WorldWideScience

Sample records for the next step thermonuclear reactor

  1. The international thermonuclear reactor project

    International Nuclear Information System (INIS)

    James, T.R.

    1993-01-01

    The International Thermonuclear Experimental Reactor Project is a 6-year collaborative effort involving the U.S., Europe, Japan, and the Russian Federation to produce a detailed engineering design for the next-step fusion device

  2. The international thermonuclear reactor (ITER)

    International Nuclear Information System (INIS)

    Fowler, T.K.; Henning, C.D.

    1987-01-01

    Four governmental groups, representing Europe, Japan, USSR and U.S. met in March 1987 to consider a new international design of a magnetic fusion device for the 1990's. An interim group was appointed. The author gives a brief synopsis of what might be thought of as a draft charter. The starting point is the objective of the ITER device, which is summarized as demonstrating both scientific and technical feasibility of fusion. The paper presents an update on the current thinking and technical aspects for the International Thermonuclear Experimental Reactor (ITER). This covers not only what is happening in the U.S. but also some reports of preliminary thinking of the last technical work that occurred in Vienna

  3. Thermonuclear ignition in the next generation tokamaks

    International Nuclear Information System (INIS)

    Johner, J.

    1989-04-01

    The extrapolation of experimental rules describing energy confinement and magnetohydrodynamic - stability limits, in known tokamaks, allow to show that stable thermonuclear ignition equilibria should exist in this configuration, if the product aB t x of the dimensions by a magnetic-field power is large enough. Quantitative application of this result to several next-generation tokamak projects show that those kinds of equilibria could exist in such devices, which would also have enough additional heating power to promote an effective accessible ignition

  4. Thermonuclear reactor

    International Nuclear Information System (INIS)

    Yasutomi, Yoshiyuki; Nakagawa, Moroo; Sawai, Yuichi; Chiba, Akio; Suzuki, Yasutaka.

    1997-01-01

    Silicon composited with reinforcing metals is used for a divertor cooling substrate having an effect as a cooling tube to provide a silicon base composite material having increased electric resistance and toughness. The blending ratio of reinforcing materials in the form of granules, whiskers or long fibers is controlled in order to control heat conductivity, electric resistivity and mechanical performances. The divertor cooling substrate comprising the silicon base composite material is integrated with a plasma facing material. The production method therefor includes ordinary metal matrix composite forming methods such as powder metallurgy, melting penetration method, high pressure solidification casting method, centrifugal casting method and vacuum casting method. Since the cooling plate is constituted with the light metal and highly electric resistant metal base composite material, sharing force due to eddy current can be reduced, and radiation exposure can be minimized. Accordingly, a cooling structure for a thermonuclear reactor effective for the improvement of environmental problems caused by waste disposal can be attained. (N.H.)

  5. The International Thermonuclear Experimental Reactor configuration evolution

    International Nuclear Information System (INIS)

    Lousteau, D.C.; Nelson, B.E.; Lee, V.D.; Thomson, S.L.; Miller, J.M.; Lindquist, W.B.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) conceptual design activities consist of two phases: a definition phase, completed in September 1988, and a design phase, now in progress. The definition phase was successful in identifying a consistent set of technical characteristics and the broad definition of the required reactor configuration and hardware. Scheduled for completion in November 1990, the design phase is producing a more detailed definition of the required components, a first cost estimate, and a description of site requirements. A major activity in the ITER design phase is the period of joint work conducted at the Max Planck Institute for Plasma Physics, Garching, Federal Republic of Germany, from June through October 1989. An official report of the findings and conclusions of this activity will be submitted to and published by the International Atomic Energy Agency (IAEA). This paper highlights the evolution of the reactor mechanical configuration since the conclusion of the definition phase. 8 figs., 2 tabs

  6. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1992-01-01

    The author gives a chronological account of the research about thermonuclear fusion and presents the principle of JET thermonuclear reactor based upon the magnetic confinement. The problems of heating and confining a thermonuclear plasma may be regarded as solved. They make possible the definition of the size and geometry needed to realize a next-step tokamak (ITER, NET projects)

  7. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  8. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically in influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the part of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material inter actions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (author)

  9. Plasma-material interactions in current tokamaks and their implications for next-step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several cm from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the engineering design activities of the international thermonuclear experimental reactor project (ITER) and significant progress has been made in better understanding these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/re-deposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (orig.)

  10. Robotics: The next step?

    Science.gov (United States)

    Broeders, Ivo A M J

    2014-02-01

    Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Robotics: the next step?

    NARCIS (Netherlands)

    Broeders, Ivo Adriaan Maria Johannes; Kuipers, E.J.

    2014-01-01

    Abstract: Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. Methods: literature

  12. [International Thermonuclear Experimental Reactor support

    International Nuclear Information System (INIS)

    Dean, S.O.

    1990-01-01

    This report summarizes the activities under LLNL Purchase Order B089367, the purpose of which is to ''support the University/Lawrence Livermore National Laboratory Magnetic Fusion Program by evaluating the status of research relative to other national and international programs and assist in long-range plans and development strategies for magnetic fusion in general and for ITER in particular.'' Two specific subtasks are included: ''to review the LLNL Magnet Technology Development Program in the context of the International Thermonuclear Experimental Reactor Design Study'' and to ''assist LLNL to organize and prepare materials for an International Thermonuclear Experimental Reactor Design Study information meeting.''

  13. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  14. Magnet systems for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The definition phase for the International Thermonuclear Experimental Reactor (ITER) has been nearly completed, thus beginning a three-year design effort by teams from the European Community (EC), Japan, US, and USSR. Preliminary parameters for the superconducting magnet system have been established to guide more detailed design work. Radiation tolerance of the superconductors and insulators has been important because it sets requirements for the neutron-shield dimension and sensitively influences reactor size. Major levels of mechanical stress appear in the structural cases of the inboard legs of the toroidal-field (TF) coils. The winding packs of the TF coils include significant fractions of steel that provide support against in-plane separating loads, but they offer little support against out-of-plane loads unless shear-bonding of the conductors can be maintained. Heat removal from nuclear and ac loads has not limited the fundamental design, but it has nonnegligible economic consequences. 3 refs., 3 figs., 5 tabs

  15. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT (deuterium-tritium) fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D (Research and Development) avenues for their resolution are presented

  16. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  17. Stochastic models of edge turbulent transport in the thermonuclear reactors

    International Nuclear Information System (INIS)

    Volchenkov, Dima

    2005-01-01

    Two-dimensional stochastic model of turbulent transport in the scrape-off layer (SOL) of thermonuclear reactors is considered. Convective instability arisen in the system with respect to perturbations reveals itself in the strong outward bursts of particle density propagating ballistically across the SOL. The criterion of stability for the fluctuations of particle density is formulated. A possibility to stabilize the system depends upon the certain type of plasma waves interactions and the certain scenario of turbulence. A bias of limiter surface would provide a fairly good insulation of chamber walls excepting for the resonant cases. Pdf of the particle flux for the large magnitudes of flux events is modeled with a simple discrete time toy model of I-dimensional random walks concluding at the boundary. The spectra of wandering times feature the pdf of particle flux in the model and qualitatively reproduce the experimental statistics of transport events

  18. The Canadian initiative to bring the international thermonuclear experimental reactor to Canada

    International Nuclear Information System (INIS)

    James, R.A.

    1996-01-01

    The International Thermonuclear Experimental Reactor (ITER) is the next step in fusion research. It is expected to be the last major experimental facility, before the construction of a prototype commercial reactor. The Engineering Design Activities (EDA) of ITER are being funded by the USA, Japan, the Russian Federation, and the European Union, with each of the major parties contributing about 25% of the cost. Canada participates as part of the European coalition. The EDA is due to be completed in 1998, and the major funding partners are preparing for the decision on the siting and construction of ITER. The Canadian Fusion Fuels Technology Project (CFFTP) formed a Canadian ITER Siting Task Group to study siting ITER in Canada. The study indicated that hosting ITER would provide significant benefits, both technological and economic, to Canada. We have also confirmed that there would be substantial benefits to the ITER Project. CFFTP then formed a Canadian ITER Siting Board, with representation from a broad range of stakeholders, to champion, 'Canada as Host'. This paper briefly outlines the ITER Project, and the benefits to both Canada and the Project of a Canadian site. With this as background, the paper discusses the international scene and assesses Canada's prospects of being chosen to host ITER. (author)

  19. Important problems of future thermonuclear reactors*

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D and tritium (T. There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI. There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO.

  20. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  1. Structure of thermonuclear reactor wall

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro.

    1991-01-01

    In a thermonuclear reactor wall, there has been a worry that the brazing material is melted by high temperature heat and particle load, to peel off the joined portion and the protecting material is destroyed by temperature elevation, to expose the heat sink material. Then, in the reactor core structures of a thermonuclear reactor, such as a divertor plate comprising a protecting material made of carbon material and the heat sink material joined by brazing, a plate material made of a so-called refractory metal having a high atomic number such as tungsten, molybdenum or the alloy thereof is embedded or attached to an accurate position of the protecting material. This can prevent the brazing portion from destruction by escaping electrons generated upon occurrence of abnormality in the thermonuclear reactor, and peeling or destroy of the protecting material and the heat sink material. Sufficient characteristics of plasmas can always be maintained by disposing a material having a small atomic number, for example, carbon material, to the position facing to the plasmas. (N.H.)

  2. Divertor impurity monitor for the International Thermonuclear Experimental Reactor

    Science.gov (United States)

    Sugie, T.; Ogawa, H.; Nishitani, T.; Kasai, S.; Katsunuma, J.; Maruo, M.; Ebisawa, K.; Ando, T.; Kita, Y.

    1999-01-01

    The divertor impurity monitoring system of the International Thermonuclear Experimental Reactor has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200-1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms, and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λthe transmission loss in fiber and in the diagnostic room (for λ⩾450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor.

  3. Industrial opportunities on the International Thermonuclear Experimental Reactor (ITER) project

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1996-01-01

    Industry has been a long-term contributor to the magnetic fusion program, playing a variety of important roles over the years. Manufacturing firms, engineering-construction companies, and the electric utility industry should all be regarded as legitimate stakeholders in the fusion energy program. In a program focused primarily on energy production, industry's future roles should follow in a natural way, leading to the commercialization of the technology. In a program focused primarily on science and technology, industry's roles, in the near term, should be, in addition to operating existing research facilities, largely devoted to providing industrial support to the International Thermonuclear Experimental Reactor (ITER) Project. Industrial opportunities on the ITER Project will be guided by the amount of funding available to magnetic fusion generally, since ITER is funded as a component of that program. The ITER Project can conveniently be discussed in terms of its phases, namely, the present Engineering Design Activities (EDA) phase, and the future (as yet not approved) construction phase. 2 refs., 3 tabs

  4. Reactor wall in thermonuclear device

    International Nuclear Information System (INIS)

    Shibui, Masanao.

    1988-01-01

    Purpose: To always monitor the life of armours in reactor walls and automatically shutdown the reactor if it should be operated in excess of the limit of use. Constitution: Monitoring material of lower melting point than armours (for example beryllium pellets) as one of the reactor wall constituents of a thermonuclear device are embedded in a region leaving the thickness corresponding to the allowable abrasion of the armour. In this structure, if the armours are abrased due to particle loads of a plasma and the abrasion exceeds a predetermined allowable level, the monitoring material is exposed to the plasma and melted and evaporated. Since this can be detected by impurity monitors disposed in the reactor, it is possible to recognize the limit for the working life of the armours. If the thermonuclear reactor should be operated accidentally exceeding the life of the armours, since a great amount of the monitoring materials have been evaporated, they flow into the plasma to increase the plasma radiation loss thereby automatically eliminate the plasma. (K.M.)

  5. Implications of fusion results for a reactor: a proposed next step device-JIT

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1989-01-01

    Simulations with a critical-temperature model have been made of proposed future devices (NET, ITER, JIT, etc.). These show that only machines with a current capability of ∼ 30MA have a sufficient ignition domain to cope with more realistic operating conditions (i.e. taking into account sawteeth effects, impurity dilution and semi-continuous operation). The importance of dilution and Bremsstrahlung radiation are clearly demonstrated; a mean temperature > 7keV is required for ignition. This prevents higher field, lower current devices from reaching ignition. Transient operations with monster sawteeth or H-mode allow such devices (>30MA) to reach ignition at lower density without additional heating. To investigate the problems of a controlled burning plasma for days in semi-continuous operation, the plasma of the next-step tokamak should be similar in size and performance to an energy producing reactor. The scientific and technical aims of such a machine should be to study burning plasma, test wall technology, provide a test-bed for breeding blankets and most importantly to demonstrate the potential and viability of fusion as an energy source. The main design characteristics of a Thermonuclear Furnace-JIT-dedicated to these objectives are presented. Watercooled copper magnets are used to benefit from proven technology. A single-null divertor configuration ensures helium exhaust and possibly benefits from an H-mode to reach the ignition domain. The X-point position relative to the dump plates would be swept to limit wall loading

  6. Baking method for thermonuclear reactor

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada.

    1986-01-01

    Purpose: To improve the heat transmission property to the reactor core structures thereby shortening the baking time for the reactor core in thermonuclear reactors. Constitution: High temperature airs are supplied from a baking system to cooling pipeways disposed within reactor core structures and helium gas is supplied from a helium gas supply system through the reactor core structures to the inside of the reactor core for scavenging. The scavenging operation may be combined with vacuum suction. Further, the inside of the reactor is scavenged while maintaining at such a negative pressure as within a range not degrading the heat conduction property. Since the helium gas is chemically inert and poor in the depositing property, it shows no adsorbability even for the material heated to high temperature. Further, since the diffusion and heat conduction properties are high, the heat conduction property to the materials upon baking can be improved to shorten the baking time. No disadvantages are caused by the introduction of the helium gas upon baking. (Kawakami, Y.)

  7. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  8. Device for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Yutaro; Kawarazaki, Yuki; Sugiyama, Yu.

    1996-01-01

    A member comprising hydrogen occluding materials is introduced to a reactor incorporated with U-235 as fuels in order to moderate and breed fast neutrons and to control the reactor. Since the amount of light hydrogen or heavy hydrogen is substantially the same as that of metal, etc. of hydrogen occluding material, a moderating efficiency substantially equal with that of a moderator comprising H 2 O can be obtained. In addition, since the member acting as a moderator has an effect of multiplying neutrons, use of only natural uranium 0.72% as nuclear fuels causes chain reaction to provide a function as a nuclear reactor. Further, the hydrogen occluding material can be used also as a control rod for controlling the reactor. The hydrogen occluding material may be Ti, Zr, Pd, proton conductor, Ag, Pt, Rh or oxides thereof or alloys thereof. The member comprising hydrogen occluding materials is preferably coated with a material not permeating hydrogen. (N.H.)

  9. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  10. Controlled thermonuclear fusion in TOKAMAK type reactors, the European example: Joint European Torus (JET)

    International Nuclear Information System (INIS)

    Paris, P.J.; Yassen, F.; Assis, A.S. de; Raposo, C.

    1988-07-01

    The development of controlled thermonuclear reaction in TOKAMAK type reactors, and the main projects in the world are presented. The main characteristics of the JET (Joint European Torus) program, the perspectives for energy production, and the international cooperation for viable use of the TOKAMAK are analysed. (M.C.K.) [pt

  11. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko

    2009-01-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  12. ICRP 60 - the next step

    International Nuclear Information System (INIS)

    Harding, L.K.; Thomson, W.H.

    1993-01-01

    Following the publication in 1990 of the recommendations proposed by the International Commission on Radiological protection (ICRP 60), this editorial briefly highlights the advice given by the NRPB to UK government departments on how to implement those recommendations regarding occupational, medical and public exposure. (UK)

  13. Interactive Video, The Next Step

    Science.gov (United States)

    Strong, L. R.; Wold-Brennon, R.; Cooper, S. K.; Brinkhuis, D.

    2012-12-01

    Video has the ingredients to reach us emotionally - with amazing images, enthusiastic interviews, music, and video game-like animations-- and it's emotion that motivates us to learn more about our new interest. However, watching video is usually passive. New web-based technology is expanding and enhancing the video experience, creating opportunities to use video with more direct interaction. This talk will look at an Educaton and Outreach team's experience producing video-centric curriculum using innovative interactive media tools from TED-Ed and FlixMaster. The Consortium for Ocean Leadership's Deep Earth Academy has partnered with the Center for Dark Energy Biosphere Investigations (C-DEBI) to send educators and a video producer aboard three deep sea research expeditions to the Juan de Fuca plate to install and service sub-seafloor observatories. This collaboration between teachers, students, scientists and media producers has proved a productive confluence, providing new ways of understanding both ground-breaking science and the process of science itself - by experimenting with new ways to use multimedia during ocean-going expeditions and developing curriculum and other projects post-cruise.

  14. Divertor plate for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Sato, Keisuke; Nishio, Satoshi.

    1993-01-01

    In a divertor plate for a thermonuclear reactor, adjacent cooling pipes are electrically insulated from each other and pipes made of a gradient functional material prepared by compositing ceramics having an insulation property and metals are metallurgically joined to at least one portion of each of the cooling pipes. Electric current caused upon occurrence of plasma disruption is interrupted by the insulation portion, so that a large circuit is not formed and electromagnetic force is decreased to such a extent that the divertor plate is not ruptured. Since a header of the cooling pipes can be installed at any optional position, the installation space can be reduced. Further, since inlet and exit collection headers can be disposed on both ends of the cooling pipes, it is possible to shorten the length of the cooling pipe of the divertor plate corresponded to high heat fluxes and reduce the pressure loss on the side of coolants to about 1/2. Further, turn back portions of small radius of curvature of the cooling pipes are eliminated to reduce the cost and extend the lifetime and, in addition, protection tiles can be attached easily. (N.H.)

  15. Inertia thermonuclear reactor

    International Nuclear Information System (INIS)

    Imon, Toshiharu; Nakamura, Norio; Oomura, Hiroshi.

    1983-01-01

    Purpose: To eliminate the requirement of power for controlling the flow velocity of coolants flowing through a porous structure blanket, as well as establish a uniform and stable coolant layer. Constitution: Breeding blanket is made with mesh-like or fiberous porous body, and liquid lithium is introduced into the porous body. The porous body functions as a resistive member to inhibit the free fall of the liquid lithium, so the coolant flowing velocity can be determined to a desired value by appropriately selecting the porosity therein. Further, since liquid lithium flows downwardly at a uniform speed under the effect of the gravitational force, the layer thickness is made uniform to effectively recover neutron energy. Also, while waves are formed at the boundary surface of the liquid lithium layer other than for the porous body due to the collision of fine balls or the likes, they are instantly eliminated by the porous body and the flow can be stabilized. (Yoshino, Y.)

  16. Status of the mirror-next-step (MNS) study

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1979-09-01

    A study was made to define the features of the experimental mirror fusion device - the Mirror Next Step, or MNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. The project goals and organization of the study are outlined, some initial device parameters are described, and the technological requirements are related to ongoing development programs

  17. Use of code DTF-4 for determining the coefficient of back-reflection of the neutron within the thermonuclear plasma of a thermonuclear reactor controlled by the rate of the fission reactions. Pt. 1

    International Nuclear Information System (INIS)

    Cristea, G.

    1975-01-01

    The neutron problems are discussed of the thermonuclear reactor controlled by the rate of the fission reactions. The results obtained by rolling the DTF-4 program in a spherical geometry in the case of an ''external source'' problem permit to draw conclusions concerning the problems of the neutronics system of this thermonuclear reactor type. A relation is deduced for estimating the coefficient of back-reflection of the neutrons within the thermonuclear plasma and the focussion system is discussed of the neutronics of this reactor type

  18. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  19. The Canadian initiative to host the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Dautovich, D.P.; James, R.A.

    1995-01-01

    At the time of the conference, the Canadian Nuclear Fuels Technology Project was making an innovative proposal whereby Ontario Hydro would provide space at its Darlington or Bruce sites as potential sites for the ITER project. An economic impact analysis, conducted by Ernst and Young, showed the potential economic benefits to Canada; other benefits could rather be considered to be scientific and technological benefits. A stable electrical supply grid, existing waste management infrastructure, an abundance of cheap power, and a skilled workforce, made Canada an attractive prospect. ITER, whatever its location, would require all of Ontario Hydro's tritium. Canada was attractive as a neutral siting alternative, and had gained early Russian support

  20. The Canadian initiative to host the international thermonuclear experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dautovich, D P; James, R A [Canadian Fusion Fuels Technology Project, Mississauga, ON (Canada)

    1996-12-31

    At the time of the conference, the Canadian Nuclear Fuels Technology Project was making an innovative proposal whereby Ontario Hydro would provide space at its Darlington or Bruce sites as potential sites for the ITER project. An economic impact analysis, conducted by Ernst and Young, showed the potential economic benefits to Canada; other benefits could rather be considered to be scientific and technological benefits. A stable electrical supply grid, existing waste management infrastructure, an abundance of cheap power, and a skilled workforce, made Canada an attractive prospect. ITER, whatever its location, would require all of Ontario Hydro`s tritium. Canada was attractive as a neutral siting alternative, and had gained early Russian support.

  1. India's participation in the ITER (International Thermonuclear Experimental Reactor) collaboration

    International Nuclear Information System (INIS)

    Deshpande, Shishir

    2012-01-01

    Keeping its vision of developing fusion energy as a viable source, India joined the ITER collaboration in December 2005. ITER is a seven party collaboration with China, EU, India, Japan, S. Korea, Russia and the USA. ITER has a challenging mission of achieving Q=10 figure of merit at 500 MW fusion power output. The construction of ITER is structured as a set of 'in-kind' procurement packages to be executed by the partners. This involves all activities like design, prototyping, testing, shipping and assembly with commissioning at the ITER site at Cadarache, France. Currently, ITER presents the only opportunity to carry out novel experiments with burning plasmas and the new realms of fusion physics. It is important to participate in such experiments with a view for their exploitation in future. This talk summarizes the ITER device, its key challenges, role played by India and how these enmesh with the future of domestic program in fusion research. (author)

  2. Organization of the ITER [International Thermonuclear Experimental Reactor] Project - Sharing of information and procurements

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1990-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is expected to fully confirm the scientific feasibility and to address the technological feasibility of fusion power. Consequently, the machine must be designed for controlled ignition and extended burn of deuterium-tritium plasma. It must also demonstrate and perform integrated testing of components required to utilize fusion power for practical purposes. Cooperation among four countries/organizations (United States, Soviet Union, Japan, and EURATOM) to build a single experimental reactor will reduce the cost for each country and provide an international pool of scientific and engineering resources. This paper describes ITER organization for conceptual design activity, schedule for conceptual design activities, ITER operating parameters, conceptual project schedule and cost, future plans, basic principles and problems related to task sharing, and basic principles in handling of intellectual property

  3. Ignition in the next step tokamak

    International Nuclear Information System (INIS)

    Johner, J.

    1990-07-01

    A 1/2-D model for thermal equilibrium of a thermonuclear plasma with transport described by an empirical global energy confinement time is described. Ignition in NET and ITER is studied for a number of energy confinement time scaling expressions. Ignited operation of these machines at the design value of the neutron wall load is shown to satisfy both beta and density constraints. The value of the confinement time enhancement factor required for such operation is found to be lower for the more recently proposed scaling expressions than it is for the oldest ones. With such new scalings, ignition could be obtained in H-mode in NET and ITER even with relatively flat density profiles

  4. Draft program plan for TNS: the next step after the tokamak fusion test reactor. Part I. Summary

    International Nuclear Information System (INIS)

    Roberts, M.

    1977-10-01

    A draft program plan for TNS has been prepared which consists of two basic parts--an R and D Needs Assessment and a Project Plan with schedules and necessary implementation steps. In this brief but intensive effort, questions concerning (1) the present basis for the TNS program, (2) the principal gaps in the supporting program, and (3) the necessary actions to be taken to implement the TNS program were examined. The study supported the thesis that the physics and technology bases do exist from which to start the TNS design as a central fusion program goal. Specific recommendations are made to emphasize those physics, technology, and engineering areas in which there are program gaps. In the project engineering study, a basic schedule with close support from the R and D program is developed from which recommendations on administrative actions and areas for further elucidation are made. This document presents in summary form the findings of the study, the development of the principal theses, and the recommendation to ERDA-DMFE

  5. Vacuum problems of thermonuclear reactor design

    International Nuclear Information System (INIS)

    Paty, L.

    1981-01-01

    A thermonuclear reactor can be considered to be a vacuum system in which constant concentration should be maintained of reacting particles while permanently discharging the undesirable particles using a system of pumps. The discharging proceeds in two stages: in the former, the reactor is degassed using external pumps connected to the reactor chamber through a pumping pipe. The latter in which hydrogen is admitted, uses high pump-rate machines based on the principle of the binding of the gas to the pump surface and must not introduce molecules of higher atomic mass in the system. Turbomolecular pumps of diffusion oil pumps are most suitable for the former stage while condensation, cryosorption, titanium pumping machines and special pumping methods are most suitable for the latter stage. Examples are shown of the pump system design for Tokamak 10 and for facilities at the Euratom laboratory in Fontenay-aux-Roses. (M.D.)

  6. Analysis and evaluation of the hydrogen risk in a thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Chaudron, V.; Arnould, F.; Latge, C.; Laurent, A.

    2001-01-01

    After a recall of the principle of controlled thermonuclear fusion, the ITER reactor project is briefly described. The integrity of the reactor must be preserved in the case of a potential explosion of the hydrogen generated inside the reactor, in order to avoid any dispersion radioactive, chemical or toxic materials in the environment. The fundamental principles of safety developed to fulfill these objectives, in particular the defense-in-depth concept, are presented. The main potential source of hydrogen production is the oxidation of beryllium, which is used as protection material in the first wall of the torus, and the accidental presence of water, as reported in several scenarios. The confinement strategy is then described with the qualification of the role of the different barriers. Finally, the hydrogen explosion risk is analyzed and evaluated with respect to the sources, to the reference envelope scenarios and to the location of hydrogen inside the ITER reactor. It appears, at the engineering stage, that the vacuum toric vessel, the discharge reservoir and the exchanger compartments are the most worrying parts. (J.S.)

