WorldWideScience

Sample records for thehighest-redshift kiloparsec-scale jets

  1. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Joseph L.; Lister, Matthew L., E-mail: jlr@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  2. Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra

    Science.gov (United States)

    Sun, Xiao-Na; Yang, Rui-Zhi; Rieger, Frank M.; Liu, Ruo-Yu; Aharonian, Felix

    2018-05-01

    The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4-2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.

  3. THE STRUCTURE AND LINEAR POLARIZATION OF THE KILOPARSEC-SCALE JET OF THE QUASAR 3C 345

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David H.; Wardle, John F. C.; Marchenko, Valerie V., E-mail: roberts@brandeis.edu [Department of Physics MS-057, Brandeis University, Waltham, MA 02454-0911 (United States)

    2013-02-01

    Deep Very Large Array imaging of the quasar 3C 345 at 4.86 and 8.44 GHz has been used to study the structure and linear polarization of its radio jet on scales ranging from 2 to 30 kpc. There is a 7-8 Jy unresolved core with spectral index {alpha} {approx_equal} -0.24 (I{sub {nu}}{proportional_to}{nu}{sup {alpha}}). The jet (typical intensity 15 mJy beam{sup -1}) consists of a 2.''5 straight section containing two knots, and two additional non-co-linear knots at the end. The jet's total projected length is about 27 kpc. The spectral index of the jet varies over -1.1 {approx}< {alpha} {approx}< -0.5. The jet diverges with a semi-opening angle of about 9 Degree-Sign , and is nearly constant in integrated brightness over its length. A faint feature northeast of the core does not appear to be a true counter-jet, but rather an extended lobe of this FR-II radio source seen in projection. The absence of a counter-jet is sufficient to place modest constraints on the speed of the jet on these scales, requiring {beta} {approx}> 0.5. Despite the indication of jet precession in the total intensity structure, the polarization images suggest instead a jet re-directed at least twice by collisions with the external medium. Surprisingly, the electric vector position angles in the main body of the jet are neither longitudinal nor transverse, but make an angle of about 55 Degree-Sign with the jet axis in the middle while along the edges the vectors are transverse, suggesting a helical magnetic field. There is no significant Faraday rotation in the source, so that is not the cause of the twist. The fractional polarization in the jet averages 25% and is higher at the edges. In a companion paper, Roberts and Wardle show that differential Doppler boosting in a diverging relativistic velocity field can explain the electric vector pattern in the jet.

  4. KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang [University of California, Riverside, CA 92512 (United States); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Guo, Yicheng; Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Papovich, Casey, E-mail: shoubaneh.hemmati@ucr.edu [Texas A and M University, College Station, TX 77843 (United States)

    2014-12-20

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U – V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify ''regions'' of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called ''clumps'' in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the ''main sequence'' of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ∼0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ∼0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ∼ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given

  5. Mapping the Extinction Curve in 3D: Structure on Kiloparsec Scales

    Energy Technology Data Exchange (ETDEWEB)

    Schlafly, E. F. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Peek, J. E. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Finkbeiner, D. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Green, G. M. [Kavli Institute for Particle Astrophysics and Cosmology, Physics and Astrophysics Building, 452 Lomita Mall, Stanford, CA 94305 (United States)

    2017-03-20

    Near-infrared spectroscopy from APOGEE and wide-field optical photometry from Pan-STARRS1 have recently made precise measurements of the shape of the extinction curve possible for tens of thousands of stars, parameterized by R ( V ). These measurements revealed structures in R ( V ) with large angular scales, which are challenging to explain in existing dust paradigms. In this work, we combine three-dimensional maps of dust column density with R ( V ) measurements to constrain the three-dimensional distribution of R ( V ) in the Milky Way. We find that the variations in R ( V ) are correlated on kiloparsec scales. In particular, most of the dust within one kiloparsec in the outer Galaxy, including many local molecular clouds (Orion, Taurus, Perseus, California, and Cepheus), has a significantly lower R ( V ) than more distant dust in the Milky Way. These results provide new input to models of dust evolution and processing, and complicate the application of locally derived extinction curves to more distant regions of the Milky Way and to other galaxies.

  6. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam [University of California, Riverside, CA 92512 (United States); Nayyeri, Hooshang; Miller, Sarah [University of California, Irvine, CA 92697 (United States); Sobral, David, E-mail: shemm001@ucr.edu [Universidade de Lisboa, PT1349-018 Lisbon (Portugal)

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  7. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro; Kino, Motoki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagira, Hiroshi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Kawakatu, Nozomu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asada, Keiichi, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  8. THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Sandstrom, K. M.; Walter, F.; Leroy, A. K.; Bolatto, A. D.; Wolfire, M.; Croxall, K. V.; Crocker, A.; Draine, B. T.; Aniano, G.; Wilson, C. D.; Calzetti, D.; Kennicutt, R. C.; Galametz, M.; Donovan Meyer, J.; Usero, A.; Bigiel, F.; Brinks, E.; De Blok, W. J. G.; Dale, D.; Engelbracht, C. W.

    2013-01-01

    We present ∼kiloparsec spatial resolution maps of the CO-to-H 2 conversion factor (α CO ) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α CO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both α CO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12 CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α CO results on the more typically used 12 CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α CO and the DGR. On average, α CO = 3.1 M ☉ pc –2 (K km s –1 ) –1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α CO as a function of galactocentric radius. However, most galaxies exhibit a lower α CO value in the central kiloparsec—a factor of ∼2 below the galaxy mean, on average. In some cases, the central α CO value can be factors of 5-10 below the standard Milky Way (MW) value of α CO, M W = 4.4 M ☉ pc –2 (K km s –1 ) –1 . While for α CO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α CO for studies of nearby galaxies

  9. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  10. THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, J. A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Riechers, D. [Department of Astronomy, Cornell University, Ithaca, New York, NY 14853 (United States); Decarli, R.; Walter, F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Carilli, C. L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801-0387 (United States); Daddi, E. [CEA, Laboratoire AIM-CNRS-Université Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Dannerbauer, H., E-mail: jhodge@nrao.edu [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, 1180 Wien (Austria)

    2015-01-01

    We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.

  11. DEEP CHANDRA, HST-COS, AND MEGACAM OBSERVATIONS OF THE PHOENIX CLUSTER: EXTREME STAR FORMATION AND AGN FEEDBACK ON HUNDRED KILOPARSEC SCALES

    International Nuclear Information System (INIS)

    McDonald, Michael; Bautz, Marshall W.; Miller, Eric D.; ZuHone, John A.; McNamara, Brian R.; Weeren, Reinout J. van; Bayliss, Matthew; Jones-Forman, Christine; Applegate, Douglas E.; Benson, Bradford A.; Carlstrom, John E.; Mantz, Adam B.; Bleem, Lindsey E.; Chatzikos, Marios; Edge, Alastair C.; Fabian, Andrew C.; Garmire, Gordon P.; Hlavacek-Larrondo, Julie; Stalder, Brian; Veilleux, Sylvain

    2015-01-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ∼50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 × 10 9 M ⊙ ), young (∼4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M ⊙ yr −1 . We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 M ⊙ yr −1 ) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ∼10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2–7 × 10 45 erg s −1 . We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from “quasar-mode” to “radio-mode,” and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ∼100 kpc, with extended “ghost” cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ∼200 kpc (0.15R 500 ), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments

  12. AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Eileen T.; Georganopoulos, Markos [University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Sparks, William B. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Anderson, Jay; Marel, Roeland van der; Biretta, John; Chiaberge, Marco; Norman, Colin [Space Telescope Science Institute, Baltimore, MD 21210 (United States); Tony Sohn, Sangmo [Johns Hopkins University, Baltimore, MD 21210 (United States); Perlman, Eric, E-mail: meyer@stsci.edu [Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2016-02-20

    The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of −0.2 ± 0.5c over the whole jet. Assuming the knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Γ < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer and Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.

  13. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2016-01-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  14. Relativistic Doppler Beaming and Misalignments in AGN Jets

    Science.gov (United States)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  15. 18–22 cm VLBA Observational Evidence for Toroidal B-Field Components in Six AGN Jets

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Motter

    2016-08-01

    Full Text Available The formation of relativistic jets in Active Galactic Nuclei (AGN is related to accretion onto their central supermassive black holes, and magnetic (B fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very compact regions out to kiloparsec scales. We present results of Faraday rotation studies based on Very Long Baseline Array (VLBA data obtained at 18–22 cm for six well known AGN (OJ 287, 3C 279, PKS 1510-089, 3C 345, BL Lac, and 3C 454.3, which probe projected distances out to tens of parsecs from the observed cores. We have identified statistically significant, monotonic, transverse Faraday rotation gradients across the jets of all but one of these sources, indicating the presence of toroidal B fields, which may be one component of helical B fields associated with these AGN jets.

  16. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    International Nuclear Information System (INIS)

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-01-01

    -ray jets in this complete sample suggests that they are a signature of a ubiquitous process in FRI jets. It appears that the FRI jets start out relativistically on parsec scales but decelerate on kiloparsec scales, with the X-ray emission revealing the sites of bulk deceleration and particle reacceleration.

  17. High Energy Gamma-rays from FR I Jets

    CERN Document Server

    Sikora, M

    2003-01-01

    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties--connected for example with the particle acceleration processes involved--remain. In this paper we study production of high energy gamma-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated gamma-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting...

  18. A Rotation Measure Gradient on the M87 VLA Jet

    Directory of Open Access Journals (Sweden)

    Algaba Juan Carlos

    2013-12-01

    Full Text Available Rotation measures (RMs have proven to be an excellent tool to study magnetic field structures in AGNs. Here we study RM properties on kiloparsec scales of theM87 jet via stacked multi wavelength polarized VLA observations. Our results show for the first time an indication of the RM gradient transverse to the jet in knot A, and possibly knot C and HST-1. Motivated by the shape of the RM in knots A and B, we discuss that part of it may be a filamentary structure of higher RM due to an external Faraday screen, although we consider this unlikely The data presented here can be easily explained by a helical magnetic field. By combining this result together with polarization direction plus the shape and degree of the fractional polarization across the jet, we can fairly conclude the presence of systematically wrapped, possibly helical, magnetic fields tightly wounded in knots A and C, in agreement with an MHD quad shock model.

  19. DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, Kathryn [Department of Statistics, Harvard University, Cambridge, MA 02138 (United States); Siemiginowska, Aneta; Kashyap, Vinay L.; Lee, N. P.; Harris, D. E.; Schwartz, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków (Poland); Stein, Nathan [Department of Statistics, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 (United States); Stampoulis, Vasileios; Dyk, David A. van [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 (United Kingdom); Wardle, J. F. C. [Department of Physics, MS 057, Brandeis University, Waltham, MA 02454 (United States); Donato, Davide [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Maraschi, Laura; Tavecchio, Fabrizio, E-mail: kathrynmckeough@g.harvard.edu [INAF Osservatorio Astronomico di Brera, via Brera 28, I-20124, Milano (Italy)

    2016-12-10

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z  ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 <  z  < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  20. POLARIMETRY AND THE HIGH-ENERGY EMISSION MECHANISMS IN QUASAR JETS: THE CASE OF PKS 1136-135

    Energy Technology Data Exchange (ETDEWEB)

    Cara, Mihai; Perlman, Eric S. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States); Uchiyama, Yasunobu [SLAC/KIPAC, Stanford University, 2575 Sand Hill Road, M/S 209, Menlo Park, CA 94025 (United States); Cheung, Chi C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Coppi, Paolo S. [Yale University, Department of Astronomy, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Worrall, Diana M.; Birkinshaw, Mark [Department of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Sparks, William B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Stawarz, Lukasz [Institute of Space Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa 252-5210 (Japan); Begelman, Mitchell C. [Department of Astrophysical and Planetary Sciences, UCB 391, University of Colorado, Boulder, CO 80309-0391 (United States); O' Dea, Christopher P. [Laboratory for Multiwavelength Astrophysics, School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Dr., Rochester, NY 14623-5603 (United States); Baum, Stefi A. [Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623-5604 (United States)

    2013-08-20

    Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized cosmic microwave background (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high-resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136-135 obtained with the Hubble Space Telescope. We find that several knots are highly polarized in the optical, with fractional polarization {Pi} > 30%. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor {gamma} {approx} 1, and the jet is also very highly beamed ({delta} {>=} 20) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work.

  1. POLARIMETRY AND THE HIGH-ENERGY EMISSION MECHANISMS IN QUASAR JETS: THE CASE OF PKS 1136–135

    International Nuclear Information System (INIS)

    Cara, Mihai; Perlman, Eric S.; Uchiyama, Yasunobu; Cheung, Chi C.; Coppi, Paolo S.; Georganopoulos, Markos; Worrall, Diana M.; Birkinshaw, Mark; Sparks, William B.; Marshall, Herman L.; Stawarz, Lukasz; Begelman, Mitchell C.; O'Dea, Christopher P.; Baum, Stefi A.

    2013-01-01

    Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized cosmic microwave background (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high-resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136–135 obtained with the Hubble Space Telescope. We find that several knots are highly polarized in the optical, with fractional polarization Π > 30%. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor γ ∼ 1, and the jet is also very highly beamed (δ ≥ 20) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work

  2. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-07-20

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  3. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  4. Kiloparsec-scale gaseous clumps and star formation at z = 5-7

    Science.gov (United States)

    Carniani, S.; Maiolino, R.; Amorin, R.; Pentericci, L.; Pallottini, A.; Ferrara, A.; Willott, C. J.; Smit, R.; Matthee, J.; Sobral, D.; Santini, P.; Castellano, M.; De Barros, S.; Fontana, A.; Grazian, A.; Guaita, L.

    2018-05-01

    We investigate the morphology of the [CII] emission in a sample of "normal" star-forming galaxies at 5 limits. By taking into account the presence of all these components, we find that the L[CII]-SFR relation at early epochs is fully consistent with the local relation, but it has a dispersion of 0.48±0.07 dex, which is about two times larger than observed locally. We also find that the deviation from the local L[CII]-SFR relation has a weak anti-correlation with the EW(Lyα). The morphological analysis also reveals that [CII] emission is generally much more extended than the UV emission. As a consequence, these primordial galaxies are characterised by a [CII] surface brightness generally much lower than expected from the local Σ _{[CII]}-Σ _{SFR} relation. These properties are likely a consequence of a combination of different effects, namely: gas metallicity, [CII] emission from obscured star-forming regions, strong variations of the ionisation parameter, and circumgalactic gas in accretion or ejected by these primeval galaxies.

  5. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  6. Boosted jets

    International Nuclear Information System (INIS)

    Juknevich, J.

    2014-01-01

    We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)

  7. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  8. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  9. Emerging jets

    International Nuclear Information System (INIS)

    Schwaller, Pedro; Stolarski, Daniel

    2015-02-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  10. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  11. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  12. Jet Crackle

    Science.gov (United States)

    2015-06-23

    crackle is correlated to signals with intermittent periods of steepened shock-like waves followed by weaker, longer, rounded rarefaction regions, but to...turbulence is concentrated in a weakly curved (for a typical round jet) shear layer between the high-speed potential core flow and the surrounding co-flow...decreases into the acoustic field. The effect of varying dc between −0.1 and −0.003δm(t)/∆U causes the Nδm/Lx curves to shift downward as fewer waves

  13. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  14. A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang.

    Science.gov (United States)

    Walter, Fabian; Riechers, Dominik; Cox, Pierre; Neri, Roberto; Carilli, Chris; Bertoldi, Frank; Weiss, Axel; Maiolino, Roberto

    2009-02-05

    The host galaxy of the quasar SDSS J114816.64+525150.3 (at redshift z = 6.42, when the Universe was less than a billion years old) has an infrared luminosity of 2.2 x 10(13) times that of the Sun, presumably significantly powered by a massive burst of star formation. In local examples of extremely luminous galaxies, such as Arp 220, the burst of star formation is concentrated in a relatively small central region of <100 pc radius. It is not known on which scales stars are forming in active galaxies in the early Universe, at a time when they are probably undergoing their initial burst of star formation. We do know that at some early time, structures comparable to the spheroidal bulge of the Milky Way must have formed. Here we report a spatially resolved image of [C ii] emission of the host galaxy of J114816.64+525150.3 that demonstrates that its star-forming gas is distributed over a radius of about 750 pc around the centre. The surface density of the star formation rate averaged over this region is approximately 1,000 year(-1) kpc(-2). This surface density is comparable to the peak in Arp 220, although about two orders of magnitude larger in area. This vigorous star-forming event is likely to give rise to a massive spheroidal component in this system.

  15. KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. I. THE UNMAGNETIZED AND ZERO-FEEDBACK LIMIT

    International Nuclear Information System (INIS)

    Van Loo, Sven; Butler, Michael J.; Tan, Jonathan C.

    2013-01-01

    We present hydrodynamic simulations of the evolution of self-gravitating dense gas on scales of 1 kpc down to ∼< parsec in a galactic disk, designed to study dense clump formation from giant molecular clouds (GMCs). These structures are expected to be the precursors to star clusters and this process may be the rate limiting step controlling star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. We follow the thermal evolution of the gas down to ∼5 K using extinction-dependent heating and cooling functions. We do not yet include magnetic fields or localized stellar feedback, so the evolution of the GMCs and clumps is determined solely by self-gravity balanced by thermal and turbulent pressure support and the large-scale galactic shear. While cloud structures and densities change significantly during the simulation, GMC virial parameters remain mostly above unity for timescales exceeding the free-fall time of GMCs indicating that energy from galactic shear and large-scale cloud motions continuously cascades down to and within the GMCs. We implement star formation at a slow, inefficient rate of 2% per local free-fall time, but even this yields global star formation rates that are about two orders of magnitude larger than the observed Kennicutt-Schmidt relation due to overproduction of dense gas clumps. We expect a combination of magnetic support and localized stellar feedback is required to inhibit dense clump formation to ∼1% of the rate that results from the nonmagnetic, zero-feedback limit.

  16. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  17. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  18. Jet Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; O'Hara, G.W.; Pollard, I.E.

    1988-07-01

    The paper presents the Jet Joint Undertaking annual report 1987. A description is given of the JET and Euratom and International Fusion Programmes. The technical status of JET is outlined, including the development and improvements made to the system in 1987. The results of JET Operation in 1987 are described within the areas of: density effects, temperature improvements, energy confinement studies and other material effects. The contents also contain a summary of the future programme of JET. (U.K.)

  19. Vector boson tagged jets and jet substructure

    Directory of Open Access Journals (Sweden)

    Vitev Ivan

    2018-01-01

    Full Text Available In these proceedings, we report on recent results related to vector boson-tagged jet production in heavy ion collisions and the related modification of jet substructure, such as jet shapes and jet momentum sharing distributions. Z0-tagging and γ-tagging of jets provides new opportunities to study parton shower formation and propagation in the quark-gluon plasma and has been argued to provide tight constrains on the energy loss of reconstructed jets. We present theoretical predictions for isolated photon-tagged and electroweak boson-tagged jet production in Pb+Pb collisions at √sNN = 5.02 TeV at the LHC, addressing the modification of their transverse momentum and transverse momentum imbalance distributions. Comparison to recent ATLAS and CMS experimental measurements is performed that can shed light on the medium-induced radiative corrections and energy dissipation due to collisional processes of predominantly quark-initiated jets. The modification of parton splitting functions in the QGP further implies that the substructure of jets in heavy ion collisions may differ significantly from the corresponding substructure in proton-proton collisions. Two such observables and the implication of tagging on their evaluation is also discussed.

  20. Understanding jet noise.

    Science.gov (United States)

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  1. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  2. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  3. Delving into QCD jets

    International Nuclear Information System (INIS)

    Konishi, K.

    1980-01-01

    The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)

  4. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Lallia, P.; O'Hara, G.W.; Pollard, I.E.

    1987-06-01

    The paper presents the annual report of the Joint European Torus (JET) Joint Undertaking, 1986. The report is divided into two parts: a part on the scientific and technical programme of the project, and a part setting out the administration and organisation of the Project. The first part includes: a summary of the main features of the JET apparatus, the JET experimental programme, the position of the Project in the overall Euratom programme, and how JET relates to other large fusion devices throughout the world. In addition, the technical status of JET is described, as well as the results of the JET operations in 1986. The final section of the first part outlines the proposed future programme of JET. (U.K.)

  5. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  6. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  7. On jet substructure methods for signal jets

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester,Oxford Road, Manchester M13 9PL (United Kingdom); Powling, Alexander [School of Physics & Astronomy, University of Manchester,Oxford Road, Manchester M13 9PL (United Kingdom); Siodmok, Andrzej [Institute of Nuclear Physics, Polish Academy of Sciences,ul. Radzikowskiego 152, 31-342 Kraków (Poland); CERN, PH-TH,CH-1211 Geneva 23 (Switzerland)

    2015-08-17

    We carry out simple analytical calculations and Monte Carlo studies to better understand the impact of QCD radiation on some well-known jet substructure methods for jets arising from the decay of boosted Higgs bosons. Understanding differences between taggers for these signal jets assumes particular significance in situations where they perform similarly on QCD background jets. As an explicit example of this we compare the Y-splitter method to the more recently proposed Y-pruning technique. We demonstrate how the insight we gain can be used to significantly improve the performance of Y-splitter by combining it with trimming and show that this combination outperforms the other taggers studied here, at high p{sub T}. We also make analytical estimates for optimal parameter values, for a range of methods and compare to results from Monte Carlo studies.

  8. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  9. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  10. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  11. Phenomenology of jets

    International Nuclear Information System (INIS)

    Walsh, T.F.

    1980-05-01

    The basic idea of these lectures is very simple. Quarks and gluons - the elementary quanta of quantum chromodynamics or QCD - are produced with perturbarively calculable rates in short distance processes. This is because of asymptotic freedom. These quanta produced at short distances are, in a sense, 'visible' as jets of hadrons. (The jets do not contain the colored QCD quanta if - as we will assume - color is confined. The jets contain only colorless hadrons.) The distribution of these jets is the distribution of the original quanta, apart from fluctuations generated in the (long distance) jet formation process. The distribution of the jets can thus thest QCD in a particularly clear way at the parton level, at distance of order 5 x 10 -16 cm (PETRA/PEP energies). (orig.)

  12. A turbulent radio jet

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1983-01-01

    A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)

  13. Hadronic jets an introduction

    CERN Document Server

    Banfi, Andrea

    2016-01-01

    Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.

  14. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1988-03-01

    The paper is a JET progress report 1987, and covers the fourth full year of JET's operation. The report contains an overview summary of the scientific and technical advances during the year, and is supplemented by appendices of detailed contributions of the more important JET articles published during 1987. The document is aimed at specialists and experts engaged in nuclear fusion and plasma physics, as well as the general scientific community. (U.K.)

  15. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  16. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1987-01-01

    The properties of gluon jets are reviewed, and the measured characteristics are compared to the theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, in general the agreement between experiment and theory is remarkable. There are some intriguing differences. Since the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed

  17. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1988-01-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on understanding of QCD. The future prospects are discussed

  18. Are jets really there

    International Nuclear Information System (INIS)

    Lillethun, E.

    1976-09-01

    Based on the results of high energy proton-proton collisions obtained at the CERN ISR in 1972-73, the production of 'jets' is discussed. Jets in e + e - collisions are also discussed and the parameters 'sphericity' and 'rapidity' are used in analysis of the data. The jets studied have been defined as having at least one particle of high transverse momentum. It is not clear whether the jets represent new physics or are another way of stating that resonances (rho,K*, Δ, N* etc.) are produced with high p(sub T), and that in such production the high transverse momentum must be balanced essentially locally in the collision. (JIW)

  19. Experimental study of hydrogen jet ignition and jet extinguishment

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1979-04-01

    Two phases are described of an experimental study that investigated: (1) the ignition characteristics of hydrogen--sodium jets, (2) the formation of hydrogen in sodium--humid air atmospheres, and (3) the extinguishment characteristics of burning hydrogen--sodium jets. Test conditions were similar to those postulated for highly-improbable breeder reactor core melt-through accidents and included: jet temperature, jet velocity, jet hydrogen concentration, jet sodium concentration, atmospheric oxygen concentration, and atmospheric water vapor concentration

  20. Jet mass spectra in Higgs+one jet at NNLL

    International Nuclear Information System (INIS)

    Jouttenus, Teppo T.; Stewart, Iain W.; Waalewijn, Wouter J.

    2013-02-01

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m 2 jet /p jet T scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  1. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  2. Jet physics in ALICE

    International Nuclear Information System (INIS)

    Loizides, C.A.

    2005-01-01

    The ALICE experiment is one of the experiments currently prepared for the Large Hadron Collider (LHC) at CERN, Geneva, starting operation end of 2007. ALICE is dedicated to the research on nucleus-nucleus collisions at ultra-relativistic energies, which addresses the properties of strongly interacting matter under varying conditions of high density and temperature. The conditions provided at the LHC allow significant qualitative improvement with respect to previous studies. In particular, energetic probes, light quarks and gluons, will be abundantly produced. These probes might be identified by their fragmentation into correlated particles, so called jets, of high enough energy to allow full reconstruction of jet properties; even in the underlying heavy-ion environment. Understanding the dependence of high-energy jet production and fragmentation influenced by the dense medium created in the collision region is an open field of active research. Generally, one expects energy loss of the probes due to medium-induced gluon radiation. It is suggested that hadronization products of these, rather soft gluons may be contained within the jet emission cone, resulting in a modification of the characteristic jet fragmentation, as observed via longitudinal and transverse momentum distributions with respect to the direction of the initial parton, as well as of the multiplicity distributions arising from the jet fragmentation. Particle momenta parallel to the jet axis are softened (jet quenching), while transverse to it increased (transverse heating). The present thesis studies the capabilities of the ALICE detectors to measure these jets and quantifies obtainable rates and the quality of jet reconstruction, in both proton-proton and lead-lead collisions at the LHC. In particular, it is addressed whether modification of the jet fragmentation can be detected within the high-particle-multiplicity environment of central lead-lead collisions. (orig.)

  3. Deformations of free jets

    Science.gov (United States)

    Paruchuri, Srinivas

    This thesis studies three different problems. First we demonstrate that a flowing liquid jet can be controllably split into two separate subfilaments through the applications of a sufficiently strong tangential stress to the surface of the jet. In contrast, normal stresses can never split a liquid jet. We apply these results to observations of uncontrolled splitting of jets in electric fields. The experimental realization of controllable jet splitting would provide an entirely novel route for producing small polymeric fibers. In the second chapter we present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids, 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending. In chapter 4 we address the discrepancy between hydrodynamic theory of liquid jets, and the snap-off of narrow liquid jets observed in molecular dynamics (MD) simulations [23]. This has been previously attributed to the significant role of thermal fluctuations in nanofluidic systems. We argue that hydrodynamic description of such systems should include corrections to the Laplace pressure which result from the failure of the sharp interface assumption when the jet diameter becomes small enough. We show that this effect can in principle give rise to jet shapes similar to those observed in MD simulations, even when thermal fluctuations are completely neglected. Finally we summarize an algorithm developed to simulate droplet impact on a smooth surface.

  4. Quark jets, gluon jets and the three-gluon vertex

    International Nuclear Information System (INIS)

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  5. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1987-03-01

    The paper presents the progress report of the Joint European Torus (JET) Joint Undertaking, 1986. The report contains a survey of the scientific and technical achievements on JET during 1986; the more important articles referred to in this survey are reproduced as appendices to this Report. The last section discusses developments which might improve the overall performance of the machine. (U.K.)

  6. Jet physics at CDF

    International Nuclear Information System (INIS)

    Melese, P.

    1997-05-01

    We present high E T jet measurements from CDF at the Fermilab Tevatron Collider. The incfilusive jet cross section at √s = 1800 GeV with ∼ 5 times more data is compared to the published CDF results, preliminary D0 results, and next-to-leading order QCD predictions. The summation E T cross section is also compared to QCD predictions and the dijet angular distribution is used to place a limit on quark compositeness. The inclusive jet cross section at √s = 630 GeV is compared with that at 1800 GeV to test the QCD predictions for the scaling of jet cross sections with √s. Finally, we present momentum distributions of charged particles in jets and compare them to Modified Leading Log Approximation predictions

  7. Jet physics in ATLAS

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet performance and physics measurements, together with results from new physics searches using the 2011 dataset. They include studies of the underlying event and fragmentation models, measurements of the inclusive jet, dijet and multijet cross sections, parton density functions, heavy flavours, jet shape, mass and substructure. Searches for new physics in monojet, dijet and photon-jet final states are also presented.

  8. Jets and QCD

    International Nuclear Information System (INIS)

    Ali, A.; Kramer, G.

    2010-12-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  9. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  10. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  11. Intermediate PT jet spectrometers

    International Nuclear Information System (INIS)

    Gutay, L.J.; Koltick, D.; Hauptman, J.; Stork, D.; Theodosiou, G.

    1988-01-01

    A design is presented for a limited solid angle, high resolution double arm spectrometer at 90 degree to the begin, with a vertex detector and particle identification in both arms. The jet arm is designed to accept a complete jet, and identify its substructure of sub-jets, hadrons, and leptons. The particle arm would measure e,π,K,p ratios for P T 0 to the beam for the purpose of tagging Higgs production by boson fusion, 1 gauge boson (WW, ZZ, and WZ) scattering 2 L, and other processes involving the interactions of virtual gauge bosons

  12. Latest results from JET

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1989-01-01

    The Joint European Torus (JET) is a large tokamak designed with the essential objective of obtaining and studying plasmas with parameters close to those envisaged for an eventual power-generating, nuclear-fusion reactor. JET is situated on a site near Abingdon, Oxon, UK. JET is the largest single project of the nuclear fusion research programme of the European Atomic Energy Community (EURATOM). The tokamak started operation in mid 1983 after a five year construction period. The scientific and technical results achieved so far are summarised in this article. (orig.)

  13. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  14. Measurements of Jets in ALICE

    CERN Document Server

    Nattrass, Christine

    2016-01-01

    The ALICE detector can be used for measurements of jets in pp , p Pb, and Pb–Pb collisions. Measurements of jets in pp collisions are consis- tent with expectations from perturbative calculations and jets in p Pb scale with the number of nucleon–nucleon collisions, indicating that cold nuclear matter effects are not observed for jets. Measurements in Pb–Pb collisions demonstrate suppression of jets relative to expectations from binary scaling to the equivalent number of nucleon–nucleon collisions

  15. Jet lag prevention

    Science.gov (United States)

    ... lose time. Symptoms of jet lag include: Trouble falling asleep or waking up Tiredness during the day ... at your destination. For longer trips, before you leave, try to adapt to the time schedule of ...

  16. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  17. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  18. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  19. Protostellar Jets in Context

    CERN Document Server

    Tsinganos, Kanaris; Stute, Matthias

    2009-01-01

    This volume contains the proceedings of the Conference Protostellar Jets in Context held by the JETSET Marie Curie Research Training Network in July 2008. This meeting not only served to showcase some of the network's achievements but was also a platform to hear from, discuss and debate the recent findings of world-class astrophysicists in the field of protostellar jet research. Jets from young stars are of course not an isolated astrophysical phenomenon. It is known that objects as diverse as young brown dwarfs, planetary nebulae, symbiotic stars, micro-quasars, AGN, and gamma-ray bursters produce jets. Thus in a series of talks, protostellar jets were put in context by comparing them with their often much larger brethren and also by considering the ubiquitous accretion disks that seem to be necessary for their formation. With this spectrum of contributions on observations and the theory of astrophysical jets and accretion disks, this book serves as a comprehensive reference work for researchers and students...

  20. Jet supercooling and molecular jet spectroscopy

    International Nuclear Information System (INIS)

    Wharton, L.; Levy, D.

    1979-01-01

    The marriage of the laser and the seeded supersonic jet has generated a family of new optical spectroscopic results. We shall discuss the essential features of the technique and some results. The results will include structural and dynamical views of NO 2 , NaAr, and I 2 -noble gas complexes. The extension of the method to heavier systems is illustrated with free base phthalocyanine

  1. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Kupschus, P.

    1984-09-01

    The report is in sections, as follows. (1) Introduction and summary. (2) A brief description of the origins of the JET Project within the EURATOM fusion programme and the objectives and aims of the device. The basic JET design and the overall philosophy of operation are explained and the first six months of operation of the machine are summarised. The Project Team Structure adopted for the Operation Phase is set out. Finally, in order to set JET's progress in context, other large tokamaks throughout the world and their achievements are briefly described. (3) The activities and progress within the Operation and Development Department are set out; particularly relating to its responsibilities for the operation and maintenance of the tokamak and for developing the necessary engineering equipment to enhance the machine to full performance. (4) The activities and progress within the Scientific Department are described; particularly relating to the specification, procurement and operation of diagnostic equipment; definition and execution of the programme; and the interpretation of experimental results. (5) JET's programme plans for the immediate future and a broad outline of the JET Development Plan to 1990 are given. (author)

  2. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1986-03-01

    This is an overview summary of the scientific and technical advances at JET during the year 1985, supplemented by appendices of detailed contributions (in preprint form) of eight of the more important JET articles produced during that year. It is aimed not only at specialists and experts but also at a more general scientific community. Thus there is a brief summary of the background to the project, a description of the basic objectives of JET and the principle design features of the machine. The new structure of the Project Team is also explained. Developments and future plans are included. Improvements considered are those which are designed to overcome certain limitations encountered generally on Tokamaks, particularly those concerned with density limits, with plasma MHD behaviour, with impurities and with plasma transport. There is also a complete list of articles, reports and conference papers published in 1985 - there are 167 such items listed. (UK)

  3. Jet shapes in hadron and electron colliders

    International Nuclear Information System (INIS)

    Wainer, N.

