From the analysis, a low-sodium growth condition (1% NaCl) was found to delay the onset of growth of the model S. arenicola M413 strain when compared to growth in media with either 3% artificial sea salt or 3% NaCl. However, low-sodium growth conditions also increased cell mass yield and contributed to at least a significant twofold increase in rifamycin yield when compared to growth in 3% artificial sea salt and 3% NaCl. The integration of HPLC-DAD and multivariate analysis proved to be an effective method of assessing chemotypic variations in Salinispora grown in different salt conditions, with clear differences between strain-related chemotypes apparent due to varying salt concentrations. The observed variation in S. arenicola chemotypic profiles further suggests diversity in secondary metabolites in this actinomycete in response to changes in the salinity of its environment. © 2014 The Society for Applied Microbiology.

  8. Targeted search for actinomycetes from nearshore and deep-sea marine sediments.

    Science.gov (United States)

    Prieto-Davó, Alejandra; Villarreal-Gómez, Luis J; Forschner-Dancause, Stephanie; Bull, Alan T; Stach, James E M; Smith, David C; Rowley, Dave C; Jensen, Paul R

    2013-06-01

    Sediment samples collected off the coast of San Diego were analyzed for actinomycete diversity using culture-independent techniques. Eight new operational taxonomic units (OTUs) in the Streptomycetaceae were identified as well as new diversity within previously cultured marine OTUs. Sequences belonging to the marine actinomycete genus Salinispora were also detected, despite the fact that this genus has only been reported from more tropical environments. Independent analyses of marine sediments from the Canary Basin (3814 m) and the South Pacific Gyre (5126 and 5699 m) also revealed Salinispora sequences providing further support for the occurrence of this genus in deep-sea sediments. Efforts to culture Salinispora spp. from these samples have yet to be successful. This is the first report of Salinispora spp. from marine sediments > 1100 m and suggests that the distribution of this genus is broader than previously believed. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential.

    Science.gov (United States)

    Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M; Pereira, Florbela; Rodrigues, Cecilia M P; Santos-Sanches, Ilda; Gaudêncio, Susana P

    2016-01-01

    Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry.

  10. The Madeira Archipelago as a significant source of marine-derived actinomycete diversity with anticancer and antimicrobial potential

    Directory of Open Access Journals (Sweden)

    Alejandra Prieto-Davo

    2016-10-01

    Full Text Available Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100m from shore and nearshore (<100m from shore populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry.

  11. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential

    Science.gov (United States)

    Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E.; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M.; Pereira, Florbela; Rodrigues, Cecilia M. P.; Santos-Sanches, Ilda; Gaudêncio, Susana P.

    2016-01-01

    Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry. PMID:27774089

  12. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.

    Science.gov (United States)

    Yang, Na; Song, Fuhang

    2018-02-01

    Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

  13. Actinomycetes mycetoma

    Directory of Open Access Journals (Sweden)

    Sumati Hogade

    2011-01-01

    Full Text Available Mycetoma is a chronic infection, frequently seen in tropical and sub-tropical countries and is considered as an occupational disease. Nocardia species though it can infect immunocompetent individuals, it most commonly affects immunocompromised patients. A 50-year-old male, farmer presented to our hospital with serosanguineous discharging swelling over the dorsum of right foot. We have isolated Nocardia asteroides from the tissue sample. Speciation of this isolate was carried out based on phenotypic methods. Hereby we report a case of Actinomycetes Mycetoma in an immunocompetent individual.

  14. [Actinomycetes from mangrove and their secondary metabolites].

    Science.gov (United States)

    Hong, Kui

    2013-11-04

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. Driven by the discovery of novel natural products from marine environment, mangrove is becoming a hot spot for actinomycetes resources collection and secondary metabolites (natural products) identification as well as their biosynthesis mechanism investigation. Salinaspora A produced by a Salinispora strain isolated from Bahamas mangrove environment, is in the first clinical trial. Till the time of writing this paper, 24 genera of 11 families and 8 suborders under the actinomycetale have been reported from mangrove, among which 3 are new genera, and 31 are new species. At the same time, secondary metabolites were identified from the mangrove actinomycetes culture, including alkanoids and quinines, azalomycins, antimycins, bezamides and quinazolines, divergolides, indole derivatives, kandenols, macrocyclic dilactones, and the attractive structures, such as the Streptocarbazoles, the multicyclic indolsesquiterpenes, and xiamycin presented unique structures. Their biosynthetic mechanism has also been investigated. Most of the metabolites were isolated from streptomycetes, with a few from Micromonospora and Saccharopolyspora.

  15. Marine actinomycetes from Madeira Archipelago preliminary taxonomic studies

    Directory of Open Access Journals (Sweden)

    Ilda Santos Sanches

    2014-06-01

    Full Text Available The oceans cover 70 % of the Earth´s surface and harbor most of the planet´s biodiversity. However the microbiological component of this diversity remains relatively unexplored. Marine actinomycetes, are a robust resource of chemically prolific novelty. Producing structurally unique biological active secondary metabolites, generating a valuable source for innovative biotechnology and drug discovery[1,2]. As a consequence, the ecological role of actinomycetes and their marine ecosystems may no longer be neglected. It is crucial to move our research efforts into ocean regions for which we know little or nothing about the indigenous microbial diversity. The Portuguese Archipelago, Madeira is located in the Macaronesian Atlantic region, emerging from the African tectonic plate, found in the extreme south of the Tore-Madeira ridge, has a unique biogeography and biodiversity. These distinctive characteristics combined with the fact that Madeira have never been explored, as far as indigenous marine actinomycetes are concerned, makes it from the scientific point of view, the perfect target for our studies. From 662 marine sediment samples collected along Madeira Archipelago (Figure 1 during June of 2012, covering depths from 10-1310 m, a total of 421 actinomycete strains were isolated. In a previous study, an assemblage of 82 strains was selected for taxonomic identification, having into account representative morphological diversity characteristics of the actinomycetes, isolated from Madeira Archipelago. Based on 16S rRNA gene sequencing, it was observed that the genera Streptomyces, Micromonospora and Salinispora were predominant, 81% [3]. Additionally, in a recent study, our team selected 168 strains with Salinispora look-alike morphological features. From these 28 strains were identified as belonging to the seawater-obligate marine actinomycete genus Salinispora. Representing the first report of Salinispora spp. in the Macaronesian Atlantic Ocean

  16. Actinomycetes from the South China Sea sponges: isolation, diversity and potential for aromatic polyketides discovery

    Directory of Open Access Journals (Sweden)

    Zhiyong eLi

    2015-10-01

    Full Text Available Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora and Streptomonospora were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to 7 genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora and Streptomyces. Finally, ten strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides.

  17. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery.

    Science.gov (United States)

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides.

  18. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery

    Science.gov (United States)

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides. PMID:26483773

  19. An N-acyl homolog of mycothiol is produced in marine actinomycetes.

    Science.gov (United States)

    Newton, Gerald L; Jensen, Paul R; Macmillan, John B; Fenical, William; Fahey, Robert C

    2008-11-01

    Marine actinomycetes have generated much recent interest as a potentially valuable source of novel antibiotics. Like terrestrial actinomycetes the marine actinomycetes are shown here to produce mycothiol as their protective thiol. However, a novel thiol, U25, was produced by MAR2 strain CNQ703 upon progression into stationary phase when secondary metabolite production occurred and became the dominant thiol. MSH and U25 were maintained in a reduced state during early stationary phase, but become significantly oxidized after 10 days in culture. Isolation and structural analysis of the monobromobimane derivative identified U25 as a homolog of mycothiol in which the acetyl group attached to the nitrogen of cysteine is replaced by a propionyl residue. This N-propionyl-desacetyl-mycothiol was present in 13 of the 17 strains of marine actinomycetes examined, including five strains of Salinispora and representatives of the MAR2, MAR3, MAR4 and MAR6 groups. Mycothiol and its precursor, the pseudodisaccharide 1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-D-myo-inositol, were found in all strains. High levels of mycothiol S-conjugate amidase activity, a key enzyme in mycothiol-dependent detoxification, were found in most strains. The results demonstrate that major thiol/disulfide changes accompany secondary metabolite production and suggest that mycothiol-dependent detoxification is important at this developmental stage.

  20. Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities.

    Science.gov (United States)

    Patin, Nastassia V; Schorn, Michelle; Aguinaldo, Kristen; Lincecum, Tommie; Moore, Bradley S; Jensen, Paul R

    2017-02-15

    Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S

  1. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    Science.gov (United States)

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  2. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    Science.gov (United States)

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  3. Marine actinomycetes: a new source of compounds against the human malaria parasite.

    Directory of Open Access Journals (Sweden)

    Jacques Prudhomme

    2008-06-01

    Full Text Available Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite.We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage.These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052 now

  4. Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp.

    Directory of Open Access Journals (Sweden)

    Satyendra Singh

    2014-10-01

    Conclusions: The present study reported the rifamycin W from sponge-associated Salinispora sp. and it exhibited appreciable antibacterial activity against multi-drug resistant human pathogens which indicated that sponge-associated Actinobacteria are significant sources of bioactive metabolites.

  5. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes.

    Science.gov (United States)

    Lane, Amy L; Nam, Sang-Jip; Fukuda, Takashi; Yamanaka, Kazuya; Kauffman, Christopher A; Jensen, Paul R; Fenical, William; Moore, Bradley S

    2013-03-20

    Cyanosporasides are marine bacterial natural products containing a chlorinated cyclopenta[a]indene core of suspected enediyne polyketide biosynthetic origin. Herein, we report the isolation and characterization of novel cyanosporasides C-F (3-6) from the marine actinomycetes Salinispora pacifica CNS-143 and Streptomyces sp. CNT-179, highlighted by the unprecedented C-2' N-acetylcysteamine functionalized hexose group of 6. Cloning, sequencing, and mutagenesis of homologous ~50 kb cyanosporaside biosynthetic gene clusters from both bacteria afforded the first genetic evidence supporting cyanosporaside's enediyne, and thereby p-benzyne biradical, biosynthetic origin and revealed the molecular basis for nitrile and glycosyl functionalization. This study provides new opportunities for bioengineering of enediyne derivatives and expands the structural diversity afforded by enediyne gene clusters.

  6. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity.

    Directory of Open Access Journals (Sweden)

    Utpal Bose

    Full Text Available Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR, via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (biochemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical

  7. Natural Products from Mangrove Actinomycetes

    Directory of Open Access Journals (Sweden)

    Dong-Bo Xu

    2014-05-01

    Full Text Available Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery.

  8. Discovery of novel metabolites from marine actinomycetes.

    Science.gov (United States)

    Lam, Kin S

    2006-06-01

    Recent findings from culture-dependent and culture-independent methods have demonstrated that indigenous marine actinomycetes exist in the oceans and are widely distributed in different marine ecosystems. There is tremendous diversity and novelty among the marine actinomycetes present in marine environments. Progress has been made to isolate novel actinomycetes from samples collected at different marine environments and habitats. These marine actinomycetes produce different types of new secondary metabolites. Many of these metabolites possess biological activities and have the potential to be developed as therapeutic agents. Marine actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.

  9. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation.

    Science.gov (United States)

    Contador, C A; Rodríguez, V; Andrews, B A; Asenjo, J A

    2015-11-01

    The first manually curated genome-scale metabolic model for Salinispora tropica strain CNB-440 was constructed. The reconstruction enables characterization of the metabolic capabilities for understanding and modeling the cellular physiology of this actinobacterium. The iCC908 model was based on physiological and biochemical information of primary and specialised metabolism pathways. The reconstructed stoichiometric matrix consists of 1169 biochemical conversions, 204 transport reactions and 1317 metabolites. A total of 908 structural open reading frames (ORFs) were included in the reconstructed network. The number of gene functions included in the reconstructed network corresponds to 20% of all characterized ORFs in the S. tropica genome. The genome-scale metabolic model was used to study strain-specific capabilities in defined minimal media. iCC908 was used to analyze growth capabilities in 41 different minimal growth-supporting environments. These nutrient sources were evaluated experimentally to assess the accuracy of in silico growth simulations. The model predicted no auxotrophies for essential amino acids, which was corroborated experimentally. The strain is able to use 21 different carbon sources, 8 nitrogen sources and 4 sulfur sources from the nutrient sources tested. Experimental observation suggests that the cells may be able to store sulfur. False predictions provided opportunities to gain new insights into the physiology of this species, and to gap fill the missing knowledge. The incorporation of modifications led to increased accuracy in predicting the outcome of growth/no growth experiments from 76 to 93%. iCC908 can thus be used to define the metabolic capabilities of S. tropica and guide and enhance the production of specialised metabolites.

  10. Actinomycete integrative and conjugative elements

    NARCIS (Netherlands)

    Poele, Evelien M. te; Bolhuis, Henk; Dijkhuizen, Lubbert

    This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative

  11. Actinomycete integrative and conjugative elements

    NARCIS (Netherlands)

    Te Poele, E.M.; Bolhuis, H.; Dijkhuizen, L.

    2008-01-01

    This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative

  12. Antitumor compounds from marine actinomycetes.

    OpenAIRE

    Salas, José A.; Carmen Méndez; Carlos Olano

    2009-01-01

    Chemotherapy is one of the main treatments used to combat cancer. A great number of antitumor compounds are natural products or their derivatives, mainly produced by microorganisms. In particular, actinomycetes are the producers of a large number of natural products with different biological activities, including antitumor properties. These antitumor compounds belong to several structural classes such as anthracyclines, enediynes, indolocarbazoles, isoprenoides, macrolides, non-ribosomal pept...

  13. Antioxidant and antimicrobial properties of marine actinomycetes ...

    African Journals Online (AJOL)

    Marine actinomycetes have great potential as producers of unique bioactive compounds due to its special adaptation in the harsh environment in the ocean. In this study, 100 strains of actinomycetes were isolated from marine sponges collected from sea area close to Sipadan Island in Sabah. Each strain was fermented in ...

  14. Chemical ecology of antibiotic production by actinomycetes

    NARCIS (Netherlands)

    Van der Meij, Anne; Worsley, Sarah F.; Hutchings, Matthew I.; van Wezel, Gilles P.

    Actinomycetes are a diverse family of filamentous bacteria that produce a plethora of natural products relevant for agriculture, biotechnology and medicine, including the majority of the antibiotics we use in the clinic. Rather than as free-living bacteria, many actinomycetes have evolved to live in

  15. Antitumor compounds from marine actinomycetes.

    Science.gov (United States)

    Olano, Carlos; Méndez, Carmen; Salas, José A

    2009-06-11

    Chemotherapy is one of the main treatments used to combat cancer. A great number of antitumor compounds are natural products or their derivatives, mainly produced by microorganisms. In particular, actinomycetes are the producers of a large number of natural products with different biological activities, including antitumor properties. These antitumor compounds belong to several structural classes such as anthracyclines, enediynes, indolocarbazoles, isoprenoides, macrolides, non-ribosomal peptides and others, and they exert antitumor activity by inducing apoptosis through DNA cleavage mediated by topoisomerase I or II inhibition, mitochondria permeabilization, inhibition of key enzymes involved in signal transduction like proteases, or cellular metabolism and in some cases by inhibiting tumor-induced angiogenesis. Marine organisms have attracted special attention in the last years for their ability to produce interesting pharmacological lead compounds.

  16. Antitumor Compounds from Marine Actinomycetes

    Directory of Open Access Journals (Sweden)

    José A. Salas

    2009-06-01

    Full Text Available Chemotherapy is one of the main treatments used to combat cancer. A great number of antitumor compounds are natural products or their derivatives, mainly produced by microorganisms. In particular, actinomycetes are the producers of a large number of natural products with different biological activities, including antitumor properties. These antitumor compounds belong to several structural classes such as anthracyclines, enediynes, indolocarbazoles, isoprenoides, macrolides, non-ribosomal peptides and others, and they exert antitumor activity by inducing apoptosis through DNA cleavage mediated by topoisomerase I or II inhibition, mitochondria permeabilization, inhibition of key enzymes involved in signal transduction like proteases, or cellular metabolism and in some cases by inhibiting tumor-induced angiogenesis. Marine organisms have attracted special attention in the last years for their ability to produce interesting pharmacological lead compounds.

  17. Isolation of Cellulolytic Actinomycetes from Marine Sediments

    OpenAIRE

    Veiga, Manuel; Esparis, Azucena; Fabregas, Jaime

    1983-01-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity.

  18. Deep Sea Actinomycetes and Their Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Kui Hong

    2017-05-01

    Full Text Available Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces.

  19. Production of Antibiotics from Soil-Isolated Actinomycetes and ...

    African Journals Online (AJOL)

    Purpose: To investigate the production of antibiotic from actinomycetes isolated from soil and evaluate its antimicrobial activities. Methods: In a medium formulation study, A-4 and A-4 actinomycete mutant strains (out of the six strains selected from the nine actinomycetes that were screened) were evaluated for maximum ...

  20. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from ...

    African Journals Online (AJOL)

    Actinomycetes were isolated from various desert soil samples of Saudi Arabia using alkaline and normal pH media. A total of 42 akaliphilic actinomycetes isolated from yeast extract-soluble starch (YS) agar media (pH 11.0 ± 1) and 102 actinomycetes were isolated from tap water agar media (pH 7.0 ± 1) for comparison.

  1. Isolation and characterization of actinomycetes in vellar estuary ...

    African Journals Online (AJOL)

    Vellar Estuary was investigated as a source of actinomycetes to screen for production of novel bioactive compounds. The presence of relatively large populations of. Streptomyces in Vellar Estuary soil samples indicates that it is an eminently suitable ecosystem for actinomycetes. Actinomycetes counts ranged 12 x 104 cfu/g ...

  2. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery.

    Science.gov (United States)

    Subramani, Ramesh; Aalbersberg, William

    2013-11-01

    Rare Actinomycetes from underexplored marine environments are targeted in drug discovery studies due to the Actinomycetes' potentially huge resource of structurally diverse natural products with unusual biological activity. Of all marine bacteria, 10 % are Actinomycetes, which have proven an outstanding and fascinating resource for new and potent bioactive molecules. Past and present efforts in the isolation of rare Actinomycetes from underexplored diverse natural habitats have resulted in the isolation of about 220 rare Actinomycete genera of which more than 50 taxa have been reported to be the producers of 2,500 bioactive compounds. That amount represents greater than 25 % of the total Actinomycetes metabolites, demonstrating that selective isolation methods are being developed and extensively applied. Due to the high rediscovery rate of known compounds from Actinomycetes, a renewed interest in the development of new antimicrobial agents from rare and novel Actinomycetes is urgently required to combat the increasing number of multidrug-resistant human pathogens. To facilitate that discovery, this review updates all selective isolation media including pretreatment and enrichment methods for the isolation of marine rare Actinomycetes. In addition, this review demonstrates that discovering new compounds with novel scaffolds can be increased by intensive efforts in isolating and screening rare marine genera of Actinomycetes. Between 2007 and mid-2013, 80 new rare Actinomycete species were reported from marine habitats. They belong to 23 rare families, of which three are novel, and 20 novel genera. Of them, the family Micromonosporaceae is dominant as a producer of promising chemical diversity.

  3. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes.

    Science.gov (United States)

    Hamedi, Javad; Mohammadipanah, Fatemeh; Ventosa, Antonio

    2013-01-01

    More than 70 species of halotolerant and halophilic actinomycetes belonging to at least 24 genera have been validly described. Halophilic actinomycetes are a less explored source of actinomycetes for discovery of novel bioactive secondary metabolites. Degradation of aliphatic and aromatic organic compounds, detoxification of pollutants, production of new enzymes and other metabolites such as antibiotics, compatible solutes and polymers are other potential industrial applications of halophilic and halotolerant actinomycetes. Especially new bioactive secondary metabolites that are derived from only a small fraction of the investigated halophilic actinomycetes, mainly from marine habitats, have revealed the huge capacity of this physiological group in production of new bioactive chemical entities. Combined high metabolic capacities of actinomycetes and unique features related to extremophilic nature of the halophilic actinomycetes have conferred on them an influential role for future biotechnological applications.

  4. Actinomycetes in the rhizosphere of semidesert soils of Mongolia

    Science.gov (United States)

    Norovsuren, Zh.; Zenova, G. M.; Mosina, L. V.

    2007-04-01

    The population density of actinomycetes in the desert-steppe soil, rhizosphere, and the above-ground parts of plants varies from tens to hundreds of thousands of colony-forming units (CFU) per gram of substrate. The actinomycetal complexes of the brown desert-steppe soil without plant roots are more diverse in their taxonomic composition than the actinomycetal complexes in the rhizosphere and the aboveground parts of plants. Additionally to representatives of the Streptomyces and Micromonospora genera, actinomycetes from the Nocardia, Saccharopolyspora, Thermomonospora, and Actinomadura genera were identified in the soil. The population density of actinomycetes in the rhizosphere and in the soil reached hundreds of thousand CFU/g; it considerably exceeded the population density of actinomycetes in the aboveground parts of plants. The maximum population density of actinomycetes was determined in the rhizosphere of Asparagus gobicus, Salsola pestifera, and Cleistogenes songorica.

  5. Production of Biosurfactants by Actinomycetes Isolated from ...

    African Journals Online (AJOL)

    ASPIRE ONE D270

    Actinomycetes have complex enzymatic mechanism that aids hydrocarbon mineralization and thus increases the potential for biosurfactant production. These biosurfactants are stable across temperature ranges and are not majorly affected by salt concentration; this property aids its potential usage in decontamination of oil ...

  6. Identification of some actinomycete species by restrication ...

    African Journals Online (AJOL)

    EcoRI, StyI, AvaI, BanI, HindIII, NaeI, AsnI and BanII) to obtain restriction fragment length polymorphisms (RFLPs). The PCR/RFLP profiles of SrRNA genes indicated that the actinomycete isolates are polyphylogenetic when digested with BanI ...

  7. Isolation, characterization and identification of actinomycetes from ...

    African Journals Online (AJOL)

    A total of 62 isolates of actinomycetes were isolated from 7 soil samples collected from Agriculture Research Center Semongok, Sarawak. All 62 isolates exhibited a range of colony colours (dark grey, grey, dark brown, brownish, whitish and yellowish white). All the isolates were later purified and subjected to a few ...

  8. Cytotoxic compounds from a marine actinomycete, Streptomyces ...

    African Journals Online (AJOL)

    The search for cytotoxic compounds is continuing due to the demand for new anticancer drugs. In this work, compound I was isolated from the marine derived actinomycete strain AUBN10/2, obtained from marine sediment samples of Bay of Bengal, India. This was obtained by solvent extraction followed by chromatographic ...

  9. Distribution of actinomycetes in near-shore tropical marine sediments.

    OpenAIRE

    Jensen, P.R.; Dwight, R.; Fenical, W.

    1991-01-01

    Actinomycetes were isolated from near-shore marine sediments collected at 15 island locations throughout the Bahamas. A total of 289 actinomycete colonies were observed, and all but 6 could be assigned to the suprageneric groups actinoplanetes and streptomycetes. A bimodal distribution in the actinomycete population in relation to depth was recorded, with the maximum numbers occurring in the shallow and deep sampling sites. This distribution can be accounted for by a rapid decrease in strepto...

  10. Actinomycetes: still a source of novel antibiotics.

    Science.gov (United States)

    Genilloud, Olga

    2017-10-18

    Covering: 2006 to 2017Actinomycetes have been, for decades, one of the most important sources for the discovery of new antibiotics with an important number of drugs and analogs successfully introduced in the market and still used today in clinical practice. The intensive antibacterial discovery effort that generated the large number of highly potent broad-spectrum antibiotics, has seen a dramatic decline in the large pharma industry in the last two decades resulting in a lack of new classes of antibiotics with novel mechanisms of action reaching the clinic. Whereas the decline in the number of new chemical scaffolds and the rediscovery problem of old known molecules has become a hurdle for industrial natural products discovery programs, new actinomycetes compounds and leads have continued to be discovered and developed to the preclinical stages. Actinomycetes are still one of the most important sources of chemical diversity and a reservoir to mine for novel structures that is requiring the integration of diverse disciplines. These can range from novel strategies to isolate species previously not cultivated, innovative whole cell screening approaches and on-site analytical detection and dereplication tools for novel compounds, to in silico biosynthetic predictions from whole gene sequences and novel engineered heterologous expression, that have inspired the isolation of new NPs and shown their potential application in the discovery of novel antibiotics. This review will address the discovery of antibiotics from actinomycetes from two different perspectives including: (1) an update of the most important antibiotics that have only reached the clinical development in the recent years despite their early discovery, and (2) an overview of the most recent classes of antibiotics described from 2006 to 2017 in the framework of the different strategies employed to untap novel compounds previously overlooked with traditional approaches.

  11. Biological active compounds from actinomycetes isolated from soil ...

    African Journals Online (AJOL)

    Actinomycetes which were categorised as beneficial microorganisms have long been studied for their potential in producing secondary metabolites either for pharmaceutical or agricultural industries. In this study, 160 isolates of actinomycetes had been isolated using soil suspension method. All the 160 isolates were later ...

  12. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    Actinomycetes were isolated from the sediment samples of an estuarine shrimp pond located along the south east coast of India. During the investigation, a total of 28 strains of actinomycetes were isolated and examined for their protease activity. Among them, one strain PS-18A which was tentatively identified as ...

  13. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    Science.gov (United States)

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Characterisation of actinomycetes community from the heavy metals polluted soil

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2013-01-01

    Full Text Available The isolation of actinomycetes was performed from soil samples influenced by car-traffic. The acute toxicity of soil leaches was tested by the help of Microtox® bioassay testing system which uses freeze dried luminescent bacteria Photobacterium phosphoreum as the test organisms. The content of heavy metals in biomass of soil microorganisms and in whole soil samples was determinate. 115 strains of actinomycetes were isolated and their total numbers in soil samples were estimated. The acute toxicity of soil influenced the total numbers of actinomycetes. By the help of DNA-DNA reassociation procedure the generic diversity of bacteria was estimated. The identification and differentiation of streptomycetes from the total isolated actinomycetes was made using specific morphological criteria and the gas chromatography-fatty acid methyl ester (GC-FAME analysis. FAME method is adequate only for differentiation of members of genus Streptomyces from other actinomycetes because of their characteristical profile of fatty acids.

  15. Selection and taxonomic identification of carotenoid-producing marine actinomycetes.

    Science.gov (United States)

    Romero, Francisco; Fernández-Chimeno, Rosa Isabel; de la Fuente, Juan Luis; Barredo, José-Luis

    2012-01-01

    Carotenoids are important pigments produced by plants and many microorganisms, including fungi, microalgae, cyanobacteria, and bacteria. Marine actinomycetes are a group of bacteria that produce a variety of metabolites with economic potential. Here, we describe a general method of selecting marine actinomycetes as carotenoids' producers. The screening is carried out at two levels: the first one involves a quick selection of strains by visual color inspection, and the second consists in the analysis of the extracts by HPLC. The taxonomic analysis of the producing strains gives us an overview of the groups of actinomycetes in which carotenoids can be found.

  16. Enzyme inhibitors and other bioactive compounds from marine actinomycetes.

    Science.gov (United States)

    Imada, Chiaki

    2005-01-01

    Several enzyme-inhibitor-producing actinomycetes were isolated from various samples collected from the marine environment and characterized. Most of them produced novel compounds that are useful in medicine and agriculture. Actinomycete strain no. 18, which produces antibiotics against Gram-positive bacteria only in the presence of seawater, was isolated from sediment sampled from neritic sea water and characterized. The production of antibiotics was observed at seawater concentrations ranging from 60 to 110% (v/v). Thus, the production was seawater-dependent. The production of tetrodotoxin (TTX), known otherwise as puffer fish toxin, was investigated in various actinomycetes collected from the marine environment. Of 10 isolates from various sea areas, 9 produced TTX as judged by their retention times on high-performance liquid chromatography (HPLC). To our knowledge, this is the first report of actinomycetes from the marine environment that produce TTX.

  17. Antimicrobial activity of some actinomycetes from Western Ghats of ...

    African Journals Online (AJOL)

    Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. Pathalam Ganesan, Appadurai Daniel Reegan, Rajendran Host Antony David, Munusamy Rajiv Gandhi, Michael Gabriel Paulraj, Naif Abdullah Al-Dhabi, Savarimuthu Ignacimuthu ...

  18. Marine actinomycetes: an ongoing source of novel bioactive metabolites

    National Research Council Canada - National Science Library

    Subramani, Ramesh; Aalbersberg, William

    2012-01-01

    ...% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs...

  19. Marine actinomycetes from Madeira Archipelago preliminary taxonomic studies

    National Research Council Canada - National Science Library

    Sara, Rodrigues; Tiago, Dias; Florbela, Pereira; Ilda, Santos Sanches; Susana, Gaudêncio

    2014-01-01

    .... Marine actinomycetes, are a robust resource of chemically prolific novelty. Producing structurally unique biological active secondary metabolites, generating a valuable source for innovative biotechnology and drug discovery[1,2...

  20. Actinomycetes in garden soils of the city of Kirov

    Science.gov (United States)

    Shirokikh, I. G.; Solov'eva, E. S.; Ashikhmina, T. Ya.

    2013-05-01

    The population density, diversity, and structure of the actinomycetic complexes were studied in garden soils of the city of Kirov. The relationships between the structure of the complexes and the acidity, the concentrations of the mobile forms of heavy metals, and the soil humus content were analyzed. The specific features of the actinomycetic population in the garden soils of the city in comparison with the transport ecotopes and suburban territories were revealed. It was demonstrated that the actinomycetic complexes in the garden soils preserve their structural similarity with the actinomycetic complexes of the suburban forest parks despite certain changes in the composition of the dominant species and the relative abundance of the separate taxa. The obtained data indicate that the garden plots in the city contribute to the preservation of ecologically balanced ecosystems.

  1. First records of sponge-associated Actinomycetes from two coastal ...

    African Journals Online (AJOL)

    First records of sponge-associated Actinomycetes from two coastal sponges from Mauritius. Sandeep Shivram Beepat, Chandani Appadoo, Daniel Edgard Pierre Marie, Shamimtaz Bibi Sadally, Jose Pavao Mendes Paula, Kannan Sivakumar, Rashmi Ragothama Rao, Maryam Salah ...

  2. Antibiotic Drug Discovery from the New Marine Actinomycete Genus Marinomyces

    OpenAIRE

    Fenical, William H.

    2007-01-01

    Actinomycetes are high G+C content Gram-positive bacteria with an unparalleled ability to produce diverse secondary metabolites. These bacteria, which are best known from soils, have been studied extensively by the pharmaceutical industry and account for a disproportionately large amount of the $25.3 billion annual global sales of microbially derived pharmaceuticals. In recent years however, the yield of new lead compounds from common soil-derived actinomycetes has diminished significantly,...

  3. Identification of Actinomycetes from Marine Sediments with ???Different Environmental Characteristics

    OpenAIRE

    Tahir, Akbar; Gosalam, Sulaiman

    2010-01-01

    Hibah Dikti 2009 ABSTRACT Research was conducted for inventing active substance from marine Actinomycetes having antiviral activities on tiger shrimp (Penaeus monodon) with particular interest on the White Spot Syndrome Virus (WSSV). The WSSV (namely: white spot disease) could cause a 100% mortalities in only 3 ??? 10 days post infection, hence, a massive loss for the shrimp farmers. Actinobacteria is a class of microorganism which commonly known as Actinomycetes and belong to the...

  4. Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase

    National Research Council Canada - National Science Library

    Saxena, Akansha; Upadhyay, Ramraj; Kango, Naveen

    2015-01-01

    .... A total of 165 actinomycetes were found positive for L-asparaginase activity. Among these, 57 actinomycetes producing larger zones of L-asparagine hydrolysis were further screened for their capacity to produce glutaminase-free L-asparaginase...

  5. Antimicrobial potential of Actinomycetes species isolated from marine environment.

    Science.gov (United States)

    Valli, S; Suvathi, Sugasini S; Aysha, O S; Nirmala, P; Vinoth, Kumar P; Reena, A

    2012-06-01

    To evaluate the antimicrobial activity of Actinomycetes species isolated from marine environment. Twenty one strains of Actinomycetes were isolated from samples of Royapuram, Muttukadu, Mahabalipuram sea shores and Adyar estuary. Preliminary screening was done using cross-streak method against two gram-positive and eight gram-negative bacteria. The most potent strains C11 and C12 were selected from which antibacterial substances were extracted. The antibacterial activities of the extracts were performed using Kirby-Bauer disc diffusion method. Molecular identification of those isolates was done. All those twenty one isolates were active against at least one of the test organisms. Morphological characters were recorded. C11 showed activity against Staphylococcus species (13.0±0.5 mm), Vibrio harveyi (11.0±0.2 mm), Pseudomonas species (12.0±0.3 mm). C12 showed activity against Staphylococcus species (16.0±0.4 mm), Bacillus subtilis (11.0±0.2 mm), Vibrio harveyi (9.0±0.1 mm), Pseudomonas species (10.0±0.2 mm). 16S rRNA pattern strongly suggested that C11 and C12 strains were Streptomyces species. The results of the present investigation reveal that the marine Actinomycetes from coastal environment are the potent source of novel antibiotics. Isolation, characterization and study of Actinomycetes can be useful in discovery of novel species of Actinomycetes.

  6. Bioprospecting potential of halogenases from Arctic marine actinomycetes.

    Science.gov (United States)

    Liao, Li; Chen, Ruiqin; Jiang, Ming; Tian, Xiaoqing; Liu, Huan; Yu, Yong; Fan, Chenqi; Chen, Bo

    2016-03-10

    Halometabolites, an important group of natural products, generally require halogenases for their biosynthesis. Actinomycetes from the Arctic Ocean have rarely been investigated for halogenases and their gene clusters associated, albeit great potential of halometabolite production has been predicted. Therefore, we initiated this research on the screening of halogenases from Arctic marine actinomycetes isolates to explore their genetic potential of halometabolite biosynthesis. Nine halogenase genes were discovered from sixty Arctic marine actinomycetes using in-house designed or previously reported PCR primers. Four representative genotypes were further cloned to obtain full coding regions through genome walking. The resulting halogenases were predicted to be involved in halogenation of indole groups, antitumor agent ansamitocin-like substrates, or unknown peptide-like compounds. Genome sequencing revealed a potential gene cluster containing the halogenase predicted to catalyze peptide-like compounds. However, the gene cluster was probably silent under the current conditions. PCR-based screening of halogenase genes is a powerful and efficient tool to conduct bioprospecting of halometabolite-producing actinomycetes from the Arctic. Genome sequencing can also identify cryptic gene clusters potentially producing new halometabolites, which might be easily missed by traditional isolation and chemical characterization. In addition, our study indicates that great genetic potential of new halometabolites can be expected from mostly untapped actinomycetes from the polar regions.

  7. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants.

    Science.gov (United States)

    Nalini, M S; Prakash, H S

    2017-04-01

    The endophytic actinomycetes constitute one of the fascinating group of microorganisms associated with a wide range of plant species. The diversity of actinomycetes in plants and their tissue parts is a matter of debate as no consensus are derived between individual studies. Nevertheless, their diversity correlates with the occurrence in plant species harboured in unique regions of biologically diverse areas called "hot spots." Recent advances in the isolation techniques have facilitated the isolation of rare taxa from these environments. The biosynthetic ability of the endophytic actinomycetes has proven beyond doubt that these organisms have the potential to synthesize an array of compounds with novelty in structure and bioactivity and as a result are preferred in the natural product screening programs. In the years to come, the scientific world may await to discover many more novel actinomycete taxa with metabolic diversity and applications in therapeutics. "Endophytes" - the microbes residing in the living tissues of plants are virtually omnipresent. Actinomycete endophytes are diverse in distribution within plant tissues, especially in the roots as they have a close association with the rhizhosphere. An introspection into diversity studies necessitates careful sampling, analysis, and isolation data from the biodiverse and nonbiodiverse regions represented by unique environments. The key to the recovery of novel species and their bioprospection lies in these regions. © 2017 The Society for Applied Microbiology.

  8. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes

    DEFF Research Database (Denmark)

    Tong, Yaojun; Charusanti, Pep; Zhang, Lixin

    2015-01-01

    . To facilitate the genetic manipulation of actinomycetes, we developed a highly efficient CRISPR-Cas9 system to delete gene(s) or gene cluster(s), implement precise gene replacements, and reversibly control gene expression in actinomycetes. We demonstrate our system by targeting two genes, actIORF1 (SCO5087......) and actVB (SCO5092), from the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2). Our CRISPR-Cas9 system successfully inactivated the targeted genes. When no templates for homology-directed repair (HDR) were present, the site-specific DNA double-strand breaks (DSBs) introduced by Cas9....... Moreover, we developed a system to efficiently and reversibly control expression of target genes, deemed CRISPRi, based on a catalytically dead variant of Cas9 (dCas9). The CRISPR-Cas9 based system described here comprises a powerful and broadly applicable set of tools to manipulate actinomycetal genomes....

  9. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes.

    Science.gov (United States)

    Gallagher, Kelley A; Fenical, William; Jensen, Paul R

    2010-12-01

    Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Genome Sequence of the Filamentous Actinomycete Kitasatospora viridifaciens

    NARCIS (Netherlands)

    Ramijan, Carmiol A.K.; Wezel, van G.P.; Claessen, D.

    2017-01-01

    The vast majority of antibiotics are produced by filamentous soil bacteria called actinomycetes. We report here the genome sequence of the tetracycline producer "Streptomyces viridifaciens" DSM 40239. Given that this species has the hallmark signatures characteristic of the Kitasatospora genus, we

  11. [Diversity of cultured actinomycete in the Baltic Sea].

    Science.gov (United States)

    Jiang, Yi; Cao, Yanru; Wang, Qian; Jin, Rongxian

    2011-11-04

    Actinomycetes (actinobacteria) are getting more and more recognized as a natural source for new drug exploration. In order to find new lead compounds, the diversity and selected bioactivities of cultured actinomycetes in the Baltic Sea (Germany) were investigated. One hundred sediment samples were collected from south of the Baltic Sea, of which 809 purified cultures of actinomycetes were obtained by using 7 media. The phylogenetic analysis of 280 selected strains based on 16S rRNA gene sequences was carried out. In addition, activities of 21 enzymes, which play a role in metabolic processes, and anti-microbial activities were determined. Fifteen genera and eight possible new species of actinobacteria were identified. Members of 3 genera were not isolated from marine habitats before. Of the 280 strains 21% and 20% inhibited the growth of Bacillus subtilis and Staphylococcus lentus, respectively. More than 75% of the strains exhibited 8 types of enzymatic activities, including esterase lipase (C8), catalase and naphthol-AS-BI-phosphohydrolase. Baltic Sea provides a rich diversity of actinobacteria regarding the phylogenetic analysis and the biological activities. Research and utilization of marine actinomycetes should be strengthened.

  12. The function of vesicles in the actinomycete Frankia

    NARCIS (Netherlands)

    Meesters, T.

    1988-01-01

    The actinomycete Frankia is a symbiotic nitrogen fixer, living in root nodules of many non-leguminous plants. A typical characteristic of this endophytic organism is the formation of specialized swollen cell structures, called vesicles. Frankia

  13. Isolation and screening of actinomycetes from Sundarbans soil for ...

    African Journals Online (AJOL)

    A total of 55 actinomycetes isolates from soil sample of Karanjal region in Sundarbans were characterized for morphological identification and antimicrobial activity. Four general such as Actinomyces, Nocardia, Streptomyces and Micromonospora with total numbers of isolates were 27, 14, 11 and 3, respectively, were ...

  14. Chitin degrading potential of three aquatic actinomycetes and its ...

    African Journals Online (AJOL)

    Eighty actinomycetes obtained from Krishna River in Satara district, India were screened for their chitinolytic activity on colloidal chitin agar. Fifty-two isolates showed clear zones of hydrolysis of chitin. Three isolates: Streptomyces canus, Streptomyces pseudogriseolus and Micromonospora brevicatiana were selected on ...

  15. Antibacterial activity of some actinomycetes isolated from farming ...

    African Journals Online (AJOL)

    A total of 50 different actinomycete strains were recovered from farming soil samples collected from Manisa Province and its surrounding. These were then assessed for their antibacterial activity against four phytopathogenic and six pathogenic bacteria. Results indicated that 34% of all isolates are active against, at least, ...

  16. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    STORAGESEVER

    myecete proteases in the bio-organic chemistry. Like most other microbial proteases, those from .... Various aminoacids for protease production. Gelatin broth was used for studying the influence of organic matter .... Fungicidal activity of marine actinomycetes against phyotopathogenic fungi. Indian J. Biotechnol. 4: 271-276.

  17. Biosynthesis of metal nanoparticles using fungi and actinomycete

    National Research Council Canada - National Science Library

    Murali Sastry; Absar Ahmad; M. Islam Khan; Rajiv Kumar

    2003-01-01

    ... on the use of micro-organisms in the biosynthesis of inorganic nanoparticles, with particular emphasis on the recent and exciting results obtained at the National Chemical Laboratory, Pune on the biosynthesis of noble-metal nanoparticles using fungi and actinomycete. Some of the challenges in this emerging approach are highlighted.

  18. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from ...

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... eubacteria. They are present in a wide range of environ- ments commonly as saprophytes in soil, water, compost and other habitats. They play an important role in soil structure and composting. Actinomycetes are the main producers of antibiotics and approximately at the rate of. 300 antibiotics per year had ...

  19. Characterization of a chitinase from the cellulolytic actinomycete Thermobifida fusca

    NARCIS (Netherlands)

    Gaber, Yasser; Mekasha, Sophanit; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Fraaije, Marco W

    Thermobifida fusca is a well-known cellulose-degrading actinomycete, which produces various glycoside hydrolases for this purpose. However, despite the presence of putative chitinase genes in its genome, T. fusca has not been reported to grow on chitin as sole carbon source. In this study, a gene

  20. Isolasi Actinomycetes Dengan Menggunakan Metode Skrining Sebagai Penghasil Enzim Kitinase

    Directory of Open Access Journals (Sweden)

    Welly Anggraini

    2015-04-01

    Full Text Available Penelitian ini bertujuan untuk mengisolasi Actinomycetes yang memiliki kemampuan dalam mendegradasi kitin.  Isolasi Actinomycetes dilakukan menggunakan media NaST21Cx selama 2-3 bulan dan purifikasi untuk mendapatkan isolat murni dilakukan menggunakan media ISP-2. Hasil dari penelitian ini yakni, empat isolat Actinomycetes, yang diberi kode ANL-4, ANL-9, ANL-12, dan ANL-d-2b-3 yang ditandai dengan ciri-ciri isolat yang keras dan melekat erat pada agar.  Secara mikroskopis teramati adanya hifa dan spora yang terbentuk.  Isolat ANL-4, ANL-9, ANL-12, dan ANLd-2b-3 memiliki kemampuan dalam mendegradasi kitin pada media uji mineral-salt agar plate dengan substrat kitin 1% (w/v yang diindikasikan dengan terbentukya zona bening yang diperjelas dengan penambahan Congo Red 1% (w/v.  Indeks kitinolitik yang dihasilkan berturut-turut : 5 cm, 2 cm, 1,9 cm, dan 2,3 cm. Kata Kunci : actinomycetes, hutan bakau, kitin, kitinase

  1. Biogas production enhancement by cellulolytic strains of actinomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Attar, Y.; Mhetre, S.T.; Dhawale, M.D. [Shivsadan Renewable Energy Research Inst., Sangli (India)

    1998-09-01

    Biogas yield from cow dung can be increased when the cellulose content of straw is degraded. Of the 32 species of actinomycete bacteria identified in laboratory work, two (CD-4 and Shiv-15) proved particularly useful. Gas production from cattle dung increased by 46% and 39% respectively. (orig.)

  2. Efficiency of some actinomycete isolates in biological treatment and ...

    African Journals Online (AJOL)

    The main focus of studies and research in the field of wastewater treatment is treating wastewater without causing environmental hazards as well as getting benefits from the treated waste materials. In this regard, the aim of the current study was to isolate some actinomycete strains from Beni-Suef Wastewater Treatment ...

  3. Environmental and metabolomic study of antibiotic production by actinomycetes

    NARCIS (Netherlands)

    Zhu, Hua

    2014-01-01

    This thesis may be regarded as a concept work, to see how feasible drug discovery approaches still are. For this, a strain collection was built up consisting of actinomycetes from soil in the Qinling and Himalaya mountains, which were subsequently tested for antibiotic production against multi-drug

  4. Biological active compounds from actinomycetes isolated from soil ...

    African Journals Online (AJOL)

    sunny

    2014-12-03

    Dec 3, 2014 ... compounds and biocontrol agents would have been favored by ... Plug of tested plant pathogens (C. gloeosporioides and. Colletotrichum ... Table 1. Inhibition profile produce by actinomycetes. Pathogen. Isolates inhibition profile (x). Total number of isolates which produce inhibition zone. No inhibition.

  5. Isolation, identification and antagonistic activity evaluation of actinomycetes in barks of nine trees

    Directory of Open Access Journals (Sweden)

    Wang Dong-sheng

    2017-01-01

    Full Text Available Actinomycetes are important producers of novel bioactive compounds. New sources need to be explored for isolating previously unknown bioactive compound-producing actinomycetes. Here we evaluated the potential of bark as a natural source of novel bioactive actinomycete species. Bark samples were collected from nine tree species at different elevations (1600-3400 ma.s.l. on Qin Mountain, Shaanxi Province, China. Actinomycetes were cultivated, enumerated and isolated using serial dilution and spread-plate techniques. The antimicrobial activity of actinomycete isolates was analyzed using an agar block method against 15 typical bacterial and fungal species and plant pathogens. The dominant isolates were identified by 16S rRNA-based sequence analysis. Results showed that actinomycete counts in bark samples of Quercus liaotungensis Koidz. was the highest among all trees species tested. The numbers of actinomycete species in bark samples were highest in Q. aliena var. acutiserrata and Spiraea alpina Pall. Antagonistic activity wasdetected in approximately 54% of the actinomycete isolates. Of these, 20 isolates (25% showed broad-spectrum antagonistic activity against ≥5 of the microorganisms tested. In conclusion, the bark on coniferous and broadleaf trees possesses a high diversity of actinomycetes and serves as a natural source of bioactive compound-producing actinomycetes.

  6. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    OpenAIRE

    Safwat Ahmed; Ute Hentschel; Mona Radwan; Abou-El-Ela, Soad H.; Amro Hanora; Pimentel-Elardo, Sheila M.; Usama Ramadan Abdelmohsen

    2010-01-01

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven diffe...

  7. Diversity, abundance and natural products of marine sponge-associated actinomycetes.

    Science.gov (United States)

    Abdelmohsen, Usama Ramadan; Bayer, Kristina; Hentschel, Ute

    2014-03-01

    Actinomycetes are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the diversity, abundance and methodological approaches targeting marine sponge-associated actinomycetes. Additionally, novel qPCR data on actinomycete abundances in different sponge species and other environmental sources are presented. The natural products literature is covered, and we are here reporting on their chemical structures, their biological activities, as well as the source organisms from which they were isolated.

  8. Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity

    OpenAIRE

    Usama Ramadan Abdelmohsen; Chen Yang; Hannes Horn; Dina Hajjar; Timothy Ravasi; Ute Hentschel

    2014-01-01

    The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequen...

  9. Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China

    OpenAIRE

    Hong, Kui; Gao, An-Hui; Xie, Qing-Yi; Gao, Hao Gao; Zhuang, Ling; Lin, Hai-Peng; Yu, Hai-Ping; LI Jia; Yao, Xin-Sheng; Goodfellow, Michael; Ruan, Ji-Sheng

    2009-01-01

    The mangrove ecosystem is a largely unexplored source for actinomycetes with the potential to produce biologically active secondary metabolites. Consequently, we set out to isolate, characterize and screen actinomycetes from soil and plant material collected from eight mangrove sites in China. Over 2,000 actinomycetes were isolated and of these approximately 20%, 5%, and 10% inhibited the growth of Human Colon Tumor 116 cells, Candida albicans and Staphylococcus aureus, respectively, while 3%...

  10. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    Science.gov (United States)

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  11. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture

    National Research Council Canada - National Science Library

    Bernal, Milagro García; Campa-Córdova, Ángel Isidro; Saucedo, Pedro Enrique; González, Marlen Casanova; Marrero, Ricardo Medina; Mazón-Suástegui, José Manuel

    2015-01-01

    .... Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis...

  12. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity.

    Science.gov (United States)

    Golinska, Patrycja; Wypij, Magdalena; Ingle, Avinash P; Gupta, Indarchand; Dahm, Hanna; Rai, Mahendra

    2014-10-01

    Biogenic synthesis of metal nanoparticles has been well proved by using bacteria, fungi, algae, actinomycetes, plants, etc. Among the different microorganisms used for the synthesis of metal nanoparticles, actinomycetes are less known. Although, there are reports, which have shown that actinomycetes are efficient candidates for the production of metal nanoparticles both intracellularly and extracellularly. The nanoparticles synthesized by the members of actinomycetes present good polydispersity and stability and possess significant biocidal activities against various pathogens. The present review focuses on biological synthesis of metal nanoparticles and their application in medicine. In addition, the toxicity of these biogenic metal nanoparticles to human beings and environment has also been discussed.

  13. Airway inflammation among compost workers exposed to actinomycetes spores

    Directory of Open Access Journals (Sweden)

    Kari Kulvik Heldal

    2015-05-01

    Full Text Available Objectives. To study the associations between exposure to bioaerosols and work-related symptoms, lung function and biomarkers of airway inflammation in compost workers. Materials and method. Personal full-shift exposure measurements were performed on 47 workers employed at five windrow plants (n=20 and five reactor plants (n=27. Samples were analyzed for endotoxins, bacteria, fungal and actinomycetes spores. Health examinations were performed on workers and 37 controls before and after work on the day exposure was measured. The examinations included symptoms recorded by questionnaire, lung function by spirometry and nasal dimensions by acoustic rhinometry (AR. The pneumoproteins CC16, SP-D and SP-A were measured in a blood sample drawn at the end of the day. Results. The levels of endotoxins (median 3 EU/m[sup]3[/sup] , range 0–730 EU/m[sup]3[/sup] and actinomycetes spores (median 0.2 × 10[sup]6[/sup] spores/m[sup]3[/sup] , range 0–590 × 10[sup]6[/sup] spores/m[sup]3[/sup] were significantly higher in reactor plants compared to windrow plants. However, windrow composting workers reported more symptoms than reactor composting workers, probably due to use of respiratory protection. Exposure-response relationships between actinomycetes spores exposure and respiratory effects, found as cough and nose irritation during a shift, was significantly increased (OR 4.3, 95% CI 1.1–16, OR 6.1, 95% CI 1.5–25, respectively, p<0.05 among workers exposed to 0.02–0.3 × 10[sup]6[/sup] actinomycetes spores/m 3 , and FEV1/FVC% decreased cross shift (b=–3.2, SE=1.5%, p<0.01. Effects were weaker in the highest exposed group, but these workers used respiratory protection, frequently limiting their actual exposure. No relationships were found between exposure and pneumoprotein concentrations. Conclusions. The major agent in the aerosol generated at compost plants was actinomycetes spores which was associated with work related cough symptoms and work

  14. In Vitro Investigation of Antifungal Activities of Actinomycetes against Microsporum gypseum

    Directory of Open Access Journals (Sweden)

    Naser Keikha

    2013-02-01

    Conclusion: The findings of the present research show that terrigenous actinomycetes have an antifungal effect upon Microsporum gypseum. So, one hopes that-in future-rather than administering antifungal chemicals that have side-effects, dermatophytic infections can be cured by applying these actinomycetes.

  15. Antiviral property of marine actinomycetes against white spot syndrome virus in penaeid shrimps

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.S.; Philip, R.; Achuthankutty, C.T.

    and are continually being screened for new compounds. In this communication, the results of a study made to determine the effectiveness of marine actinomycetes against the white spot disease in penaeid shrimps are presented. Twenty-five isolates of actinomycetes were...

  16. [Secondary Metabolites from Marine Microorganisms. I. Secondary Metabolites from Marine Actinomycetes].

    Science.gov (United States)

    Orlova, T I; Bulgakova, V G; Polin, A N

    2015-01-01

    Review represents data on new active metabolites isolated from marine actinomycetes published in 2007 to 2014. Marine actinomycetes are an unlimited source of novel secondary metabolites with various biological activities. Among them there are antibiotics, anticancer compounds, inhibitors of biochemical processes.

  17. Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded

    NARCIS (Netherlands)

    Poele, Evelien M. Te; Samborskyy, Markiyan; Oliynyk, Markiyan; Leadlay, Peter F.; Bolhuis, Henk; Dijkhuizen, Lubbert

    Actinomycete integrative and conjugative elements (AICEs) are present in diverse genera of the actinomycetes, the most important bacterial producers of bioactive secondary metabolites. Comparison of pMEA100 of Amycolatopsis mediterranei, pMEA300 of Amycolatopsis methanolica and pSE211 of

  18. Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded

    NARCIS (Netherlands)

    Te Poele, E.M.; Samborskyy, M.; Oliynyk, M.; Leadlay, P.F.; Bolhuis, H.; Dijkhuizen, L.

    2008-01-01

    Actinomycete integrative and conjugative elements (AICEs) are present in diverse genera of the actinomycetes, the most important bacterial producers of bioactive secondary metabolites. Comparison of pMEA100 of Amycolatopsis mediterranei, pMEA300 of Amycolatopsis methanolica and pSE211 of

  19. Effects of herbicides on growth and number of actinomycetes in soil and in vitro

    Directory of Open Access Journals (Sweden)

    Šantrić Ljiljana

    2016-01-01

    Full Text Available This study was conducted under laboratory conditions to investigate the effects of herbicides (nicosulfuron, metribuzin and glyphosate on the number of actinomycetes in soil and growth of several isolates of actinomycetes in vitro. The lowest tested concentrations equalled the recommended rates (1X, while the other three were five-fold (5X, ten-fold (10X and fifty-fold (50X. Samples were collected for analysis 3, 7, 14, 30 and 45 days after herbicide application. Treatment with the two highest concentrations of herbicides (10X and 50X caused a significant inhibition of the number of actinomycetes in soil and growth of the isolates in vitro. The obtained data indicated that the effect depended on the type of herbicide, application rate, duration of activity and actinomycetes isolate. The study suggests that herbicide applications in soil caused transient effects on the growth and development on actinomycetes community in soil.