  7. Review of the International Thermonuclear Experimental Reactor (ITER) detailed design report

    International Nuclear Information System (INIS)

    1997-01-01

    Dr. Martha Krebs, Director, Office of Energy Research at the US Department of Energy (DOE), wrote to the Fusion Energy Sciences Advisory Committee (FESAC), in letters dated September 23 and November 6, 1996, requesting that FESAC review the International Thermonuclear Experimental Reactor (ITER) Detailed Design Report (DDR) and provide its view of the adequacy of the DDR as part of the basis for the United States decision to enter negotiations with the other interested Parties regarding the terms and conditions for an agreement for the construction, operations, exploitation and decommissioning of ITER. The letter from Dr. Krebs, referred to as the Charge Letter, provided context for the review and a set of questions of specific interest

  8. Review of the International Thermonuclear Experimental Reactor (ITER) detailed design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-18

    Dr. Martha Krebs, Director, Office of Energy Research at the US Department of Energy (DOE), wrote to the Fusion Energy Sciences Advisory Committee (FESAC), in letters dated September 23 and November 6, 1996, requesting that FESAC review the International Thermonuclear Experimental Reactor (ITER) Detailed Design Report (DDR) and provide its view of the adequacy of the DDR as part of the basis for the United States decision to enter negotiations with the other interested Parties regarding the terms and conditions for an agreement for the construction, operations, exploitation and decommissioning of ITER. The letter from Dr. Krebs, referred to as the Charge Letter, provided context for the review and a set of questions of specific interest.

  9. Cooling device for thermonuclear reactor and modular packing block for the wall realization of a such device

    International Nuclear Information System (INIS)

    Archer, J.; Stalport, G.; Besson, D.; Faron, R.; Coulon, M.

    1988-01-01

    The cooling device for a thermonuclear reactor wall is made by modular thermally conductive heat-resistant blocks (graphite by example), a prismatic head on one face of each block, the opposite face bearing against cooling tubes, a base to each block with an aperture and rods passing through the apertures reversibly fixing each row of blocks to a support [fr

  10. The impact of confinement scaling on ITER [International Thermonuclear Experimental Reactor] parameters

    International Nuclear Information System (INIS)

    Reid, R.L.; Galambos, J.D.; Peng, Y.K.M.

    1988-09-01

    Energy confinement scaling is a major concern in the design of the International Thermonuclear Experimental Reactor (ITER). The existing database for tokamaks can be fitted with a number of different confinement scaling expressions that have similar degrees of approximation. These scaling laws predict confinement times for ITER that vary by over an order of magnitude. The uncertainties in the form and magnitude of these scaling laws must be substantially reduced before the plasma performance of ITER can be predicted with adequate reliability. The TETRA systems code is used to calculate the dependence of major ITER parameters on the scaling laws currently in use. Design constraints of interest in the present phase of ITER consideration are used, and the minimum-cost devices arising from these constraints are reviewed. 9 refs., 13 figs., 4 tabs

  11. Next steps

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    On the 60th anniversary of the founding of the Chartered Institute of Transport, its past, its current aims and structure, and the role which the Institute should adopt to the year 2000 are discussed. Technological and social change, bureaucracy, industrial relations, worker participation, government and transport, national role, and financial policy, are some of the subjects covered. In discussing the energy crisis, the objectives of the European Communities for 1985 and 1990 dealing with energy and energy conservatin are noted. Absent was the mention of the role that transport could play in the more efficient and effective utilization of energy. The Institute of Transport has the opportunity to demonstrate leadership and initiative in cooperating with governments in the area of energy use and energy conservation.

  12. Conception of thermonuclear reactor with a shielding layer of the first wall

    International Nuclear Information System (INIS)

    Marin, S.V.

    1979-01-01

    Considered is the way of the shielding of the first wall of a thermonuclear reactor by the layer of ISSEC (Internal spectral shifter and Energy Converter). It is a constructive non-power element placed between a plasma and the first wall, and intended for the softening of the spectrum and intensity reduction of particle fluxes falling on the first wall. Results of neutron-physical calculations of the UWMAK-type reactor blanket (in the S 4 -P 3 approximation) are presented. While comparing five materials (C, Mo, Nb, V,W) by the rate of radiation damage formation, gas production, radioactivity level and energy output in the blanket with the 316 stainless steel first wall, it is obvious that the conception of ISSEC permits to prolong the service period of the first wall. Construction elements should be then in the same irradiation conditions as those in fast reactors. Molybdenum has been taken as the best ISSEC material. It reduces the number of displaced atoms of the first wall by 20% and decreases helium production by about 100%, increases energy output in the blanket by 15-18%. However, graphite is advantageous, while comparing it to molybdenum in values of residual energy output, radioactivity level, costs and manufacture simplicity. One problem stays unsolved, which is connected with chemical sputtering of graphite at the formation of C 2 H 2 in the high temperature range. So it is hard to prefer any material now

  13. Draft program plan for TNS: The Next Step after the Tokamak Fusion Test Reactor. Part IV. Program planning

    International Nuclear Information System (INIS)

    Wood, W.B.

    1977-02-01

    In this fourth part of the four-part TNS Draft Program Plan, project engineering concerns are considered. The TNS Project is first broken down into the major time and functional periods of feasibility study, preconceptual design, conceptual design, and line item construction, while the elements of the project are organized into an administrative work breakdown structure. With the aid of these two classifying schemes, the project tasks are described in terms of schedule, estimated cost, type of funding, and proposed type of participant. The initial constraints of completion data, anticipated scientific inputs, and budget procedures are used to develop a two-phase project in which the facilities are authorized first and the device 2 years later. This specific mechanism is fundamental to the construction of the schedule and should be reconsidered when the completion and initiation dates are reformulated

  14. Breeding blankets for thermonuclear reactors

    International Nuclear Information System (INIS)

    Rocaboy, Alain.

    1982-06-01

    Materials with structures suitable for this purpose are studied. A bibliographic review of the main solid and liquid lithiated compounds is then presented. Erosion, dimensioning and maintenance problems associated with the limiter and the first wall of the reactor are studied from the point of view of the constraints they impose on the design of the blankets. Detailed studies of the main solid and liquid blanket concepts enable the best technological compromises to be determined for the indispensable functions of the blanket to be assured under acceptable conditions. Our analysis leads to four classes of solution, which cannot at this stage be considered as final recommendations, but which indicate what sort of solutions it is worthwhile exploring and comparing in order to be in a position to suggest a realistic blanket at the time when plasma control is sufficiently good for power reactors to be envisaged. Some considerations on the general architecture of the reactor are indicated. Energy storage with pulsed reactors is discussed in the appendix, and a first approach made to minimizing the total tritium recovery [fr

  15. Audit of United States portion of the International Thermonuclear Experimental Reactor project

    International Nuclear Information System (INIS)

    1993-01-01

    Worldwide efforts in fusion energy research are designed to develop fusion power as a safe, environmentally sound, and economically competitive source of energy. The International Thermonuclear Experimental Reactor (ITER) project is a worldwide effort to demonstrate the scientific and technological feasibility of fusion power. The European Community, Japan, the Russian Federation, and the United States are collaborating on ITER, with each of the four parties expected to equally share costs and benefits. Shared costs for the current engineering design phase of the project are estimated at $1 billion in 1989 dollars, excluding certain management and support costs to be absorbed by each partner, with an early estimate of $6 billion, also in 1989 dollars, for construction of the reactor. Engineering design formally began in July 1992, and this phase is in its formative stages. The US had already spent about $100 million since 1987 on ITER conceptual design activities and other preparatory activities in advance of the engineering design phase. Because of its cost significance, the importance of ITER to the US fusion energy program, and the project's unique aspects which may provide a framework for future international endeavors, we initiated an audit of the ITER project. The purpose of the audit was to evaluate management controls over the US portion of the ITER project. Our objectives was to determine whether key front-end controls were in place to ensure that the project could be managed in an efficient and effective manner

  16. Radiological dose rate calculations for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Khater, H.Y.; Santoro, R.T.

    1996-01-01

    Two-dimensional biological dose rates were calculated at different locations outside the International Thermonuclear Experimental Reactor (ITER) design. An 18 degree sector of the reactor was modeled in r-θ geometry. The calculations were performed for three different pulsing scenarios. This included a single pulse of 1000 s duration, 10 pulses of 1000 s duration with a 50% duty factor, and 9470 pulses of 1000 s duration with a 50% duty factor for a total fluence of 0.3 MW.a/m 2 . The dose rates were calculated as a function of toroidal angle at locations in the space between the toroidal field (TF) coils and cryostat, and in the space between the cryostat and the biological shield. The two-dimensional results clearly showed the toroidal effect, which is dominated by contribution from the activation of the cryostat and the biological shield. After one pulse, full access to the machine is possible within a few hours following shutdown. After 10 pulses, full access is also possible within the first day following shutdown. At the end of the Basic Performance Phase (BPP), full access is possible at any of the locations considered after one week following shutdown. 5 refs., 5 figs., 2 tabs

  17. Requirements for US regulatory approval of the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Petti, D.A.; Haire, J.C.

    1993-12-01

    The International Thermonuclear Experimental Reactor (ITER) is the first fusion machine that will have sufficient decay heat and activation product inventory to pose potential nuclear safety concerns. As a result, nuclear safety and environmental issues will be much more important in the approval process for the design, siting, construction, and operation of ITER in the United States than previous fusion devices, such as the Tokamak Fusion Test Reactor. The purpose of this report is (a) to provide an overview of the regulatory approval process for a Department of Energy (DOE) nuclear facility; (b) to present the dose limits used by DOE to protect workers, the public, and the environment from the risks of exposure to radiation and hazardous materials; (c) to discuss some key nuclear safety-related issues that must be addressed early in the Engineering Design Activities (EDA) to obtain regulatory approval; and (d) to provide general guidelines to the ITER Joint Central Team (JCT) concerning the development of a regulatory framework for the ITER project

  18. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    OpenAIRE

    G. Fubiani; H. P. L. de Esch; A. Simonin; R. S. Hemsworth

    2008-01-01

    The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER) is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses). The resulting seco...

  19. Nuclear reactor technology: the next 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T. [International Atomic Energy Agency, Vienna (Austria)

    2013-07-01

    hybrid energy systems therefore have the potential to be a key solution to meet the energy needs of the emerging economies in the next few decades. In order to be operated as part of distributed hybrid energy systems, SMRs should be available in various power rating and be able to be engineered for multiple-applications. They should also be user-friendly, and able to be integrated easily with renewable energy systems as well as, if necessary, with adjacent energy application/storage systems. With these considerations, a number of special design requirements for SMR have been identified. The multiple-applications of the SMR may include provision of neutron utilization for industrial applications and research in the future, depending upon the needs in the region where they are built. The difference between a research reactor and such SMR may therefore become indistinct. In any case, operating and utilizing research reactor and small and/or prototype SMR can be taken as a first step in the preparation for a larger nuclear power program, as both the small nuclear systems and the large nuclear power systems require personnel with similar skills sets and the support of the same/similar infrastructure including regulatory body. A strive-for-excellence culture normally required for the operation of a large nuclear system should therefore be cultivated starting with the deployment of the small nuclear systems including the research reactors. Organization well-embedded with such culture put a strong emphasis on safety, health and environmental protection. They are disciplined and well-motivated to perform work systematically, according to plans and established procedures. They communicate effectively within the organization and with stakeholders, and have a continuous drive to improve quality. These considerations should be included in the design of SMRs and research reactors to be deployed in the next 50 years. (author)

  20. Nuclear reactor technology: the next 50 years

    International Nuclear Information System (INIS)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T.

    2013-01-01

    hybrid energy systems therefore have the potential to be a key solution to meet the energy needs of the emerging economies in the next few decades. In order to be operated as part of distributed hybrid energy systems, SMRs should be available in various power rating and be able to be engineered for multiple-applications. They should also be user-friendly, and able to be integrated easily with renewable energy systems as well as, if necessary, with adjacent energy application/storage systems. With these considerations, a number of special design requirements for SMR have been identified. The multiple-applications of the SMR may include provision of neutron utilization for industrial applications and research in the future, depending upon the needs in the region where they are built. The difference between a research reactor and such SMR may therefore become indistinct. In any case, operating and utilizing research reactor and small and/or prototype SMR can be taken as a first step in the preparation for a larger nuclear power program, as both the small nuclear systems and the large nuclear power systems require personnel with similar skills sets and the support of the same/similar infrastructure including regulatory body. A strive-for-excellence culture normally required for the operation of a large nuclear system should therefore be cultivated starting with the deployment of the small nuclear systems including the research reactors. Organization well-embedded with such culture put a strong emphasis on safety, health and environmental protection. They are disciplined and well-motivated to perform work systematically, according to plans and established procedures. They communicate effectively within the organization and with stakeholders, and have a continuous drive to improve quality. These considerations should be included in the design of SMRs and research reactors to be deployed in the next 50 years. (author)

  1. Thermonuclear reactor materials composed of glassy carbons

    International Nuclear Information System (INIS)

    Kazumata, Yukio.

    1979-01-01

    Purpose: To improve the durability to plasma radiation by the use of glassy carbon as the structural materials for the first wall and the blanket in thermonuclear devices. Constitution: The glassy carbon (glass-like carbon) is obtained by forming specific organic substances into a predetermined configuration and carbonizing them by heat decomposition under special conditions. They are impermeable carbon material of 1.40 - 1.70 specific gravity, less graphitizable and being almost in isotropic crystal forms in which isotropic structure such as in graphite is scarcely observed. They have an extremely high hardness, are less likely to be damaged when exposed to radiation and have great strength and corrosion resistance. Accordingly, the service life of the reactor walls and the likes can remarkably be increased by using the materials. (Horiuchi, T.)

  2. A conceptual design of the International Thermonuclear Experimental Reactor for the Central Solenoid

    International Nuclear Information System (INIS)

    Heim, J.R.; Parker, J.M.

    1990-01-01

    Conceptual design of the International Thermonuclear Experimental Reactor (ITER) superconducting magnet system is nearing completion by the ITER Design Team, and one of the Central Solenoid (CS) designs is presented. The CS part of this magnet system will be a vertical stack of eight modules, approximately 16 m high, each having a approximate dimensions of: 4.1-m o.d., 2.8-m i.d., 1.9-m h. The peak field at the bore is approximately 13.5 T. Cable-in-conduit conductor with Nb 3 Sn composite wire will be used to wind the coils. The overall coil fabrication will use the insulate-wind-react-impregnate method. Coil modules will be fabricated using double-pancake coils with all splice joints located in the low-field region on the outside of the coils. All coils will be structurally graded with high-strength steel reinforcement which is co-wound with the conductor. We describe details of the CS coil design and analysis

  3. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R.

    1996-08-01

    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively

  4. Economic impacts on the United States of siting decisions for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Peerenboom, J.P.; Wolsko, T.D.; Hanson, M.E.

    1997-01-01

    This paper presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively

  5. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R. [and others

    1996-08-01

    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively.

  6. Continuously renewed wall for a thermonuclear reactor

    International Nuclear Information System (INIS)

    Livshits, A.I.; Pustovojt, YU.M.; Samartsev, A.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-01-01

    The possibility of creating a continuously renewed first wall of a thermonuclear reactor is experimentally investigated. The following variants of the wall are considered: the wall is double, its part turned to plasma is made of comparatively thin material. The external part separated from it by a small gap appears to be protected from interaction with plasma and performs structural functions. The gap contains the mixture of light helium and hydrogen and carbon-containing gas. The light gas transfers heat from internal part of the wall to the external part. Carbon-containing gas provides continuous renewal of carbon coating of the operating surface. The experiment is performed with palladium membrane 20 μm thick. Carbon is introduced into the membrane by benzol pyrolysis on one of the surfaces at the membrane temperature of 900 K. Carbon removal from the operating side of the wall due to its spraying by fast particles is modelled by chemical itching with oxygen given to the operating membrane wall. Observation of the carbon release on the operating surface is performed mass-spectrometrically according to the observation over O 2 transformation into CO and CO 2 . It is shown that in cases of benzol pressure of 5x10 -7 torr, carbon current on the opposite surface is not less than 3x10 12 atoms/sm 2 s and corresponds to the expected wall spraying rate in CF thermonuclear reactors. It is also shown that under definite conditions the formation and maintaining of a through protective carbon coating in the form of a monolayer or volumetric phase is possible

  7. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    Alesso, H.P.; Majumdar, K.C.

    1991-01-01

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  8. Design of the ITER (International Thermonuclear Experimental Reactor) neutral beam system beamline, United States concept

    International Nuclear Information System (INIS)

    Purgalis, P.; Anderson, O.A.; Cooper, W.S.; DeVries, G.E.; Lietzke, A.F.; Kunkel, W.B.; Kwan, J.W.; Matuk, C.A.; Nakai, T.; Stearns, J.W.; Soroka, L.; Wells, R.P.; Lindquist, W.B.; Neef, W.S.; Reginato, L.L.; Sedgley, D.W.; Brook, J.W.; Luzzi, T.E.; Myers, T.J.

    1989-01-01

    Design of a neutral beamline for ITER (International Thermonuclear Experimental Reactor) is described. The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to watercooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules that can be removed for remote maintenance. The neutral beam system delivers 75 MW of D degree into three ports with a total of nine modules arranged in stacks of three modules per port. To increase reliability each module is designed to deliver up to 10 MW at 1.3 MeV; this allows eight modules operating at partial capacity to deliver the required power in the event one module is removed from service. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 35 m from the port into the torus. Neutron shielding in the drift duct provides the added feature of limiting conductance and thus reducing gas flow to and from the torus. Alternative component choices are also discussed for the evolving design. 8 refs., 4 figs., 1 tab

  9. Plasma-materials interaction issues for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Cohen, S.A.; Werley, K.A.

    1992-02-01

    Analysis of proposed operating scenarios for the International Thermonuclear Experimental Reactor has yielded predictions for the power and particle fluxes onto the material surfaces facing the plasma. The particles, mostly deuterium, tritium, and helium ions, would have energies in the range of 50--2000 eV and fluxes up to 5 x 10 23 /m 2 s. Lower fluxes of multi-MeV electrons and alpha particles may also strike the plasma-facing surfaces, primarily during transient events. The peak power fluxes onto the plasma-facing surfaces during normal operation are expected to be 5--100 MW/m 2 , but much higher during transient events. At the extreme conditions expected for steady-state operation, commonly used heat-removal structures are unable to withstand either the high sputter erosion rates or power loads. To reduce the time-averaged power flux, active control of the plasma position is specified to sweep the plasma heat load across larger areas of plasma-facing components. However, the cyclic heat load creates fatigue lifetime problems. Solutions to these lifetime and reliability problems by (1) changes in machine design and operation, (2) redeposition mechanisms, and (3) changes in materials, will be discussed. A proposed accelerated-life test facility for prototype divertor plate development is described

  10. Vacuum pumping for controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.

    1976-01-01

    Thermonuclear reactors impose unique vacuum pumping problems involving very high pumping speeds, handling of hazardous materials (tritium), extreme cleanliness requirements, and quantitative recovery of pumped materials. Two principal pumping systems are required for a fusion reactor, a main vacuum system for evacuating the torus and a vacuum system for removing unaccelerated deuterium from neutral beam injectors. The first system must pump hydrogen isotopes and helium while the neutral beam system can operate by pumping only hydrogen isotopes (perhaps only deuterium). The most promising pumping techniques for both systems appear to be cryopumps, but different cryopumping techniques can be considered for each system. The main vacuum system will have to include cryosorption pumps cooled to 4.2 0 K to pump helium, but the unburned deuterium-tritium and other impurities could be pumped with cryocondensation panels (4.2 0 K) or cryosorption panels at higher temperatures. Since pumping speeds will be limited by conductance through the ducts and thermal shields, the pumping performance for both systems will be similar, and other factors such as refrigeration costs are likely to determine the choice. The vacuum pumping system for neutral beam injectors probably will not need to pump helium, and either condensation or higher temperature sorption pumps can be used

  11. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  12. Time to pause before the next step

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1998-01-01

    Many scientists, who have staunchly supported ITER for years, are coming to realize it is time to further rethink fusion energy's development strategy. Specifically, as was suggested by Grant Logan and Dale Meade, and in keeping with the restructuring of 1996, a theme of better, cheaper, faster fusion would serve the program more effectively than ''demonstrating controlled ignition...and integrated testing of the high-heat-flux and nuclear components required to utilize fusion energy...'' which are the important ingredients of ITER's objectives. The author has personally shifted his view for a mixture of technical and political reasons. On the technical side, he senses that through advanced tokamak research, spherical tokamak research, and advanced stellarator work, scientists are coming to a new understanding that might make a burning-plasma device significantly smaller and less expensive. Thus waiting for a few years, even ten years, seems prudent. Scientifically, there is fascinating physics to be learned through studies of burning plasma on a tokamak. And clearly if one wishes to study burning plasma physics in a sustained plasma, there is no other configuration with an adequate database on which to proceed. But what is the urgency of moving towards an ITER-like step focused on burning plasma? Some of the arguments put forward and the counter arguments are discussed here

  13. Enhanced probabilistic decision analysis for radiological confinement barriers of the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Golinescu, R.P.; Kazimi, M.S.

    1998-01-01

    To ensure a defence-in-depth approach, several radiological confinement barriers surrounding a tokamak plant can be employed. A methodology using probabilistic risk assessment (PRA) techniques is a useful tool for evaluating the performance of each confinement barrier within the context of a limited allowable risk of accidental radioactivity releases. Such a methodology was developed and applied to the confinement strategy for the International Thermonuclear Experimental Reactor (ITER). Accident sequence models were constructed for each of the confinement barriers to evaluate the probabilities of events leading to radioactive releases from the corresponding confinement barrier. The current ITER design requirements set radioactive release and dose limits for individual event sequences grouped in categories by frequency. To limit the plant's overall risk and account for event uncertainties in both frequency and consequence, an analytical form for a limit line is derived here as a complementary cumulative frequency (CCF) of radioactive releases to the environment. By comparing the releases from each confinement barrier against the limit line, a decision can be made about the number of barriers required to comply with the design requirements. The first barrier is the vacuum vessel (VV) and the primary heat transfer systems. The second confinement barrier consists of the cryostat vessel (CV) and the heat transfer system vaults. In case the outer building is needed to act as a third barrier for ITER, a decision model using the multi-attribute utility theory was constructed to help the designer choose the best type of tokamak building. The decision model allows for performing sensitivity analysis on relevant parameters and for design features of new options for the ITER tokamak building. (orig.)

  14. Approaches to safety, environment and regulatory approval for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Saji, G.; Bartels, H.W.; Chuyanov, V.; Holland, D.; Kashirski, A.V.; Morozov, S.I.; Piet, S.J.; Poucet, A.; Raeder, J.; Rebut, P.H.; Topilski, L.N.

    1995-01-01

    International Thermonuclear Experimental Reactor (ITER) Engineering Design Activities (EDA) in safety and environment are approaching the point where conceptual safety design, topic studies and research will give way to project oriented engineering design activities. The Joint Central Team (JCT) is promoting safety design and analysis necessary for siting and regulatory approval. Scoping studies are underway at the general level, in terms of laying out the safety and environmental design framework for ITER. ITER must follow the nuclear regulations of the host country as the future construction site of ITER. That is, regulatory approval is required before construction of ITER. Thus, during the EDA, some preparations are necessary for the future application for regulatory approval. Notwithstanding the future host country's jurisdictional framework of nuclear regulations, the primary responsibility for safety and reliability of ITER rests with the legally responsible body which will operate ITER. Since scientific utilization of ITER and protection of the large investment depends on safe and reliable operation of ITER, we are highly motivated to achieve maximum levels of operability, maintainability, and safety. ITER will be the first fusion facility in which overall 'nuclear safety' provisions need to be integrated into the facility. For example, it will be the first fusion facility with significant decay heat and structural radiational damage. Since ITER is an experimental facility, it is also important that necessary experiments can be performed within some safety design limits without requiring extensive regulatory procedures. ITER will be designed with such a robust safety envelope compatible with the fusion power and the energy inventories. The basic approach to safety will be realized by 'defense-in-depth'. (orig.)

  15. Application of controlled thermonuclear reactor fusion energy for food production

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1975-06-01

    Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

  16. Capacitor requirements for controlled thermonuclear experiments and reactors

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Hoffman, P.S.

    1975-01-01

    Future controlled thermonuclear experiments as well as controlled thermonuclear reactors will require substantial numbers of capacitors. The demands on these units are likely to be quite severe and quite different from the normal demands placed on either present energy storage capacitors or present power factor correction capacitors. It is unlikely that these two types will suffice for all necessary Controlled Thermonuclear Research (CTR) applications. The types of capacitors required for the various CTR operating conditions are enumerated. Factors that influence the life, cost and operating abilities of these types of capacitors are discussed. The problems of capacitors in a radiation environment are considered. Areas are defined where future research is needed. Some directions that this research should take are suggested. (U.S.)

  17. Capacitor requirements for controlled thermonuclear experiments and reactors

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Hoffman, P.S.

    1975-01-01

    Future controlled thermonuclear experiments as well as controlled thermonuclear reactors will require substantial numbers of capacitors. The demands on these units are likely to be quite severe and quite different from the normal demands placed on either present energy storage capacitors or present power factor correction capacitors. It is unlikely that these two types will suffice for all necessary Controlled Thermonuclear Research (CTR) applications. The types of capacitors required for the various CTR operating conditions are enumerated. Factors that influence the life, cost and operating abilities of these types of capacitors are discussed. The problems of capacitors in a radiation environment are considered. Areas are defined where future research is needed. Some directions that this research should take are suggested

  18. Particle accelerators: the next big step

    International Nuclear Information System (INIS)

    Lawson, J.

    1982-01-01

    Ideas which are currently under discussion for increasing the present energy range of particle accelerators but which are also economical in resources and do not demand elaborate techniques, are examined. Among the possible methods reviewed are the use of laser beams, the electron ring concept, and the use of wake fields left by electrons in storage rings. (U.K.)