    1993-05-01

    High energy jets are observed both in hadronic machines like the Tevatron and electron machines like LEP. These jets have an extended structure in phase space which can be measured. This distribution is usually called the jet shape. There is an intrinsic relation between jet variables, like energy and direction, the jet algorithm used, and the jet shape. Jet shape differences can be used to separate quark and gluon jets

  4. Galaxies with jet streams

    International Nuclear Information System (INIS)

    Breuer, R.

    1981-01-01

    Describes recent research work on supersonic gas flow. Notable examples have been observed in cosmic radio sources, where jet streams of galactic dimensions sometimes occur, apparently as the result of interaction between neighbouring galaxies. The current theory of jet behaviour has been convincingly demonstrated using computer simulation. The surprisingly long-term stability is related to the supersonic velocity, and is analagous to the way in which an Appollo spacecraft re-entering the atmosphere supersonically is protected by the gas from the burning shield. (G.F.F.)

  5. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  6. Jet pump assisted artery

    Science.gov (United States)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  7. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...

  8. Elucidating Jet Energy Loss Using Jets Prospects from ATLAS

    CERN Document Server

    Grau, N

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet $R_{AA}$, the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  9. Elucidating Jet Energy Loss Using Jets: Prospects from ATLAS

    International Nuclear Information System (INIS)

    Grau, N.

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet R AA , the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  10. CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. I. DETAILED REST-FRAME OPTICAL MORPHOLOGIES ON KILOPARSEC SCALE OF z ∼ 2 STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Foerster Schreiber, N. M.; Genzel, R.; Davies, R.; Shapley, A. E.; Erb, D. K.; Bouche, N.; Steidel, C. C.; Cresci, G.

    2011-01-01

    We present deep and high-resolution Hubble Space Telescope NIC2 F160W imaging at 1.6 μm of six z ∼ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. The unique combination of rest-frame optical imaging and nebular emission-line maps provides simultaneous insight into morphologies and dynamical properties. The overall rest-frame optical emission of the galaxies is characterized by shallow profiles in general (Sersic index n e ∼ 5 kpc. The morphologies are significantly clumpy and irregular, which we quantify through a non-parametric morphological approach, estimating the Gini (G), multiplicity (Ψ), and M 20 coefficients. The estimated strength of the rest-frame optical emission lines in the F160W bandpass indicates that the observed structure is not dominated by the morphology of line-emitting gas, and must reflect the underlying stellar mass distribution of the galaxies. The sizes and structural parameters in the rest-frame optical continuum and Hα emission reveal no significant differences, suggesting similar global distributions of the ongoing star formation and more evolved stellar population. While no strong correlations are observed between stellar population parameters and morphology within the NIC2/SINFONI sample itself, a consideration of the sample in the context of a broader range of z ∼ 2 galaxy types (K-selected quiescent, active galactic nucleus, and star forming; 24 μm selected dusty, infrared-luminous) indicates that these galaxies probe the high specific star formation rate and low stellar mass surface density part of the massive z ∼ 2 galaxy population, with correspondingly large effective radii, low Sersic indices, low G, and high Ψ and M 20 . The combined NIC2 and SINFONI data set yields insights of unprecedented detail into the nature of mass accretion at high redshift.

  11. JET joint undertaking

    International Nuclear Information System (INIS)

    1984-06-01

    JET began operations on 25 June 1983. This annual report contains administrative information and a general review of scientific and technical developments. Among them are vacuum systems, toroidal and poloidal field systems, power supplies, neutral beam heating, radiofrequency heating, remote handling, tritium handling, control and data acquisition systems and diagnostic systems

  12. Triton burnup in JET

    International Nuclear Information System (INIS)

    Chipsham, E.; Jarvis, O.N.; Sadler, G.

    1989-01-01

    Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs

  13. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  14. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    which are rapidly rotating neutron stars emitting narrow beams of radiation. Images of ... rized into starburst galaxies and AGN powered by SMBHs. The ..... swer lies in the relativistic motion of the jets which boosts the flux density of .... radio cores, detection of ... to as synchrotron self-Compton or SSC, or those of the cosmic.

  15. LHCb jet reconstruction

    International Nuclear Information System (INIS)

    Francisco, Oscar; Rangel, Murilo; Barter, William; Bursche, Albert; Potterat, Cedric; Coco, Victor

    2012-01-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10 32 cm -2 s -1 and the integrated luminosity reached the value of 1,02fb -1 on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space ηX φ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its η region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  16. LHCb jet reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Oscar; Rangel, Murilo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Barter, William [University of Cambridge, Cambridge (United Kingdom); Bursche, Albert [Universitat Zurich, Zurich (Switzerland); Potterat, Cedric [Universitat de Barcelona, Barcelona (Spain); Coco, Victor [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands)

    2012-07-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10{sup 32} cm{sup -2}s{sup -1} and the integrated luminosity reached the value of 1,02fb{sup -1} on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space {eta}X {phi} and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its {eta} region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  17. Fastener investigation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, P., E-mail: patrick.bunting@ccfe.ac.uk; Thompson, V.; Riccardo, V.

    2016-11-15

    Highlights: • Experimental work to identify the cause of a bolt seizure inside the JET vessel. • Taguchi method used to reduce tests to 16 while covering 5 parameters. • Experimental work was unable to reproduce bolt seizure. • Thread contamination had little effect on the bolt performance. - Abstract: JET is an experimental fusion reactor consisting of magnetically confined, high temperature plasma inside a large ultra-high vacuum chamber. The inside of the chamber is protected from the hot plasma with tiles made from beryllium, tungsten, carbon composites and other materials bolted to the vessel wall. The study was carried out in response to a JET fastener seizing inside the vacuum vessel. The following study looks at characterising the magnitude of the individual factors affecting the fastener break away torque. This was carried out using a statistical approach, the Taguchi method: isolating the net effect of individual factors present in a series of tests [1](Grove and Davis, 1992). Given the severe environment within the JET vessel due to the combination of heat, ultra-high vacuum and the high contact pressure in bolt threads, the contributions of localised diffusion bonding is assessed in conjunction with various combinations of bolt and insert material.

  18. Jet Inlet Efficiency

    Science.gov (United States)

    2013-08-08

    AFRL-RW-EG-TR-2014-044 Jet Inlet Efficiency Nigel Plumb Taylor Sykes-Green Keith Williams John Wohleber Munitions Aerodynamics Sciences...CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Nigel Plumb Taylor Sykes-Green Keith Williams John

  19. Abrasive water jet cutting

    International Nuclear Information System (INIS)

    Leist, K.J.; Funnell, G.J.

    1988-01-01

    In the process of selecting a failed equipment cut-up tool for the process facility modifications (PFM) project, a system using an abrasive water jet (AWJ) was developed and tested for remote disassembly of failed equipment. It is presented in this paper

  20. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  1. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  2. Jet substructure using semi-inclusive jet functions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States)

    2016-11-25

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G{sub i}{sup h}(z=ω{sub J}/ω,z{sub h}=ω{sub h}/ω{sub J},ω{sub J},R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω{sub J}), and the hadron h (ω{sub h}). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G{sub i}{sup h}(z,z{sub h},ω{sub J},R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL{sub R}) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL{sub R} results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  3. Jet substructure using semi-inclusive jet functions in SCET

    International Nuclear Information System (INIS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G_i"h(z=ω_J/ω,z_h=ω_h/ω_J,ω_J,R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω_J), and the hadron h (ω_h). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G_i"h(z,z_h,ω_J,R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL_R) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL_R results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  4. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  5. Structure of pulsed plasma jets

    International Nuclear Information System (INIS)

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

  6. DeepJet: a deep-learned multiclass jet-tagger for slim and fat jets

    CERN Multimedia

    CERN. Geneva; Qu, Huilin; Stoye, Markus; Kieseler, Jan; Verzetti, Mauro

    2018-01-01

    We present a customized neural network architecture for both, slim and fat jet tagging. It is based on the idea to keep the concept of physics objects, like particle flow particles, as a core element of the network architecture. The deep learning algorithm works for most of the common jet classes, i.e. b, c, usd and gluon jets for slim jets and W, Z, H, QCD and top classes for fat jets. The developed architecture promising gains in performance as shown in simulation of the CMS collaboration. Currently the tagger is under test in real data in the CMS experiment.

  7. Jet photoproduction at HERA

    International Nuclear Information System (INIS)

    Frixione, S.

    1997-01-01

    We compute various kinematical distributions for one-jet and two-jet inclusive photoproduction at HERA. Our results are accurate to next-to-leading order in QCD. We use the subtraction method for the cancellation of infrared singularities. We perform a thorough study of the reliability of QCD predictions; in particular, we consider the scale dependence of our results and discuss the cases when the perturbative expansion might break down. We also deal with the problem of the experimental definition of the pointlike and hadronic components of the incident photon, and briefly discuss the sensitivity of QCD predictions upon the input parameters of the calculation, like α S and the parton densities. (orig.)

  8. QCD and jets

    International Nuclear Information System (INIS)

    Munehisa, Tomo

    1990-01-01

    We present a review on the parton shower in e + e - annihilation. Also we discuss the next-to-leading-logarithmic parton shower. We emphasize that this new model provides a useful tool for the determinations of Λ MS from jet distributions. Analysis by the new model gives us Λ MS = 0.235±0.052 GeV from data of PETRA, PEP and TRISTAN. (author)

  9. Active control of continuous air jet with bifurcated synthetic jets

    Directory of Open Access Journals (Sweden)

    Dančová Petra

    2017-01-01

    Full Text Available The synthetic jets (SJs have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.

  10. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  11. Greenland plateau jets

    Directory of Open Access Journals (Sweden)

    George William Kent Moore

    2013-08-01

    Full Text Available The high ice-covered topography of Greenland represents a significant barrier to atmospheric flow and, as a direct and indirect result, it plays a crucial role in the coupled climate system. The wind field over Greenland is important in diagnosing regional weather and climate, thereby providing information on the mass balance of the ice sheet as well as assisting in the interpretation of ice core data. Here, we identify a number of hitherto unrecognised features of the three-dimensional wind field over Greenland; including a 2500-km-long jet along the central ice sheet's western margin that extends from the surface into the middle-troposphere, as well as a similar but smaller scale and less intense feature along its eastern margin. We refer to these features as Greenland Plateau Jets. The jets are coupled to the downslope katabatic flow and we argue that they are maintained by the zonal temperature gradients associated with the strong temperature inversion over the central ice sheet. Their importance for Greenland's regional climate is discussed.

  12. Multiple Jets at the LHC with High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Smillie, Jennifer M.

    2011-01-01

    We present a flexible Monte Carlo implementation of the perturbative framework of High Energy Jets, describing multi-jet events at hadron colliders. The description includes a resummation which ensures leading logarithmic accuracy for large invariant mass between jets, and is matched to tree......-level accuracy for multiplicities up to 4 jets. The resummation includes all-order hard corrections, which become important for increasing centre-of-mass energy of the hadronic collision. We discuss observables relevant for confronting the perturbative framework with 7 TeV data from the LHC, and the impact...

  13. Jet target intense neutron source

    International Nuclear Information System (INIS)

    Meier, K.L.

    1977-01-01

    A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

  14. Identifying jet quantum numbers event by event

    International Nuclear Information System (INIS)

    Teper, M.J.

    1979-12-01

    A method is proposed to identify the parton that gives rise to any particular jet. The method improves with the number of particles in the jet, and should indicate which of the jets in a three jet event at PETRA is the gluon jet. (author)

  15. Dynamics of Newtonian annular jets

    International Nuclear Information System (INIS)

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  16. Photon + jets at D0

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenschein, Lars; /RWTH Aachen U.

    2009-06-01

    Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of {radical}s = 1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb{sup -1} and 1.0 fb{sup -1}. The results are compared to perturbative QCD calculations in various approximations.

  17. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  18. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  19. Geometrical scaling of jet fragmentation photons

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Koichi, E-mail: koichi.hattori@riken.jp [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); McLerran, Larry, E-mail: mclerran@bnl.gov [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States); Physics Dept., China Central Normal University, Wuhan (China); Schenke, Björn, E-mail: bschenke@bnl.gov [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States)

    2016-12-15

    We discuss jet fragmentation photons in ultrarelativistic heavy-ion collisions. We argue that, if the jet distribution satisfies geometrical scaling and an anisotropic spectrum, these properties are transferred to photons during the jet fragmentation.

  20. Transition in synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2012-01-01

    Roč. 187, NOV 2012 (2012), s. 105-117 ISSN 0924-4247 R&D Projects: GA TA ČR(CZ) TA02020795; GA ČR(CZ) GPP101/12/P556; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence * synthetic jet * transition * velocity spectra Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www. science direct.com/ science /article/pii/S0924424712005031

  1. Hadron jets in perspective

    International Nuclear Information System (INIS)

    Quigg, C.

    1982-11-01

    The subject of hadron jet studies, to judge by the work presented at this workshop, is a maturing field which is still gathering steam. The very detailed work being done in lepton-lepton and lepton-hadron collisions, the second-generation measurements being carried out at Fermilab, the CERN SPS, and the ISR, and the very high energy hard scatterings being observed at the CERN Collider all show enormous promise for increased understanding. Perhaps we shall yet reach that long-sought nirvana in which high-p/sub perpendicular/ collisions become truly simple

  2. Jet physics at LEP

    International Nuclear Information System (INIS)

    Venus, W.

    1991-01-01

    The results of studies of the jet structure of hadronic Z 0 decays performed in the first year of Large Electron-Positron collider (LEP) operation are reviewed. The measurements of the quantum chromodynamics (QCD) coupling constant α s (M z )and the detection of the presence of the triple gluon vertex are summarized. After a brief review of the promising status of QCD in relation to even the very soft processes, the running of the coupling constants to high energy is considered in the context of grand unified theories. The necessity and importance of further theoretical work is stressed. (author)

  3. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  4. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    framework for presenting the results of the flowfield and jet penetration length. ... A turbulent jet is a basic free shear flow and has received research attention (see, .... MBE76 identify this to be a transitional zone and for. √ .... higher return flow and also higher velocity from counterflow due to a narrower gap thus leading.

  5. Associated jet production at HERA

    CERN Document Server

    Bartels, Julius; de Roeck, A; Graudenz, Dirk; Wüsthoff, M

    1996-01-01

    We compare the BFKL prediction for the associated production of forward jets at HERA with fixed-order matrix element calculations taking into account the kinematical cuts imposed by experimental conditions. Comparison with H1 data of the 1993 run favours the BFKL prediction. As a further signal of BFKL dynamics, we propose to look for the azimuthal dependence of the forward jets.

  6. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  7. LHCb; LHCb Jet Reconstruction

    CERN Multimedia

    Augusto, O

    2012-01-01

    The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than $4 \\times 10^{32} cm^{-2} s^{-1}$ and the integrated luminosity reached the value of 1.02 $fb^{-1}$ on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test pertubative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space $\\eta \\times \\phi$ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the calo...

  8. Disruption prediction at JET

    International Nuclear Information System (INIS)

    Milani, F.

    1998-12-01

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as l i and q ψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  9. Nucleosynthesis in Jets from Collapsars

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Nishimura, Nobuya; Hashimoto, Masa-aki

    2008-01-01

    We investigate nucleosynthesis inside magnetically driven jets ejected from collapsars, or rotating magnetized stars collapsing to a black hole, based on two-dimensional magnetohydrodynamic simulation of the collapsars during the core collapse. We follow the evolution of the abundances of about 4000 nuclides from the collapse phase to the ejection phase using a large nuclear reaction network. We find that the r-process successfully operates only in the energetic jets (>10 51 erg), so that U and Th are synthesized abundantly, even when the collapsars have a relatively small magnetic field (10 10 G) and a moderately rotating core before the collapse. The abundance patterns inside the jets are similar to that of the r-elements in the solar system. The higher energy jets have larger amounts of 56 Ni. Less energetic jets, which have small amounts of 56 Ni, could induce GRB without supernova, such as GRB060505 and GRB060614

  10. Magnetically driven jets and winds

    Science.gov (United States)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  11. Inclusive jet cross sections and jet shapes at CDF

    International Nuclear Information System (INIS)

    Wainer, N.

    1991-09-01

    The inclusive jet cross section and jet shapes at √s = 1.8 TeV have been measured by CDF at the Fermilab Tevatron Collider. results are compared to recent next-to-leading order QCD calculations, which predict variation of the cross section with cone size, as well as variation of the jet shape with energy. A lower limit on the parameter Λ c , which characterize a contact interaction associated with quark sub-structure is determined to be 1400 GeV at the 95% confidence level. 3 refs., 4 figs

  12. First experiments in JET

    International Nuclear Information System (INIS)

    Rebut, P.H.; Bartlett, D.V.; Baeumel, G.

    1985-01-01

    Results obtained from JET since June 1983 are described which show that this large tokamak behaves in a similar manner to smaller tokamaks, but with correspondingly improved plasma parameters. Long-duration hydrogen and deuterium plasmas (>10 s) have been obtained with electron temperatures reaching >4 keV for power dissipations =1.6), loss of vertical stability occurred, as expected from previous calculations. Forces of several hundred tonnes (at Isub(p)=2.7 MA) were transmitted to the vacuum vessel. Measured confinement times are larger than the corresponding INTOR values. The maximum achievable density is limited by disruptions. Impurity levels determine this limiting density, and the paper concludes with proposals to reduce these. In addition, progress in neutral injection and RF heating is described, as well as preparations for D-T operation. (author)

  13. JET flywheel generators

    International Nuclear Information System (INIS)

    Huart, M.; Sonnerup, L.

    1986-01-01

    Two large vertical shaft flywheel generators each provides the JET device with peak power up to 400 MW and energy up to 2600 MJ per pulse to induce and confine the multi-mega-ampere plasma current. The integrated rotor flywheel consists of a 650 tonne/10 m diameter rim carrying the poles of the machine. The energy is stored kinetically during a 9 min interval of acceleration from half-speed to full-speed and then released during a 20 s long deceleration. A design life of 100 000 cycles at full energy rating was specified. The mechanical design and construction of the generators is reviewed. Particular attention is paid to the assessment of the stresses and fatigue life of the rotor system, its dynamic behaviour (rim movement, critical speed and balancing) and on the performance in operation of the large thrust bearing. (author)

  14. JET pump limiter

    International Nuclear Information System (INIS)

    Sonnenberg, K.; Deksnis, E.; Shaw, R.; Reiter, D.

    1988-01-01

    JET plans to install two pump limiter modules which can be used for belt-limiter, inner-wall and X-point discharges and, also, for 1-2s as the main limiter. A design is presented which is compatible with two diagnostic systems, and which allows partial removal of the pump limiter to provide access for remote-handling operations. The high heat-flux components are initially cooled during a pulse. Heat is removed between discharges by radiation and pressure contacts to a water-cooled support structure. The pumping edge will be made of annealed pyrolytic graphite. Exhaust efficiency has been estimated, for a 1-d edge model, using a Monte-Carlo calculation of neutral gas transport. When the pump limiter is operated together with other wall components we expect an efficiency of ≅ 5% (2.5 x 10 21 part/s). As a main limiter the efficiency increases to about 10%. (author)

  15. Clues from Bent Jets

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    Powerful jets emitted from the centers of distant galaxies make for spectacular signposts in the radio sky. Can observations of these jets reveal information about the environments that surround them?Signposts in the SkyVLA FIRST images of seven bent double-lobed radio galaxies from the authors sample. [Adapted from Silverstein et al. 2018]An active supermassive black hole lurking in a galactic center can put on quite a show! These beasts fling out accreting material, often forming intense jets that punch their way out of their host galaxies. As the jets propagate, they expand into large lobes of radio emission that we can spot from Earth observable signs of the connection between distant supermassive black holes and the galaxies in which they live.These distinctive double-lobed radio galaxies (DLRGs) dont all look the same. In particular, though the jets are emitted from the black holes two poles, the lobes of DLRGs dont always extend perfectly in opposite directions; often, the jets become bent on larger scales, appearing to us to subtend angles of less than 180 degrees.Can we use our observations of DLRG shapes and distributions to learn about their surroundings? A new study led by Ezekiel Silverstein (University of Michigan) has addressed this question by exploring DLRGs living in dense galaxy-cluster environments.Projected density of DLRGcentral galaxy matches (black) compared to a control sample of random positionscentral galaxy matches (red) for different distances from acluster center. DLRGs have a higher likelihood of being located close to a cluster center. [Silverstein et al. 2018]Living Near the HubTo build a sample of DLRGs in dense environments, Silverstein and collaborators started from a large catalog of DLRGs in Sloan Digital Sky Survey quasars with radio lobes visible in Very Large Array data. They then cross-matched these against three galaxy catalogs to produce a sample of 44 DLRGs that are each paired to a nearby massive galaxy, galaxy group

  16. A multimaterial electrohydrodynamic jet (E-jet) printing system

    International Nuclear Information System (INIS)

    Sutanto, E; Shigeta, K; Kim, Y K; Graf, P G; Hoelzle, D J; Barton, K L; Alleyne, A G; Ferreira, P M; Rogers, J A

    2012-01-01

    Electrohydrodynamic jet (E-jet) printing has emerged as a high-resolution alternative to other forms of direct solution-based fabrication approaches, such as ink-jet printing. This paper discusses the design, integration and operation of a unique E-jet printing platform. The uniqueness lies in the ability to utilize multiple materials in the same overall print-head, thereby enabling increased degrees of heterogeneous integration of different functionalities on a single substrate. By utilizing multiple individual print-heads, with a carrousel indexing among them, increased material flexibility is achieved. The hardware design and system operation for a relatively inexpensive system are developed and presented. Crossover interconnects and multiple fluorescent tagged proteins, demonstrating printed electronics and biological sensing applications, respectively. (paper)

  17. Particle distributions in ordered jets

    International Nuclear Information System (INIS)

    Zarmi, Y.; Kogan, E.

    1978-01-01

    Assuming specific assumptions about the space-time evolution of hadronic jets, within the framework of a Monte-Carlo calculation, the transverse and longitudinal momentum distributins of particles within the jets are obtained. The transverse momentum distributions are sensitive to the space-time evolution picture. The observed energy dependence of the average transverse momentum and the well known seagull effect are qualitatively reproduced within a picture in which Slow particles in a jet are produced First, and Fast ones - Last (SFFL). (author)

  18. Jet substructure with analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [University of Manchester, Consortium for Fundamental Physics, School of Physics and Astronomy, Manchester (United Kingdom); Fregoso, Alessandro; Powling, Alexander [University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); Marzani, Simone [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2013-11-15

    We consider the mass distribution of QCD jets after the application of jet-substructure methods, specifically the mass-drop tagger, pruning, trimming and their variants. In contrast to most current studies employing Monte Carlo methods, we carry out analytical calculations at the next-to-leading order level, which are sufficient to extract the dominant logarithmic behaviour for each technique, and compare our findings to exact fixed-order results. Our results should ultimately lead to a better understanding of these jet-substructure methods which in turn will influence the development of future substructure tools for LHC phenomenology. (orig.)

  19. Jet Joint Undertaking. Vol. 2

    International Nuclear Information System (INIS)

    1989-06-01

    The scientific, technical, experimental and theoretical investigations related to JET tokamak are presented. The JET Joint Undertaking, Volume 2, includes papers presented at: the 15th European Conference on controlled fusion and plasma heating, the 15th Symposium on fusion technology, the 12th IAEA Conference on plasma physics and controlled nuclear fusion research, the 8th Topical Meeting on technology of fusion. Moreover, the following topics, concerning JET, are discussed: experience with wall materials, plasma performance, high power ion cyclotron resonance heating, plasma boundary, results and prospects for fusion, preparation for D-T operation, active gas handling system and remote handling equipment

  20. Jet Joint Undertaking. Progress report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This JET Progress Reports provides an overview summary and puts into context the scientific and technical advances made on JET during 1990. In addition, the Report is supplemented by appendices of contributions (in preprint form) of the more important JET articles published during the year, which set out the details of JET activities

  1. Jet reconstruction and heavy jet tagging at LHCb

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The jet reconstruction and the heavy jet flavour tagging at LHCb will be discussed with focus on the last published measurements such as the measurement of forward tt, W+bb and W+cc production in pp collisions at √s=8 TeV and the search for the SM Higgs boson decaying in bbbar or ccbar in association to W or Z boson.

  2. Annular Impinging Jet Controlled by Radial Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Tesař, Václav; Broučková, Zuzana; Peszyński, K.

    2014-01-01

    Roč. 35, 16-17 (2014), s. 1450-1461 ISSN 0145-7632 R&D Projects: GA ČR GA14-08888S; GA AV ČR(CZ) IAA200760801 Institutional support: RVO:61388998 Keywords : impinging jet * hybrid synthetic jet * flow control Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.814, year: 2014 http://dx.doi.org/10.1080/01457632.2014.889467

  3. Characteristics and generation of secondary jets and secondary gigantic jets

    Science.gov (United States)

    Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang

    2012-06-01

    Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.

  4. Equatorial jet - a case study

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    analysis of hydrographic data of 1964 is also carried out to understand the response signature of water column to prevailing westerlies. A jet forms in the Central Indian Ocean which gathers momentum as it advances eastward. Sinking of the thermocline...

  5. Jets in heavy ion collisions

    International Nuclear Information System (INIS)

    Nattrass, Christine

    2017-01-01

    High energy collisions of heavy nuclei permit the study of nuclear matter at temperatures and energy densities so high that the fundamental theory for strong interactions, QCD, predicts a phase transition to a plasma of quarks and gluons. This matter, called a Quark Gluon Plasma (QGP), has been studied experimentally for the last decade and has been observed to be a strongly interacting liquid with a low viscosity. High energy partons created early in the collision interact with the QGP and provide unique probes of its properties. Hard partons fragment into collimated sprays of particles called jets and have been studied through measurements of single particles, correlations between particles, and measurements of fully reconstructed jets. These measurements demonstrate partonic energy loss in the QGP and constrain the QGP’s properties. Measurements of the jet structure give insight into the mechanism of this energy loss. The information we have learned from studies of jets and challenges for the field will be reviewed. (paper)

  6. Jet-quenching and correlations

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... pseudorapidity (ridge) correlations in small systems. Section 7 ... words of 'jet' and 'parton' are often used interchangeably. ...... [118] STAR Collaboration: Joshua Konzer, Poster presentation at Quark Matter 2012 (2012).

  7. Jet calculus beyond leading logarithms

    International Nuclear Information System (INIS)

    Kalinowski, J.; Konishi, K.; Taylor, T.R.

    1981-01-01

    It is shown that the evolution of hadronic jets produced in hard processes can be studied in terms of a simple parton branching picture, beyond the leading log approximation of QCD. The jet calculus is generalized to any given order of logs (but always to all orders of αsub(s)). We discuss the general structure of the formalism. Universality of jet evolution is discussed. We consider also a jet calorimetry measure and the multiplicity distribution of final states in a form which allows a systematic improvement of approximation. To the next-to-leading order, we prove the finiteness and elucidate the scheme dependence of parton subprocess probabilities. The physical inclusive cross section is shown to be scheme independent: next-to-leading results for e + e - → q (nonsinglet) + X agree with those of Curci and others. (orig.)

  8. Jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Joensson, L.

    1995-01-01

    Jet production in deep inelastic scattering provides a basis for the investigation of various phenomena related to QCD. Two-jet production at large Q 2 has been studied and the distributions with respect to the partonic scaling variables have been compared to models and to next to leading order calculations. The first observations of azimuthal asymmetries of jets produced in first order α s processes have been obtained. The gluon initiated boson-gluon fusion process permits a direct determination of the gluon density of the proton from an analysis of the jets produced in the hard scattering process. A comparison of these results with those from indirect extractions of the gluon density provides an important test of QCD. (author)

  9. Top Jets at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, L.G.; Lee, S.J.; Perez, G.; Sung, I.; Virzi, J.

    2008-10-06

    We investigatethe reconstruction of high pT hadronically-decaying top quarksat the Large Hadron Collider. One of the main challenges in identifying energetictop quarks is that the decay products become increasingly collimated. This reducesthe efficacy of conventional reconstruction methods that exploit the topology of thetop quark decay chain. We focus on the cases where the decay products of the topquark are reconstructed as a single jet, a"top-jet." The most basic"top-tag" methodbased on jet mass measurement is considered in detail. To analyze the feasibility ofthe top-tagging method, both theoretical and experimental aspects of the large QCDjet background contribution are examined. Based on a factorization approach, wederive a simple analytic approximation for the shape of the QCD jet mass spectrum.We observe very good agreement with the Monte Carlo simulation. We consider high pT tt bar production in the Standard Model as an example, and show that our theoretical QCD jet mass distributions can efficiently characterize the background via sideband analyses. We show that with 25 fb-1 of data, our approach allows us to resolve top-jets with pT _> 1 TeV, from the QCD background, and about 1.5 TeV top-jets with 100 fb-1, without relying on b-tagging. To further improve the significancewe consider jet shapes (recently analyzed in 0807.0234 [hep-ph]), which resolve thesubstructure of energy flow inside cone jets. A method of measuring the top quarkpolarization by using the transverse momentum of the bottom quark is also presented.The main advantages of our approach are: (i) the mass distributions are driven byfirst principle calculations, instead of relying solely on Monte Carlo simulation; (ii) for high pT jets (pT _> 1 TeV), IR-safe jet shape variables are robust against detectorresolution effects. Our analysis can be applied to other boosted massive particlessuch as the electroweak gauge bosons and the Higgs.

  10. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buchelt, E.; Jacobi, D.; Lackner, E.; Schilling, H.B.; Ulrich, M.; Weber, G.

    1983-08-01

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  11. 4-jet events at LEP

    CERN Document Server

    Bizouard, M A

    1997-01-01

    Results of a special study made by the four LEP experiments on 4-jet events recorded at Vs = 130 - 136 , 161 and 172 GeV are related. This study concerns the ALEPH analysis which has shown an excess of 4-jet events in data recorded at Vs = 130 - 136 GeV. No significant evidence has been found by the 3 other experiments. Results have been combined after several checks which did not show differences of performance between the four LEP experiments.

  12. Overview of JET results

    International Nuclear Information System (INIS)

    Pamela, J.

    2003-01-01

    Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. The physics of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly: the extrapolation of ELM size to ITER has been re-evaluated; NTMs have been shown to be metastable in JET, and can be avoided via sawtooth destabilisation by ICRH; α-simulation experiments were carried out by accelerating 4 He beam ions by ICRH, providing a new tool for fast particle and MHD studies with up to 80-90% of plasma heating by fast 4 He ions. With or without impurity seeding, quasi-steady sate high confinement (H 98 =1), high density (n e /n GR = 0.9-1) and high β (β N =2) ELMy H-mode has been achieved by operating near the ITER triangularity (δ∼0.40-0.5) and safety factor (q 95 ∼3), at Z eff ∼1.5-2. In Advanced Tokamak scenarios, internal transport barriers are now characterised in real time with a new criterion ρ* T ; tailoring of the current profile with LHCD provides reliable access to a variety of q profiles, with significantly lowered access power for barrier formation; rational q surfaces appear to be associated with ITB formation; Alfven cascades are observed in RS plasmas, providing an identification of q profile evolution; plasmas with 'current holes' were observed and explained by modelling. Transient high confinement Advanced Tokamak regimes with H89=3.3, β N =2.4 and ITER relevant q<5 are achievable in reversed magnetic shear. Quasistationary internal transport barriers are developed with full non-inductive current drive, including ∼50% bootstrap current. Record duration of ITBs was achieved, up to 11 s, approaching the resistive time. Pressure and current profiles of Advanced Tokamak regimes are controlled by a real time feedback system, in separate experiments. The erosion and co-deposition data base progressed significantly, in particular with a new quartz microbalance diagnostic allowing shot by shot measurements of

  13. Transverse jets and their control

    Energy Technology Data Exchange (ETDEWEB)

    Karagozian, Ann R. [Department of Mechanical and Aerospace Engineering, University of California, 48-121 Engineering IV, Los Angeles, CA 90095 (United States)

    2010-10-15

    The jet in crossflow or transverse jet has been studied extensively because of its relevance to a wide variety of flows in technological systems, including fuel or dilution air injection in gas turbine engines, thrust vector control for high speed airbreathing and rocket vehicles, and exhaust plumes from power plants. These widespread applications have led over the past 50+ years to experimental, theoretical, and numerical examinations of this fundamental flowfield, with and without a combustion reaction, and with single or multi-phase flow. The complexities in this flowfield, whether the jet is introduced flush with respect to the injection wall or from an elevated pipe or nozzle, present challenges in accurately interrogating, analyzing, and simulating important jet features. This review article provides a background on these studies and applications as well as detailed features of the transverse jet, and mechanisms for its control via active means. Promising future directions for the understanding, interrogation, simulation, and control of transverse jet flows are also identified and discussed. (author)

  14. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  15. Quark and gluon jet properties in symmetric three-jet events

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Quark and gluon jets with the same energy, 24GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on either a track impact parameter method or a high transverse momentum lepton tag. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity. Evidence is also presented which shows that the corresponding differences between gluon and heavy flavour jets are significantly smaller.