  20. New Dimensions of Research on Actinomycetes: Quest for Next Generation Antibiotics

    Directory of Open Access Journals (Sweden)

    Polpass Arul Jose

    2016-08-01

    Full Text Available Starting with the discovery of streptomycin, the promise of natural products research on actinomycetes has been captivat¬ing researchers and offered an array of life-saving antibiotics. However, most of the actinomycetes have received a little attention of researchers beyond isolation and activity screening. Noticeable gaps in genomic information and associated biosynthetic potential of actinomycetes are mainly the reasons for this situation, which has led to a decline in the discovery rate of novel antibiotics. Recent insights gained from genome mining have revealed a massive existence of previously unrecognized biosynthetic potential in actinomycetes. Successive developments in next-generation sequencing, genome editing, analytical separation and high-resolution spectroscopic methods have reinvigorated interest on such actinomycetes and opened new avenues for the discovery of natural and natural-inspired antibiotics. This article describes the new dimensions that have driven the ongoing resurgence of research on actinomycetes with historical background since the commencement in 1940, for the attention of worldwide researchers. Coupled with increasing advancement in molecular and analytical tools and techniques, the discovery of next-generation antibiotics could be possible by revisiting the untapped potential of actinomycetes from different natural sources.

  1. [Phylogenetic diversity of the culturable rare actinomycetes in marine sponge Hymeniacidon perlevis by improved isolation media].

    Science.gov (United States)

    Xin, Yanjuan; Wu, Peichun; Deng, Maicun; Zhang, Wei

    2009-07-01

    Based on the molecular diversity information, seven actinomycete-selective culture media and isolation conditions were modified to isolate and cultivate diverse rare actinomycetes from Hymeniacidon perlevis. Modified, selective cultivation and enrichment media were used, with the addition of an elemental solution of simulating the elemental composition of marine sponge H. perlevis. Restriction Fragment Length Polymorphism (RFLP) analysis of 16S rDNA sequence was used to reveal the diversity of culturable rare actinomycetes. A total of 59 actinomycete strains were isolated from the marine sponge H. perlevis. A total of 27 representative actinomycetes were selected according to their morphological feature, color and pigments. They gave 15 different RFLP patterns after digesting their PCR products of 16s rDNA with Hha I. The results showed that these isolates belonged to 10 genera: Streptomyces, Nocardiopsis, Micromonospora, Cellulosimicrobium, Gordonia, Nocardia, Prauseria, Pseudonocardia , Saccharomonospora and Microbacterium. The modified isolation media and selective cultivation procedures are highly effective in the recovery of culturable actinomycetes from the marine sponge H. perlevis, resulting in the highest diversity of culturable rare actinomycetes from any sponges.

  2. Diversity and Antagonistic Activity of Actinomycete Strains From Myristica Swamp Soils Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Varghese Rlnoy

    2014-05-01

    Full Text Available Under the present investigation Actinomycetes were isolated from the soils of Myristica swamps of southern Western Ghats and the antagonistic activity against different human bacterial pathogens was evaluated. Results of the present study revealed that Actinomycetes population in the soils of Myristica swamp was spatially and seasonally varied. Actinomycetes load was varied from 24×104 to 71×103, from 129×103 to 40×103 and from 31×104 to 84×103 in post monsoon, monsoon and pre monsoon respectively. A total of 23 Actinomycetes strains belonging to six genera were isolated from swamp soils. Identification of the isolates showed that most of the isolates belonged to the genus Streptomyces (11, followed by Nocardia (6, Micromonospora (3, Pseudonocardia (1, Streptosporangium (1, and Nocardiopsis (1. Antagonistic studies revealed that 91.3% of Actinomycete isolates were active against one or more tested pathogens, of that 56.52% exhibited activity against Gram negative and 86.95% showed activity against Gram positive bacteria. 39.13% isolates were active against all the bacterial pathogens selected and its inhibition zone diameter was also high. 69.5% of Actinomycetes were exhibited antibacterial activity against Listeria followed by Bacillus cereus (65.21%, Staphylococcus (60.86%, Vibrio cholera (52.17%, Salmonella (52.17% and E. coli (39.13%. The results indicate that the Myristica swamp soils of Southern Western Ghats might be a remarkable reserve of Actinomycetes with potential antagonistic activity.

  3. Bioprospecting marine actinomycetes for multidrug-resistant pathogen control from Rameswaram coastal area, Tamil Nadu, India.

    Science.gov (United States)

    Wahaab, Femina; Subramaniam, Kalidass

    2017-08-07

    A potent Streptomyces bacillaris strain RAM25C4 was isolated for controlling methicillin-resistant Staphylococcus aureus and multidrug-resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa. A total of 131 actinomycetes were isolated from the Rameswaram coastal region, Tamil Nadu, India. Among 131 actinomycetes, maximum number of actinomycetes (55%) isolated at the distance of 3-6 m from seashore. Out of 131 actinomycetes, 85% of the actinomycetes exhibited different degree of antagonistic activity against test pathogens. The antagonistic activity evaluated using actinomycetes direct culture filtrate and culture filtrate extracts. Among these culture filtrate, extracts had supreme antagonistic activity against multidrug-resistant bacteria and the solvent ethyl acetate was the best for extracting secondary metabolites from actinomycetes. In HPTLC analysis, the presence of macrolides, terpenoids, and quinolones was identified in RAM25C4 extract. In GC-MS analysis, various potent compounds such as phenolic compound-2,6-di-tert-butylphenol, alkaloid compound-1H, 5H, pyrrolo (1' 2':3, 4) imidazo, and quinolone compound-1,4-benzenediol, 2,5-bis(1,1-dimethylethyl) were identified in the ethyl acetate extract of RAM25C4. The phylogenetic analysis of 16S rRNA gene sequence of RAM25C4 isolate was deposited in NCBI with name Streptomyces bacillaris strain RAM25C4 and accession number KM513543.

  4. Antifungal actinomycetes associated with the pine bark beetle, Orthotomicus erosus, in South Africa

    Directory of Open Access Journals (Sweden)

    Zander R. Human

    2017-01-01

    Full Text Available Actinomycete bacteria are often associated with insects that have a mutualistic association with fungi. These bacteria are believed to be important to this insect–fungus association as they produce antibiotics that exclude other saprophytic fungi from the immediate environment. The aim of this study was to investigate the presence of potentially protective actinomycetes associated with Orthotomicus erosus, an alien invasive pine bark beetle, in South Africa. This bark beetle and its relatives have an association with Ophiostomatales species which are often the only fungi found in the bark beetle galleries. We hypothesised that antibiotic-producing actinomycetes could be responsible for the paucity of other fungi in the galleries by producing compounds to which the Ophiostoma spp. are tolerant. Several actinomycetes in the genus Streptomyces and one Gordonia sp. were isolated from the beetle. Interestingly, most isolates were from the same species as actinomycetes associated with other pine-infesting insects from other parts of the world, including bark beetles and the woodwasp Sirex noctilio. Most actinomycetes isolated had strong antifungal properties against the selected test fungi, including Ophiostoma ips, which is the most common fungal symbiont of Orthotomicus erosus. Although the actinomycetes did not benefit Ophiostoma ips and the hypothesis was not supported, their sporadic association with Orthotomicus erosus suggests that they could have some impact on the composition of the fungal communities present in the bark beetle galleries, which is at present poorly understood.

  5. Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase.

    Science.gov (United States)

    Saxena, Akansha; Upadhyay, Ramraj; Kango, Naveen

    2015-12-01

    Over the recent years glutaminase free L-asparaginase has gained more importance due to better therapeutic properties for treatment of acute lymphoblastic leukemia. Actinomycetes are known for L-asparaginase activity. In the current study, 80 actinomycetes were isolated from various soil habitats by serial dilution technique. Presence of L-asparaginase was investigated in a total of 240 actinomycetes by tubed agar method using modified M-9 medium. A total of 165 actinomycetes were found positive for L-asparaginase activity. Among these, 57 actinomycetes producing larger zones of L-asparagine hydrolysis were further screened for their capacity to produce glutaminase-free L-asparaginase. Four L-glutaminase-free actinomycetes were found to be potential L-asparaginase producers. These actinomycetes were identified as Streptomyces cyaneus (SAP 1287, CFS 1560), S. exfoliates (CFS 1557) and S. phaeochromogenes (GS 1573) on the basis of morphological and biochemical identification studies. Maximum L-asparaginase activity (19.2 Uml(-1)) was observed in culture filtrate of S. phaeochromogenes under submerged fermentation. Results indicate that S. phaeochromogenes could be a potential source of glutaminase free L-asparaginase for commercial purpose. To the best of our knowledge, this is the first report on production of glutaminase free L-asparaginase from S. cyaneus, S. exfoliatus and S. phaeochromogenes.

  6. In vitro activity of bioactive extracts from rare actinomycetes against multi‐drug resistant Streptococcus pneumoniae

    National Research Council Canada - National Science Library

    Tiwari, K; Raj, V.S; Upadhyay, D.J; Gupta, R.K

    2015-01-01

    In this study, we investigated the in vitro potential of the bioactive extracts from five putatively novel species of actinomycetes isolated from the Indian hot desert against multi-drug resistant (MDR...

  7. Marine actinomycetes as an emerging resource for the drug development pipelines.

    Science.gov (United States)

    Zotchev, Sergey B

    2012-04-30

    Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinomycetes from terrestrial sources have been studied and screened since the 1950s, yielding many important anti-infective and anti-cancer drugs. However, frequent re-discovery of the same compounds in terrestrial actinomycetes have made them less attractive for screening programs in the recent years. At the same time, actinomycetes isolated from the marine environment currently receive considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. This review highlights achievements and challenges in the isolation of marine actinomycetes, some examples of bioactive metabolites identified by conventional screening, and presents new developments in the field of genome mining and heterologous expression of biosynthetic gene clusters leading to the discovery of novel compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples.

    Science.gov (United States)

    Hameş-Kocabaş, E Esin; Uzel, Ataç

    2012-03-01

    During the last two decades, discoveries of new members of actinomycetes and novel metabolites from marine environments have drawn attention to such environments, such as sediment and sponge. For the successful isolation of actinomycetes from marine environments, many factors including the use of enrichment and pre-treatment techniques, and the selection of growth media and antibiotic supplements should be taken into account. High-throughput cultivation is an innovative technique that mimics nature, eliminates undesired, fast-growing bacteria and creates suitable conditions for rare, slow-growing actinomycetes. This review comprehensively evaluates the traditional and innovative techniques and strategies used for the isolation of actinomycetes from marine sponge and sediment samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Saccharopolyspora indica sp. nov., an actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis)

    National Research Council Canada - National Science Library

    Vaddavalli, Radha; Peddi, Sneha; Kothagauni, Srilekha Yadav; Begum, Zareena; Gaddam, Bhagyanarayana; Periketi, Madhusudhanachary; Linga, Venkateswar Rao

    2014-01-01

    A novel actinomycete strain, designated VRC122T, was isolated from a Callistemon citrinus rhizosphere sample collected from New Delhi, India, and its taxonomic status was determined by using a polyphasic approach...

  10. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents.

    Science.gov (United States)

    Cuesta, Gonzalo; García-de-la-Fuente, Rosana; Abad, Manuel; Fornes, Fernando

    2012-03-01

    The search for new biocontrol strategies to inhibit the growth of phytopathogenic microorganisms has become widely widespread due to environmental concerns. Among actinomycetes, Streptomyces species have been extensively studied since they have been recognized as important sources of antibiotics. Actinomycete strains were isolated from a calcareous soil, 2 two-phase olive mill waste ('alperujo') composts, and the compost-amended soil by using selective media, and they were then co-cultured with 5 phytopathogenic fungi and 1 bacterium to perform an in vitro antagonism assay. Forty-nine actinomycete strains were isolated, 12 of them showing a great antagonistic activity towards the phytopathogenic microorganisms tested. Isolated strains were identified by 16S rDNA sequence analysis and phenotypic procedures. Eleven isolates concerned the genus Streptomyces and 1 actinomycete with chitinolytic activity belonged to the genus Lechevalieria. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Actinomycetes as the causative organism of osteomyelitis in sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Barter, S.J.; Hennessy, O.

    1984-04-01

    The case of a 17-year-old girl with sickle cell anaemia who presented with extensive osteomyelitis due to actinomycetes is reported. Osteomyelitis in the long bones due to actinomycosis is extremely rare. A review of the literature reveals only six cases in which actinomycetes have been isolated from lesions affecting a long bone. The occurence of this condition in sickle cell haemoglobinopathy has not been previously reported.

  12. Actinomycetes from the South China Sea sponges: isolation, diversity and potential for aromatic polyketides discovery

    OpenAIRE

    Zhiyong eLi; Wei eSun; Fengli eZhang; Liming eHe; Karthik eLoganathan

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a tot...

  13. Actinomycetes from Sediments in the Trondheim Fjord, Norway: Diversity and Biological Activity

    OpenAIRE

    Zotchev, Sergey B.; Geir Johnsen; Espen Fjærvik; Harald Bredholt

    2008-01-01

    The marine environment represents a largely untapped source for isolation of new microorganisms with potential to produce biologically active secondary metabolites. Among such microorganisms, Gram-positive actinomycete bacteria are of special interest, since they are known to produce chemically diverse compounds with a wide range of biological activities. We have set out to isolate and characterize actinomycete bacteria from the sediments in one of the largest Norwegian fjords, the Trondheim ...

  14. IDENTIFICATION AND PROPAGATION OF MARINE ACTINOMYCETES FOR THE ENHANCEMENT OF TIGER SHRIMP LARVAE AGAINST WSSV

    OpenAIRE

    Sulaiman Gosalam; Habson Batubara; Akbar Tahir

    2008-01-01

    ABSTRAK AGROKOMPLEKS 2009 Research was conducted for inventing active substance from marine Actinomycetes having antiviral activities on tiger shrimp (Penaeus monodon) with particular interest on the White Spot Syndrome Virus (WSSV). The WSSV (namely: white spot disease) could cause a 100% mortalities in only 3 ??? 10 days post infection, hence, a massive loss for the shrimp farmers. Actinobacteria is a class of microorganism which commonly known as Actinomycetes and belong to the family ...

  15. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    Directory of Open Access Journals (Sweden)

    M. Sreevidya

    2016-03-01

    Full Text Available Abstract The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40 but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40, hydrocyanic acid (except VAI-7 and VAI-40, indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea.

  16. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea.

    Science.gov (United States)

    Sreevidya, M; Gopalakrishnan, S; Kudapa, H; Varshney, R K

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20°C to 40°C, pH range of 7-11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    Science.gov (United States)

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.

  18. Bioactive Potential of Actinomycetes from Less Explored Ecosystems against Mycobacterium tuberculosis and Other Nonmycobacterial Pathogens.

    Science.gov (United States)

    Manikkam, Radhakrishnan; Venugopal, Gopikrishnan; Subramaniam, Balaji; Ramasamy, Balagurunathan; Kumar, Vanaja

    2014-01-01

    Bioactive potential of actinomycetes isolated from certain less explored Indian ecosystems against Mycobacterium tuberculosis and other nonmycobacterial pathogens was investigated. Actinomycetes were isolated from the soil samples collected from desert, coffee plantation, rubber forest, and hill area and their cultural and micromorphological characteristics were studied. Crude extracts were prepared by agar surface fermentation and tested against M. tuberculosis isolates by luciferase reporter phage (LRP) assay at 100 µg/mL. Activity against nonmycobacterial pathogens was studied by agar plug method. Totally 54 purified cultures of actinomycetes including 43 Streptomyces and 11 non-Streptomyces were isolated. While screening for antitubercular activity, extracts of 39 actinomycetes showed activity against one or more M. tuberculosis isolates whereas 27 isolates exhibited antagonistic activity against nonmycobacterial pathogens. In particular crude extracts from sixteen actinomycete isolates inhibited all the three M. tuberculosis isolates tested. Findings of the present study concluded that less explored ecosystems investigated in this study are the potential resource for bioactive actinomycetes. Further purification and characterization of active molecule from the potential extracts will pave the way for determination of MIC, toxicity, and specificity studies.

  19. Identification and screening of rare actinomycetes isolated from Neesia altissima Bl.

    Science.gov (United States)

    Pratiwi, R. H.; Hidayat, I.; Hanafi, M.; Mangunwardoyo, W.

    2017-07-01

    Actinomycetes is the main source of antibiotics and endophytic actinomycetes from medicinal plants has considerable potential as like the host. The aim of this research is to identify rare actinomycetes isolated from Neesia altissima and to screen their antagonistic activity against diarrhea-causing bacteria in order to find new potential secondary metabolites. Samples of N. altissima were collected from mount Halimun-Salak National Park. Endophytic actinomycetes were isolated from roots of N. altissima by surface sterilization method. Screening of antagonistic activity was conducted against five diarrhea-causing bacteria such as Bacillus cereus ATCC 10876, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 25241, Shigella flexneri ATCC 12022, and Staphylococcus aureus ATCC 25923 by using diffusion disc methods. The endophytic actinomycete showed in vitro antibacterial activity against four diarrhea-causing bacteria, except the B. cereus ATCC 10876. The phylogenetic tree generated from 16S rRNA sequence showed that sequence of endophytic actinomycetes isolates nested in the clade belonging to the genus Nonomuraea. Sequence of UICC B-94 formed a monophyletic clade with N. jabiensis strain A4036 and N. rubra strain AC 615. Therefore, it is named as Nonomuraea sp. strain UICC B-94.

  20. Enrichment Method for the Isolation of Bioactive Actinomycetes From Mangrove Sediments of Andaman Islands, India

    Directory of Open Access Journals (Sweden)

    Baskaran, R.

    2011-01-01

    Full Text Available Various pre-treatment methods and three different media were employed for the isolation of bioactive actinomycetes from mangrove sediments of Andaman and Nicobar Islands, India. Sediments from four different sites of mangrove forest were collected and pre-treated by dry heat method, and the media were supplemented with cycloheximide 80 µg/mL and nalidixic acid 75 µg/mL. The mean actinomycetes population density in sediment samples were recorded as 22 CFU-10^-6/gm in KUA medium followed by 12 CFU-10^-6/gm in AIA medium and 8 CFU-10^-6/gm in SCA medium. A total of 42 actinomycetes were isolated, and all the isolates were evaluated for their antibacterial activity against pathogenic bacteria on two different media. Among 42 isolates tested, 22 species were found to be antibacterial metabolite producer against test bacteria namely, Staphylococcus aureus, Bacillus subtilis, Salmonella typhi and Klebsiella pneumoniae. Particularly, the actinomycete strains such as A101, A102, A107, A116, A121, A125, A130, F101, F102, F104, F106, De101 and De102 significantly inhibited the growth of all bacteria which were tested. Of these strains, A107 was identified as Streptomyces spp. This strain had the maximum activity against all used pathogens on both medium. Hence, the isolation, characterization and studies of secondary metabolites of actinomycetes from mangrove sediments in Andaman and Nicobar Island could be a pathway for discovery of antibiotics from marine actinomycetes.

  1. Diversity of Nonribosomal Peptide Synthetase Genes in the AnticancerProducing Actinomycetes Isolated from Marine Sediment in Indonesia

    OpenAIRE

    Camelia Herdini; Shinta Hartanto; Sofia Mubarika; Bambang Hariwiyanto; Nastiti Wijayanti; Akira Hosoyama; Atsushi Yamazoe; Hideaki Nojiri; Jaka Widada

    2016-01-01

    Marine actinomycetes is a group of bacteria that is highly potential in producing novel bioactive compound. It has unique characteristics and is different from other terrestrial ones. Extreme environmental condition is suspected to lead marine actinomycetes produce different types of bioactive compound found previously. The aim of this study was to explore the presence and diversity of NRPS genes in 14 anticancer-producing actinomycetes isolated from marine sediment in Indonesia. ...

  2. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential

    National Research Council Canada - National Science Library

    Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M; Pereira, Florbela; Rodrigues, Cecilia M. P; Santos-Sanches, Ilda; Gaudêncio, Susana P

    2016-01-01

    .... Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield...

  3. Screening and characterization of protease producing actinomycetes from marine saltern.

    Science.gov (United States)

    Suthindhiran, Krish; Jayasri, Mangalam Achuthananda; Dipali, Dipa; Prasar, Apurva

    2014-10-01

    In the course of systematic screening program for bioactive actinomycetes, an alkaline protease producing halophilic strain Actinopolyspora sp. VITSDK2 was isolated from marine saltern, Southern India. The strain was identified as Actinopolyspora based on its phenotypic and phylogenetic characters. The protease was partially purified using ammonium sulfate precipitation and subsequently by DEAE cellulose column chromatography. The enzyme was further purified using HPLC and the molecular weight was found to be 22 kDa as determined by SDS-PAGE analysis. The purified protease exhibited pH stability in a wide range of 4-12 with optimum at 10.0. The enzyme was found to be stable between 25 and 80 °C and displayed a maximum activity at 60 °C. The enzyme activity was increased marginally in presence of Mn(2+) , Mg(2+) , and Ca(2+) and decreased in presence of Cu(2+) . PMSF and DFP completely inhibited the activity suggesting it belongs to serine protease. Further, the proteolytic activity was abolished in presence of N-tosyl-L-lysine chloromethyl ketone suggesting this might be chymotrypsin-like serine protease. The protease was 96% active when kept for 10 days at room temperature. The results indicate that the enzyme belong to chymotrypsin-like serine protease exhibiting both pH and thermostability, which can be used for various applications in industries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation of actinomycetes from mangrove and estuarine sediments of Cochin and screening for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Emilda Rosmine

    2016-03-01

    Full Text Available Objective: To isolate and screen actinomycetes for antimicrobial activity from mangroves and estuarine soil samples of Cochin. Methods: In the present study, sediment samples collected from mangroves and various stations of Cochin estuary were pretreated and actinomycetes were isolated on different selective media. The isolates were screened for antibiotic activity by following disc diffusion assay (Kirby-Bauer method against human pathogens, fish pathogens and Gram-positive bacteria. The isolates were identified based on their morphology. Results: Only 2 actinomycete isolates (ER7 and ER10 of the 50 isolates screened had antimicrobial activities against one or more pathogens tested. ER7 isolate showed higher antimicrobial activity as compared to that of ER10 isolate. The maximum inhibition zone of crude extract from ER7 was 16.7 mm. The methanol extract of ER7 showed antimicrobial activity against all the pathogens tested with a maximum zone of 21.0 mm. The isolates with antimicrobial activity were found to belong to the genus Streptomyces. Conclusions: There is no significant report on bioactive actinomycetes from the present study areas. Potent antibiotics from the selected isolates could contribute to fight against several human and fish diseases. Further purification, structural elucidation and characterization are recommended to know the quality, novelty and commercial value of these antibiotics. Hence, the mangroves and estuary of Kochi show great promise for the discovery of bioactive actinomycetes.

  5. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China.

    Science.gov (United States)

    Hong, Kui; Gao, An-Hui; Xie, Qing-Yi; Gao, Hao; Zhuang, Ling; Lin, Hai-Peng; Yu, Hai-Ping; Li, Jia; Yao, Xin-Sheng; Goodfellow, Michael; Ruan, Ji-Sheng

    2009-01-01

    The mangrove ecosystem is a largely unexplored source for actinomycetes with the potential to produce biologically active secondary metabolites. Consequently, we set out to isolate, characterize and screen actinomycetes from soil and plant material collected from eight mangrove sites in China. Over 2,000 actinomycetes were isolated and of these approximately 20%, 5%, and 10% inhibited the growth of Human Colon Tumor 116 cells, Candida albicans and Staphylococcus aureus, respectively, while 3% inhibited protein tyrosine phosphatase 1B (PTP1B), a protein related to diabetes. In addition, nine isolates inhibited aurora kinase A, an anti-cancer related protein, and three inhibited caspase 3, a protein related to neurodegenerative diseases. Representative bioactive isolates were characterized using genotypic and phenotypic procedures and classified to thirteen genera, notably to the genera Micromonospora and Streptomyces. Actinomycetes showing cytotoxic activity were assigned to seven genera whereas only Micromonospora and Streptomyces strains showed anti-PTP1B activity. We conclude that actinomycetes isolated from mangrove habitats are a potentially rich source for the discovery of anti-infection and anti-tumor compounds, and of agents for treating neurodegenerative diseases and diabetes.

  6. Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes.

    Science.gov (United States)

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H; Ahmed, Safwat; Hentschel, Ute

    2010-02-26

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  7. Actinomycetes from Sediments in the Trondheim Fjord, Norway: Diversity and Biological Activity

    Directory of Open Access Journals (Sweden)

    Sergey B. Zotchev

    2008-02-01

    Full Text Available The marine environment represents a largely untapped source for isolation of new microorganisms with potential to produce biologically active secondary metabolites. Among such microorganisms, Gram-positive actinomycete bacteria are of special interest, since they are known to produce chemically diverse compounds with a wide range of biological activities. We have set out to isolate and characterize actinomycete bacteria from the sediments in one of the largest Norwegian fjords, the Trondheim fjord, with respect to diversity and antibiotic-producing potential. Approximately 3,200 actinomycete bacteria were isolated using four different agar media from the sediment samples collected at different locations and depths (4.5 to 450 m. Grouping of the isolates first according to the morphology followed by characterization of isolates chosen as group representatives by molecular taxonomy revealed that Micromonospora was the dominating actinomycete genus isolated from the sediments. The deep water sediments contained a higher relative amount of Micromonospora compared to the shallow water samples. Nine percent of the isolates clearly required sea water for normal growth, suggesting that these strains represent obligate marine organisms. Extensive screening of the extracts from all collected isolates for antibacterial and antifungal activities revealed strong antibiotic-producing potential among them. The latter implies that actinomycetes from marine sediments in Norwegian fjords can be potential sources for the discovery of novel anti-infective agents.

  8. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    Directory of Open Access Journals (Sweden)

    Safwat Ahmed

    2010-02-01

    Full Text Available Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt and from Rovinj (Croatia. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus and Gram-negative (Escherichia coli, Pseudomonas aeruginosa bacteria, fungi (Candida albicans and human parasites (Leishmania major, Trypanosoma brucei. Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  9. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity.

    Science.gov (United States)

    Abdelmohsen, Usama Ramadan; Yang, Chen; Horn, Hannes; Hajjar, Dina; Ravasi, Timothy; Hentschel, Ute

    2014-05-12

    The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery.

  10. Diversity and bioprospecting of culturable actinomycetes from marine sediment of the Yellow Sea, China.

    Science.gov (United States)

    Xiong, Zhi-Qiang; Liu, Qiao-Xia; Pan, Zhao-Long; Zhao, Na; Feng, Zhi-Xiang; Wang, Yong

    2015-03-01

    Marine actinomycetes are a potential source of a wide variety of bioactive natural products. In this work, seven pretreatments, three selective isolation media, and five artificial seawater concentrations were used to isolate actinomycetes from the sediments collected from Yellow Sea, China. Statistical analysis showed that only the isolation medium strongly affected the total and bioactive numbers of actinomycete isolates. A total of 613 actinobacterial strains were isolated and screened for antimicrobial activities; 154 isolates showed activity against at least one of nine test drug-resistant microorganisms. Eighty-nine representatives with strong antimicrobial activity were identified phylogenetically based on 16S rRNA gene sequencing, which were assigned to five different actinomycete genera Streptomyces, Kocuria, Saccharomonospora, Micromonospora, and Nocardiopsis. Using PCR-based screening for six biosynthetic genes of secondary metabolites, all 45 isolates with acute activity have at least one biosynthetic gene, 28.8 % of which possess more than three biosynthetic genes. As a case, strain SMA-1 was selected for antimicrobial natural product discovery. Three diketopiperazine dimers including a new compound iso-naseseazine B (1) and two known compounds naseseazine B (2) and aspergilazine A (3) were isolated by bioassay-guided separation. These results suggested that actinomycetes from marine sediments are a potential resource of novel secondary metabolites and drugs.

  11. Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity

    Directory of Open Access Journals (Sweden)

    Usama Ramadan Abdelmohsen

    2014-05-01

    Full Text Available The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II as well as nonribosomal peptide synthetases (NRPS showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery.

  12. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  13. Amylase activity of aquatic actinomycetes isolated from the sediments of mangrove forests in south of Iran

    Directory of Open Access Journals (Sweden)

    Farshid Kafilzadeh

    2015-01-01

    Full Text Available In this study amylase producing actinomycetes were isolated from the sediments of mangrove forests in the south of Iran and the rate of amylase activity was measured. The samples of sediments were collected from one hundred different places in mangrove forests of the south of Iran. Collected samples were diluted then they were purified on the starch (casein agar culture and Woodruff. After that they were examined in terms of amylase production on agar–starch culture. The activity of the produced amylase by the isolated aquatic actinomycetes was measured by dinitrosalicylic acid (DNS method. The results showed that aquatic actinomycetes were isolated from 86 per 100 places in spring (86% and from 61 per 100 places in summer (61%. The highest rates of producing enzyme were related to isolated samples in spring (62.97 U/ml. Biochemical and Bergey’s book tests showed that the most isolated aquatic actinomycetes belonged to Streptomyces genus. As regards this, it is economical and easy to isolate the aquatic actinomycetes which produce amylase that is used in different industries in Iran from the sediments of mangrove forests of the south of Iran. So the isolated strains in this study can be suitable candidates for amylase production after genetic manipulation.

  14. Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges.

    Science.gov (United States)

    Manimaran, M; Kannabiran, K

    2017-06-01

    Actinomycetes-mediated biogenic synthesis of metal nanoparticles and their antimicrobial activities are well documented. Actinomycetes facilitate both intracellular and extracellular metal nanoparticles synthesis and are efficient candidates for the production of polydispersed, stable and ultra-small size metal nanoparticles. Secondary metabolites and new chemical entities derived from Actinomycetes have not been extensively studied for the synthesis of metal/metal oxide nanoparticles. The present review focuses on biogenic synthesis of metal nanoparticles from Actinomycetes and the scope for exploring Actinomycetes-derived compounds (enzymes, organics acids and bioactive compounds) as metal and metal oxide reducing agents for the synthesis of desired nanoparticles. This review also focuses on challenges faced in the applications of nanoparticles and the methods to synthesize biogenic metal nanoparticles with desired physiochemical properties such as ultra-small size, large surface to mass ratio, high reactivity etc. Methods to evade their toxicity and unique interactions with biological systems to improve their chance as an alternative therapeutic agent in medical and pharmaceutical industry are also discussed. © 2017 The Society for Applied Microbiology.

  15. Screening of Actinomycetes From Lipar Area of Oman Sea to Investigate the Antibacterial Compounds

    Directory of Open Access Journals (Sweden)

    Shams

    2015-02-01

    Full Text Available Background Actinomycetes are one of the most important sources for the production of antibacterial compounds. Marine environments, due to their unique characteristics, are considered a good option to search for bacteria with the capability of producing antimicrobial compounds. Objectives The purpose of this study was to isolate the actinomycetes producing antibacterial compounds. Materials and Methods A total of 35 actinomycetes were isolated from Oman Sea (Lipar Area. To investigate antibacterial activity, the isolated actinomycetes were assessed against reference and pathogenic bacteria, including Staphylococcus epidermidis, Staphylococcu intermedius, Staphylococcu chromogenes, Staphylococcu saprophyticus, Bacillus cereus and methicillin-resistance Staphylococcu aureus, Pseudomonas, Listeria, Klebsiella, Salmonella, Acinetobacter, and Escherichia coli O157:H7, using the cross streak method. Results Based on the morphological characterization, 35 isolated cases belonged to actinomycetes and %94 of them had the ability to produce antibacterial compounds. In the cross streak method, most of the isolated bacteria have antibacterial activity against reference S. aureus among Gram-positive bacteria and Acinetobacter among Gram-negative bacteria. Inhibition zone diameters were measured between 2-25 and 1-20 mm for Gram-positive and -negative bacteria, receptivity. Conclusions Preliminary results indicate that the native Iranian Actinobacteria could be considered a suitable option for screening of the new antibacterial compounds. Molecular research and antibacterial compound extraction against the aforementioned pathogenic strains are also being conducted.

  16. Exploring the diversity and metabolic potential of actinomycetes from temperate marine sediments from Newfoundland, Canada.

    Science.gov (United States)

    Duncan, K R; Haltli, B; Gill, K A; Correa, H; Berrué, F; Kerr, R G

    2015-01-01

    Marine sediments from Newfoundland, Canada were explored for biotechnologically promising Actinobacteria using culture-independent and culture-dependent approaches. Culture-independent pyrosequencing analyses uncovered significant actinobacterial diversity (H'-2.45 to 3.76), although the taxonomic diversity of biotechnologically important actinomycetes could not be fully elucidated due to limited sampling depth. Assessment of culturable actinomycete diversity resulted in the isolation of 360 actinomycetes representing 59 operational taxonomic units, the majority of which (94 %) were Streptomyces. The biotechnological potential of actinomycetes from NL sediments was assessed by bioactivity and metabolomics-based screening of 32 representative isolates. Bioactivity was exhibited by 41 % of isolates, while 11 % exhibited unique chemical signatures in metabolomics screening. Chemical analysis of two isolates resulted in the isolation of the cytotoxic metabolite 1-isopentadecanoyl-3β-D-glucopyranosyl-X-glycerol from Actinoalloteichus sp. 2L868 and sungsanpin from Streptomyces sp. 8LB7. These results demonstrate the potential for the discovery of novel bioactive metabolites from actinomycetes isolated from Atlantic Canadian marine sediments.

  17. Actinomycetes from red sea sponges: Sources for chemical and phylogenetic diversity

    KAUST Repository

    Abdelmohsen, Usama Ramadan

    2014-05-12

    The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery. 2014 by the authors; licensee MDPI.

  18. Phylogenetic characterization of culturable actinomycetes associated with the mucus of the coral Acropora digitifera from Gulf of Mannar.

    Science.gov (United States)

    Nithyanand, Paramasivam; Manju, Sivalingam; Karutha Pandian, Shunmugiah

    2011-01-01

    The marine environment is a virtually untapped source of novel actinomycete diversity and its metabolites. Investigating the diversity of actinomycetes in other marine macroorganisms, like seaweeds and sponges, have resulted in isolation of novel bioactive metabolites. Actinomycetes diversity associated with corals and their produced metabolites have not yet been explored. Hence, in this study we attempted to characterize the culturable actinomycetes population associated with the coral Acropora digitifera. Actinomycetes were isolated from the mucus of the coral wherein the actinomycetes count was much higher when compared with the surrounding seawater and sediment. Actinobacteria-specific 16S rRNA gene primers were used for identifying the isolates at the molecular level in addition to biochemical tests. Amplified ribosomal DNA restriction analysis using three restriction enzymes revealed several polymorphic groups within the isolates. Sequencing and blast analysis of the isolates revealed that some isolates had only 96.7% similarity with its nearest match in GenBank indicating that they may be novel isolates at the species level. The isolated actinomycetes exhibited good antibacterial activity against various human pathogens. This study offers for the first time a prelude about the unexplored culturable actinomycetes diversity associated with a scleractinian coral and their bioactive capabilities. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Harnessing the Potential of Halogenated Natural Product Biosynthesis by Mangrove-Derived Actinomycetes

    Directory of Open Access Journals (Sweden)

    Xiang Xiao

    2013-10-01

    Full Text Available Mangrove-derived actinomycetes are promising sources of bioactive natural products. In this study, using homologous screening of the biosynthetic genes and anti-microorganism/tumor assaying, 163 strains of actinomycetes isolated from mangrove sediments were investigated for their potential to produce halogenated metabolites. The FADH2-dependent halogenase genes, identified in PCR-screening, were clustered in distinct clades in the phylogenetic analysis. The coexistence of either polyketide synthase (PKS or nonribosomal peptide synthetase (NRPS as the backbone synthetases in the strains harboring the halogenase indicated that these strains had the potential to produce structurally diversified antibiotics. As a validation, a new enduracidin producer, Streptomyces atrovirens MGR140, was identified and confirmed by gene disruption and HPLC analysis. Moreover, a putative ansamycin biosynthesis gene cluster was detected in Streptomyces albogriseolus MGR072. Our results highlight that combined genome mining is an efficient technique to tap promising sources of halogenated natural products synthesized by mangrove-derived actinomycetes.

  20. Screening of secondary metabolite biosynthesis genes of marine actinomycetes isolated from Trabzon (Black Sea sea sediments

    Directory of Open Access Journals (Sweden)

    Kadriye Özcan

    2017-06-01

    Full Text Available In this study, active secondary metabolite production capacity of actinomycete isolates obtained from Trabzon (Black Sea sea sediments was investigated by molecular techniques. Totaly 24 actinomycetes were investigated by PCR based on the presence of secondary metabolite biosynthesis genes PKS / NRPS. According to the PCR results, 25 and 58% of actinomycetes obtained from Trabzon sea sediments were found to contain PKS-NRPS and only NRPS gene regions, respectively. When PCR data were evaluated, it was found that the production of the peptide form active secondary metabolite of the isolates by non-ribosomal way was higher than that of the secondary metabolite production by the PKS pathway. In addition, it has been determined that Black Sea marine sediments have high potential for active secondary metabolite production.

  1. ANALYSIS OF COENZYME A ACTIVATED COMPOUNDS IN ACTINOMYCETES

    Science.gov (United States)

    Cabruja, Matías; Lyonnet, Bernardo Bazet; Millán, Gustavo; Gramajo, Hugo; Gago, Gabriela

    2016-01-01

    Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle, lipid, carbohydrate and amino acid metabolism and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high pressure liquid chromatography electrospray ionization high resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed; including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoAs profile of Mycobacterium smegmatis which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid treated cells. This robust, sensitive and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate. PMID:27270600

  2. Characterization of a chitinase from the cellulolytic actinomycete Thermobifida fusca.

    Science.gov (United States)

    Gaber, Yasser; Mekasha, Sophanit; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Fraaije, Marco W

    2016-09-01

    Thermobifida fusca is a well-known cellulose-degrading actinomycete, which produces various glycoside hydrolases for this purpose. However, despite the presence of putative chitinase genes in its genome, T. fusca has not been reported to grow on chitin as sole carbon source. In this study, a gene encoding a putative membrane-anchored GH18 chitinase (Tfu0868) from T. fusca has been cloned and overexpressed in Escherichia coli. The protein was produced as SUMO fusion protein and, upon removal of the SUMO domain, soluble pure TfChi18A was obtained with yields typically amounting to 150mg per litre of culture. The enzyme was found to be relatively thermostable (apparent Tm=57.5°C) but not particularly thermoactive, the optimum temperature being 40-45°C. TfChi18A bound to α- and β-chitin and degraded both these substrates. Interestingly, activity towards colloidal chitin was minimal and in this case, substrate inhibition was observed. TfChi18A also cleaved soluble chito-oligosaccharides and showed a clear preference for substrates having five sugars or more. While these results show that TfChi18A is a catalytically competent GH18 chitinase, the observed catalytic rates were low compared to those of well-studied GH18 chitinases. This suggests that TfChi18A is not a true chitinase and not likely to endow T. fusca with the ability to grow on chitin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Analysis of the halogenase gene in actinomycetes from different habitats and its implications for halometabolite discovery].

    Science.gov (United States)

    Gao, Peng; Xi, Lijun; Piao, Yuhua; Ruan, Jisheng; Huang, Ying

    2009-10-01

    To compare the halometabolite producing capability between actinomycetes of earth origin and marine origin, based on genetic screening of the 1,5-dihydroflavin adenine dinucleotide (FADH2-dependent) halogenase gene. We used 141 actinomycete isolates that were dereplicated by phenotype, 70 of earth origin and 71 of marine origin, and obtained halogenase gene fragments from them by PCR screening. We then sequenced the PCR products and analyzed corresponding amino acid sequences phylogenetically. We made further comparison of the halogenase sequences between actinomycetes of different origins, and between marine-origin streptomycetes and marine-origin Micromonospora isolates. In addition, we detected polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes by PCR in the halogenase gene-positive isolates. We observed higher occurrence of the halogenase gene in marine-origin actinomycetes (36.6%) than in earth-origin actinomycetes (14.3%), and in marine-origin streptomycetes (69.0%) than in marine-origin Micromonospora isolates (14.3%). Most (86.1%) of the halogenase gene-positive isolates contained PKS and/or NRPS genes. Moreover, the halogenase sequences of marine-origin isolates differed largely from the known ones, and clustered into a couple of distinct clades in the phylogenetic tree. In addition, we found greater diversity of the halogenase genes in marine-origin Micromonospora isolates than in marine-origin streptomycetes. Based on the results of this study, we propose that actinomycetes, especially streptomycetes, from marine habitat could serve as a good source for new bioactive halometabolite discovery in the future.

  4. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    Science.gov (United States)

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  5. Antibacterial activity of actinomycetes isolated from different soil samples of Sheopur (A city of central India

    Directory of Open Access Journals (Sweden)

    Hotam S Chaudhary

    2013-01-01

    Full Text Available The main objective of the present study was isolation, purification, and characterization of actinomycetes from soil samples, having antimicrobial activity against 12 selected pathogenic strains. Soils samples were taken from different niche habitats of Sheopur district, Madhya Pradesh, India. These samples were serially diluted and plated on actinomycete isolation agar media. Potential colonies were screened, purified, and stored in glycerol stock. Isolates were morphologically and biochemically characterized. These isolates were subjected to extraction for production of the antibacterial compound. Antibacterial activity and Minimum Inhibitory Concentration (MIC of the purified extract of isolates were evaluated. Totally 31 actinomycete isolates were tested for antagonistic activity against 12 pathogenic microorganisms. Isolates AS14, AS27, and AS28 were highly active, while AS1 showed less activity against the pathogenic microorganisms. Isolate AS7 exhibited the highest antagonistic activity against Bacillus cereus (24 mm and AS16 showed the highest activity against Enterococcus faecalis (21 mm. MIC was also determined for actinomycete isolates against all the tested microorganisms. MIC of actinomycete isolates was found to be 2.5 mg/ml against Shigella dysenteriae, Vancomycin-resistant enterococci, and Klebsiella pneumoniae, and was 1.25 mg/ml for Staphylococcus saprophyticus, Streptococcus pyogenes, Staphylococcus epidermidis, Methicillin-resistant Staphylococcus, Bacillus cereus, Staphylococcus xylosus, Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, and Staphylococcus aureus. All actinomycetes isolates showed antibacterial activity against S. aureus, while they showed less activity against S. dysenteriae. These isolates had antibacterial activity and could be used in the development of new antibiotics for pharmaceutical or agricultural purposes.

  6. Actinomycetes bioactivos de sedimento marino de la costa central del Perú

    OpenAIRE

    Jorge León; Libia Liza; Isela Soto; D´Lourdes Cuadra; Lilian Patiño; Rito Zerpa

    2013-01-01

    En el presente trabajo evaluamos la actividad antibacteriana y antifúngica de actinomycetes marinos sobre patógenos de origen clínico. Asimismo, fueron evaluadas la capacidad de producir enzimas extracelulares como carbohidrasas, lipasas y proteasas. Los Actinomycetes fueron aislados de sedimentos colectados entre setiembre a diciembre del 2005 de las Bahías de Ancón (Lima) e Independencia (Ica) de 34 y 100 m de profundidad. El aislamiento se realizó en Agar Caseína - Almidón (ACA) y Agar Mar...

  7. Actinomycetes bioactivos de sedimento marino de la costa central del Perú

    Directory of Open Access Journals (Sweden)

    Jorge León

    2013-04-01

    Full Text Available En el presente trabajo evaluamos la actividad antibacteriana y antifúngica de actinomycetes marinos sobre patógenos de origen clínico. Asimismo, fueron evaluadas la capacidad de producir enzimas extracelulares como carbohidrasas, lipasas y proteasas. Los Actinomycetes fueron aislados de sedimentos colectados entre setiembre a diciembre del 2005 de las Bahías de Ancón (Lima e Independencia (Ica de 34 y 100 m de profundidad. El aislamiento se realizó en Agar Caseína - Almidón (ACA y Agar Marino (AM con adición de Cicloheximide (10 μg/mL. Las evaluaciones antimicrobianas fueron realizadas frente a bacterias patógenas antibiótico-multirresistentes y hongos de origen clínico; en tanto, para evaluar su actividad multienzimática se utilizaron sustratos poliméricos diversos. Se aislaron un total de 62 actinomycetes, de los cuales 31 (50% mostraron actividad antibacteriana frente a Staphylococcus aureus, 36 (59% frente a Pseudomonas aeruginosa y 23 (37% a ambos patógenos. Las cepas de actinomycetes I-400A y M10-77 identificadas en cada caso como Streptomyces y Thermoactinomyces fueron las que exhibieron mayor actividad inhibitoria frente a P. aeruginosa y S. aureus respectivamente. Asimismo, 13 actinomycetes (20,97% mostraron actividad antifúngica frente a cultivos de Candida albicans cepa 1511 y 17 (27,42% frente a Candida albicans cepa 1511MIC; sin embargo, ningún actinomycete presentó actividad inhibitoria frente a Aspergillus niger, Aspergillus fumigatus y Trichophyton mentagrophytes. La mayoría de los actinomycetes mostraron tener actividad multienzimática capaz de hidrolizar compuestos poliméricos como el tween-80 (96%, la gelatina (95%, almidón (93%, lecitina (88% y la caseína (74%. Extractos del compuesto activo obtenidos de la cepa M10-77 con etil acetato rindieron notable actividad inhibitoria contra S. aureus. Se concluye que el sedimento marino es fuente de Actinomycetes con gran capacidad de producir sustancias

  8. Alkaloids from the Mangrove-Derived Actinomycete Jishengella endophytica 161111

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2014-01-01

    Full Text Available A new alkaloid, 2-(furan-2-yl-6-(2S,3S,4-trihydroxybutylpyrazine (1, along with 12 known compounds, 2-(furan-2-yl-5-(2S,3S,4-trihydroxybutylpyrazine (2, (S-4-isobutyl-3-oxo-3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (3, (S-4-isopropyl-3-oxo-3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (4, (4S-4-(2-methylbutyl-3-oxo-3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (5, (S-4-benzyl-3-oxo-3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (6, flazin (7, perlolyrine (8, 1-hydroxy-β-carboline (9, lumichrome (10, 1H-indole-3-carboxaldehyde (11, 2-hydroxy-1-(1H-indol-3-ylethanone (12, and 5-(methoxymethyl-1H-pyrrole-2-carbaldehyde (13, were isolated and identified from the fermentation broth of an endophytic actinomycetes, Jishengella endophytica 161111. The new structure 1 and the absolute configurations of 2–6 were determined by spectroscopic methods, J-based configuration analysis (JBCA method, lactone sector rule, and electronic circular dichroism (ECD calculations. Compounds 8–11 were active against the influenza A virus subtype H1N1 with IC50 and selectivity index (SI values of 38.3(±1.2/25.0(±3.6/ 39.7(±5.6/45.9(±2.1 μg/mL and 3.0/16.1/3.1/11.4, respectively. The IC50 and SI values of positive control, ribavirin, were 23.1(±1.7 μg/mL and 32.2, respectively. The results showed that compound 9 could be a promising new hit for anti-H1N1 drugs. The absolute configurations of 2–5, 13C nuclear magnetic resonance (NMR data and the specific rotations of 3–6 were also reported here for the first time.

  9. Nocardia heshunensis sp. nov., an actinomycete isolated from soil.

    Science.gov (United States)

    Huang, Jian-Rong; Ming, Hong; Duan, Yan-Yan; Li, Shuai; Zhang, Ling-Yu; Ji, Wei-Li; Zhao, Zhuo-Li; Meng, Xiao-Lin; Li, Wen-Jun; Nie, Guo-Xing

    2017-09-01

    A novel Gram-stain-positive, aerobic, non-motile and acid-fast actinomycete strain, designated CFH S0067T, was isolated from a soil sample collected from Heshun old town in Tengchong, Yunnan province, in south-west PR China. The taxonomic position of strain CFH S0067T was studied in detail using a polyphasic approach. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain CFH S0067T belongs to the genus Nocardia and is closely related to Nocardia concava JCM 12351T (99.3 % similarity), forming a separated branch with this type strain. However, the strain shared 96.0 % gyrB gene sequence similarity with N. concava JCM 12351T. Furthermore, DNA-DNA hybridization showed 56.5±0.6 % DNA relatedness between the novel strain and N. concava JCM 12351T. The whole-cell hydrolysates contained meso-diaminopimelic acid (type IV) and arabinose, galactose, fructose and mannose. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and one unidentified lipid. Strain CFH S0067T contained MK-8 (H4ω-cycl) as the predominant menaquinone. C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C18 : 1ω9c and C18 : 0 10-methyl (TBSA) were the major cellular fatty acids. Mycolic acids were also detected. The G+C content of the genomic DNA was determined to be 66.9 mol%. A combination of the low DNA-DNA hybridization values and phenotypic properties demonstrated that strain CFH S0067Tis clearly distinguishable from its most closely related strain, N. concava JCM 12351T. On the basis of this polyphasic study, it is concluded that strain CFH S0067T should be considered to represent a novel species of the genus Nocardia, for which the name Nocardia heshunensis sp. nov. is proposed. The type strain is CFH S0067T (=DSM 46764T=JCM 30085T).

  10. Phylogenetic appraisal of antagonistic, slow growing actinomycetes isolated from hypersaline inland solar salterns at Sambhar salt Lake, India

    Directory of Open Access Journals (Sweden)

    Polpass eArul Jose

    2013-07-01

    Full Text Available Inland solar salterns established in the vicinity of Sambhar Lake are extreme saline environments with high salinity and alkalinity. In view of the fact that microbes inhabiting such extreme saline environments flourish the contemporary bioprospecting, it was aimed to selectively isolate slow growing and rare actinomycetes from the unexplored solar salterns. A total of 14 slow growing actinomycetes were selectively isolated from three composite soil samples of inland solar salterns. Among the isolates, four groups were formed according to similarity of the banding patterns obtained by amplified ribosomal DNA restriction analysis (ARDRA. A subset of representative isolates for each ARDRA group was identified using 16S rDNA sequence based phylogenetic analysis and subsequently the entire isolates were assigned under three different genera; Streptomyces, Pseudonocardia and Actinoalloteichus. The genus Streptomyces was found to be the dominant among the isolates. Furthermore, rare actinomycete genus Actinoalloteichus was isolated for the first time from solar saltern. Determination of salt-tolerance revealed that certain level of salt-tolerance and moderate halophilism occurs among the actinomycetes isolated from the inland salterns. In addition, all the acinomycetes were screened in two levels to unravel their ability to produce antimicrobial compounds. Significant antimicrobial activity was found among the actinomycetes against a range of bacteria and fungi to worth further characterization of these persuasive actinomycetes and their antimicrobial secondary metabolites. In a nutshell, this study offered a first interesting insight on occurrence of antagonistic rare actinomycetes and streptomycetes in inland solar salterns associated with Sambhar salt Lake.

  11. Marine actinomycetes related to the "Salinospora" group from the Great Barrier Reef sponge Pseudoceratina clavata.

    Science.gov (United States)

    Kim, Tae Kyung; Garson, Mary J; Fuerst, John A

    2005-04-01

    Ten strains identified as marine actinomycetes related to the "Salinospora" group previously reported only from marine sediments were isolated from the Great Barrier Reef marine sponge Pseudoceratina clavata. The relationship of the isolates to "Salinospora" was confirmed by phylogenetic analysis of 16S rRNA gene sequences. Colony morphology and pigmentation, occurrence and position of spores, and salinity requirements for growth were all consistent with this relationship. Genes homologous to beta-ketosynthase, an enzyme forming part of a polyketide synthesis complex, were retrieved from these isolates; these genes shared homology with other Type I ketosynthase genes, and phylogenetic comparison with amino acid sequences derived from database beta-ketosynthase genes was consistent with the close relationship of these isolates to the actinomycetes. Primers based on 16S rRNA gene sequences and designed for targeting amplification of members of the "Salinospora" group via polymerase chain reaction have been used to demonstrate occurrence of these actinomycetes within the sponge tissue. In vitro bioassays of extracts from the isolates for antibiotic activity demonstrated that these actinomycetes have the potential to inhibit other sponge symbionts in vivo, including both Gram-negative and Gram-positive bacteria.

  12. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges.

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    Full Text Available Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50 values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348 and Micromonospora (SBT687 were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.

  13. Isolation and identification of actinomycetes from a compost-amended soils biocontrol agents

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de la Fuente, R.; Cuesta, G.; Fornes, F.; Abad, M.

    2009-07-01

    Compost capability to suppress soil-borne plant pathogens has become an interesting subject as a strategy for reducing the adverse effects of massive fungicides application in the environmental. In this context, actinomycetes have received considerable attention as biocontrol agents, particularly Streptomyces species. (Author)

  14. 16S rRNA phylogenetic analysis of actinomycetes isolated from ...

    African Journals Online (AJOL)

    Subsequently, phylogenetic tree was constructed using suitable bioinformatics tools to identify the similarity which showed 97% similarity between strains. Moreover, all the selected strains of actinomycetes were subjected to study the protein and plasmid DNA expression profiles which showed prominent bands with ...

  15. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges.

    Science.gov (United States)

    Cheng, Cheng; MacIntyre, Lynsey; Abdelmohsen, Usama Ramadan; Horn, Hannes; Polymenakou, Paraskevi N; Edrada-Ebel, RuAngelie; Hentschel, Ute

    2015-01-01

    Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.

  16. Isolation and characterization of marine-derived actinomycetes with cytotoxic activity from the Red Sea coast

    Directory of Open Access Journals (Sweden)

    Mohamed Saleh Abdelfattah

    2016-08-01

    Conclusions: The results of the present study reveal that marine sediments of the Red Sea are a potent source of novel species of actinomycetes. The isolates may be useful in discovery of novel bioactive compounds and an important step in the development of microbial natural product research.