  19. Multidisciplinary Teams: The Next Step in Science.

    Directory of Open Access Journals (Sweden)

    Aldo Leal-Egaña.

    2006-07-01

    Full Text Available One of the current characteristics in science, is the high complexity and technical character that becomes over the last years. This has induced the development of a specific type of professionals, highly specialized in the disciplines that they are involved in, which has produced a communicational breach between the scientists involved on different branches of the science. One of the strategies intended to cross this breach, is the generation of multidisciplinary research strategies, in which professionals of every field of the science can take part, being a kind of scientific and human bridge between the different research teams where they are involved in. This new style to do investigation has made possible the generation of new branches in science, such as for example Biotechnology. In this field -Tissue Engineering- becomes to be a very interesting example of the potential to work in multidisciplinary teams. The reason for this is mainly to avoid technical mistakes, which could cause the death of some patients and which can only be solved by developing research under a multidisciplinary strategy. Nevertheless, and in spite of the success working with multidisciplinary teams, this kind of strategy is rarely used in Latin-American, where the reasons seems to be centered in some aspects personal and cultural. This work shows an example of the new style to develop complex research, which could suggest a new way of working in Latin-American, granted that there is the will to enhance current scientific level.

  20. FOOTPRINTS FOR SUSTAINABILITY: THE NEXT STEPS

    Science.gov (United States)

    This paper discusses the strengths and weaknesses of the ecological footprint as an ecological accounting method, points out research needs for improvement of the analysis, and suggests potential new applications.

  1. Next step in change: The ''learning organization''

    International Nuclear Information System (INIS)

    Ross, C.E.H.

    1996-01-01

    Although the cost reductions over the past 15 years were painful, they forced the petroleum industry to put resources to work more efficiently, and now they're doing many of the right things in the right ways. Foremost, they've been finding and developing new oil resources from a wide variety of sources at low costs, even while in many areas the quality of the resource base has continued to deteriorate. They've also made great progress in stripping costs out of the entire supply chain, remediating environmental problems, reformulating fuels, and managing risk. In a low price environment, performance improvement is the name of the game, and over time a number of tools have been created to help meet this challenge. Because these tools have been developed successively, each building upon the accomplishments of its predecessors, the author sees them as the ''building blocks'' of organizational transformation. The latest building block -- and one that a lot of thought is being put into at Arthur D. Little -- is the ''learning organization.'' This and the other building blocks are discussed (decentralization, total quality management, business process redesign, high performance business, and virtualization)

  2. Enhancing regional collaboration -- taking the next step

    OpenAIRE

    Temple, Jennie M.

    2007-01-01

    CHDS State/Local Enhancing regional collaboration has been identified as one of the eight National Priorities for Homeland Security by the president of the United States. While South Carolina has made significant efforts in expanding regional collaboration, such as the creation of regional Counter Terrorism Coordinating Councils (CTCCs), there is still much work to be done. There are several teams and capabilities in place throughout the state, but they are uncoordinated, lack structure,...

  3. Next step, the Tour de France?

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    The penultimate stage of the 2013 Tour de France, the Annecy-Semnoz time-trial, has already been won – by a CERN staff member!     In keeping with tradition, the organisers of the Tour de France organise another race, the Étape du Tour, which is open to the general public and follows the actual route of an official stage of the Tour proper. This year, the chosen venue was Annecy and its neighbouring mountain, Le Semnoz, which played host to 11,000 cycling enthusiasts from all parts. This penultimate stage of the 2013 Tour will be raced by the professionals on 20 July. The public race was won by Nicolas Roux, an experienced cyclist and member of CERN’s GS-IS Group, who devoured the 128-km course in just 4 hours and 15 minutes, nine seconds ahead of cycling champion Julien Absalon. “I just managed to overhaul Julien Absalon 500 m before the finishing line,” Nicolas recounts. “It was a fantastic race!” Come rain o...

  4. Integrated Modelling - the next steps (Invited)

    Science.gov (United States)

    Moore, R. V.

    2010-12-01

    Integrated modelling (IM) has made considerable advances over the past decade but it has not yet been taken up as an operational tool in the way that its proponents had hoped. The reasons why will be discussed in Session U17. This talk will propose topics for a research and development programme and suggest an institutional structure which, together, could overcome the present obstacles. Their combined aim would be first to make IM into an operational tool useable by competent public authorities and commercial companies and, in time, to see it evolve into the modelling equivalent of Google Maps, something accessible and useable by anyone with a PC or an iphone and an internet connection. In a recent study, a number of government agencies, water authorities and utilities applied integrated modelling to operational problems. While the project demonstrated that IM could be used in an operational setting and had benefit, it also highlighted the advances that would be required for its widespread uptake. These were: greatly improving the ease with which models could be a) made linkable, b) linked and c) run; developing a methodology for applying integrated modelling; developing practical options for calibrating and validating linked models; addressing the science issues that arise when models are linked; extending the range of modelling concepts that can be linked; enabling interface standards to pass uncertainty information; making the interface standards platform independent; extending the range of platforms to include those for high performance computing; developing the concept of modelling components as web services; separating simulation code from the model’s GUI, so that all the results from the linked models can be viewed through a single GUI; developing scenario management systems so that that there is an audit trail of the version of each model and dataset used in each linked model run. In addition to the above, there is a need to build a set of integrated

  5. Electric deregulation in Texas : the next steps

    International Nuclear Information System (INIS)

    Giuliani, R.

    2004-01-01

    This presentation provided a look at the deregulated market in Texas and provided some statistics and facts about the Electric Reliability Council of Texas (ERCOT) which monitors the reliability of 37,000 miles of power transmission lines and 77,000 MW of generation. The governance adopted by ERCOT was described along with market design and wholesale operation in terms of open access to transmission and distribution systems, reliability, timely conveyance of information needed to support customer choice, and accurate accountability for electricity production and delivery. Transmission has been one the greatest challenges facing ERCOT, but retail operations are progressing well despite initial start-up problems. tabs., figs

  6. Virtualization, The next step for online services

    Directory of Open Access Journals (Sweden)

    Haller Piroska

    2013-06-01

    Full Text Available Virtualization allows sharing and allocating the hardware resources to more virtual machines thus increasing their usage rate. There are multiple solutions available today such as VMware vSphere, Microsoft Hyper-V, Xen Server and Red Hat KVM each with its own advantages and disadvantages. Choosing the right virtualization solution largely depends on the used applications and their resources requirements. The comparative analysis of the available virtualization solutions shows that it is essential to establish performance criteria’s and minimum and maximum resources usage thresholds over a given period of time. The coexistence of different services in different virtual machines that use different amount of resources allows a more efficient use of the available hardware resources.

  7. Embodied cognition: Taking the next step

    Directory of Open Access Journals (Sweden)

    Roel M Willems

    2012-12-01

    Full Text Available Recent years have seen a large amount of empirical studies related to ‘embodied cognition’. While interesting and valuable, there is something dissatisfying with the current state of affairs in this research domain. Hypotheses tend to be underspecified, testing in general terms for embodied versus disembodied processing. The lack of specificity of current hypotheses can easily lead to an erosion of the embodiment concept, and result in a situation in which essentially any effect is taken as positive evidence. Such erosion is not helpful to the field and does not do justice to the importance of embodiment. Here we want to take stock, and formulate directions for how it can be studied in a more fruitful fashion. As an example we will describe few example studies that have investigated the role of sensori-motor systems in the coding of meaning (‘embodied semantics’. Instead of focusing on the dichotomy between embodied and disembodied theories, we suggest that the field move forward and ask how and when sensori-motor systems and behavior are involved in cognition.

  8. Combined SRCT & FXCT - The next steps

    Science.gov (United States)

    Hall, C.; Acres, R. G.; Winnett, A.; Wang, F.

    2016-03-01

    One of the goals in developing synchrotron radiation x-ray computed tomography (SRCT) for biomedical specimens, is allowing particular tissues and cell types to be marked in the images. This is equivalent to the staining in histology, which enables researchers to visualise and measure tissue structure and biochemical processes within the specimen. Some progress in this direction for SRCT is being made, using a variety of contrast agents that alter the natural x-ray attenuation of the marked tissue [1]. However there are limits to the usefulness of these attenuation altering techniques. Often high concentrations of potentially disruptive chemicals are required with reduced compatibility for in-vivo studies. Another image highlighting technique which might prove more sensitive is x-ray fluorescence imaging. In this case usually endogenous elemental markers are visualised. We would like to develop a lower resolution, but wider field of view means of three-dimensional (3-D) fluorescence imaging compatible with SRCT. We have previously proposed a technique in which x-ray fluorescence CT (FXCT) and SRCT data can be collected simultaneously [2]. This work resulted in proof of concept modelling, and a simple experiment test system. We show data here which demonstrate a two-dimensional (2-D) reconstruction of an iodine fluorescence map from a phantom. Measurements were performed with a fixed beam modulating mask using the Imaging and Medical beam line (IMBL) at the Australian Synchrotron. Fluorescence data was obtained during a CT scan using a single point detector, while transmission data was simultaneously collected using an area detector. A maximum likelihood expectation maximisation (MLEM) iterative algorithm was used to reconstruct the fluorescence map. We report on technique development and now believe compressive sensing (CS) imaging techniques suit SRCT and may overcome the issues encountered so far in combining SRCT and FXCT.

  9. Doctor of Professional Counseling: The Next Step

    Science.gov (United States)

    Southern, Stephen; Cade, Rochelle; Locke, Don W.

    2012-01-01

    Professional doctorates have been established in the allied health professions by clinicians seeking the highest levels of independent practice. Allied health professional doctorates include nursing practice (DNP), occupational therapy (OTD), psychology (PsyD), social work (DSW), and marriage and family therapy (DMFT). Lessons learned from the…

  10. Thermonuclear power plants and the environment

    International Nuclear Information System (INIS)

    Becka, J.

    1978-01-01

    Environmental safety and protection from the effects of the thermonuclear power plants are discussed. Factors are assessed which should be considered in the choice of fuel and breeding material of a thermonuclear reactor, the problems of structural material activation and the overall reactor concepts. Main specifications are given of the US thermonuclear power plant projects with D-T reaction based reactors. The overall amounts of tritium in the reactor cycles are shown. The potential biological risk is evaluated for the different materials considered for the UWMAK-1 project. Discussed are possible pathways of activity release in normal plant operation, non-radioactive aspects, such as waste heat, the magnetic field effect on personnel and population, etc., as well as possible environmental impacts in case of accidents. (B.S.)

  11. Effect of plasma physics on choices of first wall materials and structures for a thermonuclear reactor

    International Nuclear Information System (INIS)

    Meade, D.M.

    1975-01-01

    Impurity ions adversely affect the behavior of present-day tokamaks, and control of impurities is expected to be a key element in determining the feasibility of thermonuclear fusion reactors. The plasma-surface interactions for tokamaks and several techniques for controlling impurities are described. The plasma-surface problem of next generation devices PLT, PDX, DIII and TFTR is expected to be similar to those encountered in a reactor. For these devices calculations indicate that most of the particle energy efflux will be in the 1 keV region. Ironically this energy region has not yet been investigated thoroughly by the surface physicists

  12. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    Science.gov (United States)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  13. Multi-User Interactive TV: the Next Step in Personalization

    NARCIS (Netherlands)

    van Brandenburg, Ray; van Deventer, M. Oskar; Karagiannis, Georgios; Schenk, Mike

    2010-01-01

    In the past few years there has been an increasing trend towards personalization in the TV world. IMS-based IPTV is a good example of a highly personalized IPTV architecture, featuring an advanced identity management subsystem. This article studies a next step in the personalization of the

  14. The laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  15. The CTB Treaty and next steps towards nuclear disarmament

    International Nuclear Information System (INIS)

    Epstein, W.

    1998-01-01

    The achievement of a CTBT is of course the indispensable first step in any program of nuclear disarmament. It will not be easy for Conference on Disarmament to agree by consensus to establish the committee on nuclear disarmament and will be even more difficult for it to agree on its mandate or terms of reference. In the meantime the nuclear powers should seek to implement a number of steps towards nuclear disarmament which thy can argue and implement by their own accord. The next steps are described in this report

  16. Major achievements of the European shield blanket R and D during the ITER EDA, and their relevance for future next step machines

    Energy Technology Data Exchange (ETDEWEB)

    Daenner, W. E-mail: daenner@ipp.mpg.de; Cardella, A.; Jones, L.; Lorenzetto, P.; Maisonnier, D.; Malavasi, G.; Peacock, A.; Rodgers, E.; Tavassoli, F

    2000-11-01

    In the frame of the international thermonuclear experimental reactors (ITER) collaboration, the European home team (EU HT) has committed significant efforts on the R and D for the Shield Blanket. This paper summarises the main achievements of this programme, which have been obtained over the last 7 years. The depth of R and D extends from generic activities up to the manufacture of prototypes, but has, in accordance with the design progress, reached different stages of maturity for the various components. New ITER options being considered since early 1998 have not made these activities irrelevant. With few exceptions, the results are still applicable for less ambitious next step machines, or transferable to components with similar functions or requirements.

  17. Ratcheting problems for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Majumdar, S.

    1991-01-01

    Because of the presence of high cyclic thermal stress, pressure-induced primary stress, and disruption-induced high cyclic primary stress, ratcheting of the first wall poses a serious challenge to the designers of ITER (International Thermonuclear Experimental Reactor). Existing design tools such as the Bree diagram in the ASME Boiler and Pressure Vessels Code, are not directly applicable to ITER, because of important differences in geometry and loading modes. Available alternative models for ratcheting are discussed and new Bree diagrams, that are more relevant for fusion reactor applications, are proposed. 9 refs., 17 figs

  18. Analysis of the two accelerator concepts foreseen for the neutral beam injector of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani

    2009-05-01

    Full Text Available Typical high-energy negative ion electrostatic accelerators such as the ones designed for fusion applications produce a significant amount of secondary particles. These particles may originate from coextracted electrons, which flow from the ion source, impacting the accelerator grids or as by-products of collisions between accelerated negative ions and the residual background gas, in the accelerator. Secondary emission particles may carry a non-negligible power and consequently must be precisely studied. The electrostatic-accelerator-Monte-Carlo-simulation code (EAMCC [G. Fubiani et al., Phys. Rev. ST Accel. Beams 11, 014202 (2008PRABFM1098-440210.1103/PhysRevSTAB.11.014202] was developed in order to provide a three-dimensional characterization of power and current deposition on all parts of the accelerator. The code includes all the relevant physics associated with secondary emission processes and consequently may be used as a tool for design improvement. In this paper, the two accelerator designs considered for the International Thermonuclear Experimental Reactor, that is, the multiaperture-multigrid and the single gap single aperture (SINGAP designs, are discussed and their predicted performances compared. Simulations have been compared with measurements on prototype accelerators of the SINGAP type. Reasonable agreement between EAMCC calculations and measurements of backstreaming ions and transmitted electrons was found.

  19. Research into thermonuclear fusion

    International Nuclear Information System (INIS)

    Schumacher, U.

    1989-01-01

    The experimental and theoretical studies carried out in close international cooperation in the field of thermonuclear fusion by magnetic plasma confinement have achieved such progress towards higher plasma temperatures and densities, longer confinement times and, thus, increased fusion product, that emphasis now begins to be shifted from problems of physics to those of technology as a next major step is being prepared towards a large international project (ITER) to achieve thermonuclear burning. The generation and maintenance of a burning fusion plasma in an experimental physics phase will be followed by a phase of technical materials studies at high fluxes of fusion neutrons. These goals have been pursued since 1983 by an international study group at Garching working on the design of a Next European Torus (NET). Since May 1988, an international study group comprising ten experts each from the USSR, USA, Japan, and the European Community has begun to work on a design draft of ITER (International Thermonuclear Experimental Reactor) in Garching under the auspices of IAEA. (orig.) [de

  20. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  1. Tandem mirror next step conceptual design

    International Nuclear Information System (INIS)

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-01-01

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs

  2. Tokamak hybrid thermonuclear reactor for the production of fissionable fuel and electric power

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Glukhikh, V.A.; Gur'ev, V.V.

    1978-01-01

    The results of feasibility studies of a tokamak- based hybrid reactor concept are presented. The system selected has a D-T plasma volume of 575 m 3 with additional plasma heating by injection of fast neutral particles. The method of heating makes it possible to achieve an economical two-component tokamak regime at ntau=(4-6)x10 13 sxcm -3 , i e. far below the Lawson criterion. Plasma and vacuum chamber are surrounded by a blanket where fissionable plutonium is produced and heat transformed into electric power is generated. Major plasma-neutron-physical characteristics of the 6905 MWth (2500 MWe) reactor and its electromagnetic system are presented. Evaluations show that the hybrid reactor can produce about 800 kg of Pu per 1GWth/yr as compared to 70-150 kg of Pu for fast breeder reactors. The increased Pu production rate is the major merit of the concept promising for both power generation and fuelling thermal fission reactions

  3. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani

    2008-01-01

    Full Text Available The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses. The resulting secondary particles (positive ions, neutrals, and electrons are accelerated and deflected by the electric and magnetic fields inside the accelerator and may induce more secondaries after a likely impact with the accelerator grids. This chain of reactions is responsible for a non-negligible heat load on the grids and must be understood in detail. In this paper, we will provide a comprehensive summary of the physics involved in the process of secondary emission in a typical ITER-like negative ion electrostatic accelerator together with a precise description of the numerical method and approximations involved. As an example, the multiaperture-multigrid accelerator concept will be discussed.

  4. Neutronics and mass transport in a chemical reactor associated with controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.; Lazareth, O.W.; Powell, J.R.

    1976-05-01

    The formation of ozone from oxygen and the dissociation carbon dioxide to carbon monoxide and oxygen is studied in a gamma-neutron chemical process blanket associated with a controlled thermonuclear reactor. Materials used for reactor tube wall will affect the efficiency of the energy absorption by the reactants and consequently the yield of reaction products. Three kinds of materials, aluminum, stainless steel and fiber (Al 2 O 3 )-aluminium are investigated for the tube wall material in the study

  5. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Simos, N.

    2011-01-01

    operating envelope of both fission and fusion reactors. In advanced fission reactors composite materials are being designed in an effort to extend the life and improve the reliability of fuel rod cladding as well as structural materials. Composites are being considered for use as core internals in the next generation of gas-cooled reactors. Further, next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) will rely on the capabilities of advanced composites to safely withstand extremely high neutron fluxes while providing superior thermal shock resistance.

  6. Engineering Design Activities (EDA) of the International Thermonuclear Experimental Reactor (ITER) Project: January 1993 progress report

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1994-01-01

    The task of selecting and assembling the Joint Central Team (JCT) is the authors top priority, and he has instructed the Deputy Directors and Division Heads to diligently pursue the selection of qualified team members. Several steps are involved in assembling the JCT: specification of posts, nomination of candidates, selection of team members, arrival and startup of work, and completion of secondment procedures. Only after these steps have been completed are staff able to take up their full responsibilities within the management structure of the JCT. Even then, a period of some months of acclimatization and adjustment may be required before the staff can be expected to work fully effectively

  7. A conceptual composite blanket design for the Tokamak type of thermonuclear reactor incorporating thermoelectric pumping of liquid lithium

    International Nuclear Information System (INIS)

    Dutta Gupta, P.B.

    1981-01-01

    The conceptual liquid lithium blanket design for the tokamak type of thermonuclear reactor put forward is a modification of the initial simple but novel design concept enunciated earlier that exploits the availability of suitably oriented magnetic fields and temperature gradients within the blanket to pump the liquid as has been shown feasible by laboratory model experiments. The modular construction of the blanket cells is retained but the earlier simple back to back double spiralling channel module is replaced by a composite unit of three radially nested layer-structures to optimise heat and tritium extraction from the blanket. The layer-structure at the first wall generates liquid lithium circulation by thermoelectric magnetohydrodynamic forces and the segregated double spiralling channels serve as inlet-outlet driving devices. The outermost layer-structure is cooled by helium. Liquid lithium in the intermediate layer-structure is pumped at a very slow rate. The choice of the relative dimensional proportions of the three layer-structure and the channel cross-section, material property and the spiralling contour is of critical importance for the design. This paper presents the design data for a conceptual design of such a blanket with a 5000 MW (th) rating. (author)

  8. Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

    CERN Document Server

    2002-01-01

    Dr Robert Aymar, Director of the International Thermonuclear Experimental Reactor (ITER), was nominated to succeed Professor Luciano Maiani as CERN's Director General, to take office on 1 January 2004.

  9. Thermo-mechanical analysis of an acceleration grid for the international thermonuclear experimental reactor-neutral beam injection system

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Hanada, Masaya; Okumura, Yoshikazu; Suzuki, Satoshi; Watanabe, Kazuhiro

    2001-01-01

    In the engineering design of a negative-ion beam source for a high-power neutral beam injection (NBI) system, one of the most important issues is thermo-mechanical design of acceleration grids for producing several tens of MW ion beams. An acceleration grid for the international thermonuclear experimental reactor-neutral beam injection (ITER-NBI) system will be subjected to the heat loading as high as 1.5 MW. In the present paper, thermo-mechanical characteristics of the acceleration grid for the ITER-NBI system were analyzed. Numerical simulation indicated that maximum aperture-axis displacement of the acceleration grid due to thermal expansion would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens theory of beam optics, beamlet deflection angle by the aperture-axis displacement was estimated to be about 2 mrad, which is within the requirement of the engineering design of the ITER-NBI system. Numerical simulation also indicated that no melting on the acceleration grid would occur for a heat loading of 1.5 MW, while local plastic deformation would happen. To avoid the plastic deformation, it is necessary to reduce the heat loading onto the acceleration grid to less than 1 MW

  10. Processing of W-Cu functionally graded materials (FGM) through the powder metallurgy route: application as plasma facing components for ITER-like thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Raharijaona, J.J.

    2009-11-01

    The aim of this study was to study and optimize the sintering of W-Cu graded composition materials, for first wall of ITER-like thermonuclear reactor application. The graded composition in the material generates graded functional properties (Functionally Graded Materials - FGM). Rough thermomechanical calculations have shown the interest of W-Cu FGM to improve the lifetime of Plasma Facing Components (PFC). To process W-Cu FGM, powder metallurgy route was analyzed and optimized from W-CuO powder mixtures. The influence of oxide reduction on the sintering of powder mixtures was highlighted. An optimal heating treatment under He/H 2 atmosphere was determined. The sintering mechanisms were deduced from the analysis of the effect of the Cu-content. Sintering of W-Cu materials with a graded composition and grain size has revealed two liquid migration steps: i) capillary migration, after the Cu-melting and, ii) expulsion of liquid, at the end of sintering, from the dense part to the porous part, due to the continuation of W-skeleton sintering. These two steps were confirmed by a model based on capillary pressure calculation. In addition, thermal conductivity measurements were conducted on sintered parts and showed values which gradually increase with the Cu-content. Hardness tests on a polished cross-section in the bulk are consistent with the composition profiles obtained and the differential grain size. (author)

  11. Recycling, inventory and permeation of hydrogen isotopes and helium in the first wall of a thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Gervasini, G.; Reiter, F.

    1989-01-01

    The work was divided into three parts. The first part, which is theoretical, examines the behaviour of hydrogen in metals. After an introduction on the presence of hydrogen isotopes in fusion reactors, the main phenomena connected with hydrogen-metal interaction are summarised: solubility, diffusivity and trapping in material defects. The metal temperature is highlighted as the main parameter in the description of the phenomena. The second part of the work, also theoretical, concerns the interaction between helium and metals. We have tried as much as possible to show analogies and differences in the comparisons of the behaviour of hydrogen. The main types of damage caused by helium in metallic structures, which are the most important consequence of helium-metal interaction, were summarised. The characteristics of helium were treated in greater depth than those of hydrogen, because the latter are very well known. Also, there is a vast literature on the hydrogen-metal interaction. In the third and last part of the work a model was identified which allows the simulation of the evolution of a system formed from a metal in which hydrogen and helium isotopes have been introduced. A system of algebraic-differential equations was used to study the temporal evolution of the concentrations, the recycling, the inventory and the permeation of tritium and helium considering that these atoms diffuse in the metallic lattice and remain trapped in the vacancies created inside the metal by the bombardment of the neutrons from the fusion reactions. For the numerical simulation a series of data intended to represent the situation inside a thermonuclear reactor as precisely as possible were used for the numerical simulation. Analysis of the system was preceded by the analytical resolution of the steady state equations so that they could be compared with the simulation results

  12. The next step in biology: a periodic table?

    Science.gov (United States)

    Dhar, Pawan K

    2007-08-01

    Systems biology is an approach to explain the behaviour of a system in relation to its individual components. Synthetic biology uses key hierarchical and modular concepts of systems biology to engineer novel biological systems. In my opinion the next step in biology is to use molecule-to-phenotype data using these approaches and integrate them in the form a periodic table. A periodic table in biology would provide chassis to classify, systematize and compare diversity of component properties vis-a-vis system behaviour. Using periodic table it could be possible to compute higher- level interactions from component properties. This paper examines the concept of building a bio-periodic table using protein fold as the fundamental unit.

  13. Isochronous cyclotron for thermonuclear reactors driving

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.

    1998-01-01

    The main requirements to an accelerator as a part of an electronuclear power plant are considered. The range of the parameters of the accelerated proton and deuteron beams, for which the isochronous cyclotron is the most profitable, is proposed. An opportunity of using the cyclotron to drive the research reactors of various types is considered

  14. Draft program plan for TNS: The Next Step after the Tokamak Fusion Test Reactor. Part II. R and D needs assessment

    International Nuclear Information System (INIS)

    Roberts, M.