  16. Forward Jet Vertex Tagging: A new technique for the identification and rejection of forward pileup jets

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The suppression of pileup forward jets is crucial for a variety of physics analyses at the LHC, ranging from VBF Higgs production to SUSY searches. A novel forward pileup tagging technique that exploits the correlation between central and forward jets originating from pileup interactions is presented. Tracking and vertex information in the central $\\eta$ region is used to indirectly tag and reject forward pileup jets that are back-to-back to central pileup jets. The pileup suppression power observed in Pythia8 simulated events increases with jet \\pt and ranges between a 30\\% and 60\\% pileup jet removal for 90\\% jet selection efficiency for jets between 20 and 50 GeV.

  17. Using neural networks with jet shapes to identify b jets in e+e- interactions

    International Nuclear Information System (INIS)

    Bellantoni, L.; Conway, J.S.; Jacobsen, J.E.; Pan, Y.B.; Wu Saulan

    1991-01-01

    A feed-forward neural network trained using backpropagation was used to discriminate between b and light quark jets in e + e - → Z 0 → qanti q events. The information presented to the network consisted of 25 jet shape variables. The network successfully identified b jets in two- and three-jet events modeled using a detector simulation. The jet identification efficiency for two-jet events was 61% and the probability to call a light quark jet a b jet equal to 20%. (orig.)

  18. Forward Jets and Forward-Central Jets at CMS

    CERN Document Server

    INSPIRE-00176215

    2012-01-01

    We report on cross section measurements for inclusive forward jet production and for the simultaneous production of a forward and a central jet in sqrt{s} = 7 TeV pp-collisions. Data collected in 2010, corresponding to an integrated luminosity of 3.14 pb^{-1}, is used for the measurements. Jets in the transverse momentum range pT = 35 - 140 GeV/c are reconstructed with the anti-kT (R = 0.5) algorithm. The extended coverage of large pseudo-rapidities is provided by the Hadronic Forward calorimeter (3.2 < \\eta < 4.7), while central jets are limited to \\eta < 2.8, covered by the main detector components. The two differential cross sections are presented as a function of the jet transverse momentum. Comparisons to next-to-leading order perturbative calculations, and predictions from event generators based on different parton showering mechanisms (PYTHIA and HERWIG) and parton dynamics (CASCADE) are shown.

  19. Investigations of needle-free jet injections.

    Science.gov (United States)

    Schramm-Baxter, J R; Mitragotri, S

    2004-01-01

    Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, they have a low market share compared to needles possibly due to occasional pain associated with jet injection. Jets employed by the traditional jet injectors penetrate deep into the dermal and sub-dermal regions where the nerve endings are abundantly located. To eliminate the pain associated with jet injections, we propose to utilize microjets that penetrate only into the superficial region of the skin. However, the choice of appropriate jet parameters for this purpose is challenging owing to the multiplicity of factors that determine the penetration depth. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B. The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power.

  20. Holographic Jet Quenching

    Science.gov (United States)

    Ficnar, Andrej

    In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based

  1. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Wanotayaroj, Chaowaroj [Center for High Energy Physics, University of Oregon,1371 E. 13th Ave, Eugene, OR 97403 (United States)

    2015-02-12

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rjets are calibrated and used as the inputs to reconstruct large radius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  2. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    International Nuclear Information System (INIS)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-01-01

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rjets are calibrated and used as the inputs to reconstruct large radius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  3. Inclusive jet spectrum for small-radius jets

    CERN Document Server

    Dasgupta, Mrinal; Salam, Gavin P.; Soyez, Gregory

    2016-01-01

    Following on our earlier work on leading-logarithmic (LLR) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small-R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their $p_t$-dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LLR predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  4. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  5. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  6. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Science.gov (United States)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-02-01

    Jets with a large radius R ≳ 1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large- R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale r groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  7. Sub- and supercritical jet disintegration

    Science.gov (United States)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  8. How jets get the jitters

    International Nuclear Information System (INIS)

    Zarmi, Y.

    1977-01-01

    Models in which the temporal evolution of hadronic jets and the rapidity ordering of particles within jets are correlated are discussed. Observable effects on the particle average transverse momentum (energy- and longitudinal momentum-dependence) characteristic of such models are pointed out. In particular, models in which, within jets, slow particles are produced first and fast particles come out last should exhibit the well known seagull effect, with rising, for fixed x, proportionately to the square root of the mean particle multiplicity. If, by analogy, the transverse momentum distributions of partons also exhibit such features, then we have a source of scaling violation in deep inelastic reactions that shows up at high energies rather than at low energies, and a source for an energy and Q 2 dependent in lepton pair production. (author)

  9. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  10. Machine learning in jet physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    High energy collider experiments produce several petabytes of data every year. Given the magnitude and complexity of the raw data, machine learning algorithms provide the best available platform to transform and analyse these data to obtain valuable insights to understand Standard Model and Beyond Standard Model theories. These collider experiments produce both quark and gluon initiated hadronic jets as the core components. Deep learning techniques enable us to classify quark/gluon jets through image recognition and help us to differentiate signals and backgrounds in Beyond Standard Model searches at LHC. We are currently working on quark/gluon jet classification and progressing in our studies to find the bias between event generators using domain adversarial neural networks (DANN). We also plan to investigate top tagging, weak supervision on mixed samples in high energy physics, utilizing transfer learning from simulated data to real experimental data.

  11. Cutting concrete with abrasion jet

    International Nuclear Information System (INIS)

    Yie, G.G.

    1982-01-01

    Fluidyne Corporation has developed a unique process and apparatus that allow selected abrasives to be introduced into high-speed waterjet to produce abrasive-entrained waterjet that has high material-cutting capabilities, which is termed by Fluidyne as the Abrasion Jet. Such Abrasion Jet has demonstrated capability in cutting hard rock and concrete at a modest pressure of less than 1360 bars (20,000 psi) and a power input of less than 45 kW (60 horsepower). Abrasion Jet cutting of concrete is characterized by its high rate of cutting, flexible operation, good cut quality, and relatively low costs. This paper presents a general description of this technology together with discussions of recent test results and how it could be applied to nuclear decontamination and decommissioning work. 8 references

  12. QCD jets from coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Curci, G [European Organization for Nuclear Research, Geneva (Switzerland); Greco, M; Srivastava, Y [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1979-11-19

    A recently proposed approach to the problem of infrared and mass singularities in QCD based on the formalism of coherent states, is extended to discuss massless quark and gluon jets. The present results include all leading (ln delta) terms as well as finite terms in the energy loss epsilon, in addition to the usual ln epsilon associated with ln delta. The formulae agree with explicit perturbative calculations, whenever available. Explicit expressions for the total Ksub(T) distributions are given which take into account transverse-momentum conservation. Predictions are also made for the Q/sup 2/ dependence of the mean Ksub(T)/sup 2/ for quark and gluon jets. The jet ksub(T) distributions are extrapolated for low ksub(T) and shown to describe with good accuracy the data for eanti e..-->..qanti q..-->.. hadrons. Numerical predictions are also presented for the forthcoming PETRA, PEP and LEP machines.

  13. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  14. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  15. QCD and Jets at Hadron Colliders

    CERN Document Server

    Sapeta, Sebastian

    2016-01-01

    We review various aspects of jet physics in the context of hadron colliders. We start by discussing the definitions and properties of jets and recent development in this area. We then consider the question of factorization for processes with jets, in particular for cases in which jets are produced in special configurations, like for example in the region of forward rapidities. We review numerous perturbative methods for calculating predictions for jet processes, including the fixed-order calculations as well as various matching and merging techniques. We also discuss the questions related to non-perturbative effects and the role they play in precision jet studies. We describe the status of calculations for processes with jet vetoes and we also elaborate on production of jets in forward direction. Throughout the article, we present selected comparisons between state-of-the-art theoretical predictions and the data from the LHC.

  16. Identifying Jets Using Artifical Neural Networks

    Science.gov (United States)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  17. The time development of QCD jets

    International Nuclear Information System (INIS)

    Caneschi, L.

    1979-01-01

    The time development of jets in perturbative QCD is studied. In spite of the fact that the total time for the jet to develop increases indefinitely with increasing energy, quark antiquark pairs remain unscreened only an infinitesimal time. (author)

  18. Quark vs Gluon Jet Tagging at ATLAS

    CERN Document Server

    Rubbo, Francesco; The ATLAS collaboration

    2017-01-01

    Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.

  19. Calculations of slurry pump jet impingement loads

    International Nuclear Information System (INIS)

    Wu, T.T.

    1996-01-01

    This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented

  20. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  1. Unsteady jet-slug dynamics

    International Nuclear Information System (INIS)

    Kang, S.W.

    1977-01-01

    The present analysis treats the transient load characteristics at the wet-well bottom during the vent-clearing event under loss-of-coolant accident conditions. A conceptual model is introduced wherein the liquid-jet inertia and the net momentum-efflux are the two dominant physical factors. The derived load-history equations were found to be functions of the vent-clearing characteristics and of the jet-decay mode in the liquid pool. The theoretical results obtained by a physical modelling of these phenomena appear to agree reasonably well with the available data from UCLA and from LLL 1 / 5 -scale experiments

  2. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  3. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    Science.gov (United States)

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8AbstractThe genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  4. Rebounding of a shaped-charge jet

    Science.gov (United States)

    Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.

    2007-09-01

    The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.

  5. Theoretical Developments in QCD Jet Energy Loss

    Energy Technology Data Exchange (ETDEWEB)

    Mehtar-Tani, Yacine

    2016-12-15

    We review the recent developments in the theory of jet-quenching. First, we analyze the coherent vacuum cascade and incoherent medium-induced cascade separately. We then discuss the interplay between the two kinds of cascade and the resulting partial decoherence of the inner jet structure. Finally, we report on recent calculations of higher-order corrections. In particular, the dominant radiative corrections to jet observables that yield the renormalization of the jet-quenching parameter are addressed.

  6. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  7. Quark and gluon jet properties in symmetric three-jet events

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.

  8. Identifying a new particle with jet substructures

    International Nuclear Information System (INIS)

    Han, Chengcheng; Kim, Doojin; Kim, Minho; Postech, Pohang

    2017-01-01

    Here, we investigate a potential of determining properties of a new heavy resonance of mass O(1)TeV which decays to collimated jets via heavy Standard Model intermediary states, exploiting jet substructure techniques. Employing the Z gauge boson as a concrete example for the intermediary state, we utilize a "merged jet" defined by a large jet size to capture the two quarks from its decay. The use of the merged jet bene ts the identification of a Z-induced jet as a single, reconstructed object without any combinatorial ambiguity. We also find that jet substructure procedures may enhance features in some kinematic observables formed with subjet four-momenta extracted from a merged jet. This observation motivates us to feed subjet momenta into the matrix elements associated with plausible hypotheses on the nature of the heavy resonance, which are further processed to construct a matrix element method (MEM)-based observable. For both moderately and highly boosted Z bosons, we demonstrate that the MEM in combination with jet substructure techniques can be a very powerful tool for identifying its physical properties. Finally, we discuss effects from choosing different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.

  9. Jet physics at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Safonov, A.; /UC, Davis

    2004-12-01

    The latest results on jet physics at CDF are presented and discussed. Particular attention is paid to studies of the inclusive jet cross section using 177 pb{sup -1} of Run II data. Also discussed is a study of gluon and quark jet fragmentation.

  10. Whitby Jet Jewels in the Victorian Age

    OpenAIRE

    Mendonça de Carvalho, Luís; Fernandes, Francisca Maria; Nunes, Maria de Fatima; Brigola, João

    2013-01-01

    Abstract. During the middle nineteenth century, jet obtained from Whitby (England) was sought after due to its dark black color and hardness. This fossilized plant material was used in mourning jewelry, and Whitby hard jet was regarded among the best for carving and bead making. Jet fashion was connected with Queen Victoria, whose long mourning period lasted for almost forty years.

  11. Turbulent Buoyant Jets in Flowing Ambients

    DEFF Research Database (Denmark)

    Chen, Hai-Bo; Larsen, Torben; Petersen, Ole

    1991-01-01

    The mean behaviour of horizontal turbulent buoyant jets in co-flowing currents is investigated experimentally and numerically, in terms of jet trajectory, dilution and centerline density deficit and velocity decay. It is demonstrated in the paper that the laboratory data on the jet trajectory and...

  12. REVIEW OF WATER JET APPLICATIONS IN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Faruk MENDİ

    1999-02-01

    Full Text Available Usage of water jets in manufacturing processes, has been known for many decades. A wide range of engineering materials can be cut by water jets with satisfactory results. Enhanced reliability and efficiency of the technique, have yielded the technology greater interest for manufacturing applications. Water jets are used to cut soft materials such as wood, plastics, aluminium and copper. Abrasive water jets are used to cut very hard materials such as titanium, inconel, glass and ceramics. It is impossible to cut these materials with classical cutting technics. A water jet processing system utilises water pressure in the range of 100Mpa-400Mpa, for the different applications. In abrasive water jet milling and abrasive water jet cutting processes, the pressure of the jet is about 400Mpa. In water jet surface penning, the jet pressure is about 100Mpa. The process of abrasives mixing with the water stream is a complex phenomena. Erosion processes involved in cutting not yet fully understood. The lack of understanding the process call for other strategies in finding appropriate ways to obtain a precision depth in cutting operation. In this paper the principles of water jet systems had been explained. Results of experiments that made on cutting process and surface strengthening with water jet had been given.

  13. Rapidity gaps between jets at D OE

    International Nuclear Information System (INIS)

    Abachi, S.

    1996-07-01

    We present studies of jet production via color-singlet events with low particle multiplicity between the jets. A preliminary study of the multiplicity in other regions of the color singlet events and the dependence of color-singlet exchange on jet transverse energy is also presented

  14. Searching for Jets in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Salur, Sevil

    2008-01-01

    Jet quenching measurements using leading particles and their correlations suffer from known biases, which can be removed via direct reconstruction of jets in central heavy ion collisions. In this talk, we discuss several modern jet reconstruction algorithms and background subtraction techniques that are appropriate to heavy ion collisions

  15. Virtual MHD Jets on Grids

    DEFF Research Database (Denmark)

    Lery, Thibaut; Combet, Céline; Murphy, G C

    2005-01-01

    As network performance has outpaced computational power and storage capacity, a new paradigm has evolved to enable the sharing of geographically distributed resources. This paradigm is known as Grid computing and aims to offer access to distributed resource irrespective of their physical location...... the first jet simulations and their corresponding models that could help to understand results from laboratory experiments....

  16. Disintegration of a Liquid Jet

    Science.gov (United States)

    Haenlein, A

    1932-01-01

    This report presents an experimental determination of the process of disintegration and atomization in its simplest form, and the influence of the physical properties of the liquid to be atomized on the disintegration of the jet. Particular attention was paid to the investigation of the process of atomization.

  17. An overview of JET results

    International Nuclear Information System (INIS)

    Adams, J.M.; Alladio, F.; Altmann, H.

    1989-01-01

    An overview is given of experimental results obtained on JET during 1988, and in particular of results at high total power input into plasmas with various configurations. An account is given of the various interpretations of these results and some of the difficulties encountered are related. The progress is summarised in terms of the projected D-T performance. (author)

  18. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006 ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

  19. Jet Production at the Tevatron

    International Nuclear Information System (INIS)

    Nang, F.

    1997-06-01

    Inclusive jet cross section and dijet angular distribution results from the CDF and D0 collaborations are presented. The possibility that compositeness might be evident at high transverse energies is explored by both experiments. Using the angular distributions, the CDF analysis excludes at the 95% CL regions with Λ + - + < 2.0 TeV for the same model

  20. Soft drop jet mass measurement

    CERN Document Server

    Roloff, Jennifer Kathryn; The ATLAS collaboration

    2018-01-01

    Calculations of jet substructure observables that are accurate beyond leading-logarithm accuracy have recently become available. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This poster documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log( ρ^2), where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 ifb of sqrt(s) = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

  1. The JET vacuum interspace system

    International Nuclear Information System (INIS)

    Orchard, J.; Scales, S.

    1999-01-01

    In the past JET has suffered from a number of vacuum leaks on components such as bellows, windows and feedthroughs due, in part, to the adverse conditions, including high mechanical forces, which may prevail during plasma operation. Therefore before the recent Tritium experiments on JET it was deemed prudent to manufacture and install items with a secondary containment or interspace in order to minimise the effect of failure of the primary vacuum barrier on both the leak integrity of the machine and the outcome of the experiments. This paper describes the philosophy, logistics, method and implementation of an integrated connection and monitoring system on the 330 interspaces currently in position on the JET machine. Using the JET leak database comparisons are drawn of leak failure rates of the components allied to the number of operational hours, prior to the system being present and after installation and commissioning, and the case of detection compared to the previous situation. An argument is also presented on the feasibility and adaptability of this system to any large complex machine and the benefits to be obtained in reduction of leaks and operational down time. (author)

  2. Misaligned Accretion and Jet Production

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  3. The Structure and Dynamics of GRB Jets

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; /KIPAC, Menlo Park

    2006-10-25

    There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.

  4. Jets in heavy ion collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  5. Jet Energy Scale Uncertainties in ATLAS

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2012-01-01

    About one year after the first proton-proton collisions at a centre of mass energy of $sqrt(s) = 7,TeV$, the ATLAS experiment has achieved an accuracy of the jet energy measurement between $2-4%$ for jet transverse momenta from $20,GeV$ to $2,TeV$ in the pseudorapidity range up to $4.5$. The jet energy scale uncertainty is derived from in-situ single hadron response measurement along with systematic variations in the Monte Carlo simulation. In addition, the transverse momentum balance between a central and a forward jet in events with only two jets at high transverse momentum is used to set the jet energy uncertainty in the forward region. The obtained uncertainty is confirmed by in-situ measurements exploiting the transverse momentum balance between a jet and a well measured reference object like the photon transverse momentum in photon-jet events. Jets in the TeV-energy regime were tested using a system of well calibrated jets at low transverse momenta against a high-pt jet. Preliminary results from the 201...

  6. Jet Energy Scale Uncertainties in ATLAS

    International Nuclear Information System (INIS)

    Barillari, Teresa

    2012-01-01

    The first proton-proton collisions at a centre of mass energy of √s = 7TeV have been used by the ATLAS experiment to achieve an accuracy of the jet energy measurement between 2% and 4% for jets transverse momenta between 20 GeV and 2TeV and in the absolute pseudorapidity range up to 4.5. The jet energy scale uncertainty is derived from measurements in situ of the calorimeter single response to hadrons together with systematic variations in the Monte Carlo simulation. The transverse momentum balance between a central and a forward jet in events with two high transverse momenta jets is used to set the jet energy uncertainty in the forward region. The obtained uncertainty is confirmed by in-situ measurements. Jets in the TeV energy range have been tested using a system of well calibrated jets at low transverse momenta against high transverse momenta jets. A further reduction of the jet energy scale uncertainty between 1% and 2% for jets transverse momenta above 30 GeV has been achieved using data from the 2011 run based on an integrated luminosity of 5 fb −1 .

  7. Numerical simulation of sand jet in water

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  8. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  9. The JET multi-pellet injector launcher

    International Nuclear Information System (INIS)

    Kupschus, P.; Bailey, W.; Gadeberg, M.; Hedley, L.; Twyman, P.; Szabo, T.; Evans, D.

    1987-01-01

    Under a collaborative agreement between the Joint European Torus JET and the United States Department of Energy US DOE, JET and Oak Ridge National Laboratory (ORNL) jointly built a multi-pellet injector for fuelling and re-fuelling of the JET plasma. A three-barrel repetitive pneumatic pellet Launcher - built by ORNL - is attached to a JET pellet launcher-machine interface (in short: Pellet Interface) which is the subject of this paper. The present Launcher-Interface combination provides deuterium or hydrogen injection at moderate pellet speeds for the next two operational periods on JET. The Pellet Interface, however, takes into account the future requirements of JET. It was designed to allow the attachment of the high speed pellet launchers now under development at JET and complies with the requirements of remote handling and tritium operation. In addition, the use of tritium pellets is being considered

  10. Study of two-phase underexpanded jets by gas jet

    International Nuclear Information System (INIS)

    Uchida, Mitsunori; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    When a heat exchange in a Fast Breeder Reactor cracks, a sodium-water reaction occurs. When a tube cracks, highly pressurized water or steam escapes into the surrounding liquid sodium and a sodium-water reaction occurs forming the disodium oxide. The disodium oxide caught in the steam jet strikes other tubes in the reactor. The struck disodium oxide can then cause these tubes to crack. The release of steam into the liquid sodium media is a two-phase flow involving underexpansion. In this paper qualitative measurement of the underexpanded gas jet which injected into water was carried our for the purpose of analyzing the behavior of the two-phase flow. (author)

  11. Jet Dipolarity: Top Tagging with Color Flow

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Jankowiak, Martin; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC

    2011-08-12

    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high p{sub T}. The impressive resolution of the ATLAS and CMS detectors means that a typical QCD jet at the LHC deposits energy in {Omicron}(10-100) calorimeter cells. Such fine-grained calorimetry allows for jets to be studied in much greater detail than previously, with sophisticated versions of current techniques making it possible to measure more than just the bulk properties of jets (e.g. event jet multiplicities or jet masses). One goal of the LHC is to employ these techniques to extend the amount of information available from each jet, allowing for a broader probe of the properties of QCD. The past several years have seen significant progress in developing such jet substructure techniques. A number of general purpose tools have been developed, including: (i) top-tagging algorithms designed for use at both lower and higher p{sub T} as well as (ii) jet grooming techniques such as filtering, pruning, and trimming, which are designed to improve jet mass resolution. Jet substructure techniques have also been studied in the context of specific particle searches, where they have been shown to substantially extend the reach of traditional search techniques in a wide variety of scenarios, including for example boosted Higgses, neutral spin-one resonances, searches for supersymmetry, and many others. Despite these many successes, however, there is every reason to expect that there remains room for refinement of jet substructure techniques.

  12. Performance of large-R jets and jet substructure reconstruction with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    This paper presents the application of techniques to study jet substructure. The performance of modified jet algorithms for a variety of jet types and event topologies is investigated. Properties of jets subjected to the mass-drop filtering, trimming and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions and exhibit improved stability at high luminosity. Monte Carlo studies of the signal-background discrimination with jet grooming in new physics searches based on jet invariant mass and jet substructure properties are also presented. The application of jet trimming is shown to improve the robustness of large-R jet measurements, reduce sensitivity to the superfluous effects due to the intense environment of the high luminosity LHC, and improve the physics potential of searches for heavy boosted objects. The analyses presented in this note use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 \\pm 0.2 fb−1 .

  13. The scientific success of JET

    International Nuclear Information System (INIS)

    Keilhacker, M.; Gibson, A.; Gormezano, C.; Rebut, P.H.

    2001-01-01

    The paper highlights the JET work in physics and technology during the period of the JET Joint Undertaking (1978-1999), with special emphasis on what has been learned for extrapolation to a NEXT STEP device. - Global confinement scaling has been extended to high currents and heating powers. Dimensionless scaling experiments of ELMy H mode plasmas suggest that bulk plasma transport is gyro-Bohm and predict ignition for a device with ITER-FDR parameters. Experiments in which the plasma elongation and triangularity were varied independently show a strong increase of confinement time with elongation (τ E ∼κ α 0.8±0.3 ), thus supporting a basic design principle of ITER-FEAT. With the Pellet Enhanced Performance (PEP) mode, JET has discovered the beneficial effect of reversed magnetic shear on confinement, opening the possibility of advanced tokamak scenarios. - With a three stage programme of progressively more closed divertors, JET has demonstrated the benefits of divertor closure, in particular, of high divertor neutral pressure which facilitates helium removal. It has also shown that in detached (or semidetached) radiative divertor plasmas the average power load on the target plates of a NEXT STEP device should be tolerable but, in addition, that the transient power loads during ELMs could cause problems. - In 1991 JET has demonstrated the first ever controlled production of a megawatt of fusion power. More extensive D-T experiments in 1997 (DTE1) have established new records in fusion performance: 16 MW transient fusion power with Q in =0.62 (i.e. close to breakeven, Q in =1) and 4 MW steady state fusion power with Q in =0.18 for 4 s. DTE1 has also allowed a successful test of various reactor ICRF heating schemes and a clear demonstration of alpha particle heating, consistent with classical expectations. - JET has developed and tested some of the most important technologies for a NEXT STEP and a reactor, in particular the safe handling of tritium and the

  14. Inclusive jet spectrum for small-radius jets

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester,Manchester M13 9PL (United Kingdom); Dreyer, Frédéric A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France); CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Salam, Gavin P. [CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681,F-91191 Gif-sur-Yvette (France)

    2016-06-09

    Following on our earlier work on leading-logarithmic (LL{sub R}) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small-R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their p{sub t}-dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LL{sub R} predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  15. Interaction of a hot jet with two cold side jets

    Directory of Open Access Journals (Sweden)

    Nouali Nassira

    2015-01-01

    Full Text Available Spreading of the multijet in terms of both the velocity and temperature field depends strongly on the flow type related to the velocity and temperature ratios between the cold side jets to the hot central one. This is the reason why the present work focuses on numerical investigation of non isothermal three parallel non-ventilated turbulent plane jets. As well, it seems natural to pick as reference the available experimental data. The numerical predictions confirm the three types (A, B, C of flow patterns given by the available flow visualization and reveal a fourth that will be called type D. The purpose of the present study is to explore the effect of the velocity ratio on the decay rates of the velocity and temperature in the fully developed region. It is found that the addition of side jets increase the rate of decrease of the centerline velocity for the flow of type A and decreases in the other cases. The effect of various types of flow on the rate of decrease of the velocity and the temperature in the fully developed flow region are investigated in details: This led to establish several correlations of the rate of decrease that play an important role in the diffusion of momentum and temperature.

  16. Characteristics of compressed natural gas jet and jet-wall impingement using the Schlieren imaging technique

    International Nuclear Information System (INIS)

    Ismael, M A; Heikal, M R; Baharom, M B

    2013-01-01

    An experimental study was performed to investigate the compressed natural gas jet characteristics and jet-wall impingement using the Schlieren imaging technique and image processing. An injector driver was used to drive the natural gas injector and synchronized with camera triggering. A constant-volume optical chamber was designed to facilitate maximum optical access for the study of the jet macroscopic characteristics and jet-wall impingement at different injection pressures and injectors-wall distances. Measurement of the jet tip penetration and cone angle at different conditions are presented in this paper together with temporal presentation of the jet radial travel along the wall.

  17. Nonlinear stability of supersonic jets

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)

    1996-01-01

    The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.

  18. Durability of ink jet prints

    International Nuclear Information System (INIS)

    Dobric, E; Mirkovic, I Bolanca; Bolanca, Z

    2010-01-01

    The aim of this paper is the result presentation of some optical properties research for ink jet prints after: exposing the prints to the mixed daylight and artificial light, exposing of prints to the sun-light through the glass window, and exposing of prints to outdoor conditions during the summer months. The prints obtained by piezoelectric and thermal ink jet technologies were used in the researches. The dye-based inks and the pigmented inks based on water and the low solvent inks were used. The results of these researches, except the scientific contribution in the domain of understanding and explaining the environmental conditions on the gamut size, i.e. the range of color tonality, colorimetric stability and print quality, can be used by the ink and paper manufacturers in new formulations, offer data for the printer producers for further production and evaluation of the position of their products.

  19. The engineering of JET diagnostics

    International Nuclear Information System (INIS)

    Walker, C.I.; Dillon, S.F.; Hammond, N.P.; Hancock, C.J.; Lam, N.; McCarron, E.J.; Prior, P.C.S.; Reid, J.; Sanders, S.; Tellier, X.; Tiscornia, A.J.; Whitfield, G.A.H.; Wilson, C.H.; Wilson, D.J.

    1995-01-01

    There are some 62 identifiably different diagnostic systems on JET. 22 were installed new at the last, Pumped Divertor, shutdown and a further 22 which were modified, upgraded or repositioned. This paper describes some of the engineering aspects peculiar to the renewed diagnostic systems, reviews their construction and installation and gives an overview of the design of presently installed diagnostic equipment at the Torus. Examples are considered that illustrate the breakdown into a categorisation based on their installation method. This is useful for discussion of many of the associated engineering problems of method and quality control of manufacture, vulnerability, access for installation and maintenance and ultimately system safety and reliability. The function and measured plasma parameter of specific diagnostics is covered in other papers and is not attempted here, neither is a full catalogue of Diagnostics on JET. (orig.)

  20. Comet Halley: nucleus and jets

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Avanesov, G.A.; Barinov, I.V.

    1986-06-01

    The VEGA-1 and VEGA-2 spacecrafts made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper results of the onboard imaging experiment are discussed. The nucleus of the comet was clearly identifyable as an irregularly shaped object with overall dimensions of (16+-1)x(8+-1)x(8+-1) km. The nucleus rotates around its axis which is nearly perpendicular to the orbital plane, with a period of 53+-2 hours. Its albedo is only 0.04+-002. Most of the jet features observed during the second fly-by were spatially reconstructed. These sources form a quasi-linear structure on the surface. The dust above the surface is shown to be optically thin except certain specific dust jets. Brightness features on the surface are clearly seen. Correlating the data with other measurements it is concluded that the dirty snow-ball model probably has to be revised. (author)

  1. Detritiation studies for JET decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N.; Bell, A.C.; Williams, J.; Brennan, P.D. [EURATOM/UKAEA Fussion Association, Culham Science Centre, Abingdon (United Kingdom)

    2007-07-01

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T{sub 2}) in 1991, the Trace Tritium Experiment (5g T{sub 2}) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T{sub 2}) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, 'oxygen-free' copper, aluminium bronze), carbon fibre composite tiles, 'carbon' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  2. Quantum chromodynamics and hadron jets

    International Nuclear Information System (INIS)

    Dokshitser, Y.L.; Dyakonov, D.I.

    1979-07-01

    These lectures are devoted to the description of the various properties of hard scattering processes with the participation of hadrons in the framework of Quantum Chromodynamics. We discuss in detail the validity and region of applicability of perturbation theory applied to hadron processes. Particular attention is paid to the question of the structure of quark and gluon jets produced in hard processes (as an example, e + e - annihilation into hadrons). In addition to giving a pedagogical review, we also present new results. (orig.)

  3. Ion temperature profiles in JET

    International Nuclear Information System (INIS)

    Hellermann, M. von; Mandl, W.; Summers, H.P.; Weisen, H.

    1989-01-01

    The results presented in this paper have shown some extreme cases of ion temperature profiles illustrating the different operation modes of the JET tokamak. In the three examples of low-density high temperature, high-density moderates and high-density high-confinement plasmas comparable values of a maximum fusion product n d T i τ E in the order of 10 20 keV m -3 sec are achieved. (author) 1 ref., 7 figs

  4. QGP and Modified Jet Fragmentation

    International Nuclear Information System (INIS)

    Wang, Xin-Nian

    2005-01-01

    Recent progresses in the study of jet modification in hotmedium and their consequences in high-energy heavy-ion collisions are reviewed. In particular, I will discuss energy loss for propagating heavy quarks and the resulting modified fragmentation function. Medium modification of the parton fragmentation function due to quark recombination are formulated within finite temperature field theory and their implication on the search for deconfined quark-gluon plasma is also discussed

  5. Tagging and suppression of pileup jets

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The suppression of pileup jets has been a crucial component of many physics analyses using 2012 LHC proton-proton collisions. In ATLAS, tracking information has been used to calculate a variable called the jet-vertex-fraction, which is the fraction of the total mo- mentum of tracks in the jet which is associated to the primary vertex. Imposing a minimum on this variable rejects the majority of pileup jets, but leads to hard-scatter jet efficiencies that depend on the number of reconstructed primary vertices in the event ($N_{Vtx}$). In this note, new track-based variables to suppress pileup jets are developed in such a way that the resulting hard-scatter jet efficiency is stable as a function of $N_{Vtx}$. A multivariate combina- tion of two such variables called the jet-vertex-tagger is constructed. In addition, it is shown that jet-vertex association can be applied to large-R jets, providing a track-based grooming technique that is as powerful as calorimeter-based trimming but based on complementary trackin...