  17. Screening of chitinolytic actinomycetes for biological control of Sclerotium rolfsii stem rot disease of chilli

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2012-09-01

    Full Text Available Two hundred and eighty three strains were isolated from rhizoshere-associated soils, from Ubon Ratchathani andSrisaket province, using Enrichment Media for isolation of Chitinase-producing Actinomycetes agar (EMCA agar. All strainswere screened for chitinolytic activity and sixty eight strains gave significant clear zone on EMCA agar plates. The selectedchitinolytic strains were assayed for in vitro antagonism against Sclerotium rolfsii using cornmeal agar (CMA agar assayprocedure and the result showed that thirteen isolates have remarkable inhibiting the growth of the fungus and the top fiveantagonistic actinomycetes were PACCH 277, PACCH129, PACCH225, PACCH24 and PACCH246, respectively. The resultindicated that these actinomycetes produce chitinase which catalyze the degradation of chitin, resulting in inhibition of S.rolfsii growth. Their abilities to control the disease development were tested for in vivo biocontrol assay on chilli seedlings.Two out of thirteen candidate, PACCH24 and PACCH225, antagonists reduced the disease development at 90%. It wassuggested that the ability to inhibit the growth of pathogen in vitro was not related to the disease reduction in vivo. Thestrain PACCH24 was further identified as Streptomyces hygroscopicus according to morphological characteristic, cell walland cellular sugar analysis and 16S rDNA sequencing. The study implies a novel chitinolytic actinomycete which could bedeveloped to be a biological agent which would be included as a complement with organic fertilizers in order to control stemrot disease and promote growth of chilli.

  18. Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from ...

    African Journals Online (AJOL)

    A total of 137 actinomycetes, isolated from 25 different herbal vermicomposts, were characterized for their antagonistic potential against Macrophomina phaseolina by dual-culture assay. Of them, eight most promising isolates (CAI-17, CAI-21, CAI-26, CAI-68, CAI-78, KAI-26, KAI-27 and MMA-32) were characterized for the ...

  19. Actinomycetes inhibit filamentous fungi from the cuticle of Acromyrmex leafcutter ants.

    Science.gov (United States)

    Dângelo, Rômulo Augusto Cotta; de Souza, Danival José; Mendes, Thais Demarchi; Couceiro, Joel da Cruz; Lucia, Terezinha Maria Castro Della

    2016-03-01

    Actinomycetes bacteria associated with leafcutter ants produce secondary metabolites with antimicrobial properties against Escovopsis, a fungus specialized in attacking the gardens of fungus-growing ants, which denies the ants their food source. Because previous studies have used fungi isolated from fungus gardens but not from ant integument, the aims of the present study were to isolate actinomycetes associated with the cuticle of the Acromyrmex spp. and to quantify their inhibition abilities against the filamentous fungal species carried by these ants. The results demonstrated that actinomycetes had varied strain-dependent effects on several filamentous fungal species in addition to antagonistic activity against Escovopsis. The strain isolated from Acromyrmex balzani was identified as a Streptomyces species, whereas the remaining isolates were identified as different strains belonging to the genus Pseudonocardia. These findings corroborate the hypothesis that actinomycetes do not act specifically against Escovopsis mycoparasites and may have the ability to inhibit other species of pathogenic fungi. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of gamma radiation on the survival of fungal and actinomycetal florae contaminating medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, N.H.; El-Fouly, M.Z.; Moussa, L.A.A. [National Center for Radiation Research and Technology, Cairo (Egypt); Abu-Shady, M.R. [Ain Shams Univ., Cairo (Egypt). Faculty of Science

    1997-01-01

    This study evaluates the effect of gamma radiation on the viability of fungi and actinomycetes that contaminate medicinal plants. The relationship between the total lipids of some fungi and actinomycetes and their sensitivity to gamma radiation is also investigated. The data reveal that the viable counts of these florae decrease approximately exponentially with the radiation dose, the effective dose for the elimination of these microorganisms being about 5 kGy for all the medicinal plants under study. Response of pure cultures of fungi and actinomycetes isolated from medicinal plants to increasing absorbed doses of gamma radiation indicate that an increase in radioresistance is in the following order: Streptomyces rimosus, Fusarium solani, Nocardia kuroishii. F. oxysporum, A. fumigatus, A. flavus, A. parasiticus and A. ochraceus. The total lipid contents of molds and actinomycetes have been reported to be increased by increasing the radio-resistance of microorganisms, and hence there is a relationship between the radio-sensitivity of microorganisms and the total lipid mass of flora mycelia. (Author).

  1. [Isolation of Actinomycete DF02 from Composting and Its Application in Biological Control of Botrytis cinerea].

    Science.gov (United States)

    Wang, Xue-jun; Min, Chang-li; Yang, Yan

    2015-08-01

    To isolate and identify the biocontrol actinomycete from composting, and to investigate its potted control effect against Botrytis cinerea. Actinomycetes were isolated from composting by pour plate method. Inhibitory activities of acti- nomycetes were determined by dilution plate method and cylinder plate method. Strain with high activities was identified based on mor- phology and biochemical characterization and 16S rDNA gene sequence analysis. And its potted control effect was also investigated. 31 strains of actinomycetes were isolated, three of them had inhibitory effects on the test strains. Of which, the strain DF02 showed antagonistic to five plant pathogenic fungi of all the tested strains, and its inhibitory effect on Botrytis cinerea was the strongest. The results of potted control effect test showed that the protective and therapeutic efficacy of the fermentation suspension to Botrytis cinerea was 58.47% and 53.83%, respectively. According to taxonomic identification, the strain DF02 was identified as Strepto- myces neopeptinius. Strain DF02 is a biocontrol actinomycete with broad development potential, and these results provide ex- perimental basis for the biocontrol of Botrytis cinerea.

  2. Comparative genome-scale metabolic modeling of actinomycetes : The topology of essential core metabolism

    NARCIS (Netherlands)

    Alam, Mohammad Tauqeer; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gojobori, Takashi

    2011-01-01

    Actinomycetes are highly important bacteria. On one hand, some of them cause severe human and plant diseases, on the other hand, many species are known for their ability to produce antibiotics. Here we report the results of a comparative analysis of genome-scale metabolic models of 37 species of

  3. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Wei, Chia-Lin [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  4. Biodiversity of Actinomycetes associated with Caribbean sponges and their potential for natural product discovery.

    Science.gov (United States)

    Vicente, Jan; Stewart, Allison; Song, Bongkeun; Hill, Russell T; Wright, Jeffrey L

    2013-08-01

    Marine actinomycetes provide a rich source of structurally unique and bioactive secondary metabolites. Numerous genera of marine actinomycetes have been isolated from marine sediments as well as several sponge species. In this study, 16 different species of Caribbean sponges were collected from four different locations in the coastal waters off Puerto Rico in order to examine diversity and bioactive metabolite production of marine actinomycetes in Caribbean sponges. Sediments were also collected from each location, in order to compare actinomycete communities between these two types of samples. A total of 180 actinomycetes were isolated and identified based on 16S rRNA gene analysis. Phylogenetic analysis revealed the presence of at least 14 new phylotypes belonging to the genera Micromonospora, Verruscosispora, Streptomyces, Salinospora, Solwaraspora, Microbacterium and Cellulosimicrobium. Seventy-eight of the isolates (19 from sediments and 59 from sponges) shared 100 % sequence identity with Micromonospora sp. R1. Despite having identical 16S rRNA sequences, the bioactivity of extracts and subsequent fractions generated from the fermentation of both sponge- and sediment-derived isolates identical to Micromonospora sp. R1 varied greatly, with a marked increase in antibiotic metabolite production in those isolates derived from sponges. These results indicate that the chemical profiles of isolates with high 16S rRNA sequence homology to known strains can be diverse and dependent on the source of isolation. In addition, seven previously reported dihydroquinones produced by five different Streptomyces strains have been purified and characterized from one Streptomyces sp. strain isolated in this study from the Caribbean sponge Agelas sceptrum.

  5. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites.

    Science.gov (United States)

    Hamedi, Javad; Imanparast, Somaye; Mohammadipanah, Fatemeh

    2015-02-01

    Due to the evolution of multidrug-resistant strains, screening of natural resources, especially actinomycetes, for new therapeutic agents discovery has become the interests of researchers. In this study, molecular, chemical and biological screening of soil actinomycetes was carried out in order to search for peptide-producing actinomycetes. 60 actinomycetes were isolated from soils of Iran. The isolates were subjected to molecular screening for detection NRPS (non-ribosomal peptide synthetases) gene. Phylogenic identification of NRPS containing isolates was performed. Chemical screening of the crude extracts was performed using chlorine o-dianisidine as peptide detector reagent and bioactivity of peptide producing strains was determined by antimicrobial bioassay. High pressure liquid chromatography- mass spectrometry (HPLC-MS) with UV-visible spectroscopy was performed for detection of the metabolite diversity in selected strain. Amplified NRPS adenylation gene (700 bp) was detected among 30 strains. Phylogenic identification of these isolates showed presence of rare actinomycetes genera among the isolates and 10 out of 30 strains were subjected to chemical screening. Nocardia sp. UTMC 751 showed antimicrobial activity against bacterial and fungal test pathogens. HPLC-MS and UV-visible spectroscopy results from the crude extract showed that this strain has probably the ability to produce new metabolites. By application of a combined approach, including molecular, chemical and bioactivity analysis, a promising strain of Nocardia sp. UTMC 751 was obtained. This strain had significant activity against Staphylococcus aureus and Pseudomonas aeruginosa. Strain Nocardia sp. UTMC 751 produce five unknown and most probably new metabolites with molecular weights of 274.2, 390.3, 415.3, 598.4 and 772.5. This strain had showed 99% similarity to Nocardia ignorata DSM 44496 T.

  6. Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters.

    Science.gov (United States)

    Hodges, Tyler W; Slattery, Marc; Olson, Julie B

    2012-06-01

    In the ever-expanding search for novel bioactive molecules and enzymes, marine actinomycetes have proven to be a productive source. While open reef sediment and sponge-associated actinomycetes have been extensively examined, their marine cave counterparts remain unevaluated. Anchialine cave systems in the Bahamas offered an ideal setting to evaluate the occurrence and variation within sediment-associated actinomycete communities. While in close geographical proximity to open reef environments, these systems provide a specialized environmental niche devoid of light and direct exposure to nutrient input. In the present study, selective isolation techniques and molecular methods were used to test the hypothesis that variable distribution of actinomycetes and secondary metabolite gene clusters occur between open reef and marine cave systems. The results indicated that differences exist within the culturable sediment-associated actinomycete communities between marine caves and open reef systems, with members of the genus Streptomyces dominating cultures from open reef sediments and a more diverse suite of actinomycetes isolated from marine cave sediment samples. Within the cave isolates, members of the proposed genus Solwaraspora were the most represented. Based on PKS- and NRPS-gene-targeted PCR amplification and sequencing, geographic variation in the occurrence of these biosynthetic pathways was also observed. These findings indicate that marine cave systems are a lucrative source in the search for novel secondary metabolite producers with biotechnological applications and that environmental and geographic factors likely affect the occurrence of these biosynthetic pathways.

  7. Isolation and Evaluation of Marine Actinomycetes from Mangrove Forests in South of Iran against Some Human Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Farshid Kafilzadeh

    2013-04-01

    Full Text Available Background & Objectives: Recent studies have shown that aquatic actinomycetes can be a source of new biological products such as antibiotics and i n dustrial products. This study was designed to examine the aquatic actinomycetes isolated from mangrove forests in South of Iran and their antibacterial activities against some human pathogens.   Methods: In this study 115 samples were randomly taken from different places of a mangrove forests in South of Iran. Isolation was based on serial dilution of the samples and plating them on starch casein agar medium. Agar well diffusion and disc diffusion assays were used to examine the antibacterial activity of the isolated purified aquatic actinomycetes.   Results: The aquatic actinomycetes were isolated from 83 samples (70%. Of them, 66 (80 percent showed antibacterial activity and 17 (20% could not inhibit the human pathogenic bacteria. The diameter of the inhibitory zones (ZOI ranged from 4 to 11 mm and the biggest zone belonged to B acillus cereus (p≤0.05.   Conclusion: The findings showed that the various and useful aquatic actinomycetes for production of new antibiotic compounds are isolated easily from the mangrove forests in South of Iran. Considering the vast spreading of mangrove forests in South of Iran and the economic and simplicity of isolation of actinomycetes for industrial usage, these source can be an important and new place for research and industry.

  8. ANTIBIOTIC COMPOUND FROM MARINE ACTINOMYCETES (Streptomyces sp A11: ISOLATION AND STRUCTURE ELUCIDATON

    Directory of Open Access Journals (Sweden)

    Rofiq Sunaryanto

    2010-07-01

    Full Text Available Purification and structure elucidation of antibiotic produced by marine actinomycetes (Streptomyces sp A11 was conducted. Production of antibiotic was carried out by liquid fermentation using yeast and peptone medium for 5 days fermentation. Purification of antibiotic was carried out by silica gel 60 (Merck, 0.063-0.200 mm column chromatography and preparative HPLC. Structure elucidation was carried out using ESI-MS, 1H NMR, 13C NMR, DEPT 13C NMR, and FTIR. This antibiotic was identified as cyclo (tyrosyl-prolyl / (C14H16N2O3. This antibiotic had biological activity to Escherichia coli ATCC 25922, Staphylococcus aureus ATCC25923, Bacillus subtilis ATCC 66923, Pseudomonas aeruginosa ATCC27853, and produced by extracellular secretion.   Keywords: antibiotic, actinomycetes, purification, structure elucidation

  9. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    Science.gov (United States)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  10. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench.

    Science.gov (United States)

    Pathom-Aree, Wasu; Stach, James E M; Ward, Alan C; Horikoshi, Koki; Bull, Alan T; Goodfellow, Michael

    2006-06-01

    Thirty-eight actinomycetes were isolated from sediment collected from the Mariana Trench (10,898 m) using marine agar and media selective for actinomycetes, notably raffinose-histidine agar. The isolates were assigned to the class Actinobacteria using primers specific for members of this taxon. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Dermacoccus, Kocuria, Micromonospora, Streptomyces, Tsukamurella and Williamsia. All of the isolates were screened for genes encoding nonribosomal peptide and polyketide synthetases. Nonribosomal peptide synthetase sequences were detected in more than half of the isolates and polyketide synthases type I (PKS-I) were identified in five out of 38 strains. The Streptomyces isolates produced several unusual secondary metabolites, including a PKS-I associated product. In initial testing for piezotolerance, the Dermacoccus strain MT1.1 grew at elevated hydrostatic pressures.

  11. Investigating the Biosynthesis of Halogenated Meroterpenoid Natural Products from Marine Actinomycetes

    OpenAIRE

    Winter, Jaclyn Marie

    2010-01-01

    The marine sediment-derived Streptomyces spp. CNQ-525 and CNQ-766 were recently characterized by the Fenical laboratory as a new group of marine sediment-derived actinomycetes, tentatively named the MAR4s. These bacteria are prolific producers of hybrid isoprenoids, including the meroterpenoid (polyketide-terpene) antibiotics that are rarely encountered from bacteria. Structural inspection of the meroterpenoid antibiotics belonging to the napyradiomycin family of chlorinated dihydroquinones s...

  12. Marine Actinomycetes as potential source for histone deacetylase inhibitors and epigenetic modulation.

    Science.gov (United States)

    Varghese, T A; Jayasri, M A; Suthindhiran, K

    2015-07-01

    In the light of important detrimental role of aberrant histone deacetylases (HDAC) production during various clinical complications, development of therapeutically effective and specific inhibitors of HDAC is critically important. This study deals with the screening for HDAC inhibitors from marine Actinomycetes. The isolation of Actinomycetes from 22 sediment samples along the Southern Coast of India yielded 186 strains including Streptomyces, Nocardipsis, evaluated for HDAC inhibition using HeLa cells. Among the 186 isolates, 10 strains have shown moderate to strong inhibition. The maximum inhibition (61%) was seen with strain VITKSM06 and least inhibition (31%) was seen with strain VITSJT03. The MTT cell proliferation assay using HeLa cell line showed significant cytotoxicity with an IC50 of 5·9 μg ml(-1) by VITKSM06-derived metabolite and 26·2 μg ml(-1) by VITSJT03. The compound treated HeLa cells displayed an altered morphology and condensed chromatin which may be due to HDAC inhibition. Based on the phylogenetic analysis, the potential strains were identified as Nocardiopsis sp VITKSM06, Streptomyces sp VITAKS1 and Streptomyces sp VITRSM02. This study reveals the importance of screening marine Actinomycetes for the discovery of potential novel HDAC inhibitors of therapeutic importance. Histone deacetylases (HDAC) are epigenetic enzymes that regulate the deacetylation in lysine group on a histone, and thus regulate the gene expression. The HDAC inhibitors are reported to promote apoptosis on tumour cells, thus become clinically important drug target. Several studies have addressed the identification of putative HDAC inhibitors as therapeutic agents for cancer and until now those cleared phase III human trials are very limited. This study attempts to investigate the chemical diversity found in marine Actinomycetes towards negative HDAC modulation, which could be used individually or in combination as anti-cancerous and other therapeutic measure. © 2015 The

  13. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    Science.gov (United States)

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes

    DEFF Research Database (Denmark)

    Weber, Tilmann; Charusanti, Pep; Musiol-Kroll, Ewa Maria

    2015-01-01

    Actinomycetes are excellent sources for novel bioactive compounds, which serve as potential drug candidates for antibiotics development. While industrial efforts to find and develop novel antimicrobials have been severely reduced during the past two decades, the increasing threat of multidrug...... them, and to express them in heterologous hosts in much higher throughput than before. These technologies now enable metabolic engineering approaches to optimize production yields and to directly manipulate the pathways to generate modified products....

  15. Genetic Screening Strategy for Rapid Access to Polyether Ionophore Producers and Products in Actinomycetes ▿ †

    Science.gov (United States)

    Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying

    2011-01-01

    Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes. PMID:21421776

  16. Imaging Mass Spectrometry Reveals Highly Specific Interactions between Actinomycetes To Activate Specialized Metabolic Gene Clusters

    Science.gov (United States)

    Hopwood, David A.

    2013-01-01

    ABSTRACT The genomes of actinomycetes contain numerous gene clusters potentially able to encode the production of many antibiotics and other specialized metabolites that are not expressed during growth under typical laboratory conditions. Undoubtedly, this reflects the soil habitat of these organisms, which is highly complex physically, chemically, and biotically; the majority of the compounds that make up the specialized metabolome are therefore adaptive only under specific conditions. While there have been numerous previous reports of “waking up” the “sleeping” gene clusters, many involving genetic interventions or nutritional challenges, the role of competing microorganisms has been comparatively little studied. Now, Traxler et al. [M. F. Traxler, J. D. Watrous, T. Alexandrov, P. C. Dorrestein, and R. Kolter, mBio 4(4):e00459-13, 2013, doi:10.1128/mBio.00459-13] have used the recently described technique of microscale imaging mass spectrometry to analyze in detail the stimulation of specialized metabolite production by the model actinomycete Streptomyces coelicolor A3(2) by growth in proximity to other actinomycetes. The striking finding from these experiments was that growth of S. coelicolor close to each of the five other actinomycetes studied caused it to produce many specialized metabolites that were not made when it was grown in isolation and that the majority of the compounds were interaction specific, i.e., they occurred only in one of the five pairwise combinations, emphasizing the highly specific nature of the interactions. These observations contribute substantially to the increasing awareness of communication between microorganisms in complex natural communities, as well as auguring well for the discovery of useful specialized metabolites based on microbial interactions. PMID:24003180

  17. Actinomycetes of Orthosipon stamineus rhizosphere as producer of antibacterial compound against multidrug resistant bacteria

    Science.gov (United States)

    Rante, H.; Yulianty, R.; Usmar; Djide, N.; Subehan; Burhamzah, R.; Prasad, M. B.

    2017-11-01

    The increasing case of antibiotic resistence has become an important problem to be faced in treating the infection diseases. The diversities of microbia, especially actinomycetes bacteria which originated from rizosphere soil of medicinal plant, has opened a chance for discovering the metabolites which can be used in solving the antibiotic resistant pathogenic bacteria problems. The aim of this research was to isolate the actinobacteria originated from medicinal plant rizosphere of Orthosipon stamineus as the producer of anti-multidrug resistances bacteria compounds. Three isolates of actinomycetes has been isolated from Orthosipon stamineus rhizosphere named KC3-1, KC3-2 and KC3-3. One isolate (KC3-3) showed big activity in inhibiting the test microbes by antagonistic test of actinomycetes isolates against Staphylococcus aureus and Eschericia coli antibiotic resistant bacteria. Furthermore, the KC3-3 isolate was fermented in Starch Nitrate Broth (SNB) medium for 14 days. The supernatant and the biomass of the fermentation yield were separated. The supernatant were extracted using ethyl acetate as the solvent and the biomass were extracted using methanol. The antibacterial activity test of ethyl acetate and methanol extract revealed that the extracts can inhibit the bacteria test up to 5% concentration. The ethyl acetate and methanol extracts can inhibit the bacteria test up to 5% concentration.

  18. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture

    Directory of Open Access Journals (Sweden)

    Milagro García Bernal

    2015-02-01

    Full Text Available Aim: This study was designed to describe a series of in vitro tests that may aid the discovery of probiotic strains from actinomycetes. Materials and Methods: Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis of human blood cells, respectively. Extracellular enzymatic production was monitored by the hydrolysis of proteins, lipids and carbohydrates. Tolerance to different pH values and salt concentrations was also determined, followed by hydrophobicity analysis and genetic identification of the most promising strains. Results: Five out of 31 isolated strains showed antimicrobial activity against three Vibrio species. Three non-hemolytic strains (N7, RL8 and V4 among these active isolates yielded positive results in hydrophobicity tests and exhibited good growth at salt concentrations ranging from 0% to 10%, except strain RL8, which required a salt concentration >0.6%. Although these strains did not grow at pH<3, they showed different enzymatic activities. Phylogenetic analysis revealed that strains N7 and V4 have more than 99% identity with several Streptomyces species, whereas the closest matches to strain RL8 are Streptomyces panacagri and Streptomyces flocculus, with 98% and 98.2% similarity, respectively. Conclusion: Three actinomycetes strains showing probiotic-like properties were discovered using several in vitro tests that can be easily implemented in different institutions around the world.

  19. Occupational allergic respiratory diseases in garbage workers: relevance of molds and actinomycetes.

    Science.gov (United States)

    Hagemeyer, O; Bünger, J; van Kampen, V; Raulf-Heimsoth, M; Drath, C; Merget, R; Brüning, Th; Broding, H C

    2013-01-01

    Exposures to molds and bacteria (especially actinomycetes) at workplaces are common in garbage workers, but allergic respiratory diseases due to these microorganisms have been described rarely. The aim of our study was a detailed analysis of mold or bacteria-associated occupational respiratory diseases in garbage workers. From 2002 to 2011 four cases of occupational respiratory diseases related to garbage handling were identified in our institute (IPA). Hypersensitivity pneumonitis (HP) was diagnosed in three subjects (cases 1-3, one smoker, two non-smokers), occupational asthma (OA) was diagnosed in one subject (case 4, smoker), but could not be excluded completely in case 2. Cases 1 and 2 worked in composting sites, while cases 3 and 4 worked in packaging recycling plants. Exposure periods were 2-4 years. Molds and actinomycetes were identified as allergens in all cases. Specific IgE antibodies to Aspergillus fumigatus were detected exclusively in case 4. Diagnoses of HP were essentially based on symptoms and the detection of specific IgG serum antibodies to molds and actinomycetes. OA was confirmed by bronchial provocation test with Aspergillus fumigatus in case 4. In conclusion, occupational HP and OA due to molds occur rarely in garbage workers. Technical prevention measures are insufficient and the diagnosis of HP is often inconclusive. Therefore, it is recommended to implement the full repertoire of diagnostic tools including bronchoalveolar lavage and high resolution computed tomography in the baseline examination.

  20. Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the China Seas.

    Science.gov (United States)

    Xi, Lijun; Ruan, Jisheng; Huang, Ying

    2012-01-01

    The diversity and secondary metabolite potential of culturable actinomycetes associated with eight different marine sponges collected from the South China Sea and the Yellow sea were investigated. A total of 327 strains were isolated and 108 representative isolates were selected for phylogenetic analysis. Ten families and 13 genera of Actinomycetales were detected, among which five genera represent first records isolated from marine sponges. Oligotrophic medium M5 (water agar) proved to be efficient for selective isolation, and "Micromonospora-Streptomyces" was proposed as the major distribution group of sponge-associated actinomycetes from the China Seas. Ten isolates are likely to represent novel species. Sponge Hymeniacidon perleve was found to contain the highest genus diversity (seven genera) of actinomycetes. Housekeeping gene phylogenetic analyses of the isolates indicated one ubiquitous Micromonospora species, one unique Streptomyces species and one unique Verrucosispora phylogroup. Of the isolates, 27.5% displayed antimicrobial activity, and 91% contained polyketide synthase and/or nonribosomal peptide synthetase genes, indicating that these isolates had a high potential to produce secondary metabolites. The isolates from sponge Axinella sp. contained the highest presence of both antimicrobial activity and NRPS genes, while those from isolation medium DNBA showed the highest presence of antimicrobial activity and PKS I genes.

  1. Taxonomy and Polyphasic Characterization of Alkaline Amylase Producing Marine Actinomycete Streptomyces rochei BTSS 1001

    Directory of Open Access Journals (Sweden)

    Aparna Acharyabhatta

    2013-01-01

    Full Text Available Actinomycetes isolated from marine sediments along the southeast coast of Bay of Bengal were investigated for amylolytic activity. Marine actinomycete BTSS 1001 producing an alkaline amylase was identified from marine sediment of Diviseema coast, Bay of Bengal. The isolate produced alkaline amylase with maximum amylolytic activity at pH 9.5 at 50°C. The organism produced white to pale grey substrate mycelium and grayish aerial mycelium with pinkish brown pigmentation. A comprehensive study of morphological, physiological parameters, cultural characteristics, and biochemical studies was performed. The presence of iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and anteiso-C17 : 0 as the major cellular fatty acids, LL-diaminopimelic acid as the characteristic cell wall component, and menaquinones MK-9H(6 and MK-9H(8 as the major isoprenoid quinones is attributed to the strain BTSS 1001 belonging to the genus Streptomyces. Comparison of 16S rRNA gene sequences showed that strain BTSS 1001 exhibited the highest similarities to the type strains of Streptomyces rochei (99%, Streptomyces plicatus (99%, and Streptomyces enissocaesilis (99%. Using the polyphasic taxonomical approach and phenotypic characteristic studies, the isolate BTSS 1001 was characterized as marine actinomycete Streptomyces rochei.

  2. Diversity and Biosynthetic Potential of Culturable Actinomycetes Associated with Marine Sponges in the China Seas

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2012-05-01

    Full Text Available The diversity and secondary metabolite potential of culturable actinomycetes associated with eight different marine sponges collected from the South China Sea and the Yellow sea were investigated. A total of 327 strains were isolated and 108 representative isolates were selected for phylogenetic analysis. Ten families and 13 genera of Actinomycetales were detected, among which five genera represent first records isolated from marine sponges. Oligotrophic medium M5 (water agar proved to be efficient for selective isolation, and “MicromonosporaStreptomyces” was proposed as the major distribution group of sponge-associated actinomycetes from the China Seas. Ten isolates are likely to represent novel species. Sponge Hymeniacidon perleve was found to contain the highest genus diversity (seven genera of actinomycetes. Housekeeping gene phylogenetic analyses of the isolates indicated one ubiquitous Micromonospora species, one unique Streptomyces species and one unique Verrucosispora phylogroup. Of the isolates, 27.5% displayed antimicrobial activity, and 91% contained polyketide synthase and/or nonribosomal peptide synthetase genes, indicating that these isolates had a high potential to produce secondary metabolites. The isolates from sponge Axinella sp. contained the highest presence of both antimicrobial activity and NRPS genes, while those from isolation medium DNBA showed the highest presence of antimicrobial activity and PKS I genes.

  3. Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10.

    Science.gov (United States)

    Balagurunathan, R; Radhakrishnan, M; Rajendran, R Babu; Velmurugan, D

    2011-10-01

    Biosynthesis of gold nanoparticles by Streptomycetes from Himalayan Mountain was undertaken for the first time. Out of 10 actinomycete strains tested, four strains (D10, HM10, ANS2 and MSU) showed evidence for the intracellular biosynthesis of gold nanoparticles, among which the strain HM10 showed high potency. Presence of spherical and rod shaped gold nanoparticles in mycelium of the strain HM10 was determined by transmission electron microscopy (TEM) and X-ray diffraction analysis. The average particle size ranged from 18-20 nm. UV spectral analysis indicated that the reduction of chloroauric acid (HAuCl4) occurred within 24 h of reaction period. Further, the strain HM10 showed enhanced growth at 1 and 10 mM concentration of HAuCl4. The gold nanoparticles synthesized by the strain HM10 showed good antibacterial activity against S. aureus and E. coli in well-diffusion method. The potential actinomycete HM10 strain was phenotypically characterized and identified as Streptomyces viridogens (HM10). Thus, actinomycete strain HM10 reported in this study is a newly added source for the biosynthesis of gold nanoparticles.

  4. Bioperspective of actinomycetes isolates from coastal soils: A new source of antimicrobial producers

    Directory of Open Access Journals (Sweden)

    Rattanaporn Srivibool

    2006-05-01

    Full Text Available Forty five soil samples were collected from four coastal islands on the east coast of Thailand: Chang, Hwai, Lao-yanai in Trat Province and Pai Islands in Chonburi Province. On 3 isolating media, Actinomycetes Isolation Agar, Starch Casein Agar and Glucose Asparagine Agar, 495 isolates of actinomycetes were found. Preliminary test to search for antimicrobial activity was done with Bacillus subtilis TISTR 008, Staphylococcus aureus TISTR 885, Staphylococus aureus TISTR 517 (ATCC 25923, Micrococcus luteus TISTR 884 and Pseudomonas aeruginosa TISTR 781 and Escherichia coli TISTR 887 (ATCC 25922. Fifty-eight actinomycetes were found to be antimicrobial-producing strains. From the morphological determination, cell wall diaminopimelic acid and sugars in whole-cell hydrolysate studies, among the 58 strains, Streptomyces sp. and Actinomadura sp. were the predominant genera. The other antibiotic active strains were Micromonospora sp., Microbispora sp., Nocardia sp., Pseudonocardia sp., Saccharomonospora sp., Streptoalloteichus sp. and Streptoverticillium sp. Most of them could inhibit gram-positive bacteria, especially M. luteus TISTR 884, and 8 strains (4 strains of Actinomadura, 2 strains of Micromonospora, 1 strain of Microbispora, and 1 strain of Streptomyces could inhibit both gram-positive and gram-negative bacteria.

  5. Antibacterial Activity of Endophytic Actinomycetes Isolated from the Medicinal Plant Vochysia divergens (Pantanal, Brazil).

    Science.gov (United States)

    Gos, Francielly M W R; Savi, Daiani C; Shaaban, Khaled A; Thorson, Jon S; Aluizio, Rodrigo; Possiede, Yvelise M; Rohr, Jürgen; Glienke, Chirlei

    2017-01-01

    Endophytic actinomycetes from medicinal plants produce a wide diversity of secondary metabolites (SM). However, to date, the knowledge about endophytes from Brazil remains scarce. Thus, we analyzed the antimicrobial potential of 10 actinomycetes isolated from the medicinal plant Vochysia divergens located in the Pantanal sul-mato-grossense, an unexplored wetland in Brazil. Strains were classified as belonging to the Aeromicrobium, Actinomadura, Microbacterium, Microbispora, Micrococcus, Sphaerisporangium, Streptomyces, and Williamsia genera, through morphological and 16S rRNA phylogenetic analyzes. A susceptibility analysis demonstrated that the strains were largely resistant to the antibiotics oxacillin and nalidixic acid. Additionally, different culture media (SG and R5A), and temperatures (28 and 36°C) were evaluated to select the best culture conditions to produce the active SM. All conditions were analyzed for active metabolites, and the best antibacterial activity was observed from metabolites produced with SG medium at 36°C. The LGMB491 (close related to Aeromicrobium ponti) extract showed the highest activity against methicillin-resistant Staphylococcus aureus (MRSA), with a MIC of 0.04 mg/mL, and it was selected for SM identification. Strain LGMB491 produced 1-acetyl-β-carboline (1), indole-3-carbaldehyde (2), 3-(hydroxyacetyl)-indole (4), brevianamide F (5), and cyclo-(L-Pro-L-Phe) (6) as major compounds with antibacterial activity. In this study, we add to the knowledge about the endophytic community from the medicinal plant V. divergens and report the isolation of rare actinomycetes that produce highly active metabolites.

  6. Isolation and screening of antibiotic producing actinomycetes from soils in Gondar town, North West Ethiopia

    Directory of Open Access Journals (Sweden)

    Abebe Bizuye

    2013-10-01

    Full Text Available Objective: To isolate and screen antibiotic producing actinomycetes from potential soil samples of Gondar town, Ethiopia. Methods: Fifteen soil samples were collected, serially diluted and spread on starch casein and oat meal agar supplemented with amoxicillin and cyclohexamide for inhibition of bacteria and fungi, respectively. Cross streak method was used to check antagonistic activity of isolated actinomycetes against test organisms. Solid state fermentation and crude extraction were used for the production of antibiotics from isolates. Agar well diffusion was used for antimicrobial activity of crude extracts against test organisms. Results: Three isolates (Ab18, Ab28 and Ab43 have been shown high antagonistic activity during primary screening. Inhibition zones obtained from crude extracts showed significance differences when compared with standard antibiotics tested against test organisms (P<0.05. Inhibition zone of crude extracts from isolate Ab18 against Klebsiella pneumonia ATCC7000603 and Escherichia coli ATCC25922 were (14依1 mm and (35依1 mm, respectively which were strong active when compared to amoxicillin (0 mm and tetracycline [(13依1 mm for Klebsiella pneumonia ATCC7000603 and (33依 1 mm for Escherichia coli ATCC25922]. Crude extracts from isolate Ab18 showed (20依1 mm and (15 依1 mm inhibition zones against methicillin resistant Staphylococcus aureus strains 2 (MRSA2 and MRSA4, respectively. Crude extract from isolate Ab43 has shown inhibition zones of (16依1 mm and (17依1 mm against MRSA2 and MRSA4, respectively. Combination of Ab18 and Ab43 has shown high antimicrobial activity (18依1 mm against MRSA2 and MRSA4. Conclusions: There was not any scientific report on soil actinomycetes producing antibiotic in the study areas. Therefore, isolation and screening of actinomycetes from such areas in optimum condition may contribute the discovery of new antibiotics. Potent antibiotics from these actinomycetes could contribute a

  7. The biodegradation of layered silicates under the influence of cyanobacterial-actinomycetes associations

    Science.gov (United States)

    Ivanova, Ekaterina

    2013-04-01

    The weathering of sheet silicates is well known to be related to local and global geochemical cycles. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. Microorganisms have a diverse range of mechanisms of minerals' structure transformation (acid- and alkali formation, biosorption, complexing, etc). One of the methods is an ability of exopolysaccharide-formation, in particular the formation of mucus, common to many bacteria, including cyanobacteria. Mucous covers cyanobacteria are the specific econiches for other bacteria, including actinomycetes. The objective was to analyze the structural changes of clay minerals under the influence of the cyanobacterial-actinomycetes associative growth. The objects of the study were: 1) the experimental symbiotic association, consisting of free-living heterocyst-formative cyanobacterium Anabaena variabilis Kutz. ATCC 294132 and actinomycete Streptomyces cyaneofuscatus FR837630, 2) rock samples obtained from the Museum of the Soil Science Department of the Lomonosov Moscow State University: kaolinite, consisting of kaolin (96%) Al4 (OH) 8 [Si4O10]; mixed with hydromica, chlorite and quartz; vermiculite, consisting of vermiculite (Ca, Mg, ...)*(Mg, Fe)3(OH)2[(Si, Al)4O10]*4H2O and trioctahedral mica (biotite). The mineralogical compositions of the rocks were determined by the universal X-ray Diffractometer Carl Zeiss Yena. The operationg regime was kept constant (30 kv, 40 mA). The cultivation of the association of actinomycete S. cyanoefuscatus and cyanobacterium A. variabilis caused a reduction in the intensity of kaolinite and hydromica reflexes. However, since both (mica and kaolinite) components have a rigid structure, the significant structural transformation of the minerals was not revealed. Another pattern was observed in the experiment, where the rock sample of vermiculite was used as the mineral

  8. Functional gene-guided discovery of type II polyketides from culturable actinomycetes associated with soft coral Scleronephthya sp.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Compared with the actinomycetes in stone corals, the phylogenetic diversity of soft coral-associated culturable actinomycetes is essentially unexplored. Meanwhile, the knowledge of the natural products from coral-associated actinomycetes is very limited. In this study, thirty-two strains were isolated from the tissue of the soft coral Scleronephthya sp. in the East China Sea, which were grouped into eight genera by 16S rDNA phylogenetic analysis: Micromonospora, Gordonia, Mycobacterium, Nocardioides, Streptomyces, Cellulomonas, Dietzia and Rhodococcus. 6 Micromonospora strains and 4 Streptomyces strains were found to be with the potential for producing aromatic polyketides based on the analysis of KS(α (ketoacyl-synthase gene in the PKS II (type II polyketides synthase gene cluster. Among the 6 Micromonospora strains, angucycline cyclase gene was amplified in 2 strains (A5-1 and A6-2, suggesting their potential in synthesizing angucyclines e.g. jadomycin. Under the guidance of functional gene prediction, one jadomycin B analogue (7b, 13-dihydro-7-O-methyl jadomycin B was detected in the fermentation broth of Micromonospora sp. strain A5-1. This study highlights the phylogenetically diverse culturable actinomycetes associated with the tissue of soft coral Scleronephthya sp. and the potential of coral-derived actinomycetes especially Micromonospora in producing aromatic polyketides.

  9. Functional Gene-Guided Discovery of Type II Polyketides from Culturable Actinomycetes Associated with Soft Coral Scleronephthya sp

    Science.gov (United States)

    Sun, Wei; Peng, Chongsheng; Zhao, Yunyu; Li, Zhiyong

    2012-01-01

    Compared with the actinomycetes in stone corals, the phylogenetic diversity of soft coral-associated culturable actinomycetes is essentially unexplored. Meanwhile, the knowledge of the natural products from coral-associated actinomycetes is very limited. In this study, thirty-two strains were isolated from the tissue of the soft coral Scleronephthya sp. in the East China Sea, which were grouped into eight genera by 16S rDNA phylogenetic analysis: Micromonospora, Gordonia, Mycobacterium, Nocardioides, Streptomyces, Cellulomonas, Dietzia and Rhodococcus. 6 Micromonospora strains and 4 Streptomyces strains were found to be with the potential for producing aromatic polyketides based on the analysis of KSα (ketoacyl-synthase) gene in the PKS II (type II polyketides synthase) gene cluster. Among the 6 Micromonospora strains, angucycline cyclase gene was amplified in 2 strains (A5-1 and A6-2), suggesting their potential in synthesizing angucyclines e.g. jadomycin. Under the guidance of functional gene prediction, one jadomycin B analogue (7b, 13-dihydro-7-O-methyl jadomycin B) was detected in the fermentation broth of Micromonospora sp. strain A5-1. This study highlights the phylogenetically diverse culturable actinomycetes associated with the tissue of soft coral Scleronephthya sp. and the potential of coral-derived actinomycetes especially Micromonospora in producing aromatic polyketides. PMID:22880121

  10. SELEKSI DAN PEMANFAATAN ACTINOMYCETES SEBAGAI MIKROBA ANTAGONIS YANG RAMAH LINGKUNGAN TERHADAP Fusarium oxysporum f.sp. cubense SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    I MADE SUDARMA

    2015-06-01

    Full Text Available A total of 119 different actinomycete isolate were recovered from banana crop habitats with and without Fusarium wilt disease symptom. These were than assessed for their antagonist ability against Fusarium oxysporum £sp. cubense (Foe in vitro. Results indicated that four of all actinomycete isolate active against Foe. The four of actinomycete isolates were Streptomyces sp. l (AAo4, Streptomyces sp.2 (AAo32 , Streptomyces sp.3 (AAo33 and Streptomyces sp. 4 (AAo35. It was can inhibit the Foe mycelium growth, 79,63%, 72,22%, 78,89% and 72,22% respectively. After tested with the 3 times replication, the four Streptomyces spp. isolate effective to control the Foe that attack Bali banana cultivars, such as Susu, Saba, Raja and Ketip.

  11. A Marine Actinomycete Rescues Caenorhabditis elegans from Pseudomonas aeruginosa Infection through Restitution of Lysozyme 7

    Directory of Open Access Journals (Sweden)

    Siti N. Fatin

    2017-11-01

    Full Text Available The resistance of Pseudomonas aeruginosa to conventional antimicrobial treatment is a major scourge in healthcare. Therefore, it is crucial that novel potent anti-infectives are discovered. The aim of the present study is to screen marine actinomycetes for chemical entities capable of overcoming P. aeruginosa infection through mechanisms involving anti-virulence or host immunity activities. A total of 18 actinomycetes isolates were sampled from marine sediment of Songsong Island, Kedah, Malaysia. Upon confirming that the methanolic crude extract of these isolates do not display direct bactericidal activities, they were tested for capacity to rescue Caenorhabditis elegans infected with P. aeruginosa strain PA14. A hexane partition of the extract from one isolate, designated as Streptomyces sp. CCB-PSK207, could promote the survival of PA14 infected worms by more than 60%. Partial 16S sequence analysis on this isolate showed identity of 99.79% with Streptomyces sundarbansensis. This partition did not impair feeding behavior of C. elegans worms. Tested on PA14, the partition also did not affect bacterial growth or its ability to colonize host gut. The production of biofilm, protease, and pyocyanin in PA14 were uninterrupted, although there was an increase in elastase production. In lys-7::GFP worms, this partition was shown to induce the expression of lysozyme 7, an important innate immunity defense molecule that was repressed during PA14 infection. GC-MS analysis of the bioactive fraction of Streptomyces sp. CCB-PSK207 revealed the presence of methyl esters of branched saturated fatty acids. In conclusion, this is the first report of a marine actinomycete producing metabolites capable of rescuing C. elegans from PA14 through a lys-7 mediated activity.

  12. Marine Actinomycetes screening of Banten West Coast and their antibiotics purification

    Directory of Open Access Journals (Sweden)

    ROFIQ SUNARYANTO

    2010-10-01

    Full Text Available Sunaryanto R, Marwoto B (2010 Marine Actinomycetes screening of Banten West Coast and their antibiotics purification. Biodiversitas 11: 176-181. Isolation and purification of active compounds produced by marine Actinomycetes has been carried out. Marine sediment samples were obtained from six different places at Anyer, Banten West Coast in October 20, 2007. Isolation was carried out using two methods pretreatments, acid treatment and heat shock treatment. A total of 29 Actinomycetes isolates were obtained from the various sediment samples collected, then tested for antimicrobial test against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC25923, Pseudomonas aeruginosa ATCC27853, Bacillus subtilis ATCC 66923, Candida albicans BIOMCC00122 and Aspergillus niger BIOMCC00134. Identification of potential isolate was carried out using 16S rRNA. Purification of active compound was carried out using silica gel column chromatography and preparative HPLC. Result of this research showed that isolate A11 produced the most active compound against Gram-positive and Gram-negative bacteria. Morphology and identification test using 16S rRNA gen showed that isolate A11 is Streptomyces sp. Production of active compound from isolate A11 used yeast peptone medium. The single peak of active compound was detected by HPLC and showed retention time on 8.35 min and maximum absorbance UV visible of antibiotic was 210 nm and 274.5 nm. Active purified compound showed inhibition activity to Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration (MIC to E. coli ATCC 25922 was 27 µg/mL, P. aeruginosa ATCC 27853 68.7 µg/mL, S. aureus ATCC 25923 80.2 µg/mL, and B. subtilis ATCC 66923 73.7 µg/mL.

  13. EXPLORATION OF ACTINOMYCETES ENDOPHYTICALLY ASSOCIATED WITH PIPER NIGRUM FOR POTENTIAL BIOACTIVITY

    Directory of Open Access Journals (Sweden)

    Jasim B.

    2015-02-01

    Full Text Available Piper nigrum is well known for its metabolite richness. So endophytic microorganisms that reside within such environments can be expected to have promising biosynthetic potential. The current study identified three endophytic actinomycetes with broad bioactivity which can have applications in natural product related pharmacological research. The Verrucosispora sp identified in the study was found to have promising anticancer and antimicrobial activities and Streptomyces sp. was found to have antioxidant activity. The results obtained are supported by many previous reports and this suggests the isolates obtained in the study to have the possible presence of potential known or novel compounds with broad spectrum of activity.

  14. Acetylcholinesterase inhibitory dimeric indole derivatives from the marine actinomycetes Rubrobacter radiotolerans.

    Science.gov (United States)

    Li, Jian Lin; Huang, Lei; Liu, Juan; Song, Yan; Gao, Jie; Jung, Jee H; Liu, Yonghong; Chen, Guangtong

    2015-04-01

    Investigation of the bioactive secondary metabolites of the marine actinomycetes Rubrobacter radiotolerans led to the isolation and characterization of two naturally rare dimeric indole derivatives (1 and 2). The structures of these new compounds were elucidated by spectroscopic data interpretation, and the absolute configurations were assigned by CD calculations. The acetylcholinesterase (AchE) inhibitory activity of compounds 1 and 2 was evaluated, both of which showed moderate activity with IC50 values of 11.8 and 13.5μM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08.

    Science.gov (United States)

    Selvin, Joseph; Shanmughapriya, S; Gandhimathi, R; Seghal Kiran, G; Rajeetha Ravji, T; Natarajaseenivasan, K; Hema, T A

    2009-06-01

    The sponge-associated actinomycetes were isolated from the marine sponge Dendrilla nigra, collected from the southwest coast of India. Eleven actinomycetes were isolated depending upon the heterogeneity and stability in subculturing. Among these, Nocardiopsis dassonvillei MAD08 showed 100% activity against the multidrug resistant pathogens tested. The culture conditions of N. dassonvillei MAD08 was optimized under submerged fermentation conditions for enhanced antimicrobial production. The unique feature of MAD08 includes extracellular amylase, cellulase, lipase, and protease production. These enzymes ultimately increase the scope of optimization using broad range of raw materials which might be efficiently utilized. The extraction of the cell free supernatant with ethyl acetate yielded bioactive crude extract that displayed activity against a panel of pathogens tested. Analysis of the active thin layer chromatography fraction by Fourier transform infrared and gas chromatography-mass spectrometry evidenced 11 compounds with antimicrobial activity. The ammonium sulfate precipitation of the culture supernatant at 80% saturation yielded an anticandidal protein of molecular weight 87.12 kDa. This is the first strain that produces both organic solvent and water soluble antimicrobial compounds. The active extract was non-hemolytic and showed surface active property envisaging its probable role in inhibiting the attachment of pathogens to host tissues, thus, blocking host-pathogen interaction at an earlier stage of pathogenesis.

  16. Nitrile hydrolysing activities of deep-sea and terrestrial mycolate actinomycetes.

    Science.gov (United States)

    Brandão, Pedro F B; Bull, Alan T

    2003-01-01

    Nitrile metabolising actinomycetes previously recovered from deep-sea sediments and terrestrial soils were investigated for their nitrile transforming properties. Metabolic profiling and activity assays confirmed that all strains catalysed the hydrolysis of nitriles by a nitrile hydratase/amidase system. Acetonitrile and benzonitrile, when used as growth substrates for enzyme induction experiments, had a significant influence on the biotransformation activities towards various nitriles and amides. The specific activities of selected deep-sea and terrestrial acetonitrile-grown bacteria against a suite of nitriles and amides were higher than those of the only other reported marine nitrile-hydrolysing R. erythropolis, isolated from a shallow sediment. The increase of nitrile chain length appeared to have negative influence on the nitrile hydratase activity of acetonitrile-grown bacteria, but the same was not true for benzonitrile-grown bacteria. The nitrile hydratases and amidases were constitutive in 10 of the 16 deep-sea and terrestrial actinomycetes studied, and one strain showed an inducible hydratase and a constitutive amidase. Most of the deep-sea strains had constitutive activities and showed some of the highest activities and broadest substrate specificities of organisms included in this study.

  17. Screening of Marine Actinomycetes from Segara Anakan for Natural Pigment and Hydrolytic Activities

    Science.gov (United States)

    Asnani, A.; Ryandini, D.; Suwandri

    2016-02-01

    Marine actinomycetes have become sources of great interest to natural product chemistry due to their new chemical entities and bioactive metabolites. Since April 2010, we have screened actinobacteria from five sites that represent different ecosystems of Segara Anakan lagoon. In this present study we focus on specific isolates, K-2C which covers 1) actinomycetes identification based on morphology observation and 16S rRNA gene; 2) fermentation and isolation of pigment; 3) structure determination of pigment; and 4) hydrolytic enzymes characterization; Methodologies relevant to the studies were implemented accordingly. The results indicated that K-2C was likely Streptomyces fradiae strain RSU15, and the best fermentation medium should contain starch and casein with 21 days of incubation. The isolate has extracellular as well as intracellular pigments. Isolated pigments gave purple color with λmax of 529.00 nm. The pigment was structurally characterized. Interestingly, Streptomyces K-2C was able to produce potential hydrolytic enzymes such as amylase, cellulase, protease, lipase, urease, and nitrate reductase.

  18. Mycobacterium and Aerobic Actinomycete Culture: Are Two Medium Types and Extended Incubation Times Necessary?

    Science.gov (United States)

    Simner, Patricia J; Doerr, Kelly A; Steinmetz, Lory K; Wengenack, Nancy L

    2016-04-01

    Mycobacterial cultures are historically performed using a liquid medium and a solid agar medium with an incubation period of up to 60 days. We performed a retrospective analysis of 21,494 mycobacterial and aerobic actinomycetes cultures performed over 10 months to determine whether two medium types remain necessary and to investigate whether culture incubation length can be shortened. Specimens were cultured using Bactec MGIT liquid medium and Middlebrook 7H11/S7H11 solid medium with incubation periods of 42 and 60 days, respectively. Time-to-positivity and the identity of isolates recovered from each medium were evaluated. A total of 1,205/21,494 cultures (6%) were positive on at least one medium. Of the 1,353 isolates recovered, 1,110 (82%) were nontuberculous mycobacteria, 145 (11%) were aerobic actinomycetes, and 98 (7%) wereMycobacterium tuberculosiscomplex. Assessing medium types, 1,121 isolates were recovered from solid medium cultures, 922 isolates were recovered from liquid medium cultures, and 690 isolates were recovered on both media. Liquid cultures were positive an average of 10 days before solid cultures when the two medium types were positive (Pculture and demonstrates that solid medium incubation times may be reduced to 6 weeks without significantly impacting sensitivity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Diversity and Antifungal Activity of Actinomycetes Symbiont Hard Coral Mucus of Genera Goniopora and Porites

    Directory of Open Access Journals (Sweden)

    Riyanti

    2016-12-01

    Full Text Available Screening new bioactive compounds from marine actinomycete organisms associated with corals (Goniopora and Porites can be an alternative method to discover the natural antifungal compounds. This study aims to determine the density and diversity of actinomycete symbionts based on repetitive sequence-based-polymerase chain reactions (rep-PCR and to discern the ability of antifungal activity of isolates symbiotic with hard coral mucus by using a pour plate method. A total of 143 isolates were obtained from the hard coral mucus of genera Goniopora and Porites. High genetic diversity was observed among the isolates. Ten isolates with different morphological characteristics were selected to extract its secondary metabolites and then followed by an antifungal test. The isolate with the code of SCAS324 was the one with the antifungal activity, marked by the formation of a very strong inhibition zone of 54.7±0.4 mm toward Aspergillus flavus and 49.2±2.7 mm toward Candida albicans. Antifungal screening showed that the antifungal activity of the isolate SCAS324 was three times as effective as the commercial antifungal.

  20. Isolation and characterization of Cr(VI)-reducing actinomycetes from estuarine sediments.

    Science.gov (United States)

    Terahara, Takeshi; Xu, Xudan; Kobayashi, Takeshi; Imada, Chiaki

    2015-04-01

    Bioremediation technologies have strong potential use in the less costly and more environmentally friendly removal of highly toxic hexavalent-chromium (Cr(VI)) compared with physicochemical technologies. Several Cr(VI)-reducing bacteria have been isolated; however, there are few studies on Cr(VI)-resistant and Cr(VI)-reducing actinomycetes. In this study, Cr(VI)-reducing actinomycetes were screened from estuarine, marine, and terrestrial samples on the basis of Cr(VI)-resistant and Cr(VI)-reducing ability. Of the 80 Streptomyces-like strains isolated, 20 strains were found to be resistant to 50 mg/l of Cr(VI). In addition, two strains isolated from the estuarine sediment of Tokyo Bay were found to be resistant to a concentration of 150 mg/l of Cr(VI). Furthermore, one Cr(VI)-reducing strain was found to remove 60 mg/l of Cr(VI) within 1 week and was identified as Streptomyces thermocarboxydus based on 16S rRNA gene analysis. The comparative evaluation with the type strain S. thermocarboxydus NBRC 16323 showed that our isolated strain had higher ability to grow at 27 °C and reduce Cr(VI) at a NaCl concentration of 6.0 % at 27 °C compared with the type strain NBRC 16323. These results indicate that our isolated strain have a potential ability to remove Cr(VI) from contaminated, highly saline sources without heating.

  1. Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes.

    Science.gov (United States)

    Seyedsayamdost, Mohammad R; Traxler, Matthew F; Clardy, Jon; Kolter, Roberto

    2012-01-01

    Actinomycetes, a group of filamentous, Gram-positive bacteria, have long been a remarkable source of useful therapeutics. Recent genome sequencing and transcriptomic studies have shown that these bacteria, responsible for half of the clinically used antibiotics, also harbor a large reservoir of gene clusters, which have the potential to produce novel secreted small molecules. Yet, many of these clusters are not expressed under common culture conditions. One reason why these clusters have not been linked to a secreted small molecule lies in the way that actinomycetes have typically been studied: as pure cultures in nutrient-rich media that do not mimic the complex environments in which these bacteria evolved. New methods based on multispecies culture conditions provide an alternative approach to investigating the products of these gene clusters. We have recently implemented binary interspecies interaction assays to mine for new secondary metabolites and to study the underlying biology of interactinomycete interactions. Here, we describe the detailed biological and chemical methods comprising these studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Volatile terpenes from actinomycetes: a biosynthetic study correlating chemical analyses to genome data.