    1977-12-01

    The information contained in this document represents the brief but intensive efforts of the Oak Ridge TNS Program Team to answer the following questions: (1) Is there an adequate basis of R and D support for the TNS program as a central, ambitious goal for the fusion program. (2) What are the principal gaps in the current and projected R and D program. (3) What must be done to permit operation of TNS in the mid 1980s. The findings of our preliminary study provide these answers to the questions: (1) The physics and technology base does exist from which to start the TNS design as a central fusion program goal. (2) We have specific recommendations for new emphasis in certain physics and technology areas to minimize R and D program gaps. (3) TNS conceptual design must be started now, and a close look at organizing the fusion program around a TNS project is an essential need to support operation in the mid 1980s

  15. Draft program plant for TNS: The Next Step after the tokamak fusion test reactor. Part III. Project specific RD and D needs

    International Nuclear Information System (INIS)

    1977-03-01

    Research and development needs for the TNS systems are described according to the following chapters: (1) tokamak system, (2) electrical power systems, (3) plasma heating systems, (4) tokamak support systems, (5) instrumentation, control, and data systems, and (6) program recommendations

  16. Some safety considerations in laser-controlled thermonuclear reactors. Final report

    International Nuclear Information System (INIS)

    Botts, T.E.; Breton, D.; Chan, C.K.; Levy, S.I.; Sehnert, M.; Ullman, A.Z.

    1978-07-01

    A major objective of this study was to identify potential safety questions for laser controlled thermonuclear reactors. From the safety viewpoint, it does not appear that the actual laser controlled thermonuclear reactor conceptual designs present hazards very different than those of magnetically confined fusion reactors. Some aspects seem beneficial, such as small lithium inventories, and the absence of cryogenic devices, while other aspects are new, for example the explosion of pressure vessels and laser hazards themselves. Major aspects considered in this report include: (a) general safety considerations, (b) tritium inventories, (c) system behavior during loss of flow accidents, and (d) safety considerations of laser related penetrations

  17. Tritium containment of controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Tsukumo, Kiyohiko; Suzuki, Tatsushi

    1979-01-01

    It is well known that tritium is used as the fuel for nuclear fusion reactors. The neutrons produced by the nuclear fusion reaction of deuterium and tritium react with lithium in blankets, and tritium is produced. The blankets reproduce the tritium consumed in the D-T reaction. Tritium circulates through the main cooling system and the fuel supply and evacuation system, and is accumulated. Tritium is a radioactive substance emitting β-ray with 12.6 year half-life, and harmful to human bodies. It is an isotope of hydrogen, and apt to diffuse and leak. Especially at high temperature, it permeates through materials, therefore it is important to evaluate the release of tritium into environment, to treat leaked tritium to reduce its release, and to select the method of containing tritium. The permeability of tritium and its solubility in structural materials are discussed. The typical blanket-cooling systems of nuclear fusion reactors are shown, and the tungsten coating of steam generator tubes and tritium recovery system are adopted for reducing tritium leak. In case of the Tokamak type reactor of JAERI, the tritium recovery system is installed, in which the tritium gas produced in blankets is converted to tritium steam with a Pd-Pt catalytic oxidation tower, and it is dehydrated and eliminated with a molecular sieve tower, then purified and recovered. (Kako, I.)

  18. Transport simulation of ITER [International Thermonuclear Engineering Reactor] startup

    International Nuclear Information System (INIS)

    Attenberger, S.E.; Houlberg, W.A.

    1989-01-01

    The present International Thermonuclear Engineering Reactor (ITER) reference configurations are the ''Technology Phase,'' in which the plasma current is maintained noninductively at a subignition density, and the ''Physics Phase,'' which is ignited but requires inductive maintenance of the current. The WHIST 1.5-D transport code is used to evaluate the volt-second requirements of both configurations. A slow current ramp (60-80's) is required for fixed-radius startup in ITER to avoid hollow current density profiles. To reach the operating point requires about 203 V·s for the Technology Phase (18 MA) and about 270 V·s for the Physics Phase (22 MA). The resistive losses can be reduced with expanding-radius startup. 5 refs., 4 figs

  19. Structure of pipeline or duct for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Fujioka, Junzo; Nishio, Satoshi; Okawa, Yoshinao; Sato, Keisuke.

    1992-01-01

    An electrically insulating material comprising a gradient function material is bonded metallurgically to a pipeline or a duct to be disposed to a magnetic field-confining type thermonuclear reactor. The gradient material has an ingredient approximate to ceramics on the side of an electrically insulative ceramic portion and an ingredient approximate to a metal on the other side. The intermediate portion between them, has a continuous gradient ingredient. Further, in the gradient portion of the electrically insulative portion, a heat expansion coefficient is also varied continuously or stepwise in addition to the electrical insulative property. Accordingly, even when a temperature distribution is caused during operation and welding upon production, thermal stresses applied to the pipelines is moderated. Further, since the electrically insulative ceramics are interposed with no support by an electric conductor, sufficient electrical insulation can be ensured. (T.M.)

  20. Agroforestry—The Next Step in Sustainable and Resilient Agriculture

    Directory of Open Access Journals (Sweden)

    Matthew Heron Wilson

    2016-06-01

    Full Text Available Agriculture faces the unprecedented task of feeding a world population of 9 billion people by 2050 while simultaneously avoiding harmful environmental and social effects. One effort to meet this challenge has been organic farming, with outcomes that are generally positive. However, a number of challenges remain. Organic yields lag behind those in conventional agriculture, and greenhouse gas emissions and nutrient leaching remain somewhat problematic. In this paper, we examine current organic and conventional agriculture systems and suggest that agroforestry, which is the intentional combination of trees and shrubs with crops or livestock, could be the next step in sustainable agriculture. By implementing systems that mimic nature’s functions, agroforestry has the potential to remain productive while supporting a range of ecosystem services. In this paper, we outline the common practices and products of agroforestry as well as beneficial environmental and social effects. We address barriers to agroforestry and explore potential options to alter policies and increase adoption by farmers. We conclude that agroforestry is one of the best land use strategies to contribute to food security while simultaneously limiting environmental degradation.

  1. An electromagnetic spherical phased array thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Okress, E.C.

    1983-01-01

    Discussed are salient physics aspects of a microwave singly reentrant spherical periodic phased array of uniformally distributed identical coaxial radiation elements in an essentially simulated infinite array environment. The array is capable of maintaining coherence or phase control (to the limit of the order of 300 GHz) of its spherically converging electromagnetic transverse magnetic mode radiation field, for confinement (and heating) of thermonuclear plasma in steady-state or inertial thermonuclear fusion. The array also incorporates capability for coaxial directional coupler extraction of fusionpower. The radiation elements of the array are shielded against DT Thermonuclear plasma emissions (i.e., neutrons and bremsstrahlung) by either sufficiently (available) low less tangent and cooled, spherically concentric shield (e.g., Titanium oxide); or alternately by identical material dome windows mounted on each radiation element's aperture of the array. The pump microwave power required for thermonuclear fusion feasibility comprises an array of phase-locked available klystron amplifiers (comparable gyratron amplifiers remain to be developed)

  2. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  3. Safety criteria for the next generation of European reactors

    International Nuclear Information System (INIS)

    Dominguez Bautista, M.T.

    1995-01-01

    For the next generation of reactors, European companies operating in the electricity sector have drawn up a document called European Utilities Requirement (EUR), which sets out the requirements to be met by the designers of future reactors. The main objective of these new requirements is to increase the safety in existing reactors, making good use of operating experience available and the technological developments of the last decade. This paper offers an in-depth analysis of the most significant characteristics, describing how the EUR requirements have been prepared and how they are being implemented by the designers. Areas covered are: - Combining deterministic and probabilistic criteria - Automation of control systems - Design extension for severe accidents - Containment design - Emergency plans - Autonomy versus manual operation

  4. Magnetohydrodynamics and the thermonuclear problem

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [Department of Electronics, Royal Institute of Technology, Stockholm (Sweden)

    1958-07-01

    The importance of magnetohydrodynamics and plasma physics for the solution of thermonuclear problem is presented in the paper. Methods for capture of a plasma by a magnetic field are discussed. From the study it is concluded that in principle it is possible to shoot heated plasma into a magnetic field and capture it there. A possible method of capturing plasma which is shot into a magnetic field is illustrated. Magnetohydrodynamic research performed during the last decade in Stockholm is presented. Following a long series of investigations of relatively cool plasmas, it has been started a series of experimental investigations on hot plasmas, concentrating on the fundamental properties of the plasma. New ways of the approach to the thermonuclear problem are analysed. Experiments have been with discharges of a few hundred kiloamps to produce fast-moving magnetized plasmas, in order to investigate whether they could be captured by magnetic fields in the discussed way.

  5. Nuclear reactors and technology in the next stage

    International Nuclear Information System (INIS)

    Orlov, V.

    2000-01-01

    Author deals with the perspectives of development of nuclear power. It is possible to create in a fairly short time reactors and fuel technology that would meet the main requirements for large-scale power production, i.e.: (a) to afford a 100-fold reduction in the specific consumption of uranium, by utilizing thousands of tonnes of Pu accumulated in the spent fuel from the reactors of the fl t stage; .to rule out nuclear disasters, by taking advantage of the intrinsic properties and behavior of reactor, coolant, fuel, etc., with the plants made simpler and cheaper; (b) to hit a balance between the radiotoxicity of waste and that of feed uranium, by providing neutron transmutation; (c) to create power reactors and fuel cycle technology that would not afford extraction of weapon-grade materials. To fulfil all these requirements, it is necessary to provide substantial neutron excess in a chain reaction for Pu breeding, to use fuel with an equilibrium composition, to bum actinides and LLFPs. All this can be done only in fast reactors. Fast reactors can also provide fuel for thermal reactors that might still be used for some applications, operating in a Th/U cycle, which is the best option for such facilities. Novel engineering solutions will be necessary: high-density heat-conductive fuel (UPuN), chemically inert high-boiling coolant (Pb), dry reprocessing. These issues have been studied well enough to allow embarking on the development of advanced fast reactors. Minatom institutions are finalizing a detailed design of a demonstration BREST-300 plant, complete with an on-site fuel cycle that will meet the requirements of large-scale nuclear power. Hopefully, construction of this plant at Beloyarsk site with its subsequent trial operation would open a door to the next stage in nuclear power development. (author)

  6. Physics modeling support for the International Thermonuclear Experimental Reactor: Final report

    International Nuclear Information System (INIS)

    1988-01-01

    There are two major sections to this report. The first section of the report is an executive summary of the work done this year. For each task, the major results are condensed for the reader's convenience. The major result of each memo, report or presentation is summarized briefly in this section. The second section of the report is a collection of appendices containing reports, memos, and presentations written this year. Here, the interested reader can investigate any topic discussed in the summary in more detail. The documentation is presented in chronological order, and we would like to note that the content of later documents may supercede that of earlier ones. The summaries are divided into sections, corresponding to the tasks outlined in the original proposal for the work. These sections are: MUMAK code development and application; Alfven wave stability problem; TETRA systems code development and application; lower hybrid heating and current drive; and advanced blanket modeling

  7. Physics modeling support for the International Thermonuclear Experimental Reactor: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-30

    There are two major sections to this report. The first section of the report is an executive summary of the work done this year. For each task, the major results are condensed for the reader's convenience. The major result of each memo, report or presentation is summarized briefly in this section. The second section of the report is a collection of appendices containing reports, memos, and presentations written this year. Here, the interested reader can investigate any topic discussed in the summary in more detail. The documentation is presented in chronological order, and we would like to note that the content of later documents may supercede that of earlier ones. The summaries are divided into sections, corresponding to the tasks outlined in the original proposal for the work. These sections are: MUMAK code development and application; Alfven wave stability problem; TETRA systems code development and application; lower hybrid heating and current drive; and advanced blanket modeling.

  8. Study on the dynamics of charged particles in a rarefied gas of thermonuclear reactor injector

    International Nuclear Information System (INIS)

    Afanas'ev, P.N.; Svistunov, Yu.A.; Sidorov, V.P.; Udovichenko, S.Yu.

    1987-01-01

    The motion of an ion beam directly beyond the source is considered in the assumption of homogeneous density of rarefied gas along the injector. Using numerical simulation the dynamics of fast particles in plasma electric field, created by the beam as a result of gas neutral atom ionization, is investigated. It is shown that stationary ambipolar electric field of ''plasma lens'' can affect considerably the beam transverse dynamics

  9. The International Thermonuclear Experimental Reactor (ITER) international organisation: which laws apply to this international nuclear operator?

    International Nuclear Information System (INIS)

    Grammatico-Vidal, L.

    2009-01-01

    ITER is being carried out by way of international collaboration between seven partners (the European atomic energy community -EURATOM-, China, India, Japan, Russia, south korea and the United states) which together represent more than half the world population. From a project organisation point of view, it is supported by both financial and in-kind contributions provided by each of the partner; each member makes its contribution through a special legal entity called a 'domestic agency' to an international organisation which was set up by the Agreement on the Establishment of an International Fusion Energy Organization for the joint Implementation of the ITER project signed in Paris on 21. november 2006 and which entered into force on 24. october 2007 after ratification by each of the partners. The international agreement is to remain in effect for a period of 35 years and may be renewed for a period of 10 years without any change to its content. It is supplemented by an agreement of the same date on the privileges and immunities of the organisation and of its staff. The function of the ITER organisation is to construct, commission, operate and permanently shutdown the ITER facility, to encourage their exploitation by laboratories, other institutions and personnel participating in the fusion energy research and development programmes of its members and to promote public understanding and acceptance of fusion energy. The unique institutional structure for this project will be described briefly in the introduction before analysing the law applicable to this international organisation, a French nuclear operator, unique in France today. (N.C.)

  10. Applications of controlled thermonuclear reactor (CTR) fusion power in the steel industry

    International Nuclear Information System (INIS)

    Jordan, R.K.; Steinberg, M.

    1975-03-01

    A review of the process and economics of basic steel production is presented for the purpose of indicating where CTR fusion energy may be applicable. The present conventional air blown blast furnace produces a relatively low Btu value top gas with limited usefulness. The industry consumes relatively large amounts of natural gas for reheating ingots, plates, etc. A concept is presented wherein oxygen is used in the blast furnace which would double the capacity of the furnace and produce a rich carbon monoxide gas stream useful as synthesis gas for methanol and ammonia production. A CTR supplying high energy radiation in a blanket would disproportionate carbon dioxide to carbon monoxide and oxygen which could be used at high temperatures in the blast furnace in place of an oxygen supply stream. Coke would be used in this scheme. In a second scheme the oxygen is separated from the disproportioned CO 2 stream and CO is used in a direct reduction furnace which is followed by an electric furnace to refine the reduced product. Other schemes include iron ore reduction with electrolytic hydrogen and the use of thermal energy for reforming coal with steam or CO 2 for production of reducing gas. The electrosmelting of scrap metal using CTR power could become an important operation in the future. A complex of steel, fertilizer, fuel and chemical production is presented. Steel capacity and power requirement data are presented and projected to the year 2020. (U.S.)

  11. Investigation of high purity beryllium for the International Thermonuclear Experimental Reactor (ITER), Task 002. Final report

    International Nuclear Information System (INIS)

    Vagin, S.P.

    1995-05-01

    The report includes a description of experimental abilities of Solid Structure Research Laboratory of IAE NNC RK, a results of microstructural characterization of A-4 grade polycrystal Beryllium produced at the Ulba metal plant and a technical project-for irradiation experiments. Technical project contains a detailed description of five proposed experiments, clearing behavior of Beryllium materials under the influence of irradiation, temperature, helium and hydrogen accumulation. Complex irradiation jobs, microstructural investigations and mechanical tests are planned in the framework of these experiments

  12. ITER vacuum vessel fabrication plan and cost study (D 68) for the international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    1995-01-01

    ITER Task No. 8, Vacuum Vessel Fabrication Plan and Cost Study (D68), was initiated to assess ITER vacuum vessel fabrication, assembly, and cost. The industrial team of Raytheon Engineers ampersand Constructors and Chicago Bridge ampersand Iron (Raytheon/CB ampersand I) reviewed the current vessel basis and prepared a manufacturing plan, assembly plan, and cost estimate commensurate with the present design. The guidance for the Raytheon/CB ampersand I assessment activities was prepared by the ITER Garching Work Site. This guidance provided in the form of work descriptions, sketches, drawings, and costing guidelines for each of the presently identified vacuum vessel Work Breakdown Structure (WBS) elements was compiled in ITER Garching Joint Work Site Memo (Draft No. 9 - G 15 MD 01 94-17-05 W 1). A copy of this document is provided as Appendix 1 to this report. Additional information and clarifications required for the Raytheon/CB ampersand I assessments were coordinated through the US Home Team (USHT) and its technical representative. Design details considered essential to the Task 8 assessments but not available from the ITER Joint Central Team (JCT) were generated by Raytheon/CB ampersand I and documented accordingly

  13. A cryogenic system design for the international thermonuclear experimental reactor (ITER)

    International Nuclear Information System (INIS)

    Slack, D.S.

    1991-01-01

    A conceptual design for ITER was completed last year. The author developed a suitable cryogenic system for ITER as part of this conceptual design effort. An overview of the design is reported. Emphasis is on the fact that cryogenics is a mature science, and a system supporting ITER needs can be made from time-proven components without loss of efficiency or reliability. Because of the large size of the ITER cryogenic system, large numbers of compressors and expanders must be used. Very high reliability is assured by arranging these components in parallel banks where servicing of individual components can be done without interruption of operations. This and other ideas based on the author's experience with Mirror Fusion Test Facility (MFTF) operations are described. 5 refs., 3 figs

  14. International Thermonuclear Experimental Reactor (ITER). Engineering Design Activities (EDA). Agreement and protocol 1

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains protocol 1 to the agreement among the European Atomic Energy Community, the government of Japan, the Government of the Russian Federation, and the Government of the United States of America on cooperation in the engineering design activities for the International Thermonuclear Experimental Reactor, which activities shall be conducted under the auspices of the International Atomic Energy Agency

  15. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  16. Major NSSS design features of the Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Insk; Kim, Dong-Su

    1999-01-01

    In order to meet national needs for increasing electric power generation in the Republic of Korea in the 2000s, the Korean nuclear development group (KNDG) is developing a standardized evolutionary advanced light water reactor (ALWR), the Korean Next Generation Reactor (KNGR). It is an advanced version of the successful Korean Standard Nuclear Power Plant (KSNP) design, which meets utility needs for safety enhancement, performance improvement and ease of operation and maintenance. The KNGR design starts fro the proven design concept of the currently operating KSNPs with uprated power and advanced design features required by the utility. The KNGR design is currently in the final stage of the basic design, and the paper describes the major nuclear steam supply system (NSSS) design features of the KNGR together with introduction of the KNGR development program. (author)

  17. Neutronic calculation of the next fuel elements for the Argonaut reactor

    International Nuclear Information System (INIS)

    Oliveira, C.R.E.; Brito Aghina, L.O. de

    1981-01-01

    The best parameters of the next fuel elements of the Argonaut reactor, at IEN (Instituto de Engenharia Nuclear - Brazil), were determined. The next fuel elements will be rods of an uranium mixture (19.98% enriched), graphite and bakelite. The parameters to be determined are: mixture density, percentage of uranium in the mixture, pellet radius, rod material and elements arrangement (step). The calculations routines consisted in the analysis of several steps, using the LEOPARD computer code for cell calculations and RMAT1D for one dimensional spatial calculations (criticality) with four energy groups. Finally a neutronic study of the Argounat reactors present configuration was done, using the HAMMER computer code (cell), the EXTERMINATOR computer code (two-dimensional calculations) and RAMAT1D. (Author) [pt

  18. Methodology on the sparger development for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloudacceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs.

  19. Methodology on the sparger development for Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K.

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloud acceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs

  20. Space nuclear reactors: energy gateway into the next millennium

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Buden, D.

    1981-01-01

    Power - reliable, abundant and economic - is the key to man's conquest of the Solar System. Space activities of the next few decades will be highlighted by the creation of the extraterrestrial phase of human civilization. Nuclear power is needed both to propel massive quantities of materials through cislunar and eventually translunar space, and to power the sophisticated satellites, space platforms, and space stations of tomorrow. To meet these anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100-kW(e) heat pipe nuclear reactor. The objectives of this program are to develop components for a space nuclear power plant capable of unattended operation for 7 to 10 years; having a reliability of greater than 0.95; and weighing less than 1910 kg. In addition, this heat pipe reactor is also compatible for launch by the US Space Transportation System

  1. Controlled thermonuclear fusion: Tore Supra back bone of the EURATOM-CEA programme for the next ten years

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The decision to grant priority operation status to the French Tokamak Tore Supra will make it possible to start on the construction of this large machine and to bring together at the Cadarache Nuclear Study Centre all the facilities of the CEA for their research on fusion by magnetic confinement. The work is scheduled to begin in 1982 and to last until 1985. The financing is indicated and Tore Supra is briefly described [fr

  2. Estabilishing requirements for the next generation of pressurized water reactors--reducing the uncertainty

    International Nuclear Information System (INIS)

    Chernock, W.P.; Corcoran, W.R.; Rasin, W.H.; Stahlkopf, K.E.

    1987-01-01

    The Electric Power Research Institute is managing a major effort to establish requirements for the next generation of U.S. light water reactors. This effort is the vital first step in preserving the viability of the nuclear option to contribute to meet U.S. national electric power capacity needs in the next century. Combustion Engineering, Inc. and Duke Power Company formed a team to participate in the EPRI program which is guided by a Utility Steering committee consisting of experienced utility technical executives. A major thrust of the program is to reduce the uncertainties which would be faced by the utility executives in choosing the nuclear option. The uncertainties to be reduced include those related to safety, economic, operational, and regulatory aspects of advanced light water reactors. This paper overviews the Requirements Document program as it relates to the U.S. Advanced Light Water Reactor (ALWR) effort in reducing these uncertainties and reports the status of efforts to establish requirements for the next generation of pressurized water reactors. It concentrates on progress made in reducing the uncertainties which would deter selection of the nuclear option for contributing to U.S. national electric power capacity needs in the next century and updates previous reports in the same area. (author)

  3. HIA, the next step: Defining models and roles

    International Nuclear Information System (INIS)

    Putters, Kim

    2005-01-01

    If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways and responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking

  4. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C.

    2010-01-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO 2 -emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm -2 , meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm -2 for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs and heat

  5. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany)

    2010-07-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO{sub 2}-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm{sup -2}, meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm{sup -2} for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs

  6. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  7. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  8. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  9. Lunar Station: The Next Logical Step in Space Development

    Science.gov (United States)

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.

    2014-01-01

    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  10. The Next Step in the Evolution of the RBV

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    2004-01-01

    This essay addresses the role of transaction cost economics (TCE) inadvancing the resource-based view. In particular, it is argued that TCE hasthe potential to remedy a number of weak spots in the RBV, such as theabsence of attention in the RBV to the interaction between value creation andvalue...

  11. Potential environmental effects of controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Young, J.R.; Gore, B.F.

    1976-01-01

    The following topics are discussed: (1) the fusion reaction, (2) approach to the environmental analysis, (3) the reference CTR, (4) CTR environmental effects, (5) CTR accident potential, and (6) the advanced CTR

  12. Next-Step Spherical Torus Experiment and Spherical Torus Strategy in the Fusion Energy Development Path

    International Nuclear Information System (INIS)

    Ono, M.; Peng, M.; Kessel, C.; Neumeyer, C.; Schmidt, J.; Chrzanowski, J.; Darrow, D.; Grisham, L.; Heitzenroeder, P.; Jarboe, T.; Jun, C.; Kaye, S.; Menard, J.; Raman, R.; Stevenson, T.; Viola, M.; Wilson, J.; Woolley, R.; Zatz, I.

    2003-01-01

    A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction

  13. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  14. The Doctor of Nursing Practice: defining the next steps.

    Science.gov (United States)

    Grey, Margaret

    2013-08-01

    The purpose of this article is to summarize the previous articles in this special issue of the Journal of Nursing Education that are based on the Committee on Institutional Cooperation's Dean's Conference on the Doctor of Nursing Practice (DNP) and to identify areas of consensus, as well as areas of controversy. Areas of consensus include the high level of interest in DNP programs and the intent to expand the role of the advanced practice nurse to population health, policy, and leadership. Areas of controversy include the nature of the DNP product, the definition of clinical experiences, the nature of the capstone project, the outcomes of these new practitioners, and the impact on schools. Suggestions for achieving higher levels of consensus, including the need for respective, inclusive dialogue, are provided. Copyright 2013, SLACK Incorporated.

  15. The cost management organization: the next step for materiel management.

    Science.gov (United States)

    Schuweiler, R C

    1997-06-01

    With Materiel Management's transition over the last decade from simple logistics to analysis and cost management, it has gained recognition as a key part of the management team responsible for supplies, equipment, standards, and associated processes to identify, purchase, store, distribute, issue, and dispose of supplies and equipment. The materiel manager's job consists of putting the right product in the right place at the right time and in the right quantity at the best total delivered cost. In this context, Materiel Management has made powerful impacts to lower costs associated with: Distribution--costs have been lowered by actively adopting advanced supply channel management techniques such as primary suppliers, JIT, stockless programs, case cart/custom kit/procedure based delivery systems, modified stockless programs as well as margin management through cost plus, flat fee, or margins paid per activity. Cost of goods--lowered through aggregated purchasing in the forms of regional and national purchasing alliances and local capitation or other gain/risk share programs. Internal process costs--lowered by out-sourcing and/or integrating supplier processes and personnel into operations via partnership approaches. We have also reduced transactional costs through EDI transaction sets and the emerging use of the inter and intranet/electronic commerce, procurement cards, and evaluated receipt settlement processes. De-layering--We have lowered the operating costs of Materiel Management overhead by re-design/re-engineering, resulting in reduced management and greater front line authority. Quality--We have learned to identify and respond to customer and supplier needs by using quality improvement tools and ongoing measurement and monitoring techniques. Through this we have identified the waste of non-beneficial products and services. We have adopted supplier certification measurers to ensure quality is built into processes and outcomes. With so much already accomplished

  16. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  17. Blue energy - The story of thermonuclear fusion energy

    International Nuclear Information System (INIS)

    Laval, G.

    2007-01-01

    The author has written a story of thermonuclear fusion as a future source of energy. This story began about 50 years ago and its last milestone has been the decision of building the ITER machine. This decision has been taken by an international collaboration including a large part of the humanity which shows how great are the expectations put on fusion and that fusion deserves confidence now. For long years fusion energy has been the subject of large controversy due to the questioning about the overcoming of huge theoretical and technological difficulties. Different machines have been built to assess new theoretical developments and to prepare the next step. The physics of hot plasmas has been understood little by little at the pace of the discovery of new instabilities taking place in fusion plasmas. The 2 unique today options: the tokamak-type machine and the laser-driven inertial confinement machine took the lead relatively quickly. (A.C.)