  6. Fluid jet electric discharge source

    Science.gov (United States)

    Bender, Howard A [Ripon, CA

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  7. Ancient Jets of Fiery Rain

    Science.gov (United States)

    Taylor, G. J.

    2015-04-01

    Chondrules are intriguing millimeter-sized crystallized droplets that are abundant in chondrites, so named because of the presence of numerous chondrules. They have puzzled cosmochemists since they were described by English scientist H. C. Sorby in 1877. Everyone agrees that they formed as molten droplets of silicates, but nobody agrees on how the little things formed. Ideas range from impacts onto asteroids, primary condensation in the solar nebula, shock waves and/or lightening in the solar nebula, or by processes operating as planets began to form. A new twist on this last idea was investigated in a new way by Brandon Johnson (Massachusetts Institute of Technology, MIT) and co-authors David Minton and Jay Melosh (Purdue University), and Maria Zuber at MIT. Johnson and coworkers modeled the effects of impacts between planetesimals 100-1000 kilometers in diameter. When such objects hit each other, the first thing that happens is jetting of molten rock. Johnson and colleagues propose that the jets will subdivide into droplets as the jetted material is shot into space. They estimate that the chondrules would have the correct cooling rates (as determined from previous studies of chondrules) and the collision frequency would be high enough to produce abundant chondrules. Johnson and coworkers suggest that chondrules are a "byproduct of [planetary] accretion."

  8. Vectoring of parallel synthetic jets

    Science.gov (United States)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  9. Electric Currents along Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    Ioannis Contopoulos

    2017-10-01

    Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.

  10. Distinguishing Isolated Photons from Jets

    CERN Document Server

    Pieri, Marco; Branson, James G

    2006-01-01

    We have developed isolation and shower-shape variables that are optimized for reducing the jet background for a high transverse-energy photon signal. To help understand the relative importance of each variable, we have computed the background rejection power as a function of signal efficiency for these variables as well as for some simple combinations of variables. We find that a combination of tracker plus ECAL information can give very significant background rejection power. By adding information from the HCAL, the rejection power can be improved. In addition we find that a very significant reduction in background can be achieved by adding photon shower shape information from the ECAL to the Neural Net inputs. About 1 in 200 jets contains a high E_T electromagnetic shower that is reconstructed by the CMS software and is therefore a potential background for photon detection. An additional jet rejection factor of 100 with 80% photon efficiency (or 400 with 50% efficiency) can be achieved by using the isolatio...

  11. The JET level-1 software

    International Nuclear Information System (INIS)

    McCullen, P.A.; Farthing, J.W.

    1998-01-01

    The complex nature of the JET machine requires a large amount of control parameter preparation, selection and validation before a pulse may be started. Level-1 is defined as the centralized, cross-subsystem control of JET. Before it was introduced over 10 years ago, the Session Leader (SL) who is responsible for specifying the parameter settings for a JET pulse, had virtually no software available to help him except for a simple editor used for the creation of control waveforms. Most of the required parameter settings were calculated by hand and then passed on either verbally or via hand-written forms. These parameters were then set by a large number of people - Local Unit Responsible Officers (LUROs) and CODAS Duty Officers (CDOs) using a wide selection of dedicated software. At this time the Engineer in Charge (EiC) would largely depend on the LUROs to inform him that conditions were ready. He never set control parameters personally and had little or no software available to him to see what many of the settings were. The first implementation of Level-1 software went some way towards improving the task of pulse schedule preparation in that the SL could specify his requirements via a computer interface and store them in a database for later use. At that time the maximum number of parameters that could be handled was 500. (author)

  12. Heated water jet in coflowing turbulent stream

    International Nuclear Information System (INIS)

    Shirazi, M.A.; McQuivey, R.S.; Keefer, T.N.

    1974-01-01

    Effects of ambient turbulence on temperature and salinity distributions of heated water and neutrally buoyant saltwater jets were studied for a wide range of densimetric jet Froude numbers, jet discharge velocities, and ambient turbulence levels in a 4-ft-wide channel. Estimates of vertical and lateral diffusivity coefficients for heat and for salt were obtained from salinity and temperature distributions taken at several stations downstream of the injection point. Readily usable correlations are presented for plume center-line temperature, plume width, and trajectory. The ambient turbulence affects the gross behavior characteristics of the plume. The effects vary with the initial jet Froude number and the jet to ambient velocity ratio. Heat and salinity are transported similarly and the finite source dimensions and the initial jet characteristics alter the numerical value of the diffusivity

  13. Expanding plasma jet in a vacuum vessel

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Yakovetskij, V.S.

    1998-01-01

    The paper deals with numerical calculations of parameters of a supersonic quasi-neutral argon plasma jet expanding into a cylindrical vacuum vessel and interacting with its inner surface. A modified method of large particles was used, the complex set of hydrodynamic equations being broken into simpler components, each of which describes a separate physical process. Spatial distributions of the main parameters of the argon plasma jet were simulated at various times after the jet entering the vacuum vessel, the parameters being the jet velocity field, the full plasma pressure, the electron temperature, the temperature of heavy particles, and the degree of ionization. The results show a significant effect of plasma jet interaction on the plasma parameters. The jet interaction with the vessel walls may result e.g. in excitation of shock waves and rotational plasma motions. (J.U.)

  14. Combining resummed Higgs predictions across jet bins

    Energy Technology Data Exchange (ETDEWEB)

    Boughezal, Radja [Argonne National Laboratory, IL (United States). High Energy Physics Division; Liu, Xiaohui; Petriello, Frank [Argonne National Laboratory, IL (United States). High Energy Physics Division; Northwestern Univ., Evanston, IL (United States). Dept. of Physics and Astronomy; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Walsh, Jonathan R. [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley Laboratory; California Univ., Berkeley, CA (United States). Center for Theoretical Physics

    2013-12-15

    Experimental analyses often use jet binning to distinguish between different kinematic regimes and separate contributions from background processes. To accurately model theoretical uncertainties in these measurements, a consistent description of the jet bins is required. We present a complete framework for the combination of resummed results for production processes in different exclusive jet bins, focusing on Higgs production in gluon fusion as an example. We extend the resummation of the H+1-jet cross section into the challenging low transverse momentum region, lowering the uncertainties considerably. We provide combined predictions with resummation for cross sections in the H+0-jet and H+1-jet bins, and give an improved theory covariance matrix for use in experimental studies. We estimate that the relevant theoretical uncertainties on the signal strength in the H{yields}WW{sup *} analysis are reduced by nearly a factor of 2 compared to the current value.

  15. Studies of heavy flavored jets with CMS

    CERN Document Server

    Jung, Kurt

    2017-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the mass and flavor of the initiating parton. Thus, measurements of jet quenching with identified partons place powerful constraints on the thermodynamic and transport properties of the hot and dense medium. We present recent results of heavy flavor jet spectra and nuclear modification factors of jets associated to charm and bottom quarks in both pPb and PbPb collisions. New measurements to be presented include the dijet asymmetry of pairs of b-jets in PbPb collisions and a finalized c-jet measurement in pPb collisions based on new data collected during the 2015 heavy-ion run period at the LHC.

  16. Tagging partially reconstructed objects with jet substructure

    Energy Technology Data Exchange (ETDEWEB)

    Freytsis, Marat, E-mail: freytsis@uoregon.edu [Department of Physics, Harvard University, Cambridge, MA, 02138 (United States); Volansky, Tomer [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Walsh, Jonathan R. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720 (United States)

    2017-06-10

    We present a new tagger which aims at identifying partially reconstructed objects, in which only some of the constituents are collected in a single jet. As an example, we focus on top decays in which either part of the hadronically decaying W or the b jet is soft or falls outside of the top jet cone. We construct an observable to identify remnant substructure from the decay and employ aggressive jet grooming to reject QCD backgrounds. The tagger is complementary to existing ones and works well in the intermediate boost regime where jet substructure techniques usually fail. It is anticipated that a similar tagger can be used to identify non-QCD hadronic jets, such as those expected from hidden valleys.

  17. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  18. Tagging partially reconstructed objects with jet substructure

    International Nuclear Information System (INIS)

    Freytsis, Marat; Volansky, Tomer; Walsh, Jonathan R.

    2017-01-01

    We present a new tagger which aims at identifying partially reconstructed objects, in which only some of the constituents are collected in a single jet. As an example, we focus on top decays in which either part of the hadronically decaying W or the b jet is soft or falls outside of the top jet cone. We construct an observable to identify remnant substructure from the decay and employ aggressive jet grooming to reject QCD backgrounds. The tagger is complementary to existing ones and works well in the intermediate boost regime where jet substructure techniques usually fail. It is anticipated that a similar tagger can be used to identify non-QCD hadronic jets, such as those expected from hidden valleys.

  19. Tagging partially reconstructed objects with jet substructure

    Science.gov (United States)

    Freytsis, Marat; Volansky, Tomer; Walsh, Jonathan R.

    2017-06-01

    We present a new tagger which aims at identifying partially reconstructed objects, in which only some of the constituents are collected in a single jet. As an example, we focus on top decays in which either part of the hadronically decaying W or the b jet is soft or falls outside of the top jet cone. We construct an observable to identify remnant substructure from the decay and employ aggressive jet grooming to reject QCD backgrounds. The tagger is complementary to existing ones and works well in the intermediate boost regime where jet substructure techniques usually fail. It is anticipated that a similar tagger can be used to identify non-QCD hadronic jets, such as those expected from hidden valleys.

  20. Results on QCD jet production at ATLAS and CMS

    International Nuclear Information System (INIS)

    Meyer, C.J.

    2014-01-01

    The production of jets at the Large Hadron Collider (LHC) at √(s)=7 TeV is summarized, including results from both ATLAS and CMS detectors. Current jet performance is described, followed by inclusive jet and multi-jet measurements in various final state configurations. Finally some results on heavy flavour and jet substructure are presented. (author)

  1. Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. This note presents a jet tagger for distinguishing quark-initiated from gluon-initiated jets, which uses the full radiation pattern inside a jet processed as an image in a deep neural network classifier. The study is conducted using simulated dijet events in $\\sqrt{s}$=13 TeV pp collisions with the ATLAS detector. Across a wide range of quark jet identification efficiencies, the neural network tagger achieves a gluon jet rejection that is comparable to or better than the performance of the jet width and track multiplicity observables conventionally used for quark-versus-gluon jet tagging.

  2. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number......, and the turbulence intensity at the jet inlet for impinging jet flows at high jet Reynolds numbers. Copyright © 2013 Taylor and Francis Group, LLC....

  3. Boosted Jet Tagging with Jet-Images and Deep Neural Networks

    International Nuclear Information System (INIS)

    Kagan, Michael; Oliveira, Luke de; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-01-01

    Building on the jet-image based representation of high energy jets, we develop computer vision based techniques for jet tagging through the use of deep neural networks. Jet-images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing. We show how applying such techniques using deep neural networks can improve the performance to identify highly boosted W bosons with respect to state-of-the-art substructure methods. In addition, we explore new ways to extract and visualize the discriminating features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods

  4. The lund Monte Carlo for jet fragmentation

    International Nuclear Information System (INIS)

    Sjoestrand, T.

    1982-03-01

    We present a Monte Carlo program based on the Lund model for jet fragmentation. Quark, gluon, diquark and hadron jets are considered. Special emphasis is put on the fragmentation of colour singlet jet systems, for which energy, momentum and flavour are conserved explicitly. The model for decays of unstable particles, in particular the weak decay of heavy hadrons, is described. The central part of the paper is a detailed description on how to use the FORTRAN 77 program. (Author)

  5. On the universality of quark jet fragmentation

    International Nuclear Information System (INIS)

    Dias de Deus, J.; Jadach, S.

    1977-01-01

    Universality of inclusive fragmentation density functions in lepton induced processes (ep, γp, e + e - ) and purely hadronic processes is discussed from the point of view of the Topological Expansion/Dual Unitarization Scheme. It is shown that planar, single jet dominated processes have universal inclusive distributions and average multiplicities. In multi-jet processes, treated in a simple approximation, is inversely proportional to the number N of jets and the magnitude of the seagull effect increases as N 2 . (Auth.)

  6. Jet-calculus approach including coherence effects

    International Nuclear Information System (INIS)

    Jones, L.M.; Migneron, R.; Narayanan, K.S.S.

    1987-01-01

    We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics

  7. Precision Jet production for the LHC

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Jet production is one of the basic processes at the LHC with numerous uses for standard model and BSM phenomenology. Understanding this process with suitable precision has been a long-standing goal for the particle physics community. I will report on our recent calculation of the NNLO contribution to jet production using antenna subtraction and discuss what these results might mean for jet phenomenology in the near future.

  8. Developments on jet reconstruction by DELPHI

    CERN Document Server

    Kiskinen, A

    2002-01-01

    The most relevant techniques used by DELPHI to identify jets in multihadronic final states are reviewed. The performance of jet reconstruction algorithms is analysed together with the additional use of energy and momentum conservation in order to allow for a precise reconstruction of the event kinematics. Also jet flavour tagging methods are summarised. Applications in some analyses like searches for new particles such as Higgs bosons, W mass physics and QCD studies are presented. (9 refs).

  9. Probing jet decoherence in heavy ion collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2017-11-01

    We suggest to use the SofDrop jet grooming technique to investigate the sensitivity of jet substructure to color decoherence in heavy ion collisions. We propose in particular to analyze the two-prong probability angular distribution as a probe of the transition between the coherent and incoherent energy loss regimes. We predict an increasing suppression of two-prong substructures with angle as the medium resolves more jet substructure.

  10. Identified particles in quark and gluon jets

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Rybin, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1997-01-01

    A sample of about 1.4 million hadronic \\z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of \\kp, \\ko, \\p, \\l and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.

  11. Jet shapes at D0 and CDF

    International Nuclear Information System (INIS)

    Streets, K.T.

    1995-05-01

    The distribution of the transverse energy in jets has been measured in p bar p collisions at √s = 1.8 TeV at the Fermilab Tevatron collider using the CDF and DO detectors. This measurement of the jet shape is made as a function of jet transverse energy in both experiments and as a function of the jet pseudorapidity in the D0 experiment. Comparisons to Monte Carlo simulations and next-to-leading order partonic QCD calculations, Ο(α s 3 ), are presented

  12. Jets and large Psub(T) phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, D. S.

    1980-07-01

    Jets have been observed in hadron-hadron collisions and e/sup +/e/sup -/ annihilation at high energies. An attempt is made to explain the mechanism for the production of jets. The mechanism of quark-fragmentation is described with illustrations. Basic concepts and assumptions are used to study the distribution of quarks and gluons in a hadron. Quark and gluon decay distributions, and the transverse momentum distributions of quarks and gluons, Monte-Carlo methods in the study of jets, large Psub(T) phenomena in hadrons, QCD effects in hadronization of quark jets are discussed.

  13. b-Jet Identification in CMS

    CERN Document Server

    AUTHOR|(CDS)2081921

    2016-01-01

    A large fraction of the CMS physics program relies on the identification of jets containing the decay of a B hadron (b jets). The b jets can be discriminated from jets produced by the hadronization of light quarks based on characteristic properties of B hadrons, such as the long lifetime or the presence of soft leptons produced during their decay.An overview of the large variety of b-tagging algorithms and the measurement of their performance with data collected in 2011 and 2012 are presented in this talk. A special focus lies on new methods of b-tagging in jet substructure.As the excluded mass regions for new physics beyond the Standard Model continue to increase, searches often focus on boosted final states characterized by particles with large transverse momenta. In the boosted regime the resulting decay products for hadronic decays of heavy particles tend to be collimated and can fall within a single jet, known as fat-jet. In this case, selections based on multiple jets cannot be applied and jet substruct...

  14. Laser cutting technology using water jet waveguide

    International Nuclear Information System (INIS)

    Akiba, Miyuki; Shiihara, Katsunori; Chida, Itaru

    2013-01-01

    Laser with water jet is examined to cut in-vessel structure. However, it is necessary to increase the break-up length of water jet to cut a thick plate. Therefore, the effects of the water jet parameter (water pressure, assist gas, laser power) on break-up length were investigated. It was found from observation results of water jet that the longest break-up length is about 135mm under condition of water pressure 40 MPa, laser power 30W and helium assist gas 1L/min. (author)

  15. On the structure of pulsed plasma jets

    Science.gov (United States)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  16. Cold plasma decontamination using flexible jet arrays

    Science.gov (United States)

    Konesky, Gregory

    2010-04-01

    Arrays of atmospheric discharge cold plasma jets have been used to decontaminate surfaces of a wide range of microorganisms quickly, yet not damage that surface. Its effectiveness in decomposing simulated chemical warfare agents has also been demonstrated, and may also find use in assisting in the cleanup of radiological weapons. Large area jet arrays, with short dwell times, are necessary for practical applications. Realistic situations will also require jet arrays that are flexible to adapt to contoured or irregular surfaces. Various large area jet array prototypes, both planar and flexible, are described, as is the application to atmospheric decontamination.

  17. Jet suppression measurement with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00443411; The ATLAS collaboration

    2016-01-01

    A hot medium with a high density of unscreened color charges is produced in relativistic heavy ion collisions. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of the energy loss is the modification of the dijet balance and the modification of fragmentation functions. In these proceedings, the latest ATLAS results on single jet suppression, dijet suppression, and modification of the jet internal structure in \\PbPb~collisions are presented.

  18. Impingement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Vít, T.

    2015-01-01

    Roč. 85, June (2015), s. 473-487 ISSN 0017-9310 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : impinging jet * reversible pulsating jet * synthetic jet Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 2.857, year: 2015 http://www.sciencedirect.com/science/article/pii/S001793101500143X

  19. Editorial on Future Jet Technologies

    Science.gov (United States)

    Gal-Or, Benjamin

    2014-12-01

    The jet engine is the prime flight controller in post-stall flight domains where conventional flight control fails, or when the engine prevents catastrophes in training, combat, loss of all airframe hydraulics (the engine retains its own hydraulics), loss of one engine, pilot errors, icing on the wings, landing gear and runway issues in takeoff and landing and in bad-whether recoveries. The scientific term for this revolutionary technology is "jet-steering", and in engineering practice - "thrust vectoring", or "TV". Jet-Steering in advanced fighter aircraft designs is integrated with stealth technology. The resulting classified Thrust-Vectoring-Stealth ("TVS") technology has generated a second jet-revolution by which all Air-&-Sea-Propulsion Science and R&D are now being reassessed. Classified F-22, X-47B/C and RQ-180 TVS-vehicles stand at the front of this revolution. But recent transfers of such sensitive technologies to South Korea and Japan [1-5], have raised various fundamental issues that are evaluated by this editorial-review. One, and perhaps a key conclusion presented here, means that both South Korea and Japan may have missed one of their air-&-sea defenses: To develop and field low-cost unmanned fleets of jet-drones, some for use with expensive, TVS-fighter aircraft in highly congested areas. In turn, the U.S., EU, Russia and China, are currently developing such fleets at various TVS levels and sizes. China, for instance, operates at least 15,000 drones ("UAVs") by 2014 in the civilian sector alone. All Chinese drones have been developed by at least 230 developers/manufacturers [1-16]. Mobile telecommunication of safe links between flyers and combat drones ("UCAVs") at increasingly deep penetrations into remote, congested areas, can gradually be purchased-developed-deployed and then operated by extant cader of tens of thousands "National Champion Flyers" who have already mastered the operation of mini-drones in free-to-all sport clubs under national

  20. Jet Noise Modeling for Supersonic Business Jet Application

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  1. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: ligang@iet.cn [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-04

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  2. An Operational Model for the Prediction of Jet Blast

    Science.gov (United States)

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  3. Commercial jet fuel quality control

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  4. Neutron activation studies on JET

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Forrest, R.A.; Edwards, J.E.G.

    2001-01-01

    Extensive neutron transport calculations have been performed to determine the neutron spectrum at a number of points throughout the JET torus hall. The model has been bench-marked against a set of foil activation measurements which were activated during an experimental campaign with deuterium/tritium plasmas. The model can predict the neutron activation of the foils on the torus hall walls to within a factor of three for reactions with little sensitivity to thermal neutrons. The use of scandium foils with and without a cadmium thermal neutron absorber was a useful monitor of the thermal neutron flux. Conclusions regarding the usefulness of other foils for benchmarking the calculations are also given

  5. Overview of the JET results

    Czech Academy of Sciences Publication Activity Database

    Romanelli, F.; Abhangi, M.; Abreu, P.; Aftanas, Milan; Afzal, M.; Aggarwal, K.M.; Aho-Mantila, L.; Ahonen, E.; Aints, M.; Airila, M.; Albanese, R.; Bílková, Petra; Cahyna, Pavel; Dejarnac, Renaud; Ďuran, Ivan; Fuchs, Vladimír; Horáček, Jan; Imríšek, M.; Janky, Filip; Ješko, Karol; Markovič, Tomáš; Mlynář, Jan; Peterka, Matěj; Petržílka, Václav; Tomeš, Matěj; Vondráček, Petr

    2015-01-01

    Roč. 55, č. 10 (2015), s. 104001 ISSN 0029-5515. [Fusion Energy Conference (FEC)/25./. St Petersburg, 13.10.2014-18.10.2014] Institutional support: RVO:61389021 Keywords : ITER-like wall * JET * tokamaks * magnetic confinement Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/article/10.1088/0029-5515/55/10/104001/meta;jsessionid=3FA2A9AC9BDFE6B4A43C77C9CF6C0DF0.c2.iopscience.cld.iop.org

  6. The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production

    International Nuclear Information System (INIS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-01-01

    We introduce a new kind of jet function: the semi-inclusive jet function J_i(z,ω_J,μ), which describes how a parton i is transformed into a jet with a jet radius R and energy fraction z=ω_J/ω, with ω_J and ω being the large light-cone momentum component of the jet and the corresponding parton i that initiates the jet, respectively. Within the framework of Soft Collinear Effective Theory (SCET) we calculate both J_q(z,ω_J,μ) and J_g(z,ω_J,μ) to the next-to-leading order (NLO) for cone and anti-k_T algorithms. We demonstrate that the renormalization group (RG) equations for J_i(z,ω_J,μ) follow exactly the usual DGLAP evolution, which can be used to perform the ln R resummation for inclusive jet cross sections with a small jet radius R. We clarify the difference between our RG equations for J_i(z,ω_J,μ) and those for the so-called unmeasured jet functions J_i(ω_J,μ), widely used in SCET for exclusive jet production. Finally, we present applications of the new semi-inclusive jet functions to inclusive jet production in e"+e"− and pp collisions. We demonstrate that single inclusive jet production in these collisions shares the same short-distance hard functions as single inclusive hadron production, with only the fragmentation functions D_i"h(z,μ) replaced by J_i(z,ω_J,μ). This can facilitate more efficient higher-order analytical computations of jet cross sections. We further match our ln R resummation at both LL_R and NLL_R to fixed NLO results and present the phenomenological implications for single inclusive jet production at the LHC.

  7. Jet Mass Reconstruction with the ATLAS Detector in Run 2

    CERN Document Server

    Jansky, Roland; The ATLAS collaboration

    2016-01-01

    The details of the ATLAS jet mass reconstruction and calibration are presented. In particular, the jet mass scale is calibrated using Monte Carlo simulation for large-radius groomed jets. Corresponding uncertainties are presented. An alternative jet mass definition that incorporates tracking information called the track-assisted jet mass is introduced and its performance is compared to the traditional calorimeter-only jet mass definition. An outlook on future improvments is also given.

  8. Study Of Boosted W-Jets And Higgs-Jets With the SiFCC Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shin-Shan [Taiwan, Natl. Central U.; Chekanov, Sergei [Argonne; Gray, Lindsey [Fermilab; Kotwal, Ashutosh [Duke U.; Sen, Sourav [Duke U.; Tran, Nhan Viet [Fermilab

    2016-11-04

    We study the detector performance in the reconstruction of hadronically-decaying W bosons and Higgs bosons at very high energy proton colliders using a full GEANT4 simulation of the SiFCC detector. The W and Higgs bosons carry transverse momentum in the multi-TeV range, which results in collimated decay products that are reconstructed as a single jet. We present a measurement of the energy response and resolution of boosted W-jets and Higgs-jets and show the separation of two sub-jets within the boosted boson jet.

  9. Development of an empirical correlation for flow characteristics of turbulent jet by steam jet condensation

    International Nuclear Information System (INIS)

    Kang, H. S.; Kim, Y. S.; Youn, Y. J.; Song, C. H.

    2008-01-01

    An experimental research was performed to develop an empirical correlation of the turbulent water jet induced by the steam jet through a single hole in a subcooled water pool. A moveable pitot tube including a thermal couple was used to measure a local velocity and temperature of the turbulent water jet. The experimental results show that the velocity and the temperature distributions agree well with the theory of axially symmetric turbulent jet. The correlation predicting the maximum velocity of the turbulent jet was modified from the previous correlation and a new correlation to predict the characteristic length was developed based on the test results

  10. SYNTHETIC JET APPLIED TO DETECT POTENTIAL TERRORISTS

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 229-234 ISSN 1231-3998 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jets * annular jets * terrorism Subject RIV: BK - Fluid Dynamics

  11. Jet diffusion in stagnant ambient fluid

    NARCIS (Netherlands)

    Abraham, G.

    1963-01-01

    Submarine outfall disposal of domestic and industrial sewage is a method of disposal of steadily growing importance. The flow from an ocean outfall is essentially that of a submerged horizontal or vertical jet. Thus a study of the hydrodynamics of such jets is needed to evaluate the dilution of the

  12. AGN feedback compared: jets versus radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-06-01

    Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

  13. Jets. The materialisation of quarks and gluons

    International Nuclear Information System (INIS)

    Marshall, R.

    1985-09-01

    The paper, which is aimed at scientists outside the immediate field of particle physics, describes some of the properties of jets and how the jet observables can be related to quark parameters. The similarity of quark and leptons is underlined. (author)

  14. Scaling behavior of jet production at CDF

    International Nuclear Information System (INIS)

    Behrends, S.

    1992-11-01

    Inclusive jet cross-sections have been measured in bar pp collisions at √s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0(α s 3 ) QCD

  15. The jet membrane experiment: downstream sampling

    International Nuclear Information System (INIS)

    Campargue, R.

    1976-01-01

    This review lecture is devoted to an invasion separation effect through a free jet structure, found in 1966 at Saclay and used as the basis for an initial French patent on the separation of gas molecules of different masses. It operates by the differential penetration of a gas or isotopic mixture into the structure of a free jet

  16. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  17. Delayed Capillary Breakup of Falling Viscous Jets

    NARCIS (Netherlands)

    Javadi, A.; Eggers, J.; Bonn, D.; Habibi, M.; Ribe, N.M.

    2013-01-01

    Thin jets of viscous fluid like honey falling from capillary nozzles can attain lengths exceeding 10 m before breaking up into droplets via the Rayleigh-Plateau (surface tension) instability. Using a combination of laboratory experiments and WKB analysis of the growth of shape perturbations on a jet

  18. Study of type III ELMs in JET

    NARCIS (Netherlands)

    Sartori, R.; Saibene, G.; Horton, L. D.; Becoulet, M.; Budny, R.; Borba, D.; Chankin, A.; Conway, G. D.; Cordey, G.; McDonald, D.; Guenther, K.; von Hellermann, M. G.; Igithkanov, Y.; Loarte, A.; Lomas, P. J.; Pogutse, O.; Rapp, J.

    2004-01-01

    This paper presents the results of JET experiments aimed at studying the operational space of plasmas with a Type III ELMy edge, in terms of both local and global plasma parameters. In JET, the Type III ELMy regime has a wide operational space in the pedestal n(e)-T-e diagram, and Type III ELMs are

  19. Multiplicities of Hadrons Within Jets at STAR

    Science.gov (United States)

    Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration

    2017-09-01

    Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.

  20. First measurement of ECE from JET

    International Nuclear Information System (INIS)

    Costley, A.E.; Bartlett, D.V.; Campbell, D.J.; Baker, E.A.M.; Kiff, M.G.; Neill, G.F.

    1985-01-01

    A multichannel system for measuring the electron cyclotron emission from JET has been designed and constructed. The design criteria are briefly outlined and the system is described. Some typical results obtained with the first operational channel during the november-december 1983 operating period of JET are presented

  1. Jet substructure measurements at ATLAS and CMS

    CERN Document Server

    Dattagupta, Aparajita; The ATLAS collaboration

    2017-01-01

    A review is given of recent Run II measurements of jet substructure at CMS and ATLAS, as well of the most relevant measurements from Run I. Quark and gluon discrimination, jet mass and other substructure observable are discussed together with prospects for future measurements with new insight from theory.

  2. Scaling behavior of jet production at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Behrends, S. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; The CDF Collaboration

    1992-11-01

    Inclusive jet cross-sections have been measured in {bar p}p collisions at {radical}s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0({alpha}{sub s{sup 3}}) QCD.

  3. AGN Feedback Compared: Jets versus Radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-03-01

    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 1043 and 1046 erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20% in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01 - 0.1 M⊙/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.

  4. Investigation of Jet Noise Using Optical Holography

    Science.gov (United States)

    1973-04-01

    Holographic interferograms have been made of cold, laboratory scale, supersonic air and nitrogen jet in the mach number range of 2.1 ot 3.4, and of helium jets in the mach number range of 1.5 to 2.95. These holograms demonstrate that the acoustic fie...

  5. Dynamics of runaways in JET

    International Nuclear Information System (INIS)

    Gill, R.D.; Alper, B.; Edwards, A.W.; Ingesson, L.C.; Johnson, M.F.; Ward, D.

    2001-01-01

    Measurements are presented of the properties of the runaway beams generated in JET following disruptions. Radiation is emitted by the runaways, both when they are in flight and when they hit the vessel walls. Because radiation protected soft x-ray cameras were developed for the JET DT campaign, it has been possible to make the first direct observations of the runaway beam in flight from the x-ray line radiation produced by the beam excitation of K-shell vacancies in the metallic impurities of the residual plasma. These observations give clear images of the runaway beam and provide detailed information on its time development, size, position and stability. The current density and q-profile have also been determined. It has been found that there is a delay between the disruption and the start of runaway generation and this offers a possibility of instigating runaway control methods. Detailed determination of the runaway-wall interaction suggests that the runaways have a braided structure. (author)

  6. Jet-associated resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Christoph [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Ferretti, Gabriele [Chalmers University of Technology, Department of Physics, Goeteborg (Sweden); Spannowsky, Michael [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2017-12-15

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet-Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities. (orig.)

  7. Atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  8. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  9. Relativistic jets in SS 433

    International Nuclear Information System (INIS)

    Margon, B.

    1982-01-01

    The most unusual characteristic of the star SS 433 emerged in the late 1970's when a series of optical spectra showed intense, broad optical emission lines whose profiles and wavelengths changed drastically from night to night. These features are interpreted as strong Doppler-shifted Balmer and HeI lines. The modulation of the Doppler shifts are observed as being cyclic with a period of about 164 days. It was hypothesized that these phenomena were caused by two collimated, colinear, jets which were ejecting in opposite directions from SS 433. Most authors believe that velocity variations of the emission lines are caused by a cyclic rotation of jet axis inclined to line of sight. This rotation being the result of precession, which leads one to suspect SS 433 as a member of a close binary system. This hypothesis has been confirmed from recent optical, radio, and x-ray observations which are discussed in the article. The combination of optical and radio observations of SS 433, described in the article, gives an accurate measure of the Kinematics of the system and some confidence that the Kinematic equations are understood. However, the specific physical processes of this ejection are poorly understood. Some theoretical difficulties regarding this are given

  10. Jet production in hardronic collisions

    International Nuclear Information System (INIS)

    Di Lella, L.

    1985-01-01

    An experiment was performed at the CERN Super Proton Synchrotron (SPS) using a calorimeter with full azimuthal coverage and subtending the interval of polar angles 45 0 0 in the center-of-mass frame. This experiment selected hadronic collisions depositing large amounts of energy in the calorimeter, and found that these final states consisted mostly of many low-rho/sub T/ particles distributed symmetrically in azimuth, in disagreement with the structure expected for high-rho/sub T/jets. The same conclusions were reached by a similar experiment. These negative results were in sharp contrast with the case of e/sup +/e/sup -/ annihilation into hadrons. The azimuthally symmetric structure of these events was interpreted either as the effect of multiple gluon bremsstrahlung from the initial-state partons; or as the effect of the tails of the multiplicity distributions in ordinary soft collisions. This pessimistic view has been contradicted by the dramatic emergence of unambiguous jets at the CERN pp-bar Collider. The purpose of this article is to review the main experimental results obtained recently on this subject, and to discuss their interpretation in the theoretical framework of QCD

  11. Lower hybrid launcher on JET

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Brusati, M.; Ekedahl, A.