    Science.gov (United States)

    Rabe, Patrick; Citron, Christian A; Dickschat, Jeroen S

    2013-11-25

    The volatile terpenes of 24 actinomycetes whose genomes have been sequenced (or are currently being sequenced) were collected by use of a closed-loop stripping apparatus and identified by GC/MS. The analytical data were compared against a phylogenetic analysis of all 192 currently available sequences of bacterial terpene cyclases (excluding geosmin and 2-methylisoborneol synthases). In addition to the several groups of terpenes with known biosynthetic origin, selinadienes were identified as a large group of biosynthetically related sesquiterpenes that are produced by several streptomycetes. The detection of a large number of previously unrecognised side products of known terpene cyclases proved to be particularly important for an in depth understanding of biosynthetic pathways to known terpenes in actinomycetes. Interpretation of the chemical analytical data in the context of the phylogenetic tree of bacterial terpene cyclases pointed to the function of three new enzymes: (E)-β-caryophyllene synthase, selina-3,7(11)-diene synthase and aristolochene synthase. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antimethicilin resistance agents from marine actinomycetes from soil sediments of Lagos Lagoon

    Directory of Open Access Journals (Sweden)

    Davies Olabisi Flora

    2015-03-01

    Full Text Available Objective: To evaluate the isolation of actinomycetes strains with potential for producing antimicrobials with high methicilin resistance capability. Methods: The soil samples were collected from four different locations of Lagos lagoon. The Actinomycetes were isolated from the samples by serial dilution using spread plate method. Isolates were selected based on their cultural characteristics as well as their Gram reaction and phenotypically and molecularly characterized Streptomyces sp. Isolates were inoculated in starch casein and Kuster’s broth media and secondary metabolites were screened for antimicrobial activity against the following microorganisms: methicillin resistant Staphylococcus aureus, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 29522, Pseudomonas aeruginosa ATCC 27853, Candida albicans, Enterococcus faecalis ATCC 29212. Coagulase-negative staphylococci isolated from HIV patients were also used (Staphylococcus warneri, Staphylococcus xylosus and Staphylococcus epidermidis. The antimicrobial metabolites of the isolates were identified using gas chromatography-mass spectrometer. Results: Extracts from isolates ULS12 and ULS13 showed antimicrobial activity against methicillin resistant Staphylococcus aureus while ULK3 inhibited Candida albicans only. The gas chromatography-mass spectrometer data analysis showed the antibiotic profile of these isolates. Conclusions: The isolates ULS12 and ULS13 were found to display the highest antimicrobial activity against the test organisms and could be a potential source of new antibiotics.

  4. Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum.

    Science.gov (United States)

    Gregor, A K; Klubek, B; Varsa, E C

    2003-08-01

    The utilization of actinomycetes as potential soybean (Glycine max (L.)) co-inoculants was evaluated. Soil samples from Carbondale and Belleville, Ill., were used to inoculate pre-germinated soybean plants to determine antibiotic sensitivity in the native Bradyrhizobium japonicum population. Sensitivity was in the order kanamycin > tetracycline > oxytetracycline > rifampicin > neomycin. Antagonism by five actinomycete cultures toward seven test strains of B. japonicum was also assessed. The ranking average inhibition (across all seven B. japonicum strains) by these actino mycetes was Streptomyces kanamyceticus = Streptomyces coeruleoprunus > Streptomyces rimosus > Streptomyces sp. > Amy colatopsis mediterranei. Ten antibiotic combinations were used to isolate antibiotic-resistant mutants of B. japonicum I-110 and 3I1B-110 via successive cycles of mutation. Eighty-one antibiotic-resistant strains were isolated and tested for symbiotic competency; nine of which were selected for further characterization in a greenhouse pot study. Few differences in nodule number were caused by these treatments. Nodule occupancy varied from 0% to 18.3% when antibiotic-resistant strains of B. japonicum were used as the sole inoculants. However, when three mutant strains of B. japonicum were co-inoculated with S. kanamyceticus, significant increases in nodule occupancy (up to 55%) occurred. Increases in shoot nitrogen composition (27.1%-40.9%) were also caused by co-inoculation with S. kanamyceticus.

  5. Biosynthetic potential of actinomycetes in brown forest soil on the eastern coast of the aegean sea

    Science.gov (United States)

    Shirokikh, I. G.; Shirokikh, A. A.

    2017-11-01

    The taxonomic and functional structures of the actinomycetal complex in the litter and upper horizon of the brown forest soil was studied in a Pinus brutia var. pendulifolia forest on the eastern coast of the Aegean Sea. The complex of actinomycetes included representatives of the Streptomyces and Micromonospora genera and oligosporus forms. Streptomycetes predominated (73.8%) in the soil, and micromonospores (66.7%) were dominants in the litter. Thirty isolates of ten Streptomyces species from five series and three sections prevailed. In the upper soil horizon, species of the Helvolo-Flavus Helvolus section predominated (48%); the S. felleus species occurred most frequently. Among the isolated cultures, the S. globisporus and S. sindenensis species capable to produce antitumor antibiotics were found. The testing of the antimicrobial activity of the natural isolates showed that five strains inhibit the growth of pathogenic Fusarium sp., Alternaria sp., Acremonium sp., and Bipolaris sorokiniana fungi. When testing the effect of streptomycetes on the production of cellulases, a high-efficient strain belonging to the S. noboritoensis species was revealed. All the streptomycetes isolated from the brown forest soil produced auxins at the rate of 7.8 to 19.7 μg of indole acetic acid/mL of the liquid medium in the presence of 200 mg/L of tryptophan. Twelve isolates of streptomycetes were transferred to the collection of biotechnologically promising cultures for studying their properties.

  6. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  7. Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis.

    Science.gov (United States)

    Li, Z-Y; Liu, Y

    2006-10-01

    The aim of this study was to investigate the bacterial diversity associated with the sponge Craniella australiensis using a molecular strategy and isolating Actinomycetes with antimicrobial potentials. The bacterial diversity associated with South China Sea sponge C. austrialiensis was assessed using a 16S rDNA clone library alongside restriction fragment length polymorphism and phylogenetic analysis. It was found that the C. austrialiensis-associated bacterial community consisted of alpha, beta and gamma-Proteobacteria, Firmicutes, Bacteroidetes as well as Actinobacterium. Actinomycetes were isolated successfully using seawater medium with sponge extracts. According to the BLAST and phylogenetic analysis based on about 600-bp 16S rDNA sequences, 11 of the representative 23 isolates closely matched the Streptomyces sp. while the remaining 12 matched the Actinomycetales. Twenty Actinomycetes have antimicrobial potentials, of which 15 are found to possess broad-spectrum antimicrobial potentials. The sponge C. austrialiensis-associated bacterial community is very abundant including Proteobacteria, Firmicutes, Bacteroidetes and Actinobacterium while Actinomycetes is not predominant. Artificial seawater medium with sponge extracts is suitable for Actinomycetes isolation. Most of the isolated C. austrialiensis-associated Actinomycetes have a broad spectrum of antimicrobial activity. This study revealed the diversity of the bacterial community and the isolated Actinomycetes with antimicrobial potentials associated with sponge C. australiensis.

  8. Influence of mode of storage and drying of fodder on thermophilic actinomycete aerocontamination in dairy farms of the Doubs region of France.

    Science.gov (United States)

    Dalphin, J C; Pernet, D; Reboux, G; Martinez, J; Dubiez, A; Barale, T; Depierre, A

    1991-09-01

    Airborne contamination by thermophilic actinomycetes, micromycetes and Gram negative bacteria was determined on 34 dairy farms and related to fodder drying and storage methods. Eighteen farms had a barn drying system, eight with additional heating; the remaining 16 had traditional fodder storage methods. Three air samples were obtained for each farm with a six stage Andersen sampler. The thermophilic actinomycetes were identified as Streptomyces and the dominant micromycetes as Aspergillus spp; there was no relation between the levels of these organisms. There were fewer thermophilic actinomycete colonies per Petri dish (stage 5 on the Anderson sampler) on farms with barn drying than on those with traditional storage (median (range) 7 (0-2628) and 56 (4-2628) respectively). The three farms where no thermophilic actinomycetes were found had barn drying with heating and the four most modern farms had lower thermophilic actinomycete colony counts than the others (median (range) 3 (0-10) and 48 (0-2628)). The level of thermophilic actinomycetes and, to a lesser degree, of micromycetes was higher where the farmer had farmer's lung. Thermophilic actinomycetes of the genus Streptomyces are probably the antigens associated with farmer's lung in the Doubs, and modern farms with barn drying and heating furnish some protection against this disease.

  9. Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica

    NARCIS (Netherlands)

    Vrijbloed, J.W.; Jelínková, M.; Hessels, G.I.; Dijkhuizen, L.

    1995-01-01

    The actinomycete Amycolatopsis methanolica contains a 13.3 kb plasmid (pMEA300), capable of enhancing the spontaneous mutation frequency of its host. Depending on the growth medium pMEA300 is not only maintained as an integrated element but can additionally be present as a multicopy, autonomously

  10. Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal

    Science.gov (United States)

    Das, Surajit; Lyla, P. S.; Ajmal Khan, S.

    2008-05-01

    Actinomycetes population from continental slope sediment of the Bay of Bengal was studied. Samples were collected during two voyages of FORV Sagar Sampada in 2004 (May-June) and 2005 (July) respectively from 11 transects (each transect had ca. 200 m, 500 m, and 1 000 m depth stations). The physicochemical parameters of overlying water, and sediment samples were also recorded. The actinomycete population ranged from 5.17 to 51.94 CFU/g dry sediment weight and 9.38 to 45.22 CFU/g dry sediment weight during the two cruises respectively. No actinomycete colony was isolated from stations in 1 000 m depth. Two-way analysis of variance showed significant variation among stations (ANOVA two-way, P0.05). Three actinomycetes genera were identified. Streptomyces was found to be the dominating one in both the cruises, followed by Micromonospora, and Actinomyces. The spore of Streptomyces isolates showed the abundance in spiral spore chain. Spore surface was smooth. Multiple regression analysis revealed that the influencing physico-chemical factors were sediment pH, sediment temperature, TOC, porosity, salinity, and pressure. The media used in the present study was prepared with seawater. Thus, they may represent an autochthonous marine flora and deny the theory of land runoff carriage into the sea for adaptation to the salinity of the seawater and sediments.

  11. In vitro Antimicrobial Assay of Actinomycetes in Rice AgainstXanthomonas oryzae pv. oryzicola and as Potential Plant Growth Promoter

    Directory of Open Access Journals (Sweden)

    Erneeza Mohd Hata

    2015-12-01

    Full Text Available ABSTRACT The aim of this work was to invitro assay the antimicrobial activity of actinomycetes in rice against Xanthomonas oryzae pv. oryzicola and as potential plant growth promoter. A total of 92 actinomycete strains were isolated from different rice plant components and field locations. Of these, only 21.74% showed antagonistic activity against the Xoc pathogen. Molecular identification via 16s rRNA amplification revealed that 60% of the active antagonistic strains belonged to the genus Streptomyces. Isolates that demonstrated the highest antagonistic activity were also able to produce hydrolytic enzymes and plant growth-promoting hormones. Combination of preliminary screening based on in vitro antagonistic, hydrolytic enzyme and plant growth hormone activity facilitated the best selection of actinomycete candidates as evidenced by strains classification using cluster analysis (Ward's Method. Results from the preliminary screening showed that actinomycetes, especially Streptomycetes, could offer a promising source for both biocontrol and plant growth-promotion agents against BLS disease in rice.

  12. Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods.

    Science.gov (United States)

    Loganathan, Karthik; Kumar, Gaurav; Kirthi, Arivarasan Vishnu; Rao, Kokati Venkata Bhaskara; Rahuman, Abdul Abdul

    2013-11-01

    A novel approach to control strategies for integrated blood-feeding parasite management is in high demand, including the use of biological control agents. The present study aims to determine the efficacy of optimized crude extract of actinomycetes strain LK1 as biological control agent against the fourth-instar larvae of Anopheles stephensi and Culex tritaeniorhynchus (Diptera: Culicidae) and adults of Haemaphysalis bispinosa, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), and Hippobosca maculata (Diptera: Hippoboscidae). Antiparasitic activity was optimized using the Plackett-Burman method, and the design was developed using the software Design-Expert version 8.0.7.1. The production of the optimized crude actinomycetes LK1 strain extract was performed using response surface methodology to optimize the process parameters of protease inhibitor activity of marine actinobacteria for the independent variables like pH, temperature, glucose, casein, and NaCl at two levels (-1 and +1). The potential actinomycetes strain was identified as Saccharomonas spp., and the metamodeling surface simulation procedure was followed. It was studied using a computer-generated experimental design, automatic control of simulation experiments, and sequential optimization of the metamodels fitted to a simulation response surface function. The central composite design (CCD) used for the analysis of treatment showed that a second-order polynomial regression model was in good agreement with the experimental results at R (2) = 0.9829 (p < 0.05). The optimized values of the variables for antioxidant production were pH 6.00, glucose 1.3%, casein 0.09%, temperature 31.23 °C, and NaCl 0.10%. The LK1 strain-optimized crude extract was purified using reversed-phase high-pressure liquid chromatography, and the isolated protease inhibitor showed antiparasitic activity. The antiparasitic activity of optimized crude extract of LK1 was tested against larvae of A. stephensi (LC₅₀ = 31.82 ppm

  13. Actinomycetes Mycetoma

    OpenAIRE

    Sumati Hogade; S C Metgud; Swoorooparani,

    2011-01-01

    Mycetoma is a chronic infection, frequently seen in tropical and sub-tropical countries and is considered as an occupational disease. Nocardia species though it can infect immunocompetent individuals, it most commonly affects immunocompromised patients. A 50-year-old male, farmer presented to our hospital with serosanguineous discharging swelling over the dorsum of right foot. We have isolated Nocardia asteroides from the tissue sample. Speciation of this isolate was carried out based on phen...

  14. Antiamoebic properties of the actinomycete metabolites echinomycin A and tirandamycin A.

    Science.gov (United States)

    Espinosa, Avelina; Socha, Aaron M; Ryke, Erica; Rowley, David C

    2012-12-01

    Entamoeba histolytica infects 50 million people per year, causing 100,000 deaths worldwide. The primary treatment for amoebiasis is metronidazole. However, increased pathogen resistance combined with the drug's toxic side effects encourages a search for alternative therapeutic agents. Secondary metabolites from marine bacteria are a promising resource for antiprotozoan drug discovery. In this study, extracts from a collection of marine-derived actinomycetes were screened for antiamoebic properties, and the activities of antibiotics echinomycin A and tirandamycin A are shown. Both antibiotics inhibited the in vitro growth of a E. histolytica laboratory strain (HM-1:IMSS) and a clinical isolate (Colombia, Col) at 30- to 60-μM concentrations. EIC(50) (estimated inhibitory concentration) values were comparable for both antibiotics (44.3-46.3 μM) against the E. histolytica clinical isolate.

  15. Isolasi Actinomycetes Laut Penghasil Metabolit Sekunder yang Aktif terhadap Sel Kanker A549

    Directory of Open Access Journals (Sweden)

    Rofiq Sunaryanto

    2010-12-01

    Full Text Available Telah dilakukan isolasi Actinomycetes laut yang mampu menghasilkan senyawa aktif citropeptin yang memiliki efek toksik terhadap sel kanker paru-paru A549. Isolasi dilakukan dengan menggunakan medium agar starch caseinyang ditambah dengan cycloheximidedan nistatin sebagai antifungi serta rifampisin dan nalidixic acids ebagai antibakteri. Sampel sedimen laut diperoleh dari pelabuhan Kamaishi-shi Iwate, Jepang pada kedalaman 5 meter. Dari 71 isolat yang diperoleh, hanya 9 isolat menunjukkan aktivitas terhadap sel kanker A549 pada konsentrasi 1 µg/200 µL. Hasil studi lebih lanjut menunjukkan bahwa isolat RS02-85 yang merupakan isolat terpilih adalah Streptomyces tsukubaensis dengan tingkat kemiripan 98%. Dari hasil identifikasi senyawa aktif, diduga senyawa tersebut adalah citropeptin dengan m/z (M+H+ 1035,4 g/mol dan rumus molekul C50H82N8O15

  16. Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Mortensen, Uffe Hasbro; Sosio, M.

    2004-01-01

    the primary metabolic pathways of the poorly characterized antibiotic-producing actinomycete Nonomuraea sp. ATCC 39727. Surprisingly, it was found that Nonomuraea sp. ATCC 39272 predominantly metabolizes glucose via the Entner-Doudoroff (ED) pathway. This represents the first time that the ED pathway has been......The metabolic network of the central carbon metabolism represents the backbone of cellular metabolism and provides the precursors and cofactors required for synthesis of secondary metabolites. It is therefore pivotal to map the operating metabolic network in the central carbon metabolism in order...... to design metabolic engineering strategies towards construction of more efficient producers of specific metabolites. In this context, methods that allow rapid and reliable mapping of the central carbon metabolism are valuable. In the present study, a C-13 labelling-based method was used to identify...

  17. Nocardia kroppenstedtii sp. nov., an actinomycete isolated from a lung transplant patient with a pulmonary infection.

    LENUS (Irish Health Repository)

    Jones, Amanda L

    2014-03-01

    A novel actinomycete, strain N1286(T), isolated from a lung transplant patient with a pulmonary infection, was provisionally assigned to the genus Nocardia. The strain had chemotaxonomic and morphological properties typical of members of the genus Nocardia and formed a distinct phyletic line in the Nocardia 16S rRNA gene tree. Isolate N1286(T) was most closely related to Nocardia farcinica DSM 43665(T) (99.8% gene sequence similarity) but could be distinguished from the latter by the low level of DNA-DNA relatedness. These strains were also distinguishable on the basis of a broad range of phenotypic properties. It is concluded that strain N1286(T) represents a novel species of the genus Nocardia for which the name Nocardia kroppenstedtii sp. nov. is proposed. The type strain is N1286(T) ( = DSM 45810(T) = NCTC 13617(T)).

  18. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2017-09-01

    In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antibiotic Producing Potentials of Three Freshwater Actinomycetes Isolated from the Eastern Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Timothy Sibanda

    2010-07-01

    Full Text Available Crude extracts of three actinomycetes species belonging to Saccharopolyspora (TR 046 and TR 039 and Actinosynnema (TR 024 genera were screened for antibacterial activities against a panel of several bacterial strains. The extracts showed antibacterial activities against both gram-negative and gram-positive test bacteria with inhibition zones ranging from 8 to 28 mm (TR 046; 8 to15 mm (TR 039; and 10 to 13 mm (TR 024. The minimum inhibitory concentrations ranged from 0.078 to 10 mg/mL (TR 046; 5 to >10 mg/mL (TR 039; and 1.25 to 5 mg/mL (TR 024. Time-kill studies revealed that crude extract of TR 046 showed strong bactericidal activity against Bacillus pumilus (ATCC14884, reducing the bacterial load by 104 cfu/mL and 102 cfu/mL at 4× MIC and 2× MIC, respectively, after 6 h of exposure. Similarly, against Proteus vulgaris (CSIR 0030, crude extract of TR 046 achieved a 0.9log10 and 0.13log10 cfu/mL reduction at 5 mg/mL (4× MIC and 1.25 mg/mL (2× MIC after 12 h of exposure. The extract was however weakly bactericidal against two environmental bacterial strains (Klebsiella pneumoniae and Staphylococcus epidermidis; and against Pseudomonas aeruginosa (ATCC 19582: the extract showed bacteriostatic activities at all concentrations tested. These freshwater actinomycetes appear to have immense potential as a source of new antibacterial compound(s.

  20. Himalomycin A and cycloheximide-producing marine actinomycete from Lagos Lagoon soil sediment

    Directory of Open Access Journals (Sweden)

    Davies Olabisi Flora

    2015-05-01

    Full Text Available Objective: To isolate and screen Actinomycetes from Lagos Lagoon soil sediments for antibiotic production. Methods: Soil samples were collected from four different locations of Lagos Lagoon and were dried for 2 weeks. Actinomycetes were isolated by serial dilution using spread plate method on starch casein and Kuster’s agar supplemented with 80 μg/mL cycloheximide to prevent fungal growth. The plates were incubated at 28 °C for 1-2 weeks. Isolates were selected based on their cultural characteristics as well as their Gram’s reaction and subcultured on same media for isolation and incubated at 28 °C for 3 days. Pure cultures were maintained on nutrient agar slants at 4 °C. Thereafter, they were inoculated into starch casein and Kuster’s broth media and incubated at 28 °C for 8 days. The resulting crude extracts were screened for antimicrobial activity against the following microorganisms: methicillin resistant Staphylococcus aureus, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 29522, Pseudomonas aeruginosa ATCC 27853, Candida albicans and Enterococcus faecalis ATCC 29212. Coagulasenegative staphylococci isolated from HIV patients were also used (Staphylococcus warneri, Staphylococcus xylosus and Staphylococcus epidermidis. Extraction of secondary metabolites was carried out and analysed using gas chromatography-mass spectrometer. Results: All the isolates displayed varying antimicrobial activity against at least one of the test organisms. Himalomycin A was identified in the extract from isolate ULS7. The gas chromatography-mass spectrometer data analysis showed the antibiotic profile of these isolates. Conclusions: The isolate ULS7 was found to display the highest antimicrobial activity against the test organisms.

  1. Marine sponge Craniella austrialiensis‐associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis

    National Research Council Canada - National Science Library

    Li, Z.‐Y; Liu, Y

    2006-01-01

    Aims:  The aim of this study was to investigate the bacterial diversity associated with the sponge Craniella australiensis using a molecular strategy and isolating Actinomycetes with antimicrobial potentials...

  2. Study of the diversity of culturable actinomycetes in the North Pacific and Caribbean coasts of Costa Rica

    Science.gov (United States)

    Solano, Godofredo; Rojas-Jiménez, Keilor; Jaspars, Marcel

    2011-01-01

    In this study, 137 actinomycetes were isolated from subtidal marine sediments in the North Pacific and Caribbean coasts of Costa Rica. Bioinformatics analysis of the 16S rRNA gene sequences assigned the isolates to 15 families and 21 genera. Streptomyces was the dominant genus while the remaining 20 genera were poorly represented. Nearly 70% of the phylotypes presented a coastal-restricted distribution whereas the other 30% were common inhabitants of both shores. The coastal tropical waters of Costa Rica showed a high diversity of actinomycetes, both in terms of the number of species and phylogenetic composition, although significant differences were observed between and within shores. The observed pattern of species distribution might be the result of several factors including the characteristics of the ecosystems, presence of endemic species and the influence of terrestrial runoff. PMID:19365710

  3. Study of the diversity of culturable actinomycetes in the North Pacific and Caribbean coasts of Costa Rica.

    Science.gov (United States)

    Solano, Godofredo; Rojas-Jiménez, Keilor; Jaspars, Marcel; Tamayo-Castillo, Giselle

    2009-06-01

    In this study, 137 actinomycetes were isolated from subtidal marine sediments in the North Pacific and Caribbean coasts of Costa Rica. Bioinformatics analysis of the 16S rRNA gene sequences assigned the isolates to 15 families and 21 genera. Streptomyces was the dominant genus while the remaining 20 genera were poorly represented. Nearly 70% of the phylotypes presented a coastal-restricted distribution whereas the other 30% were common inhabitants of both shores. The coastal tropical waters of Costa Rica showed a high diversity of actinomycetes, both in terms of the number of species and phylogenetic composition, although significant differences were observed between and within shores. The observed pattern of species distribution might be the result of several factors including the characteristics of the ecosystems, presence of endemic species and the influence of terrestrial runoff.

  4. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting.

    Science.gov (United States)

    Zhao, Yi; Zhao, Yue; Zhang, Zhechao; Wei, Yuquan; Wang, Huan; Lu, Qian; Li, Yanjie; Wei, Zimin

    2017-10-01

    The inoculum containing four cellulolytic thermophilic actinomycetes was screened from compost samples, and was inoculated into co-composting during different inoculation phases. The effect of different inoculation phases on cellulose degradation, humic substances formation and the relationship between inoculation and physical-chemical parameters was determined. The results revealed that inoculation at different phases of composting improved cellulase activities, accelerated the degradation of cellulose, increased the content of humic substances and influenced the structure of actinomycetic community, but there were significant differences between different inoculation phases. Redundancy analysis showed that the different inoculation phases had different impacts on the relationship between exogenous actinobacteria and physical-chemical parameters. Therefore, based on the promoting effort of inoculation in thermophilic phase of composting for the formation of humic substances, we suggested an optimized inoculation strategy to increase the content of humic substances, alleviate CO 2 emission during composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments

    Energy Technology Data Exchange (ETDEWEB)

    Pasti-Grigsby, M.B.; Lewis, T.A.; Crawford, D.L.; Crawford, R.L. [Univ. of Idaho, Moscow, ID (United States)

    1996-03-01

    Biotransformation of TNT has been reported under both aerobic and anaerobic conditions. Actinomycetes are important decomposers in composts. This study examines the tolerance of acitomycete cultures, isolated from both TNT-contaminated and uncontaminated environments for different concentrations to TNT, determined how selected isolates transform TNT, and examined whether such TNT transformations were constitutive or induced by exposure to TNT. 33 refs., 1 figs., 1 tab.

  6. Degradative crystal–chemical transformations of clay minerals under the influence of cyanobacterium-actinomycetal symbiotic associations

    Directory of Open Access Journals (Sweden)

    Ekaterina Ivanova

    2014-04-01

    Full Text Available Cyanobacteria and actinomycetes are essential components of soil microbial community and play an active role in ash elements leaching from minerals of the parent rock. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. The transformative effect of cyanobacterial–actinomycetes associations on the structure of clay minerals – kaolinite, vermiculite, montmorillonite, biotite and muscovite – was observed, with the greatest structural lattice transformation revealed under the influence of association in comparison with monocultures of cyanobacterium and actinomycete. The range of the transformative effect depended both on the type of biota (component composition of association and on the crystal–chemical parameters of the mineral itself (trioctahedral mica – biotite, was more prone to microbial degradation than the dioctahedral – muscovite. The formation of the swelling phase – the product of biotite transformation into the mica–vermicullite mixed-layered formation was revealed as a result of association cultivation. Crystal chemical transformation of vermiculite was accompanied by the removal of potassium (К, magnesium (Mg and aluminum (Al from the crystal lattice. The study of such prokaryotic communities existed even in the early stages of the Earth's history helps to understand the causes and nature of the transformations undergone by the atmosphere, hydrosphere and lithosphere of the planet.contribution of treatments on structure induces and model parameters are discussed in the paper.

  7. Diversity and exploration of bioactive marine actinomycetes in the Bay of Bengal of the Puducherry coast of India.

    Science.gov (United States)

    Suthindhiran, Krish; Kannabiran, Krishnan

    2010-03-01

    The present study was designed to investigate the Puducherry coast of the Bay of Bengal, India for the diversity of bioactive actinomycetes. A total of 50 actinomycete strains were isolated from the marine sediments and most of the strains were belongs to Streptomyces. These strains were identified by means of morphological physiological, biochemical and cultural characteristics. The isolates were subjected to shake flask fermentation and the secondary metabolites were extracted with ethyl acetate and screened for cytotoxicity, hemolytic activity and antimicrobial activity against selected bacterial and fungal pathogens. The cytotoxic activity was evaluated using HeLa cell lines by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) assay, hemolytic activity on mouse erythrocytes and the antifungal activity was evaluated by MTT cytotoxic assay against Aspergillus niger, Aspergillus fumigatus and Candida albicans. The antibacterial activity was studied against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Klebsiella pneumoniae. The cytotoxicity and antimicrobial activity of secondary metabolite was found to be concentration dependent and nearly 24% of isolates showed significant antimicrobial, hemolytic and cytotoxic activity. The results of our study indicate the diversity and bioactive potential of marine actinomycetes isolated in the Puducherry coast.

  8. In vitro interaction of actinomycetes isolates with Aspergillus flavus: impact on aflatoxins B1 and B2 production.

    Science.gov (United States)

    Verheecke, C; Liboz, T; Darriet, M; Sabaou, N; Mathieu, F

    2014-06-01

    This work aimed to study the interaction between Actinomycetal isolates and Aspergillus flavus to promote mutual antagonism in contact. Thirty-seven soilborn Streptomyces spp. isolates were chosen as potential candidates. After a 10-day in vitro co-incubation period, 27 isolates respond to the criteria, that is, mutual antagonism in contact. Further aflatoxins B1 and B2 analysis revealed that those 27 isolates reduced aflatoxin B1 residual concentration from 38·6 to 4·4%, depending on the isolate. We selected 12 isolates and tested their capacity to reduce AFB1 in pure culture to start identifying the mechanisms involved in its reduction. AFB1 was reduced by eight isolates. The remaining AFB1 concentration varied between 82·2 and 15·6%. These findings led us to suggest that these eight isolates could be used as biocontrol agents against AFB1 and B2 with low risk of impacting the natural microbial equilibrium. Interaction between Aspergillus flavus and Actinomycetes isolates was conducted in vitro. Actinomycetes isolates having a mutual antagonism in contact with A. flavus were chosen for further aflatoxins production study. This is a new approach based to develop biocontrol against aflatoxins accumulation in maize while respecting natural microbial equilibrium. © 2014 The Society for Applied Microbiology.

  9. Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes.

    Science.gov (United States)

    Liao, Cheng-Heng; Yao, Lili; Xu, Ya; Liu, Wei-Bing; Zhou, Ying; Ye, Bang-Ce

    2015-12-22

    The regulatory mechanisms underlying the uptake and utilization of multiple types of carbohydrates in actinomycetes remain poorly understood. In this study, we show that GlnR (central regulator of nitrogen metabolism) serves as a universal regulator of nitrogen metabolism and plays an important, previously unknown role in controlling the transport of non-phosphotransferase-system (PTS) carbon sources in actinomycetes. It was observed that GlnR can directly interact with the promoters of most (13 of 20) carbohydrate ATP-binding cassette (ABC) transporter loci and can activate the transcription of these genes in response to nitrogen availability in industrial, erythromycin-producing Saccharopolyspora erythraea. Deletion of the glnR gene resulted in severe growth retardation under the culture conditions used, with select ABC-transported carbohydrates (maltose, sorbitol, mannitol, cellobiose, trehalose, or mannose) used as the sole carbon source. Furthermore, we found that GlnR-mediated regulation of carbohydrate transport was highly conserved in actinomycetes. These results demonstrate that GlnR serves a role beyond nitrogen metabolism, mediating critical functions in carbon metabolism and crosstalk of nitrogen- and carbon-metabolism pathways in response to the nutritional states of cells. These findings provide insights into the molecular regulation of transport and metabolism of non-PTS carbohydrates and reveal potential applications for the cofermentation of biomass-derived sugars in the production of biofuels and bio-based chemicals.

  10. Inhibition of Aspergillus parasiticus and cancer cells by marine actinomycete strains

    Science.gov (United States)

    Li, Ping; Yan, Peisheng

    2014-12-01

    Ten actinomycete strains isolated from the Yellow Sea off China's coasts were identified as belonging to two genera by 16S rDNA phylogenetic analysis: Streptomyces and Nocardiopsis. Six Streptomyces strains (MA10, 2SHXF01-3, MA35, MA05-2, MA05-2-1 and MA08-1) and one Nocardiopsis strain (MA03) were predicted to have the potential to produce aromatic polyketides based on the analysis of the KSα (ketoacyl-synthase) gene in the type II PKS (polyketides synthase) gene cluster. Four strains (MA03, MA01, MA10 and MA05-2) exhibited significant inhibitory effects on mycelia growth (inhibition rate >50%) and subsequent aflatoxin production (inhibition rate >75%) of the mutant aflatoxigenic Aspergillus parasiticus NFRI-95. The ethyl acetate extracts of the broth of these four strains displayed significant inhibitory effects on mycelia growth, and the IC50 values were calculated (MA03: 0.275 mg mL-1, MA01: 0.106 mg mL-1, MA10: 1.345 mg mL-1 and MA05-2: 1.362 mg mL-1). Five strains (2SHXF01-3, MA03, MA05-2, MA01 and MA08-1) were selected based on their high cytotoxic activities. The ethyl acetate extract of the Nocardiopsis strain MA03 was particularly noted for its high antitumor activity against human carcinomas of the cervix (HeLa), lung (A549), kidney (Caki-1) and liver (HepG2) (IC50: 2.890, 1.981, 3.032 and 2.603 μg mL-1, respectively). The extract also remarkably inhibited colony formation of HeLa cells at an extremely low concentration (0.5 μg mL-1). This study highlights that marine-derived actinomycetes are a huge resource of compounds for the biological control of aflatoxin contamination and the development of novel drugs for human carcinomas.

  11. Isolation and Identification of a Rare Actinomycete with Antibacterial Activity from Saline Region of Iran

    Directory of Open Access Journals (Sweden)

    Samaneh Mashhadi

    2016-07-01

    Full Text Available Background: The appearance of multi-drug resistant microorganisms is becoming a global problem. Already several strategies have been employed to overcome antibiotic resistance issue. Developing new antimicrobial compounds from microbial sources could be a beneficial solution. Hence screening programs in order to discover new antibiotics from microbial entities are interesting. Because of high capabilities of extremophiles for adaptation to harsh environmental conditions, the microbial communities of the extreme environments could be regarded as rich resources for new antibacterial metabolites. Materials and Methods: In this research different saline environments of Iran have been subjected to screening of antibiotic producing actinomycetes using overlaid method after the ingredient optimization of culture media. The strain which was shown pronounce inhibition zone in the screening step, has been phylogenetically analyzed followed by studying the effect of agar concentration and cultivation time on the production of antibacterial agent(s. Results: The strain RS1, a rare actinomycete, had antibacterial activity against Escherichia coli (PTCC 1330 and Bacillus subtilis (PTCC 1023 and taxonomically belongs to the genus Amycolatopsis with high similarity of 99.6% to Amycolatopsis coloradensis IMSNU 22096T based on sequencing of 16S rRNA gene nucleotide. The zone of growth inhibition of E.coli was the widest when the base layer had contained 1.2% agar, while no significant differences were observed on anti-gram-positive bacterial assay. This strain produced the antibacterial agent at the highest level after 5 days when B. subtilis was used as an indicator, but the production of antibacterial agent active against E.Coli was reached to its highest level on the 3rd days of cultivation and then was decreased significantly. Conclusion: Due to the results of agar concentration and time course study as well as possessing activity against both Gram

  12. Comparative efficacy of macrolides containing marine actinomycetes formulation versus ciprofloxacin ophthalmic solution in controlling Pseudomonas aeruginosa induced conjunctivitis on rabbit model

    Directory of Open Access Journals (Sweden)

    Femina Wahaab

    2015-06-01

    Full Text Available The main objective of this study was to evaluate the antimicrobial activity and anti-inflammatory activity of marine actinomycetes extract against ocular pathogen Pseudomonas aeruginosa. Actinomycetes isolated from Rameswaram coastal region, Tamilnadu, India were initially screened by primary screening and secondary screening against ocular pathogen P. aeruginosa. Followed by anti-conjunctivitis efficacy of actinomycetes ethyl acetate extract formulation versus ciprofloxacin ophthalmic solution was evaluated using rabbit as animal model. The bioactive compounds present in the best actinomycetes extract was identified by HPTLC and GC–MS analysis. Finally the screened best actinomycetes was identified by 16S rRNA sequencing method. In primary screening 28 actinomycetes that inhibited the growth of P. aeruginosa were taken for secondary screening. In secondary screening RAM24C2 extract had maximum activity against P. aeruginosa. In vivo study of conjunctivitis developed rabbits treated with RAM24C2 extract formulation showed the best clinical cure than ciprofloxacin ophthalmic solution. The RAM24C2 extract was chromatographically characterized and found to contain macrolides. In addition, the effective major pivotal molecule in the extract was detected as 1, 2 benzene dicarboxylic acid and Bis (2-ethylhexyl phthalate by GC–MS analysis. The RAM24C2 strain was identified as Streptomyces sp. MAD01 and the sequence was submitted in NCBI with accession number JX050218. From our study it is found that the ethyl acetate extract obtained from marine actinomycetes is effective against ocular pathogen P. aeruginosa. Compared to ciprofloxacin ophthalmic solution our RAM24C2 extract formulation hastens the cure of conjunctivitis developed rabbits and need less dosage frequency.

  13. Screening of phospholipase A activity and its production by new actinomycete strains cultivated by solid-state fermentation

    Science.gov (United States)

    Sutto-Ortiz, Priscila; Camacho-Ruiz, María de los Angeles; Kirchmayr, Manuel R.; Camacho-Ruiz, Rosa María; Mateos-Díaz, Juan Carlos; Noiriel, Alexandre; Carrière, Frédéric; Abousalham, Abdelkarim

    2017-01-01

    Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73%) and Micromonospora (10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel

  14. Screening of phospholipase A activity and its production by new actinomycete strains cultivated by solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Priscila Sutto-Ortiz

    2017-07-01

    Full Text Available Novel microbial phospholipases A (PLAs can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging to Streptomyces (73% and Micromonospora (10% genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA using enriched PC (≈60% as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support. Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of the Streptomyces genus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and

  15. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease

    Directory of Open Access Journals (Sweden)

    Mungsuntisuk Isada

    2011-04-01

    Full Text Available Abstract Background Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. Results A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0% were active against at least one indicator fungus or yeast. Fifty four (17.8% were active against three anthracnose fungi and 17 (5.6% could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87% belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2 and Nocardiopsis (strain CM-2 and two to Nocardia (strains BP-3 and LK-1. Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three

  16. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil.

    Science.gov (United States)

    Hozzein, Wael N; Goodfellow, Michael

    2008-11-01

    The taxonomic status of an unknown actinomycete isolated from a sand-dune soil was established using a polyphasic approach. Isolate S186(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nocardiopsis, grew on agar plates at NaCl concentrations of up to 15 % (w/v) and formed a distinct phyletic line in the Nocardiopsis 16S rRNA gene sequence tree. Its closest phylogenetic neighbours were Nocardiopsis chromatogenes, Nocardiopsis composta, Nocardiopsis gilva and Nocardiopsis trehalosi, with sequence similarity to the various type strains of 96.9 %, but it was readily distinguished from the type strains of these and related species using a range of phenotypic properties. It is apparent from the genotypic and phenotypic data that strain S186(T) belongs to a novel species of the genus Nocardiopsis, for which the name Nocardiopsis arabia sp. nov. is proposed. The type strain is S186(T) (=CGMCC 4.2057(T) =DSM 45083(T)).

  17. A method to type the potential angucycline producers in actinomycetes isolated from marine sponges.

    Science.gov (United States)

    Ouyang, Yongchang; Wu, Houbo; Xie, Lianwu; Wang, Guanghua; Dai, Shikun; Chen, Minjie; Yang, Keqian; Li, Xiang

    2011-05-01

    Angucyclines are aromatic polyketides with antimicrobial, antitumor, antiviral and enzyme inhibition activities. In this study, a new pair of degenerate primers targeting the cyclase genes that are involved in the aromatization of the first and/or second ring of angucycline, were designed and evaluated in a PCR protocol targeting the jadomycin cyclase gene of Streptomyces venezuelae ISP5230. The identity of the target amplicon was confirmed by sequencing. After validation, the primers were used to screen 49 actinomycete isolates from three different marine sponges to identify putative angucycline producers. Seven isolates were positively identified using this method. Sequence analysis of the positive amplicons confirmed their identity as putative angucycline cyclases with sequence highly similar to known angucycline cyclases. Phylogenetic analysis clustered these positives into the angucycline group of cyclases. Furthermore, amplifications of the seven isolates using ketosynthase-specific primers were positive, backing the results using the cyclase primers. Together these results provided strong support for the presence of angucycline biosynthetic genes in these isolates. The specific primer set targeting the cyclase can be used to identify putative angucycline producers among marine actinobacteria, and aid in the discovery of novel angucyclines.

  18. Diversity and bioactivity of actinomycetes from marine sediments of the Yellow Sea

    Science.gov (United States)

    Zhang, Shumin; Ye, Liang; Tang, Xuexi

    2012-03-01

    Among the 116 actinomycetes collected from marine sediments of the Yellow Sea, 56 grew slowly and appeared after 2-3 weeks of incubation. Among the 56 strains, only 3 required seawater (SW) for growth, and 21 grew well in the medium prepared with SW rather than distilled water (DW), while the remaining 32 grew well either with SW or with DW. Six representatives with different morphological characteristics, including 1 SW-requiring strain and 5 well-growing with SW strains, were selected for phylogenetic analysis based on 16S rRNA gene. Two strains belong to Micrococcaceae and Nocardiopsaceae respectively. The other 4 strains belong to the family of Streptomycetaceae. In the analyzed 6 strains, one was related to Nocardiopsis spp. and the other three were related to Streptomyces spp., representing new taxa. Bioactivity testing of fermentation products from 3 SW-requiring strains and 21 well-growing with SW strains revealed that 17 strains possessed remarkable activities against gram-positive pathogen or/and tumor cells, suggesting that they were prolific resources for natural drug discovery.

  19. Biogenic gold nanotriangles from Saccharomonospora sp., an endophytic actinomycetes of Azadirachta indica A. Juss.

    Science.gov (United States)

    Verma, Vijay C.; Anand, Swechha; Ulrichs, Christian; Singh, Santosh K.

    2013-04-01

    Microbial biofabrication is emerging as eco-friendly, simpler, and reproducible alternative to chemical synthesis of metals and semiconductor nanoparticles, allowing generation of rare geometrical forms such as nanotriangles and nanoprisms. Highly confined nanostructures like triangles/prisms are interesting class of nanoparticles due to their unique optical properties exploitable in biomedical diagnostics and biosensors. Here, we report for the first time a single-step biological protocol for the synthesis of gold nanotriangles using extract of endophytic actinomycetes Saccharomonospora sp., isolated from surface sterilized root tissues of Azadirachta indica A. Juss., when incubated with an aqueous solution of chloroaurate ions (AuCl- 4/1 mM). Thin, flat occasionally prismatic gold nanotriangles were produced when aqueous chloroaurate ions reacted with the cell-free extract as well as with the biomass of endophytic Saccharomonospora. It was evidenced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis that proteins of 42 and 50 kD were involved in biosynthesis as well as in stabilization of the nanoparticles. The particle growth process was monitored by UV-vis spectroscopy, and the morphological characterization was carried out by transmission electron microscopy and atomic force microscopy together with X-ray powder diffractions. Although the exact mechanism for this shape-oriented synthesis is not clear so far, the possibility of achieving nanoparticle shape control in a microbial system is exciting.

  20. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  1. Actinomycetes Diversity among rRNA Gene Clones and Cellular Isolates from Sambhar Salt Lake, India

    Directory of Open Access Journals (Sweden)

    A. K. Yadav

    2013-01-01

    Full Text Available The vertical stratification of actinomycetes diversity in Sambhar salt lake (India’s largest salt lake was investigated by using cultivable and uncultivable approaches. The isolates from cultured approaches were clustered on the basis of cultural, morphological, biochemical, and cell wall characteristics, and results were further strengthened by 16S rDNA-RFLP into five major groups. 16S rDNA sequencing of the representative isolates from each clusters was identified as belonging to Streptomyces, Actinopolyspora, Microbispora, Saccharopolyspora, and Actinoplanes genera, while culture independent group was established as Streptomyces (130 clones, 20 OTUs, Micromonospora (96 clones, 7 OTUs, Streptosporangium (79 clones, 9 OTUs, Thermomonospora (46 clones, 8 OTUs, and Dactylosporangium (58 clones, 8 OTUs. The diversity assessment using Shannon and Wiener index was found to be 1.55, 1.52, 1.55, and 1.49 from surface lake water, at depth of 1.5 m, shallow layer of water with algal population, and finally at depth of 2.5 m, respectively. We observed diversity in terms of the species richness as Streptomyces is dominant genus in both culture dependent and culture independent techniques followed by Microbispora (culture dependent methods and Micromonospora (culture independent method genera, respectively.

  2. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters

    Directory of Open Access Journals (Sweden)

    Huajun eZhang

    2015-05-01

    Full Text Available Phaeocystis globosa blooms in eutrophication waters can cause severely damage in marine ecosystem and consequently influence human activities. This study investigated the effect and role of an algicidal actinomycete (Streptomyces sp. JS01 on the elimination process of P. globosa. JS01 supernatant could alter algal cell membrane permeability in 4 h when analyzed with flow cytometry. Reactive oxygen species (ROS levels were 7.2 times higher than that at 0 h following exposure to JS01 supernatant for 8 h, which indicated that algal cells suffered from oxidative damage. The Fv/Fm value which could reflect photosystem II (PS II electron flow status also decreased. Real-time PCR showed that the expression of the photosynthesis related genes psbA and rbcS were suppressed by JS01 supernatant, which might induce damage to PS II. Our results demonstrated that JS01 supernatant can change algal membrane permeability in a short time and then affect photosynthesis process, which might block the PS II electron transport chain to produce excessive ROS. This experiment demonstrated that Streptomyces sp. JS01 could eliminate harmful algae in marine waters efficiently and may be function as a harmful algal bloom controller material.

  3. [Actinomycosic mycetoma of the foot in Morocco due to Actinomycetes viscosus].

    Science.gov (United States)

    Baha, H; Khadir, K; Hali, F; Benchikhi, H; Zeghwagh, A; Zerouali, K; Belabbes, H; El Mdaghri, N; Soussi, M A; Marnissi, F; Kadioui, F

    2015-03-01

    We present the case of an actinomycotic mycetoma of the foot due to Actinomycetes viscosus. It evolved for nine years on the foot of a 26-year-old patient from a rural environment: Douar Inezgane (city in southern Morocco). Bacteriological study of the skin and grains confirmed the diagnosis. It showed positive bacilli on direct examination and on Gram staining and in positive culture. Histological study showed a polymorphous granulomatous inflammation without signs of malignancy with actinomycotic grains. Then we retained the diagnosis of primary cutaneous actinomycosis without visceral locations. The treatment was based on antibiotics: penicillin G by intravenous infusion for five weeks, relayed orally by amoxicillin associated with trimethoprim-sulfamethoxazole for long periods. After six months of treatment, we observed a favorable outcome with reduction of the swelling, nodules, lymphadenopathy, fistula's number and extension of time of issue of grains. The current follow up is 15 months. The primary cutaneous actinomycosis is still relevant in Morocco. Copyright © 2015. Published by Elsevier Masson SAS.

  4. Field studies on two rock phosphate solubilizing actinomycete isolates as biofertilizer sources

    Science.gov (United States)

    Mba, Caroline C.

    1994-03-01

    Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.

  5. Brevibacterium samyangense sp. nov., an actinomycete isolated from a beach sediment.

    Science.gov (United States)

    Lee, Soon Dong

    2006-08-01

    A novel actinomycete, strain SST-8(T), was isolated from sand sediment of Samyang Beach in Jeju, Korea, and subjected to a polyphasic taxonomic study. The organism, which produced opaque, circular, yellow colonies, with a coryneform morphology, showed the following chemotaxonomic characteristics: meso-diaminopimelic acid as the diamino acid in the peptidoglycan, MK-8(H(2)) as the major menaquinone, phosphatidylglycerol as the only polar lipid, anteiso-C(15 : 0) and anteiso-C(17 : 0) as major fatty acids and a DNA G+C content of 70.7 mol%. The combination of morphological and chemotaxonomic features supported its classification in the genus Brevibacterium. Phylogenetic analyses, based on 16S rRNA gene sequence studies, showed that strain SST-8(T) formed an intermediate branch between the Brevibacterium luteolum/Brevibacterium otitidis and Brevibacterium mcbrellneri/Brevibacterium paucivorans clusters. Sequence similarity calculations based on a neighbour-joining analysis revealed that the closest relatives of strain SST-8(T) were the type strains of B. paucivorans (96.6 %), B. luteolum (96.5 %), B. mcbrellneri (96.3 %), Brevibacterium avium (96.0 %) and B. otitidis (95.9 %). Based on a broad set of phenotypic and genetic data, it was evident that the strain represents a novel species of the genus Brevibacterium. The name Brevibacterium samyangense sp. nov. is proposed, with SST-8(T) (=NRRL B-41420(T)=KCCM 42316(T)) as the type strain.

  6. Genome Sequence and Analysis of the Soil Cellulolytic ActinomyceteThermobifida fusca

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Land, Miriam; DiBartolo, Genevieve; Martinez, Michele; Lapidus, Alla; Lucas, Susan; Copeland, Alex; Richardson, Paul; Wilson,David B.; Kyrpides, Nikos

    2007-02-01

    Thermobifida fusca is a moderately thermophilic soilbacterium that belongs to Actinobacteria. 3 It is a major degrader ofplant cell walls and has been used as a model organism for the study of 4secreted, thermostable cellulases. The complete genome sequence showedthat T. fusca has a 5 single circular chromosome of 3642249 bp predictedto encode 3117 proteins and 65 RNA6 species with a coding densityof 85percent. Genome analysis revealed the existence of 29 putative 7glycoside hydrolases in addition to the previously identified cellulasesand xylanases. The 8 glycosyl hydrolases include enzymes predicted toexhibit mainly dextran/starch and xylan 9 degrading functions. T. fuscapossesses two protein secretion systems: the sec general secretion 10system and the twin-arginine translocation system. Several of thesecreted cellulases have 11 sequence signatures indicating theirsecretion may be mediated by the twin-arginine12 translocation system. T.fusca has extensive transport systems for import of carbohydrates 13coupled to transcriptional regulators controlling the expression of thetransporters and14 glycosylhydrolases. In addition to providing anoverview of the physiology of a soil 15 actinomycete, this study presentsinsights on the transcriptional regulation and secretion of16 cellulaseswhich may facilitate the industrial exploitation of thesesystems.

  7. Identity and lipase productivity of a mesophilic actinomycete isolated from Egyptian soil.

    Science.gov (United States)

    Mostafa, S A; Ali, O A

    1979-01-01

    1. A mesophilic lipolytic actinomycete was isolated from Egyptian soil and was identified as a strain of Streptomyces flavogriseus. 2. Lipase(s) produced by S. flavogriseus is (at least partly) constitutive in its (their) nature and can be produced in the absence of lipids, however, its production is stimulated in their presence. 3. S. flavogriseus was unable to grow at 40 degrees C or higher temperatures. However, lipase(s) produced at lower temperatures (e.g. 20, 25, 30 and 35 degrees C) were more active at 45 and 55 degrees C. This is probably due to the presence of a heat sensitive lipase inhibitor in the culture filtrate. 4. Optimum conditions for lipase(s) production by S. flavoriseus are pH 6.8, incubation for 48-72 hours at 35 degrees C with 0.8% castor oil as the carbon source in Dox liquid medium supplemented with 0.3% yeast extract. 5. Factors supporting good growth were not always the same as those stimulating lipase(s) production.

  8. Isolation, characterization and chromatography based purification of antibacterial compound isolated from rare endophytic actinomycetes Micrococcus yunnanensis

    Directory of Open Access Journals (Sweden)

    Ravi Ranjan

    2017-10-01

    Full Text Available Endophytic actinomycetes are considered as one of the relatively unexplored potential sources in search of antibiotic producer against antibiotic resistant pathogens. A potent strain isolated from Catharanthus roseus that displays antibacterial potential against antibiotic resistant human pathogen Staphylococcus aureus was characterized and designated as Micrococcus yunnanensis strain rsk5. Rsk5 is capable of producing optimum antibacterial metabolites on starch casein medium at 30 °C, pH 5 and 2% NaCl condition. The crude antibacterial agent was extracted from fermentation broth by ethyl acetate and separated by TLC using chloroform-methanol (24:1, v/v solvent system with Rf value of 0.26. It was partially purified by flash chromatography, followed by HPLC and analyzed by ultraviolet visible spectrophotometer to get absorption maxima at 208.4 nm. The ESI-MS spectra showed molecular ion peaks at m/z 472.4 [M-H], which does not match with any known antibacterial compound.

  9. Nocardiopsis akesuensis sp. nov., an actinomycete isolated from a salt water beach.

    Science.gov (United States)

    Gao, Guang-Bin; Luo, Xiao-Xia; Xia, Zhan-Feng; Zhang, Yao; Wan, Chuan-Xing; Zhang, Li-Li

    2016-12-01

    The taxonomic position of a novel actinomycete, strain TRM 46250T, isolated from the sediment of a salt water beach at Baicheng, Xinjiang, China, was determined by a polyphasic approach. Strain TRM 46250T grew optimally in the presence of 2 % (w/v) NaCl and an optimum temperature range for growth of 28-37 °C. The whole-cell sugars of strain TRM 46250T were ribose, xylose, mannose and galactose. The diagnostic diamino acid was meso-diaminopimelic acid. The polar lipids were phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmethyl ethanolamine and six unidentified phospholipids. The predominant menaquinones were MK-10, MK-10(H6) and MK-10(H8). The major fatty acids were 10-methyl C18 : 0, iso-C16 : 0, C16 : 0, iso-G C16 : 1 and C18 : 1ω9c. Based on morphological and chemotaxonomic characteristics the isolate was determined to belong to the genus Nocardiopsis. The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1493 nt) with those of representative strains showed that the strain consistently falls into a distinct phyletic line together with Nocardiopsis gilva YIM 90087T (97.68 % similarity) and a subclade consisting of Nocardiopsis composta KS9T (97.52 %), Nocardiopsis rosea YIM 90094T (97.44 %) and Nocardiopsis rhodophaea YIM 90096T (97.16 %). However, DNA-DNA hybridization studies between strain TRM 46250T and N. gilva YIM 90087T showed only 36.94 % relatedness. On the basis of these data, strain TRM 46250T should be designated as a representative of a novel species of the genus Nocardiopsis, for which the name Nocardiopsis akesuensis sp. nov. is proposed. The type strain is TRM 46250T (=CCTCC AA 2015027T=KCTC 39725T).