  18. The FREYA project at VENUS-F - the next step towards MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Krasa, A.; Baeten, P.; Kochetkov, A.; Uyttenhove, W.; Vittiglio, G.; Wagemans, J. [SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Mercatali, L. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Bianchini, G.; Carta, M.; Fabrizio, V.; Peluso, V. [ENEA, C.R. Casaccia, via Anguillarese, 301-00060 S. Maria di Galeria (Italy)

    2015-07-01

    The VENUS-F reactor is a fast, zero-power research reactor. Since 2009 it has used 30% wt. metallic uranium as fuel and solid lead as reflector and coolant simulator. It can also be coupled to a particle accelerator with a neutron producing target and make up a subcritical Accelerator Driven System (ADS). Within the currently ongoing FREYA project, the main tasks being investigated are the validation of online reactivity monitoring of an ADS, the validation of nuclear data and neutronic codes, and the experimental characterization of fast critical and subcritical cores representative for MYRRHA. MYRRHA will be an ADS demonstrator with the option to be operated in critical mode too. So far the only critical core at VENUS-F was assembled using 97 fuel assemblies, each of them consisting of 9 U and 16 Pb rodlets. The core was thoroughly characterized: flux traverses, spectral indices, control rod worth, delayed neutron parameters were measured and compared with Monte Carlo and deterministic calculations. A sensitivity study was also performed focusing on the influence of material impurities, positioning uncertainties, structures and detectors around the core. It was a simple core without any perturbations in the active zone. In the next critical cores that are planned to be investigated in 2015 and 2016, additional elements will be introduced in order to become more representative for MYRRHA. As MYRRHA will use MOX fuel, oxygen will be added into the following core. This will be done by introducing Al{sub 2}O{sub 3} into the fuel assemblies. New fuel assemblies have been already made and are ready to be loaded. Each consists of 13 U, 8 Pb, and 4 Al{sub 2}O{sub 3} rodlets. The new critical core will consist of approximately 40 such fuel assemblies and will be loaded in January 2015. The first results of the characterization measurements will be presented. Additionally, it is planned to investigate coolant void effects. As MYRRHA will be a rather complex system using a

  19. The Virginia pharmacy practice transformation conference: outcomes and next steps.

    Science.gov (United States)

    Silvester, Janet A

    2012-04-01

    Thought leaders in Virginia came together to achieve consensus on the pharmacy practice innovations required to advance the medication-related health outcomes of patients in the Commonwealth. The participants identified key elements and strategies needed for practice transformation and these became the foundation for practice change. The primary key elements included legislation and regulation modifications, payment reform, and business model development. The Virginia Pharmacy Congress, which represents key pharmacy stakeholders in the Commonwealth, became the home for the transformation movement and the development and implementation of a unified action plan for achieving the envisioned practice transformation.

  20. Slovenian national health insurance card: the next step.

    Science.gov (United States)

    Kalin, T; Kandus, G; Trcek, D; Zupan, B

    1999-01-01

    The Slovenian national health insurance company started a full-scale deployment of the insurance smart card that is at the present used for insurance data and identification purpose only. There is ample capacity on the cards that were selected, to contain much more data than needed for the purely administrative and charging purposes. There are plans to include some basic medical information, donor information, etc. On the other hand, there are no firm plans to use the security infrastructure and the extensive network, connecting the insurance company with the more than 200 self service terminals positioned at the medical facilities through the country to build an integrated medical information system that would be very beneficial to the patients and the medical community. This paper is proposing some possible future developments and further discusses on the security issues involved with such countrywide medical information system.

  1. Automating Groundwater Sampling At Hanford, The Next Step

    International Nuclear Information System (INIS)

    Connell, C.W.; Conley, S.F.; Hildebrand, R.D.; Cunningham, D.E.

    2010-01-01

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very 'people intensive.' Approximately 1500 wells are sampled each year by field personnel or 'samplers.' These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  2. Regulating the health care workforce: next steps for research.

    Science.gov (United States)

    Davies, Celia

    2004-01-01

    This article explores the recent ferment surrounding professional self-regulation in medicine and other health professions. It reviews the academic literature and sets out an agenda for research. The first section considers definitions, acknowledging the particularly complex regulatory maze in UK health care at present, in which professional self-regulation is only one part. The second section reviews academic writing, currently dispersed among the disciplines. 'The logic of light touch regulation', a feature of the 19th century establishment of the General Medical Council, can perhaps shed light on present debates. Alongside the intense political spotlight on regulation in the wake of the Bristol case, consumer-led research and consumer pressure to rethink the principles of regulation has emerged. This is examined in the third section. Finally, themes for research are advanced. First, there is a need to explore the changing relationship between the state and professions and implications, not only for the professions but for health care more broadly. Second, calls for a new professionalism need to be given clearer content. Third, the moves towards more lay involvement in regulatory bodies need study. Fourth, questions of human rights and professional registers must be explored. Fundamental questions of what professional self-regulation can hope to achieve and where it fits in relation to government ambitions as a whole, remain unresolved. Alongside the work programme of the new overarching regulator, there may well be scope for a new style of public enquiry covering the whole territory of regulation.

  3. The next step: intelligent digital assistance for clinical operating rooms

    Directory of Open Access Journals (Sweden)

    Miehle Juliana

    2017-08-01

    Full Text Available With the emergence of new technologies, the surgical working environment becomes increasingly complex and comprises many medical devices that have to be taken cared of. However, the goal is to reduce the workload of the surgical team to allow them to fully focus on the actual surgical procedure. Therefore, new strategies are needed to keep the working environment manageable. Existing research projects in the field of intelligent medical environments mostly concentrate on workflow modeling or single smart features rather than building up a complete intelligent environment. In this article, we present the concept of intelligent digital assistance for clinical operating rooms (IDACO, providing the surgeon assistance in many different situations before and during an ongoing procedure using natural spoken language. The speech interface enables the surgeon to concentrate on the surgery and control the technical environment at the same time, without taking care of how to interact with the system. Furthermore, the system observes the context of the surgery and controls several devices autonomously at the appropriate time during the procedure.

  4. Wind Powering America: The Next Steps in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Jennifer L. [North Carolina Solar Center; Scanlin, Dennis [Appalachian State University; Quinlan, Paul [North Carolina Sustainable Energy Association

    2013-06-18

    The goal of this project is to apply the WPA’s proactive outreach strategy to the problem of educating the public about the likely transmission infrastructure developments concomitant to the significant development of wind energy resources in North Carolina. Given the lead time to develop significant new transmission infrastructure (5-10 years), it is critical to begin this outreach work today, so that wind resources can be developed to adequately meet the 20% by 2030 goal in the mid- to long-term (10-20 years). The project team planned to develop a transmission infrastructure outreach campaign for North Carolina by: (1) convening a utility interest group (UIG) of the North Carolina Wind Working Group (NC WWG) consisting of electric utilities in the state and the Southeast; and (2) expanding outreach to local and state government officials in North Carolina.

  5. The 2012 School Psychology Futures Conference: Accomplishments and next Steps

    Science.gov (United States)

    Jamruz-Smith, Susan; Harrison, Patti L.; Cummings, Jack A.

    2013-01-01

    The major national and international school psychology organizations hosted the 2012 School Psychology Futures Conference during the fall of 2012. The conference was designed to provide an opportunity for school psychologists to plan their future roles in better supporting children, families, and schools. The 2012 conference, titled "School…

  6. Fintech: the next step in banking and finance

    OpenAIRE

    Fuster Espí, Adrià

    2017-01-01

    Treball Final de Grau en Finances i Comptabilitat. Codi: FC1049. Curs acadèmic: 2016/2017 Throughout this dissertation, we will analyse the major changes that digital revolution has meant to the financial world, and how this technological improvements have created new financial platforms which operate separately from the banking sector. We will detailedly examine the segment of financial Startups and how do they work by examining one of the most important Spanish Fintech in the crowdlen...

  7. Dissuasive cigarette sticks: the next step in standardised ('plain') packaging?

    Science.gov (United States)

    Hoek, Janet; Gendall, Philip; Eckert, Christine; Louviere, Jordan

    2016-11-01

    Standardised (or 'plain') packaging has reduced the appeal of smoking by removing imagery that smokers use to affiliate themselves with the brand they smoke. We examined whether changing the appearance of cigarette sticks could further denormalise smoking and enhance the negative impact of standardised packaging. We conducted an online study of 313 New Zealand smokers who comprised a Best-Worst Choice experiment and a rating task. The Best-Worst experiment used a 2×3×3×6 orthogonal design to test the following attributes: on-pack warning message, branding level, warning size and stick appearance. We identified three segments whose members' choice patterns were strongly influenced by the stick design, warning theme and size, and warning theme, respectively. Each of the dissuasive sticks tested was less preferred and rated as less appealing than the most common stick in use; a 'minutes of life lost' stick was the most aversive of the stimuli tested. Dissuasive sticks could enhance the effect of standardised packaging, particularly among older smokers who are often more heavily addicted and resistant to change. Countries introducing standardised packaging legislation should take the opportunity to denormalise the appearance of cigarette sticks, in addition to removing external tobacco branding from packs and increasing the warning size. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Managed maintenance, the next step in power plant maintenance

    International Nuclear Information System (INIS)

    Butterworth, G.; Anderson, T.M.

    1984-01-01

    The Westinghouse Nuclear Services Integration Division managed maintenance services are described. Essential to the management and control of a total plant maintenance programme is the development of a comprehensive maintenance specification. During recent years Westinghouse has jointly developed total plant engineering-based maintenance specifications with a number of utilities. The process employed and the experience to date are described. To efficiently implement the maintenance programme Westinghouse has developed a computer software program specifically designed for day to day use at the power plant by maintenance personnel. This program retains an equipment maintenance history, schedules maintenance activities, issues work orders and performs a number of sophisticated analyses of the maintenance backlog and forecast, equipment failure rates, etc. The functions of this software program are described and details of Westinghouse efforts to support the utilities in reducing outage times through development of predefined outage plans for critical report maintenance activities are given. Also described is the experience gained in the training of specialized maintenance personnel, employing competency-based training techniques and equipment mock-ups, and the benefits experienced, in terms of improved quality and productivity of maintenance performed. The success experienced with these methods has caused Westinghouse to expand the use of these training techniques to the more routine skill areas of power plant maintenance. A significant reduction in the operating costs of nuclear power plants will only be brought about by a significant improvement in the quality of maintenance. Westinghouse intends to effect this change by expanding its international service capabilities and to make major investments in order to promote technological developments in the area of power plant maintenance. (author)

  9. The next steps in Seti-Italia science and technology

    Science.gov (United States)

    Montebugnoli, Stelio; Cosmovici, Cristiano; Monari, Jader; Pluchino, Salvatore; Zoni, Luca; Bartolini, Marco; Orlati, Andrea; Salerno, Emma; Schillirò, Francesco; Pupillo, Giuseppe; Perini, Federico; Bianchi, Germano; Tani, Mattia; Amico, Leonardo

    2010-02-01

    The Italian Medicina Radioastronomy Station (nearby Bologna) is equipped with two antennas: the 32 mt (VLBI) dish and the Northern Cross, a large T-shaped parabolic/cylindrical antenna (30.000 sqm). So far Seti observations have been performed using a SERENDIP IV high resolution spectrometer connected to the VLBI dish in "piggy back" mode configuration. In order to facilitate data interpretation and to introduce innovative methods to search for possible extraterrestrial signals, we are planning to make use of the large UHF Northern Cross transit telescope. Sky observations performed at least within two months, could provide for each day a number of matrices labeled according to the observing sidereal time. The entire set of matrices will be characterized by an averaged spectrum on each row per day. Keeping constant the transit antenna declination, a coherent signal coming from a definite position of the sky, would produce a "flag on" in the same submatrix at the same sidereal time. Detections collected in this way could be considered "confirmed" since they always come from the same region of the sky and are observed regularly. An extremely powerful processing board based on a multi-FPGAs (Field Programmable Gate Array) core was developed and is now under programming. This is conceived to be the processing core for this new kind of investigations.

  10. Progress and Next Steps in the BIOPROTA Collaborative Forum

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, Danyl [Departamento de Medio Ambiente, Centro de Investigaciones Energeticas Medioambientales y Tecnologicas - CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain); Smith, G. [GMS Abingdon Ltd, Tamarisk, Radley Road, Abingdon, OX14 3PP (United Kingdom); Smith, K. [RadEcol Consulting Ltd, Fell View, Middletown, Cumbria, CA22 2UG (United Kingdom)

    2014-07-01

    BIOPROTA is an international collaborative forum, started in 2002, designed to support resolution of key issues in the biosphere aspects of assessments of the long-term impact of potential contaminant releases associated with solid radioactive waste disposal. The focus is on the application of good science to provide a good understanding of relevant biosphere system processes and address important uncertainties. This in turn supports decision making related to waste management and the appropriate allocation of resources to solve problems. Membership includes regulators, operators, technical support organisations and academic institutions from North America, Europe and Asia. Member organisations have representation on a Sponsoring Committee, currently chaired by Danyl Perez-Sanchez (CIEMAT) and supported by a Technical Secretariat. Given the long time frames which are required to be addressed in post-closure assessments of radioactive waste disposal facilities, thousands of years or even longer, the range of assessment issues is very large. In essence, they boil down to being related to the scope for environmental change and the behaviour of humans and ecosystems in response to such change, including their contribution to the change itself. This requires consideration of climate change, landscape evolution, the dynamics of ecosystems, and then, the behaviour of radionuclides within those changing systems and the ways by which their presence may give rise to radiation exposure. It is multi-disciplinary but has an important focus on radioecology. The forum is tailored to enable opportunities for sharing, reviewing and interpretation of information used in assessments. This includes methods for system characterisation and description, modelling of system evolution subject to assumptions for environmental change, exposure modelling according to those possibilities for evolution, and data to support all the assessment assumptions and model parameter selection. The

  11. The Next Step Toward Widespread Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    McIlvaine, J. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, E. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Saunders, S. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Bordelon, E. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Baden, S. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Elam, L. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  12. The Next Step in Somalia: Exploiting Victory Post-Mogadishu

    Science.gov (United States)

    2012-01-23

    United States. The force was also provided a complete array of equipment to include weapons, body armor and the R21 MkII “Casper” armoured vehicle.47...interdict Al Shabab finances would be to reduce international donations to their fundraising cells. These cells are hidden within the Somali expatriate

  13. Translation of Nutritional Genomics into Nutrition Practice: The Next Step

    Directory of Open Access Journals (Sweden)

    Chiara Murgia

    2017-04-01

    Full Text Available Genetics is an important piece of every individual health puzzle. The completion of the Human Genome Project sequence has deeply changed the research of life sciences including nutrition. The analysis of the genome is already part of clinical care in oncology, pharmacology, infectious disease and, rare and undiagnosed diseases. The implications of genetic variations in shaping individual nutritional requirements have been recognised and conclusively proven, yet routine use of genetic information in nutrition and dietetics practice is still far from being implemented. This article sets out the path that needs to be taken to build a framework to translate gene–nutrient interaction studies into best-practice guidelines, providing tools that health professionals can use to understand whether genetic variation affects nutritional requirements in their daily clinical practice.

  14. Empirical Green's function analysis: Taking the next step

    Science.gov (United States)

    Hough, S.E.

    1997-01-01

    An extension of the empirical Green's function (EGF) method is presented that involves determination of source parameters using standard EGF deconvolution, followed by inversion for a common attenuation parameter for a set of colocated events. Recordings of three or more colocated events can thus be used to constrain a single path attenuation estimate. I apply this method to recordings from the 1995-1996 Ridgecrest, California, earthquake sequence; I analyze four clusters consisting of 13 total events with magnitudes between 2.6 and 4.9. I first obtain corner frequencies, which are used to infer Brune stress drop estimates. I obtain stress drop values of 0.3-53 MPa (with all but one between 0.3 and 11 MPa), with no resolved increase of stress drop with moment. With the corner frequencies constrained, the inferred attenuation parameters are very consistent; they imply an average shear wave quality factor of approximately 20-25 for alluvial sediments within the Indian Wells Valley. Although the resultant spectral fitting (using corner frequency and ??) is good, the residuals are consistent among the clusters analyzed. Their spectral shape is similar to the the theoretical one-dimensional response of a layered low-velocity structure in the valley (an absolute site response cannot be determined by this method, because of an ambiguity between absolute response and source spectral amplitudes). I show that even this subtle site response can significantly bias estimates of corner frequency and ??, if it is ignored in an inversion for only source and path effects. The multiple-EGF method presented in this paper is analogous to a joint inversion for source, path, and site effects; the use of colocated sets of earthquakes appears to offer significant advantages in improving resolution of all three estimates, especially if data are from a single site or sites with similar site response.

  15. Linked environmental data. The next step for environmental information systems

    International Nuclear Information System (INIS)

    Menger, Matthias; Ackermann, Patrick; Linse, Andreas; Bandholtz, Thomas

    2013-01-01

    The Federal Environment Agency (UBA) in Germany as one Competent Authority of the European Member States involved with the assessment and authorisation of chemicals, pesticides, biozides and medicals, has a wide expertise of complex information systems. Having timely, comprehensive and reliable information on the environmental relevant properties (e.g. of chemical substances and preparations) is of immense importance for all sections dealing with environmental protection issues. Regarding the reality of available information systems in each environmental section, and moreover in each section itself, there has been developed several specific approaches to gather, store and search its relevant data. This makes sense due to each section has its own requirements, different user groups (industry and authorities or just authorities or scientific partners etc.), different budgets to bring technology 'on the road', and different (legally obligatory) procedures to handle the data and information of such systems. Nevertheless, there several strong reasons to look for a Linked Environmental Data infrastructure - at least internally in one authority itself: - Overcome the mostly separated systems; - Explore the potential of data silos in several environmental sections; - Efficiency/effectiveness in data gathering, assessment, results, budgets..; - sharing of knowledge, i.e. use of specific prepared information of specially intended information systems; - timelyness of data/information; - best data/information from most competent partner/section; - gain from already available systems and their data/information; - speed up developments and availability of data/information. Of course there are also several points which might be a huge obstacle to Linked Environmental Data (LED), e.g. confidential business data. This leads already to the distinction between 'Open LED' and 'Non-Open LED'. Nevertheless, the potential benefits and the possibilities offered via the modern information

  16. Linked environmental data. The next step for environmental information systems

    Energy Technology Data Exchange (ETDEWEB)

    Menger, Matthias; Ackermann, Patrick; Linse, Andreas [Federal Environemnt Agency, Dessau (Germany); Bandholtz, Thomas [innoQ GmbH, Monheim (Germany)

    2013-07-01

    The Federal Environment Agency (UBA) in Germany as one Competent Authority of the European Member States involved with the assessment and authorisation of chemicals, pesticides, biozides and medicals, has a wide expertise of complex information systems. Having timely, comprehensive and reliable information on the environmental relevant properties (e.g. of chemical substances and preparations) is of immense importance for all sections dealing with environmental protection issues. Regarding the reality of available information systems in each environmental section, and moreover in each section itself, there has been developed several specific approaches to gather, store and search its relevant data. This makes sense due to each section has its own requirements, different user groups (industry and authorities or just authorities or scientific partners etc.), different budgets to bring technology 'on the road', and different (legally obligatory) procedures to handle the data and information of such systems. Nevertheless, there several strong reasons to look for a Linked Environmental Data infrastructure - at least internally in one authority itself: - Overcome the mostly separated systems; - Explore the potential of data silos in several environmental sections; - Efficiency/effectiveness in data gathering, assessment, results, budgets..; - sharing of knowledge, i.e. use of specific prepared information of specially intended information systems; - timelyness of data/information; - best data/information from most competent partner/section; - gain from already available systems and their data/information; - speed up developments and availability of data/information. Of course there are also several points which might be a huge obstacle to Linked Environmental Data (LED), e.g. confidential business data. This leads already to the distinction between 'Open LED' and 'Non-Open LED'. Nevertheless, the potential benefits and the possibilities

  17. Live and trending: the next step for public health campaigns?

    OpenAIRE

    Dheepa Jeyapalan; Amy Jo Vassallo; Becky Freeman

    2017-01-01

    Marketing strategies used by large corporations are rapidly evolving, through the development of novel technologies and multiple marketing channels favoured by young consumers. Formerly small-scale marketing approaches, such as providing free samples at local events, may now have a global reach when paired with live streaming on popular social media sites. The regulation of these live streaming platforms is hugely challenging and likely to remain so in the foreseeable future. To ensure that ‘...

  18. Sociocultural Systems: The Next Step in Army Cultural Capability

    Science.gov (United States)

    2013-09-01

    chapters in her conclusion of the anthology, pulling together overarching themes for the reader. She discusses multiple perspectives for defining and...driver pulling up to a gas pump is likely to be low on gas) or knowing the implication of a particular set of activities (we know that shopping in...relevance to civilian and military helpers. These are referred to by anthropologists as gatekeepers, culture brokers, and (my term) goalies . They are

  19. Live and trending: the next step for public health campaigns?

    Directory of Open Access Journals (Sweden)

    Dheepa Jeyapalan

    2017-12-01

    Full Text Available Marketing strategies used by large corporations are rapidly evolving, through the development of novel technologies and multiple marketing channels favoured by young consumers. Formerly small-scale marketing approaches, such as providing free samples at local events, may now have a global reach when paired with live streaming on popular social media sites. The regulation of these live streaming platforms is hugely challenging and likely to remain so in the foreseeable future. To ensure that ‘unhealthy’ messages are not the only content seen by social media users, public health campaigns should invest in similar technologies in disseminating health promoting messages.

  20. Combined SRCT and FXCT – The next steps

    International Nuclear Information System (INIS)

    Hall, C.; Acres, R.G.; Winnett, A.; Wang, F.

    2016-01-01

    One of the goals in developing synchrotron radiation x-ray computed tomography (SRCT) for biomedical specimens, is allowing particular tissues and cell types to be marked in the images. This is equivalent to the staining in histology, which enables researchers to visualise and measure tissue structure and biochemical processes within the specimen. Some progress in this direction for SRCT is being made, using a variety of contrast agents that alter the natural x-ray attenuation of the marked tissue [1]. However there are limits to the usefulness of these attenuation altering techniques. Often high concentrations of potentially disruptive chemicals are required with reduced compatibility for in-vivo studies. Another image highlighting technique which might prove more sensitive is x-ray fluorescence imaging. In this case usually endogenous elemental markers are visualised. We would like to develop a lower resolution, but wider field of view means of three-dimensional (3-D) fluorescence imaging compatible with SRCT. We have previously proposed a technique in which x-ray fluorescence CT (FXCT) and SRCT data can be collected simultaneously [2]. This work resulted in proof of concept modelling, and a simple experiment test system. We show data here which demonstrate a two-dimensional (2-D) reconstruction of an iodine fluorescence map from a phantom. Measurements were performed with a fixed beam modulating mask using the Imaging and Medical beam line (IMBL) at the Australian Synchrotron. Fluorescence data was obtained during a CT scan using a single point detector, while transmission data was simultaneously collected using an area detector. A maximum likelihood expectation maximisation (MLEM) iterative algorithm was used to reconstruct the fluorescence map. We report on technique development and now believe compressive sensing (CS) imaging techniques suit SRCT and may overcome the issues encountered so far in combining SRCT and FXCT

  1. Lymphatic Vascular Regeneration : The Next Step in Tissue Engineering

    NARCIS (Netherlands)

    Huethorst, Eline; Krebber, Merle M; Fledderus, Joost O; Gremmels, Hendrik; Xu, Yan Juan; Pei, Jiayi; Verhaar, Marianne C; Cheng, Caroline

    2016-01-01

    The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces

  2. A solar economy in the American Southwest: Critical next steps

    International Nuclear Information System (INIS)

    Pasqualetti, Martin J.; Haag, Susan

    2011-01-01

    Like many other sub-tropical deserts in the world, the southwestern U.S. has high rates of solar insolation. However, meaningful development there, especially in solar-rich Arizona, has been slow. This article addresses why this is so by concentrating on one critical contributor to success-workforce development. To identify shortcomings and needed changes, we used a survey of the significant solar firms operating in Arizona to ask three questions: Does a gap exist between existing and desired levels of solar engineering education and training? What skills should new graduates possess when entering the solar energy workforce? What course of study is considered important in the education of solar energy employees? We found that a stronger solar economy in Arizona will not depend, at least initially, on advanced graduate training in engineering, but on a broad-based Bachelor's level degree program that complements engineering studies with a strong emphasis on verbal and written communication, as well as business and teaming abilities. Non-technical skills and project management are at least as valuable as solar training. Given the high public awareness of Arizona's solar resource, a stronger solar future there should help stimulate similar progress elsewhere, both in the U.S. and abroad. - Research Highlights: →We conducted a quantitative and qualitative survey of solar companies in Arizona. →Non-technical skills and project management are at least as valuable as solar training. →Universities need to expand 'integrated solar energy training' that adds several non-technical themes to the traditional engineering emphasis. →More aggressive action is needed to promote local solar development, including leadership, feed-in tariffs, and favorable legislation and policies.