    1994-01-01

    Lower Hybrid current drive (LHCD) experiments were performed in JET in a first stage with one third of the final LHCD system. Good coupling with reflection coefficients as low as 1% and a power density of ∼4 kW/cm 2 on the plasma interface were obtained with the prototype launcher. The complete LHCD system with a total power of 12 MW (20 s) in the generator will start operation with the begin of JET divertor experiments in early 1994. The full launcher contains an array of 384 waveguides, built up from 48 multijunctions with internal power splitting. Three different LH wave spectra can be radiated simultaneously into the plasma, applying different phase settings to the three independent sections of the grill type antenna. test bed experiments have started on a new concept for a compact LH launcher, using a hyperguide as connection between an array of standard size waveguides and the plasma facing antenna structure which forms the slow wave LH spectrum. (author)

  12. Jet-associated resonance spectroscopy

    Science.gov (United States)

    Englert, Christoph; Ferretti, Gabriele; Spannowsky, Michael

    2017-12-01

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet- Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities.

  13. Monte Carlo study for the dynamical fluctuations inside a single jet in 2-jet events

    International Nuclear Information System (INIS)

    Zhang Kunshi; Liu Lianshou; Yin Jianwu; Chen Gang; Liu Chao

    2002-01-01

    The dynamical fluctuations inside a single jet in the 2-jet events produced in e + e - collisions at 91.2 GeV have been studied using Monte Carlo method. The results show that, the anisotropy of dynamical fluctuations inside a single jet changes remarkably with the variation of the cut parameter y cut . A transition point (γ p t = γ ψ ≠γ y ) exists, where the dynamical fluctuations are anisotropic in the longitudinal-transverse plan and isotropic in the transverse planes. It indicates that the y cut corresponding to the transition point is a physically reasonable cutting parameter for selecting jets and, meanwhile, the relative transverse momentum k t at the transition point is the scale for the determination of physical jets. This conclusion is in good agreement with the experimental fact that the third jet (gluon jet) was historically first discovered in the energy region 17-30 GeV in e + e - collisions

  14. More Jets in more LHC Searches

    CERN Document Server

    Schichtel, Peter

    Multi jet observables are a powerful tool to new physics as well as a boost to standard analysis strategies. We show their use in a reasonably model independent dark matter search and a jet veto Higgs analysis. We nd however that, these observables are plagued by huge theoretical uncertainties connected to unphysical scale parameters. In the democratic limit we compute analytically the all order resummed jet spectrum at leading log. It obeys so called staircase scaling. With the help of state of the art Monte Carlo tools we study the jet spectrum features in great detail. In addition we also study so called Poisson scaling. This allows us to develop a data driven strategy to x the standard model multi jet backgrounds.

  15. Jet physics at the LHC with ALICE

    International Nuclear Information System (INIS)

    Morsch, A.

    2005-01-01

    In central Pb-Pb collisions at the LHC, jet rates are expected to be high at energies at which ALICE can reconstruct jets over the background of the underlying event. This will open the possibility to quantify the effect of partonic energy loss through medium induced gluon radiation, jet quenching, by detailed measurement of the modification of the longitudinal and transverse structure of identified jets. In order to obtain probes sensitive to the properties of the QCD medium, it is mandatory to measure the high-p T parton fragments together with the low-p T particles from the radiated gluons. Hence, the excellent charged particle tracking capabilities of ALICE combined with the proposed electromagnetic calorimeter for ALICE, EMCAL, represent an ideal tool for jet quenching studies at the LHC. (orig.)

  16. Empirical model of the M 87 jet

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1984-01-01

    The nature of the M87 jet is discussed. Recent observations of the M87 jet in radio, optical and X-ray regions, carried out with a sufficiently high resolving power, have revealed an identity of the brightness distribution at all frequencies. This points to a decisive role of the regular magnetic field variations along the jet for its overall structure. The bright knots of the jet are in the places where the field is enhanced. In the same places, a small fraction of relativistic electrons acquires large pitch-angles due to the interaction with plasma waves, leading to the synchrotron emission of the knots. The velocity of the plasma ejected from the nucleus of M87 should be 0.1 c. Thus, the M87 jet is one-sided

  17. Jet pumps hydrdynamics for application on BWRS

    International Nuclear Information System (INIS)

    Girardi, G.; Pitimada, D.

    1979-01-01

    An analysis of single-phase jet-pump hydrodynamics is carried out by this paper with special regard to the applications on cooling water recirculation in the boiling water reactors (BWR). Firstly, in order to asses on efficiency of jet pumps, several theories regarding the hydrodynamic of these machines are also investigated. The results of the above theories are critically analysed and compared regarding to water-jet-pump design, to operational performance curves and to section limits. Some general criteria in jet-pump design are introduced and values of geometric and kinematic parameters are suggested together with losses coefficients which are all concerned with the ''high ratio'' type jet pump of this typical application. Finally, the experimental test program following the sim of this research is briefly described

  18. Collimation of extragalactic jets: evidence from hotspots

    International Nuclear Information System (INIS)

    Banhatti, D.G.

    1984-01-01

    A linear relation with slope near unity is found between the logarithms of the hotspot size perpendicular to the source major axis and the distance from the core for 14 compact and/ or intense hotspots selected from a sample of 31 quasars having the largest angular sizes at various redshifts, as observed at 4.87 GHz with sub-arcsec resolution. A slope significantly less than 1 implies that the jet feeding the hotspot is laterally confined by the intergalactic medium, whereas a slope of 1 does not distinguish between a laterally confined jet and a free jet. The relation is found to have a slope near 1 implying a 0deg.1 jet confined within a cone of half-angle 15deg to 20deg or a 1deg-wide free jet. (author)

  19. Jet production in photon-photon interactions

    International Nuclear Information System (INIS)

    Berger, C.; Genzel, H.; Lackas, W.; Pielorz, J.; Raupach, F.; Wagner, W.; Buerger, J.; Criegee, L.; Deuter, A.; Franke, G.; Gerke, C.; Knies, G.; Lewendel, B.; Meyer, J.; Michelsen, U.; Pape, K.H.; Timm, U.; Winter, G.G.; Zimmermann, W.; Zachara, M.; Ferrarotto, F.; Gaspero, M.; Stella, B.; Bussey, P.J.; Cartwright, S.L.; Dainton, J.B.; Hendry, D.; King, B.T.; Raine, C.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Thomson, J.C.; Achterberg, O.; Blobel, V.; Burkart, D.; Diehlmann, K.; Feindt, M.; Kapitza, H.; Koppitz, B.; Krueger, M.; Poppe, M.; Spitzer, H.; Staa, R. van; Almeida, F.; Baecker, A.; Barreiro, F.; Brandt, S.; Derikum, K.; Grupen, C.; Meyer, H.J.; Mueller, H.; Neumann, B.; Rost, M.; Stupperich, K.; Zech, G.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.; Junge, H.; Kraski, K.; Maxeiner, C.; Maxeiner, H.; Meyer, H.; Schmidt, D.

    1987-01-01

    We present results on jet production in γγ interactions where both photons are quasi-real. The invariant masses of the hadronic system are limited to the range 4≤W vis 12 GeV/c 2 . The data approach the Quark-Parton-Model (QPM) expectation at the highest p T jet values (≥4 GeV/c). Jet production at low p T (≤1 GeV/c) can be described by a Vector Dominance derived model. The data also have a component with no apparent jet structure in the range, 1.0≤p T jet ≤4.0 GeV/c which can be described by phase space or by models of the QCD hard scattering processes γγ→qanti qg and γγ→qanti qqanti q. (orig.)

  20. Comparison of animated jet stream visualizations

    Science.gov (United States)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  1. The jet membrane-experiment: downstream sampling

    International Nuclear Information System (INIS)

    Campargue, R.

    1976-01-01

    The invasion separation effect of the free jet structure was found in 1966 at Saclay. In the Downstream Sampling Configuration patended by Campargue (1967), the light fraction is withdrawn from the supersonic central core, by skimming the separating free jet. From experimental and theoretical results obtained for gas and isotopic mixtures, the following points linked to operation and equipment costs, are considered: system description; influence of mass ratio, expansion ratio, nature of separating gas, ratio of upflow to separating jet flow, rarefaction. Fron an uninteresting aspect of Jet Membrane (elimination of background penetration), a new principle has been discovered to produce nozzle beams which may be of great interest for other separation processes involving free jets and/or molecular beams [fr

  2. Deep learning in jet reconstruction at CMS

    CERN Document Server

    Stoye, Markus

    2017-01-01

    Deep learning has led to several breakthroughs outside the field of high energy physics, yet in jet reconstruction for the CMS experiment at the CERN LHC it has not been used so far. This report shows results of applying deep learning strategies to jet reconstruction at the stage of identifying the original parton association of the jet (jet tagging), which is crucial for physics analyses at the LHC experiments. We introduce a custom deep neural network architecture for jet tagging. We compare the performance of this novel method with the other established approaches at CMS and show that the proposed strategy provides a significant improvement. The strategy provides the first multi-class classifier, instead of the few binary classifiers that previously were used, and thus yields more information and in a more convenient way. The performance results obtained with simulation imply a significant improvement for a large number of important physics analysis at the CMS experiment.

  3. Hypervelocity jets from conical hollow-charges

    International Nuclear Information System (INIS)

    Velarde, P. M.; Martinez-Val, J. M.; Eliezer, S.; Piera, M.; Guillen, J.; Cobo, M. D.; Ogando, F.; Crisol, A.; Gonzalez, L.; Prieto, J.; Velarde, G.

    1997-01-01

    In this article the formation of jets by means of the implosion of conical targets is analyzed. This implosion might be induced by high intensity lasers or X rays. It is known of experiments with explosive and numeric simulations that the formation of jets depends critically on the aperture of the cone. It is found in these simulations that for a given collapsing speed an angle of the cone exists below which jet doesn't take place. This critical angle grows with the collapsing speed. The numerical simulations seem to indicate that the production of jets is related to the separation of the shock wave that takes place in the collapsing region. We will also analyze the mass and kinetic energy of the jets taken place as a function of the initial opening of the cone

  4. Jet energy resolution of the SDC detector

    International Nuclear Information System (INIS)

    Para, A.; Beretvas, A.; Denisenko, K.; Denisenko, N.; Green, D.; Yeh, G.P.; Wu, W.; Iso, H.

    1990-01-01

    We have answered the PAC question (''Demonstrate the jet energy resolution of your proposed detector by studying decays Z → jet + jet and Z' → jet + jet, M Z' = 1 TeV.'') using a general program called SSCSIM. This program is a tool for investigating simple questions involving the relations between detector parameters and physics capabilities of a detector. A different package called ANLSIM developed by our colleagues at Argonne has also been used to answer this question. The results as expected are very similar. In this note we will try to document our procedures. Our tentative conclusion from this study is that physics induced effects, out-of-cone fluctuations and underlying event fluctuations, dominate the resolution. Pushing the detector performance to the limits of technology improves the effective resolution by at most 20%. 20 refs., 6 figs., 5 tabs

  5. Liquid jets for experiments on complex fluids

    International Nuclear Information System (INIS)

    Steinke, Ingo

    2015-02-01

    The ability of modern storage rings and free-electron lasers to produce intense X-ray beams that can be focused down to μm and nm sizes offers the possibility to study soft condensed matter systems on small length and short time scales. Gas dynamic virtual nozzles (GDVN) offer the unique possibility to investigate complex fluids spatially confined in a μm sized liquid jet with high flow rates, high pressures and shear stress distributions. In this thesis two different applications of liquid jet injection systems have been studied. The influence of the shear flow present in a liquid jet on colloidal dispersions was investigated via small angle X-ray scattering and a coherent wide angle X-ray scattering experiment on a liquid water jet was performed. For these purposes, liquid jet setups that are capable for X-ray scattering experiments have been developed and the manufacturing of gas dynamic virtual nozzles was realized. The flow properties of a liquid jet and their influences on the liquid were studied with two different colloidal dispersions at beamline P10 at the storage ring PETRA III. The results show that high shear flows present in a liquid jet lead to compressions and expansions of the particle structure and to particle alignments. The shear rate in the used liquid jet could be estimated to γ ≥ 5.4 . 10 4 Hz. The feasibility of rheology studies with a liquid jet injection system and the combined advantages is discussed. The coherent X-ray scattering experiment on a water jet was performed at the XCS instrument at the free-electron laser LCLS. First coherent single shot diffraction patterns from water were taken to investigate the feasibility of measuring speckle patterns from water.

  6. Probing jets from young embedded sources

    Science.gov (United States)

    Nisini, Brunella

    2017-08-01

    Jets are intimately related to the process of star formation and disc accretion. Our present knowledge of this key ingredient in protostars mostly relies on observations of optical jets from T Tauri stars, where the original circumstellar envelope has been already cleared out. However, to understand how jets are originally formed and how their properties evolve with time, detailed observations of young accreting protostars, i.e. the class 0/I sources, are mandatory. The study of class0/I jets will be revolutionised by JWST, able to penetrate protostars dusty envelopes with unprecedented sensitivity and resolution. However, complementary information on parameters inferred from lines in different excitation regimes, for at least a representative sample of a few bright sources, is essential for a correct interpretation of the JWST results. Here we propose to observe four prototype bright jets from class0/I sources with the WFC3 in narrow band filters in order to acquire high angular resolution images in the [OI]6300A, [FeII]1.25 and [FeII]1.64um lines. These images will be used to: 1) provide accurate extinction maps of the jets that will be an important archival reference for any future observation on these jets. 2) measure key parameters as the mass flux, the iron abundance and the jet collimation on the hot gas component of the jets. These information will provide an invaluable reference frame for a comparison with similar parameters measured by JWST in a different gas regime. In addition, these observations will allow us to confront the properties of class 0/I jets with those of the more evolved T Tauri stars.

  7. Protostellar Jets: The Revolution with ALMA

    Science.gov (United States)

    Podio, Linda

    2017-11-01

    Fast and collimated molecular jets as well as slower wide-angle outflows are observed since the earliest stages of the formation of a new star, when the protostellar embryo accretes most of its final mass from the dense parental envelope. Early theoretical studies suggested that jets have a key role in this process as they can transport away angular momentum thus allowing the star to form without reaching its break-up speed. However, an observational validation of these theories is still challenging as it requires to investigate the interface between jets and disks on scales of fractions to tens of AUs. For this reason, many questions about the origin and feedback of protostellar jets remain unanswered, e.g. are jets ubiquitous at the earliest stages of star formation? Are they launched by a magneto-centrifugal mechanism as suggested by theoretical models? Are they able to remove (enough) angular momentum? What is the jet/outflow feedback on the forming star-disk system in terms of transported mass/momentum and shock-induced chemical alterations? The advent of millimetre interferometers such as NOEMA and ALMA with their unprecedented combination of angular resolution and sensitivity are now unraveling the core of pristine jet-disk systems. While NOEMA allows to obtain the first statistically relevant surveys of protostellar jet properties and ubiquity, recent ALMA observations provide the first solid signatures of jet rotation and new insight on the chemistry of the protostellar region. I will review the most recent and exciting results obtained in the field and show how millimetre interferometry is revolutionising our comprehension of protostellar jets.

  8. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    Science.gov (United States)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118

  9. Electric jets following the occurrence of sprites

    Science.gov (United States)

    Lee, L.; Chou, J.; Huang, S.; Chang, S.; Wu, Y.; Lee, Y.; Kuo, C.; Chen, A. B.; Su, H.; Hsu, R.; Frey, H. U.; Mende, S. B.; Takahashi, Y.; Lee, L.

    2010-12-01

    Sprites are discharges occurring at the altitudes ~40 to 90 km, which are usually associated with positive cloud-to-ground lightning (+CGs). Electric jets, which include blue jets (BJs) with the terminal altitude of ~40km and gigantic jets (GJs) emanating to the lower ionosphere, are upward discharges from the cloud tops toward the upper atmosphere. From previous ground observations, it has been reported that the secondary discharges (“palm-tree” [Heavner, 2000] or “sprite-initiated secondary TLEs” [Marshall and Inan, 2007]) following sprites occurred in altitudes between the cloud top and the bottom of the sprite. From July 2004 to June 2010, ISUAL has recorded dozens of events which resemble the secondary TLEs. From image and photometric data recorded by ISUAL, all these secondary TLEs have the characteristics of jets, so we call these events “secondary jets”. These secondary jets are categorized into two groups according to their emanating horizontal positions in relative to the sprites. Group-I secondary jets occurred in the cloud top region which is directly below the sprites. The terminal altitude is ~ 40-50km for most of group-I secondary jets. Several group-I secondary jets appear to originate from the cloud top region below the symmetric center of the clustering sprites and then propagate toward the lower ionosphere. While the group-II secondary jets originate from region outside the shielding area of the clustering sprites. In this paper, the image and the photometric characteristics of the secondary jets will be presented and the possible generating mechanisms will be discussed.

  10. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  11. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  12. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  13. Does Thermal Granulation Drive Tephra Jets?

    Science.gov (United States)

    White, J. D.; Zimanowski, B.; Buettner, R.; Sonder, I.; Dellino, P.

    2011-12-01

    Surtseyan tephra jets, also called cypressoid or cock's tail plumes, comprise a characteristic mixture of ash with bombs travelling roughly ballistic paths that tip the individual fingers of the projecting jet. Jets of similar form but smaller scale are generated by littoral magma-water interactions, confirming the general inference that surtseyan tephra jets are a characteristic product of explosive magma-water interaction, and suggesting that magmatic volatiles play a subsidiary role, if any, in their formation. Surtseyan jets have been inferred to result from both intense fuel-coolant interactions, and from simple boiling of water entrained into rising magma, and little new information has become available to test these two positions since they were clearly developed in the 1980s. Recent experiments in which magma is poured into standing water have produced vigorous jetting of hot water as melt solidifies and undergoes extensive thermal granulation. We present high-resolution hi-speed video of these jets, which we see as having the following origin. As thermal granulation takes place, a fracture network advances into the melt/glass body, and water invading the cracks at the rate of propagation is heated nearly instantaneously. Vapor produced at the contact expands and drives outward through cooled cracks, condensing as it moves to the exterior of the magma body where it is emitted as a jet of hot water. In ocean ridge hydrothermal systems a diffuse crack network inducts cold water, which is heated and expelled in focused jets. Focusing of hot outflow in experiments is inferred to result, as suggested for ridge hydrothermal systems, from thermoelastic closure of cracks near the one(s) feeding the jet. From the cooled products of our experimental runs, we know that thermal contraction produces a network of curved cracks with modal spacing of 1-2 mm, which separate domains of unbroken glass. It is during growth of this crack network that cold water enters, is

  14. Novel laboratory simulations of astrophysical jets

    Science.gov (United States)

    Brady, Parrish Clawson

    This thesis was motivated by the promise that some physical aspects of astrophysical jets and collimation processes can be scaled to laboratory parameters through hydrodynamic scaling laws. The simulation of astrophysical jet phenomena with laser-produced plasmas was attractive because the laser- target interaction can inject energetic, repeatable plasma into an external environment. Novel laboratory simulations of astrophysical jets involved constructing and using the YOGA laser, giving a 1064 nm, 8 ns pulse laser with energies up to 3.7 + 0.2 J . Laser-produced plasmas were characterized using Schlieren, interferometry and ICCD photography for their use in simulating jet and magnetosphere physics. The evolution of the laser-produced plasma in various conditions was compared with self-similar solutions and HYADES computer simulations. Millimeter-scale magnetized collimated outflows were produced by a centimeter scale cylindrically symmetric electrode configuration triggered by a laser-produced plasma. A cavity with a flared nozzle surrounded the center electrode and the electrode ablation created supersonic uncollimated flows. This flow became collimated when the center electrode changed from an anodeto a cathode. The plasma jets were in axially directed permanent magnetic fields with strengths up to 5000 Gauss. The collimated magnetized jets were 0.1-0. 3 cm wide, up to 2.0 cm long, and had velocities of ~4.0 × 10 6 cm/s. The dynamics of the evolution of the jet were compared qualitatively and quantitatively with fluxtube simulations from Bellan's formulation [6] giving a calculated estimate of ~2.6 × 10 6 cm/s for jet evolution velocity and evidence for jet rotation. The density measured with interferometry was 1.9 ± 0.2 × 10 17 cm -3 compared with 2.1 × 10 16 cm -3 calculated with Bellan's pressure balance formulation. Kinks in the jet column were produced consistent with the Kruskal-Shafranov condition which allowed stable and symmetric jets to form with

  15. Experimental studies of unbiased gluon jets from $e^{+}e^{-}$ annihilations using the jet boost algorithm

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    We present the first experimental results based on the jet boost algorithm, a technique to select unbiased samples of gluon jets in e+e- annihilations, i.e. gluon jets free of biases introduced by event selection or jet finding criteria. Our results are derived from hadronic Z0 decays observed with the OPAL detector at the LEP e+e- collider at CERN. First, we test the boost algorithm through studies with Herwig Monte Carlo events and find that it provides accurate measurements of the charged particle multiplicity distributions of unbiased gluon jets for jet energies larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive unbiased measurements of the gluon jet multiplicity distribution for energies between about 5 and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with our earlier results at 40 GeV, we then test QCD calculations for the en...

  16. Test for Jet Flow Induced by Steam Jet Condensation Using the GIRLS Facility

    International Nuclear Information System (INIS)

    Kim, Yeon Sik; Yoon, Y. J.; Song, C. H.

    2007-03-01

    To investigate the characteristics of the turbulent jet induced by steam jet condensation in a water tank through a single-hole sparger an experimental investigation was performed using the GIRLS facility. The experiments were conducted with respect to two cases, e.g. horizontal and vertical upward injections. For the measurements, pitot tube and thermocouples were used for turbulent flow velocity and temperatures, respectively. Overall flow shapes of the turbulent jet by the steam jet condensation are similar to those of axially symmetric turbulent jet flows. The angular coefficients of turbulent rays are quantitatively comparable between the traditional turbulent jet flows and the turbulent jet flows induced by the steam jet condensation in this work. Although the turbulent flows were induced by the horizontally injected steam jet condensation, general theory of turbulent jets was found to be applicable to the turbulent flows of this work. But for the vertically upward injection case, experimental data were quite deviated from the theoretical ones, which is considered due to the buoyancy effect

  17. b-JETS AT LHCb

    CERN Document Server

    Coco, Victor

    2008-01-01

    LHCb 1 is a LHC experiment dedicated to pre-jets. LHCh detector is a one arm spectrometer. It covers the forward region of interaction point, from 30 mrad to 300 (250) mrad in bending (non-bending) plane. The choice of such a limited acceptance is motivated by the fact that most of the 500 µb correlated bb pairs are produced in this region. LHCb experiment will take data at a luminosity of 2 x ID32cm-2s-1, where bunch crossing are dominated by single pp interactions. Good particle identification, excellent tracking and vcrtcxing arc needed for B physic mcasurmcnts. Expected resolution on track momentum is about bp/p = 0.35% around 10 GeV /c to bp/p = 0.55% around 140 GeV /c. Impact parameter resolution is expected to be aIP = 14µm + 35µm/p-r.

  18. Q-profiles in JET

    International Nuclear Information System (INIS)

    Gill, R.D.; Edwards, A.W.; Keegan, B.; Lazzaro, E.; O'Rourke, J.; Weller, A.; Zasche, D.

    1989-01-01

    Tokamak q-profiles play a central role in the determination of plasma stability and q(r) towards the plasma centre is particularly important for the sawtooth instability. On JET, q(r) has been determined from magnetic measurements and Faraday rotation. Further information about the position of the q=1 surface has been found from the sawtooth inversion radius, the position of the snake and the resonance effect observed on visible light and X-ray emission during pellet injection. In addition the shear at the q=1 surface has been measured from pellet ablation. This result is supported by the movement of the snake caused by a sawtooth crash. A summary of these data will be made after presenting the new results from pellet ablation. (author) 5 refs., 8 figs

  19. Magnetohydrodynamic models of astrophysical jets

    International Nuclear Information System (INIS)

    Beskin, Vasily S

    2010-01-01

    In this review, analytical results obtained for a wide class of stationary axisymmetric flows in the vicinity of compact astrophysical objects are analyzed, with an emphasis on quantitative predictions for specific sources. Recent years have witnessed a great increase in understanding the formation and properties of astrophysical jets. This is due not only to new observations but also to advances in analytical theory which has produced fairly simple relations, and to what can undoubtedly be called a breakthrough in numerical simulation which has enabled confirmation of theoretical predictions. Of course, we are still very far from fully understanding the physical processes occurring in compact sources. Nevertheless, the progress made raises hopes for near-future test observations that can give insight into the physical processes occurring in active astrophysical objects. (reviews of topical problems)

  20. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  1. The JET Project (Design proposal)

    International Nuclear Information System (INIS)

    1976-01-01

    This proposal describes a large Tokamak experiment, which aims to study plasma behavior in conditions and dimensions approaching those required in a fusion reactor. The maximum plasma minor radius (a) is 1.25 m and the major radius R 0 is 2.96 m. An important feature is the flexibility to study, for plasma currents in the 1→3 MA range, a wide range of aspect ratios R 0 /a=2.37→5), toroidal magnetic fields (up to 3.6T), minor radii (0.6→1.25 m) and elongation ratios (b/a=1→3.5). The cost of the apparatus, power supplies, plasma heating equipment and specific diagnostics is estimated as 70.1 Muc (March 1975 prices, 1 uc=50 FB). The total construction phase cost including commissioning, buildings and staff is 135 Muc. These figures include an average overall contingency of 30%. The construction time for the project is estimated at 5 years and requires 370 professional man years of effort in the construction organisation with additional effort deployed by the Associated Laboratories in such areas as diagnostics and plasma heating. This design proposal is arranged as follows: The preface gives an introduction to the field of fusion research and relates JET to the European and international programmes. Chapter I is a concise summary of the design proposal, it describes the objectives of research with JET, and gives a brief description of: the apparatus; the cost and construction schedules; the proposed experimental programme and the possible modes of operation of the device. A detailed account of the project is given in the rest of the report of which Chapters IV and VII comprise the engineering design and the staff and cost estimates respectively

  2. The JET project (design proposal)

    International Nuclear Information System (INIS)

    1976-03-01

    This proposal describes a large Tokamak experiment, which aims to study plasma behavior in conditions and dimensions approaching those required in a fusion reactor. The maximum plasma minor radius (a) is 1.25m and the major radius (R 0 ) is 2.96m. An important feature is the flexibility to study, for plasma currents in the 1→3MA range, a wide range of aspect ratios (R 0 /a=2.37→5), toroidal magnetic fields (up to 3.6T), minor radii (0.6→1.25m) and elongation ratios (b/a=1→3.5). The cost of the apparatus, power supplies, plasma heating equipment and specific diagnostics is estimated as 70.1Muc (march 1975 prices, 1uc=50FB). The total construction phase cost including commissioning, buildings and staff is 135Muc. These figures include an average overall contingency of 30%. The construction time for the project is estimated at 5 years and requires 370 professional man years of effort in the construction organisation with additional effort deployed by the Associated Laboratories in such areas as diagnostics and plasma heating. This design proposal is arranged as follows: an introduction to the field of fusion research is given and relates JET to the European and international programmes; a concise summary of the design proposal describes the objectives of research with JET, and gives a brief description of the apparatus, the cost and construction schedules, the proposed experimental programme and the possible modes of operation of the device. A detailed account of the engineering design and the staff and cost estimates is presented

  3. Composite Octet Searches with Jet Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; /SLAC; Shelton, Jessie; /Yale U.

    2012-02-14

    Many new physics models with strongly interacting sectors predict a mass hierarchy between the lightest vector meson and the lightest pseudoscalar mesons. We examine the power of jet substructure tools to extend the 7 TeV LHC sensitivity to these new states for the case of QCD octet mesons, considering both two gluon and two b-jet decay modes for the pseudoscalar mesons. We develop both a simple dijet search using only the jet mass and a more sophisticated jet substructure analysis, both of which can discover the composite octets in a dijet-like signature. The reach depends on the mass hierarchy between the vector and pseudoscalar mesons. We find that for the pseudoscalar-to-vector meson mass ratio below approximately 0.2 the simple jet mass analysis provides the best discovery limit; for a ratio between 0.2 and the QCD-like value of 0.3, the sophisticated jet substructure analysis has the best discovery potential; for a ratio above approximately 0.3, the standard four-jet analysis is more suitable.

  4. Identifying a new particle with jet substructures

    CERN Document Server

    Lim, Sung Hak; Kim, Doojin; Kim, Minho; Kong, Kyoungchul; Park, Myeonghun

    2017-01-01

    We investigate a potential of measuring properties of a heavy resonance X, exploiting jet substructure techniques. Motivated by heavy higgs boson searches, we focus on the decays of X into a pair of (massive) electroweak gauge bosons. More specifically, we consider a hadronic Z boson, which makes it possible to determine properties of X at an earlier stage. For $m_X$ of O(1) TeV, two quarks from a Z boson would be captured as a "merged jet" in a significant fraction of events. The use of the merged jet enables us to consider a Z-induced jet as a reconstructed object without any combinatorial ambiguity. We apply a conventional jet substructure method to extract four-momenta of subjets from a merged jet. We find that jet substructure procedures may enhance features in some kinematic observables formed with subjets. Subjet momenta are fed into the matrix element associated with a given hypothesis on the nature of X, which is further processed to construct a matrix element method (MEM)-based observable. For both ...

  5. Jet collimation by turbulent viscosity. I

    International Nuclear Information System (INIS)

    Henriksen, R.N.

    1987-01-01

    In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references

  6. Jet Joint Undertaking. Annual report 1990

    International Nuclear Information System (INIS)

    1991-05-01

    The Joint European Torus is the largest project in the coordinated fusion programme of the European Atomic Energy Community (EURATOM). A brief general introduction provides an overview of the planning of the Report. This is followed by a description of JET and the Euratom and International Fusion Programmes, which summarize the main features of the JET apparatus and its experimental programme and explains the position of the Project in the overall Euratom programme. In addition, this relates and compares JET to other large fusion devices throughout the world. The following section reports on the technical status of the machine including: technical changes and achievements during 1989; details of the operational organization of experiments and pulse statistics; and progress on enhancements in machine systems for future operation. This is followed by the results of JET operations in 1990 under various operating conditions, including ohmic heating, radio-frequency (RF) heating, neutral beam (NB) heating and various combined scenarios in different magnetic field configurations; the overall global and local behaviour observed; and the progress towards reactor conditions. In particular, the comparative performance between JET and other tokamaks, in terms of the triple fusion product, shows the substantial achievements made by JET since the start of operations in 1983. The second part of the Report explains the organization and management of the Project and describes the administration of JET. In particular, it sets out the budget situation; contractual arrangements during 1990; and details of the staffing arrangements and complement

  7. How much information is in a jet?

    Science.gov (United States)

    Datta, Kaustuv; Larkoski, Andrew

    2017-06-01

    Machine learning techniques are increasingly being applied toward data analyses at the Large Hadron Collider, especially with applications for discrimination of jets with different originating particles. Previous studies of the power of machine learning to jet physics have typically employed image recognition, natural language processing, or other algorithms that have been extensively developed in computer science. While these studies have demonstrated impressive discrimination power, often exceeding that of widely-used observables, they have been formulated in a non-constructive manner and it is not clear what additional information the machines are learning. In this paper, we study machine learning for jet physics constructively, expressing all of the information in a jet onto sets of observables that completely and minimally span N-body phase space. For concreteness, we study the application of machine learning for discrimination of boosted, hadronic decays of Z bosons from jets initiated by QCD processes. Our results demonstrate that the information in a jet that is useful for discrimination power of QCD jets from Z bosons is saturated by only considering observables that are sensitive to 4-body (8 dimensional) phase space.

  8. New Jet Substructure Techniques at ATLAS

    CERN Document Server

    Swiatlowski, M; The ATLAS collaboration

    2013-01-01

    The Q-jets technique introduces the idea of interpreting jets through multiple sets of possible showering histories. This approach allows jet observables, such as the jet mass, to be evaluated not simply as single values, but rather as distributions. The resulting distributions can be interpreted statistically to form new observables, allowing the separation of boosted, hadronically-decaying particles from light quark and gluon backgrounds. We present a study of Q-jets in boosted, hadronically-decaying $W$ boson and dijet samples, demonstrating the discriminating power of this technique. Different Q-jet parameters and observables are studied, and an optimal configuration based on physics performance and computational efficiency is proposed, leading to a factor of 15 in dijet rejection at a 50\\% efficiency for jets from boosted, hadronically decaying $W$ bosons. The impact of pile-up on the performance of this method is tested up to an average of 40 additional interactions per event and found to be weak. A per...