  10. Diketopiperazine Derivatives from the Marine-Derived Actinomycete Streptomyces sp. FXJ7.328

    Directory of Open Access Journals (Sweden)

    Weiming Zhu

    2013-03-01

    Full Text Available Five new diketopiperazine derivatives, (3Z,6E-1-N-methyl-3-benzy lidene-6-(2S-methyl-3-hydroxypropylidenepiperazine-2,5-dione (1, (3Z,6E-1-N-methyl-3-benzylidene-6-(2R-methyl-3-hydroxypropylidenepiperazine-2,5-dione (2, (3Z,6Z-3- (4-hydroxybenzylidene-6-isobutylidenepiperazine-2,5-dione (3, (3Z,6Z-3-((1H-imidazol-5-yl-methylene-6-isobutylidenepiperazine-2,5-dione (4, and (3Z,6S-3-benzylidene-6-(2S-but-2-ylpiperazine-2,5-dione (5, were isolated from the marine-derived actinomycete Streptomyces sp. FXJ7.328. The structures of 1–5 were determined by spectroscopic analysis, CD exciton chirality, the modified Mosher’s, Marfey’s and the C3 Marfey’s methods. Compound 3 showed modest antivirus activity against influenza A (H1N1 virus with an IC50 value of 41.5 ± 4.5 μM. In addition, compound 6 and 7 displayed potent anti-H1N1 activity with IC50 value of 28.9 ± 2.2 and 6.8 ± 1.5 μM, respectively. Due to the lack of corresponding data in the literature, the 13C NMR data of (3Z,6S-3-benzylidene-6-isobutylpiperazine-2,5-dione (6 were also reported here for the first time.

  11. Streptosporangium terrae sp. nov., a novel actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis), India.

    Science.gov (United States)

    Vaddavalli, Radha; Gaddam, Bagyanarayana; Linga, Venkateswar Rao

    2015-07-01

    A novel actinomycete strain, designated VRC21(T), was isolated from the rhizosphere of Callistemon citrinus collected from Hyderabad, India. The morphological and chemotaxonomic properties of strain VRC21(T) was consistent with the characteristics of members of the genus Streptosporangium, that is, the formation of sporangia on aerial mycelium, coiled unbranched hyphae within the spore vesicle, the presence of meso-diaminopimelic acid in the cell wall, and madurose and galactose as major whole-cell sugars. Diagnostic polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol-mannosides. The predominant menaquinones were MK-9(H2) and MK-9(H4). The major cellular fatty acids were iso-C14:0, iso-C16:0, C17:0 10-methyl, C18:1w9c and C18:0 10-methyl. 16S rRNA gene sequence analyses revealed that strain VRC21(T) was a member of the genus Streptosporangium. The highest similarity values were observed with S. carneum DSM 44125(T) (98.2%) and S. fragile DSM 43847(T) (98.2%); the values of the remaining type strains were below 98%. The values of DNA-DNA relatedness between the strain VRC21(T) and the type strains of the related species were below 70%. On the basis of the polyphasic evidence, the strain VRC21(T) should be classified as novel species Streptosporangium terrae sp. nov. in the genus Streptosporangium. The type strain is VRC21(T) (=KCTC 29207(T)=MTCC 11724(T)).

  12. Nocardia bhagyanesis sp. nov., a novel actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis), India.

    Science.gov (United States)

    Vaddavalli, Radha; Peddi, Sneha; Kothagauni, Srilekha Yadav; Linga, Venkateswar Rao

    2014-03-01

    A novel actinomycete strain, designated VRC07(T), was isolated from a Callistemon citrinus rhizosphere sample collected from Hyderabad, India. Its taxonomic status was determined by using polyphasic approach. It is a Gram-positive, aerobic, non-motile, weakly acid-fast strain. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain VRC07(T) is a member of the genus Nocardia. The highest levels of 16S rRNA gene sequence similarity was found between the strains Nocardia niwae W9241(T) (99.6 %), Nocardia amikacinitolerans W9988(T) (99.3 %) and Nocardia arthritidis IFM 10035(T) (98.9 %); similarity to other type strains of the genus Nocardia was below 98.7 %. The organism had chemical and morphological features consistent with its classification in the genus Nocardia such as meso-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan. Arabinose and galactose as the diagnostic sugars. Diagnostic polar lipids were phosphatidylinositol, diphosphatidylglycerol, and phosphatidylglycerol. The predominant menaquinone was MK-8(H4, ω-cycl). The major fatty acids were C16:0, C18:0, C18:1 w9c, C18:0 10-methyl TBSA and sum in feature 3 (16:1 w7c/16:1 w6c). The G+C content of the genomic DNA was 68.5 mol%. The DNA-DNA relatedness data, together with phenotypic differences clearly distinguished the isolate from its closest relatives. On the basis of these phenotypic and genotypic data, the isolate represents a novel species, for which the name Nocardia bhagyanesis sp. nov., is proposed. The type strain is VRC07(T) (=KCTC 29209(T) = MTCC 11725(T) = ATCC BAA-2548).

  13. Nocardia halotolerans sp. nov., a halotolerant actinomycete isolated from saline soil.

    Science.gov (United States)

    Moshtaghi Nikou, Mahdi; Ramezani, Mohaddaseh; Ali Amoozegar, Mohammad; Rasooli, Mehrnoosh; Harirchi, Sharareh; Shahzadeh Fazeli, Seyed Abolhasan; Schumann, Peter; Spröer, Cathrin; Ventosa, Antonio

    2015-09-01

    A novel halotolerant actinomycete, strain Chem15(T), was isolated from soil around Inche-Broun hypersaline wetland; its taxonomic position was determined based on a polyphasic approach. Strain Chem15(T) was strictly aerobic and tolerated NaCl up to 12.5%. The optimum temperature and pH for growth were 28-30 °C and pH 7.0-7.5, respectively. The cell wall of strain Chem15(T) contained meso-diaminopimelic acid as diamino acid and galactose, arabinose and ribose as whole-cell sugars. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The cellular fatty acids profile consisted of C16 : 0, iso-C18 : 0, C18 : 0 10-methyl and C18 : 1ω9c, and the major respiratory quinone was MK-8(H4cycl). The G+C content of the genomic DNA was 68.0 mol%. The novel strain constituted a distinct phyletic line within the genus Nocardia, based on 16S rRNA gene sequence analysis, and was closely associated with Nocardia sungurluensis DSM 45714(T) and Nocardia alba DSM 44684(T) (98.2 and 98.1% 16S rRNA gene sequence similarity, respectively). However DNA-DNA relatedness and phenotypic data demonstrated that strain Chem15(T) was clearly different from closely related species of the genus Nocardia. It is concluded that the organism should be classified as a representative of a novel species of the genus Nocardia, for which the name Nocardia halotolerans sp. nov. is proposed. The type strain is Chem15(T) ( = IBRC-M 10490(T) = LMG 28544(T)).

  14. Use of dyes in solid medium for screening ligninolytic activity of selective actinomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Chahal, D.S.; Kluepfel, D.; Morosoli, R. [Universite du Quebec (Canada)] [and others

    1995-12-31

    Lignin, a three-dimensional biopolymer, not only encrusts the cellulose microfibrils in a sheath-like manner, but is also bonded physically and chemically to the plant polysaccharides. Unless the lignin is depolymerized, solubilized, or removed, the cellulose and hemicelluloses cannot be easily hydrolyzed by respective enzymes for their bioconversion into biofuels and chemicals. By now it has been established that lignin peroxidase (LiP) of white-rot fungus Phanerochaete chrysosporium is responsible for degradation of lignin. It has been reported that LiP is produced during secondary metabolism under carbon or nitrogen limitation by this organism. In literature, usually low yields (per unit volume) of LiP with P. chrysosporium have been reported. The reasons for low yields may be attributed to insufficient nitrogen in production media, which ultimately affects the synthesis of LiP protein. Therefore, it necessitated a search for an organism that can produce a ligninolytic enzyme system during its primary metabolism, without any effect of nitrogen limitation in the fermentation medium and without supply of extra oxygen to the cultures. Glenn and Gold were the first to report that decolorization of polymeric dyes in liquid cultures is related to the lignin degradation system. They demonstrated that like lignin degradation, the decolorization of polymeric dyes by the white-rot basidiomycete P. chrysosporium occurred during secondary metabolism, was suppressed in cultures grown in the presence of high levels of nitrogen, and was strongly dependent on the oxygen concentration in the cultures. The present study was undertaken to establish if certain dyes in solid media could be used to screen ligninolytic activity of selective actinomycetes during their primary metabolism without the limitation of nitrogen in the medium.

  15. Differential stabilities of alkaline protease inhibitors from actinomycetes: effect of various additives on thermostability

    Energy Technology Data Exchange (ETDEWEB)

    Pandhare, J.; Zog, K.; Deshpande, V.V. [National Chemical Laboratory, Pune (India). Division of Biochemical Sciences

    2002-09-01

    Exploiting the vast diversity of soil samples, we have isolated three actinomycetes strains producing alkaline protease inhibitors API-I (242 U/ml), API-II (116 U/ml) and API-III (186 U/ml). The inhibitors exhibited different properties in their molecular nature and in their pH and temperature stabilities. API-I and API-II were high molecular weight (>10 kD) proteinaceous inhibitors whereas API-III was a low molecular weight inhibitor (<10 kD). API-I and API-II exhibited stability over a pH range of 5-12 whereas API-III displayed a wide pH stability from 2-12. API-I was stable at 60{sup o}C with a half-life of 2 h but API-II showed a half-life of 1 h at 45{sup o}C. API-III exhibited the least thermal stability with complete loss of activity at 37{sup o}C after 1 h. The stability of API-I, II and III at 65, 55 and 45{sup o}C, respectively, was enhanced by the addition of various additives. Glycine (1 M) offered complete protection to the three APIs. Polyethylene glycol 8000 (10 mM) prevented the thermoinactivation of API-I. In the presence of glycerol and sorbitol (10%) increase in stability by 40-60% of API-I and API-II was obtained. API-I offered enhanced stability to the target alkaline protease at 50{sup o}C by forming a reversible enzyme-inhibitor complex. (author)

  16. Nocardia camponoti sp. nov., an actinomycete isolated from the head of an ant (Camponotus japonicas Mayr).

    Science.gov (United States)

    Liu, Chongxi; Guan, Xuejiao; Li, Yao; Li, Wenchao; Ye, Lan; Kong, Xiangxing; Song, Jia; Wang, Xiangjing; Xiang, Wensheng

    2016-04-01

    A novel actinomycete, designated strain 1H-HV4T, was isolated from the head of Camponotus japonicas Mayr, which was collected from Northeast Agriculture University (Harbin, Heilongjiang, China). Chemotaxonomic properties of this strain were consistent with those of members of the genus Nocardia. The cell wall contained meso-diaminopimelic acid and whole-cell sugars were galactose, glucose and arabinose. The predominant menaquinone was MK-8(H4,ω-cycl). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were identified as C18:0 10-methyl, C16:0, C18:1ω9c and C16:1ω7c. Mycolic acids were found to be present. 16S rRNA gene sequence analysis also showed that strain 1H-HV4T was a member of the genus Nocardia, with the highest sequence similarities to Nocardia salmonicida JCM 4826T (97.39%), Nocardia soli JCM 11441T (97.12%) and Nocardia cummidelens JCM 11439T (97.08%). 16S rRNA gene sequence similarities to type strains of other members of the genus Nocardia were less than 97%. However, DNA-DNA relatedness values and phenotypic data demonstrated that strain1H-HV4T was clearly distinguished from all closely related species of the genus Nocardia. It is concluded that the isolate can be classified as representing a novel species of the genus Nocardia, for which the name Nocardia camponoti is proposed. The type strain is 1H-HV4T (=DSM 100526T=CGMCC 4.7278T).

  17. Nocardia rhizosphaerae sp. nov., a novel actinomycete isolated from the coastal rhizosphere of Artemisia Linn., China.

    Science.gov (United States)

    Wang, Yu; Liu, Wei; Feng, Wei-Wei; Zhou, Xiao-Qi; Bai, Juan-Luan; Yuan, Bo; Ju, Xiu-Yun; Cao, Cheng-Liang; Huang, Ying; Jiang, Ji-Hong; Lv, Ai-Jun; Qin, Sheng

    2015-07-01

    A novel actinomycete, designated strain KLBMP S0043(T), was isolated from the rhizosphere soil of Artemisia Linn. collected from the coastal region of Lianyungang, Jiangsu Province, in east China and was studied in detail for its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain KLBMP S0043(T) is a member of the genus Nocardia. The 16S rRNA gene sequence similarity indicated that strain KLBMP S0043(T) is closely related to Nocardia asteroides NBRC 15531(T) (97.61 %) and Nocardia neocaledoniensis SBHR OA6(T) (97.38 %); similarity to other type strains of the genus Nocardia was found to be less than 97.2 %. The organism has chemical and morphological features consistent with its classification in the genus Nocardia such as meso-diaminopimelic acid as the diagnostic diamino acid in the cell wall peptidoglycan and arabinose and galactose as the diagnostic sugars. The predominant menaquinone was identified as MK-8(H4ω-cycl). Mycolic acids were detected. The diagnostic phospholipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The predominant cellular fatty acids were identified as C16:0, C18:0, C18:1ω9c, 10-methyl C18:0 [tuberculostearic acid (TBSA)] and summed feature 3 (C16:1ω7c/C16:1ω6c). The G+C content of the genomic DNA was determined to be 71.4 mol%. The results of DNA-DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the strain from its most closely related strains. Based on morphological, chemotaxonomic and phylogenetic data, strain KLBMP S0043(T) is considered to represent a novel species of the genus Nocardia, for which the name Nocardia rhizosphaerae sp. nov. is proposed. The type strain is KLBMP S0043(T) (=CGMCC 4.7204 (T) = KCTC 29678(T)).

  18. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    Science.gov (United States)

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Thermodynamics of a Ca(2+)-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete.

    Science.gov (United States)

    Gohel, S D; Singh, S P

    2015-01-01

    An alkaline protease from salt-tolerant alkaliphilic actinomycetes, Nocardiopsis alba OK-5 was purified by a single-step hydrophobic interaction chromatography and characterized. The purified protease with an estimated molecular mass of 20 kDa was optimally active at 70 °C in 0-3 M NaCl and 0-100 mM Ca(2+) displaying significant stability at 50-80 °C. The enzyme was stable at 80 °C in 100 mM Ca(2+) with Kd of 17 × 10(-3) and t1/2 of 32 min. The activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*) for the protease deactivation calculated in the presence of 200 mM Ca(2+) were 38.15 kJ/mol, 35.49 kJ/mol and 183.48 J/mol, respectively. The change in free energy (ΔG*) for protease deactivation at 60 °C in 200 mM Ca(2+) was 95.88 kJ/mol. Decrease in ΔH* reflected reduced cooperativity of deactivation and unfolding. The enzyme was intrinsically stable that counteracted heat denaturation by a weak cooperativity during the unfolding. Further, the enzyme was highly stable in the presence of various cations, surfactants, H2O2, β-mercaptoethanol, and commercial detergents. The compatibility of the enzyme with various cations, surfactants, and detergent matrices suggests its suitability as an additive in the detergents and peptide synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.).

    Science.gov (United States)

    Shen, Yue; Zhang, Yuejing; Liu, Chongxi; Wang, Xiangjing; Zhao, Junwei; Jia, Feiyu; Yang, Lingyu; Yang, Deguang; Xiang, Wensheng

    2014-11-01

    A novel actinomycete, designated strain NEAU-gq9(T), was isolated from corn root (Zea mays L.) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. On the basis of 16S rRNA gene sequence similarity studies, strain NEAU-gq9(T) was most closely related to Micromonospora zamorensis CR38(T) (99.3%), Micromonospora jinlongensis NEAU-GRX11(T) (99.2%), Micromonospora saelicesensis Lupac 09(T) (99.2%), Micromonospora chokoriensis 2-19(6)(T) (98.9%), Micromonospora coxensis 2-30-b(28)(T) (98.6%) and Micromonospora lupini Lupac 14N(T) (98.5%). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-gq9(T) is a member of the genus Micromonospora and supported the closest phylogenetic relationship to M. zamorensis CR38(T), M. jinlongensis NEAU-GRX11(T), M. saelicesensis Lupac 09(T), M. chokoriensis 2-19(6)(T) and M. lupini Lupac 14N(T). A combination of DNA-DNA hybridization, morphological and physiological characteristics indicated that the novel strain could be readily distinguished from the closest phylogenetic relatives. Therefore, it is proposed that strain NEAU-gq9(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora zeae sp. nov. is proposed. The type strain is NEAU-gq9(T) (=CGMCC 4.7092(T)=DSM 45882(T)).

  1. [Study of marine actinomycetes isolated from the central coast of Peru and their antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis].

    Science.gov (United States)

    León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco

    2011-06-01

    To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.

  2. Cephamycins, a New Family of β-Lactam Antibiotics I. Production by Actinomycetes, Including Streptomyces lactamdurans sp. n1

    Science.gov (United States)

    Stapley, E. O.; Jackson, M.; Hernandez, S.; Zimmerman, S. B.; Currie, S. A.; Mochales, S.; Mata, J. M.; Woodruff, H. B.; Hendlin, D.

    1972-01-01

    A number of actinomycetes isolated from soil were found to produce one or more members of a new family of antibiotics, the cephamycins, which are structurally related to cephalosporin C. The cephamycins were produced in submerged fermentation in a wide variety of media by one or more of eight different species of Streptomyces, including a newly described species, S. lactamdurans. These antibiotics exhibit antibacterial activity against a broad spectrum of bacteria which includes many that are resistant to the cephalosporins and penicillins. PMID:4790552

  3. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    Science.gov (United States)

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  4. Screening of Actinomycetes from mangrove ecosystem for L-asparaginase activity and optimization by response surface methodology.

    Science.gov (United States)

    Usha, Rajamanickam; Mala, Krishnaswami Kanjana; Venil, Chidambaram Kulandaisamy; Palaniswamy, Muthusamy

    2011-01-01

    Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.

  5. [Bergey's Manual of Systematic Bacteriology (second edition) Volume 5 and the study of Actinomycetes systematic in China].

    Science.gov (United States)

    Ruan, Jisheng

    2013-06-04

    Bergey's Manual of Systematic Bacteriology (hereinafter referred to as "Bergey's Manual") is the collection of academic views accepted by taxonomists in many countries. It has scientificity, unitarity and practicality. "Bergey's Manual" (special issue of Actinomycetes) divided into two parts (part A and part B) was published in May, 2012. Under the guidance and the organization of Michael Goodfellow et al., the great work has been completed successfully in May 2012. "Bergey's Manual" made a great modification on the systematic of Actinomycetes and formally set up the phylum of Actinobacteria, which encompasses 6 classes, 23 orders (include one order incertae sides), 53 families, 222 genera and about 3000 species. The taxonomic catalogue is Bacteria, phylum of Actinobacteria, under the phylum there are class, order, family, genera and species. "Bergey's Manual" collected a great deal of new taxa, which were published in IJSEM (International Journal of Systematic and Evolutionary Microbiology) by Chinese scientists. We need to indicate that due to its too rigorous, conservative writing purpose and long publication periods, "Bergey's Manual" fails to collect new research results using the molecular approaches of multilocus sequence analysis "MLSA", gene chip technology and genome technologies, which however will profoundly change the taxonomy of prokaryotes in the near future.

  6. Cytotoxicity of actinomycetes associated with the ascidian Eudistoma vannamei (Millar, 1977, endemic of northeastern coast of Brazil

    Directory of Open Access Journals (Sweden)

    Paula C Jimenez

    2013-04-01

    Full Text Available Previous studies demonstrated that the crude extract of the ascidian Eudistoma vannamei, endemic from northeasttern Brazil, strongly hinders growth of tumor cells in vitro by inducing apoptosis due to tryptophan derivatives, which are commonly found in bacteria. This study presents a bioactivity-guided screening among actinomycetes, associated with E. vannamei, aiming at recognizing active principles with biological relevance. Twenty strains of actinomycetes, designated as EVA 0101 through 0120, were isolated from colonies of E. vannamei among which 11 were selected for cytotoxicity evaluation. The extracts from EVA 0102, 0103, 0106, 0109 and 0113 were the most active, and were further studied for IC50 determination and chemical analysis by ¹H NMR. IC50 values obtained ranged from 3.62 µg mL-1 (for EVA 0109 in leukemia cells to 84.65 µg/mL (for EVA 0106 in melanoma cells. All active extracts exhibited the same TLC and spectroscopic profiles, suggesting the presence of quinones and other related secondary metabolites. Furthermore, these strains were identified and compared based on their respective 16S rRNA sequences. The results herein identified the five strains as Micromonospora spp. while phylogenetic analysis suggests that they are possibly two different Micromonospora species producing the cytotoxic compounds.

  7. Saccharopolyspora indica sp. nov., an actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis).

    Science.gov (United States)

    Vaddavalli, Radha; Peddi, Sneha; Kothagauni, Srilekha Yadav; Begum, Zareena; Gaddam, Bhagyanarayana; Periketi, Madhusudhanachary; Linga, Venkateswar Rao

    2014-05-01

    A novel actinomycete strain, designated VRC122T, was isolated from a Callistemon citrinus rhizosphere sample collected from New Delhi, India, and its taxonomic status was determined by using a polyphasic approach. Strain VRC122T was a Gram-stain-positive, aerobic, non-motile, non-acid-alcohol-fast strain. Phylogenetic analysis based on 16S rRNA gene sequences showed the strain was placed in a well-separated sub-branch within the genus Saccharopolyspora. The highest levels of 16S rRNA gene sequence similarity were found with Saccharopolyspora hirsuta subsp. kobensis JCM 9109T (98.71%), Saccharopolyspora antimicrobica I05-00074T (98.69%) and Saccharopolyspora jiangxiensis W12T (98.66%); 16S rRNA gene sequence similarities with type strains of all other species of the genus Saccharopolyspora were below 98%. Chemosystematic studies revealed that it contained meso-diaminopimelic acid. Arabinose and galactose were the predominant whole-cell sugars. Diagnostic polar lipids were diphosphatidylglycerol, phosphatidylinositol and phosphatidylcholine. MK-9(H6) was the predominant menaquinone. C14:0, C16:0, iso-C15:0, iso-C16:0, iso-C17:0, anteiso-C15:0, anteiso-C17:0, C17:0 cyclo and summed feature 3 (C16:1ω7c and/or C16:1ω6c) were the major cellular fatty acids. The G+C content of the genomic DNA was 69.5 mol%. The results of DNA-DNA hybridization (30%, 22% and 25%, respectively) with type strains of the above-mentioned species, in combination with differences in physiological and biochemical data supported that strain VRC122T represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora indica sp. nov., is proposed. The type strain is VRC122T (=KCTC 29208T=MTCC 11564T=MCC 2206T=ATCC BAA-2551T).

  8. Saccharopolyspora subtropica sp. nov., a thermophilic actinomycete isolated from soil of a sugar cane field.

    Science.gov (United States)

    Wu, Hao; Liu, Bin; Pan, Shangli

    2016-05-01

    A novel thermophilic actinomycete, designated strain T3T, was isolated from a soil sample of a sugar cane field. The strain grew at 25-60 °C (optimum 37-50 °C), at pH 6.0-11.0 (optimum 7.0-9.0) and with 0-12.0 % (w/v) NaCl (optimum 0-7 %). The aerial mycelium was white and the vegetative mycelium was colourless to pale yellow. The substrate mycelium fragmented into rod-shaped elements after 4-5 days at 50 °C. The aerial mycelium formed flexuous chains of 5-20 spores per chain; the oval-shaped spores had spiny surfaces and were non-motile. The organism contained meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars consisted of arabinose, galactose and ribose. The cellular fatty acid profile consisted mainly of anteiso-C17 : 0, iso-C17 : 0 and iso-C16 : 0. The quinone system was composed predominantly of MK-9(H4). The phospholipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylmethylethanolamine and ninhydrin-positive glycophospholipids. The DNA G+C content of strain T3T was 71.3 mol%. The organism showed a combination of morphological and chemotaxonomic properties typical of members of the genus Saccharopolyspora. In the 16S rRNA gene tree of Saccharopolyspora it formed a distinct phyletic line and was related most closely to Saccharopolyspora thermophila 216T. However, the phenotypic characteristics of strain T3T were significantly different from those of S. thermophila 216T and DNA-DNA hybridization revealed a low level of relatedness (28.6-32.3 %) between them. Based on the phenotypic and phylogenetic data, strain T3T represents a novel species in the genus Saccharopolyspora, for which the name Saccharopolyspora subtropica sp. nov. is proposed. The type strain is T3T ( = DSM 46801T = CGMCC 4.7206T).

  9. Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52

    Directory of Open Access Journals (Sweden)

    Priyanka eSharma

    2016-03-01

    Full Text Available A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195. The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin resistant Staphylococcus aureus (MRSA, Gram-negative bacteria and yeasts. Optimization for the growth and antimicrobial metabolite production of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and the antimicrobial metabolite production by the strain PB-52 was recorded in GLM medium at 28ºC, initial pH 7.4 of the medium and incubation period of eight days. Based on polyketide synthases (PKS and nonribosomal peptide synthetases (NRPS gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial metabolite in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52 showed lowest minimum inhibitory concentration (MIC against Staphylococcus aureus MTCC 96 (0.975 μg/ml whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/ml. Scanning electron microscopy (SEM revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS. GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which

  10. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea.

    Science.gov (United States)

    Singh, S P; Gaur, R

    2016-08-01

    To evaluate the potential of chitinolytic endophytic Actinomycetes isolated from medicinal plants in order to diminish the collar rot infestation induced by Sclerotium rolfsii in chickpea. Sixty-eight chitinolytic endophytic Actinomycetes were recovered from various medicinal plants and evaluated for their chitinase activity. Among these isolates, 12 were screened for their plant growth promoting abilities and antagonistic potential against Sc. rolfsii. Further, these isolates were validated in vivo for their ability to protect chickpea against Sc. rolfsii infestation under greenhouse conditions. The isolates significantly (P plant mortality (42-75%) of chickpea. On the basis of 16S rDNA profiling, the selected antagonistic strains were identified as Streptomyces diastaticus, Streptomyces fradiae, Streptomyces olivochromogenes, Streptomyces collinus, Streptomyces ossamyceticus and Streptomyces griseus. This study is the first report of the isolation of endophytic Actinomycetes from various medicinal plants having antagonistic and plant growth promoting abilities. The isolated species showed potential for controlling collar rot disease on chickpea and could be useful in integrated control against diverse soil borne plant pathogens. Our investigation suggests that endophytic Actinomycetes associated with medicinal plants can be used as bioinoculants for developing safe, efficacious and environment-friendly biocontrol strategies in the near future. © 2016 The Society for Applied Microbiology.

  11. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A. M.; Alvarado, J.; Bruce, D.; Chertkov, O.; De Hoff, P. L.; Detter, J. C.; Fujishige, N. A.; Goodwin, L. A.; Han, J.; Han, S.; Ivanova, N.; Land, M. L.; Lum, M. R.; Milani-Nejad, N.; Nolan, M.; Pati, A.; Pitluck, S.; Tran, S. S.; Woyke, T.; Valdes, M.

    2013-08-29

    Micromonospora species live in diverse environments and exhibit a broad range of functions including antibiotic production, biocontrol, and ability to degrade complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.

  12. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Passari

    2015-04-01

    Full Text Available Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n=22, 52.3% of actinomycetes was isolated from roots, followed by stems (n=9, 21.4%, leaves (n=6, 14.2%, flowers (n=3, 7.1% and petioles (n=2, 4.7%. The genus Streptomyces was the most dominant among the isolates (66.6% in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India. From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I and nonribosomal peptide synthetase (NRPS showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp. and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active

  13. Metagenomic of Actinomycetes Based on 16S rRNA and nifH Genes in Soil and Roots of Four Indonesian Rice Cultivars Using PCR-DGGE

    Directory of Open Access Journals (Sweden)

    Mahyarudin

    2015-07-01

    Full Text Available The research was conducted to study the metagenomic of actinomycetes based on 16S ribosomal RNA (rRNA and bacterial nifH genes in soil and roots of four rice cultivars. The denaturing gradient gel electrophoresis profile based on 16S rRNA gene showed that the diversity of actinomycetes in roots was higher than soil samples. The profile also showed that the diversity of actinomycetes was similar in four varieties of rice plant and three types of agroecosystem. The profile was partially sequenced and compared to GenBank database indicating their identity with closely related microbes. The blast results showed that 17 bands were closely related ranging from 93% to 100% of maximum identity with five genera of actinomycetes, which is Geodermatophilus, Actinokineospora, Actinoplanes, Streptomyces and Kocuria. Our study found that Streptomyces species in soil and roots of rice plants were more varied than other genera, with a dominance of Streptomyces alboniger and Streptomyces acidiscabies in almost all the samples. Bacterial community analyses based on nifH gene denaturing gradient gel electrophoresis showed that diversity of bacteria in soils which have nifH gene was higher than that in rice plant roots. The profile also showed that the diversity of those bacteria was similar in four varieties of rice plant and three types of agroecosystem. Five bands were closely related with nifH gene from uncultured bacterium clone J50, uncultured bacterium clone clod-38, and uncultured bacterium clone BG2.37 with maximum identity 99%, 98%, and 92%, respectively. The diversity analysis based on 16S rRNA gene differed from nifH gene and may not correlate with each other. The findings indicated the diversity of actinomycetes and several bacterial genomes analyzed here have an ability to fix nitrogen in soil and roots of rice plant.

  14. Metagenomic of Actinomycetes Based on 16S rRNA and nifH Genes in Soil and Roots of Four Indonesian Rice Cultivars Using PCR-DGGE

    Directory of Open Access Journals (Sweden)

    Mahyarudin

    2015-07-01

    Full Text Available The research was conducted to study the metagenomic of actinomycetes based on 16S ribosomal RNA (rRNA and bacterial nifH genes in soil and roots of four rice cultivars. The denaturing gradient gel electrophoresis profile based on 16S rRNA gene showed that the diversity of actinomycetes in roots was higher than soil samples. The profile also showed that the diversity of actinomycetes was similar in four varieties of rice plant and three types of agroecosystem. The profile was partially sequenced and compared to GenBank database indicating their identity with closely related microbes. The blast results showed that 17 bands were closely related ranging from 93% to 100% of maximum identity with five genera of actinomycetes, which is Geodermatophilus, Actinokineospora, Actinoplanes, Streptomyces and Kocuria. Our study found that Streptomyces species in soil and roots of rice plants were more varied than other genera, with a dominance of Streptomyces alboniger and Streptomyces acidiscabies in almost all the samples. Bacterial community analyses based on nifH gene denaturing gradient gel electrophoresis showed that diversity of bacteria in soils which have nifH gene was higher than that in rice plant roots. The profile also showed that the diversity of those bacteria was similar in four varieties of rice plant and three types of agroecosystem. Five bands were closely related with nifH gene from uncultured bacterium clone J50, uncultured bacterium clone clod-38, and uncultured bacterium clone BG2.37 with maximum identity 99%, 98%, and 92%, respectively. The diversity analysis based on 16S rRNA gene differed from nifH gene and may not correlate with each other. The findings indicated the diversity of actinomycetes and several bacterial genomes analyzed here have an ability to fix nitrogen in soil and roots of rice plant.

  15. Creation of an HDAC-based yeast screening method for evaluation of marine-derived actinomycetes: discovery of streptosetin A.

    Science.gov (United States)

    Amagata, Taro; Xiao, Jing; Chen, Yi-Pei; Holsopple, Nicholas; Oliver, Allen G; Gokey, Trevor; Guliaev, Anton B; Minoura, Katsuhiko

    2012-12-28

    A histone deacetylase (HDAC)-based yeast assay employing a URA3 reporter gene was applied as a primary screen to evaluate a marine-derived actinomycete extract library and identify human class III HDAC (SIRT) inhibitors. On the basis of the bioassay-guided purification, a new compound designated as streptosetin A (1) was obtained from one of the active strains identified through the yeast assay. The gross structure of the new compound was elucidated from the 1D and 2D NMR data. The absolute stereostructure of 1 was determined based on X-ray crystal structure analysis and simulation of ECD spectra using time-dependent density functional theory calculations. This compound showed weak inhibitory activity against yeast Sir2p and human SIRT1 and SIRT2.

  16. Characterization and phylogenetic analysis of novel polyene type antimicrobial metabolite producing actinomycetes from marine sediments: Bay of Bengal, India.

    Science.gov (United States)

    Valan, Arasu M; Asha, K R T; Duraipandiyan, V; Ignacimuthu, S; Agastian, P

    2012-10-01

    To isolate and indentify the promising antimicrobial metabolite producing Streptomyces strains from marine sediment samples from Andrapradesh coast of India. Antagonistic actinomycetes were isolated by starch casein agar medium and modified nutrient agar medium with 1% glucose used as a base for primary screening. Significant antimicrobial metabolite producing strains were selected and identified by using biochemical and 16S rDNA level. Minimum inhibitory concentrations of the organic extracts were done by using broth micro dilution method. Among the 210 actinomycetes, 64.3% exhibited activity against Gram positive bacteria, 48.5 % showed activity towards Gram negative bacteria, 38.8% exhibited both Gram positive and negative bacteria and 80.85 % isolates revealed significant antifungal activity. However, five isolates AP-5, AP-18, AP-41 and AP-70 showed significant antimicrobial activity. The analysis of cell wall hydrolysates showed the presence of LL-diaminopimelic acid and glycine in all the isolates. Sequencing analysis indicated that the isolates shared 98.5%-99.8% sequence identity to the 16S rDNA gene sequences of the Streptomyces taxons. The antimicrobial substances were extracted using hexane and ethyl acetate from spent medium in which strains were cultivated at 30°Cfor five days. The antimicrobial activity was assessed using broth micro dilution technique. Each of the culture extracts from these five strains showed a typical polyene-like property. The lowest minimum inhibitory concentrations of ethyl acetate extracts against Escherichia coli and Curvularia lunata were 67.5 and 125.0 µg/mL, respectively. It can be concluded that hexane and ethyl acetate soluble extracellular products of novel isolates are effective against pathogenic bacteria and fungi.

  17. Random amplified ribosomal DNA restriction analysis for rapid identification of thermophilic Actinomycete-like bacteria involved in hypersensitivity pneumonitis.

    Science.gov (United States)

    Harvey, I; Cormier, Y; Beaulieu, C; Akimov, V N; Mériaux, A; Duchaine, C

    2001-07-01

    Hypersensitivity pneumonitis (HP) is a pulmonary disease characterised by inflammation that can be caused by, amongst other substances, a subset of 4 thermophilic mycelial bacteria: Saccharopolyspora rectivirgula, Saccharomonospora viridis, Thermoactinomyces sacchari, and Thermoactinomyces vulgaris. Air sampling analyses in highly contaminated environments are often performed to evaluate exposure to these species which are difficult and fastidious to identify by conventional techniques. The aim of this study was to use amplified ribosomal DNA restriction analysis (ARDRA) to develop a method of identification for those thermophilic organisms that would be more rapid and simple. Strains of these 4 species were obtained from the American type culture collection (ATCC) and were characterized using biochemical tests and ARDRA patterns obtained on their partial-lenght amplified 16S rDNAs. To validate this approach, ARDRA with two restriction enzymes, TaqI and HhaI, was applied to 49 thermophilic actinomycete-like strains from environmental samples (sawmills). The results obtained show that combining some cultural characteristics and biochemical tests, such as xanthine or hypoxanthine decomposition, growth in the presence of NaCl, lysozyme or novobiocin, and spore resistance over 100 degrees C provide a rough identification and selection of the genera of interest. Consequently, target species could be confirmed by digestion of partial-lenght 16S rDNA with the use of Taql and HhaI restriction enzymes that gave specific restriction patterns. ARDRA analyses on the 49 environmental actinomycete-like organisms revealed the presence of 8 Saccharopolyspora rectivirgula, 2 Saccharomonospora viridis, and 15 Thermoactinomyces vulgaris strains, the other strains had restriction patterns different than those of the species of interest. Results of the present study will be applicable to other potential HP environments such as dairy barns, peat bogs and compost plants.

  18. Atrazine, chlorpyrifos, and iprodione effect on the biodiversity of bacteria, actinomycetes, and fungi in a pilot biopurification system with a green cover.

    Science.gov (United States)

    Elgueta, Sebastian; Correa, Arturo; Campo, Marco; Gallardo, Felipe; Karpouzas, Dimitrios; Diez, Maria Cristina

    2017-09-02

    The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg -1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.

  19. Isolation of ~richoderma sp. and Actinomycetes from Camation tDianthus caryophyllus Soil and Evaluation in vitro of their Antagonic Activity against Fusarium oxysporum. f. sp. dianthi Aislamiento de Trichoderma sp. y actinomycetes a partir de suelos de clavel (Dianthus caryophyllus y evaluación de su capacidad antagónica in vitro sobre Fusarium oxysporum. f. sp. Dianthi

    Directory of Open Access Journals (Sweden)

    Márquez Marcela

    2002-08-01

    Full Text Available Uno de los problemas más limitantes en el cultivo de clavel en Colombia es el marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Foxd el método empleado actualmente para controlar y/o prevenir esta enfermedad es la aplicación de fungicidas, los cuáles no son tan efectivos como se espera y al emplearse en exceso causan daños al medio ambiente. Por lo tanto el uso de poblaciones microbianas nativas para controlar esta enfermedad se perfila corno una alternativa importante en los programas de erradicación de la enfermedad. Algunas especies de Trichoderma y de Actinomycetes, se han estudiado, por la capacidad de producir sustancias inhibitorias del crecimiento y/o la actividad de este fitopatógeno. En este estudio se aislaron diversas cepas de estos microorganismos controladores y se evaluó in vitro su actividad antagónica.
    Se aislaron seis cepas de Trichoderma y treinta de Actinomycetes a partir de la rizósfera de diferentes
    cultivos de clavel de la Sabana de Bogotá; la inhibición del crecimiento de Foxd fue evaluada in vitro por medio de la interacción hongo-hongo y actinomycete-hongo al medir el porcentaje de inhibición micelial (%MI y la formación de un halo de inhibición alrededor del crecimiento de Foxd. Los aislamientos de Trichoderma sp y Actinomycetes mostraron un %MI mayor al 50%. El aislamiento VI de Trichoderma sp (T-VI presentó un %MI del 89% mientras que el aislamiento VII de Actinomycetes (A-VII, identificado como Streptomyces
    sp alcanzó un %MI del 91%, un halo de inhibición mayor a 1cm. Posteriormente, fue imposible determinar la actividad antagónica en asociación entre los aislamientos T-VI y A-VII debido al efecto inhibitorio de Streptomyces sp sobre  Trichoderma sp.
    One of the major problems of the carnation crop in
    Colombia is the vascular wilt disease caused by Fusarium
    oxysporum f.. sp. dianthi (Foxd. Since the only method currently used to control andlor

  20. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Errakhi, R; Lebrihi, A; Barakate, M

    2009-08-01

    To evaluate the ability of the isolated actinomycetes to inhibit in vitro plant pathogenic fungi and the efficacy of promising antagonistic isolates to reduce in vivo the incidence of root rot induced by Sclerotium rolfsii on sugar beet. Actinomycetes isolated from rhizosphere soil of sugar beet were screened for antagonistic activity against a number of plant pathogens, including S. rolfsii. Ten actinomycetes out of 195 screened in vitro were strongly inhibitory to S. rolfsii. These isolates were subsequently tested for their ability to inhibit sclerotial germination and hyphal growth of S. roflsii. The most important inhibitions were obtained by the culture filtrate from the isolates J-2 and B-11, including 100% inhibition of sclerotial germination and 80% inhibition of hyphal growth. These two isolates (J-2 and B-11) were then screened for their ability to protect sugar beet against infection of S. rolfsii induced root rot in a pot trial. The treatment of S. rolfsii infested soil with a biomass and culture filtrate mixture of the selected antagonists reduced significantly (P < or = 0.05) the incidence of root rot on sugar beet. Isolate J-2 was most effective and allowed a high fresh weight of sugar beet roots to be obtained. Both antagonists J-2 and B-11 were classified as belonging to the genus Streptomyces species through morphological and chemical characteristics as well as 16S rDNA analysis. Streptomyces isolates J-2 and B-11 showed a potential for controlling root rot on sugar beet and could be useful in integrated control against diverse soil borne plant pathogens. This investigation showed the role, which actinomycete bacteria can play to control root rot caused by S. rolfsii, in the objective to reduce treatments with chemical fungicides.

  1. Structure of an MmyB-like regulator from C. aurantiacus, member of a new transcription factor family linked to antibiotic metabolism in actinomycetes.

    Science.gov (United States)

    Xu, Qingping; van Wezel, Gilles P; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Klock, Heath E; Knuth, Mark W; Miller, Mitchell D; Lesley, Scott A; Godzik, Adam; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2012-01-01

    Actinomycetes are important bacterial sources of antibiotics and other secondary metabolites. Many antibiotic gene clusters are controlled by pathway-specific activators that act in response to growth conditions. Here we present the crystal structure of an MmyB-like transcription regulator MltR (PDB code 3pxp) (Caur_2278) from Chloroflexus aurantiacus, in complex with a fatty acid (myristic acid). MltR is a distant homolog of the methylenomycin activator MmyB and consists of an Xre-type N-terminal DNA-binding domain and a C-terminal ligand-binding module that is related to the Per-Arnt-Sim (PAS) domain. This structure has enabled identification of a new family of bacterial transcription factors that are distributed predominantly in actinomycetes. Bioinformatics analysis of MltR and other characterized family members suggest that they are likely associated with antibiotic and fatty acid metabolism in actinomycetes. Streptomyces coelicolor SCO4944 is a candidate as an ancestral member of the family. Its ortholog in S. griseus, SGR_6891, is induced by A-factor, a γ-butyrolactone that controls antibiotic production and development, and is adjacent to the A-factor synthase gen, afsA. The location of mltR/mmyB homologs, in particular those adjacent to less well-studied antibiotic-related genes, makes them interesting genetic markers for identifying new antibiotic genes. A model for signal-triggered DNA-binding by MltR is proposed.

  2. Structure of an MmyB-like regulator from C. aurantiacus, member of a new transcription factor family linked to antibiotic metabolism in actinomycetes.

    Directory of Open Access Journals (Sweden)

    Qingping Xu

    Full Text Available Actinomycetes are important bacterial sources of antibiotics and other secondary metabolites. Many antibiotic gene clusters are controlled by pathway-specific activators that act in response to growth conditions. Here we present the crystal structure of an MmyB-like transcription regulator MltR (PDB code 3pxp (Caur_2278 from Chloroflexus aurantiacus, in complex with a fatty acid (myristic acid. MltR is a distant homolog of the methylenomycin activator MmyB and consists of an Xre-type N-terminal DNA-binding domain and a C-terminal ligand-binding module that is related to the Per-Arnt-Sim (PAS domain. This structure has enabled identification of a new family of bacterial transcription factors that are distributed predominantly in actinomycetes. Bioinformatics analysis of MltR and other characterized family members suggest that they are likely associated with antibiotic and fatty acid metabolism in actinomycetes. Streptomyces coelicolor SCO4944 is a candidate as an ancestral member of the family. Its ortholog in S. griseus, SGR_6891, is induced by A-factor, a γ-butyrolactone that controls antibiotic production and development, and is adjacent to the A-factor synthase gen, afsA. The location of mltR/mmyB homologs, in particular those adjacent to less well-studied antibiotic-related genes, makes them interesting genetic markers for identifying new antibiotic genes. A model for signal-triggered DNA-binding by MltR is proposed.

  3. A novel alkaloid from marine-derived actinomycete Streptomyces xinghaiensis with broad-spectrum antibacterial and cytotoxic activities.

    Directory of Open Access Journals (Sweden)

    Wence Jiao

    Full Text Available Due to the increasing emergence of drug-resistant bacteria and tumor cell lines, novel antibiotics with antibacterial and cytotoxic activities are urgently needed. Marine actinobacteria are rich sources of novel antibiotics, and here we report the discovery of a novel alkaloid, xinghaiamine A, from a marine-derived actinomycete Streptomyces xinghaiensis NRRL B24674(T. Xinghaiamine A was purified from the fermentation broth, and its structure was elucidated based on extensive spectroscopic analysis, including 1D and 2D NMR spectrum as well as mass spectrometry. Xinghaiamine A was identified to be a novel alkaloid with highly symmetric structure on the basis of sulfoxide functional group, and sulfoxide containing compound has so far never been reported in microorganisms. Biological assays revealed that xinghaiamine A exhibited broad-spectrum antibacterial activities to both Gram-negative persistent hospital pathogens (e.g. Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli and Gram-positive ones, which include Staphylococcus aureus and Bacillus subtilis. In addition, xinghaiamine A also exhibited potent cytotoxic activity to human cancer cell lines of MCF-7 and U-937 with the IC50 of 0.6 and 0.5 µM, respectively.

  4. Isolation, Characterization, Antioxidant, Antimicrobial and Cytotoxic Effect of Marine Actinomycete, Streptomyces Carpaticus MK-01, against Fish Pathogens

    Directory of Open Access Journals (Sweden)

    Dharaneedharan Subramanian

    2017-10-01

    Full Text Available ABSTRACT Present study aim to evaluate the antimicrobial, antioxidant and cytotoxic potential of crude extract of Marine Streptomyces carpaticus MK-01 isolated from seawater collected from Daejeong-cost of Jeju Island. About 24 actinomycetes strains were isolated and subjected to morphological and molecular analysis that confirmed the isolate as S. carpaticus MK-01. Crude ethyl acetate extract of MK-01 strain showed extensive antibacterial activity against Gram-positive fish pathogenic bacteria namely Streptococcus iniae and S. parauberis with a maximum zone of inhibition (0.92±0.03mm was recorded against S. parauberis at the minimum extract concentration (3.12µg/ml. The MK-01 ethyl acetate extract shows dose dependant significant increase in antioxidant activity. The 50% cytotoxic concentration (CC50 of MK-01 ethyl acetate extract was attained at 53.71 μg/ml and the effective concentration 50 (EC50 against virus-infected Epithelioma papulosum cyprini cell lines was 8.72 μg/ml of S. carpaticus MK-01 crude ethyl acetate extract.

  5. Chromomycins A2 and A3 from marine actinomycetes with TRAIL resistance-overcoming and Wnt signal inhibitory activities.

    Science.gov (United States)

    Toume, Kazufumi; Tsukahara, Kentaro; Ito, Hanako; Arai, Midori A; Ishibashi, Masami

    2014-06-05

    A biological screening study of an actinomycetes strain assembly was conducted using a cell-based cytotoxicity assay. The CKK1019 strain was isolated from a sea sand sample. Cytotoxicity-guided fractionation of the CKK1019 strain culture broth, which exhibited cytotoxicity, led to the isolation of chromomycins A2 (1) and A3 (2). 1 and 2 showed potent cytotoxicity against the human gastric adenocarcinoma (AGS) cell line (IC50 1; 1.7 and 2; 22.1 nM), as well as strong inhibitory effects against TCF/β-catenin transcription (IC50 1; 1.8 and 2; 15.9 nM). 2 showed the ability to overcome tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance. To the best of our knowledge, the effects of chromomycins A2 (1) and A3 (2) on TRAIL resistance-overcoming activity, and on the Wnt signaling pathway, have not been reported previously. Thus, 1 and 2 warrant potential drug lead studies in relation to TRAIL-resistant and Wnt signal-related diseases and offer potentially useful chemical probes for investigating TRAIL resistance and the Wnt signaling pathway.

  6. Anti-Allergic Compounds from the Deep-Sea-Derived Actinomycete Nesterenkonia flava MCCC 1K00610

    Directory of Open Access Journals (Sweden)

    Chun-Lan Xie

    2017-03-01

    Full Text Available A novel cyclic ether, nesterenkoniane (1, was isolated from the deep-sea-derived actinomycete Nesterenkonia flava MCCC 1K00610, together with 12 known compounds, including two macrolides (2, 3, two diketopiperazines (4, 5, two nucleosides (6, 7, two indoles (8, 9, three phenolics (10–12, and one butanol derivate (13. Their structures were established mainly on detailed analysis of the NMR and MS spectroscopic data. All 13 compounds were tested for anti-allergic activities using immunoglobulin E (IgE mediated rat mast RBL-2H3 cell model. Under the concentration of 20 μg/mL, 1 exhibited moderate anti-allergic activity with inhibition rate of 9.86%, compared to that of 37.41% of the positive control, loratadine. While cyclo(d-Pro-(d-Leu (4 and indol-3-carbaldehyde (8 showed the most potent effects with the IC50 values of 69.95 and 57.12 μg/mL, respectively, which was comparable to that of loratadine (IC50 = 35.01 μg/mL. To the best of our knowledge, it is the first report on secondary metabolites from the genus of Nesterenkonia.

  7. Chromomycins A2 and A3 from Marine Actinomycetes with TRAIL Resistance-Overcoming and Wnt Signal Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Kazufumi Toume

    2014-06-01

    Full Text Available A biological screening study of an actinomycetes strain assembly was conducted using a cell-based cytotoxicity assay. The CKK1019 strain was isolated from a sea sand sample. Cytotoxicity-guided fractionation of the CKK1019 strain culture broth, which exhibited cytotoxicity, led to the isolation of chromomycins A2 (1 and A3 (2. 1 and 2 showed potent cytotoxicity against the human gastric adenocarcinoma (AGS cell line (IC50 1; 1.7 and 2; 22.1 nM, as well as strong inhibitory effects against TCF/β-catenin transcription (IC50 1; 1.8 and 2; 15.9 nM. 2 showed the ability to overcome tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL resistance. To the best of our knowledge, the effects of chromomycins A2 (1 and A3 (2 on TRAIL resistance-overcoming activity, and on the Wnt signaling pathway, have not been reported previously. Thus, 1 and 2 warrant potential drug lead studies in relation to TRAIL-resistant and Wnt signal-related diseases and offer potentially useful chemical probes for investigating TRAIL resistance and the Wnt signaling pathway.

  8. Pseudonocardians A–C, New Diazaanthraquinone Derivatives from a Deap-Sea Actinomycete Pseudonocardia sp. SCSIO 01299

    Directory of Open Access Journals (Sweden)

    Xianwen Yang

    2011-08-01

    Full Text Available Pseudonocardians A–C (2–4, three new diazaanthraquinone derivatives, along with a previously synthesized compound deoxynyboquinone (1, were produced by the strain SCSIO 01299, a marine actinomycete member of the genus Pseudonocardia, isolated from deep-sea sediment of the South China Sea. The structures of compounds 1–4 were determined by mass spectrometry and NMR experiments (1H, 13C, HSQC, and HMBC. The structure of compound 1, which was obtained for the first time from a natural source, was confirmed by X-ray analysis. Compounds 1–3 exhibited potent cytotoxic activities against three tumor cell lines of SF-268, MCF-7 and NCI-H460 with IC50 values between 0.01 and 0.21 μm, and also showed antibacterial activities on Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and Bacillus thuringensis SCSIO BT01, with MIC values of 1–4 μg mL−1.

  9. A novel antibacterial peptide active against peach crown gall (Agrobacterium tumefaciens) isolated from cyanide-tolerant actinomycetes G19.

    Science.gov (United States)

    Wang, Shufang; Ji, Jinglin; Ma, Huanpu; Liu, Zhimin

    2015-01-01

    An antimicrobial peptide was extracted from the antagonistic actinomycetes G19. It was designated as G19-F. By using MALDI-TOF mass spectrometry, the molecular weight of G19-F was determined. The primary structure of the antimicrobial peptide was determined using N-terminal sequencing and mass spectrometry. Results showed that the peptide had eleven amino acids, with the sequence D-V-C-D-G-G-D-G-D-E-D, and a calculated molecular mass of 1,096 Da. G19-F showed antimicrobial activity against peach crown gall caused by Agrobacterium tumefaciens. The antimicrobial peptide maintained its activity after being heated to 100 °C and exhibited stability from pH 4 to 10. Its activity has also remained after ultraviolet irradiation. The mechanism by which G19-F inhibits A. tumefaciens was to increase permeability of the cell membrane and destroy the cell wall structure. Furthermore, as a novel peptide, it has a potential for cure A. tumefaciens infection.

  10. Prospecting Anticancer Compounds in Actinomycetes Recovered from the Sediments of Saint Peter and Saint Paul's Archipelago, Brazil.

    Science.gov (United States)

    Ferreira, Elthon G; Torres, Maria da Conceição M; da Silva, Alison B; Colares, Larissa L F; Pires, Karine; Lotufo, Tito M C; Silveira, Edilberto R; Pessoa, Otília D L; Costa-Lotufo, Leticia V; Jimenez, Paula C

    2016-09-01

    Saint Peter and Saint Paul's Archipelago is a collection of 15 islets and rocks remotely located in the equatorial Atlantic Ocean. In this particular site, the present project intended to assess the biodiversity and biotechnological potential of bacteria from the actinomycete group. This study presents the first results of this assessment. From 21 sediment samples, 268 strains were isolated and codified as BRA followed by three numbers. Of those, 94 strains were grown in liquid media and submitted to chemical extractions with AcOEt (A), BuOH (B), and MeOH (M). A total of 224 extracts were screened for their cytotoxic activity and 41 were significantly active against HCT-116 cancer cells. The obtained IC50 values ranged from 0.04 to 31.55 μg/ml. The HR-LC/MS dereplication analysis of the active extracts showed the occurrence of several known anticancer compounds. Individual compounds, identified using HR-MS combined with analysis of the AntiMarin database, included saliniketals A and B, piericidins A and C and glucopiericidin A, staurosporine, N-methylstaurosporine, hydroxydimethyl-staurosporine and N-carbamoylstaurosporine, salinisporamycin A, and rifamycins S and B. BRA-199, identified as Streptomyces sp., was submitted to bioassay-guided fractionation, leading to isolation of the bioactive piericidins A and C, glucopiericidin, and three known diketopiperazines, cyclo(l-Phe-trans-4-OH-l-Pro), cyclo(l-Phe-l-Pro), and cyclo(l-Trp-l-Pro). © 2016 Wiley-VHCA AG, Zürich.