  3. Systems and software quality the next step for industrialisation

    CERN Document Server

    Wieczorek, Martin; Bons, Heinz

    2014-01-01

    Software and systems quality is playing an increasingly important role in the growth of almost all - profit and non-profit - organisations. Quality is vital to the success of enterprises in their markets. Most small trade and repair businesses use software systems in their administration and marketing processes. Every doctor's surgery is managing its patients using software. Banking is no longer conceivable without software. Aircraft, trucks and cars use more and more software to handle their increasingly complex technical systems. Innovation, competition and cost pressure are always present i

  4. Taking the Next Step: Ways Forward for Coaching Science

    Science.gov (United States)

    Abraham, Andrew; Collins, Dave

    2011-01-01

    Coaching is no longer a subset of physical education or sport psychology but is rather an established vocation for research. In reaching such a position, we argue that a broad range of epistemologies have been used to investigate coaching such as sociology and cognitive psychology. However there is danger that, in the search for new ground,…

  5. Blockchain: The Evolutionary Next Step for ICT E-Agriculture

    Directory of Open Access Journals (Sweden)

    Yu-Pin Lin

    2017-07-01

    Full Text Available Blockchain technology, while still challenged with key limitations, is a transformative Information and Communications Technology (ICT that has changed our notion of trust. Improved efficiencies for agricultural sustainable development has been demonstrated when ICT-enabled farms have access to knowledge banks and other digital resources. UN FAO-recommended ICT e-agricultural infrastructure components are a confluence of ICT and blockchain technology requirements. When ICT e-agricultural systems with blockchain infrastructure are immutable and distributed ledger systems for record management, baseline agricultural environmental data integrity is safeguarded for those who participate in transparent data management. This paper reviewed blockchain-based concepts associated with ICT-based technology. Moreover, a model ICT e-agriculture system with a blockchain infrastructure is proposed for use at the local and regional scale. To determine context specific technical and social requirements of blockchain technology for ICT e-agriculture systems, an evaluation tool is presented. The proposed system and tool can be evaluated and applied to further developments of e-agriculture systems.

  6. Comparison of zero-dimensional and one-dimensional thermonuclear burn computations for the reversed-field pinch reactor (RFPR)

    International Nuclear Information System (INIS)

    Nebel, R.A.; Hagenson, R.L.; Moses, R.W.; Krakowski, R.A.

    1980-01-01

    Conceptual fusion reactor designs of the Reversed-Field Pinch Reactor (RFPR) have been based on profile-averaged zero-dimensional (point) plasma models. The plasma response/performance that has been predicted by the point plasma model is re-examined by a comprehensive one-dimensional (radial) burn code that has been developed and parametrically evaluated for the RFPR. Agreement is good between the zero-dimensional and one-dimensional models, giving more confidence in the RFPR design point reported previously from the zero-dimensional analysis

  7. The six P’s of the next step in electronic patient records in the Netherlands

    NARCIS (Netherlands)

    Michel-Verkerke, Margreet B.; Stegwee, Robert A.; Spil, Antonius A.M.

    2015-01-01

    The objective of this study was to evaluate a decade of Electronic Patient Record development. During the study a second question was added: How to take the next step in the Netherlands? This paper describes the developments but the main results create a framework for the future situation. The USE

  8. Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?

    Science.gov (United States)

    Strelkov, V. S.

    2017-12-01

    This paper summarizes results of more than half a century of research of high-temperature plasmas heated to a temperature of more than 100 million degrees (104 eV) and magnetically insulated from the walls. The energy of light-element fusion can be used for electric power generation or as a source of fissionable fuel production (development of a fusion neutron source—FNS). The main results of studies of tokamak plasmas which were obtained in the Soviet Union with the greatest degree of thermal plasma isolation among all other types of devices are presented. As a result, research programs of other countries were redirected to tokamaks. Later, on the basis of the analysis of numerous experiments, the international fusion community gradually came to an opinion that it is possible to build a tokamak (ITER) with Q > 1 (where Q is the ratio of the fusion power to the external power injected into the plasma). The ITER program objective is to achieve Q = 1-10 for a discharge time of up to 1000 s. The implementation of this goal does not solve the problem of a steadystate operation. The solution to this problem is a reliable first wall and current generation. This is a task of the next fusion power plant construction stage, called DEMO. Comparison of DEMO and FNS parameters shows that, at this development stage, the operating parameters and conditions of these devices are identical.

  9. The portuguese research reactor: A tool for the next century

    International Nuclear Information System (INIS)

    Ramalho, A.J.G.; Marques, J.G.; Cardeira, F.M.

    2000-01-01

    A short presentation is made of the Portuguese Research Reactor utilisation, its problems and the solutions found. Starting with the initial calibration and experiments the routine operation at full power follows. The problems then encountered which drove to the refurbishment are referred. The present status of the system is then presented and from that conclusions for the future are derived. (author)

  10. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  11. The structure and thermal properties of plasma-sprayed beryllium for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Bartlett, A.; Elliott, K.E.; Hollis, K.J.

    1996-01-01

    Plasma spraying is being studied for in situ repair of damaged Be and W plasma facing surfaces for ITER, the next generation magnetic fusion energy device, and is also being considered for fabricating Be and W plasma-facing components for the first wall of ITER. Investigators at LANL's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure-property relation between as-deposited microstructures of plasma sprayed Be coatings and resulting thermal properties. In this study, the effect of initial substrate temperature on resulting thermal diffusivity of Be coatings and the thermal diffusivity at the coating/Be substrate interface (interface thermal resistance) was investigated. Results show that initial Be substrate temperatures above 600 C can improve the thermal diffusivity of the Be coatings and minimize any thermal resistance at the interface between the Be coating and Be substrate

  12. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  13. Controlled thermonuclear fusion and the latest progress on China's HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Li Jiangang; Yang Yu

    2003-01-01

    After 50 years of research on controlled thermonuclear fusion, a new stage will be reached in 2003, when a site for the International Thermonuclear Experimental Reactor project will be chosen to start the construction. Scientists hope that this project could herald a new era in which the energy problem will be solved completely. The great progress made on the HT-7 superconducting tokamak in China has provided positive and powerful support for fusion research. The HT-7 is one of the only two superconducting tokamaks in the world that can carry out minute-scale high temperature plasma research, and has achieved a duration of 63.95s for the hot plasma discharge. This is a major step towards real steady-state operation of the tokamak configuration. We present an overview of the latest progress on the tokamak experiments in the Institute of Plasma Physics, Chinese Academy of Sciences

  14. Meeting the next generation PWR safety requirements: The EPR Reactor

    International Nuclear Information System (INIS)

    Salhi, Othman

    2008-01-01

    The development process pursued the harmonization of technical solutions and the integration of all the lessons learned from earlier nuclear plants built by both vendors. As far as safety more specifically is concerned, the basic choice for the EPR was to adopt an evolutionary approach based on experience feedback from the reactors built by Areva, which at the time already amounted to nearly 100. This philosophy makes today's Areva EPR the natural descendant of the most advanced French N4 and German Konvoi power reactors currently in operation. EPR design choices affecting safety were motivated by a continuous quest for higher levels of safety. A two-fold approach was followed: 1. improvement of the measures aimed at further reducing the already very low probability of core melt 2. incorporation of measures aimed at further limiting the consequences of a severe accident, in the knowledge that its probability of occurrence has been considerably reduced. Through its filiations with French N4 and German Konvoi power reactors, the EPR benefits from the uninterrupted, evolutionary innovation process that has supported the development of PWRs since their introduction into the market place. This is especially true for safety where the EPR brings a unique combination of both tried and tested and innovative features that further improve the prevention of severe accidents and their mitigation

  15. Thermonuclear energy and the power industry in the future

    International Nuclear Information System (INIS)

    Velikhov, E.P.

    1986-01-01

    The leader of the USSR thermonuclear program, the vicepresident of the Academy of Science, comrade Velikhov tells about the modern state and perspective of thermonuclear investigations, as well as about the problems on the international cooperation in this field

  16. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Steinberg, M.; Vi Duong Dang.

    1975-04-01

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  17. Next Step Spherical Torus Design Studies

    International Nuclear Information System (INIS)

    Neumeyer, C.; Heitzenroeder, P.; Kessel, C.; Ono, M.; Peng, M.; Schmidt, J.; Woolley, R.; Zatz, I.

    2002-01-01

    Studies are underway to identify and characterize a design point for a Next Step Spherical Torus (NSST) experiment. This would be a ''Proof of Performance'' device which would follow and build upon the successes of the National Spherical Torus Experiment (NSTX) a ''Proof of Principle'' device which has operated at PPPL since 1999. With the Decontamination and Decommissioning (DandD) of the Tokamak Fusion Test Reactor (TFTR) nearly completed, the TFTR test cell and facility will soon be available for a device such as NSST. By utilizing the TFTR test cell, NSST can be constructed for a relatively low cost on a short time scale. In addition, while furthering spherical torus (ST) research, this device could achieve modest fusion power gain for short-pulse lengths, a significant step toward future large burning plasma devices now under discussion in the fusion community. The selected design point is Q=2 at HH=1.4, P subscript ''fusion''=60 MW, 5 second pulse, with R subscript ''0''=1.5 m, A=1.6, I subscript ''p''=10vMA, B subscript ''t''=2.6 T, CS flux=16 weber. Most of the research would be conducted in D-D, with a limited D-T campaign during the last years of the program

  18. The Scientific Prototype - a proposed next step for the American MFE effort

    Science.gov (United States)

    Manheimer, Wallace

    2013-10-01

    The Scientific prototype is the only logical next step for the American magnetic fusion effort. This poster is divided into two parts. The first is a description of the scientific prototype, a tokamak about the size of TFTR, JET and JT-60, but which runs steady state in DT and breeds its own tritium. The second is an examination of other proposed approaches for American MFE and why none constitute a viable alternative. W. Manheimer, J. Fusion Energy, 32, 419-421, 2013.

  19. Analysis of design strategies for mitigating the consequences of lithium fire within containment of controlled thermonuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dube, D A; Kazimi, M S

    1978-07-01

    A lithium combustion model (LITFIRE) was developed to describe the physical and chemical processes which occur during a hypothetical lithium spill and fire. The model was used to study the effectiveness of various design strategies for mitigating the consequences of lithium fire, using the UWMAK-III features as a reference design. Calculations show that without any special fire protection measures, the containment may reach pressures of up to 32 psig when one coolant loop is spilled inside the reactor building. Temperatures as high as 2000/sup 0/F would also be experienced by some of the containment structures. These consequences were found to diminish greatly by the incorporation of a number of design strategies including initially subatmospheric containment pressures, enhanced structural surface heat removal capability, initially low oxygen concentrations, and active post-accident cooling of the containment gas. The EBTR modular design was found to limit the consequences of a lithium spill, and hence offers a potential safety advantage. Calculations of the maximum flame temperature resulting from lithium fire indicate that none of the radioactive first wall materials under consideration would vaporize, and only a few could possibly melt.

  20. Analysis of design strategies for mitigating the consequences of lithium fire within containment of controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Dube, D.A.; Kazimi, M.S.

    1978-07-01

    A lithium combustion model (LITFIRE) was developed to describe the physical and chemical processes which occur during a hypothetical lithium spill and fire. The model was used to study the effectiveness of various design strategies for mitigating the consequences of lithium fire, using the UWMAK-III features as a reference design. Calculations show that without any special fire protection measures, the containment may reach pressures of up to 32 psig when one coolant loop is spilled inside the reactor building. Temperatures as high as 2000 0 F would also be experienced by some of the containment structures. These consequences were found to diminish greatly by the incorporation of a number of design strategies including initially subatmospheric containment pressures, enhanced structural surface heat removal capability, initially low oxygen concentrations, and active post-accident cooling of the containment gas. The EBTR modular design was found to limit the consequences of a lithium spill, and hence offers a potential safety advantage. Calculations of the maximum flame temperature resulting from lithium fire indicate that none of the radioactive first wall materials under consideration would vaporize, and only a few could possibly melt

  1. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  2. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  3. Tandem mirror next step: remote maintenance

    International Nuclear Information System (INIS)

    Doggett, J.N.; Damm, C.C.; Hanson, C.L.

    1980-01-01

    This study of the next proposed experiment in the Mirror Fusion Program, the Tandem Mirror Next Step (TMNS), has included serious consideration of the maintenance requirements of such a large source of high energy neutrons with its attendant throughput of tritium. Although maintenance will be costly in time and money, our conclusion is that with careful attention to a design for maintenance plan such a device can be reliably operated

  4. Conceptual designs of power tokamak-type thermonuclear reactors

    International Nuclear Information System (INIS)

    Shejndlin, A.E.; Nedospasov, A.V.

    1978-01-01

    Physico-technical and ecological aspects of conceptual designing power tokamak-type reactors have been briefly considered. Only ''pure'' (''non-hybride'') reactors are discussed. Presented are main plasma-physical parameters, characteristics of blankets and magnetic systems of the following projects: PPPL; V-2; V-3; Culham-2, JAERI; TBEh-2500; TFTR. Two systems of the first wall protection have been considered: divertor one and by means of a layer of a cool turbulent plasma. Examined are the following problems: fuel loading, choice of the first wall material, blanket structure, magnetic system, environmental contamination. The comparison of relative hazards of fast neutron reactors and fusion reactors has shown that in respect of fusion reactors the biological hazard potential value is less by one-two orders

  5. Research report on the users' needs for next research reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Tamura, Itaru; Hosoya, Toshiaki; Horiguchi, Hironori

    2015-03-01

    JRR-3 has been operated for more than 25 years for that it is time to investigate the role of a next research reactor. A task force under the Committee for Promotion of JRR-3 Neutron Beam Application has been organized by Department of Research Reactor and Tandem Accelerator to survey neutron beam application trends in the future. This is a report on the survey results and users' requirements for the next research reactor have been summarized in this report carried by the task force. (author)

  6. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  7. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  8. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  9. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    Science.gov (United States)

    Vitela, Javier E.; Martinell, Julio J.

    1998-02-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN.

  10. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    International Nuclear Information System (INIS)

    Vitela, J.E.; Martinell, J.J.

    1998-01-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN. (author)

  11. Comprehensive safety analysis code system for nuclear fusion reactors II: Thermal analysis during plasma disruptions for international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Honda, T.; Maki, K.; Okazaki, T.

    1994-01-01

    Thermal characteristics of a fusion reactor [International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity] during plasma disruptions have been analyzed by using a comprehensive safety analysis code for nuclear fusion reactors. The erosion depth due to disruptions for the armor of the first wall depends on the current quench time of disruptions occurring in normal operation. If it is possible to extend the time up to ∼50 ms, the erosion depth is considerably reduced. On the other hand, the erosion depth of the divertor is ∼570 μm for only one disruption, which is determined only by the thermal flux during the thermal quench. This means that the divertor plate should be exchanged after about nine disruptions. Counter-measures are necessary for the divertor to relieve disruption influences. As other scenarios of disruptions, beta-limit disruptions and vertical displacement events were also investigated quantitatively. 13 refs., 5 figs

  12. Tritium Issues in Next Step Devices

    International Nuclear Information System (INIS)

    C.H. Skinner; G. Federici

    2001-01-01

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  13. Tritium Issues in Next Step Devices

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; G. Federici

    2001-09-05

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  14. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  15. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mix

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Francesca M.; Kessel, Charles E. [Princeton Plasma Physics laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  16. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    Science.gov (United States)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  17. Next Steps in Signaling (NSIS): Framework

    NARCIS (Netherlands)

    Hancock, R.; Loughney, J.; van den Bosch, S.; Hancock, R.; Karagiannis, Georgios; Loughney, J.; van den Bosch, S.

    The Next Steps in Signaling (NSIS) working group is considering protocols for signaling information about a data flow along its path in the network. The NSIS suite of protocols is envisioned to support various signaling applications that need to install and/or manipulate such state in the network.

  18. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  19. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W.

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  20. Structural materials for the next generation nuclear reactors - an overview

    International Nuclear Information System (INIS)

    Charit, I.; Murty, K.L.

    2007-01-01

    The Generation-IV reactors need to withstand much higher temperatures, greater neutron doses, severe corrosive environment and above all, a substantially higher life time (60 years or more). Hence for their successful deployment, a significant research in structural materials is needed. Various potential candidate materials, such as austenitic stainless steels, oxide-dispersion strengthened steels, nickel-base superalloys, refractory alloys etc. are considered. Both baseline and irradiated mechanical, thermophysical and chemical properties are important. However, due to the longer high temperature exposure involved in most designs, creep and corrosion/oxidation will become the major performance limiting factors. In this study we did not cover fabricability and weldability of the candidate materials. Pros and cons of each candidate can be summarized as following: -) for austenitic stainless steel: lower thermal creep resistance at higher temperatures but poor swelling resistance at high temperatures; -) for ferritic-martensitic steels: excellent swelling resistance at higher burnups but thermal creep strength is limited at higher temperatures and radiation embrittlement at low temperature; -) for Ni-base alloys: excellent thermal creep resistance at higher temperatures but radiation embrittlement even at moderate doses and helium embrittlement at higher temperatures; and -) for refractory alloys: adequate swelling resistance up to high burnups but fabrication difficulties, low temperature radiation hardening and poor oxidation resistance

  1. Study on the materials for mirrors and back mirror reflectors of thermonuclear reactors and their testing in Tore-Supra

    International Nuclear Information System (INIS)

    Schunke, B.; Voytsenya, V.; Gil, C.; Lipa, M.

    2003-01-01

    Plasma diagnostics using visible or ultra-violet or infra-red radiations require mirrors to probe the plasma. These mirrors have to sustain very hostile environment and despite that must maintain good optical properties. Mirror samples made of 3 different metals: copper, stainless steel and molybdenum have been designed and installed in Tore Supra tokamak and will be exposed to plasmas till mid 2004. This project will allow fusion engineers to assess the impact of plasma ion bombardment on mirror reflectivity. Optical properties and parameters concerning the surface state of the samples have been measured before the installation in Tore Supra and are presented in the paper. Simulations with a Monte-Carlo code predict the particle flux and spectra near the samples. A specific back mirror reflector has been designed to probe mirror reflectivity changes. (A.C.)

  2. The role of materials in controlled thermonuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Craston, J L; Hancox, R; Robson, A E [U.K. Atomic Energy Authority, AERE, Harwell (United Kingdom); Kaufman, S; Miles, H T; Ware, A A; Wesson, J A [AEI Research Laboratory, Aldermaston (United Kingdom)

    1958-07-01

    It is the purpose of this paper to examine the processes occurring at the wall and to discuss their importance in the choice of materials both for present equipment and for future designs. The emphasis is laid primarily on plasma contamination but other effects are considered, such as thermal stress fatigue and radiation damage of the wall. The principal problems associated with the choice of wall material for a high current discharge tube have been discussed, both under the conditions which exist in present systems and under the conditions which are anticipated in a thermonuclear reactor.

  3. Proceedings of the international workshop on engineering design of next step reversed field pinch devices

    International Nuclear Information System (INIS)

    Thomson, D.B.

    1987-11-01

    These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date

  4. Proceedings of the international workshop on engineering design of next step reversed field pinch devices

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, D.B. (comp.)

    1987-11-01

    These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date.

  5. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  6. Next steps in the Energy Frontier - Hadron colliders workshop at LPC@FNAL

    CERN Document Server

    2014-01-01

    With the observation of the Standard Model Higgs boson, the high energy physics community is investigating possible next steps for entering into a new era in particle physics. The aim of this workshop is to bring together physics, instrumentation/detector and accelerator experts to present, outline and discuss all aspects needed for the next steps in the energy frontier. The workshop will focus on the lessons learned with 7 and 8 TeV LHC, physics requirements and subsequent detector technologies for HL-LHC, as well as development needs for future 100 TeV proton collider. The goal is to identify synergies and common approaches where further collaboration between various initiatives could be fruitful. The discovery potential for a future 100 TeV proton collider will depend on the detector / instrumentation capabilities in order to explore the highest energy and phenomena. Many of these detection capabilities will need further studies such as muon detection at several 10s of TeV range, calorimeters capable of me...

  7. Global seismic inversion as the next standard step in the processing sequence

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Kim G.; Hansen, Lars S.; Jepsen, Anne-Marie; Rasmussen, Klaus B.

    1998-12-31

    Seismic inversion of post stack seismic data has until recently been regarded as a reservoir oriented method since the standard inversion techniques rely on extensive well control and a detailed user derived input model. Most seismic inversion techniques further requires a stable wavelet. As a consequence seismic inversion is mainly utilised in mature areas focusing of specific zones only after the seismic data has been interpreted and is well understood. By using an advanced 3-D global technique, seismic inversion is presented as the next standard step in the processing sequence. The technique is robust towards noise within the seismic data, utilizes a time variant wavelet, and derives a low frequency model utilizing the stacking velocities and only limited well control. 4 figs.

  8. Blanket of a hybrid thermonuclear reactor with liquid- metal cooling

    International Nuclear Information System (INIS)

    Terent'ev, I.K.; Fedorovich, E.P.; Paramonov, P.M.; Zhokhov, K.A.

    1982-01-01

    Blanket design of a hybrid thermopuclear reactor with a liquid metal coolant is described. To decrease MHD-resistance for uranium zone fuel elements a cylindrical shape is suggested and movement of liquid-metal coolant in fuel element packets is presumed to be in perpendicular to the magnetic field and fuel element axes direction. The first wall is cooled by water, blanket-by lithium-lead alloy

  9. International Thermonuclear Experimental Reactor: Physics issues, capabilities and physics program plans

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1997-01-01

    Present status and understanding of the principal plasma-performance determining physics issues that affect the physics design and operational capabilities of the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2 (International Atomic Energy Agency, Vienna, 1994)] are presented. Emphasis is placed on the five major physics-basis issues emdash energy confinement, beta limit, density limit, impurity dilution and radiation loss, and the feasibility of obtaining partial-detached divertor operation emdash that directly affect projections of ITER fusion power and burn duration performance. A summary of these projections is presented and the effect of uncertainties in the physics-basis issues is examined. ITER capabilities for experimental flexibility and plasma-performance optimization are also described, and how these capabilities may enter into the ITER physics program plan is discussed. copyright 1997 American Institute of Physics

  10. The world must build two atomic reactors each day the next hundred years

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    In summarising and commenting on the ideas presented in Mesarovic and Pestel's book 'Mankind at the turning point' it is pointed out that the global energy crisis makes comprehensive long term planning a necessity. Assuming, optimistically, that nuclear power alone is able to supply the total projected energy demand in 100 years, it is stated that this will require 3000 nuclear power stations, each with 8 fast breeder reactors, totally 100GW(t). This means a net rate of construction of four reactors per week, which again means, allowing for a 30 year life, two reactors per day, every day, for the next hundred years. Fuelling these reactors will require the production and transport of 15 x 10 6 kg of Pu239 per year. It is therefore obvious that the energy crisis is not only a technological, but also a political, social and even psychological problem. (JIW)

  11. Structural characteristics of proposed ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coil conductor

    International Nuclear Information System (INIS)

    Gibson, C.R.; Miller, J.R.

    1988-01-01

    This paper analyzes the effect of transverse loading on a cable-in-conduit conductor which has been proposed for the toroidal field coils of the International Thermonuclear Experimental Reactor. The primary components of this conductor are a loose cable of superconducting wires, a thin-wall tube for helium containment, and a U-shaped structural channel. A method is given where the geometry of this conductor can be optimized for a given set of operating conditions. It is shown, using finite-element modeling, that the structural channel is effective in supporting loads due to transverse forces and internal pressure. In addition, it is shown that the superconducting cable is effectively shielded from external transverse loads that might otherwise degrade its current carrying capacity. 10 refs., 10 figs., 3 tabs

  12. Thermonuclear controlled fusion: international cooperation

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2001-01-01

    This report summarizes the current worldwide status of research in the field of thermonuclear controlled fusion as well as the international research programme planed for the next decades. The two main projects will be the ITER facility (International Thermonuclear Experimental Reactor) that should produce 10 times more energy than the energy injected, and the IFMIF (International Fusion Materials Irradiation Facility) designed to study the reactions of materials under intense neutron fluxes. The future of the pioneering JET facility (Joint European Torus) is also discussed. The engagement of the various countries (USA, Japan, Germany, Russian Federation and Canada) and international organisations (EURATOM and IEA) in terms of investment and research is described. Switzerland is involved in this program through an agreement with EURATOM and is mainly dedicated to experimental studies with the TCV machine in Lausanne and numerical studies of plasma configurations. It will participate to the development of the microwave plasma heating system for the ITER machine

  13. Rates of the main thermonuclear reactions

    International Nuclear Information System (INIS)

    Abramovich, S.N.; Guzhovskii, B.Ya.; Dunaeva, S.A.; Fomushkin, E.F.

    1992-01-01

    The data on the cross sections of main thermonuclear reactions have been estimated with an account of the latest experimental results in a form of S-factor spline presentation. Based on this estimation, the reates of these reactions in 0.0001-1 MeV temperature range in the supposition of Maxwell distribution of relative velocities have been computed. The Maxwell-Boltzmann averaged -factors were calculated according to the table values of the reaction rates. Then the -factors were approximated with the 3 order spline-function. The necessity of the account of electron shielding and intramolecular movement at low temperatures is discussed (orig.)

  14. A high-recycle divertor for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1988-01-01

    A coupled one-dimensional (axial/radial) edge-plasma model (SOLAR) has been used to investigate tradeoffs between collector-plate and edge-plasma conditions in a doublenull, open, high-recycle divertor (HRD) for a preliminary International Thermonuclear Experimental Reactor (ITER) design. A steady-state HRD produces in attractive high-density edge plasma (5 /times/ 10 19 m/sup /minus/3/) with sufficiently low plasma temperature (10-20eV) at a tungsten plat that the sheath-accelerated ions are below sputtering threshold energies. Manageable plate heat fluxes (3-6 MW/m 2 ) are achieved by positioning the plate poloidal cross section at a minimum angle of 15-30/degree/ with respect to flux surfaces. 6 refs., 9 figs

  15. Comparison between a pumped-limiter and a divertor for the next step machines

    International Nuclear Information System (INIS)

    Harrison, F.F.A.

    1985-01-01

    The paper presents a simple description of the physics issues which influence the conceptual design of a pumped-limiter and single-null poloidal divertor in a next step, long burn tokamak of NET/INTOR scale. Predicted performance of the limiter and divertor are compared in regard to localised recycling, sputtering of the plasma collection surfaces, penetration of sputtered impurities into the fusion plasma, surface power loading and exhaust of helium ash. It is concluded that the performance of the divertor is superior and that it can be predicted with a reasonable degree of confidence. The viability of the limiter remains in doubt but the concept cannot be rejected at the present time

  16. Potential Next Steps for the New Orleans City Council Energy Efficiency Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.