  9. How much information is in a jet?

    International Nuclear Information System (INIS)

    Datta, Kaustuv; Larkoski, Andrew

    2017-01-01

    Machine learning techniques are increasingly being applied toward data analyses at the Large Hadron Collider, especially with applications for discrimination of jets with different originating particles. Previous studies of the power of machine learning to jet physics have typically employed image recognition, natural language processing, or other algorithms that have been extensively developed in computer science. While these studies have demonstrated impressive discrimination power, often exceeding that of widely-used observables, they have been formulated in a non-constructive manner and it is not clear what additional information the machines are learning. In this paper, we study machine learning for jet physics constructively, expressing all of the information in a jet onto sets of observables that completely and minimally span N-body phase space. For concreteness, we study the application of machine learning for discrimination of boosted, hadronic decays of Z bosons from jets initiated by QCD processes. Our results demonstrate that the information in a jet that is useful for discrimination power of QCD jets from Z bosons is saturated by only considering observables that are sensitive to 4-body (8 dimensional) phase space.

  10. Bouncing and Merging of Liquid Jets

    Science.gov (United States)

    Saha, Abhishek; Li, Minglei; Law, Chung K.

    2014-11-01

    Collision of two fluid jets is a technique that is utilized in many industrial applications, such as in rocket engines, to achieve controlled mixing, atomization and sometimes liquid phase reactions. Thus, the dynamics of colliding jets have direct impact on the performance, efficiency and reliability of such applications. In analogy with the dynamics of droplet-droplet collision, in this work we have experimentally demonstrated, for n-alkane hydrocarbons as well as water, that with increasing impact inertia obliquely colliding jets also exhibit the same nonmonotonic responses of merging, bouncing, merging again, and merging followed by disintegration; and that the continuous entrainment of the boundary layer air over the jet surface into the colliding interfacial region leads to two distinguishing features of jet collision, namely: there exists a maximum impact angle beyond which merging is always possible, and that merging is inhibited and then promoted with increasing pressure. These distinct response regimes were mapped and explained on the bases of impact inertia, deformation of the jet surface, viscous loss within the jet interior, and the thickness and pressure build-up within the interfacial region in order to activate the attractive surface van der Waals force to effect merging.

  11. CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Foerster Schreiber, N. M.; Genzel, R.; Davies, R.; Genel, S.; Lutz, D.; Tacconi, L. J.; Shapley, A. E.; Bouche, N.; Cresci, G.; Erb, D. K.; Newman, S.; Shapiro, K. L.; Steidel, C. C.; Sternberg, A.

    2011-01-01

    We study the properties of luminous stellar 'clumps' identified in deep, high-resolution Hubble Space Telescope NIC2/F160W imaging at 1.6 μm of six z ∼ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. Individual clumps contribute ∼0.5%-15% of the galaxy-integrated rest-frame ∼5000 A emission, with median of ∼2%; the total contribution of clump light ranges from 10% to 25%. The median intrinsic clump size and stellar mass are ∼1 kpc and ∼10 9 M sun , in the ranges for clumps identified in rest-UV or line emission in other studies. The clump sizes and masses in the subset of disks are broadly consistent with expectations for clump formation through gravitational instabilities in gas-rich, turbulent disks given the host galaxies' global properties. By combining the NIC2 data with Advanced Camera for Surveys (ACS)/F814W imaging available for one source, and adaptive-optics-assisted SINFONI Hα data for another, we infer modest color, M/L, and stellar age variations within each galaxy. In these two objects, sets of clumps identified at different wavelengths do not fully overlap; NIC2-identified clumps tend to be redder/older than ACS- or Hα-identified clumps without rest-frame optical counterparts. There is evidence for a systematic trend of older ages at smaller galactocentric radii among the clumps, consistent with scenarios where inward migration of clumps transports material toward the central regions. From constraints on a bulge-like component at radii ∼< 1-3 kpc, none of the five disks in our sample appears to contain a compact massive stellar core, and we do not discern a trend of bulge stellar mass fraction with stellar age of the galaxy. Further observations are necessary to probe the buildup of stellar bulges and the role of clumps in this process.

  12. Jet models of X-Ray Flashes

    International Nuclear Information System (INIS)

    Lamb, D.Q.; Donaghy, T.Q.; Graziani, C.

    2005-01-01

    One third of all HETE-2-localized bursts are X-Ray Flashes (XRFs), a class of events first identified by Heise in which the fluence in the 2-30 keV energy band exceeds that in the 30-400 keV energy band We summarize recent HETE-2 and other results on the properties of XRFs. These results show that the properties of XRFs, X-ray-rich gamma-ray bursts (GRBs), and GRBs form a continuum, and thus provide evidence that all three kinds of bursts are closely related phenomena. As the most extreme burst population, XRFs provide severe constraints on burst models and unique insights into the structure of GRB jets, the GRB rate, and the nature of Type Ib/Ic supernovae. We briefly mention a number of the physical models that have been proposed to explain XRFs. We then consider two fundamentally different classes of phenomenological jet models: universal jet models, in which it is posited that all GRBs jets are identical and that differences in the observed properties of the bursts are due entirely to differences in the viewing angle; and variable-opening angle jet models, in which it is posited that GRB jets have a distribution of jet opening angles and that differences in the observed properties of the bursts are due to differences in the emissivity and spectra of jets having different opening angles. We consider three shapes far the emissivity as a function of the viewing angle θ ν from the axis of the jet: power law, top hat (or uniform) , and Gaussian (or Fisher). We then discuss the effect of relativistic beaming on each of these models. We show that observations can distinguish between these various models

  13. Forward modeling of JET polarimetry diagnostic

    International Nuclear Information System (INIS)

    Ford, Oliver; Svensson, J.; Boboc, A.; McDonald, D. C.

    2008-01-01

    An analytical Bayesian inversion of the JET interferometry line integrated densities into density profiles and associated uncertainty information, is demonstrated. These are used, with a detailed model of plasma polarimetry, to predict the rotation and ellipticity for the JET polarimeter. This includes the lateral channels, for over 45,000 time points over 1313 JET pulses. Good agreement with measured values is shown for a number of channels. For the remaining channels, the requirement of a more detailed model of the diagnostic is demonstrated. A commonly used approximation for the Cotton-Mouton effect on the lateral channels is also evaluated.

  14. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.

    1983-09-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  15. Jet Joint Undertaking Progress Report 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The report sets out an overview of progress on JET during 1992 and with a survey of scientific and technical achievements during 1992 sets these advances in their general context. This summary is specifically cross-referenced to reports and articles prepared and presented by JET staff during 1992. The last section is devoted to future plans and certain developments which might enable enhancements of the machine to further improve its overall performance. The Appendices contain a list of work topics which have been carried out under Task Agreements with various Association Laboratories. In addition, a full list is included of all Articles, Reports and Conference papers published by JET authors in 1992

  16. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  17. A cluster algorithm for jet studies

    International Nuclear Information System (INIS)

    Daum, H.J.; Meyer, H.; Buerger, J.

    1980-10-01

    A procedure is described which determines the number of jets in hadronic final states by means of a cluster algorithm. In addition it yields a measurement of the energy and the direction of each jet. The properties of this method are studied using Monte Carlo simulations of different types of e + e - -annihilation final states. It is shown that in case of 3-jet events direct comparison with the underlying parton structure can be made. Possible further applications of this method are discussed. (orig.)

  18. Saturation and forward jets at HERA

    International Nuclear Information System (INIS)

    Marquet, C.; Peschanski, R.; Royon, C.

    2004-01-01

    We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options

  19. Steam jet ejectors are examined automatically

    International Nuclear Information System (INIS)

    Lardiere, C.

    2013-01-01

    Steam jet ejectors are used in the nuclear industry particularly for the transfer of radioactive fluids. Their working is based on the Venturi effect and the conservation of energy. A steam ejector can be considered as a thermodynamical pump without mobile parts. The Descote enterprise manufactures a broad range of steam jet ejectors and the characterization and testing of the steam ejectors was made manually and empirically so far. A new test bench has been designed, the tests are led automatically and allow a more accurate characterization and optimization of the steam jet ejectors. (A.C.)

  20. The exhalant jet of mussels Mytilus edulis

    DEFF Research Database (Denmark)

    Riisgard, Hans Ulrik; Jørgensen, Bo Hoffmann; Lundgreen, Kim

    2011-01-01

    shell lengths. Here, we present results of a detailed study of fully open mussels Mytilus edulis in terms of filtration rate, exhalant siphon aperture area, jet velocity, gill area and body dry weight, all as a function of shell length (mean +/- SD) over the range 16.0 +/- 0.4 to 82.6 +/- 2.9 mm...... detailed 2-component velocity distributions near the exhalant siphon in 5 planes parallel to the axis of the jet and the major axis of the oval aperture, and hence estimates of momentum and kinetic energy flows in addition to mean velocity. Data obtained on particles inside the exhalant jet of filtered...

  1. Neutron streaming studies along JET shielding penetrations

    Science.gov (United States)

    Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan

    2017-09-01

    Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.

  2. Recent results on confinement in JET

    International Nuclear Information System (INIS)

    Campbell, D.J.

    1992-01-01

    The JET device is the world's largest tokamak and has been utilized in plasma heating experiments at total powers of up to 35MW using both neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). At the highest performance, JET plasmas have achieved conditions equivalent to energy ''breakeven''. A principal aim of the JET experiment is the investigation of plasma heating and confinement in plasma regimes relevant to thermonuclear ignition. The central issues in confinement physics involved in these advances are briefly reviewed and the most recent investigations of transport in high performance plasmas are summarized. (Author)

  3. Mueller-Navelet jets at the LHC

    CERN Document Server

    Ducloué, B.; Wallon, S.

    2015-01-01

    We report on our NLL BFKL studies of Mueller-Navelet jets. We first perform a complete NLL BFKL analysis supplemented by a BLM renormalization scale fixing procedure, which is successfully compared with recent CMS data. Second, we argue for the need of a measurement of an asymmetric jet configuration in order to perform a valuable comparison with fixed order approaches. Third, we predict that the energy-momentum violation is rather tiny in the NLL BFKL approach, for an asymmetric jet configuration. Finally, we argue that the double parton scattering contribution is negligible in the kinematics of actual CMS measurements.

  4. A self-focusing mercury jet target

    CERN Document Server

    Johnson, C

    2002-01-01

    Mercury jet production targets have been studied in relation to antiproton production and, more recently, pion production for a neutrino factory. There has always been a temptation to include some self-focusing of the secondaries by passing a current through the mercury jet analogous to the already proven lithium lens. However, skin heating of the mercury causes fast vaporization leading to the development of a gliding discharge along the surface of the jet. This external discharge can, nevertheless, provide some useful focusing of the secondaries in the case of the neutrino factory. The technical complications must not be underestimated.

  5. Bifurcation in a buoyant horizontal laminar jet

    Science.gov (United States)

    Arakeri, Jaywant H.; Das, Debopam; Srinivasan, J.

    2000-06-01

    The trajectory of a laminar buoyant jet discharged horizontally has been studied. The experimental observations were based on the injection of pure water into a brine solution. Under certain conditions the jet has been found to undergo bifurcation. The bifurcation of the jet occurs in a limited domain of Grashof number and Reynolds number. The regions in which the bifurcation occurs has been mapped in the Reynolds number Grashof number plane. There are three regions where bifurcation does not occur. The various mechanisms that prevent bifurcation have been proposed.

  6. Small-radius jets to all orders

    CERN Document Server

    Cacciari, Matteo; Soyez, Gregory; Salam, Gavin; Dasgupta, Mrinal

    2015-01-01

    With hadron colliders continuing to push the boundaries of precision, it is becoming increas­ ingly important to have a detailed understanding of the subtleties appearing at smaller values of the jet radius R. We present a method to resum all leading logarithmic terms, a'.; Inn R, using a generating functional approach, as was recently discussed in Ref. 1. We study a variety of observables, such as the inclusive jet spectrum and jet vetoes for Higgs physics, and show that small-R effects can be sizeable. Finally, we compare our calculations to existing ALICE data, and show good agreement.

  7. Studies on the properties of turbulent jets, 6

    International Nuclear Information System (INIS)

    Ishigaki, Hiroshi

    1984-01-01

    The round turbulent buoyant jet issuing vertically into quiescent fluid is studied analytically. Formulae on maximum velocity, temperature, concentration and entrainment rate are derived. These formulae agree well with the available experimental data for whole region of jet and plume. Quantitative classification as to the flow regime of jet, transition and plume are given for the nondimensional distance from jet exit. (author)

  8. Measurements of photon and jet production properties with ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237016; The ATLAS collaboration

    2016-09-09

    Summary of recent ATLAS measurements of jet and photon production using proton–proton (pp) collisions from the Large Hadron Collider. The charged-particle multiplicity in jets, and jet charge measurements are presented using 8 TeV pp collisions. Differential measurements of jet and photon cross-sections are shown for 7, 8 and 13 TeV pp collisions.

  9. Small-x QCD physics probed with jets in CMS

    CERN Document Server

    INSPIRE-00226059

    2014-01-01

    The latest CMS jet measurements in p-p collisions at sqrt(s) = 7 TeV, sensitive to small-x QCD physics, are discussed. These include inclusive forward jet and simultaneous forward-central jet production, as well as production ratios and azimuthal angle decorrelations of jets widely separeted in rapidity.

  10. Jet Tomography versus Holography at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Torrieri G.

    2011-04-01

    Full Text Available We compare pQCD based jet tomography to AdS/CFT based jet holography approach to address the heavy quark jet puzzle and discuss future tests at RHIC and LHC that could help decide which paradigm can provide the most consistent quantitative theory to explain modification of jet observabkles in high energy nuclear collisions.

  11. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  12. Concluding remarks: a progress report on our understanding of jets

    International Nuclear Information System (INIS)

    Perola, G.C.; Ferrari, A.

    1983-01-01

    The authors comment on the talks given at the Torino Workshop on astrophysical jets. The observations presented have not revealed a clear picture of nuclear jets. Concerning large scale jets, people begin to find systematic patterns in the variety of parameters and morphologies. So, this kind of jets is paid most attention to during the Workshop. The authors discuss the general consensus in the basic parameters of jets arisen from the preliminary data. Propagation and confinement of jets, the role of magnetic fields, and some observational tests are briefly reviewed. A final paragraph deals with the origin and termination of jets. (G.J.P.)

  13. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  14. Water Jet 2013 - Research, Development, Applications. Proceedings of the Conference on Water Jetting Technology

    OpenAIRE

    Sitek, Libor

    2013-01-01

    Water Jet 2013 - Research, Development, Applications is the third international meeting of researchers, manufacturers, end-users, and all those interested in the technology of high-speed water jetting organized by the Department of material disintegration of the Institute of Geonics of the ASCR Ostrava. It provides a basis not only for exchange knowledge, ideas, information and experiences in areas of research, development and applications of water jets, as well as stimulating discussio...

  15. Neutronic calculations for JET. Performed with the FURNACE2 program. (Final report JET contract JEO/9004)

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1996-10-01

    Neutron-transport calculations with the FURNACE(2) program system, in support of the Neutron Diagnostic Group at JET, have been performed since 1980, i.e. since the construction phase of JET. FURNACE(2) is a ray-tracing/multiple-reflection transport program system for toroidal geometries, that orginally was developed for blanket neutronics studies and which then was improved and extended for application to the neutron-diagnostics at JET. (orig./WL)

  16. Magnetosheath jets: MMS observations of internal structures and jet interactions with ambient plasma

    Science.gov (United States)

    Plaschke, F.; Karlsson, T.; Hietala, H.; Archer, M. O.; Voros, Z.; Nakamura, R.; Magnes, W.; Baumjohann, W.; Torbert, R. B.; Russell, C. T.; Giles, B. L.

    2017-12-01

    The dayside magnetosheath downstream of the quasi-parallel bow shock is commonly permeated by high-speed jets. Under low IMF cone angle conditions, large scale jets alone (with cross-sectional diameters of over 2 Earth radii) have been found to impact the subsolar magnetopause once every 6 minutes - smaller scale jets occurring much more frequently. The consequences of jet impacts on the magnetopause can be significant: they may trigger local reconnection and waves, alter radiation belt electron drift paths, disturb the geomagnetic field, and potentially generate diffuse throat aurora at the dayside ionosphere. Although some basic statistical properties of jets are well-established, their internal structure and interactions with the surrounding magnetosheath plasma are rather unknown. We present Magnetospheric Multiscale (MMS) observations which reveal a rich jet-internal structure of high-amplitude plasma moment and magnetic field variations and associated currents. These variations/structures are generally found to be in thermal and magnetic pressure balance; they mostly (but not always) convect with the plasma flow. Small velocity differences between plasma and structures are revealed via four-spacecraft timing analysis. Inside a jet core region, where the plasma velocity maximizes, structures are found to propagate forward (i.e., with the jet), whereas backward propagation is found outside that core region. Although super-magnetosonic flows are detected by MMS in the spacecraft frame of reference, no fast shock is seen as the jet plasma is sub-magnetosonic with respect to the ambient magnetosheath plasma. Instead, the fast jet plasma pushes ambient magnetosheath plasma ahead of the jet out of the way, possibly generating anomalous sunward flows in the vicinity, and modifies the magnetic field aligning it with the direction of jet propagation.

  17. Improving ATLAS Jet Measurements and Searches with Particle Information

    CERN Document Server

    Ramette, Joshua; Doglioni, Caterina; Young, Christopher; CERN. Geneva. EP Department

    2016-01-01

    With the LHC running at record collision energies, the ATLAS detector may reveal new physics including particles decaying hadronically into jets. Measurements involving jets are often limited by the jet energy scale uncertainty associated with the calibration of the detector response to jets in the hadronic calorimeters. In this article we examine the jet energy response dependence upon the fraction of jet energy contained in charged versus neutral particles by running the multijet balance with particle flow jets on a series of charged fraction cuts using both Monte Carlo and data jet samples. We discuss how the results can contribute to a reduction of the jet energy uncertainty for high energy jets where the uncertainty is estimated with the single particle propagation technique.

  18. Characteristic study of DC electric Arc plasma igniter jet

    International Nuclear Information System (INIS)

    Lan Yudan; He Liming; Du Hongliang; Wang Feng; Chen Xin

    2012-01-01

    The spectrometer was adopted to measure the emission spectrum of Ar plasma jet at the igniter exit. Boltzmann curve slope method was applied to calculate the jet electron temperature. Ionization equilibrium equation was used to calculate jet temperature and measure the laws that jet length, jet velocity, electron temperature and jet temperature of igniter exit change with arc current and inlet Ar flow rate. Whether the electron temperature could be used to replace jet temperature in aircraft plasma arc jet was also discussed. The experiment results show that arc current reduces with the rising of inlet Ar flow rate; exit jet length and velocity increase with the rising of arc current, and increase at first and then reduce with the rising of inlet Ar flow rate; exit electron temperature, electron density and jet temperature increase with the rising of arc current and reduce with the rising of inlet Ar flow rate. (authors)

  19. Aeroacoustics of compressible subsonic jets : Direct Numerical Simulation of a low Reynolds number subsonic jet and the associated sound field

    NARCIS (Netherlands)

    Moore, P.D.

    2009-01-01

    Jet noise is an extensively studied phenomenon since the deployment of the first civil jet aircraft more than 50 years ago. Jet noise makes up a considerable portion of the total noise of jet aircraft, and the expansion of the numbers of airplanes and airports has only been possible by keeping the

  20. Analysis of jet flames and unignited jets from unintended releases of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Houf, W.G.; Evans, G.H.; Schefer, R.W. [Sandia National Laboratories, Livermore, CA 94551-0969 (United States)

    2009-07-15

    A combined experimental and modeling program is being carried out at Sandia National Laboratories to characterize and predict the behavior of unintended hydrogen releases. In the case where the hydrogen leak remains unignited, knowledge of the concentration field and flammability envelope is an issue of importance in determining consequence distances for the safe use of hydrogen. In the case where a high-pressure leak of hydrogen is ignited, a classic turbulent jet flame forms. Knowledge of the flame length and thermal radiation heat flux distribution is important to safety. Depending on the effective diameter of the leak and the tank source pressure, free jet flames can be extensive in length and pose significant radiation and impingement hazard, resulting in consequence distances that are unacceptably large. One possible mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. The reasoning is that walls will reduce the extent of unacceptable consequences due to jet releases resulting from accidents involving high-pressure equipment. While reducing the jet extent, the walls may introduce other hazards if not configured properly. The goal of this work is to provide guidance on configuration and placement of these walls to minimize overall hazards using a quantitative risk assessment approach. The program includes detailed CFD calculations of jet flames and unignited jets to predict how hydrogen leaks and jet flames interact with barriers, complemented by an experimental validation program that considers the interaction of jet flames and unignited jets with barriers. As a first step in this work on barrier release interaction the Sandia CFD model has been validated by computing the concentration decay of unignited turbulent free jets and comparing the results with the classic concentration decay laws for turbulent free jets taken from experimental data. Computations for turbulent hydrogen

  1. Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets

    International Nuclear Information System (INIS)

    Lebedev, S V; Ciardi, A; Ampleford, D J; Bland, S N; Bott, S C; Chittenden, J P; Hall, G N; Rapley, J; Jennings, C; Sherlock, M; Frank, A; Blackman, E G

    2005-01-01

    We present results of high energy density laboratory experiments on the production of supersonic radiatively cooled plasma jets with dimensionless parameters (Mach number ∼30, cooling parameter ∼1 and density contrast ρ j /ρ a ∼ 10) similar to those in young stellar objects jets. The jets are produced using two modifications of wire array Z-pinch driven by 1 MA, 250 ns current pulse of MAGPIE facility at Imperial College, London. In the first set of experiments the produced jets are purely hydrodynamic and are used to study deflection of the jets by the plasma cross-wind, including the structure of internal oblique shocks in the jets. In the second configuration the jets are driven by the pressure of the toroidal magnetic field and this configuration is relevant to the astrophysical models of jet launching mechanisms. Modifications of the experimental configuration allowing the addition of the poloidal magnetic field and angular momentum to the jets are also discussed. We also present three-dimensional resistive magneto-hydrodynamic simulations of the experiments and discuss the scaling of the experiments to the astrophysical systems

  2. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    Science.gov (United States)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  3. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-12-01

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q 2 >125 GeV 2 with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb -1 . Jets were identified in the Breit frame using the k T cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q 2 and the jet transverse energy, E T,B jet . The dependence on R of the inclusive-jet cross section has been measured for Q 2 > 125 and 500 GeV 2 and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5 s (M Z ) has been extracted from the measurements of the inclusive-jet cross-section dσ/dQ 2 with R=1 for Q 2 > 500 GeV 2 : α s (M Z )=0.1207±0.0014(stat.) -0.0028 +0.0030 (exp.) -0.0 023 +0.0022 (th.). The variation of α s with E T,B jet is in good agreement with the running of α s as predicted by QCD. (orig.)

  4. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)

    2015-11-10

    This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.

  5. Analysis of multiplicities in e+e- interactions using 2-jet rates from different jet algorithms

    International Nuclear Information System (INIS)

    Dahiya, S.; Kaur, M.; Dhamija, S.

    2002-01-01

    The shoulder structure of charged particle multiplicity distribution measured in full phase space in e + e - interactions at various c.m. energies from 91 to 189 GeV has been analysed in terms of weighted superposition of two negative binomial distributions associated with 2-jet and multi-jet production. The 2-jet rates have been obtained from various jet algorithms. This phenomenological parametrization reproduces the shoulder structure behaviour quantitatively and improves the agreement with the experimental distributions than the conventional negative binomial distribution. The analysis at the higher energies where the shoulder structure appears more prominently, is important for the understanding of underlying structure. (author)

  6. Energy calibration of the jets in the experiment D0

    International Nuclear Information System (INIS)

    Coss, J.

    2003-12-01

    This thesis have been performed in the D0 group of the Nuclear Physics Institute at Lyon. This work is about the calibration of the jets in the D0 experiment located on the proton-antiproton collider Tevatron. I studied the Jet Offset Correction and we have proposed a new method to calibrate the b-jets. We have calculated the response of the calorimeter for these jets in the 'photon + b - jets' events. (author)

  7. Jet-images — deep learning edition

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luke de [Institute for Computational and Mathematical Engineering, Stanford University,Huang Building 475 Via Ortega, Stanford, CA 94305 (United States); Kagan, Michael [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Mackey, Lester [Department of Statistics, Stanford University,390 Serra Mall, Stanford, CA 94305 (United States); Nachman, Benjamin; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States)

    2016-07-13

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. This interplay between physically-motivated feature driven tools and supervised learning algorithms is general and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.

  8. Immunotoxicology of JP-8 Jet Fuel

    National Research Council Canada - National Science Library

    Harris, David

    2000-01-01

    ... of infectious disease and cancer. Chronic exposure to jet fuel has been shown to adversely affect human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans...

  9. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  10. A Parton Shower for High Energy Jets

    CERN Document Server

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  11. Jets and diffraction results from HERA

    International Nuclear Information System (INIS)

    Buniatyan, A.

    2014-01-01

    The latest results on precision measurements of jet and diffractive cross sections obtained by the H1 and ZEUS experiments at HERA are reported. The inclusive jet and multi-jet cross-sections are used in QCD calculations at next-to-leading order (NLO) to determine the strong coupling α s . The cross-section measurements for diffractive inclusive DIS processes with a leading proton in the final state are combined for the H1 and ZEUS experiments in order to improve the precision and extend the kinematic range. The di-jet cross sections are measured in diffractive DIS with a leading proton and compared with QCD predictions based on diffractive parton densities in the proton. The cross sections for exclusive heavy vector meson photoproduction are studied in terms of the momentum transfer at the proton vertex and of the photon-proton centre-of-mass energy. (author)

  12. Alternative jet fuel scenario analysis report

    Science.gov (United States)

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  13. Jet-images — deep learning edition

    International Nuclear Information System (INIS)

    Oliveira, Luke de; Kagan, Michael; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-01-01

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. This interplay between physically-motivated feature driven tools and supervised learning algorithms is general and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.

  14. Global kinetic theory of astrophysical jets

    International Nuclear Information System (INIS)

    Chang, T.

    1989-01-01

    We suggest that an astrophysical plasma stream flowing outward from a central object aling an open magnetic field line with decreasing field strength generally will have anisotropic velocity distributions. I particular, the electron distribution function of this type of plasma streams will contain a 'thermally populated' region and a stretche out high energy tail (or 'jet-like') region collimated in the utward direction of the magnetic field line. Our argument is based on a global, collisional, kinetic theory. Because the 'kinetic jets' are always pointed aling the outward direction of the field lines, thy are automatically collimated and will assume whatever the peculiar geometries dictated by the magnetic field. This result should be useful in the understanding of the basic structures of such diverse astrophysical objects as the extragalactic radio jets, stellar winds, the solar wind, planetary polar winds, and galactic jets. (author). 8 refs.; 2 figs

  15. A compilation of jet finding algorithms

    International Nuclear Information System (INIS)

    Flaugher, B.; Meier, K.

    1990-12-01

    Technical descriptions of jet finding algorithms currently in use in p bar p collider experiments (CDF, UA1, UA2), e + e - experiments and Monte-Carlo event generators (LUND programs, ISAJET) have been collected. 20 refs

  16. Abrasive water jet: a complementary tool

    OpenAIRE

    Duarte, J. P.; Peças, P.; Nunes, E.; Gouveia, H.

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial ...

  17. Impinging jets controlled by fluidic input signal

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk; Peszyński, K.

    2016-01-01

    Roč. 249, October (2016), s. 85-92 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * jets * impinging jets * coanda effect Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303880

  18. Jet stability in the lithium fall reactor

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    A preliminary analysis has been made of the various hydrodynamic aspects involved in the stability of a liquid-lithium jet in a laser-fusion reactor, which comprises a part of LLL's laser fusion power-generation concept. Various physical factors that may affect the jet breakup are delineated, and some approximate calculations are performed to determine their relative influences. Areas of uncertainty are pointed out, along with plans for experimental verification or further theoretical analysis

  19. Pinching Solutions of Slender Cylindrical Jets

    Science.gov (United States)

    1993-06-01

    NASA Langley Research Center, Hampton, VA 23681.2This research was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDE...concentrate on inviscid irrotational flows of liquid jets. A review article has been written by Bogy [2]. Of relevance is also the work of Chandrasekhar...equations become elliptic and allow the possibility of admissible pinching solutions described in this article . It is interesting to find that for jets

  20. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  1. Evidence for color coherence in jet events

    Energy Technology Data Exchange (ETDEWEB)

    CDF Collaboration

    1994-06-01

    Color coherence effects in p{bar p} collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multi jet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlos that are substantially different with respect to the implementation of coherence.

  2. Quasi-Similarity Model of Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2009-01-01

    Roč. 149, č. 2 (2009), s. 255-265 ISSN 0924-4247 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * synthetic jets * similarity solution Subject RIV: BK - Fluid Dynamics Impact factor: 1.674, year: 2009 http://www.sciencedirect.com

  3. Inclusive jet cross section at D0

    International Nuclear Information System (INIS)

    Bhattacharjee, M.

    1996-09-01

    Preliminary measurement of the central (|η| ≤ 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D null based on the 1992-1993 (13.7 pb -1 ) and 1994-1995 (90 pb -1 ) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made

  4. Electroweak boson production with jets at CMS

    CERN Document Server

    Hortiangtham, Apichart

    2017-01-01

    The production of electroweak bosons (W, Z or gamma) in association with jets is a stringent test of perturbative QCD and is a background process in searches for new physics. Total and differential cross-section measurements of electroweak bosons produced in association with jets (and heavy flavour quarks) in proton-proton collisions are presented. The data have been recorded with the CMS detector at the LHC and are compared to the predictions of event generators and theoretical calculations.

  5. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  6. Considerations on W → hadron jets

    International Nuclear Information System (INIS)

    Williams, P.K.; Chung, S.U.; Flaminio, V.; Paschos, E.A.; Paige, F.E.; Trueman, T.L.

    1977-01-01

    It is pointed out that another way to look for the bosons signal for the identification of the W +- and the Z 0 is through decays to hadronic jets. Although the background is a priori large, the jets may have such distinctive features so as to be recognizable. An SU(2) x U(1) gauge theory with six quarks and six leptons all in left-handed doublets and right-handed singlets is considered

  7. The technological achievements and experience at JET

    International Nuclear Information System (INIS)

    Pick, M.

    1998-12-01

    The Joint European Torus, JET, the largest and most successful Tokamak in the world, was conceived from the start as a research project with very ambitious aims and a bold approach to extrapolations of the physics and technology base as well as the international nature of its organisation. Throughout its operating life JET has maintained this approach and, with its innovative and flexible design, has extended its performance far beyond the initially intended boundaries thereby retaining a lead in virtually all areas of fusion research. JET has shown a willingness to venture far beyond the technology base of the time into new areas and dimensions. The paper will highlight a few examples which illustrate the approach taken in JET to work closely with industry and the European Associations to extend the technology beyond the current state of the art whilst maintaining a tight grip on the fundamental requirements of cost and time schedule. These range from large scale integrated systems as well as small scale technological breakthroughs. Large scale systems include the Active Gas Handling System for the on-line reprocessing of the tritium-deuterium fuel, the Remote Handling System which was integrated into the JET machine from the very beginning, the JET Power Supply system as well as, most importantly, the design of the JET structure itself which permitted the fast maintenance and repair of all major sub-units. Other notable advances include the Neutral Beam Injection and Radio Frequency Heating systems, the large open structure cryo-pumps and the novel cryo-transmission lines. Some of the associated technologies required major advances in the area of diagnostics, high power handling components, carbon fibre reinforced carbon materials as well as in the whole field of beryllium technology and beryllium handling. The success of JET has shown that it serves as a model for future machines both from an engineering point of view as well as in its approach to management

  8. Simulation Of Gas Focused Liquid Jets

    OpenAIRE

    Zahoor, Rizwan

    2018-01-01

    The main aim of dissertation is to develop an experimentally verified computational fluid dynamic (CFD) model of micron-sized liquid jet, produced by an injection molded Gas Dynamic Virtual Nozzle (GDVN). In these nozzles, liquid jets are efficiently orientedly transporting mass and momentum. They are produced by intelligently projecting hydrodynamic focusing effect from a high-speed stream of a co-flowing lower density and lower viscosity gas on a stream of liquid from a feeding capillary. L...

  9. Control of Supercavitating Vehicles using Transverse Jets

    Science.gov (United States)

    2016-03-15

    Supercavitating Vehicles using Transverse Jets Sb. GRANT NUMBER N00014-13-1-0747 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Ayers, Bradley...ANSI Std. Z39.18 CONTROL OF SUPERCAVITATING VEHICLES USING TRANSVERSE JETS Final Technical Report for Office of Naval Research contract N00014-13-1...fully-submerged, supercavitating vehicle model using the thrust of the zero-net-mass-flux device. The experiments were conducted in NUWC Newport’ s

  10. Gap between jets at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Royon, Christophe [CEA/IRFU/Service de physique des particules, CEA/Saclay, 91191 Gif-sur-Yvette cedex (France)

    2013-04-15

    We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

  11. Gap between jets at the LHC

    International Nuclear Information System (INIS)

    Royon, Christophe

    2013-01-01

    We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

  12. The jet mass distribution after Soft Drop

    Science.gov (United States)

    Marzani, Simone; Schunk, Lais; Soyez, Gregory

    2018-02-01

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects.