  11. Biodegradation of cis-1,4-Polyisoprene Rubbers by Distinct Actinomycetes: Microbial Strategies and Detailed Surface Analysis

    Science.gov (United States)

    Linos, Alexandros; Berekaa, Mahmoud M.; Reichelt, Rudolf; Keller, Ulrike; Schmitt, Jürgen; Flemming, Hans-Curt; Kroppenstedt, Reiner M.; Steinbüchel, Alexander

    2000-01-01

    Several actinomycetes isolated from nature were able to use both natural rubber (NR) and synthetic cis-1,4-polyisoprene rubber (IR) as a sole source of carbon. According to their degradation behavior, they were divided into two groups. Representatives of the first group grew only in direct contact to the rubber substrate and led to considerable disintegration of the material during cultivation. The second group consisted of weaker rubber decomposers that did not grow adhesively, as indicated by the formation of clear zones (translucent halos) around bacterial colonies after cultivation on NR dispersed in mineral agar. Taxonomic analysis of four selected strains based on 16S rRNA similarity examinations revealed two Gordonia sp. strains, VH2 and Kb2, and one Mycobacterium fortuitum strain, NF4, belonging to the first group as well as one Micromonospora aurantiaca strain, W2b, belonging to the second group. Schiff's reagent staining tests performed for each of the strains indicated colonization of the rubber surface, formation of a bacterial biofilm, and occurrence of compounds containing aldehyde groups during cultivation with NR latex gloves. Detailed analysis by means of scanning electron microscopy yielded further evidence for the two different microbial strategies and clarified the colonization efficiency. Thereby, strains VH2, Kb2, and NF4 directly adhered to and merged into the rubber material, while strain W2b produced mycelial corridors, especially on the surface of IR. Fourier transform infrared spectroscopy comprising the attenuated total reflectance technique was applied on NR latex gloves overgrown by cells of the Gordonia strains, which were the strongest rubber decomposers. Spectra demonstrated the decrease in number of cis-1,4 double bonds, the formation of carbonyl groups, and the change of the overall chemical environment, indicating that an oxidative attack at the double bond is the first metabolic step of the biodegradation process. PMID:10742254

  12. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    Science.gov (United States)

    Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng

    2014-10-01

    A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)).

  13. Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers.

    Science.gov (United States)

    Sowani, Harshada; Mohite, Pallavi; Damale, Shailesh; Kulkarni, Mohan; Zinjarde, Smita

    2016-12-01

    The Actinomycete Gordonia amicalis HS-11 produced orange pigments when cultivated on n-hexadecane as the sole carbon source. When cells of this pigmented bacterium were incubated with 1mM chloroauric acid (HAuCl4) or silver nitrate (AgNO3), pH 9.0, at 25°C, gold and silver nanoparticles, respectively, were obtained in a cell associated manner. It was hypothesized that the pigments present in the cells may be mediating metal reduction reactions. After solvent extraction and High Performance Liquid Chromatography, two major pigments displaying UV-vis spectra characteristic of carotenoids were isolated. These were identified on the basis of Atmospheric Pressure Chemical Ionization Mass Spectrometry (APCI-MS) in the positive mode as 1'-OH-4-keto-γ-carotene (Carotenoid K) and 1'-OH-γ-carotene (Carotenoid B). The hydroxyl groups present in the carotenoids were eliminated under alkaline conditions and provided the reducing equivalents necessary for synthesizing nanoparticles. Cell associated and carotenoid stabilized nanoparticles were characterized by different analytical techniques. In vitro free radical scavenging activities of cells (control, gold and silver nanoparticle loaded), purified carotenoids and carotenoid stabilized gold and silver nanoparticles were evaluated. Silver nanoparticle loaded cells and carotenoid stabilized silver nanoparticles exhibited improved nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities compared to their control and gold counterparts. This paper thus reports cell associated nanoparticle synthesis by G. amicalis, describes for the first time the role of carotenoid pigments in metal reduction processes and demonstrates enhanced free radical scavenging activities of the carotenoid stabilized nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Degradation of Textile Dye Reactive Navy – Blue Rx (Reactive blue–59 by an Isolated Actinomycete Streptomyces krainskii SUK – 5

    Directory of Open Access Journals (Sweden)

    Mane, U. V.

    2008-01-01

    Full Text Available The isolated Actinomycete, Streptomyces krainskii, SUK -5 was found to decolorize and degrade textile dye Reactive blue–59.This azo dye was decolorized and degraded completely by Streptomyces krainskii SUK–5 at 24 h in shaking condition in the nutrient medium at pH 8. Induction in the activity of Lignin Peroxidase,and NADH-DCIP Reductase and MR reductase represents their role in degradation .The biodegradation was monitored by TLC, UV vis spectroscopy, FTIR. and GCMS analysis. Microbial and phytotoxicity studies of the product were carried out.

  15. Diversity of foam producing nocardioform actinomycetes isolated from biological foam from activated sludge plants in Comunidad Valenciana; Diversidad de actinomicetos nocardioformes productores de espumas biologicas aislados de plantas depuradoras de aguas residuales de la Comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Soler, A.; Alonso, J.L.; Cuesta, G.

    2009-07-01

    The formation of biological foams in activated sludge systems is one of the most important problems of solid separation in wastewater treatment plants. Nocardioform actinomycetes are the most important filamentous bacteria responsible of foam formation. This group of microorganisms has hydrophobic cellular surfaces due to the mycolic acids. These foams interfere in wastewater treatment process because retain many suspended solids, block conductions and produce overflowing in the digesters and corridors. To identify correctly the nocardioform actinomycetes we have to do poli phasic taxonomy that includes 16S rDNA sequences analysis, determinate several chemo taxonomic markers and some phenotypic tests. (Author) 18 refs.

  16. Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163

    Directory of Open Access Journals (Sweden)

    Yousef Dashti

    2014-05-01

    Full Text Available Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by 1H NMR. Ten known compounds, including angucycline, diketopiperazine and β-carboline derivatives 1–10, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl-acetamide (11, 1,6-dihydroxyphenazine (12 and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a. When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes.

  17. Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997.

    Science.gov (United States)

    Kim, Seung Bum; Lonsdale, John; Seong, Chi-Nam; Goodfellow, Michael

    2003-01-01

    The taxonomic position of acidophilic actinomycetes selectively isolated from acidic soils and litter was examined using a polyphasic approach. The distinct 16S rDNA phyletic branch formed by representative strains was equated with related monophyletic clades that corresponded to the genera Kitasatospora and Streptomyces. The acidophilic isolates also exhibited a distinctive pH profile, a unique 16S rDNA signature, and contained major amounts of LL-diaminopimelic acid, galactose and rhamnose in whole-organism hydrolysates. It is proposed that these acidophilic actinomycetes be assigned to a new genus, Streptacidiphilus gen. nov., on the basis of genotypic and phenotypic differences. Three species were defined on the basis of DNA:DNA pairing and phenotypic data, namely, Streptacidiphilus albus sp. nov., the type species, Streptacidiphilus neutrinimicus sp. nov. and Streptacidiphilus carbonis sp. nov. Members of the genera Kitasatospora, Streptacidiphilus and Streptomyces share a number of key characteristics and form a stable monophyletic branch in the 16S rDNA tree. It is, therefore, proposed that the description of the family Streptomycetaceae be emended to account for properties shown by Kitasatospora and Streptacidiphilus species.

  18. Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640 from brown algae against MDR strains of uropathogens

    Directory of Open Access Journals (Sweden)

    Govindan Rajivgandhi

    2016-12-01

    Full Text Available Our study is to evaluate the potential bioactive compound of Nocardiopsis sp. GRG1 (KT235640 and its antibacterial activity against multi drug resistant strains (MDRS on urinary tract infections (UTIs. Two brown algae samples were collected and were subjected to isolation of endophytic actinomycetes. 100 strains of actinomycetes were isolated from algal samples based on observation of morphology and physiological characters. 40 strains were active in antagonistic activity against various clinical pathogens. Among the strains, 10 showed better antimicrobial activity against MDRS on UTIs. The secondary metabolite of Nocardiopsis sp. GRG1 (KT235640 has showed tremendous antibacterial activity against UTI pathogens compared to other strains. Influence of various growth parameters were used for synthesis of secondary metabolites, such as optimum pH 7, incubation time 5–7 days, temperature (30 °C, salinity (5%, fructose and mannitol as the suitable carbon and nitrogen sources. At 100 μg/ml concentration MIC of Nocardiopsis sp. GRG1 (KT235640 showed highest percentage of inhibition against Proteus mirabilis (85%, and E.coli, Staphylococcus auerues, Psuedomonas aeroginasa, Enterobactor sp and Coagulinase negative staphylococci 78–85% respectively.

  19. Evaluation of Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes

    Science.gov (United States)

    Buckwalter, S. P.; Olson, S. L.; Connelly, B. J.; Lucas, B. C.; Rodning, A. A.; Walchak, R. C.; Deml, S. M.; Wohlfiel, S. L.

    2015-01-01

    The value of matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria and Nocardia spp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162 Mycobacterium species and subspecies, 53 Nocardia species, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivate Mycobacterium tuberculosis prior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148 Nocardia species isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed. PMID:26637381

  20. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes.

    Science.gov (United States)

    Buckwalter, S P; Olson, S L; Connelly, B J; Lucas, B C; Rodning, A A; Walchak, R C; Deml, S M; Wohlfiel, S L; Wengenack, N L

    2016-02-01

    The value of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria and Nocardia spp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162 Mycobacterium species and subspecies, 53 Nocardia species, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivate Mycobacterium tuberculosis prior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148 Nocardia species isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    Directory of Open Access Journals (Sweden)

    Reyna del Carmen Lara-Severino

    2016-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ=150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes.

  2. Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern.

    Science.gov (United States)

    Tatar, Demet; Guven, Kiymet; Spröer, Cathrin; Klenk, Hans-Peter; Sahin, Nevzat

    2014-09-01

    The taxonomic positions of two novel actinomycetes, designated strains BNT558(T) and SM3501(T), were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Streptomyces. The whole-cell hydrolysates of the two strains contained ll-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-9(H8) for strain BNT558(T) and MK-9(H8) and MK-9(H6) for strain SM3501(T). Major fatty acids of the strains were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipid profile of strain BNT558(T) contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, one unidentified glycolipid and one unidentified aminophospholipid, while that of strain SM3501(T) consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, three unidentified atypical aminolipids, one unidentified aminolipid and two unidentified glycolipids. The G+C contents of the genomic DNA were 70.2 and 69.6 mol% for strains BNT558(T) and SM3501(T), respectively. 16S rRNA gene sequence data supported the classification of the isolates in the genus Streptomyces and showed that they formed two distinct branches within the genus. Based on almost-complete 16S rRNA gene sequences, strain BNT558(T) was related most closely to Streptomyces albiaxialis NRRL B-24327(T) and strain SM3501(T) was related most closely to Streptomyces cacaoi subsp. cacaoi NBRC 12748(T). DNA-DNA relatedness between each of the isolates and its closest phylogenetic neighbours showed that they belonged to distinct species. The two isolates were readily distinguished from one another and from the type strains of the other species classified in the genus Streptomyces based on a combination of phenotypic and genotypic properties. Based on the genotypic and phenotypic evidence, strains BNT558(T) and SM3501(T) belong to two

  3. Nocardia lasii sp. nov., a novel actinomycete isolated from the cuticle of an ant (Lasius fuliginosus L).

    Science.gov (United States)

    Liu, Chongxi; Bai, Lu; Ye, Lan; Zhao, Junwei; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing

    2016-11-01

    A novel actinomycete, designated strain 3C-HV12(T), was isolated from the cuticle of an ant (Lasius fuliginosus L) and characterised using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3C-HV12(T) belongs to the genus Nocardia with high sequence similarities to Nocardia soli DSM 44488(T) (99.2 %) and Nocardia cummidelens R89(T) (99.2 %), and phylogenetically clustered with these two species and Nocardia ignorata DSM 44496(T) (98.8 %), Nocardia salmonicida JCM 4826(T) (98.8 %), Nocardia fluminea S1(T) (98.8 %), Nocardia coubleae OFN N12(T) (98 %) and Nocardia camponoti 1H-HV4(T) (97.4 %). The morphological and chemotaxonomic properties of the strain are also consistent with those of members of the genus Nocardia. The strain was observed to form extensively branched substrate hyphae which fragmented into rod-shaped and non-motile elements. The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as arabinose and galactose. The predominant menaquinone was identified as MK-8(H4, ω-cycl). The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were identified as C18:0 10-methyl, C16:0 and C16:1ω7c. Mycolic acids were found to be present. A combination of DNA-DNA hybridisation experiments and phenotypic tests were carried out between strain 3C-HV12(T) and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that 3C-HV12(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Nocardia, for which the name Nocardia lasii sp. nov. is proposed. The type strain is 3C-HV12(T) (=DSM 100525(T) = CGMCC 4.7279(T)).

  4. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum.

    Science.gov (United States)

    Albersmeier, Andreas; Pfeifer-Sancar, Katharina; Rückert, Christian; Kalinowski, Jörn

    2017-09-10

    The genome-wide identification of transcription start sites, enabled by high-throughput sequencing of a cDNA library enriched for native 5' transcript ends, is ideally suited for the analysis of promoters. Here, the transcriptome of Corynebacterium glutamicum, a non-pathogenic soil bacterium from the actinomycetes branch that is used in industry for the production of amino acids, was analysed by transcriptome sequencing of the 5'-ends of native transcripts. Total RNA samples were harvested from the exponential phase of growth, therefore the study mainly addressed promoters recognized by the main house-keeping sigma factor σ A . The identification of 2454 transcription start sites (TSS) allowed the detailed analysis of most promoters recognized by σ A and furthermore enabled us to form different promoter groups according to their location relative to protein-coding regions. These groups included leaderless transcripts (546 promoters), short-leadered (leadered (>500 bases) transcripts (173) as well as intragenic (557) and antisense transcripts (261). All promoters and the individual groups were searched for information, e.g. conserved residues and promoter motifs, and general design features as well as group-specific preferences were identified. A purine was found highly favored as TSS, whereas the -1 position was dominated by pyrimidines. The spacer between TSS and -10 region were consistently 6-7 bases and the -10 promoter motif was generally visible, whereas a recognizable -35 region was only occurring in a smaller fraction of promoters (7.5%) and enriched for leadered and antisense transcripts but depleted for leaderless transcripts. Promoters showing an extended -10 region were especially frequent in case of non-canonical -10 motifs (45.5%). Two bases downstream of the -10 core region, a G was conserved, exceeding 40% abundance in most groups. This fraction reached 74.6% for a group of putative σ B -dependent promoters, thus giving a hint to a specific

  5. Alkalithermophilic actinomycetes in a subtropical area of Jujuy, Argentina Actinomicetos termoalcalófilos del área subtropical de Jujuy, Argentina

    Directory of Open Access Journals (Sweden)

    L. Carrillo

    2009-06-01

    Full Text Available The objective of this study was to examine the alkalithermophilic actinomycete communities in the subtropical environment of Jujuy, Argentina, characterized by sugarcane crops. Laceyella putida, Laceyella sacchari, Thermoactinomyces intermedius, Thermoactinomyces vulgaris and Thermoflavimicrobium dichotomicum were isolated on the media with novobiocin, from sugar cane plants and renewal rhizospheres, and grass and wood soils. Soil pH was almost neutral or lightly alkaline, except for grass soil acidified by lactic liquor. A smaller number of actinomycetes was found on the living plants and bagasse (recently obtained or stored according to the Ritter method with respect to decomposed leaves on the soil. Thermophilic species of Laceyella, Thermoactinomyces, Thermoflavimicrobium, Saccharomonospora, Streptomyces and Thermononospora were isolated on the media without novobiocin, from composted sugar cane residues. Air captured near composted bagasse piles, contained alkalithermophilic actinomycete spores.El objetivo de este trabajo fue examinar los actinomicetos termoalcalófilos presentes en el área subtropical de Jujuy, Argentina, caracterizada por el cultivo de la caña de azúcar. Se aislaron en medio con novobiocina las especies Laceyella putida, Laceyella sacchari, Thermoactinomyces intermedius, Thermoactinomyces vulgaris y Thermoflavimicrobium dichotomicum a partir de la rizósfera de plantas y de renuevos de caña de azúcar, así como de suelos de pastura y de monte natural. El pH de los suelos era casi neutro a ligeramente alcalino, excepto en un solo caso en que el suelo estaba acidificado por licor láctico. El número de actinomicetos encontrados sobre los tejidos vivos y en el bagazo recién obtenido o almacenado según el método de Ritter fue pequeño en comparación con el observado sobre las hojas en descomposición. L. sacchari predominó respecto de T. vulgaris. Se aislaron especies termoalcalófilas de Laceyella

  6. Volatile metabolites from actinomycetes

    DEFF Research Database (Denmark)

    Scholler, C.E.G.; Gurtler, H.; Pedersen, R.

    2002-01-01

    and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones...

  7. PCR screening reveals considerable unexploited biosynthetic potential of ansamycins and a mysterious family of AHBA-containing natural products in actinomycetes.

    Science.gov (United States)

    Wang, H-X; Chen, Y-Y; Ge, L; Fang, T-T; Meng, J; Liu, Z; Fang, X-Y; Ni, S; Lin, C; Wu, Y-Y; Wang, M-L; Shi, N-N; He, H-G; Hong, K; Shen, Y-M

    2013-07-01

    Ansamycins are a family of macrolactams that are synthesized by type I polyketide synthase (PKS) using 3-amino-5-hydroxybenzoic acid (AHBA) as the starter unit. Most members of the family have strong antimicrobial, antifungal, anticancer and/or antiviral activities. We aimed to discover new ansamycins and/or other AHBA-containing natural products from actinobacteria. Through PCR screening of AHBA synthase gene, we identified 26 AHBA synthase gene-positive strains from 206 plant-associated actinomycetes (five positives) and 688 marine-derived actinomycetes (21 positives), representing a positive ratio of 2·4-3·1%. Twenty-five ansamycins, including eight new compounds, were isolated from six AHBA synthase gene-positive strains through TLC-guided fractionations followed by repeated column chromatography. To gain information about those potential ansamycin gene clusters whose products were unknown, seven strains with phylogenetically divergent AHBA synthase genes were subjected to fosmid library construction. Of the seven gene clusters we obtained, three show characteristics for typical ansamycin gene clusters, and other four, from Micromonospora spp., appear to lack the amide synthase gene, which is unusual for ansamycin biosynthesis. The gene composition of these four gene clusters suggests that they are involved in the biosynthesis of a new family of hybrid PK-NRP compounds containing AHBA substructure. PCR screening of AHBA synthase is an efficient approach to discover novel ansamycins and other AHBA-containing natural products. This work demonstrates that the AHBA-based screening method is a useful approach for discovering novel ansamycins and other AHBA-containing natural products from new microbial resources. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  8. Identification and characterization of a new erythromycin biosynthetic gene cluster in Actinopolyspora erythraea YIM90600, a novel erythronolide-producing halophilic actinomycete isolated from salt field.

    Directory of Open Access Journals (Sweden)

    Dandan Chen

    Full Text Available Erythromycins (Ers are clinically potent macrolide antibiotics in treating pathogenic bacterial infections. Microorganisms capable of producing Ers, represented by Saccharopolyspora erythraea, are mainly soil-dwelling actinomycetes. So far, Actinopolyspora erythraea YIM90600, a halophilic actinomycete isolated from Baicheng salt field, is the only known Er-producing extremophile. In this study, we have reported the draft genome sequence of Ac. erythraea YIM90600, genome mining of which has revealed a new Er biosynthetic gene cluster encoding several novel Er metabolites. This Er gene cluster shares high identity and similarity with the one of Sa. erythraea NRRL2338, except for two absent genes, eryBI and eryG. By correlating genotype and chemotype, the biosynthetic pathways of 3'-demethyl-erythromycin C, erythronolide H (EH and erythronolide I have been proposed. The formation of EH is supposed to be sequentially biosynthesized via C-6/C-18 epoxidation and C-14 hydroxylation from 6-deoxyerythronolide B. Although an in vitro enzymatic activity assay has provided limited evidence for the involvement of the cytochrome P450 oxidase EryFAc (derived from Ac. erythraea YIM90600 in the catalysis of a two-step oxidation, resulting in an epoxy moiety, the attempt to construct an EH-producing Sa. erythraea mutant via gene complementation was not successful. Characterization of EryKAc (derived from Ac. erythraea YIM90600 in vitro has confirmed its unique role as a C-12 hydroxylase, rather than a C-14 hydroxylase of the erythronolide. Genomic characterization of the halophile Ac. erythraea YIM90600 will assist us to explore the great potential of extremophiles, and promote the understanding of EH formation, which will shed new insights into the biosynthesis of Er metabolites.

  9. Antiproliferative cyclodepsipeptides from the marine actinomycete Streptomyces sp. P11-23B downregulating the tumor metabolic enzymes of glycolysis, glutaminolysis, and lipogenesis.

    Science.gov (United States)

    Ye, Xuewei; Anjum, Komal; Song, Tengfei; Wang, Wenling; Liang, Ying; Chen, Mengxuan; Huang, Haocai; Lian, Xiao-Yuan; Zhang, Zhizhen

    2017-03-01

    Two cyclodepsipeptides and a known cyclodepsipeptide valinomycin were isolated from a culture of the marine actinomycete Streptomyces sp. P11-23B. Their structures were established based on NMR, HRESIMS, and MS-MS spectroscopic interpretation as well as by chemical degradation. Both streptodepsipeptides P11A and P11B inhibited proliferation of different glioma cell lines, with IC50 values ranging from 0.1 μM to 1.4 μM. Streptodepsipeptide P11A was found to block the cell cycle at the G0/G1 phase and induce apoptosis in glioma cells. Further investigation demonstrated that streptodepsipeptide P11A downregulated expression of HK2, PFKFB3, PKM2, GLS, and FASN, important tumor metabolic enzymes. Data from this study suggested that targeting multiple tumor metabolic regulators might be one anti-glioma mechanism of streptodepsipeptide P11A. A possible mechanism for this class of streptodepsipeptides is reported herein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In vitro cytotoxic and antibacterial potentials of extracts from three marine isolates of Actinomycetes isolated from coastal ecosystems of Tanur, Kerala, India

    Directory of Open Access Journals (Sweden)

    Prashanthi Kuruvalli

    2015-03-01

    Full Text Available Three Actinomyctes with potential bioactivity are successfully isolated from the marine water samples and identified as Prauserella marina, Streptomyces sindenensis and S. spiroverticillatus. The ethyl acetate extracts from the three Actinomycetes are found to have significant bioactivity. The highest anti-bacterial activity was given by the extract from P. marina on B. cereus showing 28 mm of zone of inhibition. Cytotoxicity screening of the crude extracts using 3-(4, 5-dimethylthiazol-2yl-2, 5-diphenyl tetrazolium bromide (MTT cell viability assay revealed that extract from P. marina noticeably effected the viability of the human cervical cancer cell grown in vitro. Thin layer chromatography of the crude extract with methanol and chloroform (8:2 as solvent system yielded three distinct fractions, of which fraction with Rf value 0.8 resulted in 77, 68, 54 and 40% growth inhibition of HeLa cells at 15, 10, 5, 2.5 µg/mL, respectively with the IC50 value as 3.3 µg/mL. HPLC analysis of the fraction resulted in single major peak at 3.7 min.

  11. Microbispora sp. LGMB259 Endophytic Actinomycete Isolated from Vochysia divergens (Pantanal, Brazil) Producing β-Carbolines and Indoles with Biological Activity

    Science.gov (United States)

    Savi, Daiani C.; Shaaban, Khaled A.; Vargas, Nathalia; Ponomareva, Larissa V.; Possiede, Yvelise M.; Thorson, Jon S.; Glienke, Chirlei; Rohr, Jürgen

    2014-01-01

    Endophytic actinomycetes encompass bacterial groups that are well known for the production of a diverse range of secondary metabolites. Vochysia divergens is a medicinal plant, common in the “Pantanal” region (Brazil) and was focus of many investigations, but never regarding its community of endophytic symbionts. During a screening program, an endophytic strain isolated from the V. divergens, was investigated for its potential to show biological activity. The strain was characterized as Microbispora sp. LGMB259 by spore morphology and molecular analyze using nucleotide sequence of the 16S rRNA gene. Strain LGMB259 was cultivated in R5A medium producing metabolites with significant antibacterial activity. The strain produced 4 chemically related β-carbolines, and 3 Indoles. Compound 1-Vinyl-β-carboline-3-carboxylic acid displayed potent activity against the Gram-positive bacterial strains Micrococcus luteus NRRL B-2618 and Kocuria rosea B-1106, and was highly active against two human cancer cell lines, namely the prostate cancer cell line PC3 and the non-small-cell lung carcinoma cell line A549, with IC50 values of 9.45 and 24.67 µM, respectively. 1-Vinyl-β-carboline-3-carboxylic acid also showed moderate activity against the yeast Saccharomyces cerevisiae ATCC204508, as well as the phytopathogenic fungiPhyllosticta citricarpa LGMB06 and Colletotrichum gloeosporioides FDC83. PMID:25385358

  12. Lechevalieria rhizosphaerae sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Lechevalieria.

    Science.gov (United States)

    Zhao, Junwei; Li, Wenchao; Shi, Linlin; Wang, Han; Wang, Ying; Zhao, Yue; Xiang, Wensheng; Wang, Xiangjing

    2017-11-01

    A novel actinomycete, designated strain NEAU-A2T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.) and characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-A2T should be assigned to the genus Lechevalieria and forms a distinct branch with its closest neighbour Lechevalieria aerocolonigenes DSM 40034T (99.0 %). Moreover, key morphological and chemotaxonomic properties also confirmed the affiliation of strain NEAU-A2T to the genus Lechevalieria. The cell wall contained meso-diaminopimelic acid and the whole-cell hydrolysates were galactose, mannose, rhamnose, glucose and ribose. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositolmannoside and two glycolipids. The predominant menaquinones were MK-9(H4) and MK-9(H6). The major fatty acids were iso-C16 : 0, anteiso-C15 : 0, C16 : 1ω7c and anteiso-C17 : 0. The DNA G+C content was 68.2 mol%. The combination of the DNA-DNA hybridization result and some phenotypic characteristics demonstrated that strain NEAU-A2T could be distinguished from its closest relative. Therefore, it is proposed that strain NEAU-A2T represents a novel species of the genus Lechevalieria, for which the name Lechevalieriarhizosphaerae sp. nov. is proposed. The type strain is NEAU-A2T (=CGMCC 4.7405T=DSM 104541T).

  13. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes.

    Science.gov (United States)

    Flores, Francisco J; Rincón, Javier; Martín, Juan F

    2003-05-19

    BACKGROUND: The bioavailability of iron is quite low since it is usually present as insoluble complexes. To solve the bioavailability problem microorganisms have developed highly efficient iron-scavenging systems based on the synthesis of siderophores that have high iron affinity. The systems of iron assimilation in microorganisms are strictly regulated to control the intracellular iron levels since at high concentrations iron is toxic for cells. Streptomyces pilosus synthesizes the siderofore desferrioxamine B. The first step in desferrioxamine biosynthesis is decarboxylation of L-lysine to form cadaverine, a desferrioxamine B precursor. This reaction is catalyzed by the lysine decarboxylase, an enzyme encoded by the desA gene that is repressed by iron. RESULTS: The binding of the DmdR (acronym for divalent metal dependent repressor) to the desA promoter in presence of Fe2+ or other divalent ions has been characterized. A 51 bp DNA fragment of the desA promoter containing the 9 bp inverted repeat was sufficient for binding of the DmdR repressor, as observed by the electrophoretic mobility shift assay. The desA mobility shift was prevented by neutralizing DmdR with anti-DmdR antibodies or by chelating the divalent metal in the binding reaction with 2,2'-dipyridyl. Binding to the desA promoter was observed with purified DmdR repressors of Streptomyces coelicolor or Rhodococcus fascians suggesting that there is a common mechanism of iron-regulation in actinomycetes. The complete desA promoter region was coupled using transcriptional fusions to the amy reporter gene (encoding alpha-amylase) in low copy or multicopy Streptomyces vectors. The iron-regulated desA promoter was induced by addition of the iron chelating agent 2,2'-dipyridyl resulting in a strong expression of the reporter gene. CONCLUSIONS: The iron-regulated desA promoter can be used for inducible expression of genes in Streptomyces species, as shown by de-repression of the promoter when coupled to a

  14. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP traits and for agroactive compounds

    Directory of Open Access Journals (Sweden)

    Sumaira Anwar

    2016-08-01

    Full Text Available In this study 98 rhizospheric actinomycetes were isolated from different wheat and tomato fields, Punjab, Pakistan. The isolates were characterized morphologically, biochemically and genetically and were subjected to a comprehensive in vitro screening for various plant growth promoting (PGP traits. About 30% of the isolates screened were found to be the promising plant growth promoting rhizobacteria (PGPRs, which exhibited maximum genetic similarity (up to 98-99% with different species of the genus Streptomyces by using16S rRNA gene sequencing. The most active indole acetic acid (IAA producer Streptomyces nobilis WA-3, Streptomyces Kunmingenesis WC-3 and Streptomyces enissocaesilis TA-3 produce 79.5, 79.23 and 69.26 µg/ml IAA respectively at 500µg/ml L-tryptophan. The highest concentration of soluble phosphate was produced by Streptomyces sp. WA-1 (72.13 mg/100ml and S. djakartensis TB-4 (70.36 mg/100ml. All rhizobacterial isolates were positive for siderophore, ammonia and hydrogen cyanide production. Strain S. mutabilis WD-3 showed highest concentration of ACC-deaminase (1.9 mmol /l. For in-vivo screening, seed germination and plant growth experiment were conducted by inoculating wheat (Triticum aestivum seeds with the six selected isolates. Significant increases in shoot length was observed with S. nobilis WA-3 (65 %, increased root length was recorded in case of S. nobilis WA-3 (81 % as compared to water treated control plants. Maximum increases in plant fresh weight were recorded with S. nobilis WA-3 (84 %, increased plant dry weight was recorded in case of S. nobilis WA-3 (85 % as compared to water treated control plants. In case of number of leaves, significant increase was recorded with S. nobilis WA-3 (27 % and significant increase in case of number of roots were recorded in case of strain S. nobilis WA-3 (30 % as compared to control plants. Over all the study revealed that these rhizospheric plant growth promoting (PGP Streptomyces

  15. Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds.

    Science.gov (United States)

    Anwar, Sumaira; Ali, Basharat; Sajid, Imran

    2016-01-01

    In this study 98 rhizospheric actinomycetes were isolated from different wheat and tomato fields, Punjab, Pakistan. The isolates were characterized morphologically, biochemically, and genetically and were subjected to a comprehensive in vitro screening for various plant growth promoting (PGP) traits. About 30% of the isolates screened were found to be the promising PGP rhizobacteria (PGPRs), which exhibited maximum genetic similarity (up to 98-99%) with different species of the genus Streptomyces by using16S rRNA gene sequencing. The most active indole acetic acid (IAA) producer Streptomyces nobilis WA-3, Streptomyces Kunmingenesis WC-3, and Streptomyces enissocaesilis TA-3 produce 79.5, 79.23, and 69.26 μg/ml IAA respectively at 500 μg/ml L-tryptophan. The highest concentration of soluble phosphate was produced by Streptomyces sp. WA-1 (72.13 mg/100 ml) and S. djakartensis TB-4 (70.36 mg/100 ml). All rhizobacterial isolates were positive for siderophore, ammonia, and hydrogen cyanide production. Strain S. mutabilis WD-3 showed highest concentration of ACC-deaminase (1.9 mmol /l). For in-vivo screening, seed germination, and plant growth experiment were conducted by inoculating wheat (Triticum aestivum) seeds with the six selected isolates. Significant increases in shoot length was observed with S. nobilis WA-3 (65%), increased root length was recorded in case of S. nobilis WA-3 (81%) as compared to water treated control plants. Maximum increases in plant fresh weight were recorded with S. nobilis WA-3 (84%), increased plant dry weight was recorded in case of S. nobilis WA-3 (85%) as compared to water treated control plants. In case of number of leaves, significant increase was recorded with S. nobilis WA-3 (27%) and significant increase in case of number of roots were recorded in case of strain S. nobilis WA-3 (30%) as compared to control plants. Over all the study revealed that these rhizospheric PGP Streptomyces are good candidates to be developed as

  16. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes

    Directory of Open Access Journals (Sweden)

    Martín Juan F

    2003-05-01

    Full Text Available Abstract Background The bioavailability of iron is quite low since it is usually present as insoluble complexes. To solve the bioavailability problem microorganisms have developed highly efficient iron-scavenging systems based on the synthesis of siderophores that have high iron affinity. The systems of iron assimilation in microorganisms are strictly regulated to control the intracellular iron levels since at high concentrations iron is toxic for cells. Streptomyces pilosus synthesizes the siderofore desferrioxamine B. The first step in desferrioxamine biosynthesis is decarboxylation of L-lysine to form cadaverine, a desferrioxamine B precursor. This reaction is catalyzed by the lysine decarboxylase, an enzyme encoded by the desA gene that is repressed by iron. Results The binding of the DmdR (acronym for divalent metal dependent repressor to the desA promoter in presence of Fe2+ or other divalent ions has been characterized. A 51 bp DNA fragment of the desA promoter containing the 9 bp inverted repeat was sufficient for binding of the DmdR repressor, as observed by the electrophoretic mobility shift assay. The desA mobility shift was prevented by neutralizing DmdR with anti-DmdR antibodies or by chelating the divalent metal in the binding reaction with 2,2'-dipyridyl. Binding to the desA promoter was observed with purified DmdR repressors of Streptomyces coelicolor or Rhodococcus fascians suggesting that there is a common mechanism of iron-regulation in actinomycetes. The complete desA promoter region was coupled using transcriptional fusions to the amy reporter gene (encoding α-amylase in low copy or multicopy Streptomyces vectors. The iron-regulated desA promoter was induced by addition of the iron chelating agent 2,2'-dipyridyl resulting in a strong expression of the reporter gene. Conclusions The iron-regulated desA promoter can be used for inducible expression of genes in Streptomyces species, as shown by de-repression of the promoter

  17. Metabolomics of the Bio-Degradation Process of Aflatoxin B1 by Actinomycetes at an Initial pH of 6.0

    Directory of Open Access Journals (Sweden)

    Manal Eshelli

    2015-02-01

    Full Text Available Contamination of food and feed by Aflatoxin B1 (AFB1 is a cause of serious economic and health problems. Different processes have been used to degrade AFB1. In this study, biological degradation of AFB1 was carried out using three Actinomycete species, Rhodococcus erythropolis ATCC 4277, Streptomyces lividans TK 24, and S. aureofaciens ATCC 10762, in liquid cultures. Biodegradation of AFB1 was optimised under a range of temperatures from 25 to 40 °C and pH values of 4.0 to 8.0. An initial concentration of 20 µg/mL of AFB1 was used in this study. The amount of AFB1 remaining was measured against time by thin layer chromatography (TLC and high-performance liquid chromatography (HPLC, coupled with UV and mass spectrometry (LC-MS. All species were able to degrade the AFB1, and no significant difference was found between them. AFB1 remained in the liquid culture for R. erythropolis, S. lividans and S. aureofaciens were 0.81 µg/mL, 2.41 µg/mL and 2.78 µg/mL respectively, at the end of the first 24 h. Degradation occurred at all incubation temperatures and the pH with the optimal conditions for R. erythropolis was achieved at 30 °C and pH 6, whereas for S. lividans and S. aureofaciens the optimum conditions for degradation were 30 °C and pH 5. Analysis of the degradative route indicated that each microorganism has a different way of degrading AFB1. The metabolites produced by R. erythropolis were significantly different from the other two microorganisms. Products of degradation were identified through metabolomic studies by utilizing high-resolution mass spectral data. Mass spectrometric analysis indicated that the degradation of AFB1 was associated with the appearance of a range of lower molecular weight compounds. The pathway of degradation or chemical alteration of AFB1 was followed by means of high resolution Fourier transform mass spectrometry (HR-FTMS analysis as well as through the MS2 fragmentation to unravel the degradative pathway for

  18. Potencialidade de um actinomiceto de rizosfera de tomateiro como agente de biocontrole de doenças Potenciality of an actinomycete from tomato rhizosphere as a biocontrol agent for tomato diseases

    Directory of Open Access Journals (Sweden)

    Renato Carrer Filho

    2009-09-01

    Full Text Available Um actinomiceto (Streptomyces setonii, isolado 'UFV-RD1', obtido de rizosfera de planta sadia de tomateiro, foi selecionado dentre outros 117, como promissor agente de biocontrole de enfermidades da cultura. Em testes de antagonismo in vitro contra patógenos do tomateiro, o isolado 'UFV-RD1' foi incapaz de inibir o crescimento de bactérias (Pseudomonas syringae pv. tomato, Ralstonia solanacearum, Pectobacterium carotovorum subsp. carotovorum, Xanthomonas campestris pv. vesicatoria mas inibiu a germinação de conídios de alguns fungos (Alternaria solani, Phytophthora infestans, Corynespora cassiicola, Stemphylium solani. Em ensaios de biocontrole experimental in vivo, em casa de vegetação, o actinomiceto foi efetivo em reduzir a severidade de sintomas no caso de patógenos fúngicos e bacterianos testados como desafiantes. A campo, quando A. solani e P. infestans ocorreram naturalmente, as plantas originárias de sementes microbiolizadas com propágulos da estirpe 'UFV-RD1' exibiram sintomas menos severos que as plantas controle para o caso da pinta preta. O agente de biocontrole é promissor para futuros protocolos de manejo integrado, como forma de reduzir a quantidade de defensivos utilizados.An actinomycete (Streptomyces setonii, isolate 'UFV-RD1', isolated from the rhizosphere of a healthy tomato plant was selected out of 117 as a promising biocontrol agent for tomato diseases. In in vitro antagonism tests against tomato pathogens, the isolate 'UFV-RD1' was unable to inhibit growth of bacterial pathogens (Pseudomonas syringae pv. tomato, Ralstonia solanacearum, Pectobacterium carotovorum subsp. carotovorum, Xanthomonas campestris pv. vesicatoria but inhibited conidium germination of fungi (Alternaria solani, Phytophthora infestans, Corynespora cassiicola, Stemphylium solani. Experimental biocontrol assays in a greenhouse indicated that the actinomycete was effective for reducing symptom severity in the case of bacteria and fungi tested

  19. Combination of uniform design with artificial neural network coupling genetic algorithm: an effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete.

    Science.gov (United States)

    Cai, Guanjing; Zheng, Wei; Yang, Xujun; Zhang, Bangzhou; Zheng, Tianling

    2014-05-24

    Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly. However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol, we firstly determined five main influencing factors through single factor experiments and generated the multifactorial experimental groups with a U15(155) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable and easy way to optimize the fermentation conditions for algicidal microorganisms.

  20. Estudio de actinomicetos marinos aislados de la costa central del Perú y su actividad antibacteriana frente a Staphylococcus aureus Meticilina Resistentes y Enterococcus faecalis Vancomicina Resistentes Study of marine actinomycetes isolated from the central coast of Peru and their antibacterial activity against Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Jorge León

    2011-06-01

    Full Text Available Objetivos. Determinar el potencial antimicrobiano de actinomicetos marinos frente a cepas S. aureus meticilino-resistentes (MRSA y E. faecalis vancomicina-resistentes (VRE. Materiales y métodos. En dos medios de cultivo se sembraron 29 cepas de actinomicetos aislados de sedimento marino. Se evaluó la capacidad inhibitoria mediante pruebas de antagonismo in vitro para MRSA y VRE. Se procesó los extractos orgánicos de tres actinomicetos seleccionados para determinar la Concentración Mínima Inhibitoria (CMI del compuesto activo. Resultados. La mayoría de los actinomicetos aislados correspondieron a un grupo homogéneo de blanco-grisáceos (62% con buen nivel de crecimiento en agar marino. Los porcentajes inhibitorios fueron superiores a 85% para ambos patógenos con halos de inhibición mayores a 69 y 78 mm de diámetro para MRSA y VRE respectivamente. Los extractos diclorometánicos de tres de los actinomicetos aislados (I-400A, B1-T61, M10-77 mostraron gran potencial inhibitorio de ambos patógenos, siendo M10-77 la cepa de actinomiceto de mayor actividad antibiótica frente a S. aureus ATCC 43300 resistente a meticilina y E. faecalis ATCC 51299 resistente a vancomicina con una Concentración Mínima Inhibitoria (CMI de 7,9 y 31,7 μg/ mL respectivamente. El análisis filogenético de la cepa M10- 77 presenta un 99% de similaridad con la especie marina Streptomyces erythrogriseus. Conclusiones. El sedimento marino de la costa central del Perú es fuente promisorio de cepas de actinomicetos con gran capacidad de producir compuestos bioactivos capaces de inhibir patógenos tipificados como multidrogo-resistentes tales como S. aureus meticilino resistentes y E. faecalis vancomicina resistentes.Objectives. To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA and vancomycin-resistant Enterococcus faecalis (VRE. Materials and

  1. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Erah

    using polyphasic approaches: Morpholo- gical, cultural, physiological and biochemical characterization. All the isolates formed stable aerial and substrate mycelia when examined under phase contrast microscopy (slide culturing technique). The spore chain morphology of. 2A and A26 belongs to straight chain section,.

  2. Therapeutically Active Biomolecules from Marine Actinomycetes

    OpenAIRE

    Mani Jayaprakashvel

    2012-01-01

    For the past few centuries, the biological sources of terrestrial origin have been explored and exploited for bioactive metabolites. This has resulted in the stagnancy of discovering either novel compounds or compounds with novel bioactivities. Thus, researchers across the globe have started exploring our big Oceans, for the search of bioactive metabolites. During the past few decades, the research on bioactive metabolites from marine biological resources has geared up and among the sources m...

  3. Isolation, characterization and identification of actinomycetes from ...

    African Journals Online (AJOL)

    STORAGESEVER

    antimicrobial test using selected phytopathogens as test strains and it was observed that 3, 25, 35 and. 37 of the isolates showed antagonistic reaction with ... Six of the most promising isolates were selected and identified using their 16S rRNA sequence. ..... isolated from a Brazilian tropical forest soil. World J. Microbiol.

  4. Production of Biosurfactants by Actinomycetes Isolated from ...

    African Journals Online (AJOL)

    Isolation of Actnomycetes was done using starch casein agar incorporation with antibiotics incubated for 7 – 10 days at 30oC. Growth on mineral salt medium initiated the production of biosurfactants which was extracted by centrifugation and filtration followed by liquid extraction using chloroform: methanol (2:1v/v).

  5. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Results: Among these isolates, 51 (38 %) showed antimicrobial activity against one or more test organisms and six exhibited promising broad-spectrum activity against all the tested organisms. The observed cultural, morphological, physiological and biochemical characteristics confirmed that these isolates are species of ...

  6. Efecto Antagónico in vitro de Actinomicetos Aislados de Purines de Chipaca (Bidens pilosa L. Frente a Phytophthora infestans (Mont de Bary In vitro Antagonistic Effect of Actinomycetes Isolated from Chipaca (Bidens pilosa L. Purins Against Phytophthora infestans (Mont de Bary

    Directory of Open Access Journals (Sweden)

    Yudy Astrid Fonseca Ardila

    2011-12-01

    Full Text Available Se estudió el efecto inhibidor de los actinomicetos presentes en purines o extractos fermentados de plantas de chipaca (Bidens pilosa L., sobre el crecimiento de Phytophthora infestans (Mont de Bary, causante del tizón tardío de la papa. Se elaboraron cuatro purines de flores, raíces, hojas-tallos y su mezcla. De estos purines se obtuvieron 25 aislamientos de actinomicetos, cada uno de los cuales se enfrentó con P. infestans en placas de medio de cultivo, utilizando la técnica de anillos de Gauze y estableciendo las concentraciones iniciales de esporas mediante conteos microscópicos en cámara de Neubauer. Los actinomicetos no crecieron en el purin de flores debido, posiblemente, a que en él no se utiliza suelo rizosférico o porque su pH (9 es mayor que el rango normal de crecimiento de estos microorganismos ( pH 6 -; 8. Se evidenció inhibición del crecimiento del oomycete por parte de 8 aislamientos de actinomicetos con porcentajes de inhibición entre 33,3 - 77,8%, provenientes de los purines de raíces, tallos-hojas y mezcla de partes de la planta. La mayor inhibición se obtuvo en los aislamientos AC001, AC010, AC011 y AC025 con conteos de 0,4, 6,0, 3,0, y 3,6 x10(5 esporas mL-1.Purins or liquid fermented extracts of chipaca (Bidens pilosa L. were prepared to establish the inhibitory effect of the actinomycetes found in such biopharmaceutical preparations on the growth of Phytophthora infestans (Mont de Bary, the causative of potato late blight disease. Four purins made from flowers, roots, leaf-steams and a mixture of them were prepared; 25 actinomycete isolates were obtained from these purins and their ability to resist challenge by P. infestans was ascertained in medium plates using the ring Gauze technique and establishing initial concentrations of spores by microscopic counting in Neubauer chamber. Actinomycetes did not grow in flower purin as rhizosphere soil was not used in its preparation or because this particular pH (9

  7. The function of lexical motifs in the organization of the Actinomycetes 5S rRNAs A função dos motivos léxicos na organização do 5S rRNAs de Actinomicetes

    Directory of Open Access Journals (Sweden)

    Sandra M Rodrigues-Subacius

    2007-09-01

    Full Text Available This work shows results obtained by employing the linguistic method to identify biologically meaningful sites in Actinomycetes 5S rRNAs. The approach adopted identifies triplet-words, along the base sequence of 5S rRNA, located mainly at the alpha and beta domains of the 5S secondary structure. There are triplet-words representing universal protein binding sites that include important prokaryote signatures, and sites strategically located in critical regions related to the formation of the 5S ribonucleoproteins (RNP complex. In those sites, where the GC pressure promoted substitutions, the analysis demonstrates that alterations did not affect their biological significance. Sites formed by GGY (or more rarely GGR, continued to play an important role as ribosomal proteins rpL18 and rpL5 protein receptors. The data suggest that instead of increasing the molecular variability, expected for the diversity in species and habitats occupied for the group, GC pressure functioned as a reducer mechanism for the inter-specific diversity.Neste trabalho são apresentados resultados obtidos empleando o método linguístico para identificar sítios no 5S rRNAs de actinomicetes com significado biológico. A abordagem identificou palavras-tripletes, junto com a sequência de bases do 5S rRNAs, localizados principalmente nos domínios alfa e beta da estrutura secundária. Entre eles, existem palavras-tripletes que representam sítios de ligação de proteínas universais, que incluem importantes assinaturas procarióticas, além de sítios estrategicamente colocados em regiões críticas relacionados com a formação do complexo 5S ribonucleoproteína (RNP. Nestes sítios, onde a pressão GC promove substituições, as alterações não afetaram seu significado biológico. Sítios formados por GGY (ou mais raramente GER, jogam um papel importante como receptores de proteínas ribossomicas rpL18 e rpL5. Os dados também sugerem que ao contrário de aumentar a

  8. Competitive strategies differentiate closely related species of marine actinobacteria.

    Science.gov (United States)

    Patin, Nastassia V; Duncan, Katherine R; Dorrestein, Pieter C; Jensen, Paul R

    2016-02-01

    Although competition, niche partitioning, and spatial isolation have been used to describe the ecology and evolution of macro-organisms, it is less clear to what extent these principles account for the extraordinary levels of bacterial diversity observed in nature. Ecological interactions among bacteria are particularly challenging to address due to methodological limitations and uncertainties over how to recognize fundamental units of diversity and link them to the functional traits and evolutionary processes that led to their divergence. Here we show that two closely related marine actinomycete species can be differentiated based on competitive strategies. Using a direct challenge assay to investigate inhibitory interactions with members of the bacterial community, we observed a temporal difference in the onset of inhibition. The majority of inhibitory activity exhibited by Salinispora arenicola occurred early in its growth cycle and was linked to antibiotic production. In contrast, most inhibition by Salinispora tropica occurred later in the growth cycle and was more commonly linked to nutrient depletion or other sources. Comparative genomics support these differences, with S. arenicola containing nearly twice the number of secondary metabolite biosynthetic gene clusters as S. tropica, indicating a greater potential for secondary metabolite production. In contrast, S. tropica is enriched in gene clusters associated with the acquisition of growth-limiting nutrients such as iron. Coupled with differences in growth rates, the results reveal that S. arenicola uses interference competition at the expense of growth, whereas S. tropica preferentially employs a strategy of exploitation competition. The results support the ecological divergence of two co-occurring and closely related species of marine bacteria by providing evidence they have evolved fundamentally different strategies to compete in marine sediments.

  9. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes.

    Science.gov (United States)

    Chen, Wenqing; Qi, Jianzhao; Wu, Pan; Wan, Dan; Liu, Jin; Feng, Xuan; Deng, Zixin

    2016-03-01

    Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.

  10. The gastric caeca of pentatomids as a house for actinomycetes

    Directory of Open Access Journals (Sweden)

    Zucchi Tiago D

    2012-06-01

    Full Text Available Abstract Background Microbes are extensively associated with insects, playing key roles in insect defense, nutrition and reproduction. Most of the associations reported involve Proteobacteria. Despite the fact that Actinobacteria associated with insects were shown to produce antibiotic barriers against pathogens to the hosts or to their food and nutrients, there are few studies focusing on their association with insects. Thus, we surveyed the Actinobacteria diversity on a specific region of the midgut of seven species of stinkbugs (Hemiptera: Pentatomidae known to carry a diversity of symbiotically-associated Proteobacteria. Results A total of 34 phylotypes were placed in 11 different Actinobacteria families. Dichelops melacanthus held the highest diversity with six actinobacteria families represented by nine phylotypes. Thyanta perditor (n = 7, Edessa meditabunda (n = 5, Loxa deducta (n = 4 and Pellaea stictica (n = 3 were all associated with three families. Piezodorus guildini (n = 3 and Nezara viridula (n = 3 had the lowest diversity, being associated with two (Propionibacteriaceae and Mycobacteriaceae and one (Streptomyceataceae families, respectively. Corynebacteriaceae and Mycobacteriaceae were the most common families with phylotypes from three different insect species each one. Conclusions Many phylotypes shared a low 16S rRNA gene similarity with their closest type strains and formed new phyletic lines on the periphery of several genera. This is a strong indicative that stinkbug caeca can harbor new species of actinobacteria, which might be derived from specific associations with the species of stinkbugs studied. Although the well-known role of actinobacteria as a source of biomolecules, the ecological features of these symbionts on the stinkbugs biology remain unknown.

  11. Production of Antibiotics from Soil-Isolated Actinomycetes and ...

    African Journals Online (AJOL)

    Erah

    butanol, silicon oil, dimethyl sulphoxide. (DMSO), n-hexane, tryptone, lactose, maltose, fructose, yeast extract powder, nutrient agar, agar powder, International ... characterized using nuclear magnetic resonance (NMR) spectroscopy [13]. RESULTS. Fermentation process. The optimization data for optimum growth.

  12. Caerulomycin A- An antifungal compound isolated from marine actinomycetes.

    Digital Repository Service at National Institute of Oceanography (India)

    Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Mahajan, G.B.; Mishra, P.D.; DeSouza, L.; Ranadive, P.

    krusei GO3FlucR 0.78 - 1.56 0.313 - 0.625 64 NT: Not Tested. 4. Discussion The global antifungal market was estimated at $9.4 billion in 2010 and is expected to grow at a rate of 1.9% during 2010-2017. The major class of antifungal compound includes... Genetics Analysis Using Maximum Likelihood, Evolutionary Distance and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 [24] Antifungals Market to 2017—Generic Erosion of Major Polyenes...

  13. CRISPR-Cas9 Toolkit for Actinomycete Genome Editing

    DEFF Research Database (Denmark)

    Tong, Yaojun; Robertsen, Helene Lunde; Blin, Kai

    2018-01-01

    Bacteria of the order Actinomycetales are one of the most important sources of bioactive natural products, which are the source of many drugs. However, many of them still lack efficient genome editing methods, some strains even cannot be manipulated at all. This restricts systematic metabolic......, a system for in-frame gene/gene cluster knockout, a system for gene loss-of-function study, a system for generating a random size deletion library, and a system for gene knockdown. For the latter, a uracil-specific excision reagent (USER) cloning technology was adapted to simplify the CRISPR vector...

  14. Actinomycetes isolated from Malacca soil with Colletotrichum capsici ...

    African Journals Online (AJOL)

    Jeffrey

    2011-07-04

    Jul 4, 2011 ... Observation using scanning electron microscope (SEM) showed that the spore surface for .... using a research microscope (Meiji MX 5000) and scanning .... microscope. Red arrow showing the spiral spore chain. Figure 4. Spore chain arrangement of PM4 observed at the magnification of 1000X using ...

  15. Isolation of soil thermophilic strains of actinomycetes for the ...

    African Journals Online (AJOL)

    amylase enzyme produced by the strains. Extraction of α-amylase was done in liquid medium. The assay was observed by measuring the release of reducing sugar (RS) by 3,5- dinitrosalicylic acid (DNS) method and expressed in International ...

  16. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    STORAGESEVER

    Isolation Agar Medium in duplicate Petri plates. To minimize ... on the Petri plates were counted from 5th day onwards, up to 28th .... After the dialysis, the volume was measured and analyzed for proteins and stored in deep freezer. Taxonomic investigation. The genus level identification was made for the strain PS-18A using ...

  17. Chitin degrading potential of three aquatic actinomycetes and its ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... using Whatman filter paper (Grade 613). The A540 of the filtrate was measured on systronics 106 colorimeter. A standard curve for N- acetyl glucosamine was carried out in parallel to measure reducing sugar released. A unit of enzyme activity was defined as the amount of enzyme required to release 0.5 ...