    2011-09-01

    This document is adapted from an actual February 2008 deliverable memo and report delivered by the National Renewable Energy Laboratory (NREL) to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the Department of Energy Project Officer in February of 2008. In January 2008, the New Orleans Utility Committee requested review, commentary, and suggestions for Utility Committee next steps related to the Energy Efficiency Resolution (the Resolution) passed by the City Council in December 2007. The suggestions are reprinted here as: (1) An illustration of opportunities for other local governments for the development and implementation of effective energy efficiency ordinances and resolutions; and (2) An example of the type of policy technical assistance that DOE/NREL provides to communities. For more information on the strategy for delivering assistance, please see: www.nrel.gov/docs/fy11osti/48689.pdf. Based on experience in other communities and energy efficiency policies and programs, NREL found the Resolution to be a solid framework for increasing the responsible use of energy efficiency and reaping the associated economic and environmental benefits in the city of New Orleans. The remainder of this document provides the requested suggestions for next steps in implementing the word and spirit of the resolution. These suggestions integrate the extensive work of other entities, including the New Orleans Mayor's office, the New Orleans Energy Advisory Committee, the Energy Efficiency Initiative, and the U.S. Environmental Protection Agency's National Action Plan for Energy Efficiency. In general, three actions were suggested for funding mechanisms, two for near-term successes, and two for longer-term success.

  17. Tying the knot with next-generation reactors: Can the industry afford a second marriage?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This article examines the future of nuclear power beyond the year 2000. The nuclear industry just celebrated 50 years of nuclear technology, but no new plants have been ordered in the US since 1978 and some European countries are giving up on the nuclear option. This article discusses the four US advanced light-water reactor design and safety features, specific design features and parameters for the advanced designs, advanced designs from Europe, features utilities look for in a reactor, evolutionary versus passive designs, gaining public acceptance for new designs, and what alternatives are there to installing next-generation nuclear systems?

  18. Liner of a thermonuclear pulse THETA-pinch reactor

    International Nuclear Information System (INIS)

    Baranov, G.A.; Izotov, E.N.; Karasev, B.G.; Komin, A.V.; Krivosheev, M.V.; Levashov, A.D.

    1975-01-01

    Some possible constructive solutions to the problem of fabrication of the theta-pinch reactor liner by the method of centrifugal casting in a casting mould are considered. A scheme for liner manufacturing is presented, which includes the following elements: 1) a casting mould of dielectric material presenting a hollow cylinder of 4 m in diam., 3 m in length and 12 t in weight, which rotates at 8 rps in the reactor chamber; 2) a system for heat protection of the casting mould; the volume heat of the mould is suggested to remove by gaseous helium flowing under pressure along axial cooling channels of 5 mm in diam.; the channels are evenly distributed throughout the thickness of the mould shell; 3) a system for preparation and supply of a liquid metal to the casting mould, the metal is being supplied into the casting mould from its both ends at a rate of 1.7 t of the melt per second; 4) a system for rotation of the mould, which comprises two gas turbines mounted on both ends of the mould and two main stop-radial slip supports with gas lubrication

  19. NextSTEP Hybrid Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — NextSTEP Phase I Hybrid Life Support Systems (HLSS) effort assessed options, performance, and reliability for various mission scenarios using contractor-developed...

  20. Thermonuclear device

    International Nuclear Information System (INIS)

    Yagi, Yasuomi; Takahashi, Ken; Hashimoto, Hiroshi.

    1984-01-01

    Purpose: To improve the plasma confining performances by bringing the irregular magnetic fields nearly to zero and decreasing the absolute value of the irregular magnetic fields at every positions. Constitution: The winding direction of a plurality of coil elements, for instance, double pan cake coils of toroidal coils in a torus type or mirror type thermonuclear device are reversed to each other in their laminating direction, whereby the irregular magnetic fields due to the coil-stepped portions in each toroidal coils are brought nearly to zero. This enables to bring the average irregular magnetic fields as a whole in the thermonuclear device nearly to zero, as well as, decrease the absolute value of the irregular magnetic fields in each positions. Thus, the plasma confining performances can be improved. (Moriyama, K.)

  1. An approach to next step device optimisation

    International Nuclear Information System (INIS)

    Salpietro, E.

    2000-01-01

    The requirements for ITER EDA were to achieve ignition with a good safety margin, and controlled long inductive burn. These requirements lead to a big device, which requested a too ambitious step to be undertaken by the world fusion community. More realistic objectives for a next step device shall be to demonstrate the net production of energy with a high energy gain factor (Q) and a high boot strap current fraction (>60%) which is required for a Fusion Power Plant (FPP). The Next Step Device (NSD) shall also allow operation flexibility in order to explore a large range of plasma parameters to find out the optimum concept for the fusion power plant prototype. These requirements could be too demanding for one single device and could probably be better explored in a strongly integrated world programme. The cost of one or more devices is the decisive factor for the choice of the fusion power development programme strategy. The plasma elongation and triangularity have a strong impact in the cost of the device and are limited by the plasma vertical position control issue. The distance between plasma separatrix and the toroidal field conductor does not vary a lot between devices. It is determined by the sum of the distance between first wall-plasma sepratrix and the thickness of the nuclear shield required to protect the toroidal field coil insultation. The thickness of the TF coil is determined by the allowable stresses and superconducting characteristics. The outer radius of the central solenoid is the result of an optimisation to provide the magnetic flux to inductively drive the plasma. Therefore, in order to achieve the objectives for Q and boot-strap current fractions at the minimum cost, the plasma aspect ratio and magnetic field value shall be determined. The paper will present the critical issues for the next device and will make considerations on the optimal way to proceed towards the realisation of the fusion power plant

  2. Use of virtual environments to reduce the construction costs of the next generation nuclear power reactors

    International Nuclear Information System (INIS)

    Whisker, V.E.; Baratta, A.J.

    2007-01-01

    The near term deployment of the next generation of reactors will only be successful if they are built on time and without the costly overruns experienced in the previous generation. One critical factor in achieving these goals is to ensure the design is optimized for constructability. In this work the authors explored the effectiveness of full-scale virtual reality simulation in the optimization of the design and construction of the next generation of nuclear reactors. The research tested the suitability of immersive virtual reality display technology in aiding engineers in evaluating potential cost reductions that can be realized by the optimization of design and installation and construction sequences. The intent of this research is to see if this type of technology can be used in capacities similar to those currently filled by full-scale physical mockups and desktop simulations. Using a fully-immersive five sided virtual reality system, known as a CAVE, the authors constructed a series of virtual mockups that represented two next generation nuclear power plants, the Westinghouse AP-1000 and the Pebble Bed Modular Reactor (PBMR). These virtual mockups were then tested as a design tool to help locate and correct problem areas, to optimize the construction sequence, and to assist with familiarizing trades people with the performance of maintenance activities. A series of experiments were performed to assess the usefulness of these virtual mockups in accomplishing these tasks. (authors)

  3. The importance of collaboration in the advancement of current and next generation reactors

    International Nuclear Information System (INIS)

    Jackson, Kate; Goossen, John; Anness, Mike; Meston, Tom

    2010-01-01

    The sections of the contribution are as follows: Tradition of innovation. Growing demand for nuclear power; Collaboration drivers; Responses. Knowledge transfer and management is critical. What kind of focus? Equipment reliability. Advanced repair, replacement and construction approaches. Materials. Plant safety margins. Spent fuel management. Examples of European collaboration. Zorita materials examination. Collaboration in the development of next generation reactors; Westinghouse R and D priorities; A look to the future. (P.A.)

  4. Elise - the next step in development of induction heavy ion drivers for inertial fusion energy

    International Nuclear Information System (INIS)

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.

    1994-11-01

    LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or open-quotes driveclose quotes inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act

  5. Advanced Electric Propulsion NextSTEP BAA Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Advanced Electric Propulsion Next Space Technologies for Exploration Partnerships (NextSTEP) Broad Agency Announcement (BAA) activity is to...

  6. Next Steps in Attachment Theory.

    Science.gov (United States)

    Bell, David C

    2012-12-01

    Thanks to the phenomenal success of attachment theory, great progress has been made in understanding child and adult relationships. The success of attachment theory opens the way to new research directions that can extend its successes even further. In particular, more work on the fundamental nature of attachment that respects recent biological research is important, as is concentrated effort on the related caregiving system.

  7. Next Steps in Attachment Theory

    OpenAIRE

    Bell, David C.

    2012-01-01

    Thanks to the phenomenal success of attachment theory, great progress has been made in understanding child and adult relationships. The success of attachment theory opens the way to new research directions that can extend its successes even further. In particular, more work on the fundamental nature of attachment that respects recent biological research is important, as is concentrated effort on the related caregiving system.

  8. Army Business Transformation - Next Steps

    National Research Council Canada - National Science Library

    2006-01-01

    As a follow-on to the Army Science Board 2005 Summer Study on Best Practices, the Army Science Board was tasked to identify areas where alternative approaches and application of transforming practices...

  9. Safety considerations in next step fusion design and beyond

    International Nuclear Information System (INIS)

    Holland, D.F.

    1990-01-01

    Recent U.S. and international design studies provide insights into the potential safety and environmental advantages of fusion as well as the development needed to realize this potential. We in the Fusion Safety Program at EG ampersand G Idaho have analyzed the Compact Ignition Tokamak (CIT), the International Thermonuclear Engineering Reactor (ITER), and the Advanced Reactor Innovative Engineering Study (ARIES). I have reviewed these three designs to determine issues related to meeting the safety and the environmental goals that guide fusion development in the U.S. The paper lists safety and environmental issues that are generic to fusion and approaches to favorably resolve each issue. The technical developments that have the highest potential of contributing to improving the safety and environmental attractiveness of fusion are identified and discussed. These developments are in the areas of low-activation materials, plasma- facing components, and plasma physics relating to off-normal plasma events and tritium burn-up. 8 refs., 7 tabs

  10. Working together in future: next steps

    International Nuclear Information System (INIS)

    Copeland, S.

    2001-01-01

    Some questions about public trust have to find answers: the language of safety, how much is enough, how much is too much for stake holder interaction, how do you deal with the issue of responding, i.e. demonstrating action on issues when the licensing decision is not what public groups want, how do you measure the success of consultations, what are the indicators for trust, benchmarking and measuring public perceptions, need for consistency of approach (can determine public confidence by differences between countries) are so many questions that could help for next steps. (N.C.)

  11. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  12. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  13. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  14. Positioning Space Solar Power (SSP) as the Next Logical Step after the International Space Station (ISS)

    Science.gov (United States)

    Charania, A.

    2002-01-01

    At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.

  15. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  16. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, J.M.; Collins, J.W.; Garcia, C.B.; Pincock, L.F.

    2010-01-01

    High Temperature Gas Reactors (HTGR) have been designed and operated throughout the world over the past five decades. These seven HTGRs are varied in size, outlet temperature, primary fluid, and purpose. However, there is much the Next Generation Nuclear Plant (NGNP) has learned and can learn from these experiences. This report captures these various experiences and documents the lessons learned according to the physical NGNP hardware (i.e., systems, subsystems, and components) affected thereby.

  17. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L P

    1998-01-01

    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminarily compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (megajoule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility. (from the history of physics)

  18. Efforts of development on the next generation nuclear reactor in the Mitsubishi Heavy Industries, Ltd

    International Nuclear Information System (INIS)

    Mukai, Hiroshi

    2002-01-01

    At present, the Mitsubishi Heavy Industry, Ltd. (MHI) enters to development on APWR+ for a large-scale reactor, AP1000 and pebble bed modular reactor (PBMR) for middle- and small-scale one, and innovative one, under cooperation of power industries, manufacturers and institutes in and out of Japan. On APWR+, MHI occupies the most advanced position of conventional large-scale route, intends to carry out further upgrading of large capacity on a base of already developed 1500 MWe class APWR, and aims at further upgrading of economical efficiency. On the other reactor, as it becomes possible to perform value addition specific to the small-scale reactor with smaller output, it is planned to overcome its scale demerit by introducing more innovative techniques. And, on AP1000, it is intended to remove dynamic safety system by introducing a static one, to upgrade simplification of apparatus and reliability of safety system and to reduce its human factors. In addition, here was described on the next generation nuclear reactors under development. (G.K.)

  19. Design innovations of the next-step spherical torus experiment and spherical torus development path

    International Nuclear Information System (INIS)

    Ono, M.; Kessel, C.; Peng, M.

    2003-01-01

    The spherical torus (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as ITER as it focuses toward the compact Component Test Facility (CTF) and higher toroidal beta regimes to improve the design of DEMO and a Power Plant. To support the ST development path, one option of a Next Step Spherical Torus (NSST) device is examined. NSST is a 'performance extension' (PE) stage ST with a plasma current of 5 - 10 MA, R = 1.5, B T ≤ 2.7 T with flexible physics capability to 1) Provide a sufficient physics basis for the design of the CTF, 2) Explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, 3) Contribute to the general plasma/fusion science of high β toroidal plasmas. The NSST facility is designed to utilize the TFTR site to minimize the cost and time required for the construction. (author)

  20. Creating the next steps to care: Maternal heath, improvisation, and Fulani women in Niamey, Niger.

    Science.gov (United States)

    Burgess, Sarah

    2016-12-01

    On paper, Niger's maternal healthcare system is extensively outlined by policies which assure access to certain services and create hierarchical referral chains. In practice it remains intensely improvisational: actors in the system must frequently make up the next steps to giving and receiving care, often outside the existing policies and procedures. Although population health in Niger has improved since the recently enacted gratuité des soins policy (which guarantees free access to certain material and child health services), care on the ground is still dictated by difficult circumstances and scarce resources. Health workers often lack the required medications and supplies; nevertheless, they must find ways to deliver services. Patients seeking maternal health services are frequently dissatisfied with the care they receive and so move forward of their own volition, by negotiating with health workers or by looking for services elsewhere. This research builds on recent scholarly work on improvisation, and asks us to further look at the ways that improvisation can be informed by the identity of the actors. Examining case studies of women from the Fulani ethnic group illustrates how particular cultural differences can inform improvisation. Analysing improvisation can also have policy implications; identifying typical points of departure from the official maternal health care system can reveal points where Niger can bolster its commitment to a universally high quality of care.

  1. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L.P.

    1998-01-01

    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminary compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (mega joule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility

  2. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Murari, A.; Barana, O.; Albanese, R.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with internal transport barriers. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  3. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Barana, O.; Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Albanese, R.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  4. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    Energy Technology Data Exchange (ETDEWEB)

    Murari, A.; Barana, O. [Consorzio RFX Associazione EURATOM ENEA per la Fusione, Corso Stati Uniti 4, Padua (Italy); Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon (United Kingdom); Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D. [Association EURATOM-CEA, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Albanese, R. [Assoc. Euratom-ENEA-CREATE, Univ. Mediterranea RC (Italy); Arena, P.; Bruno, M. [Assoc. Euratom-ENEA-CREATE, Univ.di Catania (Italy); Ambrosino, G.; Ariola, M. [Assoc. Euratom-ENEA-CREATE, Univ. Napoli Federico Napoli (Italy); Crisanti, F. [Associazone EURATOM ENEA sulla Fusione, C.R. Frascati (Italy); Luna, E. de la; Sanchez, J. [Associacion EURATOM CIEMAT para Fusion, Madrid (Spain)

    2004-07-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  5. Vacuum exhaustion system for thermonuclear reactor and cryopump thereof

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada.

    1992-01-01

    An impurity removing device is connected to a gas exhaust side of a plasma vacuum vessel by way of a gate valve, a cryopump is connected to the exit side of the device by way of an exit valve, a fuel transfer line is disposed for transferring fuels to a fuel purification system and a vacuum pump line is disposed to an exhaust gas line. Further, a tritium monitor is disposed to an exhaustion line and the line on the side of the exit of the monitor is branched into two ways, in which a tritium transfer pipe is disposed to one of them and an atmosphere release pipe is disposed on the other of them by way of an atmosphere releasing valve. Further, a condensation shebron is disposed for flowing in and out fuel isotope gases discharged from the plasma vacuum vessel, and a funnel discharge pipe is disposed for discharging a liquefied and condensed fluid. Since the gases to be exhausted are liquefied and condensed without coagulation or coagulation products are removed while operating the pump, the exhaust gases are processed continuously to reduce tritium inventory and make the regeneration step unnecessary and remarkably improve the heat efficiency. (N.H.)

  6. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  7. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  8. Flexible fuel cycle initiative for the transition period from current reactors to next generation reactors

    International Nuclear Information System (INIS)

    Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi; Kawamura, Fumio; Shiina, Kouji; Sasahira, Akira

    2005-01-01

    A sustainable electricity supply by fast breeder reactors (FBRs) is essential to ensure energy security and prevent global warming. Transition from light water reactors (LWRs) to FBRs and establishment of an FBR cycle are indispensable, which requires plutonium (Pu) for the introduction of FBRs. The authors propose advanced system called 'Flexible Fuel Cycle Initiative (FFCI)' which can respond flexibly the future expected technical and social uncertainties, can hold no surplus Pu, and can achieve an economical FBR cycle. In the new concept of FFCI, 2nd LWR reprocessing which would succeed Rokkasho Reprocessing Plant is a simple facility to carry out only uranium (U) removal and residual 'recycle material' is stored or utilized. According to FBRs introduction status, recycle material is immediately treated in an FBR reprocessing to fabricate FBR fuel or temporarily stored for the utilization in FBRs at necessary timing. FFCI has high flexibility by having several options for future uncertainties by the introduction of recycle material as a buffer material between LWR and FBR cycles. (author)

  9. Evaluation of innovative means of hydrogen risk mitigation in thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Maruejouls, C.

    2003-01-01

    One of the main accidents in ITER-type thermonuclear fusion reactors is the loss of coolant leading to hydrogen production. Within the framework of the studies on the ITER fusion reactor, a mitigation strategy for this risk must be devised by focusing on a system, which can be placed near the hydrogen source. The uncertainty as to the air content during such a scenario forbids the use of classic methods based on the hydrogen/oxygen reaction such as passive catalytic recombiners. Former studies have proposed a process based on the reduction of metallic oxides and more particularly that of the manganese dioxide enhanced by silver oxide mixture. The reaction studied is H 2 + MnO 2 → MnO + H 2 O (reaction enhanced by Ag 2 O). The purpose is to study the kinetic. The method used consists in comparing the experimental results obtained on the pilot facility CIGNE with those provided by a model. The experimental results were obtained from tests made on a pilot facility with a solid/gas reaction in a fixed bed. These underlined the importance of favoring the solid/gas contact surface. The modeling used in the MITRHY simulation program, coupled to an optimizer helped determine the kinetic parameters and the data on the material and temperature transfers. The kinetic is of first order rate for hydrogen with an activation energy of 29428 J/mol and a kinetic coefficient of 142 m.s -1 . Integrated in the MITRHY program, the kinetic parameters were used to simulate the hydrogen elimination in the accident conditions on the ITER experimental reactor. This study achieved a pre-design basis of the device (bed of about 30 cm with grains of a diameter of less than 5 mm) to be implemented. It also underlined the need to favor the specific surface to improved process efficiency. (author)

  10. Transient temperature variations during the self-heating of a plasma by thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Greyber, Howard D [University of California Radiation Laboratory, Livermore, CA (United States)

    1958-07-01

    The motivation for this work arose from an observation by Rosenbluth that in a different but related physical situation, the electron temperature) could exceed ion temperature, during transient heating. We have undertaken to trace the transient temperatures to be expected in an idealized physical situation that still bears some resemblance to what one envisions for the Controlled Thermonuclear Reactor.

  11. FENIX [Fusion ENgineering International eXperimental]: A test facility for ITER [International Thermonuclear Experimental Reactor] and other new superconducting magnets

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-01-01

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities

  12. Study on dual plant concept for the next generation boiling water reactors

    International Nuclear Information System (INIS)

    Sato, Takashi; Oikawa, Hirohide

    1999-01-01

    The paper presents the study results on the basic concept of dual BWRs. For the convenience, we call the concept here as Trial Study on BWR dual concept (TSBWR dual). The concept is general and applicable to all BWRs which have internal recirculation pumps (RIP). The TSBWR dual is a plant concept of dual BWRs contained in a same secondary containment building. The plant output is from 2 x l,350 MWe up to 2 x 1,700 MWe. This concept is mainly aiming at safety improvement and cost savings of the next generation BWRs. The TSBWR dual has two RPVs and two dry wells (DW). It has, however, only one wet well (WW) and only one R/B. The WW and the R/B are shared by the dual reactors. The operating floor is also shared by the two reactors. The TSBWR dual has both passive safety systems and active safety systems. They are also shared between the two reactors. A lot of sharing between the dual reactors enables significant cost savings accompanied by the power increase up to 3,400 MWe. Although the TSBWR dual consists of two reactors, the simplified cylindrical configuration of the key structures and reduction of the R/B height can minimize the plant construction period. The TSBWR dual provides a concept with which we can challenge to construct a dual BWR plant in the near future. (author)

  13. A truly international lunar base as the next logical step for human spaceflight

    Science.gov (United States)

    Bonneville, R.

    2018-06-01

    A human mission to Mars has been highlighted as the long term goal for space exploration, with intermediate stages such as missions to the Moon and/or to asteroids, but a human mission to Mars will not be feasible before several decades. For the time being the major ambitious accomplishment in the field of human spaceflight is the International Space Station but a human spaceflight programme which would be restricted to Low Earth orbit (LEO) has indeed little interest. Thus the next step in the field of human exploration should be the definition of a new exploration programme beyond LEO, built within a long term perspective. We must acknowledge that science is not the main driver of human space exploration and that the main success of the ISS is to have allowed its partners to work together. The main goal of a new human exploration programme will be to promote international cooperation between the major space-faring countries. The only sensible and feasible objective of a near/mid-term human spaceflight programme should be the edification of a lunar base, under the condition that this base is built as a truly international venture. The ISS in the 1990s had illustrated a calmed relation between the USA, together with Europe, Canada and Japan, and Russia; a lunar base would be the symbol of a similar calmed relation between the same partners and China, and possibly others such as India. For the benefit of all humankind this extra continent, the Moon, should be used only for peaceful purposes like Antarctica today, and should not become the theatre or the stake of conflicts. Such a programme is technically feasible and financially affordable in a rather short term. So let us go to the Moon, but let us get there together.

  14. Next steps in the development of ecological soil clean-up values for metals.

    Science.gov (United States)

    Wentsel, Randall; Fairbrother, Anne

    2014-07-01

    This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.

  15. Methane emissions from the global oil and gas supply chain: recent advances and next steps

    Science.gov (United States)

    Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.

    2017-12-01

    A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.

  16. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness.

    Science.gov (United States)

    Beehner, Jacinta C; Bergman, Thore J

    2017-05-01

    Glucocorticoids are hormones that mediate the energetic demands that accompany environmental challenges. It is therefore not surprising that these metabolic hormones have come to dominate endocrine research on the health and fitness of wild populations. Yet, several problems have been identified in the vertebrate research that also apply to the non-human primate research. First, glucocorticoids should not be used as a proxy for fitness (unless a link has previously been established between glucocorticoids and fitness for a particular population). Second, stress research in behavioral ecology has been overly focused on "chronic stress" despite little evidence that chronic stress hampers fitness in wild animals. Third, research effort has been disproportionately focused on the causes of glucocorticoid variation rather than the fitness consequences. With these problems in mind, we have three objectives for this review. We describe the conceptual framework behind the "stress concept", emphasizing that high glucocorticoids do not necessarily indicate a stress response, and that a stress response does not necessarily indicate an animal is in poor health. Then, we conduct a comprehensive review of all studies on "stress" in wild primates, including any study that examined environmental factors, the stress response, and/or fitness (or proxies for fitness). Remarkably, not a single primate study establishes a connection between all three. Finally, we provide several recommendations for future research in the field of primate behavioral endocrinology, primarily the need to move beyond identifying the factors that cause glucocorticoid secretion to additionally focus on the relationship between glucocorticoids and fitness. We believe that this is an important next step for research on stress physiology in primates. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Next Generation Reactors in Korea

    International Nuclear Information System (INIS)

    Oh, Yongshick; Choi, Youngsang; Park, Keecheol

    1990-01-01

    In Korea, nuclear power will be continuously needed to meet the trend of steady increase in electricity demand. But in relation to the further development of nuclear energy, there are still many uncertainties to be solved such as power demand forecast, site availability, thermal energy utilization and technology enhancement for economic and safety. To cope with those uncertainties effectively and to proceed the nuclear projects uninterruptedly, KEPCO decided to initiate two research project. i. e., one is 'the outlook and developmental strategy of nuclear energy for the early 21st century in the R. O. K' and the other is 'the feasibility study on the advanced reactors in Korea. Prospects of nuclear energy in Korea was overviewed and recommendations from the industry were introduced. It is strong opinion of Korea nuclear industry that nuclear policy should be changed from the support policy to the target management policy. In the point of reactor strategy, the life of light water reactor technology might be longer than expected before in Korea and it is emphasized that good maintenance of light water reactor technology and smooth transition program to the advanced technologies should be carefully considered. There are differences in the opinions between preferences to the evolutionary and/or passive, inherently safe reactors but, in the long-term point of view, it is judged to be desirable to have alternatives

  18. MHD equilibrium methods for ITER [International Thermonuclear Experimental Reactor] PF [poloidal field] coil design and systems analysis

    International Nuclear Information System (INIS)

    Strickler, D.J.; Galambos, J.D.; Peng, Y.K.M.

    1989-03-01

    Two versions of the Fusion Engineering Design Center (FEDC) free-boundary equilibrium code designed to computer the poloidal field (PF) coil current distribution of elongated, magnetically limited tokamak plasmas are demonstrated and applied to the systems analysis of the impact of plasma elongation on the design point of the International Thermonuclear Experimental Reactor (ITER). These notes were presented at the ITER Specialists' Meeting on the PF Coil System and Operational Scenario, held at the Max Planck Institute for Plasma Physics in Garching, Federal Republic of Germany, May 24--27, 1988. 8 refs., 6 figs., 4 tabs

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. Dust processing device for inside of vacuum vessel of thermonuclear reactor

    International Nuclear Information System (INIS)

    Okumura, Atsushi; Tsujimura, Seiichi; Takahashi, Kenji; Ueda, Yasutoshi; Kuwata, Masayasu; Onozuka, Masaki.