  13. Development of key fusion technologies at JET

    International Nuclear Information System (INIS)

    2001-01-01

    The recent operational phase in JET in which Deuterium-Tritium fuel was used (DTE1) resulted in record breaking fusion performance. In addition to important contributions in plasma physics, the JET Team has also made major advances in demonstrating the viability of some of the key technologies required for the realisation of future fusion power. Two of the most important technological areas which have been successfully demonstrated in JET are the ITER scale tritium processing plant and the exchange of the divertor and maintenance of the interior of JET by totally remote means. The experiment also provided the first data on tritium retention and co-deposition in a diverted tokamak. Of the 35g of tritium injected into the JET torus, about 6g remained in the tokamak. The amount resides mainly on cool surfaces at the inboard divertor side. The precise, safe and timely execution of the remote handling shutdown proved that the design, function, performance and operational methodology of the RH equipment prepared over the years at JET are appropriate for the successful and rapid replacement of components in an activated tokamak environment. (author)

  14. Boosted Higgs boson tagging using jet substructures

    CERN Document Server

    Shvydkin, Pavel

    2016-01-01

    Searching BSM particles via the Higgs boson final state has now become common. The mass of desired BSM particle is more than 1 TeV, thereby its decay products are highly Lorentz-boosted. Hence the jets from b quark-antiquark pair - which the Higgs boson mostly decays into - are very closed to each other, and merged into one jet, that is typically reconstructed using large jet sizes (∆R = 0.8). In this work regression technique is applied to AK8 jets (which defined by anti-kT algorithm, using ΔR = 0.8). The regression makes use of boosted jets with substructure information, coupled with the pecularities of a b quark decay, like the presence of a soft lepton (SL) inside the jet. It has allowed to improve the resolution of the mass reconstruction and transverse momentum of the Higgs boson. This application results in improvement of the mass reconstruction by 3-4 percent. These result may be improved firstly by making more careful pileup rejection. Then it is possible to combine base regression train for dif...

  15. ELLERMAN BOMBS WITH JETS: CAUSE AND EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Scullion, E.; Gallagher, P. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Doyle, J. G. [Armagh Observatory, College Hill, Armagh, BT61 9DG (United Kingdom); Shelyag, S., E-mail: areid29@qub.ac.uk [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria, 3800 (Australia)

    2015-05-20

    Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1 m Solar Telescope to study EB events on the solar disk and at the limb. Both data sets show that EBs are connected to the foot points of forming chromospheric jets. The limb observations show that a bright structure in the Hα blue wing connects to the EB initially fueling it, leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of Hα. In the disk data set, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame. The EB then splits into two, with associated brightenings in the inter-granular lanes. Micro-jets are then observed, extending to 500 km with a lifetime of a few minutes. Observed velocities of the micro-jets are approximately 5–10 km s{sup −1}, while their chromospheric counterparts range from 50 to 80 km s{sup −1}. MURaM simulations of quiet Sun reconnection show that micro-jets with properties similar to those of the observations follow the line of reconnection in the photosphere, with associated Hα brightening at the location of increased temperature.

  16. Recent developments of ECE diagnostics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Luna, E. de la; Sanchez, J. [Association Euratom-Ciemat para Fusion, Ciemant (Spain); Cientoli, C.; Blanchard, P.; Joffrin, E.; Mazon, D. [Association Euratom-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Riva, M.; Zerbini, M. [Association Euratom-ENEA sulla Fusione Centro Ricerche Energia Frascati (Italy); Conway, G. [IPP-Euratom Association, Garching (Germany); Felton, R.; Fessey, J.; Gowers, C. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Association Euratom-ENEA sulla Fusione, Padova (Italy)

    2004-07-01

    In JET, two types of ECE (electron cyclotron emission) instruments are routinely operated to provide electron temperature measurements: a Michelson interferometer and a heterodyne radiometer. ECE diagnostics are able to provide time-resolved electron temperature profiles with high spatial and temporal resolution, and have proven to play a fundamental role in the investigation and development of internal transport barriers (ITBs) in JET. In this paper we report on the major upgrade of the ECE diagnostics systems currently in progress at JET. Diagnostic developments include an upgrade of the multi-channel heterodyne radiometer, aimed at extending the radial region over which T{sub e} measurement can be performed, and the installation of a new Michelson interferometer with fast scanning capability, to improve the frequency and temporal resolution of the multi-harmonic ECE measurements at JET. Moreover, a future extension of the ECE system, an oblique ECE diagnostic to measure the ECE spectra at different angles with respect to the normal to the magnetic field, is being developed. This diagnostic is expected to give valuable insight into the interpretation of ECE measurements in high T{sub e}-plasmas and should be available for measurements once JET resumes operation in 2005.In this paper, the recent developments in the JET ECE diagnostic system will be described and illustrated with some recent results, with an emphasis on issues related with calibration stability, high-Te plasmas and ITB studies. Some of these issues will be discussed in the context of ITER.

  17. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  18. Tickling a high speed round jet

    Science.gov (United States)

    Arakeri, Vijay; Krothapalli, Anjaneyulu; Siddavaram, Vikram; Alkislar, Mehmet

    2001-11-01

    We have experimentally studied the effect of tickling a Mach 0.9 round jet with a set of microjets.Two dimensional velocity field measurements with PIV show a significant reduction in the turbulent intensities in the developing region of the jet with the activation of the microjets.Quantitatively,the axial and normal turbulence intensities are reduced by about 15respectively;even a larger effect is found on the magnitude of the correlation of axial and normal fluctuation intensities with a reduction of almost 40possible with a mass flow rate of the microjets being only about one percent of the main jet mass flow rate and hence justifying the use of the term `tickling`.The above findings are difficult to explain on the basis of stability considerations since there is very little change in the mean profile.Physically,the observed effect could be due to the alteration of the large eddy structures,which are so natural to a round jet,by the presence of the microjets.Exact nature of this interaction may be clarified with three dimensional PIV studies.It is expected that the tickling of the jet done as presently could have a favourable reflection in the aeroacoustics characteristics of the main jet.

  19. Formation of Bipolar Lobes by Jets

    Science.gov (United States)

    Soker, Noam

    2002-04-01

    I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.

  20. Development of key fusion technologies at JET

    International Nuclear Information System (INIS)

    1999-01-01

    The recent operational phase in JET in which Deuterium-Tritium fuel was used (DTE1) resulted in record breaking fusion performance. In addition to important contributions in plasma physics, the JET Team has also made major advances in demonstrating the viability of some of the key technologies required for the realisation of future fusion power. Two of the most important technological areas which have been successfully demonstrated in JET are the ITER scale tritium processing plant and the exchange of the divertor and maintenance of the interior of JET by totally remote means. The experiment also provided the first data on tritium retention and co-deposition in a diverted tokamak. Of the 35g of tritium injected into the JET torus, about 6g remained in the tokamak. The amount resides mainly on cool surfaces at the inboard divertor side. The precise, safe and timely execution of the remote handling shutdown proved that the design, function, performance and operational methodology of the RH equipment prepared over the years at JET are appropriate for the successful and rapid replacement of components in an activated tokamak environment. (author)

  1. Heavy flavored jet modification in CMS

    CERN Document Server

    AUTHOR|(CDS)2084335

    2016-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets (from charm and bottom quarks) in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the heavy flavor jet spectra and measurements of the nuclear modification factors in both PbPb and pPb as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013. Finally, we also will present a proposal for c-jet tagging methodology to be used for the upcoming hi...

  2. Characterization of high speed synthetic jet actuators

    Science.gov (United States)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets

  3. PHOTOSPHERIC EMISSION FROM STRATIFIED JETS

    International Nuclear Information System (INIS)

    Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji

    2013-01-01

    We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E p -L p relation can be explained by differences in the outflow properties of individual sources

  4. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  5. The JET belt limiter tiles

    International Nuclear Information System (INIS)

    Deksnis, E.

    1988-09-01

    The belt limiter system, comprising two full toroidal rings of limiter tiles, was installed in JET in 1987. In consists of water-cooled fins with the limiter material in form of tile inbetween. The tiles are designed to absorb heat fluxes during irradiation without the surface temperature exceeding 2000 0 C and to radiate this heat between pulses to the water cooled sink whose temperature is lower than that of the vacuum vessel. An important feature of the design is to maximise the area of the radiating surface facing the water cooled fin. This leads to a tile depth much greater than the width of the tile facing the heat flux. Limiter tiles intercept particles flowing out of the plasma through the area between the two belt limiter rings and through remaining surface area of the plasma column. Power deposition to a limiter tile depends strongly on the shape of the plasma, the edge plasma properties as well as on the surface profile of the tiles. This paper will discuss the methodology that was followed in producing an optimized surface profile of the tiles. This shaped profile has the feature that the resulting power deposition profile is roughly similar for a wide range of plasma parameters. (author)

  6. Enhanced wall pumping in JET

    International Nuclear Information System (INIS)

    Ehrenberg, J.; Harbour, P.J.

    1991-01-01

    The enhanced wall pumping phenomenon in JET is observed for hydrogen or deuterium plasmas which are moved from the outer (larger major radius) limiter position either to the inner wall or to the top/bottom wall of the vacuum vessel. This phenomenon is analysed by employing a particle recycling model which combines plasma particle transport with particle re-emission from and retention within material surfaces. The model calculates the important experimentally observable quantities, such as particle fluxes, global particle confinement time, plasma density and density profile. Good qualitative agreement is found and, within the uncertainties, the agreement is quantitative if the wall pumping is assumed to be caused by two simultaneously occurring effects: (1) Neutral particle screening at the inner wall and the top/bottom wall is larger than that at the outer limiter because of different magnetic topologies at different poloidal positions; and (2) although most of the particles (≥ 90%) impacting on the wall can be promptly re-emitted, a small fraction (≤ 10%) of them must be retained in the wall for a period of time which is similar to or larger than the global plasma particle confinement time. However, the wall particle retention time need not be different from that of the outer limiter, i.e. pumping can occur when there is no difference between the material properties of the limiter and those of the wall. (author). 45 refs, 18 figs

  7. Effect of outer stagnation pressure on jet structure in supersonic coaxial jet

    International Nuclear Information System (INIS)

    Kim, Myoung Jong; Woo, Sang Woo; Lee, Byeong Eun; Kwon, Soon Bum

    2001-01-01

    The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with 40 .deg. C converging angle with the variation of outer nozzle stagnation pressure are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressure of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream

  8. JET contributions to the workshop on the new phase for JET: the pumped divertor proposal

    International Nuclear Information System (INIS)

    1989-09-01

    Contributions to the Workshop consist of 13 papers on the new phase of operation of JET, including an outline of the objectives of the study of impurity control and the operating domain relative to the next generation of tokamaks. Studies are presented on the pumped divertor proposed for JET, diagnostic measurements required, and the performance expectations in the new configuration. (U.K.)

  9. Heat and mass transfers in the jets; Transferts de chaleur et de masse dans les jets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This day on the heat and mass transfers in the jets, was organized by the SFT (French Society of Thermic) to present the state of the art in the domain. Fifteen presentations allowed the participants to discuss about turbulent flows, simulation of fluid flow and jets impacts. (A.L.B.)

  10. Study of Jet Transverse Momentum and Jet Rapidity Dependence on Dijet Azimuthal Decorrelations

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthula, Kiran [Louisiana Tech Univ., Ruston, LA (United States)

    2012-01-01

    In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (pT ) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (p$\\bar{p}$) collisions occurring at a center of mass energy of 1.96TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (pQCD) predictions at next-to-leading order (NLO).

  11. Neural network classification of quark and gluon jets

    International Nuclear Information System (INIS)

    Graham, M.A.; Jones, L.M.; Herbin, S.

    1995-01-01

    We demonstrate that there are characteristics common to quark jets and to gluon jets regardless of the interaction that produced them. The classification technique we use depends on the mass of the jet as well as the center-of-mass energy of the hard subprocess that produces the jet. In addition, we present the quark-gluon separability results of an artificial neural network trained on three-jet e + e - events at the Z 0 mass, using a back-propagation algorithm. The inputs to the network are the longitudinal momenta of the leading hadrons in the jet. We tested the network with quark and gluon jets from both e + e - →3 jets and bar pp→2 jets. Finally, we compare the performance of the artificial neural network with the results of making well chosen physical cuts

  12. Jet algorithms performance in 13 TeV data

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The performance of jet algorithms with data collected by the CMS detector at the LHC in 2015 with a center-of-mass energy of 13 TeV, corresponding to 2.3 fb$^{-1}$ of integrated luminosity, is reported. The criteria used to reject jets originating from detector noise are discussed and the efficiency and noise jet rejection rate are measured. A likelihood discriminant designed to differentiate jets initiated by light-quark partons from jets initiated from gluons is studied. A multivariate discriminator is built to distinguish jets initiated by a single high $p_{\\mathrm{T}}$ quark or gluon from jets originating from the overlap of multiple low $p_{\\mathrm{T}}$ particles from non-primary vertices (pileup jets). Algorithms used to identify large radius jets reconstructed from the decay products of highly Lorentz boosted W bosons and top quarks are discussed, and the efficiency and background rejection rates of these algorithms are measured.

  13. Dark matter searches with a mono-Z′ jet

    International Nuclear Information System (INIS)

    Bai, Yang; Bourbeau, James; Lin, Tongyan

    2015-01-01

    We study collider signatures of a class of dark matter models with a GeV-scale dark Z ′ . At hadron colliders, the production of dark matter particles naturally leads to associated production of the Z ′ , which can appear as a narrow jet after it decays hadronically. Contrary to the usual mono-jet signal from initial state radiation, the final state radiation of dark matter can generate the signature of a mono-Z ′ jet plus missing transverse energy. Performing a jet-substructure analysis to tag the Z ′ jet, we show that these Z ′ jets can be distinguished from QCD jets at high significance. Compared to mono-jets, a dedicated search for mono-Z ′ jet events can lead to over an order of magnitude stronger bounds on the interpreted dark matter-nucleon scattering cross sections.

  14. A computational study of the supersonic coherent jet

    International Nuclear Information System (INIS)

    Jeong, Mi Seon; Kim, Heuy Dong

    2003-01-01

    In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets

  15. Experimental study on performance of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Xu Weihui; Gao Chuanchang; Qin Haixia

    2010-01-01

    The device performance characteristics of transformer type pulsed liquid pump device were experimentally studied. The effects of the area ratio, work pressure and pulse parameters on the performance of the pulsed liquid jet pump device were performed in the tests. The potency of pulsed jet on improving the performance of the liquid jet pump device was also studied through the comparison with invariable jet pump at the same conditions. The results show that the pulsed jet can significantly improve the performance of transformer type jet pump devices. Area ratio and pulse parameters are the critical factors to the performance of the pulsed liquid jet pump device. The jet pump device performances are significantly improved by reducing the area ratio or by increasing the pulsed frequency. The flux characteristics of the pulsed liquid jet pump device presents the typical negative linear,the potency of pulsed jet in improving the performance of jet pump device with small area ratio can be more significant. The efficiency curve of pulsed liquid jet pump is similar to the parabola. At higher pulsed frequency, the top efficiency point of the pulsed jet pump moves to the higher flow ratio. The high efficiency area of the pulsed jet pump also is widened with the increase of the pulsed frequency. (authors)

  16. Relativistic jets from accreting black holes

    International Nuclear Information System (INIS)

    Coriat, Mickael

    2010-01-01

    Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr

  17. Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance

    Directory of Open Access Journals (Sweden)

    Can Zhou

    2018-04-01

    Full Text Available To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement.

  18. Particle multiplicity in jets and subjets with jet axis from color current

    International Nuclear Information System (INIS)

    Ochs, Wolfgang; Ramos, Redamy Perez

    2008-01-01

    We study the particle multiplicity in a jet or subjet as derived from an energy-multiplicity 2-particle correlation. This definition avoids the notion of a globally fixed jet axis and allows for the study of smaller jet cone openings in a more stable way. The results are sensitive to the mean color current A 0 in the jet from primary parton A 0 , which takes into account intermediate partonic processes in the subjet production where C F A 0 c at high energies. We generalize previous calculations in the leading logarithmic approximation (LLA). The size of the effects related to this jet axis definition is computed for multiplicities in subjets with different opening angles and energies by including contributions from the modified LLA and next-to-modified LLA to the leading order QCD results.

  19. Phenomenology of single-inclusive jet production with jet radius and threshold resummation

    Science.gov (United States)

    Liu, Xiaohui; Moch, Sven-Olaf; Ringer, Felix

    2018-03-01

    We perform a detailed study of inclusive jet production cross sections at the LHC and compare the QCD theory predictions based on the recently developed formalism for threshold and jet radius joint resummation at next-to-leading logarithmic accuracy to inclusive jet data collected by the CMS Collaboration at √{S }=7 and 13 TeV. We compute the cross sections at next-to-leading order in QCD with and without the joint resummation for different choices of jet radii R and observe that the joint resummation leads to crucial improvements in the description of the data. Comprehensive studies with different parton distribution functions demonstrate the necessity of considering the joint resummation in fits of those functions based on the LHC jet data.

  20. Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere

    International Nuclear Information System (INIS)

    Pasko, V P

    2008-01-01

    An overview of general phenomenology and proposed physical mechanisms of large scale electrical discharges termed 'blue jets' and 'gigantic jets' observed at high altitude in the Earth's atmosphere above thunderstorms is presented. The primary emphasis is placed on summarizing available experimental data on the observed morphological features of upward jet discharges and on the discussion of recently advanced theories describing electrodynamic conditions, which facilitate escape of conventional lightning leaders from thundercloud tops and their upward propagation toward the ionosphere. It is argued that the filamentary plasma structures observed in blue jet and gigantic jet discharges are directly linked to the processes in streamer zones of lightning leaders, scaled by a significant reduction of air pressure at high altitudes.

  1. Studies of jet mass in dijet and W/Z + jet events

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D’Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Selvaggi, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D’Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D’Agnolo, R. T.; Dell’Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Ko-zlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D’Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Simili, E.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; RadburnSmith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Caulfield, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D’Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhu-naishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chle-bana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O’Dell, V.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O’Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Dug-gan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Os-ipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-05-01

    Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.

  2. Studies of jet mass in dijet and W/Z+jet events

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Sgaravatto, Massimo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Simili, Emanuele; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Caulfield, Matthew; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Kcira, Dorian; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Loveless, Richard; Mohapatra, Ajit; Mozer, Matthias Ulrich; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-05-17

    Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.

  3. Jet joint undertaking progress report 1988 volume I

    International Nuclear Information System (INIS)

    1989-06-01

    The 1988 progress report of the Joint European Torus (JET) is presented. It covers the fifth year of JET's operation and provides an overview of the scientific and technical advances made on JET. The JET most important articles, published during 1988, are included. The background of JET project, the main objectives and design aspects of the machine are summarized. Most of 1988 was devoted to machine operations: the number of pulses was 4673. The introduction, commissioning and operation of the JET second beam injector is reported. Planned developments on enhancements in the machine for future operations are included

  4. Measurements of jet-related observables at the LHC

    Science.gov (United States)

    Kokkas, P.

    2015-11-01

    During the first years of the LHC operation a large amount of jet data was recorded by the ATLAS and CMS experiments. In this review several measurements of jet-related observables are presented, such as multi-jet rates and cross sections, ratios of jet cross sections, jet shapes and event shape observables. All results presented here are based on jet data collected at a centre-of-mass energy of 7 TeV. Data are compared to various Monte Carlo generators, as well as to theoretical next-to-leading-order calculations allowing a test of perturbative Quantum Chromodynamics in a previously unexplored energy region.

  5. Theoretical study on device efficiency of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Gao Chuanchang; Lu Hongqi; Wang Shicheng; Cheng Mingchuan

    2001-01-01

    The influence of the main factors on device efficiency of pulsed liquid jet pump with gas-liquid piston is analysed, the theoretical equation and its time-averaged solution of pulsed liquid jet pump device efficiency are derived. The theoretical and experimental results show that the efficiency of transmission of energy and mass to use pulsed jet is greatly raised, compared with steady jet, in the same device of liquid jet pump. The calculating results of time-averaged efficiency of pulsed liquid jet pump are approximately in agreement with the experimental results in our and foreign countries

  6. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  7. Search for jet handedness in hadronic Z0 decays

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    We have searched for signatures of polarization in hadronic jets from Z 0 →q bar q decays using the ''jet handedness'' method. The polar angle asymmetry induced by the high SLAC Linear Collider electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left and right polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets, and we set upper limits at the 95% C.L. of 0.063 and 0.099, respectively, on the magnitude of the analyzing power of the method proposed by Efremov et al

  8. Proceedings of the Jet Noise Workshop

    Science.gov (United States)

    Huff, Dennis (Compiler)

    2001-01-01

    Jet noise has been a major problem for aircraft for nearly 50 years. There has been considerable research performed around the world aimed at identifying ways to reduce jet noise. This work was first intended for turbojet aircraft and later extended to low bypass ratio turbofans. Many of the people who performed this pioneering research have retired or are no longer active in aeroacoustics. After so many years of work in jet noise, it is a challenge to piece together the history of its development through existing publications due to the large volume of documents. It is possible to forget important developments from the past as new researchers tackle similar problems. Therefore, a jet noise workshop was organized by the AeroAcoustics Research Consortium (AARC) with the intent of reviewing research that has been done by experts throughout the world. The forum provided a unique opportunity for current researchers to hear the diverse views from world experts on issues related to jet noise modeling and interpretation of experimental data.

  9. Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Silke; Bonaventura, Daniel; Hergemoeller, Ann-Katrin; Hetz, Benjamin; Koehler, Esperanza; Lessmann, Lukas; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    Cluster-jet targets are highly suited for storage ring experiments due to the fact that they provide high and constant beam densities. Therefore, a cluster-jet target is planned to be the first internal target for the PANDA experiment at FAIR. A cluster source generates a continuous flow of cryogenic solid clusters by the expansion of pre-cooled gases within fine Laval nozzles. For the production of clusters the geometry of the nozzle is crucial. The production of such nozzles with their complex inner geometry represents a major technical challenge. The possibility to produce new fine Laval nozzles ensures the operation of cluster-jet targets, e.g. for the PANDA experiment, and opens the way for future investigations on the cluster production process to match the required targets performance. Optimizations on the recently developed production process and the fabrication of new glass nozzles were done. Initial measurements of these nozzles at the PANDA cluster-jet target prototype and the investigation of the cluster beam origin within the nozzle will be presented and discussed. For the future more Laval nozzles with different geometries will be produced and additional measurements with these new nozzles at the PANDA cluster-jet target prototype towards higher performance will be realized.

  10. Turbulence characteristics in cylindrical liquid jets

    International Nuclear Information System (INIS)

    Mansour, A.; Chigier, N.

    1994-01-01

    A study has been made of the flow patterns and turbulence characteristics in free liquid jets in order to determine the rate of decay of turbulence properties along the jet. Mean streamwise velocities and streamwise velocities and streamwise and cross-streamwise turbulence intensities were measured using laser Doppler velocimetry. The jet Reynolds number was varied between 1000 and 30 000, with the diameter of the liquid jet D=3.051 mm. Using a power law model for the time decay of turbulence kinetic energy, it was found that turbulence decays, on average with an exponent N=1, independent of the Reynolds number. A constant power for the decay implies Reynolds number similarity throughout this range. Substantial reductions in the degree of anisotropy occur downstream from the injector exit as the jet relaxes from a fully developed turbulent pipe flow profile to a flat profile. For the intermediate range of Reynolds numbers (10 000--20 000), the relaxation distance was 20D, almost independent of the Reynolds number. At high values of Reynolds number (20 000--30 000), the relaxation process was very fast, generally within three diameters from the injector exit

  11. Cfd modeling of a synthetic jet actuator

    International Nuclear Information System (INIS)

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  12. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    Tariq, M.M.

    2006-01-01

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  13. Factorization and resummation for jet processes

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Thomas [Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik,Universität Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Neubert, Matthias [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,55099 Mainz (Germany); Department of Physics, LEPP, Cornell University,Ithaca, NY 14853 (United States); Rothen, Lorena [Theory Group, Deutsches Elektronen-Synchrotron (DESY),Notkestrasse 85, D-22607 Hamburg (Germany); Shao, Ding Yu [Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik,Universität Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2016-11-04

    From a detailed analysis of cone-jet cross sections in effective field theory, we obtain novel factorization theorems which separate the physics associated with different energy scales present in such processes. The relevant low-energy physics is encoded in Wilson lines along the directions of the energetic particles inside the jets. This multi-Wilson-line structure is present even for narrow-cone jets due to the relevance of small-angle soft radiation. We discuss the renormalization-group equations satisfied by these operators. Their solution resums all logarithmically enhanced contributions to such processes, including non-global logarithms. Such logarithms arise in many observables, in particular whenever hard phase-space constraints are imposed, and are not captured with standard resummation techniques. Our formalism provides the basis for higher-order logarithmic resummations of jet and other non-global observables. As a nontrivial consistency check, we use it to obtain explicit two-loop results for all logarithmically enhanced terms in cone-jet cross sections and verify those against numerical fixed-order computations.

  14. Fluorescence Imaging Study of Impinging Underexpanded Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  15. A MODEL OF THE HELIOSPHERE WITH JETS

    International Nuclear Information System (INIS)

    Drake, J. F.; Swisdak, M.; Opher, M.

    2015-01-01

    An analytic model of the heliosheath (HS) between the termination shock (TS) and the heliopause (HP) is developed in the limit in which the interstellar flow and magnetic field are neglected. The heliosphere in this limit is axisymmetric and the overall structure of the HS and HP is controlled by the solar magnetic field even in the limit in which the ratio of the plasma to magnetic field pressure, β = 8πP/B 2 , in the HS is large. The tension of the solar magnetic field produces a drop in the total pressure between the TS and the HP. This same pressure drop accelerates the plasma flow downstream of the TS into the north and south directions to form two collimated jets. The radii of these jets are controlled by the flow through the TS and the acceleration of this flow by the magnetic field—a stronger solar magnetic field boosts the velocity of the jets and reduces the radii of the jets and the HP. MHD simulations of the global heliosphere embedded in a stationary interstellar medium match well with the analytic model. The results suggest that mechanisms that reduce the HS plasma pressure downstream of the TS can enhance the jet outflow velocity and reduce the HP radius to values more consistent with the Voyager 1 observations than in current global models

  16. Survey of disruption causes at JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Alper, B.; Hender, T.C.; Riccardo, V.; Buratti, P.; Koslowski, H.R.

    2011-01-01

    A survey has been carried out into the causes of all 2309 disruptions over the last decade of JET operations. The aim of this survey was to obtain a complete picture of all possible disruption causes, in order to devise better strategies to prevent or mitigate their impact. The analysis allows the effort to avoid or prevent JET disruptions to be more efficient and effective. As expected, a highly complex pattern of chain of events that led to disruptions emerged. It was found that the majority of disruptions had a technical root cause, for example due to control errors, or operator mistakes. These bring a random, non-physics, factor into the occurrence of disruptions and the disruption rate or disruptivity of a scenario may depend more on technical performance than on physics stability issues. The main root cause of JET disruptions was nevertheless due to neo-classical tearing modes that locked, closely followed in second place by disruptions due to human error. The development of more robust operational scenarios has reduced the JET disruption rate over the last decade from about 15% to below 4%. A fraction of all disruptions was caused by very fast, precursorless unpredictable events. The occurrence of these disruptions may set a lower limit of 0.4% to the disruption rate of JET. If one considers on top of that human error and all unforeseen failures of heating or control systems this lower limit may rise to 1.0% or 1.6%, respectively.

  17. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  18. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  19. Factorization and resummation for jet processes

    International Nuclear Information System (INIS)

    Becher, Thomas; Shao, Ding Yu; Neubert, Matthias; Mainz Univ.; Cornell Univ., Ithaca, NY; Rothen, Lorena

    2016-05-01

    From a detailed analysis of cone-jet cross sections in effective field theory, we obtain novel factorization theorems which separate the physics associated with different energy scales present in such processes. The relevant low-energy physics is encoded in Wilson lines along the directions of the energetic particles inside the jets. This multi-Wilson-line structure is present even for narrow-cone jets due to the relevance of small-angle soft radiation. We discuss the renormalization-group equations satisfied by these operators. Their solution resums all logarithmically enhanced contributions to such processes, including non-global logarithms. Such logarithms arise in many observables, in particular whenever hard phase-space constraints are imposed, and are not captured with standard resummation techniques. Our formalism provides the basis for higher-order logarithmic resummations of jet and other non-global observables. As a nontrivial consistency check, we use it to obtain explicit two-loop results for all logarithmically enhanced terms in cone-jet cross sections and verify those against numerical fixed-order computations.

  20. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  1. Transmission line analogy for relativistic Poynting-flux jets

    Science.gov (United States)

    Lovelace, R. V. E.; Kronberg, P. P.

    2013-04-01

    Radio emission, polarization and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet carries a galactic-scale electric current and that it is magnetically dominated. We develop the theory of magnetically dominated or Poynting-flux jets by making an analogy of a Poynting jet with a transmission line or waveguide carrying a net current and having a potential drop across it (from the jet's axis to its radius) and a definite impedance which we derive. The electromagnetic energy flow in the jet is the jet impedance times the square of the jet current. The observed current in 3C 303 can be used to calculate the electromagnetic energy flow in this magnetically dominated jet. Time dependent but not necessarily small perturbations of a Poynting-flux jet are described by the `telegrapher's equations'. These predict the propagation speed of disturbances and the effective wave impedance for forward and backward propagating wave components. A localized disturbance of a Poynting jet gives rise to localized dissipation in the jet which may explain the enhanced synchrotron radiation in the knots of the 3C 303 jet, and also in the apparently stationary knot HST-1 in the jet near the nucleus of the nearby galaxy M87. For a relativistic Poynting jet on parsec scales, the reflected voltage wave from an inductive termination or load can lead to a backward propagating wave which breaks down the magnetic insulation of the jet giving |{boldsymbol E}| /|{boldsymbol B}|ge 1. At the threshold for breakdown, |{boldsymbol E}|/|{boldsymbol B}|=1, positive and negative particles are directly accelerated in the {boldsymbol E} × {boldsymbol B} direction which is approximately along the jet axis. Acceleration can occur up to Lorentz factors ˜107. This particle acceleration mechanism is distinct from that in shock waves and that in magnetic field reconnection.

  2. Plane boundary effects on characteristics of propeller jets

    Science.gov (United States)

    Wei, Maoxing; Chiew, Yee-Meng; Hsieh, Shih-Chun

    2017-10-01

    The flow properties of a propeller jet in the presence of a plane bed boundary were investigated using the particle image velocimetry technique. Three clearance heights, Z b = 2 D p, D p, and 0.5 D p, where D p = propeller diameter, were used to examine boundary effects on the development of the jet. In each case, the mean flow properties and turbulence characteristics were measured in a larger field of view than those used in past studies. Both the streamwise and transverse flow fields were measured to obtain the three-dimensional characteristics of the propeller jet. Similar to a confined offset jet, the propeller jet also exhibits a wall attachment behavior when it is placed near a plane boundary. As a result, in contrast to its unconfined counterpart, the confined propeller jet features three regions, namely the free jet, impingement and wall jet regions. The study shows that the extent of each region varies under different clearance heights. The development of the mean flow and turbulence characteristics associated with varying clearance heights are compared to illustrate boundary effects in these regions. In the impingement region, the measured transverse flow fields provide new insights on the lateral motions induced by the impingement of the swirling jet. In the wall jet region, observations reveal that the jet behaves like a typical three-dimensional wall jet and its axial velocity profiles show good agreement with the classical wall jet similarity function.

  3. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  4. Jets with ALICE. From vacuum to QCD at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leticia, Cunqueiro [University of Muenster (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    The hot and dense medium created in heavy-ion collisions is expected to modify the yield and radiation pattern of jets relative to proton proton collisions. The study of medium-induced modifications in jets aims at the understanding of the detailed mechanisms of in medium energy loss of partons and of fundamental properties of QCD at high temperatures. ALICE measures jets in pp, p-Pb and Pb-Pb collisions, where pp and p-Pb are conceived primarily as a reference for vacuum and cold nuclear effects respectively. The jet program comprises measurements like yields for different resolution R, intra-jet and inter-jet modifications via jet shapes and hadron-jet correlations, path length dependence of energy loss via jet flow v{sub 2}, hadrochemistry via jet constituent identification, flavour/mass hierarchy of energy loss via heavy flavour tagging etc. Several of the latest ALICE jet physics results are presented and discussed with emphasis on new studies on jet substructure and jet shapes.

  5. Isothermal and Reactive Turbulent Jets in Cross-Flow

    Science.gov (United States)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  6. The jets of 3C120

    International Nuclear Information System (INIS)

    Axon, D.J.; Pedlar, A.; Unger, S.W.; Meurs, E.J.A.; Ward, M.J.