  18. CRISPR/CAS9 based engineering of actinomycetal genomes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to CRISPR/Cas-based methods for generating random-sized deletions around at least one target nucleic acid sequence, or for generating precise indels around at least one target nucleic acid sequence, or for modulating transcription of at least one target nucleic acid...

  19. First records of sponge-associated Actinomycetes from two coastal ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2016) >. Log in or Register to get access to full text downloads.

  20. Characterization of p-nitrophenol degrading actinomycetes from ...

    African Journals Online (AJOL)

    Yomi

    2012-05-31

    May 31, 2012 ... p-Nitrophenol (PNP), a major nitroaromatic xenobiotic is released into the environment as a result of its widespread use and as a breakdown product of organophosphate (OP) agricultural pesticides such as parathion and methyl parathion. It is highly toxic to soil microflora and other non-target organisms.

  1. Hepatic abscess linked to oral actinomycetes: a case report.

    Science.gov (United States)

    De Farias, Deborah G

    2015-01-01

    Organ abscesses are rare, life-threatening complications that can be caused by bacteremia from oral infections. Metastatic infection is a well-established concept. Dental and periapical infections can cause infections in distant organs and tissues. The frequency of these systemic infections and systemic diseases is open to debate, as some patients are more susceptible to infections than others. This article presents the case report of a 52-year-old woman who was hospitalized with a hepatic abscess after a routine periodontal maintenance procedure. The patient had poor oral health, involving several nonrestorable teeth, multiple failed endodontic treatments, and asymptomatic chronic periapical pathologies. Her dental history included previous diagnoses of moderate generalized chronic periodontitis and advanced localized periodontitis. It was possible that bacteremia developed during her most recent dental treatment, leading to the hepatic abscess. Systemic antibiotic therapy, drainage of the hepatic abscess, and oral rehabilitation resulted in complete recovery.

  2. Efficiency of some actinomycete isolates in biological treatment and ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... A grateful support from the Center of Excellence for Biodiversity Research, College of Science,. King Saud University, Riyadh, Saudi Arabia is highly appreciated. REFERENCES. Ahluwalia SS, Goyal D (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour.

  3. Isolation of soil thermophilic strains of actinomycetes for the ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... proportional to the amount of α-amylase enzyme produced by the strains. Extraction of α-amylase was done in liquid medium. The assay was observed by measuring the release of reducing sugar (RS) by 3,5- dinitrosalicylic acid (DNS) method and expressed in International Units (IU). The thermophilic ...

  4. Antimicrobial activity of some actinomycetes from Western Ghats of ...

    African Journals Online (AJOL)

    Pathalam Ganesan

    2016-04-04

    MTCC-840), Saccharomyces cerevisiae (MTCC-251),. Shigella .... Medium. Characters. Aerial mycelium. Substrate mycelium. Soluble pigment. Colony margin. Growth. Gram stain. ISP-2. Brown. Yellow. –. Filaments. +++. +.

  5. Screening the Egyptian desert actinomycetes as candidates for new ...

    African Journals Online (AJOL)

    Out of the isolated 75 organisms, 32 (42.67%) showed activity against the used test organisms. The antimicrobial ... All phenotypic and genotypic characteristics were consistent with the classification of strain D332 to genus Streptomyces where it formed a distinct phyletic line in the Streptomyces 16S rRNA gene tree. On the ...

  6. Influence of Xenobiotic Substances on Actinomycete Comunities in Soil

    OpenAIRE

    Marioara Nicoleta Filimon; Roxana Popescu; Aurica Breica Borozan; Despina Maria Bordean; Gabi Dumitrescu; Sorin Octavian Voia

    2012-01-01

    Sulfonylurea herbicides are frequently used in agricultural crops even if they determine quantitative and qualitativechanges in soil microbial communities. In this study it was used increasing doses of two sulfonylurea herbicides,tribenuron-methyl and nicosulfuron, in order to establish their effect on actinomyces communities from soil underlaboratory conditions. Using nutritive gelose with soil extract and Gause medium the main species of actinomyceswere identified: Streptomyces albus, Strep...

  7. Isolation and characterization of actinomycetes in Vellar Estuary ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... Available phosphorus. BDL - 5.3. Reserved Phosphorus. 73 - 78. Potassium. 49 - 54. Calcium. 208 - 215. Magnesium. 129 - 135. Sodium. 626 - 850. Zinc. 0.17 - 0.18 ... water. The soil suspensions were plated using starch casein agar ... as starch casein agar, glycerol aspargine agar, yeast extract malt.

  8. Isolation and screening of actinomycetes from Sundarbans soil for ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... soil temperature, soil type, soil pH, organic matter content, cultivation, aeration and moisture content. Acti- ... organic matter, moisture content, particle size and colour of soil and to avoid contamination as far as possible. .... occasionally brown maroon or blue green. The dark brown to black spore colonies.

  9. Actinobacterial diversity from marine sediments collected in Mexico.

    Science.gov (United States)

    Maldonado, Luis A; Fragoso-Yáñez, Dulce; Pérez-García, Adriana; Rosellón-Druker, Judith; Quintana, Erika T

    2009-02-01

    Seventeen different media known to support the growth and isolation of members of the class Actinobacteria were evaluated as selective isolation media for the recovery of this microbial group from marine sediments samples collected in the Gulf of California and the Gulf of Mexico. A general selective isolation procedure was employed for six sediments and nearly 300 actinomycetes were recovered from the selective isolation plates. Full 16S rRNA gene sequencing revealed that the isolates belonged to several actinobacterial taxa, notably to the genera Actinomadura, Dietzia, Gordonia, Micromonospora, Nonomuraea, Rhodococcus, Saccharomonospora, Saccharopolyspora, Salinispora, Streptomyces, "Solwaraspora" and Verrucosispora. Previous works on marine sediments have been restricted to the isolation of members of the genera Micromonospora, Rhodococcus and Streptomyces. This study provides further evidence that Actinobacteria present in marine habitats are not restricted to the Micromonospora-Rhodococcus-Streptomyces grouping. Indeed, this first systematic study shows the extent of actinobacterial diversity that can be found in marine sediments collected in Mexico and probably, worldwide.

  10. CVN’s, is Eleven Too Many or Too Few?

    Science.gov (United States)

    2011-03-10

    TIIE OPINIONS AND CONCLUSIONS EXPRESSED HEREIN ARE THOSE OF TIIE INDIVIDUAL STUDENT AUTHOR AND DO NOT NECESSARILY REPRESENT TIIE VIEWS OF EITHER THE...MARINE CORPS COMMAND AND STAFF COLLEGE OR ANY OTIIER GOVERNMENT AGENCY. REFERENCES TO THIS STUDY SHOULD TIIE INCLUDE TIIE FOREGOING STATEMENT

  11. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment

    NARCIS (Netherlands)

    Booij, K.; Robinson, C.D.; Burgess, R.M.; Mayer, P.; Roberts, C.A.; Ahrens, L.; Allan, I.J.; Brant, J.; Jones, L.; Kraus, U.R.; Larsen, M.M.; Lepom, P.; Petersen, J.; Pröfrock, D.; Roose, P.; Schäfer, S.; Smedes, F.; Tixier, C.; Vorkamp, K.; Whitehouse, P.

    2016-01-01

    We reviewed compliance monitoring requirements in the EuropeanUnion, the United States, and the Oslo-Paris Convention for the protection of themarine environment of the North-East Atlantic, and evaluated if these are met bypassive sampling methods for nonpolar compounds. The strengths

  12. Two Distinct Cyclodipeptide Synthases from a Marine Actinomycete Catalyze Biosynthesis of the Same Diketopiperazine Natural Product.

    Science.gov (United States)

    James, Elle D; Knuckley, Bryan; Alqahtani, Norah; Porwal, Suheel; Ban, Jisun; Karty, Jonathan A; Viswanathan, Rajesh; Lane, Amy L

    2016-07-15

    Diketopiperazine natural products are structurally diverse and offer many biological activities. Cyclodipeptide synthases (CDPSs) were recently unveiled as a novel enzyme family that employs aminoacyl-tRNAs as substrates for 2,5-diketopiperazine assembly. Here, the Nocardiopsis sp. CMB-M0232 genome is predicted to encode two CDPSs, NozA and NcdA. Metabolite profiles from E. coli expressing these genes and assays with purified recombinant enzymes revealed that NozA and NcdA catalyze cyclo(l-Trp-l-Trp) (1) biosynthesis from tryptophanyl-tRNA and do not accept other aromatic aminoacyl-tRNA substrates. Fidelity is uncommon among characterized CDPSs, making NozA and NcdA important CDPS family additions. Further, 1 was previously supported as a biosynthetic precursor of the nocardioazines; the current study suggests that Nocardiopsis sp. may derive this precursor from both NozA and NcdA. This study offers a rare example of a single bacterium encoding multiple phylogenetically distinct enzymes that yield the same secondary metabolite and provides tools for chemoenzymatic syntheses of indole alkaloid diketopiperazines.

  13. Draft genome sequence of the marine actinomycete Streptomyces sulphureus L180, isolated from marine sediment.

    Science.gov (United States)

    Zhao, Xinqing; Geng, Xiang; Chen, Chao; Chen, Liangyu; Jiao, Wence; Yang, Chao

    2012-08-01

    Marine-derived actinobacteria are rich sources of valuable natural products and industrial enzymes for biotechnology applications. The marine-derived Streptomyces sulphureus strain L180 was isolated from the marine sediment in a sea cucumber farm at a depth of about 10 m in Dalian, China, and its 16S rRNA gene sequence was determined to have the highest identity to that of Streptomyces sulphureus NRRL B-1627(T) (99.65%). Here, we report the draft genome sequence of this strain.

  14. Draft Genome Sequence of the Marine Actinomycete Streptomyces sulphureus L180, Isolated from Marine Sediment

    OpenAIRE

    Zhao, Xinqing; Geng, Xiang; Chen, Chao; Chen, Liangyu; Jiao, Wence; Yang, Chao

    2012-01-01

    Marine-derived actinobacteria are rich sources of valuable natural products and industrial enzymes for biotechnology applications. The marine-derived Streptomyces sulphureus strain L180 was isolated from the marine sediment in a sea cucumber farm at a depth of about 10 m in Dalian, China, and its 16S rRNA gene sequence was determined to have the highest identity to that of Streptomyces sulphureus NRRL B-1627T (99.65%). Here, we report the draft genome sequence of this strain.

  15. Geodermatophilus poikilotrophi sp. nov.: A Multitolerant Actinomycete Isolated from Dolomitic Marble

    Science.gov (United States)

    Montero-Calasanz, Maria del Carmen; Hofner, Benjamin; Göker, Markus; Rohde, Manfred; Spröer, Cathrin; Hezbri, Karima; Gtari, Maher; Schumann, Peter; Klenk, Hans-Peter

    2014-01-01

    A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15–35°C, at pH 5.5–9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1 ω8c and C16:1 ω7c. The 16S rRNA gene showed 97.4–99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (= DSM 44209T = CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments. PMID:25114928

  16. Streptomyces fukangensis sp. nov., a novel alkaliphilic actinomycete isolated from a saline-alkaline soil.

    Science.gov (United States)

    Zhang, Yong-Guang; Wang, Hong-Fei; Liu, Qing; Hozzein, Wael N; Wadaan, Mohammed A M; Cheng, Juan; Chen, Yue-Ji; Zhang, Yuan-Ming; Li, Wen-Jun

    2013-12-01

    An alkaliphilic actinobacterium, designated EGI 80050(T), was isolated from a desert soil sample of Xinjiang, north-west China, and characterized by a polyphasic approach. The isolate was observed to produce purple orange-yellow aerial mycelium and dark orange-yellow substrate mycelium on yeast extract-malt extract agar medium. Whole-cell hydrolysates of strain EGI 80050(T) were found to contain LL-diaminopimelic acid as the diagnostic diamino acid, and galactose, glucose, rhamnose and mannose as the main sugars. The major fatty acids identified were C16:0-iso (36.8 %), C15:0-anteiso (17.3 %), 15:0-iso (13.2 %) and 14:0-iso (10.5 %). The predominant menaquinones detected were MK-9(H6) and MK-9(H8), while the characteristic polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides, phosphatidylmethylethanolamine and three unknown phospholipids. The G+C content of the genomic DNA was determined to be 67.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences affiliated the strain EGI 80050(T) to the genus Streptomyces. Levels of 16 rRNA gene sequence similarities between strain EGI 80050(T) and Streptomyces candidus NRRL ISP-5141(T), Streptomyces cremeus NBRC 12760(T), Streptomyces spiroverticillatus NBRC 12821(T), Streptomyces violaceorectus NBRC 13102(T), Streptomyces cinereoruber subsp. cinereoruber NBRC 12756(T) were 96.7, 96.6, 96.6, 96.6 and 96.6 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain EGI 80050(T) is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces fukangensis sp. nov. (type strain EGI 80050(T) = BCRC 16945(T) = JCM 19127(T)) is proposed.

  17. Development and fine structure of sclerotia and spores of the actinomycete Chainia olivacea.

    Science.gov (United States)

    Sharples, G P; Williams, S T

    1976-01-01

    Sclerotia and spores of Chainia olivacea were studied by transmission and scanning electron microscopy. Sclerotia formed by repeated branching of several hyphea. Branch tips were delimited by septa and increased in size, becoming filled with lipid-like inclusions. In mautre sclerotia, empty cells and intra-hyphal growth were observed. An electron-dense fibrillar material was deposited between hyphae and on the sclerotium surface. The similarities between these and the sclerotia of certain fungi are discussed. Spores were formed in a manner similar to that in Streptomyces species. Large inter-sporal pads were formed during ingrowth of the septa delimiting the spores.

  18. Four new antibacterial xanthones from the marine-derived actinomycetes Streptomyces caelestis

    KAUST Repository

    Liu, Ling-Li

    2012-11-20

    Four new polycyclic antibiotics, citreamicin ? A (1), citreamicin ? B (2), citreaglycon A (3), and dehydrocitreaglycon A (4), were isolated from marine-derived Streptomyces caelestis. The structures of these compounds were elucidated by 1D and 2D NMR spectra. All four compounds displayed antibacterial activity against Staphylococcus haemolyticus, Staphylococcus aureus, and Bacillus subtillis. Citreamicin ? A (1), citreamicin ? B (2) and citreaglycon A (3) also exhibited low MIC values of 0.25, 0.25, and 8.0 ?g/mL, respectively, against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. 2012 by the authors; licensee MDPI.

  19. Structure elucidation and biological activity of antibacterial compound from Micromonospora auratinigra, a soil Actinomycetes.

    Science.gov (United States)

    Talukdar, M; Bordoloi, M; Dutta, P P; Saikia, S; Kolita, B; Talukdar, S; Nath, S; Yadav, A; Saikia, R; Jha, D K; Bora, T C

    2016-10-01

    The aim of this study was to isolate and characterize the bioactive compound of Micromonospora auratinigra, HK-10 and its antibacterial inhibitory mechanism. An oily bioactive compound was extracted from HK-10 (GenBank accession no. JN381554) and found to have promising antibacterial activity. The compound was characterized as 2-methylheptylisonicotinate (1) by (1) H, (13) C NMR and mass spectroscopy. Minimum inhibitory concentration (MIC) of this molecule was tested by micro broth dilution method and was found to be 70, 40, 80, 60, 60 and 50 μg for Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Echerichia coli, Pseudomonas aeruginosa and Mycobacterium abscessus respectively. The effects of compound 1 were studied on bacterial membrane structure using scanning electron microscopy. The results indicated a membrane-disrupting mechanism, resulting in the dysfunction of the cytoplasmic membrane structure and cell death of the pathogenic bacterial strains. Kinetics of growth of the test organisms was also analysed and indicated 2-methylheptylisonicotinate 1 as a bactericidal agent. Furthermore, we have studied the binding affinity of 1 towards different membrane proteins of pathogenic bacteria by in silico analysis. 2-methylheptylisonicotinate was isolated from M. auratinigra, a rare actinobacterial strain possessing antibacterial activity through a membrane-disrupting mechanism, and has MICs similar to standard antibiotic neomycin sulphate. It is the first report about a strain of M. auratinigra, isolated from Indo-Burma biodiversity hotspot of North-east India with new antimicrobial activities. In silico studies have also supported these results performed on various membrane targets of pathogenic bacteria. The antibacterial potential of M. auratinigra is reported for the first time. The results indicate the possible use of 2-methylheptylisonicotinate as a source of antibacterial agent against dreaded human pathogens. © 2016 The Society for Applied Microbiology.

  20. Four New Antibacterial Xanthones from the Marine-Derived Actinomycetes Streptomyces caelestis

    Directory of Open Access Journals (Sweden)

    Pei-Yuan Qian

    2012-11-01

    Full Text Available Four new polycyclic antibiotics, citreamicin θ A (1, citreamicin θ B (2, citreaglycon A (3, and dehydrocitreaglycon A (4, were isolated from marine-derived Streptomyces caelestis. The structures of these compounds were elucidated by 1D and 2D NMR spectra. All four compounds displayed antibacterial activity against Staphylococcus haemolyticus, Staphylococcus aureus, and Bacillus subtillis. Citreamicin θ A (1, citreamicin θ B (2 and citreaglycon A (3 also exhibited low MIC values of 0.25, 0.25, and 8.0 μg/mL, respectively, against methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300.

  1. Phylogenetic and chemical diversity of marine-derived actinomycetes from Southern California sediments

    OpenAIRE

    Prieto-Davó, Alejandra

    2008-01-01

    In the past 150 years, marine microbial ecology has followed and exciting journey. Beginning with the isolation of a few marine bacteria, it went on to establish the omnipresence of these microorganisms in the marine environment as well as their crucial roles in global nutrient and carbon cycles. Advances in molecular techniques have allowed the study of the microbial realm including the exploration of the whole ocean's microbial genes. It is underneath the ocean and covering over 70% of our ...

  2. Description of Actinokineospora acnipugnans sp. nov., an actinomycete isolated from soil, showing potential uses in cosmetics.

    Science.gov (United States)

    Dahal, Ram Hari; Shim, Dong Seop; Kim, Jaisoo

    2017-08-01

    During isolation of soil bacteria having antibacterial functions, an aerobic, Gram-stain-positive, oxidase-negative, catalase-positive bacterium, designated strain R434T, was isolated. Strain R434T showed antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis and significant enzyme-inhibitory capability. The diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid, and the whole-cell sugars were galactose, arabinose and glucose. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain R434T formed a lineage within the family Pseudonocardiaceae. Strain R434T showed highest sequence similarity with type strains of the genus Actinokineospora, including Actinokineospora guangxiensis Gk-6T (99.4 % sequence similarity), Actinokineospora soli YIM 75948T (98.5 %), Actinokineospora fastidiosa IMSNU 20054T (98.0 %), Actinokineospora cibodasensis ID03-0784T (97.9 %), Actinokineospora terrae IFO 15668T (97.6 %) and Actinokineospora auranticolor IFO 16518T (97.4 %). The predominant respiratory quinone of strain R434T was MK-9(H4). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine and unidentified glycolipid. The major cellular fatty acids were iso-C16 : 0, iso-C16 : 1 H and C17 : 1ω6c. The DNA G+C content of strain R434T was 71.6 mol%. On the basis of phenotypic, genotypic, chemotaxonomic and phylogenetic analysis, strain R434T represents a novel species of the genus Actinokineospora, for which the name Actinokineospora acnipugnans sp. nov. is proposed. The type strain of 'Actinokineospora acnipugnans' is R434T (=KEMB 9005-403T=KACC 18904T=JCM 31557T).

  3. Calidifontibacter terrae sp. nov., an actinomycete isolated from soil, with potential applications in cosmetics.

    Science.gov (United States)

    Dahal, Ram Hari; Shim, Dong Seop; Kim, Joon Young; Kim, Jaisoo

    2017-06-01

    An aerobic, Gram-stain-positive, oxidase- and catalase-positive, non-motile, non-spore-forming, coccoid, creamish-white-coloured bacterium, designated strain R161T, was isolated from soil in Hwaseong, South Korea. The cell-wall peptidoglycan contained glycine, glutamic acid, alanine, aspartic acid, serine and lysine, and whole-cell sugars were galactose, rhamnose, glucose and ribose. Strain R161T showed antibacterial and enzyme inhibitory activities. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain R161T formed a lineage within the family Dermacoccaceae, and showed highest sequence similarity with type strains of Calidifontibacter indicus PC IW02T (97.71 % sequence similarity) and Yimella lutea YIM 45900T (97.58 %). The sequence similarity of strain R161T with type strains of members of the genus Dermacoccus was less than 96.5 %. The major menaquinone was MK-8(H4). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major cellular fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C16 : 1 H, anteiso-C17 : 1ω9c, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and iso-C15 : 0. The DNA G+C content of strain R161T was 73.9 mol%. The DNA-DNA hybridization value between strain R161T and C. indicus JCM 16038T was 52.1 %. On the basis of phenotypic, genotypic, chemotaxonomic and phylogenetic analysis, strain R161T represents a novel species of genus Calidifontibacter, for which the name Calidifontibacter terrae sp. nov. is proposed. The type strain of Calidifontibacter terrae sp. nov. is R161T (=KEMB 9005-404T=KACC 18906T=JCM 31558T).

  4. Actinopolyspora lacussalsi sp. nov., an extremely halophilic actinomycete isolated from a salt lake.

    Science.gov (United States)

    Guan, Tong-Wei; Wei, Bei; Zhang, Yao; Xia, Zhan-Fen; Che, Zhen-Ming; Chen, Xiang-Gui; Zhang, Li-Li

    2013-08-01

    A novel halophilic, filamentous actinobacterium, designated strain TRM 40139(T), was isolated from a hypersaline habitat in Xinjiang Province, north-west China. Its taxonomic status was determined using a polyphasic approach. Phylogenetic analysis based on the almost-complete 16S rRNA gene sequence of the strain showed that it formed a well-separated sub-branch within the radiation of the genus Actinopolyspora and the organism was related most closely to the type strains of Actinopolyspora alba (97.6 % similarity), Actinopolyspora xinjiangensis (97.6 %) and Actinopolyspora erythraea (97.1 %). However, it had relatively lower mean DNA-DNA relatedness values with the above strains (36.4, 31.3 and 26.1 %, respectively). Optimal growth occurred at 35 °C, at pH 7.0 and in the presence of 12 % (w/v) NaCl. The whole-cell sugar pattern consisted of xylose, glucose, ribose and arabinose. The major fatty acids were iso-C16 : 0 (28.0 %) and anteiso-C17 : 0 (27.6 %). The diagnostic phospholipids detected were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol and two unknown phospholipids. The predominant menaquinones were MK-9(H4) (49.8 %) and MK-10(H4) (24.2 %). The G+C content of the genomic DNA was 66.4 mol%. Strain TRM 40139(T) therefore represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora lacussalsi sp. nov. is proposed. The type strain is TRM 40139(T) (= KCTC 19657(T) = CCTCC AA 2012020(T)).

  5. Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa.

    Science.gov (United States)

    Oldfield, C; Wood, N T; Gilbert, S C; Murray, F D; Faure, F R

    1998-01-01

    Desulphurising enzymes remove the sulphur moiety from an organosulphur molecule leaving the carbon skeleton intact. Two kinds of desulphurisation reaction are recognised. The dibenzothiophene (DBT)-specific pathway desulphurises DBT to inorganic sulphite and 2-hydroxybiphenyl (HBP), and the benzothiophene (BTH)-specific pathway desulphurises BTH to 2-(2'-hydroxyphenyl)ethan 1-al (HPEal) and probably inorganic sulphite. The DBT-desulphurisation pathway was originally identified in Rhodococcus erythropolis strain IGTS8 (ATCC 53968), and the BTH-desulphurisation pathway in Gordonia sp. strain 213E (NCIMB 40816). These organisms do not further metabolise the organic product of desulphurisation. In this article current knowledge of the biochemistry and genetics of the desulphurisation enzymes is reviewed. The need for separate, DBT- and BTH-specific desulphurisation routes is rationalised in terms of the chemical differences between the two compounds. The desulphurisation pathway is compared with other microbial DBT-degrading enzyme systems. Finally some comments are made concerning the application of desulphurisation enzymes for fuel desulphurisation and on the relevance of these enzymes to the ecology of the mycolata (sensu Chun et al, 1996).

  6. Identification and antifungal activity of an actinomycete strain against Alternaria spp.

    Directory of Open Access Journals (Sweden)

    Fen Gao

    2014-10-01

    Full Text Available Alternaria alternata (Fries Keissler is a phytopathogenic fungus responsible for tobacco brown spot disease. This study aims to evaluate the antifungal activity of strain 163 against A. alternata and clarify its taxonomic status. The evaluation of the antifungal activity of strain 163 and its bacteria-free filtrate of fermentation broth was done through measuring the diameters of inhibition zones, and testing the antimicrobial spectrum and the inhibition effect on mycelial growth in vitro. The biocontrol activity of the bacteria-free filtrate in vivo was evaluated by using detached tobacco leaves method and assaying the inhibition rate to disease incidence in growth chamber. A polyphasic approach was taken in the identification of strain 163. The bacterial strain 163 showed inhibitory effect in vitro against A. alternata. The bacteria-free filtrate of the strain 163 fermentation broth showed a 56.7% inhibition rate in a detached leaf assay. In growth chamber conditions, it showed greater biocontrol activity when applied before plants being inoculated with A. alternata than after, the inhibition rate being 46.05%. Investigations into the morphological, cultural, physiological and biochemical properties of strain 163 found it to be most similar to Streptomyces microflavus. Its classification into cell wall type I and sugar type C further confirmed its Streptomyces characteristics. Construction of a phylogenetic tree based on 16S rDNA verified that strain 163 was most closely related to Streptomyces microflavus. From polyphasic taxonomical analysis, strain 163 was found to be identical to S. microflavus.

  7. Optimization of the Fermentation Process of Actinomycete Strain Hhs.015T

    Directory of Open Access Journals (Sweden)

    Xinxuan Wang

    2010-01-01

    inoculation volume of 15.8%. The antimicrobial activity was increased by 20% by optimizing the environmental parameters. The results obtained allow an efficient production of components with antimicrobial activity by strain Hhs.015T on a large scale at low costs.

  8. Geodermatophilus poikilotrophi sp. nov.: A Multitolerant Actinomycete Isolated from Dolomitic Marble

    Directory of Open Access Journals (Sweden)

    Maria del Carmen Montero-Calasanz

    2014-01-01

    Full Text Available A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia. The growth range was 15–35°C, at pH 5.5–9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4 was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1ω8c and C16:1ω7c. The 16S rRNA gene showed 97.4–99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (= DSM 44209T = CCUG 63018T. The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments.

  9. Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well

    National Research Council Canada - National Science Library

    Xue, Yanfen; Sun, Xuesong; Zhou, Peijin; Liu, Rulin; Liang, Fenglai; Ma, Yanhe

    2003-01-01

    1 Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China 2 Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China Correspondence Yanhe Ma mayh...

  10. Two Antimycin A Analogues from Marine-Derived Actinomycete Streptomyces lusitanus

    Directory of Open Access Journals (Sweden)

    Peiyuan Qian

    2012-03-01

    Full Text Available Two new antimycin A analogues, antimycin B1 and B2 (1–2, were isolated from a spent broth of a marine-derived bacterium, Streptomyces lusitanus. The structures of 1 and 2 were established on the basis of spectroscopic analyses and chemical methods. The isolated compounds were tested for their anti-bacterial potency. Compound 1 was found to be inactive against the bacteria Bacillus subtilis, Staphyloccocus aureus, and Loktanella hongkongensis. Compound 2 showed antibacterial activities against S. aureus and L. hongkongensis with MIC values of 32.0 and 8.0 μg/mL, respectively.

  11. Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery

    Directory of Open Access Journals (Sweden)

    Cheeptham N.

    2013-01-01

    Full Text Available Volcanic caves have been little studied for their potential as sources of novel microbial species and bioactive compounds with new scaffolds. We present the f irst study of volcanic cave microbiology from Canada and suggest that this habitat has great potential for the isolation of novel bioactive substances. Sample locat ions were plot ted on a contour map that was compiled in ArcView 3.2. Over 400 bacterial isolates were obtained from the Helmcken Falls cave in Wells Gray Provincial Park, British Columbia. From our preliminary screen, of 400 isolates tested, 1% showed activity against extended spectrum ß-lactamase E. coli, 1.75% against Escherichia coli, 2.25% against Acinetobacter baumannii, and 26.50% against Klebsiella pneumoniae. In addition, 10.25% showed activity against Micrococcus luteus, 2% against methicillin resistant Staphylococcus aureus, 9.25% against Mycobacterium smegmatis, 6.25% Pseudomonas aeruginosa and 7.5% against Candida albicans. Chemical and physical characteristics of three rock wall samples were studied using scanning electron microscopy and f lame atomic absorption spectrometry. Calcium (Ca, iron (Fe, and aluminum (Al were the most abundant components while magnesium (Mg, sodium (Na, arsenic (As, lead (Pb, chromium (Cr, and barium (Ba were second most abundant with cadmium (Cd and potassium (K were the least abundant in our samples. Scanning electron microscopy (SEM showed the presence of microscopic life forms in all three rock wall samples. 16S rRNA gene sequencing of 82 isolates revealed that 65 (79.3% of the strains belong to the Streptomyces genus and 5 (6.1% were members of Bacillus, Pseudomonas, Nocardia and Erwinia genera. Interestingly, twelve (14.6% of the 16S rRNA sequences showed similarity to unidentif ied ribosomal RNA sequences in the library databases, the sequences of these isolates need to be further investigated using the EzTaxon-e database (http://eztaxon-e. ezbiocloud.net/ to determine whether or not these are novel species. Nevertheless, this suggests the possibility that they could be unstudied or rare bacteria. The Helmcken Falls cave microbiome possesses a great diversity of microbes with the potential for studies of novel microbial interactions and the isolation of new types of antimicrobial agents.

  12. Genome Sequence of Amycolatopsis sp Strain ATCC 39116, a Plant Biomass-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Shunsheng [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2012-01-01

    We announce the availability of a high-quality draft of the genome sequence of Amycolatopsis sp. strain 39116, one of few bacterial species that are known to consume the lignin component of plant biomass. This genome sequence will further ongoing efforts to use microorganisms for the conversion of plant biomass into fuels and high-value chemicals.

  13. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa.

    Science.gov (United States)

    Zheng, Xiaowei; Zhang, Bangzhou; Zhang, Jinlong; Huang, Liping; Lin, Jing; Li, Xinyi; Zhou, Yanyan; Wang, Hui; Yang, Xiaoru; Su, Jianqiang; Tian, Yun; Zheng, Tianling

    2013-10-01

    A strain O4-6, which had pronounced algicidal effects to the harmful algal bloom causing alga Phaeocystis globosa, was isolated from mangrove sediments in the Yunxiao Mangrove National Nature Reserve, Fujian, China. Based on the 16S rRNA gene sequence and morphological characteristics, the isolate was found to be phylogenetically related to the genus Streptomyces and identified as Streptomyces malaysiensis O4-6. Heat stability, pH tolerance, molecular weight range and aqueous solubility were tested to characterize the algicidal compound secreted from O4-6. Results showed that the algicidal activity of this compound was not heat stable and not affected by pH changes. Residue extracted from the supernatant of O4-6 fermentation broth by ethyl acetate, was purified by Sephadex LH-20 column and silica gel column chromatography before further structure determination. Chemical structure of the responsible compound, named NIG355, was illustrated based on quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and nuclear magnetic resonance (NMR) spectra. And this compound showed a stronger algicidal activity compared with other reported algicides. Furthermore, this article represents the first report of an algicide against P. globosa, and the compound may be potentially used as a bio-agent for controlling harmful algal blooms.

  14. Rational selection and engineering of exogenous principal sigma factor (σHrdB) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus

    Science.gov (United States)

    2014-01-01

    Background Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. Results It was illuminated that the σHrdB molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σHrdB molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Conclusions Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy. PMID:24428890

  15. Rational selection and engineering of exogenous principal sigma factor (σ(HrdB)) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus.

    Science.gov (United States)

    Wang, Haiyong; Yang, Liu; Wu, Kuo; Li, Guanghui

    2014-01-16

    Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. It was illuminated that the σ(HrdB) molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σ(HrdB) molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy.

  16. Genome-based discovery of a novel membrane-bound 1,6-dihydroxyphenazine prenyltransferase from a marine actinomycete.

    Science.gov (United States)

    Zeyhle, Philipp; Bauer, Judith S; Kalinowski, Jörn; Shin-ya, Kazuo; Gross, Harald; Heide, Lutz

    2014-01-01

    Recently, novel prenylated derivatives of 1,6-dihydroxyphenazine have been isolated from the marine sponge-associated Streptomyces sp. SpC080624SC-11. Genome sequencing of this strain now revealed a gene cluster containing all genes necessary for the synthesis of the phenazine and the isoprenoid moieties. Unexpectedly, however, the cluster did not contain a gene with similarity to previously investigated phenazine prenyltransferases, but instead a gene with modest similarity to the membrane-bound prenyltransferases of ubiquinone and menaquinone biosynthesis. Expression of this gene in E. coli and isolation of the membrane fraction proved that the encoded enzyme, Mpz10, catalyzes two successive prenylations of 1,6-dihydroxyphenazine. Mpz10 is the first example of a membrane-bound enzyme catalyzing the prenylation of a phenazine substrate, and one of few examples of membrane-bound enzymes involved in the prenylation of aromatic secondary metabolites in microorganisms.

  17. Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Poulsen, M; Cafaro, M; Boomsma, J J

    2005-01-01

    to be involved in Red-Queen-like antagonistic co-evolution with Escovopsis so that multiple strains per host might be favoured by selection provided the cost of competition between bacterial strains is low. We examined the genetic uniformity of the Pseudonocardia symbionts of two sympatric species of Acromyrmex...... ants by comparing partial sequences of the nuclear Elongation Factor-Tu gene. We find no genetic variation in Pseudonocardia symbionts among nest mate workers, neither in Acromyrmex octospinosus, where colonies are founded by a single queen, nor in Acromyrmex echinatior, where mixing of bacterial...... lineages might happen when unrelated queens cofound a colony. We further show that the two ant species maintain the same pool of Pseudonocardia symbionts, indicating that horizontal transmission occasionally occurs, and that this pool consists of two distinct clades of closely related Pseudonocardia...

  18. Prephenate dehydratase of the actinomycete Amycolatopsis methanolica : purification and characterization of wild-type and deregulated mutant proteins

    NARCIS (Netherlands)

    Euverink, Gerrit J.W.; Wolters, Diederik J.; Dijkhuizen, Lubbert

    1995-01-01

    Prephenate dehydratase (PDT) is a key regulatory enzyme in L-phenylalanine biosynthesis in the Gram-positive bacterium Amycolatopsis methanolica. The PDT protein was purified to homogeneity (1957-fold) from wild-type cells with a final yield of 6.5%. It was characterized as a 150 kDa homotetrameric

  19. IDENTIFICATION AND FUNCTIONAL-ANALYSIS OF THE TRANSFER REGION OF PLASMID PMEA300 OF THE METHYLOTROPHIC ACTINOMYCETE AMYCOLATOPSIS-METHANOLICA

    NARCIS (Netherlands)

    VRIJBLOED, JW; VANDERPUT, NMJ; DIJKHUIZEN, L

    1995-01-01

    Amycolatopsis methanolica contains a 13.3-kb plasmid (pMEA300) that is present either as an integrated element or as an autonomously replicating plasmid. Conjugational transfer of pMEA300 results in pock formation, zones of growth inhibition that become apparent when plasmid-carrying donor cells

  20. Identification and Functional Analysis of the Transfer Region of Plasmid pMEA300 of the Methylotrophic Actinomycete Amycolatopsis methanolica

    NARCIS (Netherlands)

    Vrijbloed, J.W.; Put, N.M.J. van der; Dijkhuizen, L.

    1995-01-01

    Amycolatopsis methanolica contains a 13.3-kb plasmid (pMEA300) that is present either as an integrated element or as an autonomously replicating plasmid. Conjugational transfer of pMEA300 results in pock formation, zones of growth inhibition that become apparent when plasmid-carrying donor cells

  1. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A

    Directory of Open Access Journals (Sweden)

    Amanda Leigh Waters

    2014-10-01

    Full Text Available Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp. that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899 (Class Demospongiae, Order Haplosclerida, Family Petrosiidae. These findings suggest that a general strategy of analysis of the macroorganism’s microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

  2. Alloactinosynnema iranicum sp. nov., a rare actinomycete isolated from a hypersaline wetland, and emended description of the genus Alloactinosynnema.

    Science.gov (United States)

    Nikou, Mahdi Moshtaghi; Ramezani, Mohaddaseh; Amoozegar, Mohammad Ali; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-04-01

    A Gram-staining-positive actinobacterial strain, Chem10(T), was isolated from soil around Inche-Broun hypersaline wetland in the north of Iran. Strain Chem10(T) was strictly aerobic, and catalase- and oxidase-positive. The isolate grew with 0-3 % NaCl, at 20-40 °C and at pH 6.0-8.0. The optimum temperature and pH for growth were 30 °C and pH 7.0, respectively. The cell wall of strain Chem10(T) contained meso-diaminopimelic acid as diamino acid and galactose, ribose and arabinose as whole-cell sugars. The polar lipid pattern contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Strain Chem10(T) synthesized cellular fatty acids of the straight-chain saturated and mono-unsaturated, and iso- and anteiso-branched types C14 : 0, C16 : 0, iso-C16 : 1, anteiso-C17 : 0, iso-C16 : 0, iso-C14 : 0 and iso-C15 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 70.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Chem10(T) belonged to the family Pseudonocardiaceae and showed the closest phylogenetic similarity to Alloactinosynnema album KCTC 19294(T) (98.3 %) and Actinokineospora cibodasensis DSM 45658(T) (97.9 %). DNA-DNA relatedness values between the novel strain and strains Alloactinosynnema album KCTC 19294(T) and Actinokineospora cibodasensis DSM 45658(T) were only 52 % and 23 %, respectively. On the basis of phylogenetic analysis, phenotypic characteristics and DNA-DNA hybridization data, a novel species of the genus Alloactinosynnema is proposed, Alloactinosynnema iranicum sp. nov. The type strain is Chem10(T) ( = IBRC-M 10403(T) = CECT 8209(T)). In addition, an emended description of the genus Alloactinosynnema is proposed.

  3. Chemical dereplication of marine actinomycetes by liquid chromatography-high resolution mass spectrometry profiling and statistical analysis.

    Science.gov (United States)

    Forner, David; Berrué, Fabrice; Correa, Hebelin; Duncan, Katherine; Kerr, Russell G

    2013-12-17

    Discovery of novel bioactive metabolites from marine bacteria is becoming increasingly challenging, and the development of novel approaches to improve the efficiency of early steps in the microbial drug discovery process is therefore of interest. For example, current protocols for the taxonomic dereplication of microbial strains generally use molecular tools which do not take into consideration the ability of these selected bacteria to produce secondary metabolites. As the identification of novel chemical entities is one of the key elements driving drug discovery programs, this study reports a novel methodology to dereplicate microbial strains by a metabolomics approach using liquid chromatography-high resolution mass spectrometry (LC-HRMS). In order to process large and complex three dimensional LC-HRMS datasets, the reported method uses a bucketing and presence-absence standardization strategy in addition to statistical analysis tools including principal component analysis (PCA) and cluster analysis. From a closely related group of Streptomyces isolated from geographically varied environments, we demonstrated that grouping bacteria according to the chemical diversity of produced metabolites is reproducible and provides greatly improved resolution for the discrimination of microbial strains compared to current molecular dereplication techniques. Importantly, this method provides the ability to identify putative novel chemical entities as natural product discovery leads. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes

    Czech Academy of Sciences Publication Activity Database

    Vopálenská, I.; Váchová, Libuše; Palková, Z.

    2015-01-01

    Roč. 72, OCT 2015 (2015), s. 160-167 ISSN 0956-5663 R&D Projects: GA TA ČR(CZ) TA01011461; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Yeast biosensor * Copper ion detection * Purine synthesis pathway Subject RIV: DJ - Water Pollution ; Quality Impact factor: 7.476, year: 2015

  5. Salininema proteolyticum gen. nov., sp. nov., a halophilic rare actinomycete isolated from wetland soil, and emended description of the family Glycomycetaceae.

    Science.gov (United States)

    Nikou, Mahdi Moshtaghi; Ramezani, Mohaddaseh; Amoozegar, Mohammad Ali; Rasouli, Mehrnoush; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; de la Haba, Rafael R; Ventosa, Antonio

    2015-10-01

    A Gram-stain-positive actinobacterial strain, Miq-4T, was isolated from soil around Meighan wetland in the centre of Iran. Strain Miq-4T was strictly aerobic, catalase- and oxidase-positive. The isolate grew in the presence of 3–15 % (w/v) NaCl, at 20–40 °C and pH 6.0–11.0. The optimum NaCl, temperature and pH for growth were 7.0 %, 30 °C and 7.0–8.5, respectively. The cell wall of strain Miq-4T contained meso-diaminopimelic acid as the diamino acid and glucose and ribose as the whole-cell sugars. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Strain Miq-4T synthesized cellular fatty acids of anteiso- and iso-branched types, including anteiso-C17 : 0, anteiso- C15 : 0 and iso-C16 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 68.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and characteristic patterns of 16S rRNA gene signature nucleotides revealed that strain Miq-4T belongs to the family Glycomycetaceae and showed the closest phylogenetic similarity with Haloglycomyces albus YIM 92370T (94.1 % 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic and chemotaxonomic characteristics, strain Miq-4T represents a novel species of a new genus in the family Glycomycetaceae, for which the name Salininema proteoliyticum gen. nov., sp. nov. is proposed. The type strain of the type species is Miq-4T ( = IBRC-M 10908T = LMG 28391T). An emended description of the family Glycomycetaceae is also proposed in order to include features of the new genus.

  6. Antibiotic production improvement in the rare actinomycete Planobispora rosea by selection of mutants resistant to the aminoglycosides streptomycin and gentamycin and to rifamycin.

    Science.gov (United States)

    Beltrametti, Fabrizio; Rossi, Roberta; Selva, Enrico; Marinelli, Flavia

    2006-04-01

    During a strain improvement program, spontaneous mutants with single or combined resistance to streptomycin (Str(r)), gentamycin (Gen(r)) or rifamycin (Rif(r)) were selected from the industrial strain of Planobispora rosea, which is the producer of thiazolylpeptide GE2270. Among the mutants resistant to each single antibiotic, higher producers occurred more frequently (60%) among Gen(r) than in Rif(r) (10%) and Str(r) (24%) populations. Two Gen(r) mutants showed up to 1.5-fold improvement in GE2270 production while single resistant mutants Str(r) and Rif(r) produced slightly more than the parental strains. The combination of Str(r) and Rif(r) in the same strain improved GE2270 yield up to 1.7-fold. Finally, a higher GE2270 producing strain (1.8-fold improvement with respect to the parental strain) was selected among those mutants with triple resistance to streptomycin, rifamycin and gentamycin. A hierarchical increase in aerial mycelium and spore formation was observed which paralleled GE2270 production improvement.

  7. Dicty_cDB: Contig-U16339-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available let... 124 4e-47 CP001101_941( CP001101 |pid:none) Chlorobium phaeobacteroides BS1,... 114 1e-46 AY926577_1( AY926577 |pid:none) Jako...0( CP000850 |pid:none) Salinispora arenicola CNS-205, ... 134 2e-46 DQ384296_1( DQ384296 |pid:none) Jakoba l

  8. NCBI nr-aa BLAST: CBRC-MMUR-01-0729 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUR-01-0729 ref|YP_001536931.1| binding-protein-dependent transport systems i...nner membrane component [Salinispora arenicola CNS-205] gb|ABV97940.1| binding-protein-dependent transport systems

  9. Dicty_cDB: VHM595 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available rotein Score E Sequences producing significant alignments: (bits) Value CP000678_461( CP000678 |pid:none) Methanobrevibacter smith...00678 |pid:none) Methanobrevibacter smithii ATCC ... 56 3e-06 CP000850_2596( CP000850 |pid:none) Salinispora...:none) Methanobrevibacter smithii ATCC ... 54 2e-05 protein update 2009. 7.17 PSO

  10. Ecofriendly application of cellulase and xylanase producing marine ...

    African Journals Online (AJOL)

    The marine actinomycete strain MAC 9 was used for the production of ... Out of 30 actinomycetes screened from sediments of Tiruchendhur coastal areas of Tamil ... with the pretreatment of cellulase, xylanase and the combination of enzymes.

  11. Habitat‑specific type I polyketide synthases in soils and street sediments

    NARCIS (Netherlands)

    Hill, Patrick; Piel, Jörn; Aris‑Brosou, Stéphane; Krištůfek, Václav; Boddy, Christopher N.; Dijkhuizen, Lubbert

    2014-01-01

    Actinomycetes produce many pharmaceutically useful compounds through type I polyketide biosynthetic pathways. Soil has traditionally been an important source for these actinomycete-derived pharmaceuticals. As the rate of antibiotic discovery has decreased and the incidence of antibiotic resistance

  12. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering

    NARCIS (Netherlands)

    Wezel, G.P. van; Krabben, P.; Traag, B.A.; Keijser, B.J.F.; Kerste, R.; Vijgenboom, E.; Heijnen, J.J.; Kraal, B.

    2006-01-01

    Filamentous actinomycetes are commercially widely used as producers of natural products (in particular antibiotics) and of industrial enzymes. However, the mycelial lifestyle of actinomycetes, resulting in highly viscous broths and unfavorable pellet formation, has been a major bottleneck in their

  13. ANTI-OXIDANT AND ENZYME-INHIBITORY POTENTIAL OF MARINE STREPTOMYCES

    OpenAIRE

    Suthindhiran, K.; M. A. Jayasri; Revathy, T.

    2013-01-01

    Marine actinomycetes are potential source for the discovery of novel compounds and enzymes. Though extensive research on marine actinomycetes is underway globally, the actinomycetes research from Indian marine ecosystem is unexplored and understudied. Hence, the present research is focussed on the screening of bioactive compounds from marine actinomycetes isolated from Indian coastal region. This study is designed to determine the antioxidant and enzyme inhibitory potential of Streptomyces sp...

  14. Isolation and morphological characterization of antibiotic producing ...

    African Journals Online (AJOL)

    Purpose: To isolate and characterize antibiotic producing actinomycetes from soil samples in Belgaum, Karnataka, India. Methods: Crowded plate technique was used for the isolation of actinomycetes in media such as soybean – casein digest medium and actinomycetes isolation agar. The morphological and cultural ...

  15. Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al. 1985 as Actinotalea fermentans gen. nov., comb. nov.

    Science.gov (United States)

    Yi, Hana; Schumann, Peter; Chun, Jongsik

    2007-01-01

    An actinobacterial strain containing demethylmenaquinone DMK-9(H(4)) as the diagnostic isoprenoid quinone was isolated from a tidal flat sediment sample, from South Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain JC2054(T) represents a distinct phyletic line within the suborder Micrococcineae of the order Actinomycetales. The closest phylogenetic neighbour was Cellulomonas fermentans, with 94.7 % 16S rRNA gene sequence similarity. The novel isolate was strictly aerobic and slightly halophilic, with optimum growth occurring in 2-4 % (w/v) NaCl. Cells were non-motile, non-sporulating and rod-shaped. The peptidoglycan type was of the A-type of cross-linkage. l-ornithine was the diamino acid and d-glutamate represented the N-terminus of the interpeptide bridge. The predominant fatty acids were anteiso-branched and straight-chain fatty acids. The major polar lipids were phosphatidylinositol, diphosphatidylglycerol and an unknown phospholipid. The menaquinone composition of C. fermentans was determined to be MK-10(H(4)), MK-9(H(4)) and MK-8(H(4)) in the ratio 56 : 2 : 1. On the basis of the polyphasic evidence presented in this study, it is proposed that strain JC2054(T) should be classified as representing a novel genus and species of the suborder Micrococcineae, with the name Demequina aestuarii gen. nov., sp. nov. The type strain is JC2054(T) (=IMSNU 14027(T)=KCTC 9919(T)=JCM 12123(T)). In addition, it was clear from the phylogenetic analysis and chemotaxonomic data that C. fermentans does not belong to the genus Cellulomonas or any other recognized genera. Therefore, C. fermentans should be reclassified as representing a novel genus, for which the name Actinotalea fermentans gen. nov., comb. nov. is proposed, with strain DSM 3133(T) (=ATCC 43279(T)=CFBP 4259(T)=CIP 103003(T)=NBRC 15517(T)=JCM 9966(T)=LMG 16154(T)) as the type strain.

  16. Atividade de enzimas associadas ao estado de indução em mudas de cacaueiro expostas a dois actinomicetos residentes de filoplano Activity of enzymes associates of induced resistance on cocoa seedlings exposed of two actinomycetes phylloplane residents

    Directory of Open Access Journals (Sweden)

    Dirceu Macagnan

    2008-02-01

    Full Text Available Dois antagonistas selecionados para o biocontrole da vassoura-de-bruxa do cacaueiro foram avaliados quanto à capacidade em ativar mecanismos de defesa de plantas contra patógenos. Para tanto, mudas seminais de cacaueiro "comum" foram cultivadas em casa-de-vegetação por 30 dias e expostas aos antagonistas aplicados a mudas de cacaueiro por atomização, individualmente e em associação. O primeiro par de folhas das mudas dos diferentes tratamentos foi coletado aos dois, quatro, 12 e 24 dias após a exposição aos antagonistas. Foi quantificada a atividade de peroxidases, polifenoloxidases, quitinases e beta-1,3-glucanases no material coletado. Observou-se um aumento na atividade de peroxidases e polifenoloxidases nos primeiros dias após a exposição das mudas, especialmente ao isolado Ac26. Não foi observado efeito aditivo ou sinergístico nas mudas expostas aos dois isolados simultaneamente.Two antagonists selected for the biocontrol of cocoa witches' broom were investigated for their ability in triggering increases in the activity of enzymes associated to induced resistance. In a greenhouse, thirty days old cocoa seedlings were exposed t antagonists by spraying a propagule suspension of every antagonist or a mixture of them. At two, four 12 and 24 days exposing plants to the antagonists, the first leaf pair of every plant was excised and used for quantifying the activity of peroxidases, poly-phenol-oxidases, chitinases and beta-1,3-glucanases. There were increases in activity of peroxidases, poly-phenol-oxidases, mainly in the case of isolate Ac26. Additive or synergistic effects were not observed as a consequence of exposing plants to both antagonists together.

  17. Salinifilum gen. nov., with description of Salinifilum proteinilyticum sp. nov., an extremely halophilic actinomycete isolated from Meighan wetland, Iran, and reclassification of Saccharopolyspora aidingensis as Salinifilum aidingensis comb. nov. and Saccharopolyspora ghardaiensis as Salinifilum ghardaiensis comb. nov.

    Science.gov (United States)

    Moshtaghi Nikou, Mahdi; Ramezani, Mohaddaseh; Harirchi, Sharareh; Makzoom, Somayyeh; Amoozegar, Mohammad Ali; Shahzadeh Fazeli, Seyed Abolhassan; Schumann, Peter; Ventosa, Antonio

    2017-10-01

    A Gram-positive, halophilic actinobacterial strain Miq-12T was isolated from Meighan wetland in Iran. Strain Miq-12T was strictly aerobic, catalase positive and oxidase negative. The isolate grew at 12-25 % NaCl, at 30-50 °C and pH 5.5-10.5. The optimum NaCl, temperature and pH for growth were 15-20 %, 40 °C and 7.0-8.0, respectively. The cell wall of strain Miq-12T contained meso-diaminopimelic acid as diagnostic diamino acid and arabinose as whole-cell sugar. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol. It synthesized cellular fatty acids of anteiso and iso-branched types, anteiso-C17 : 0, iso-C17:0, iso-C15:0, iso-C16 : 0. The major respiratory quinone was MK-9(H4). The G+C content of its genomic DNA was 72.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain Miq-12T belongs to the family Pseudonocardiaceae, constituted a separate clade, and showed the closest phylogenetic similarity to Saccharopolyspora aidingensis TRM 46074T (96.99 %) and Saccharopolyspora ghardaiensis CCUG 63370T (96.92 %). On the basis of phylogenetic analysis, phenotypic and chemotaxonomic characteristics, a novel genus and species of the family Pseudonocardiaceae, Salinifilum proteinilyticum gen. nov., sp. nov., are proposed. The type strain is Miq-12T (=IBRCM 11033T=LMG 28390T). We also propose that S. aidingensis and S. ghardaiensis should be transferred to this new genus and be named Salinifilum aidingensis comb. nov. and Salinifilum ghardaiensis comb. nov., respectively. The type strain of Salinifilum aidingensis comb. nov. is TRM 46074T (=CCTCCAA 2012014T=JCM 30185T) and the type strain of Salinifilum ghardaiensis comb. nov. is CCUG 63370T (=DSM 45606T=CECT 8304T).

  18. Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity

    OpenAIRE

    Katherine Duncan; Bradley Haltli; Gill, Krista A.; Kerr, Russell G.

    2014-01-01

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding futu...

  19. Efficient utilization of xylanase and lipase producing thermophilic ...

    African Journals Online (AJOL)

    Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes ( Streptomyces albus and Streptomyces hygroscopicus ) in the production of ecofriendly alternative energy from waste.

  20. New Ventures in the Genotoxic and Cytotoxic Effects of Macrocyclic Lactones, Abamectin and Ivermectin

    National Research Council Canada - National Science Library

    Molinari, G; Soloneski, S; Larramendy, M.L

    2010-01-01

    Abamectin and Ivermectin are 2 closely related members of the Avermectin family of 16-membered macrocyclic lactones derived from the actinomycete Streptomyces avermectinius which exhibit extraordinary...

  1. Production Of Vitamin B 12 By Streptomyces Fulvissimus | Atta ...

    African Journals Online (AJOL)

    Fifty five of actinomycete isolates were screened for vitamin B12 production by growing on soybean meal medium fortified with cobalt. Only one AZ-Z-88 among nine actinomycete cultures was found to produce significantly higher yield of the vitamin B12 (64.57 ug/ml). Determination of vitamin B12 production was carried out ...