    1989-01-01

    Core-dominated radio sources associated with quasars are a manifestation of the most extreme form of activity in galactic nuclei. In general, the morphology of their inner radio structure is in the form of a jet detected on only one side of the core; the larger-scale radio emission is relatively symmetric. Superluminal motion in some sources has led to the suggestion that the ejection of radio-emitting material is relativistic and intrinsically two-sided. The apparent one-sidedness of the jets is then explained by relativistic aberration. This persuasive interpretation has not escaped criticism: both physical and statistical arguments have been advanced in favour of one-sided ejection. However, our new optical observations of 3C120, which reveal the details of the interaction between the radio jet and the quiescent gas in the galaxy, offer significant kinematic evidence in favour of the relativistic-beaming hypothesis. (author)

  7. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.

    1991-01-01

    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de

  8. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  9. Jet joint undertaking annual report 1988

    International Nuclear Information System (INIS)

    1989-07-01

    The 1988 activity report of the Joint European Torus (JET) project, is presented. The report provides an overview of the scientific, technical and administrative status of the program. The background of the project, the description of JET and Euratom and International Fusion Programs are explained. The technical status of the machine is given and it includes: technical changes and achievements during 1988; details of the operational organisation of experiments and pulse statistics; and progress on enhancements in machine systems for future operations. The results of JET operations in 1988, under various conditions of heating and combined scenarios in different magnetic field configurations, are provided. The project budget situation, contractual arrangements, in 1988, and staff complements, are included

  10. Abrasive water jet: a complementary tool

    International Nuclear Information System (INIS)

    Duarte, J.P.; Pecas, P.; Nunes, E.; Gouveia, H.

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass ceramics. The application of this technology has suffered and extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries. (Author) 5 refs

  11. Substructure of Highly Boosted Massive Jets

    Energy Technology Data Exchange (ETDEWEB)

    Alon, Raz [Weizmann Inst. of Science, Rehovot (Israel)

    2012-10-01

    Modern particle accelerators enable researchers to study new high energy frontiers which have never been explored before. This realm opens possibilities to further examine known fields such as Quantum Chromodynamics. In addition, it allows searching for new physics and setting new limits on the existence of such. This study examined the substructure of highly boosted massive jets measured by the CDF II detector. Events from 1.96 TeV proton-antiproton collisions at the Fermilab Tevatron Collider were collected out of a total integrated luminosity of 5.95 fb$^{-1}$. They were selected to have at least one jet with transverse momentum above 400 GeV/c. The jet mass, angularity, and planar flow were measured and compared with predictions of perturbative Quantum Chromodynamics, and were found to be consistent with the theory. A search for boosted top quarks was conducted and resulted in an upper limit on the production cross section of such top quarks.

  12. Formation of soap bubbles by gas jet

    Science.gov (United States)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  13. Constraints from jet calculus on quark recombination

    International Nuclear Information System (INIS)

    Jones, L.M.; Lassila, K.E.; Willen, D.

    1979-01-01

    Within the QCD jet calculus formalism, we deduce an equation describing recombination of quarks and antiquarks into mesons within a quark or gluon jet. This equation relates the recombination function R(x 1 ,x 2 ,x) used in current literature to the fragmentation function for producing that same meson out of the parton initiating the jet. We submit currently used recombination functions to our consistency test, taking as input mainly the u-quark fragmentation data into π + mesons, but also s-quark fragmentation into K - mesons. The constraint is well satisfied at large Q 2 for large moments. Our results depend on one parameter, Q 0 2 , the constraint equation being satisfied for small values of this parameter

  14. Assembly, commissioning and first operation of JET

    International Nuclear Information System (INIS)

    Huguet, M.

    1983-01-01

    A brief summary of the work carried out during the construction phase of JET is first given. This period was successfully concluded due to the well timed delivery by industry of all the major parts of the machine and power supplies. This could be achieved because of the excellent technical co-operation between the JET team and the firms involved in construction work. The assembly of the JET machine started on site in January 1982 immediately after civil engineering work was completed. Great attention was devoted to the preparation of the vacuum vessel octants. After delivery, they were carefully cleaned, baked and leak tested at 500 0 C, and then fitted with instrumentation, electrical heater cables and thermal insulation, in view of the bake-out of the complete vessel after final assembly

  15. Irradiated target cooling using circular air jet

    International Nuclear Information System (INIS)

    Selvaraj, P.; Natesan, K.; Velusamy, K.; Baskaran, V.; Sundararajan, T.

    2015-01-01

    To study the effect of irradiation on materials, sample coupons are irradiated in cyclotron facilities. During the irradiation process, these samples produce significant heat. This heat needs to be continuously removed from the samples in order to avoid melting of the samples as well as to keep the samples at a particular temperature during irradiation. The area available for heat transfer is limited due to the small size of the samples. To increase the heat transfer rate, jet cooling is used as it provides large heat transfer co-efficient. To understand the heat transfer characteristics of jet cooling under these conditions, experiments have been carried out. Electric Joule heating is adopted to simulate irradiation heat in stainless steel samples. An array of circular nozzles is used to create air jet. From the study the values of the parameters correspond to the maximum heat removal rate are found out. The results are also compared with an empirical correlation from the literature. (author)

  16. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    The author proposes a description of only a certain class of jets in extended radio sources by discussing hydrodynamics of jets formed by discrete portions of material ejected from the parent galaxy through a channel and reflected back into it as a result of an encounter with the material accumulated at the end of the channel. The picture presented here combines some older ideas with recent ones. The older ideas consist of modeling of extended radio sources in terms of multiple ejection of plasmons through a channel ploughed by the first few plasmons in the ambient medium with a resupply of energy in plasmons through the conversion of bulk kinetic energy into relativistic electron energy through instability driven turbulence. The recent ideas concern the formation of retro-jets as the result of interaction of a plasmon with the dense relic material at the end of a channel and the collimation of plasmon material in channels. (Auth.)

  17. Present and future JET ICRF antennae

    International Nuclear Information System (INIS)

    Kaye, A.; Brown, T.; Bhatnagar, V.; Crawley, P.; Jacquinot, J.; Lobel, R.; Plancoulaine, J.; Rebut, P.H.; Wade, T.; Walker, C.

    1994-01-01

    Since the initial operation of the JET ICRF system in 1985, up to 22 MW has been coupled to the plasma, many heating scenarios have been demonstrated and the main technological problem of RF-specific impurity production overcome. Many developments of the antennae have taken place over this period, notably the replacement of the water-cooled nickel screens with indirectly cooled beryllium screens, and the forthcoming installation of eight new A2 antennae for operation during the pumped divertor phase of JET. The A2 antennae include enhanced provision for fast wave current drive experiments on JET. This paper describes the beryllium screens, the technological results from operation and subsequent inspection of these screens, the design of the A2 antennae and the results from high power RF testing of a model of the A2 antenna. (orig.)

  18. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroyuki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth under submerged condition divided by the cutting depth in air at the same standoff distance. The relative cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  19. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  20. Measurement of air entrainment in plasma jets

    International Nuclear Information System (INIS)

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab

  1. Isotope separation in crossed-jet systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, R.J.; Anderson, J.B.

    1978-11-01

    The separation of isotopes in crossed-jet systems was investigated with Monte Carlo calculations of the separation effects for jets of Ne/Ar and /sup 235/UF/sub 6///sup 238/UF/sub 6/ mixtures entering a hydrogen stream. For the ideal condition of uniform stream velocities at zero temperature, the separation factor ..cap alpha.. was found to be 16.0 for Ne/Ar and 1.17 for /sup 235/UF/sub 6///sup 238/UF/sub 6/. For less ideal but more practical conditions, Monte Carlo calculations of the complete crossed-jet systems gave separation factors as high as 3.3 for Ne/Ar and ..cap alpha.. = 1.046 - 1.078 for /sup 235/UF/sub 6///sup 238/UF/sub 6/.

  2. Jet pairing algorithm for the 6-jet Higgs channel via energy chi-square criterion

    International Nuclear Information System (INIS)

    Magallanes, J.B.; Arogancia, D.C.; Gooc, H.C.; Vicente, I.C.M.; Bacala, A.M.; Miyamoto, A.; Fujii, K.

    2002-01-01

    Study and discovery of the Higgs bosons at JLC (Joint Linear Collider) is one of the tasks of ACFA (Asian Committee for future Accelerators)-JLC Group. The mode of Higgs production at JLC is e + e - → Z 0 H 0 . In this paper, studies are concentrated on the Higgsstrahlung process and the selection of its signals by getting the right jet-pairing algorithm of 6-jet final state at 300 GeV assuming that Higgs boson mass is 120 GeV and luminosity is 500 fb -1 . The total decay width Γ (H 0 → all) and the efficiency of the signals at the JLC are studied utilizing the 6-jet channel. Out of the 91,500 Higgsstrahlung events, 4,174 6-jet events are selected. PYTHIA Monte Carlo Generator generates the 6-jet Higgsstrahlung channel according to the Standard Model. The generated events are then simulated by Quick Simulator using the JCL parameters. After tagging all 6 quarks which correspond to the 6-jet final state of the Higgsstrahlung, the mean energy of the Z, H, and W's are obtained. Having calculated these information, the event energy chi-square is defined and it is found that the correct combination have generally smaller value. This criterion can be used to find correct jet-pairing algorithm and as one of the cuts for the background signals later on. Other chi-definitions are also proposed. (S. Funahashi)

  3. Modeling Jet Interaction of a Round Jet with a Subsonic Carrying Flow

    Directory of Open Access Journals (Sweden)

    Yu. P. Korobkova

    2017-01-01

    Full Text Available The paper analyzes numerical simulation of the round jet with a subsonic carrying flow. Performs calculations for different tilt angles of the jet ωj blowing and constructs the fields of velocities and pressures of the flow, jet trajectory, as well as calculates the pressure coefficients on the plate surface.To solve this problem, the CAD Solidworks Flow Simulation software was used. This package contains the solution of the Nowier-Stokes equation, which is necessary for modeling this problem.To test operation capability of the closing condition (k-th model of turbulence and proper choice of the boundaries of the computational domain, was solved a test problem forThe solution analysis has shown that the k-th model of turbulence was capable, and has a good agreement with other authors' experiment results [4]. Based on the selected conditions, further calculations were carried out for different tilt angles of jet blowing.In the course of research activities, it was revealed that the tilt angle of the jet blowing has a strong impact on redistribution of velocity and pressure in the area of the jet interaction, which allows the efficient use of such jets to control aerodynamic characteristics of the aircraft with the same power consumption for blowing out the gas. The solution of this problem is very relevant in wide application in aviation and rocket and space technology.

  4. In situ acceleration in extragalactic radio jets

    International Nuclear Information System (INIS)

    Bicknell, G.V.; Melrose, D.B.

    1982-01-01

    We have examined the energy dissipated by large-scale turbulence in an extragalactic jet. The turbulence is driven by a shear instability which does not disrupt the jet. Fluid theory should be used to treat the evolution of the turbulence, and this allows us to estimate the rate of dissipation without detailed knowledge of the dissipation process. Dissipation occurs due to Fermi acceleration at a scale length approx.10 -3 R and that resonant acceleration plays no role. The Alfvenic component in the turbulent spectrum is dissipated by first being converted into magneto-acoustic waves. An alternative dissipation process due to formation of weak shocks is shown to be equivalent in some respects to Fermi acceleration. Dissipation in the thermal gas should not exceed that due to Fermi acceleration. The effect of Fermi acceleration, adiabatic losses, and radiative losses on an initial power-law distribution with an upper cutoff is studied. Radio emission extending to at least 100 GHz is shown to be possible, and no spectral index gradients are introduced by the acceleration. The upper cutoff can increase due to the acceleration alone or when the acceleration is balanced by radiative losses. The northern jet in NGC 315 is studied in detail. Using our model for the acceleration, we estimate a jet velocity > or approx. =5000 km s -1 with Mach number not much greater than 1, and a density -4 f -1 cm -3 at the turn-on of the jet at 6 cm, where 0.05 5 yr, and it is predicted that the radius of the jet at the turn-on point should vary with frequency either as ν/sup 2/3/ or as ν/sup 3/2/, or there may be no frequency dependence, contingent upon the details of the acceleration

  5. Jets, black holes and disks in blazars

    Directory of Open Access Journals (Sweden)

    Ghisellini Gabriele

    2013-12-01

    Full Text Available The Fermi and Swift satellites, together with ground based Cherenkov telescopes, has greatly improved our knowledge of blazars, namely Flat Spectrum Radio Quasars and BL Lac objects, since all but the most powerful emit most of their electro–magnetic output at γ–ray energies, while the very powerful blazars emit mostly in the hard X–ray region of the spectrum. Often they show coordinated variability at different frequencies, suggesting that in these cases the same population of electrons is at work, in a single zone of the jet. The location of this region along the jet is a matter of debate. The jet power correlates with the mass accretion rate, with jets existing at all values of disk luminosities, measured in Eddington units, sampled so far. The most powerful blazars show clear evidence of the emission from their disks, and this has revived methods of finding the black hole mass and accretion rate by modelling a disk spectrum to the data. Being so luminous, blazars can be detected also at very high redshift, and therefore are a useful tool to explore the far universe. One interesting line of research concerns how heavy are their black holes at high redshifts. If we associate the presence of a relativistic jets with a fastly spinning black hole, then we naively expect that the accretion efficiency is larger than for non–spinning holes. As a consequence, the black hole mass in jetted systems should grow at a slower rate. In turn, this would imply that, at high redshifts, the heaviest black holes should be in radio–quiet quasars. We instead have evidences of the opposite, challenging our simple ideas of how a black hole grows.

  6. Steam-water jet analysis. Final report

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Harlow, F.H.; Demuth, R.B.; Ruppel, H.M.

    1984-05-01

    This report presents the results of a theoretical study on the effects of the steam-water jet emitted from a hypothetical rupture in the high-pressure piping pf a nuclear power plant. A set of calculations is presented, incorporating increasingly complex formulations for mass and momentum exchange between the liquid and vapor flow fields. Comparisons between theory and detailed experimental data are given. The study begins with a thorough evaluation of the specification of equilibrium mass and momentum exchange (homogeneous equilibrium) throughout the flow region, a model that generally overpredicts the rate of jet momentum divergence. The study finds that a near-equilibrium momentum exchange rate and a strongly nonequilibrium momentum exchange rate are needed in the region of large vapor-volume fraction to explain the impingement data for fully developed two-phase jets. This leads to the viewpoint that the large-scale jet is characterized by a flow of large liquid entities that travel relatively unaffected by the strongly diverging vapor flow field. The study also finds circumstances in which a persistent core of metastable superheated water can cause much larger impingement pressures than would otherwise be possible. Existing engineering methods are evaluated for jet-loading predictions in plant design. The existing methods appear to be conservative in most possible rupture circumstances with one exception: when the impingement target is about one pipe-diameter away, large enough to capture the full jet, and the rupture flow area is equal to the full pipe flow area, the existing method can produce loadings that are slightly lower than observed for subcooled, flashing discharge. Recommendations have been made to improve the prediction of existing methods under these conditions

  7. The technological achievements and experience at JET

    International Nuclear Information System (INIS)

    Pick, M.A.

    1999-01-01

    The Joint European Torus, JET, the largest and most successful Tokamak in the world, was conceived from the start as a research project with very ambitious aims and a bold approach to extrapolations of the physics and technology base as well as the international nature of its organisation. Throughout its operating life the JET team has maintained this approach and, with its innovative and flexible design, has extended its performance far beyond the initially intended boundaries thereby retaining a lead in virtually all areas of fusion research. The team has shown a willingness to venture far beyond the technology base of the time into new areas and dimensions. The paper will highlight a few examples which illustrate the approach taken in JET to work closely with industry and the European Associations to extend the technology beyond the current state of the art whilst maintaining a tight grip on the fundamental requirements of cost and time schedule. These range from large scale integrated systems as well as small scale technological breakthroughs. Large scale systems include the Active Gas Handling System for the on-line reprocessing of the tritium-deuterium fuel, the Remote Handling System which was integrated into the JET machine from the very beginning, the JET Power Supply system as well as, most importantly, the design of the JET structure itself which permitted the fast maintenance and repair of all major sub-units. Other notable advances include the Neutral Beam Injection and Radio Frequency Heating systems, the large open structure cryo-pumps and the novel cryo-transmission lines. Some of the associated technologies required major advances in the area of diagnostics, high power handling components, carbon fibre reinforced carbon materials as well as in the whole field of beryllium technology and beryllium handling. (orig.)

  8. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-12-15

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q{sup 2}>125 GeV{sup 2} with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb{sup -1}. Jets were identified in the Breit frame using the k{sub T} cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q{sup 2} and the jet transverse energy, E{sub T,B}{sup jet}. The dependence on R of the inclusive-jet cross section has been measured for Q{sup 2} > 125 and 500 GeV{sup 2} and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5<=R<=1. A value of {alpha}{sub s}(M{sub Z}) has been extracted from the measurements of the inclusive-jet cross-section d{sigma}/dQ{sup 2} with R=1 for Q{sup 2} > 500 GeV{sup 2}: {alpha}{sub s}(M{sub Z})=0.1207{+-}0.0014(stat.){sub -0.0028}{sup +0.0030}(exp.){sub -0.0023}{sup +0.0022}(th.). The variation of {alpha}{sub s} with E{sub T,B}{sup jet} is in good agreement with the running of {alpha}{sub s} as predicted by QCD. (orig.)

  9. Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.

    Science.gov (United States)

    Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L

    2008-01-01

    The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.

  10. ATLAS event featuring two charm jets and missing energy

    CERN Multimedia

    ATLAS Collaboration

    2012-01-01

    Proton collision event in the ATLAS detector featuring two tagged charm jets and missing transverse energy. The zoomed view in the bottom right panel shows a displaced vertex of one of the c-tagged jets (marked in blue).

  11. Forward jet production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, T.

    2005-08-01

    The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x Bj ) and as triple differential cross sections d 3 σ/dx Bj dQ 2 dp t,jet 2 , where Q 2 is the four momentum transfer squared and p t,jet 2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models. (orig.)

  12. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  13. Forward Jet Production in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \\sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.

  14. Study on the Impact Characteristics of Coherent Supersonic Jet and Conventional Supersonic Jet in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Cheng, Ting; Dong, Kai; Yang, Lingzhi; Wu, Xuetao

    2018-02-01

    Supersonic oxygen-supplying technologies, including the coherent supersonic jet and the conventional supersonic jet, are now widely applied in electric arc furnace steelmaking processes to increase the bath stirring, reaction rates, and energy efficiency. However, there has been limited research on the impact characteristics of the two supersonic jets. In the present study, by integrating theoretical modeling and numerical simulations, a hybrid model was developed and modified to calculate the penetration depth and impact zone volume of the coherent and conventional supersonic jets. The computational fluid dynamics results were validated against water model experiments. The results show that the lance height has significant influence on the jet penetration depth and jet impact zone volume. The penetration depth decreases with increasing lance height, whereas the jet impact zone volume initially increases and then decreases with increasing lance height. In addition, the penetration depth and impact zone volume of the coherent supersonic jet are larger than those of the conventional supersonic jet at the same lance height, which illustrates the advantages of the coherent supersonic jet in delivering great amounts of oxygen to liquid melt with a better stirring effect compared to the conventional supersonic jet. A newly defined parameter, the k value, reflects the velocity attenuation and the potential core length of the main supersonic jet. Finally, a hybrid model and its modifications can well predict the penetration depth and impact zone volume of the coherent and conventional supersonic jets.

  15. Structure of strongly underexpanded gas jets submerged in liquids – Application to the wastage of tubes by aggressive jets

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Francis, E-mail: roger@ensma.fr [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Carreau, Jean-Louis; Gbahoué, Laurent; Hobbes, Philippe [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Allou, Alexandre; Beauchamp, François [CEA, DEN, Cadarache, DTN/STPA/LTRS, 13108 Saint-Paul lez, Durance Cedex (France)

    2014-07-01

    Highlights: • Underexpanded gas jets submerged in liquids behave similarly to homogeneous gas jets. • The counter rotating vortex pairs of jet produce discrete imprints on the targets. • The shape of hollows made on the targets is explained by the jet structure. • The erosion–corrosion phenomenon well explains the wastage of exchange tubes. - Abstract: Strongly underexpanded gas jets submerged in a liquid at rest behave similarly to underexpanded homogeneous gas jets. The existence of the Taylor-Görtler vortices around the inner zone of the gas jets is demonstrated in free gas jets submerged in water by means of optical probe. In the near field, the same phenomenon produces discrete imprints, approximately distributed in a circle, when underexpanded nitrogen jet submerged in liquid sodium hydroxide and underexpanded water vapour jet submerged in liquid sodium impact onto AU{sub 4}G-T{sub 4} and Incoloy 800{sup ®} alloy targets respectively. For a jet-target couple, the volume of the hollow is satisfactorily related to the strain energy density of the material and the kinetic energy of the gas jet. However, the comparison between volumes of hollows produced by both jets also indicates strong corrosive action of the medium on targets. This allows better understanding of the mechanism of wastage of tubes employed in steam generators integrated in liquid metal fast breeder reactors.

  16. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  17. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  18. Jet invariant mass in quantum chromodynamics

    International Nuclear Information System (INIS)

    Clavelli, L.

    1979-03-01

    We give heuristic argument that a new class of observable related to the invariant mass of jets in e + e - annihilation is infrared finite to all orders of perturbation theory in Quantum Chromodynamics. We calculate the lowest order QCD predictions for the mass distribution as well as for the double differential cross section to produce back to back jets of invariant mass M 1 and M 2 . The resulting cross sections are quite different from that expected in simple hadronic fireball models and should provide experimentally accessible tests of QCD. (orig.) [de

  19. The jet mass distribution after Soft Drop

    Energy Technology Data Exchange (ETDEWEB)

    Marzani, Simone [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN, Sezione di Genova (Italy); Schunk, Lais [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681, Gif-Sur-Yvette (France)

    2018-02-15

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects. (orig.)

  20. Wavepacket models for supersonic jet noise

    OpenAIRE

    Sinha, Aniruddha; Rodríguez, Daniel; Brès, Guillaume A.; Colonius, Tim

    2014-01-01

    Gudmundsson and Colonius (J. Fluid Mech., vol. 689, 2011, pp. 97–128) have recently shown that the average evolution of low-frequency, low-azimuthal modal large-scale structures in the near field of subsonic jets are remarkably well predicted as linear instability waves of the turbulent mean flow using parabolized stability equations. In this work, we extend this modelling technique to an isothermal and a moderately heated Mach 1.5 jet for which the mean flow fields are obtained from a high-f...

  1. The jets in 3C 449 revisited

    International Nuclear Information System (INIS)

    Cornwell, T.J.; Perley, R.A.

    1982-01-01

    Bridle (this volume) has summarized the overall characteristics of the jets found in numerous low-luminosity and some high-luminosity radio sources. Previous observations made with the partially completed VLA at wavelengths of 6 and 2O cm indicated that 3C449 was an archetypal radio source obeying all the ''rules'' summarized by Bridle. New observations with the VLA of the polarization structure at 6 and 2O cm have destroyed this simple picture and identify 3C449 as a ''rogue'' jet source. (Auth.)

  2. JET joint undertaking. Annual report 1978

    International Nuclear Information System (INIS)

    1979-02-01

    This document is intended for information only and should not be used as a technical reference. After an introductive part on the controlled nuclear fusion research and an historical survey of the JET project, are presented: the JET joint undertaking (members of council and committee...) with its administration (finance, personnel, external relations), and the scientific and technical department with its divisions for systems (experimental, magnet, plasma, assembly, power supplies, control and data acquisition, and site and building). In appendix is described the Euratom fusion research programme

  3. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP. (orig.).

  4. Investigation of very long jet chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, H J; Va' vra, J; Zankel, K; Dudziak, U; Schaile, D; Schaile, O; Igo-Kemenes, P; Lennert, P

    1986-04-01

    The electrostatic properties and the performances of very long jet chambers have been investigated. Using 100 MHz FADC wave form digitisers, the tracking accuracy, the charge division and the dE/dx performance of two chambers, one with 4.5 m long tungsten wires and one with 4 m long highly resistive ''NiCoTi'' wires have been studied. The geometry of the chambers was chosen to define some of the design parameters of the jet chamber for the OPAL detector for LEP.

  5. Synchrotron brightness distribution of turbulent radio jets

    International Nuclear Information System (INIS)

    Henriksen, R.N.; Bridle, A.H.; Chan, K.L.

    1982-01-01

    In this paper we introduce the notion of radio jets as turbulent mixing regions. We further propose that the essential small-scale viscous dissipation in these jets is by Lighthill emission of MHD waves and by their subsequent strong damping due, at least partly, to gyroresonant acceleration of suprathermal particles. The equilibrium eddy, wave, and particle spectra are not found exactly in this paper but the problem is defined and rough estimates of the spectra are given to aid in the observational interpretation

  6. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  7. Gasdynamic structure of free argon plasma jet

    International Nuclear Information System (INIS)

    Dunder, J.

    1973-01-01

    The paper deals with the experimental results of research conducted on the argon plasma jet. Special miniaturized water cooled Pitot probes (1.45 and 2.5 mm. dia.) were used for the measurement of the total head. The results correlate the length of the arc chamber and other main parameters of the plasma generator with the length of the core and maximum values of the total pressure and velocity in the core of the jet. For the plasma generator used for the experiments the axial and radial distributions of the pressure as well as the generalized volt-ampere dependence were obtained. (author)

  8. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    A discussion of the hydrodynamics of jets formed by discrete portions of materials ejected from the parent galaxy through a channel, and reflected back to it as a result of an encounter with the material accumulated at the end of the channel, is the basis of the present descriptive hypothesis for a class of jets in extended radio sources. The model encompasses the view of extended radio sources as the multiple ejection of plasmoids through a channel, as well as the formation of retrojets through the interaction of a plasmon with the dense relic material at the end of a channel, and the collimation of plasmon material in channels. 14 references

  9. The JET project: introduction and background

    International Nuclear Information System (INIS)

    Pease, R.S.

    1987-01-01

    The Joint European Torus, JET, is an experiment, undertaken by 15 partners from 12 nations of Western Europe, to get information on the magnetic confinement of high-temperature plasma in conditions close to those needed for energy-producing controlled thermonuclear fusion reactors. Physically, JET is a very powerful toroidal-pinch electric discharge in a strong stabilizing magnetic field, a system known as a tokamak. The paper summarizes the main features of a tokamak and relates them to the papers in this symposium. (author)

  10. Global confinement characteristics of Jet limiter plasmas

    International Nuclear Information System (INIS)

    Campbell, D.J.; Christiansen, J.P.; Cordey, J.G.; Thomas, P.R.; Thomsen, K.

    1989-01-01

    Data from a wide variety of plasma pulses on JET (aux. heating, current, field, minority species, plasma shape, etc) are analysed in order to assess the characteristics of global confinement. The scaling of confinement in ohmically and auxiliary heated discharges is examined. The ohmic confinement in the present new JET configuration (Belt Limiter) is essentially the same as previously. Confinement in auxiliary heated discharges shows presently a slight improvement since 1986. Both ohmic and non-ohmic data is used in a set of confinement time regression analyses and certain constraints derived from theory are imposed

  11. Factorial correlators: angular scaling within QCD jets

    International Nuclear Information System (INIS)

    Peschanski, R.

    2001-01-01

    Factorial correlators measure the amount of dynamical correlation in the multiplicity between two separated phase-space windows. We present the analytical derivation of factorial correlators for a QCD jet described at the double logarithmic (DL) accuracy. We obtain a new angular scaling property for properly normalized correlators between two solid-angle cells or two rings around the jet axis. Normalized QCD factorial correlators scale with the angular distance and are independent of the window size. Scaling violations are expected beyond the DL approximation, in particular from the subject structure. Experimental tests are feasible, and thus would be welcome. (orig.)

  12. A systematic study of supersonic jet noise.

    Science.gov (United States)

    Louis, J. F.; Letty, R. P.; Patel, J. R.

    1972-01-01

    The acoustic fields for a rectangular and for an axisymmetric nozzle configuration are studied. Both nozzles are designed for identical flow parameters. It is tried to identify the dominant noise mechanisms. The other objective of the study is to establish scaling laws of supersonic jet noise. A shock tunnel is used in the investigations. Measured sound directivity, propagation direction of Mach waves obtained by shadowgraphs, and the slight dependence of the acoustic efficiency on the level of expansion indicate that Mach waves contribute significantly to the noise produced by a rectangular jet.

  13. Supersonic cruise vehicle research/business jet

    Science.gov (United States)

    Kelly, R. J.

    1980-01-01

    A comparison study of a GE-21 variable propulsion system with a Multimode Integrated Propulsion System (MMIPS) was conducted while installed in small M = 2.7 supersonic cruise vehicles with military and business jet possibilities. The 1984 state of the art vehicles were sized to the same transatlantic range, takeoff distance, and sideline noise. The results indicate the MMIPS would result in a heavier vehicle with better subsonic cruise performance. The MMIPS arrangement with one fan engine and two satellite turbojet engines would not be appropriate for a small supersonic business jet because of design integration penalties and lack of redundancy.

  14. Jet joint undertaking. Annual report 1985

    International Nuclear Information System (INIS)

    1986-06-01

    After a presentation of the Jet and nuclear fusion, the results of Jet operations in 1985 are given: energy confinement, MHD activity and disruptive instabilities, impurities and radiation losses, plasma evolution, plasma boundary phenomena, control of plasma current, position and shape, RF heating. Technical achievements in 1985 are summarized: vacuum systems, first wall, multi-pellet injection for fuelling and re-fuelling, containment of forces during vertical instabilities, magnet systems, safety systems, power supplies, neutral beam heating, radio-frequency heating, remote handling, tritium handling, control and data acquisition, diagnostic systems are implied

  15. Equilibration Influence on Jet Energy Loss

    International Nuclear Information System (INIS)

    Cheng Luan; Wang Enke

    2010-01-01

    With the initial conditions in the chemical non-equilibrated medium and Bjorken expanding medium at RHIC, we investigate the consequence for parton evolution. With considering the parton equilibration, we obtain the time dependence of the opacity when the jet propagates through the QGP medium. The parton equilibration affect the jet energy loss with detailed balance evidently. Both parton energy loss from stimulated emission in the chemical non-equilibrated expanding medium and in Bjorken expanding medium are linear dependent on the propagating distance rather than square dependent in the static medium. This will increase the energy and propagating distance dependence of the parton energy loss.

  16. Quark jets from antineutrino interactions. 2. Inclusive particle spectra and multiplicities in the quark jets

    International Nuclear Information System (INIS)

    Ammosov, V.V.; Denisov, A.G.; Gapienko, G.S.

    1981-01-01

    The results on inclusive particle production in the antineutrino charged current induced hadron jets observed in the Fermilab 15- ft. bubble chamber are presented. Fractional energy distributions, particle ratios and average multiplicities of the hadrons in the jets are measured. Ratios between the inclusive production rates of different mesons in the jets are studied to seek evidence for the d-quark origin of the observed hadrons. Good over-all agreement with the hypothesis of d-quark fragmentation with universal fragmentation functions obeying isospin systematics is established [ru

  17. Comparison of CFD simulations with experimental Jet Erosion Tests results

    OpenAIRE

    Mercier, F.; Bonelli, S.; Pinettes, P.; Golay, F.; Anselmet, F.; Philippe, P.

    2014-01-01

    The Jet Erosion Test (JET) is an experimental device increasingly used to quantify the resistance of soils to erosion. This resistance is characterised by two geotechnical parameters: the critical shear stress and the erosion coefficient. The JET interpretation model of Hanson and Cook (2004) provides an estimation of these erosion parameters. But Hanson's model is simplified, semi-empirical and several assumed hypotheses can be discussed. Our aim is to determine the relevance of the JET inte...

  18. Three-Prong Distribution of Massive Narrow QCD Jets

    CERN Document Server

    Field, Matan; Kosower, David A; Mannelli, Lorenzo; Perez, Gilad

    2013-01-01

    We study the planar-flow distributions of narrow, highly boosted, massive QCD jets. Using the factorization properties of QCD in the collinear limit, we compute the planar-flow jet function from the one-to-three splitting function at tree-level. We derive the leading-log behavior of the jet function analytically. We also compare our semi-analytic jet function with parton-shower predictions using various generators.

  19. 75 FR 79952 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    Science.gov (United States)

    2010-12-21

    ... Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON.... (1) DASSAULT AVIATION Model Falcon 10 airplanes, Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E... airplanes Inspection threshold (whichever occurs later) Inspection interval Model FAN JET FALCON, FAN JET...

  20. Sub-jet structure as a discriminating quenching probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Apolinário, L. [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Milhano, J.G. [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Płoskoń, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-12-15

    In this work, we propose a new class of jet substructure observables which, unlike fragmentation functions, are largely insensitive to the poorly known physics of hadronization. We show that sub-jet structures provide us with a large discriminating power between different jet quenching Monte Carlo implementations.