  2. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13

    Directory of Open Access Journals (Sweden)

    Hanan M. Abd-Elnaby

    2016-09-01

    Full Text Available The study investigated silver nanoparticles (AgNPs synthesized extracellularly using an actinomycete isolated from sediment of the Suez Gulf, Red Sea, Egypt. Screening for biosynthesis of AgNPs revealed that among the forty one actinomycetes tested, only two exhibited the ability to synthesize AgNPs with antibacterial activity

  3. 1760-IJBCS-Article-Wong Nyet Kui

    African Journals Online (AJOL)

    Pr GATSING

    Marine actinomycetes have great potential as producers of unique bioactive compounds due to its special adaptation in the harsh environment in the ocean. In this study, 100 strains of actinomycetes were isolated from marine sponges collected from sea area close to Sipadan Island in Sabah. Each strain was fermented in ...

  4. Microbial agents against Helicoverpa armigera: Where are we and ...

    African Journals Online (AJOL)

    The biggest percentage loss (70%) in plants is attributed to insects. ... The actinomycetes play an astounding role in controlling the key plant pathogens. They are ... This review emphasizes the mechanism behind resistance to insecticides along with actinomycetes and its potential as a biocontrol agent against H. armigera.

  5. Microhabitats within Venomous Cone Snails Contain Diverse Actinobacteria▿ †

    Science.gov (United States)

    Peraud, Olivier; Biggs, Jason S.; Hughen, Ronald W.; Light, Alan R.; Concepcion, Gisela P.; Olivera, Baldomero M.; Schmidt, Eric W.

    2009-01-01

    Actinomycetes can be symbionts in diverse organisms, including both plants and animals. Some actinomycetes benefit their host by producing small molecule secondary metabolites; the resulting symbioses are often developmentally complex. Actinomycetes associated with three cone snails were studied. Cone snails are venomous tropical marine gastropods which have been extensively examined because of their production of peptide-based neurological toxins, but no microbiological studies have been reported on these organisms. A microhabitat approach was used in which dissected tissue from each snail was treated as an individual sample in order to explore bacteria in the tissues separately. Our results revealed a diverse, novel, and highly culturable cone snail-associated actinomycete community, with some isolates showing promising bioactivity in a neurological assay. This suggests that cone snails may represent an underexplored reservoir of novel actinomycetes of potential interest for drug discovery. PMID:19749071

  6. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice.

    Science.gov (United States)

    Gopalakrishnan, Subramaniam; Vadlamudi, Srinivas; Bandikinda, Prakash; Sathya, Arumugam; Vijayabharathi, Rajendran; Rupela, Om; Kudapa, Himabindu; Katta, Krishnamohan; Varshney, Rajeev Kumar

    2014-01-20

    Six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180, isolated from six different herbal vermi-composts were characterized for in vitro plant growth-promoting (PGP) properties and further evaluated in the field for PGP activity in rice. Of the six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140 and CAI-155 produced siderophores; CAI-13, CAI-93, CAI-155 and KAI-180 produced chitinase; CAI-13, CAI-140, CAI-155 and KAI-180 produced lipase; CAI-13, CAI-93, CAI-155 and KAI-180 produced protease; and CAI-13, CAI-85, CAI-140 and CAI-155 produced ß-1-3-glucanase whereas all the six actinomycetes produced cellulase, hydrocyanic acid and indole acetic acid (IAA). The actinomycetes were able to grow in NaCl concentrations of up to 8%, at pH values between 7 and 11, temperatures between 20 and 40 °C and compatible with fungicide bavistin at field application levels. In the rice field, the actinomycetes significantly enhanced tiller numbers, panicle numbers, filled grain numbers and weight, stover yield, grain yield, total dry matter, root length, volume and dry weight over the un-inoculated control. In the rhizosphere, the actinomycetes also significantly enhanced total nitrogen, available phosphorous, % organic carbon, microbial biomass carbon and nitrogen and dehydrogenase activity over the un-inoculated control. Sequences of 16S rDNA gene of the actinomycetes matched with different Streptomyces species in BLAST analysis. Of the six actinomycetes, CAI-85 and CAI-93 were found superior over other actinomycetes in terms of PGP properties, root development and crop productivity. qRT-PCR analysis on selected plant growth promoting genes of actinomycetes revealed the up-regulation of IAA genes only in CAI-85 and CAI-93. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea.

    Science.gov (United States)

    Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang

    2010-06-01

    In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.

  8. Bioprospecting the lat gene in soil samples

    Indian Academy of Sciences (India)

    ). Seven positives were obtained from the 20 soils. Six of the seven positive were from the Western Ghats and one from the northeast Assam forests. Eighteen actinomycete isolates from the 7 positive soils showed the presence of the lat gene.

  9. Infant Weaning Foods in Jos and Environs, Nigeria

    African Journals Online (AJOL)

    Sixteen micro-organisms were isolated consisting of Bacil- lus species, Streptococcus faecali s, Streptococcus viridans, Staphylococcus epidermidfs,. Staphylococcus aureus, Lactcbacillus species, Pseudomonas species, Klebsiella species,. Citrobacter species, Escherichia coli, Actinomycetes species, Neumspora sitophila ...

  10. Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate–derived Streptomyces sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, D.N.; Wahidullah, S.; Meena, R.M.

    invertebrates collected from the western coast of India were screened against the QS indicator strain Chromobacterium violaceum CV12472. Methanol extracts of 12 actinomycetes showing inhibition of violacein production were accessed for down-regulation of QS...

  11. Bioprospecting from marine sediments of New Brunswick, Canada: exploring the relationship between total bacterial diversity and actinobacteria diversity

    National Research Council Canada - National Science Library

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A; Kerr, Russell G

    2014-01-01

    .... In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete...

  12. (melanin) production in Streptomyces

    African Journals Online (AJOL)

    GRACE

    the classification of the Stretomyces group. Key words: Pigment, melanin, Streptomyeces, taxonomy. INTRODUCTION. Actinomycetes also synthesizes and ... various microorganisms by the fermentative oxidation, and have the radioprotective and antioxidant properties that can effectively protect the living organisms from.

  13. Page 1 JOURNAL, OFTHE CAMEROON ACAD1:MY OFSCIENCES ...

    African Journals Online (AJOL)

    Effects of some environmental factors on microbial growth and biodegrad- ability of a pesticide mixture by soil micro organisms. Lienou C. TAZIEBOU ..... soil water content on bacterial growth of actinomycetes rose tO a peak during the second.

  14. Light fraction of organic matter under different land management ...

    African Journals Online (AJOL)

    LFOM) were determined. Data obtained were subjected to descriptive statistics, ANOVA, and correlation analysis, means were separated using Duncan Multiple range Test. Actinomycetes, Bacillus enterobacter, Staphylococcus, Flavobacterium, ...

  15. Nocardia inohanensis sp. nov., Nocardia yamanashiensis sp. nov. and Nocardia niigatensis sp. nov., isolated from clinical specimens

    National Research Council Canada - National Science Library

    Kageyama, Akiko; Yazawa, Katsukiyo; Nishimura, Kazuko; Mikami, Yuzuru

    2004-01-01

    ...-u.ac.jp Comparative 16S rDNA studies on six strains of actinomycete isolated from clinical specimens revealed that they belong to the genus Nocardia and are closely related to Nocardia seriolae , Nocardia...

  16. African Journal of Biotechnology - Vol 3, No 9 (2004)

    African Journals Online (AJOL)

    Antibacterial activity of some actinomycetes isolated from farming soils of Turkey · EMAIL ... Saccharification of banana agro-waste by cellulolytic enzymes · EMAIL FREE ... Microbial contaminants of cultured Hibiscus cannabinus and Telfaria ...

  17. Bioconversion process of rice straw by thermotolerant cellulolytic ...

    African Journals Online (AJOL)

    state fermentation for bioethanol production is a focus of current attention. A total of 10 actinomycetes isolates were isolated from soils and decayed rice straw. All these isolates were purified and screened for their cellulolytic activity; one strain ...

  18. Biological hardening and genetic fidelity testing of micro-cloned ...

    African Journals Online (AJOL)

    % establishment in soil following treatment with various bio-inoculants namely; Glomus aggregatum, Trichoderma harazianum and Piriformospora indica whereas Azospirullum sp. (CIM-azo) and Actinomycetes sp. (CIM-actin) showed only up ...

  19. Swedish Defence Research Abstracts 1980/81-3 (Froe Forsvars Forsknings Referat 1980/81-3).

    Science.gov (United States)

    1981-11-01

    thermophilic actinomycetes (culture temp 500C); the size of airborne particles contain- ing bacteria and fungi respectively. The results obtained in the great...number of fungi (culture temp 240 and 44 C); coliform bacteria (culture temp 370 and 44 C); salmonella; thermophilic actinomycetes (culture temp 500C); the...discussed. This article forms part of the FOA/STU agreement on marine technology. E4 Countermeasures, including signal interception and technical

  20. In-situ Substrate Addition to Create Reactive Zones for Treatment of Chlorinated Aliphatic Hydrocarbons: Vandenberg Air Force Base

    Science.gov (United States)

    2004-12-17

    north-northwest and dip to the southwest, approximately parallel to the topographic slope. A series of marine transgression and regression episodes...traditional forms. Current Names Traditional Names Phylogenic Groups Actinobacteria High G+C Gram positive bacteria such as Actinomycetes , Mycobacterium...Date pmol/mL cells/mL Firmicutes (TerBrSats) Proteobacteria (Monos) Anaerobic metal reducers (BrMonos) Actinomycetes / SRB (MidBrSats

  1. Heavy metal adsorption of Streptomyces chromofuscus K101

    OpenAIRE

    Said Mohamed Daboor; Amany Mohamed Haroon; Neven Abd Elfatah Esmael; Slah Ibrahem Hanona

    2014-01-01

    Objective: To find the best actinomycete that has potential application value in the heavy metal remediation due to its special morphological and physiological metabolism. Methods: In some areas of River Nile, Egypt, a total of 67 actinomycete isolates (17 isolates from surface water and 50 from sediment) were identified. In addition, the studied area was characterized by a large amount of submerged macrophyte species Ceratophyllum demersum, one free floating species Eichhornia...

  2. Bioprospecting from marine sediments of New Brunswick, Canada: exploring the relationship between total bacterial diversity and actinobacteria diversity.

    Science.gov (United States)

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A; Kerr, Russell G

    2014-02-13

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H' = 5.4 to 6.7). Furthermore, statistical analysis of species level bacterial communities (D = 0.03) indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces) were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation.

  3. A comprehensive study of eco-friendly natural pigment and its applications.

    Science.gov (United States)

    Parmar, Ramendra Singh; Singh, Charu

    2018-03-01

    Actinomycetes, a large group of filamentous bacteria account for 70-80% of secondary metabolites available commercially. The present investigation was undertaken with an aim to identify and characterize pigment from actinomycetes. Actinomycetes were isolated from rhizosphere soil samples collected from different regions of Madhya Pradesh state. Out of 85 actinomycetes, only 5 actinomycetes showed pigment production and based on diffusible pigment production ability one actinomycete ARITM02 was selected. The extraction of pigment was done by solvent extraction method using methanol and purified by TLC and column chromatography. The pigment was characterized by UV-Vis spectroscopy which showed the lamda maximum of 277.44. FTIR spectroscopy suggested various functional groups like amino group, amide group, hydroxide, benzene and lactone group. The Mass spectroscopy and NMR spectroscopy showed that the molecular mass of pigment is 621.7 and molecular formula is C34H43N3O8. The pigment was also tested for Antimicrobial activity against broad spectrum human pathogens, antioxidant test and toxicity test for safe use as a natural colorant in cosmetic, food, pharmaceutical and textile industries. The conclusion of study suggested that this novel pigment could be a versatile natural, safe and multipurpose.

  4. Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity

    Science.gov (United States)

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A.; Kerr, Russell G.

    2014-01-01

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7). Furthermore, statistical analysis of species level bacterial communities (D = 0.03) indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces) were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation. PMID:24531187

  5. Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity

    Directory of Open Access Journals (Sweden)

    Katherine Duncan

    2014-02-01

    Full Text Available Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x̄ = 5610 per sample. Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7. Furthermore, statistical analysis of species level bacterial communities (D = 0.03 indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation.

  6. Dicty_cDB: Contig-U04081-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ns SRS3021... 100 1e-19 AE016879_1614( AE016879 |pid:none) Bacillus anthracis str. Ames, c...t of Drosop... 68 6e-10 CU468135_2286( CU468135 |pid:none) Erwinia tasmaniensis strain...ices mRNA for zinc ... 147 1e-33 CR382126_380( CR382126 |pid:none) Kluyveromyces lactis strain...-22 DQ465596_1( DQ465596 |pid:none) Charina bottae solute carrier fami... 108 3e-22 EU391006_1( EU391006 |pid:none) Atractaspis...e) Salinispora tropica CNB-440, com... 83 2e-14 CP000759_479( CP000759 |pid:none) Ochrobactr

  7. Genomic islands predict functional adaptation in marine actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  8. Systems biology approaches to understand natural products biosynthesis

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc eLicona-Cassani

    2015-12-01

    Full Text Available Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed towards a shift in the exploitation of actinomycetes biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.

  9. Comparative effiacy of marine Streptomyces formulation versus ciproflxacin ophthalmic solution for treating Staphylococcus aureus-induced conjunctivitis in animal model

    Directory of Open Access Journals (Sweden)

    Femina Wahaab

    2016-03-01

    Full Text Available Objective: To report the efficacy of marine actinomycetes in controlling Staphylococcus aureus (S. aureus-induced conjunctivitis in experimental rabbit. Methods: The ethyl acetate extracts of the best isolates of actinomycetes from the soil samples of Rameswaram coastal regions, Tamil Nadu, India, were concentrated and re-constituted in buffer and used as actinomycetes ophthalmic suspension in this study. The anti-inflammatory efficacy of actinomycetes ophthalmic suspension was analysed in controlling S. aureusinduced conjunctivitis in rabbit in comparison with that of ciprofloxacin. Results: Among the four best isolates, the RAM25C4 isolate had the highest antimicrobial activity in the secondary screening. Shelf life studies indicated that the activity can be retained for 75 days when it was stored at 8 °C and the optimum temperature for storage was between –20°C and 30°C. The animal model studies indicated that there was a profound anti-conjunctivitis effect. The actinomycetes ophthalmic suspension had better activity than ciprofloxacin ophthalmic solution. Conclusions: This is the first time to report that Streptomyces bacillaris strain RAM25C4 has antimicrobial effect in controlling ophthalmic pathogen S. aureus under in vitro condition and the in vivo anti-inflammatory activity in controlling S. aureus-induced conjunctivitis.

  10. Antagonistic activity of marine sponge associated Streptomyces sp. against isolated fish pathogens

    Directory of Open Access Journals (Sweden)

    G. Palani Selvan

    2012-10-01

    Full Text Available Objective: To investigate the antibacterial potential of the marine actinomycetes isolated from sponge samples. Methods: Thirty six marine sponge samples were collected from Palk Strait and further used for actinomycetes isolation by using serial dilution. The antibacterial activity was carried out by using cross streak assay method. Moreover, most potential strain also subjected to MIC and MBC techniques and the isolated potential strain was identified by molecular tools. Results: The maximum counts (26 x 102 CFU/g were observed in the month of May and minimum counts (1 x 102 CFU/g were noticed in April. A total of 21 actinomycetes were isolated and their antibacterial potential was assessed by using cross streak method. Among the 21 actinomycetes, the ACT-21 showed sensitivity against all the isolated fish pathogens. Further, the MIC and MBC results reveal that, the ACT-21 showed sensitivity at the concentration ranged between 500 毺 g/ mL-1 500 毺 g/mL. The phylogenetic analysis suggested that, the potential isolate ACT-21 (accession no: JF899543 showed maximum similarity index (>98% with Streptomyces sp. Conclusions: It is concluded from present study that, the crude extracts of sponge associated actinomycetes could be used as an effective antibacterial agent for the management of disease free fish culture system.

  11. Aplikasi Bakteri Probiotik untuk Meningkatkan Mutu Fisiologi dan Kesehatan Bibit Cabai (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Anna Tefa

    2016-10-01

    Full Text Available ABSTRACTThe use of probiotic bacteria as biocontrol agents is one of the methods of controlling anthracnose disease caused by Colletotrichum acutatum. The objective of this research was to suppress the infection of C. acutatum and increase chilli pepper seedling vigour. The research involved factorial experiments arranged in a completely randomized design with two factors. The first factor was seed coating involving six treatments, i.e., control, seed coating without bacteria, seed coating with Bacillus sp., Pseudomonas sp., Actinomycetes sp, and fungicide. The second factor was the seed storage period where six storage periods were experimented, i.e., 0, 1, 2, 3, 4, 5, and 6 months. The results showed that the coating treatment of Bacillus sp., Pseudomonas sp., and Actinomycetes sp. improved germination, growth rate and number of leaves and reduced the incidence of attacks and infection of hypocotyls at 5 month storage period.Keywords: Actinomycetes sp., Bacillus sp., Pseudomonas sp., seed coating, storage period

  12. Soil microorganisms numbers in the tailing deposition ModADA areas of Freeport Indonesia, Timika, Papua

    Directory of Open Access Journals (Sweden)

    IRNANDA AIKO FIFI DJUUNA

    2011-10-01

    Full Text Available Djuuna IAF, Masora M, Puradyatmika P (2011 Soil microorganisms numbers in the tailing deposition ModADA areas of Freeport Indonesia, Timika, Papua. Biodiversitas 12: 198-203. The objective of this study was to examine the number and distribution of bacteria, fungi and actinomycetes in the inactive tailing deposition areas of Freeport Indonesia Mining and Gold Company, Timika. One hundred ninety eight composite samples (0-20 cm were taken from four location of inactive tailing ModADA (Modification Aijkwa Deposition Areas namely double levee-bottom (fine texture; double levee-middle (medium texture; double levee-top (coarse texture; Mile 21 and transmigration areas of I to V. The conventional method of dilution and Plate Count Agar were used to examine the population of soil bacteria, fungi and actinomycetes. pH and moisture content were also analyzed. The numbers of bacteria in the tailing deposition areas are in the range from 3.48x105 CFU/g soil to 102.83x105 CFU/g soil, soil fungi from 1.51x105 CFU/g soil to 106.61x105 CFU/g soil and actinomycetes range from 0.32x104 CFU/g soil to 113.74x104 CFU/g soil. While in some transmigration areas, the number of soil bacteria, fungi and actinomycetes were lower than in the tailing areas. The number of soil bacteria and fungi were higher than actinomycetes. However, the coefficient of variation of actinomycetes (107% was higher than soil fungi (89% and bacteria (68%. Tailing deposition areas are considered as a good habitat for soil microorganisms. Overall, the number of soil organism in the tailings areas are considered medium to high, however to understand their functioning in each location under different land use system, more research are needed to evaluate their roles especially in the decomposition of soil organic matter.

  13. Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Chikako [Chemistry Division, Kanagawa Prefectural Institute of Public Health, Chigasaki-shi, Kanagawa 253-0087 (Japan)]. E-mail: chika_kuwahara.u79v@pref.kanagawa.jp; Fukumoto, Atsushi [Department of Microbiology, School of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510 (Japan); Ohsone, Ayako [Department of Microbiology, School of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510 (Japan); Furuya, Nobutaka [Department of Microbiology, School of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510 (Japan); Shibata, Hisashi [Yamanashi Forestry and Forest Products Research Institute, Masuho-cho, Yamanashi 400-0515 (Japan); Sugiyama, Hideo [Department of Environmental Health, National Institute of Public Health, Minato-ku, Tokyo 108-8638 (Japan); Kato, Fumio [Department of Microbiology, School of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510 (Japan)

    2005-06-01

    Mushrooms and soils samples collected from a sub-alpine forest of Mt. Fuji in Japan were measured for {sup 137}Cs and stable Cs. The ranges of {sup 137}Cs specific activities and stable Cs concentrations in the mushrooms were 291-7950 Bq kg{sup -1} dry weight and 4.69-58.1 mg kg{sup -1} dry weight, respectively. Both {sup 137}Cs specific activities and stable Cs concentrations in the mushrooms were higher than those in common agricultural plants. The {sup 137}Cs specific activities and stable Cs concentrations in the soils were 3.18-149 Bq kg{sup -1} dry weight and 0.618-2.18 mg kg{sup -1} dry weight, respectively. The appearance frequencies of filamentous actinomycetes and planktonic bacteria from the soils decreased according to increasing Cs contents in the medium. No relationship was observed between the appearance frequencies of those and the stable Cs concentrations in the soils. The filamentous actinomycetes from any soil sample could not grow in the presence of 25 mM Cs, although the planktonic bacteria from the soil samples could grow with up to 50 mM Cs in YM agar. In addition, the planktonic bacteria from approximately 70% of the soil samples could grow even in the presence of 100 mM Cs. Filamentous actinomycetes were more sensitive to Cs than planktonic bacteria. In in vitro experiments, Cs uptake by these strains of filamentous actinomycetes and planktonic bacteria was high in the presence of 5 mM CsCl and the strains accumulated Cs, the same as in mushrooms. Our results indicate that filamentous actinomycetes in the soils have higher sensitivity to Cs than planktonic bacteria, and several strains of filamentous actinomycetes have a high Cs accumulation in the presence of 5 mM Cs.

  14. Ensaio para detectar bergapteno na casca e no caule de Brosimum gaudichaudii Trec através da produção de melanina em actinomicetos

    Directory of Open Access Journals (Sweden)

    M.L.P. Neves

    Full Text Available Plant extracts containing furocoumarins compounds were identified by using melanin producer strains of Nocardiopis sp (DAUFPE-361 and non producer strains of Streptomyces sp (DAUFPE-87. Ethanol, methanol and acetone extracted compounds from conduru (Brosimum gaudichaudii bark and stem were evaporated and added to tubes containing ISP7 medium (tyrosine agar. This medium was inoculated with spore suspension (10(6-10(7 CFU prepared from the different actinomycetes strains. The ethanol fraction (pH 9.0 from both bark and stem induced pigmentation in actinomycetes melanin non producer strains and increased the pigmentation in producer strains indicating presence of furocoumarins in the correspondent plant extracts.

  15. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome.

    Science.gov (United States)

    Traxler, Matthew F; Watrous, Jeramie D; Alexandrov, Theodore; Dorrestein, Pieter C; Kolter, Roberto

    2013-08-20

    Soils host diverse microbial communities that include filamentous actinobacteria (actinomycetes). These bacteria have been a rich source of useful metabolites, including antimicrobials, antifungals, anticancer agents, siderophores, and immunosuppressants. While humans have long exploited these compounds for therapeutic purposes, the role these natural products may play in mediating interactions between actinomycetes has been difficult to ascertain. As an initial step toward understanding these chemical interactions at a systems level, we employed the emerging techniques of nanospray desorption electrospray ionization (NanoDESI) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry to gain a global chemical view of the model bacterium Streptomyces coelicolor interacting with five other actinomycetes. In each interaction, the majority of secreted compounds associated with S. coelicolor colonies were unique, suggesting an idiosyncratic response from S. coelicolor. Spectral networking revealed a family of unknown compounds produced by S. coelicolor during several interactions. These compounds constitute an extended suite of at least 12 different desferrioxamines with acyl side chains of various lengths; their production was triggered by siderophores made by neighboring strains. Taken together, these results illustrate that chemical interactions between actinomycete bacteria exhibit high complexity and specificity and can drive differential secondary metabolite production. Actinomycetes, filamentous actinobacteria from the soil, are the deepest natural source of useful medicinal compounds, including antibiotics, antifungals, and anticancer agents. There is great interest in developing new strategies that increase the diversity of metabolites secreted by actinomycetes in the laboratory. Here we used several metabolomic approaches to examine the chemicals made by these bacteria when grown in pairwise coculture. We found that

  16. Short-term utilization of carbon by the soil microbial community under future climatic conditions in a temperate heathland

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa

    2014-01-01

    An in-situ13C pulse-labeling experiment was carried out in a temperate heath/grassland to study the impacts of elevated CO2 concentration (510ppm), prolonged summer droughts (annual exclusion of 7.6±0.8%) and increased temperature (~1°C) on belowground carbon (C) utilization. Recently assimilated C...... and actinomycetes) in rhizosphere fractions. Drought favored the bacterial community in rhizosphere fractions whereas increased temperature reduced the abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). Fastest and highest utilization of recently assimilated C...

  17. Interaction specificity between leaf-cutting ants and vertically transmitted Pseudonocardia bacteria

    DEFF Research Database (Denmark)

    Breum Andersen, Sandra; Yek, Sze Huei; Nash, David R.

    2015-01-01

    Background: The obligate mutualism between fungus-growing ants and microbial symbionts offers excellent opportunities to study the specificity and stability of multi-species interactions. In addition to cultivating fungus gardens, these ants have domesticated actinomycete bacteria to defend gardens...... against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same...

  18. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R

    2011-01-01

    A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis. Sceliphrol......A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis....... Sceliphrolactam displays antifungal activity against amphotericin B-resistant Candida albicans (MIC = 4 µg/mL, 8.3 µM)....

  19. Gordonia: isolation and identification in clinical samples and role in biotechnology.

    Science.gov (United States)

    Andalibi, Fatemeh; Fatahi-Bafghi, Mehdi

    2017-05-01

    Gordonia spp. are members of the actinomycete family, and the environment, especially soil, is the natural habitat of this genus of bacteria. Gordonia spp. are important for two aspects: first, some Gordonia species cause a broad spectrum of diseases in healthy and immunocompromised individuals; second, these bacteria are capable of producing useful secondary metabolites, which may be used in various industries; therefore, discrimination of the genus Gordonia from other genera in the actinomycete family is important. Phenotypic and molecular techniques are necessary for accurate identification of Gordonia at the species level.

  20. [Screening of antifungi endophytic actinomyces strains from salvia przewalskii in Tibean Plateau].

    Science.gov (United States)

    Liu, Song-Qing; Jiang, Hua-Ming; Guan, Tong-Wei; Qi, Shan-Shan; Gu, Yun-Fu; Zhao, Ke; Wang, Xu; Zhang, Xiao-Ping

    2013-10-01

    Twenty-four endophytic actinomycetes strains were isolated from the Salvia przewalskii in Tibetan Plateau of China by tablet coating method. Fusarium moniliforme, Helminthosporium turcicum and Bipolaris maydis were selected as indicator fungi to test the antimicrobial activities of these endophytic actinomycetes by tablet confrontation method. The results showed that 21 strains can produce antimicrobial substances which accounts for 85.7% of the total separates number. Four strains of endogenous actinomyces have more obvious antifungi activity. According to results of morphology and culture properties and 16S rDNA sequences of endophytic actinomyces, it is concluded that all of the isolates were streptomycetes trains.

  1. Antibacterial potential of silver nanoparticle synthesized by marine ...

    African Journals Online (AJOL)

    Multi resistance to antibiotics is a serious and disseminated clinical problem, common to several new compounds that block the resistance mechanism. The present study aimed at the comparative study of silver nanoparticles synthesized through actinomycetes and their antimicrobial metabolites with standard antibiotic.

  2. Biogenesis of nanoparticles: A review | Bansal | African Journal of ...

    African Journals Online (AJOL)

    Researchers are looking to use various living organisms as 'nanoparticle factories'. Various biological entities like bacteria, fungi, diatoms, higher plants, actinomycetes and viruses have been used for this purpose. Due to their normal biosynthetic pathways, they can reduce salt into corresponding nanoparticles. This review ...

  3. The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications

    NARCIS (Netherlands)

    Procopio da Silva, Luciano; Macrae, Andrew; van Elsas, Jan Dirk; Seldin, Lucy

    The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of alpha/beta-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the alpha/beta-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii)

  4. Casuarina glauca: A model tree for basic research in actinorhizal ...

    Indian Academy of Sciences (India)

    Casuarina glauca is a fast-growing multipurpose tree belonging to the Casuarinaceae family and native to Australia. It requires limited use of chemical fertilizers due to the symbiotic association with the nitrogen-fixing actinomycete Frankia and with mycorrhizal fungi, which help improve phosphorous and water uptake by ...

  5. Induction of resistance and biocontrol of rhizoctonia in cotton against ...

    African Journals Online (AJOL)

    Addition of fishmeal to the soil infested with the pathogen led to a remarkable reduction in the percentage of disease compared to the soil non-amended with fishmeal. 28 fungal isolates, 22 yeast isolates, 43 isolates of actinomycetes and 8 isolates of bacteria were isolated from the rhizosphere associated soil of cotton plant.

  6. Javed Agrewala | Speakers | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Caerulomycin A is a bipyridyl compound produced by actinomycetes and is known to exhibit antifungal and antibiotic properties. The role of Caerulomycin A as an immunosuppressive agent in alleviating the arthritis symptoms by generating regulatory T cells (Tregs) was exploited in our studies. It was observed that ...

  7. Biotransformation of dihydro-epi-deoxyarteannuin B by suspension ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... Using plant-derived enzymes is important from the view- ... produce specific secondary metabolites that could confer ... layer chromatography (TLC) were supplied by the Qingdao Marine .... further research is still in progress for screening of broad ... a newly isolated actinomycete Gordonia neofelifaecis.

  8. Biological pest control in beetle agriculture

    NARCIS (Netherlands)

    Aanen, D.K.; Slippers, B.; Wingfield, M.J.

    2009-01-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics

  9. The effects of water potential on some microbial populations and ...

    African Journals Online (AJOL)

    Michael Horsfall

    Colony forming units of bacteria, actinomycetes and fungi and soil OC, basal respiration (BR) and substrate induced respiration (SIR) were measured. The effects of soil moisture, incubation time and their interactions on all of the studied properties and kinetic parameter for OC decrease were significant. The populations of ...

  10. Isolation, characterization and primary screening of soil ...

    African Journals Online (AJOL)

    Their metabolites were tested for antibiotic activities through the primary screening using the disk diffusion methods. Test bacteria were; Bacillus subtilis, E.coli, Klebsiella Pneumoniae, Staphylococcus aureus, Shigella sonei and Salmonella typhi. All the secondary metabolites from the isolated actinomycetes proved to ...

  11. A feasibility study on the use of near infrared spectroscopy for the authentication of depurated salmon fillets

    Science.gov (United States)

    Some species of actinomycetes, fungi, and bluegreen algae produce semivolatile off-flavor compounds responsible for earthy-musty odorants in water from aquaculture facilities and tend to bioaccumulate within fish flesh. Although these off-flavor compounds are harmless to human health, high levels wi...

  12. Assessment of bacterial diversity during composting of agricultural byproducts

    OpenAIRE

    Chandna, Piyush; Nain, Lata; Singh, Surender; Kuhad, Ramesh Chander

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of differen...

  13. Original Research Original Research

    African Journals Online (AJOL)

    RAGHAVENDRA

    Technol. Arts Res. J., April-June 2015, 4(2): 164-180. 168. Table 2: Actinomycetes with potent antimicrobial activity and their origin (soil). Isolates. Origin (soil). PO-01, PO-02. Mandagadde. PO-03, PO-04. Mahishi. PO-05. Bejjavalli. PO-06. Kudumallige. PO-07, PO-08. Maaluru. PO-09, PO-10 Thirthahalli. PO-11. Kaimara.

  14. Pulmonary nocardiosis caused by Nocardia otitidiscaviarum in an ...

    African Journals Online (AJOL)

    January 2017, Vol. 107, No. 1. IN PRACTICE. Nocardiae (genus Nocardia) are aerobic, Gram-positive, mycolic acid-containing actinomycetes and characteristically form acid- alcohol-fast branching filaments. They are saprophytes .... cureus.304. 3. Arroyo JC, Nichols S, Carroll GF. Disseminated Nocardia caviae infection.

  15. 782-IJBCS-Article-Rose Masalu

    African Journals Online (AJOL)

    DR GATSING

    penicillin (PS) was added at a concentration of. 1 µg/ml. The flasks were properly labeled and ..... Process. Biochem., 42: 1449-1453. Lam KS. 2006. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol, 9: 245-251. Masoko P, Eloff JN. 2007. Screening of twenty-four South African Combretum and.

  16. Effects of a Carbendazim-Mancozeb Fungicidal Mixture on Soil ...

    African Journals Online (AJOL)

    The effects of a Carbendazim-Mancozeb fungicidal mixture on microbial populations and some enzyme activities of three selected soils of Kwara State, Nigeria were studied. The soil dilution method was used to isolate bacteria, fungi, actinomycetes and some functional microbial groups from treated soils. Cultivation and ...

  17. Interspecies modulation of bacterial development through iron competition and siderophore piracy.

    Science.gov (United States)

    Traxler, Matthew F; Seyedsayamdost, Mohammad R; Clardy, Jon; Kolter, Roberto

    2012-11-01

    While soil-dwelling actinomycetes are renowned for secreting natural products, little is known about the roles of these molecules in mediating actinomycete interactions. In a previous co-culture screen, we found that one actinomycete, Amycolatopsis sp. AA4, inhibited aerial hyphae formation in adjacent colonies of Streptomyces coelicolor. A siderophore, amychelin, mediated this developmental arrest. Here we present genetic evidence that confirms the role of the amc locus in the production of amychelin and in the inhibition of S. coelicolor development. We further characterize the Amycolatopsis sp. AA4 - S. coelicolor interaction by examining expression of developmental and iron acquisition genes over time in co-culture. Manipulation of iron availability and/or growth near Amycolatopsis sp. AA4 led to alterations in expression of the critical developmental gene bldN, and other key downstream genes in the S. coelicolor transcriptional cascade. In Amycolatopsis sp. AA4, siderophore genes were downregulated when grown near S. coelicolor, leading us to find that deferrioxamine E, produced by S. coelicolor, could be readily utilized by Amycolatopsis sp. AA4. Collectively these results suggest that competition for iron via siderophore piracy and species-specific siderophores can alter patterns of gene expression and morphological differentiation during actinomycete interactions. © 2012 Blackwell Publishing Ltd.

  18. African Journal of Biotechnology - Vol 11, No 9 (2012)

    African Journals Online (AJOL)

    Genome analyses of Nocardia farcinica for the identification and comparison of cytochrome P450 complement with related actinomycetes · EMAIL FREE FULL TEXT EMAIL FREE ... Toxin production by Fusarium solani from declining citrus plants and its management · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. Browse Title Index

    African Journals Online (AJOL)

    Items 4401 - 4450 of 11090 ... Vol 11, No 5 (2012), Efficiency of some actinomycete isolates in biological treatment and removal of heavy metals from wastewater, Abstract PDF. WN Hozzein, MB Ahmed, MSA Tawab. Vol 10, No 8 (2011), Efficient in vitroregeneration of chrysanthemum (Chrysanthemum morifolium L.) plantlets ...

  20. Fluorescence Spectra of Individual Flowing Airborne Biological Particles Measured in Real Time

    Science.gov (United States)

    2001-02-01

    Grinshpun, K. Willeke, and E. C. Cole, Characteristics of airborne actinomycete spores. Appl. Environ. Microbiol. 64 (1998), pp 3807–3812. 20. Franc, G. D... marine bacteria. Can. J. Microbiol. 25 (1979), pp 415–420. 32. Hobbie, J. E., R. J. Daley, and S. Jasper, Use of nucleopore filters for counting bacteria

  1. Rapid Detection & Identification of Bacillus Species using MALDI-TOF/TOF and Biomarker Database

    Science.gov (United States)

    2006-06-01

    Dieckmann, R., Graeber, I., Kaesler, I., Szewzyk, U., and von D6hren, H. (2005). Rapid screening and dereplication of bacterial isolates from marine sponges...Bacteriology, vol. 2. Gram- positive bacteria other than Actinomycetes . 1’ ed. Baltimore: Williams & Wilkins, section 13, p 1104-1139. 18 DRDC Suffield

  2. Munitions Test Administrative Support Facility Environmental Assessment

    Science.gov (United States)

    2004-12-03

    beds of eolian, fluvial, or marine sands on broad, nearly level to very steep uplands in the Lower Coastal Plain. Depth to seasonal water table is...adhesion, and aggregate stability) • Low fertility • Relatively low diversity, activity, and populations of soil organisms (bacteria, actinomycetes ...Manager 19 years Environmental Science with experience in freshwater, estuarine, and marine applications Brandenburg, Catherine Document Specialist 4

  3. Soil Sorption and Plant Uptake of 2,4,6-Trinitrotoluene

    Science.gov (United States)

    1988-09-01

    University in partial fulfillment of the requirements for the degree of Doctor of Philosophy’in the Department of Marine Sciences. in August 1988. The study...yeasts, actinomycetes , and gram positive bacteria grew when TNT concentrations did not exceed 20 mg/L, Many gram negative bacteria grew well in TOT

  4. Characterization of Streptomyces strain SLO-105 isolated from Lake ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... Actinomycetes represent a large group of Gram- positive filamentous bacteria that currently comprises over forty genera and hundreds of species among which is the important Streptomyces genus (Watve et al., 2001). Members of this group have been isolated from different soils, plant materials, waters and ...

  5. Antimicrobial and cytotoxic activity of Streptomyces sp. from Lonar ...

    African Journals Online (AJOL)

    Antibacterial substances from actinomycetes were isolated from marine environment of Lonar Lake and characterized. Out of the 24 isolates subjected to secondary screening, 12 isolates were active against. Bacillus subtilis, 13 against Staphylococcus aureus, 7 against Escherichia coli, 3 against Proteus vulgaris and 4 ...

  6. African Journal of Biotechnology - Vol 15, No 38 (2016)

    African Journals Online (AJOL)

    Coating with fungicide and different doses of fertilizer in vinhatico seeds · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT ... Antibacterial potential of silver nanoparticle synthesized by marine actinomycetes in reference with standard antibiotics against hospital acquired infectious pathogens · EMAIL FREE FULL TEXT ...

  7. Incidence and biochemical parameters of dermatophilosis in ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    2018-01-22

    Jan 22, 2018 ... with wide host range and most commonly affects cattle, sheep and horse. The principal aetiology is. Dermatophilus congolensis which is a member of the aerobic actinomycete. Dermatophilosis has worldwide distribution and the disease is more common in the tropical and subtropical areas. The disease is.

  8. Occurrence, structure, and function of the nitrogen-fixing microsymbiont Frankia from nodules of Arizona alder [Abstract

    Science.gov (United States)

    J. O. Dawson; G. J. Gottfried; D. Hahn

    2005-01-01

    Actinorhizal plants are nodulated by the symbiotic, nitrogen-fixing actinomycete Frankia. The genus Alnus in the family Betulaceae is one of the 25 genera in 8 families of angiospermous plants that are actinorhizal. Arizona alder (Alnus oblongifolia Torr.) occurs in isolated populations associated with the...

  9. Occurrence, structure, and nitrogen-fixation of root nodules of actinorhizal Arizona alder

    Science.gov (United States)

    J. O. Dawson; Gerald J. Gottfried; D. Hahn

    2005-01-01

    Actinorhizal plants are nodulated by the symbiotic, nitrogen-fixing actinomycete Frankia. The genus Alnus in the family Betulaceae is one of the 24 genera in 8 families of angiospermous plants that are actinorhizal. Arizona alder (Alnus oblongifolia Torr.) occurs in isolated populations associated with the watersheds of Madrean Sky Islands in the...

  10. Merits and Pitfalls of Currently Used Diagnostic Tools in Mycetoma

    NARCIS (Netherlands)

    W.W.J. van de Sande (Wendy); A.H. Fahal (Ahmed); H. Goodfellow (Henry); E.S. Mahgoub (El Sheikh); O. Welsh (Oliverio); E. Zijlstra (Ed)

    2014-01-01

    textabstractTreatment of mycetoma depends on the causative organism and since many organisms, both actinomycetes (actinomycetoma) and fungi (eumycetoma), are capable of producing mycetoma, an accurate diagnosis is crucial. Currently, multiple diagnostic tools are used to determine the extent of

  11. Mycetoma in a 29 Year Old Nigerian: A Case Report | Adigun ...

    African Journals Online (AJOL)

    Mycetoma is a chronic granulomatous inflammatory disease caused by either aerophllic actinomycetes or true fungi, eumycetoma. The occurrence is worldwide but it is endemic in some African countries. The disease seems not to be common in our environment. We hereby present a case that was successfully managed in ...

  12. The Mycetoma Knowledge Gap: Identification of Research Priorities

    NARCIS (Netherlands)

    W.W.J. van de Sande (Wendy); E.S. Maghoub (El Sheikh); A.H. Fahal (Ahmed); H. Goodfellow (Henry); O. Welsh (Oliverio); E. Zijlstra (Ed)

    2014-01-01

    textabstractMycetoma is a tropical disease which is caused by a taxonomically diverse range of actinomycetes (actinomycetoma) and fungi (eumycetoma). The disease was only recently listed by the World Health Organization (WHO) as a neglected tropical disease (NTD). This recognition is the direct

  13. The use of morphological and cell wall chemical markers in the ...

    African Journals Online (AJOL)

    Most aerobic, filamentous, spore-forming actinomycetes are saprophytes but some are considered pathogens of humans and animals, notable examples are the causal agents of mycetoma. The present study aimed to identify Streptomyces spp. isolated from actinomycetoma cases in Sudan by examining some ...

  14. Mycetoma Caused by Actinomadura ( Streptomyces) madurae ...

    African Journals Online (AJOL)

    The actinomycete Actinomadura madurae has been isolated for the first time in South Africa from a case of mycetoma pedis. A. madurae and A. pelletieri are two closely related though separate pathogens which were formerly regarded as species of Nocardia and Streptomyces, and are now placed in a newly created genus ...

  15. Growth, nodulation and yield of black gram [ Vigna mungo (L.) Hepper

    African Journals Online (AJOL)

    EM (effective microorganisms) is a commercial biofertilizer mainly consists of photosynthetic and lactic acid bacteria, yeast and actinomycetes. The present study was undertaken to investigate the effect of EM application and two strains of nitrogen fixing Bradyrhizobium japonicum (TAL- 102 and MN-S) on plant growth, ...

  16. Vigna mungo (L.) Hepper

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... EM (effective microorganisms) is a commercial biofertilizer mainly consists of photosynthetic and lactic acid bacteria, yeast and actinomycetes. The present study was undertaken to investigate the effect of. EM application and two strains of nitrogen fixing Bradyrhizobium japonicum (TAL- 102 and MN-S) on.

  17. Enzyme inhibitors of marine microbial origin with pharmaceutical importance.

    Science.gov (United States)

    Imada, Chiaki

    2004-01-01

    Several enzyme inhibitors with various industrial uses were isolated from bacteria and actinomycetes living in the marine environment. These inhibitors are useful in medicine and agriculture. All the compounds, except the monoamine oxidase inhibitors, are novel, and their activities have been characterized.

  18. Biological and technological effects of some mulberry varieties and ...

    African Journals Online (AJOL)

    egyptian hak

    derived antibiotics currently in clinical use are derived from marine actinomycetes (Pimentel-. Elardo et al. 2009), which play an important role among marine bacterial communities, because of their diversity and ability to produce novel chemical compounds of high commercial value (Hopwood 2007; Amador et al. 2003).

  19. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... The apr gene was cloned into plasmid pUB110, resulting in the recombinant plasmid pUB-apr, which was then transformed into ... 2002). It is widely present in bacteria, actinomycetes and fungi. However, almost all ... the transformation method necessary for this process has not yet been developed for B.

  20. Long-Term Survival of Enteric Microorganisms in Frozen Wastewater

    Science.gov (United States)

    2002-10-01

    nocardia -like, and rod-like gram-positive and gram-negative bacteria; actinomycetes; fungi; and yeasts. These organisms were both aerobic and anaerobic...species such as dogs, cats, fish , cattle, and pigs can also incidentally infect humans. Therefore, human feces can contain species not normally attributed

  1. ONRASIA Scientific Information Bulletin, Volume 15, Number 4, October-December 1990

    Science.gov (United States)

    1990-12-01

    Biological Science Endocrine Bitehnlogy and Its Appicaton to Fish Cabitu n Japan.... 7 Peter M. Collins Thi article...much larger than that basic photochemistry and the photophysics lated an actinomycete, Nocardia sp., which obtained by other methods. This tech- of the...ENDOCRINE BIOTECHNOLOGY AND ITS APPLICATION TO FISH CULTURE IN JAPAN Peter M. Collins In recent years the application of advanced biotechnology

  2. A th Antimic he gulf crobial f of Aq activi qaba-Jo I, ty of S ordan , and ...

    African Journals Online (AJOL)

    SAM

    prevalence of NRPS genes (68%) as well as PKS-I sequences were reported in most of the Actinomycetes isolated from marine sediments, of the deepest site of. Mariana Trench in the western Pacific Ocean; whereas. PKS-I sequences were identified in only 13% of the strains (Pathom-aree et al., 2006). Addi-tionally, NPRS.

  3. Casuarina glauca: A model tree for basic research in actinorhizal ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... Casuarina glauca is a fast-growing multipurpose tree belonging to the Casuarinaceae family and native to Australia. It requires limited use of chemical fertilizers due to the symbiotic association with the nitrogen-fixing actinomycete. Frankia and with mycorrhizal fungi, which help improve phosphorous and ...

  4. Long-term climate change effects on dynamics of microorganisms and carbon in the root-zone

    DEFF Research Database (Denmark)

    Reinsch, Sabine

    patterns into microbial functional groups were treatment dependent. We observed a delayed C allocation into microbes under drought and a faster C flow through the microbial community under elevated CO2 conditions. Especially the importance of actinomycetes in the utilization of recently assimilated C can...... microbial communities affects the short-term C balance on the ecosystem scale....

  5. Study of root para-nodules formation in wheat (Triticum durum ...

    African Journals Online (AJOL)

    djemel

    2013-08-28

    Aug 28, 2013 ... Key words: Frankia, wheat, roots, para-nodules, 2,4-dichlorophenoxyacetate. INTRODUCTION. Actinomycetes are found in soil, rhizosphere, ponds and lake sediments. They are a large group of bacteria that can produce secondary metabolites which have important applications in pharmacy, medicine and ...

  6. Original Research

    African Journals Online (AJOL)

    bacteria and 2 fungi by agar well diffusion method. Gram positive bacteria were more sensitive to extract than Gram ... therapeutically relevant microbes, actinomycetes remain the major source of novel useful products such as ... biodiversity hotspots in the world. They have been grandly known for their flora and fauna.

  7. ELF (Extremely Low Frequency) Communications System - Ecological Monitoring Program: Summary of 1988 Progress

    Science.gov (United States)

    1989-11-01

    between initiation of red pine seedling growth, ectomycorrhizae counts, and microclimate in Northern Michigan. Presented at the Conference on Roots in...resinosa ectomycorrhizae with Scleroerma aurantium. Mycologia 78(1):139-142, 1986. 7. Bruhn, J. N.; Bagley, S. T. Actinomycetes associated with red pine

  8. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    Science.gov (United States)

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  9. Biological control of Sclerotinia sclerotiorum (oilseed rape isolate ...

    African Journals Online (AJOL)

    Sclerotinia sclerotiorum (Lib) De Bary, the causal agent of stem rot of oilseed rape, is one of the most important phytopathogens. In order to find appropriate biocontrol agents, antagonistic and especially chitinolytical activities of 110 soil actinomycetes were examined. Among assayed isolates, Streptomyces sp. isolate 422 ...

  10. de Fusarium isolé du fruit de tomate (Solanum lycopersicum L ...

    African Journals Online (AJOL)

    Dina

    Fungal biocontrol : actinomycetes of rhizosphere soil antagonists of Fusarium isolated from rotten tomato fruit (Solanum lycopersicum L., 1753). A phytopathogenic fungus Fusarium F-02 is isolated from rotten tomato fruit. The isolate of this fungus proves virulent to the tomato, cucumber and bean plants. Tested in vitro, this ...

  11. [Isolation and identification of dominant microorganisms in rhizosphere of continuous cropping with peanut].

    Science.gov (United States)

    Yan, Yanwei; Zhang, Hong; Liu, Lu; Xian, Hongquan; Cui, Dejie

    2011-06-01

    We isolated and identified dominant microorganisms from the rhizosphere of continuous cropping with peanut, to study the relationship between dominant microorganisms and peanut continuous cropping. By using dilution-plate method we isolated dominant bacteria, dominant fungi and actinomycetes from the rhizosphere of continuous cropping with peanut. Morphological specificity, culture shape, physiological-biochemical characteristic and partial 16S rDNA sequences were used to identify bacteria and actinomycetes. Morpholog, growth on various media, and Internal Transcribed Spacer (ITS) rDNA sequences homology analysis were performed to identify dominant fungi. We isolated seven dominant bacteria strains, seven dominant fungi and seven dominant actinomycetes. Dominant bacteria were identified as Leifsonia xyli, Arthrobacter chlorophenolicus, Microbacterium flavescens, Sphingomonas sp., Pasteurella sp., Bacillus simplex and Bacillus megaterium. Dominant fungi were identified as Cladosporium cladosporioides, Penicillium purpurogenum , Hypocrea lixii, Exophiala pisciphila, Penicillium janthinellum, Aspergillus sp. and Verticillium dahliae. Dominant actinomycetes were identified as Streptomyces violaceoruber, Streptomyces flaveus, Streptomyces panaciterrae, Streptomyces achromogenes, Streptomyces pseudogriseolus, Streptomyces cellulosae and Streptomyces aureus. This study was the first time to isolate and identify dominant microorganisms from the rhizosphere of continuous cropping with peanut. The type of dominant microorganisms changed obviously after planting peanut, although the change was without regularity.

  12. Phosphate-controlled regulator for the biosynthesis of the dalbavancin precursor A40926

    NARCIS (Netherlands)

    Alduina, Rosa; Lo Piccolo, Luca; D'Alia, Davide; Ferraro, Clelia; Gunnarsson, Nina; Donadio, Stefano; Puglia, Anna Maria

    2007-01-01

    The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of the novel antibiotic dalbavancin. Previous studies have shown that phosphate limitation results in enhanced A40926 production. The A40926 biosynthetic gene (dbv) cluster, which consists of 37 genes,

  13. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Cao, Peng; Liu, Chongxi; Sun, Pengyu; Fu, Xuepeng; Wang, Shaoxian; Wu, Fengzhi; Wang, Xiangjing

    2016-12-01

    Plant endophytes play important roles in biocontrol of plant diseases. Actinomycetes are used for biocontrol of fungal diseases caused by Verticillium dahliae. Many studies have focused on the endophytic actinomycetes isolated from the roots of healthy plants, but few on those from the roots of diseased plants. In the present research, actinomycetes were isolated from the roots of diseased and healthy tomato plants, respectively. The results showed that, in total, 86 endophytic actinomycetes were isolated for screening of their antimicrobial activities, 8 of which showed antagonism to V. dahliae in vitro. Among the 8 antagonistic strains, 5 (out of 36) were from the roots of diseased plants, with inhibition diameter zones ranging from 11.2 to 18.2 mm, whereas 3 (out of 50) were from the roots of healthy plants, with inhibition diameter zones ranging from 11.5 to 15.5 mm. Endophytic strain DHV3-2 was isolated from the root of a diseased plant and demonstrated a potent effect against V. dahliae and other pathogenic fungi by showing the largest inhibition diameter zones among all the eight antagonistic strains. Thus, strain DHV3-2 was chosen to investigate its biological control efficacies in vivo. Further study showed that the disease incidence and disease severity indices of tomato Verticillium wilt decreased significantly (P biocontrol agent against V. dahliae and growth elicitor in tomato.

  14. Production and characterization of endoglucanase secreted by ...

    African Journals Online (AJOL)

    Cellulases are hydrolases of great importance to industries, especially due to their ability to produce ethanol via hydrolysis of cellulolytic materials. Actinomycetes are the producers of these enzymes, particularly the genus Streptomyces sp. The present study is the first report on the production and characterization of ...

  15. Impact of arbuscular mycorrhizal fungus, Glomus intraradices ...

    African Journals Online (AJOL)

    In present study, a total of 104 bacteria and 96 actinomycetes were isolated from rhizosphere plant root of finger millet (Eleusine coracana) from Almora district of Uttarakhand, India. Isolates were characterized using microscopic and morphological methods followed by their biochemical test. Based on functional tests, four ...

  16. Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China

    Directory of Open Access Journals (Sweden)

    Jicheng Yu

    2015-07-01

    Conclusions: This is the first report about actinomycetes isolated from Yalujiang coastal wetland and it seems that the promising isolates from the unusual/unexplored wetland may prove to be an important step in the development of microbial natural product research.

  17. Carbon and nitrogen metabolism of free-living Frankia spp. and of Frankia-alnus symbioses

    NARCIS (Netherlands)

    Blom, J.

    1982-01-01

    The research reported in this thesis deals with the symbiosis of Frankia spp. and Alnus glutinosa. Frankia spp. are actinomycetes giving rise to the formation of nitrogen-fixing nodules on the roots of a number of non-leguminous plants. In these nodules

  18. The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator

    NARCIS (Netherlands)

    Shawky, Riham M.; Puk, Oliver; Wietzorrek, Andreas; Pelzer, Stefan; Takano, Eriko; Wohlleben, Wolfgang; Stegmann, Efthimia

    2007-01-01

    Balhimycin, produced by the actinomycete Amycolatopsis balhimycina DSM5908, is a glycopeptide antibiotic highly similar to vancomycin, the antibiotic of 'last resort' used for the treatment of resistant Gram-positive pathogenic bacteria. Partial sequence of the balhimycin biosynthesis gene cluster

  19. African Journal of Biotechnology - Vol 10, No 79 (2011)

    African Journals Online (AJOL)

    Genetic relationship and diversity analysis of Clitoria ternatea variants and Clitoria biflora using random amplified polymorphic DNA (RAPD) markers · EMAIL FREE FULL TEXT ... Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from herbal vermicompost · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Interaction specificity between leaf-cutting ants and vertically transmitted Pseudonocardia bacteria

    DEFF Research Database (Denmark)

    Breum Andersen, Sandra; Yek, Sze Huei; Nash, David R.

    2015-01-01

    against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same...