    1995-01-01

    The device of the present invention can occasionally recover dusts in a vacuum vessel of a thermonuclear reactor. In addition, fine powdery dusts are never scattered to the vacuum vessel. Namely, a processing device main body comprises a locally sealed space in the vacuum vessel. A blow-up device blows up and floats dusts accumulated in the vacuum vessel to the processing device main body. A discharge plate electrically charges the floating dusts by discharge. An electrode collects the charged dusts. Collected dusts are recovered together with a pressurized gas through a dust recovering port to the outside of the processing device. With such a constitution, it is not necessary to release the vacuum vessel to the atmosphere and evacuate after the completion of the collection of the dusts on every time when the dusts are generated as in the prior art. It is no more necessary for an operator to enter into the vacuum vessel and recover the dusts. Since fine powdery dusts are never scattered in the vacuum vessel, no undesired effects are given to exhaustion facilities and instruments of the vacuum vessel. (I.S.)

  1. Dust processing device for inside of vacuum vessel of thermonuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Atsushi; Tsujimura, Seiichi; Takahashi, Kenji; Ueda, Yasutoshi; Kuwata, Masayasu; Onozuka, Masaki

    1995-05-02

    The device of the present invention can occasionally recover dusts in a vacuum vessel of a thermonuclear reactor. In addition, fine powdery dusts are never scattered to the vacuum vessel. Namely, a processing device main body comprises a locally sealed space in the vacuum vessel. A blow-up device blows up and floats dusts accumulated in the vacuum vessel to the processing device main body. A discharge plate electrically charges the floating dusts by discharge. An electrode collects the charged dusts. Collected dusts are recovered together with a pressurized gas through a dust recovering port to the outside of the processing device. With such a constitution, it is not necessary to release the vacuum vessel to the atmosphere and evacuate after the completion of the collection of the dusts on every time when the dusts are generated as in the prior art. It is no more necessary for an operator to enter into the vacuum vessel and recover the dusts. Since fine powdery dusts are never scattered in the vacuum vessel, no undesired effects are given to exhaustion facilities and instruments of the vacuum vessel. (I.S.).

  2. Design considerations for ITER [International Thermonuclear Experimental Reactor] toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (USSR), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb/sub 3/Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the US TIBER concept. The nuclear heating generated during operation is removed from the windings by helium flowing through the conductor. The heat in the coil case is removed through a separate cooling circuit operating at approximately 20 K. Manifold concepts are presented for the complete coil cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils. 6 refs., 5 figs., 1 tab

  3. Cleaning and air conditioning device for atmosphere in thermonuclear reactor chamber

    International Nuclear Information System (INIS)

    Ishida, Seiji.

    1993-01-01

    The device of the present invention removes tritium efficiently and attains ventilation and conditioning of a great amount of air flow. That is, there are disposed a humidity separator, a filter, a heater, a catalyst filled layer, a water jetting type humidifying heat insulation cooler and a cooler in this order from an inlet side (upstream) of contaminated room atmospheric gases. The catalyst filled layer, etc. are incorporated integrally into the ventilation air conditioning facility for ventilating air in the chamber of the thermonuclear reactor, to clean a tritium atmosphere at the same time. Accordingly, the device is made compact as a whole. A limit for the air flow rate owing to the use of the conventional catalyst tower and adsorbing tower is eliminated. Then a ventilating air conditioning for a great flow rate can be attained. Tritium is removed by cooling and dehumidification without using any adsorbent. Accordingly, an adsorbing tower is no more necessary and conventional regeneration operation is not required. As a result, space for installation is reduced, the system is simplified and the cost for construction and facility can be reduced. (I.S.)

  4. Recommendations for a cryogenic system for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Soviet Union, and the United States. ITER will be a large machine requiring up to 100 kW of refrigeration at 4.5 K to cool its superconducting magnets. Unlike earlier fusion experiments, the ITER cryogenic system must handle pulse loads constituting a large percentage of the total load. These come from neutron heating during a fusion burn and from ac losses during ramping of current in the PF (poloidal field) coils. This paper presents a conceptual design for a cryogenic system that meets ITER requirements. It describes a system with the following features: Only time-proven components are used. The system obtains a high efficiency without use of cold pumps or other developmental components. High reliability is achieved by paralleling compressors and expanders and by using adequate isolation valving. The problem of load fluctuations is solved by a simple load-leveling device. The cryogenic system can be housed in a separate building located at a considerable distance from the ITER core, if desired. The paper also summarizes physical plant size, cost estimates, and means of handling vented helium during magnet quench. 4 refs., 4 figs., 3 tabs

  5. Manufacturing device for vacuum vessel of thermonuclear reactor and manufacturing method therefor

    International Nuclear Information System (INIS)

    Yanagi, Hiroshi; Shibui, Masanao; Uchida, Takaho

    1998-01-01

    The present invention provides a method of manufacturing a vacuum vessel of a thermonuclear reactor with no welding deformation. Namely, there are disposed a manufacturing device comprises a welding machine equipped with a plurality of welding torches which can conduct synchronizing welding and a torch positioning mechanism for positioning the plurality of welding torches each at an optional distance. Then, both ends of a splice plate can be welded by the plurality of welding torches under synchronization. Accordingly, joining portions of sectors of a vacuum vessel can be welded in the site with no deviation of beveling at joining portions between an outer wall and an inner wall with the splice plate due to welding deformation. In addition, the welding machine is mounted on a travelling type clamping mechanism stand or a travelling type clamping mechanism. With such a constitution, since the peripheries of the joining portions on the inner wall are clamped with each other by the travelling type clamping mechanism, no angular distortion is caused in any welded portion of the outer wall. (I.S.)

  6. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems: Revision 1

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  7. On fire risk/methodology for the next generation of reactors and nuclear facilities

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Alesso, H.P.; Altenbach, T.J.

    1992-01-01

    Methodologies for including fire in probabilistic risk assessments (PRAs) have been evolving during the last ten years. Many of these studies show that fire risk constitutes a significant percentage of external events, as well as the total core damage frequency. This paper summarizes the methodologies used in the fire risk analysis of the next generation of reactors and existing DOE nuclear facilities. Methodologies used in other industries, as well as existing nuclear power plants, are also discussed. Results of fire risk studies for various nuclear plants and facilities are shown and compared

  8. Corporate restructuring of the global energy industry, the next steps: the case of gas in Europe

    International Nuclear Information System (INIS)

    Roland, K.; Soerensen, E.S.

    2000-01-01

    The European energy sector will undergo a wave of restructuring and reorganization in the next 12 to 36 months. Deregulation at both the EU and national levels provides a catalyst, creating a range of new commercial forces that will require actors fundamentally to reappraise their business strategies. Companies will look for efficiency gains, economies of scale and scope, new approaches to risk management and a strategic positioning in the pan-European market. This will result in far-reaching structural changes in the industry, leading to a small number of large, vertically integrated energy companies with a wide spread of geographical interests. In this paper, we analyse these trends with reference to the European gas industry. (orig.)

  9. Taking the Next Step: Confronting the Legacies of Slavery at Historic Sites

    Science.gov (United States)

    Grim, Linnea; Wickens, K. Allison; Jecha, Jackie; Powell, Linda; Hawkins, Callie; Flanagan, Candra

    2017-01-01

    "Slavery is the ground zero of race relations," declared James and Lois Horton in their groundbreaking book, "Slavery and Public History." Engaging the history and legacy of slavery is a crucial step in understanding current U.S. society especially race relations. Historic sites that have connections to slavery have begun to…

  10. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  11. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-01-01

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified

  12. Space Drive Physics: Introduction and Next Steps

    Science.gov (United States)

    Millis, M. G.

    Research toward the visionary goal of propellantless ``space drives'' is introduced, covering key physics issues and a listing of roughly 2-dozen approaches. The targeted advantage of a space drive is to circumvent the propellant constraints of rockets and the maneuvering limits of light sails by using the interactions between the spacecraft and its surrounding space for propulsion. At present, the scientific foundations from which to engineer a space drive have not been discovered and, objectively, might be impossible. Although no propulsion breakthroughs appear imminent, the subject has matured to where the relevant questions have been broached and are beginning to be answered. The critical make-break issues include; conservation of momentum, uncertain sources of reaction mass, and the net-external thrusting requirement. Note: space drives are not necessarily faster- than-light devices. Speed limits are a separate, unanswered issue. Relevant unsolved physics includes; the sources and mechanisms of inertial frames, coupling of gravitation and electromagnetism, and the nature of the quantum vacuum. The propulsion approaches span mostly stages 1 through 3 of the scientific method (defining the problem, collecting data, and articulating hypotheses), while some have matured to stage 4 (testing hypotheses). Nonviable approaches include `stiction drives,' `gyroscopic antigravity,' and `lifters.' No attempt is made to gauge the prospects of the remaining approaches. Instead, a list of next-step research questions is derived from the examination of these goals, unknowns, and concepts.

  13. International Thermonuclear Experimental Reactor (ITER) plant layout and site services

    International Nuclear Information System (INIS)

    Chuyanov, V.

    2001-01-01

    The ITER site has not been determined at this time. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures, and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electric power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, de-mineralized water, steam, and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radioactive exposure of either the workers or the public. To avoid interference between services of different types and for efficient arrangement of buildings, structures, and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographic center of the site. Location of the twenty-seven buildings on the generic site was selected to meet all design requirements at minimum total project cost. A similar approach has been used to determine the location of services above, at, and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography resulting primarily in changes to the length of services that link the buildings and equipment. (author)

  14. International Thermonuclear Experimental Reactor (ITER) plant layout and site services

    International Nuclear Information System (INIS)

    Chuyanov, V.

    1999-01-01

    The ITER site has not been determined at this time. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures, and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electric power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, de-mineralized water, steam, and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radioactive exposure of either the workers or the public. To avoid interference between services of different types and for efficient arrangement of buildings, structures, and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographic center of the site. Location of the twenty-seven buildings on the generic site was selected to meet all design requirements at minimum total project cost. A similar approach has been used to determine the location of services above, at, and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography resulting primarily in changes to the length of services that link the buildings and equipment. (author)

  15. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    International Nuclear Information System (INIS)

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W.

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost

  16. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  17. Thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Takuro; Maki, Koichi.

    1997-01-01

    The present invention provides a thermonuclear device, in which integrity of a measuring device is kept, the reactor wall temperature and wear of armour materials are monitored accurately even under intense radiation rays, so that the flow rate of coolants and plasma power can be controlled by using the signals. Infrared rays generated from the surface of the armour materials disposed on a first wall are detected to measure the reactor wall temperature. Coolant flow rate and plasma power are controlled based on the obtained reactor wall temperature. In addition, infrared rays generated from the back of the armour materials are detected to obtain the surface temperature in order to avoid intense radiation rays from plasmas. The coolant flow rate and the plasma power are controlled based on the obtained temperature on the surface of the reactor thereby controlling the temperature of the first wall and the armour material to 300degC or lower in a case of the first wall made of stainless steel and 1000degC or lower in a case of the armour material made of graphite. (I.S.)

  18. Deposition Diagnostics for Next-step Devices

    International Nuclear Information System (INIS)

    Skinner, C.H.; Roquemore, A.L.; Bader, A.; Wampler, W.R.

    2004-01-01

    The scale-up of deposition in next-step devices such as ITER will pose new diagnostic challenges. Codeposition of hydrogen with carbon needs to be characterized and understood in the initial hydrogen phase in order to mitigate tritium retention and qualify carbon plasma facing components for DT operations. Plasma facing diagnostic mirrors will experience deposition that is expected to rapidly degrade their reflectivity, posing a new challenge to diagnostic design. Some eroded particles will collect as dust on interior surfaces and the quantity of dust will be strictly regulated for safety reasons - however diagnostics of in-vessel dust are lacking. We report results from two diagnostics that relate to these issues. Measurements of deposition on NSTX with 4 Hz time resolution have been made using a quartz microbalance in a configuration that mimics that of a typical diagnostic mirror. Often deposition was observed immediately following the discharge suggesting that diagnostic shutters should be closed as soon as possible after the time period of interest. Material loss was observed following a few discharges. A novel diagnostic to detect surface particles on remote surfaces was commissioned on NSTX

  19. Final repository searching in Germany - what are the next steps?; Endlagerstandortsuche in Deutschland. Wie geht's weiter?

    Energy Technology Data Exchange (ETDEWEB)

    Neles, Julia Mareike [Oeko-Institut e.V., Darmstadt (Germany). Bereich Nukleartechnik und Anlagensicherheit

    2016-07-01

    Up to now (2016) the question of final disposal of high-level radioactive wastes is still open in Germany. The Commission of radioactive waste disposal has finalized its report including recommendations for the further process. The next step will be the site selection procedure based on a ''white map''. The protest of several Federal states and communities against repository sites in their region is already developing.

  20. New stainless steels of ferrite-martensite grade and perspectives of their application in thermonuclear facilities and fast reactors

    International Nuclear Information System (INIS)

    Ajtkhozhin, Eh.S.; Maksimkin, O.P.

    2007-01-01

    Review of scientific literature for last 5 years in which results on study of radiation effect on ferrite-martensite steels - construction materials of fast reactors and most probable candidates for first wall and blanket of the thermonuclear facilities ITER and Demo - are presented. Alongside with this a prior experimental data on study of microstructure changing and physical- mechanical properties of ferrite-martensite steel EhP-450 - the material of hexahedral case of spent assembly of BN-350 fast reactor- are cited. Principal attention was paid to considering of radiation effects of structural components content changing and ferrite-martensite steel swelling irradiated at comparatively low values of radiation damage climb rate

  1. An assessment the severe accident equipment survivability for the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Lee, B. C.; Moon, Y. T.; Park, J. W.; Kho, H. J.; Lee, S. W.

    1999-01-01

    One of the prominent design approaches to cope with the severe accident challenges in the Korean Next Generation Reactor is an assessment of equipment survivability in the severe accident environment at early design stage. In compliance with 10CFR50.34(f) and SECY-93-087, this work addresses that a reasonable level of assurance be provided to demonstrate that sufficient instrumentation and equipment will survive the consequences of a severe accident and will be available so that the operator may recover from and trend severe core damage sequences, including those scenarios which result in 100 percent oxidation of the active fuel cladding. An analytical and systematic approach was used to identify the equipment and instrumentation of safety-function and define severe accident environments including temperature, pressure, humidity, and radiation before and after the reactor vessel breach. As a result, it was concluded that with minor exceptions, existing design basis equipment qualification methods are sufficient to provide a reasonable level of assurance that this equipment will function during a severe accident. Furthermore, supplemental severe accident equipment and instrument procurement requirements were identified. (author)

  2. Getting Ahead Three Steps to Take Your Career to the Next Level

    CERN Document Server

    Garfinkle, Joel A

    2011-01-01

    A leading executive coach pinpoints three vital traits necessary to advance your career In Getting Ahead, one of the top 50 executive coaches in the United States, Joel Garfinkle reveals his signature model for mastering three skills to take your career to the next level: Perception, Visibility, and Influence. The PVI-model of professional advancement will teach you to: (1) Actively promote yourself as an asset and valuable person inside the organization, (2) Increase your visibility to gain others' recognition and appreciation for your efforts and (3) Become a person of influence who makes ke

  3. Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening

    OpenAIRE

    Hoffman, Jodi D; Greger, Valerie; Strovel, Erin T; Blitzer, Miriam G; Umbarger, Mark A; Kennedy, Caleb; Bishop, Brian; Saunders, Patrick; Porreca, Gregory J; Schienda, Jaclyn; Davie, Jocelyn; Hallam, Stephanie; Towne, Charles

    2013-01-01

    Tay-Sachs disease (TSD) is the prototype for ethnic-based carrier screening, with a carrier rate of ∼1/27 in Ashkenazi Jews and French Canadians. HexA enzyme analysis is the current gold standard for TSD carrier screening (detection rate ∼98%), but has technical limitations. We compared DNA analysis by next-generation DNA sequencing (NGS) plus an assay for the 7.6 kb deletion to enzyme analysis for TSD carrier screening using 74 samples collected from participants at a TSD family conference. ...

  4. From supervision to resolution: next steps on the road to European banking union

    OpenAIRE

    Nicolas Véron; Guntram B. Wolff

    2013-01-01

    Listen to the press conference call. The European Council has outlined the creation of a Single Resolution Mechanism (SRM), complementing the Single Supervisory Mechanism. The thinking on the SRM’s legal basis, design and mission is still preliminary and depends on other major initiatives, including the European Stability Mechanism’s involvement in bank recapitalisations and the Bank Recovery and Resolution (BRR) Directive. The SRM should also not be seen as the final step creating Europe’s f...

  5. The ITER fusion reactor and its role in the development of a fusion power plant

    International Nuclear Information System (INIS)

    McLean, A.

    2002-01-01

    Energy from nuclear fusion is the future source of sustained, full life-cycle environmentally benign, intrinsically safe, base-load power production. The nuclear fusion process powers our sun, innumerable other stars in the sky, and some day, it will power the Earth, its cities and our homes. The International Thermonuclear Experimental Reactor, ITER, represents the next step toward fulfilling that promise. ITER will be a test bed for key steppingstones toward engineering feasibility of a demonstration fusion power plant (DEMO) in a single experimental step. It will establish the physics basis for steady state Tokamak magnetic containment fusion reactors to follow it, exploring ion temperature, plasma density and containment time regimes beyond the breakeven power condition, and culminating in experimental fusion self-ignition. (author)

  6. Thermonuclear device

    International Nuclear Information System (INIS)

    Tezuka, Masaru.

    1993-01-01

    Protrusions and recesses are formed to a vacuum vessel and toroidal magnetic coils, and they are engaged. Since the vacuum vessel is generally supported firmly by a rack or the like by support legs, the toroidal magnetic field coils can be certainly supported against tumbling force. Then, there can be attained strong supports for the toroidal magnetic field coils, in addition to support by wedges on the side of inboard and support by share panels on the side of outboard, capable of withstanding great electromagnetic forces which may occur in large-scaled next-generation devices. That is, toroidal magnetic field coils excellent from a view point of deformation and stress can be obtained, to provide a thermonuclear device of higher reliability. (N.H.)

  7. The next fifty years

    International Nuclear Information System (INIS)

    Scaldwell, Reg

    1995-01-01

    The General Manager of the reactor division of Centronics, a world class manufacturer of reactor control systems and radiation detectors, describes its achievements and looks forward to speculate on what the next fifty years may mean in terms of technological development. Tables are given of the locations of Centronics Fission Chambers and of reactors controlled with Centronic Detectors. (UK)

  8. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  9. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    Science.gov (United States)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  10. Development of ceramic humidity sensor for the Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Na Young; Hwang, Il Soon; Yoo, Han Ill; Song, Chang Rock; Park, Sang Duk; Yang, Jun Seog

    1997-01-01

    For the Korean Next Generation Reactor(KNGR) development, LBB is considered for the Main Steam Line(MSL) piping inside its containment to achieve cost and safety improvement. To apply LBB concept to MSL, leak sensors highly sensitive to humidity is required. In this paper, a ceramic material, MgCr 2 O 4 -TiO 2 has been developed as a humidity sensor for MSL applications. Experiments performed to characterize the electrical conductivity shows that the conductivity of MgCr 2 O 4 -TiO 2 responds sensitively to both temperature and humidity changes. At a constant temperature below 100 .deg. C, the conductivity increases as the relative humidity increases, which makes the sensor favorable for application to the outside of MSL insulation layer. But as temperature increases beyond 100 .deg. C, the sensor composition should be adjusted for the application to KNGR is to be made at temperature above 100 .deg. C

  11. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  12. Tritium inventory and recovery in next-step fusion devices

    International Nuclear Information System (INIS)

    Causey, R.A.; Brooks, J.N.; Federici, G.

    2002-01-01

    Future fusion devices will use tritium and deuterium fuel. Because tritium is both radioactive and expensive, it is absolutely necessary that there be an understanding of the tritium retention characteristics of the materials used in these devices as well as how to recover the tritium. There are three materials that are strong candidates for plasma-facing-material use in next-step fusion devices. These are beryllium, tungsten, and carbon. While beryllium has the disadvantage of high sputtering and low melting point (which limits its power handling capabilities in divertor areas), it has the advantages of being a low-Z material with a good thermal conductivity and the ability to get oxygen from the plasma. Due to beryllium's very low solubility for hydrogen, implantation of beryllium with deuterium and tritium results in a saturated layer in the very near-surface with limited inventory (J. Nucl. Mater. 273 (1999) 1). Unfortunately, there are nuclear reactions generated by neutrons that will breed tritium and helium in the material bulk (J. Nucl. Mater. 179 (1991) 329). This process will lead to a substantial tritium inventory in the bulk of the beryllium after long-term neutron exposure (i.e. well beyond the operation life time of a next-step reactor like ITER). Tungsten is a high-Z material that will be used in the divertor region of next-step devices (e.g. ITER) and possibly as a first wall material in later devices. The divertor is the preferred location for tungsten use because net erosion is very low there due to low sputtering and high redeposition. While experiments are still continuing on tritium retention in tungsten, present data suggest that relatively low tritium inventories will result with this material (J. Nucl. Mater. 290-293 (2001) 505). For tritium inventories, carbon is the problem material. Neutron damage to the graphite can result in substantial bulk tritium retention (J. Nucl. Mater. 191-194 (1992) 368), and codeposition of the sputtered carbon

  13. Scoping analyses for the safety injection system configuration for Korean next generation reactor

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Song, Jin Ho; Park, Jong Kyoon

    1996-01-01

    Scoping analyses for the Safety Injection System (SIS) configuration for Korean Next Generation Reactor (KNGR) are performed in this study. The KNGR SIS consists of four mechanically separated hydraulic trains. Each hydraulic train consisting of a High Pressure Safety Injection (HPSI) pump and a Safety Injection Tank (SIT) is connected to the Direct Vessel Injection (DVI) nozzle located above the elevation of cold leg and thus injects water into the upper portion of reactor vessel annulus. Also, the KNGR is going to adopt the advanced design feature of passive fluidic device which will be installed in the discharge line of SIT to allow more effective use of borated water during the transient of large break LOCA. To determine the feasible configuration and capacity of SIT and HPSl pump with the elimination of the Low Pressure Safety Injection (LPSI) pump for KNGR, licensing design basis evaluations are performed for the limiting large break LOCA. The study shows that the DVI injection with the fluidic device SlT enhances the SIS performance by allowing more effective use of borated water for an extended period of time during the large break LOCA

  14. Considerations of severe accidents in the design of Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Dong Wook Jerng; Choong Sup Byun

    1998-01-01

    The severe accident is one of the key issues in the design of Korean Next Generation Reactor (KNGR) which is an evolutionary type of pressurized water reactor. As IAEA recommends in TECDOC-801, the design objective of KNGR with regard to safety is provide a sound technical basis by which an imminent off-site emergency response to any circumstance could be practically unnecessary. To implement this design objective, probabilistic safety goals were established and design requirements were developed for systems to mitigate severe accidents. The basic approach of KNGR to address severe accidents is firstly prevent severe accidents by reinforcing its capability to cope with the design basis accidents (DBA) and further with some accidents beyond DBAs caused by multiple failures, and secondly mitigate severe accidents to ensure the retention of radioactive materials in the containment by providing mean to maintain the containment integrity. For severe accident mitigation, KNGR principally takes the concept of ex-vessel corium cooling. To implement this concept, KNGR is equipped with a large cavity and cavity flooding system connected to the in-containment refueling water storage tank. Other major systems incorporated in KNGR are hydrogen igniters and safety depressurization systems. In addition, the KNGR containment is designed to withstand the pressure and temperature conditions expected during the course of severe accidents. In this paper, the design features and status of system designs related with severe accidents will be presented. Also, R and D activities related to severe accident mitigation system design will be briefly described

  15. The ''Dolphin'' power laser installation for spherical thermonuclear target heating

    International Nuclear Information System (INIS)

    Basov, N.G.; Bykovskij, N.E.; Danilov, A.E.

    1978-01-01

    12-channel laser installation the ''Dolphin'' for thermonuclear target heating in the radiation spheric geometry has been developed to carry out series of physical investigations of laser-thermonuclear plasma system, optimization of target heating conditions and obtaining a comparatively large value of thermonuclear output in ratio to the energy of absorbed light radiation in the target. The description of installation main elements, consisting of the following components, is given: 1)neodymium laser with the maximum permissible radiation energy of 10kJ, with light pulse duration of 10 -10 /10 -9 c and radiation divergence of approximately 5x10 -4 rad; 2)vacuum chamber, where laser radiation interaction with plasma takes place; 3)diagnostic means of laser and plasma parameters and 4)focus system. The focus system provides a high degree of target spherical radiation symmetry at current maximum density on its surface of approximately 10 15 W/cm 2

  16. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Y. C. [LG-EDS Systems, Seoul (Korea, Republic of); Lee, J. H.; Lee, H. C.; Lee, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2000-05-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage.

  17. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    International Nuclear Information System (INIS)

    Yun, Y. C.; Lee, J. H.; Lee, H. C.; Lee, J. S.

    2000-01-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage

  18. Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening

    Science.gov (United States)

    Hoffman, Jodi D; Greger, Valerie; Strovel, Erin T; Blitzer, Miriam G; Umbarger, Mark A; Kennedy, Caleb; Bishop, Brian; Saunders, Patrick; Porreca, Gregory J; Schienda, Jaclyn; Davie, Jocelyn; Hallam, Stephanie; Towne, Charles

    2013-01-01

    Tay-Sachs disease (TSD) is the prototype for ethnic-based carrier screening, with a carrier rate of ∼1/27 in Ashkenazi Jews and French Canadians. HexA enzyme analysis is the current gold standard for TSD carrier screening (detection rate ∼98%), but has technical limitations. We compared DNA analysis by next-generation DNA sequencing (NGS) plus an assay for the 7.6 kb deletion to enzyme analysis for TSD carrier screening using 74 samples collected from participants at a TSD family conference. Fifty-one of 74 participants had positive enzyme results (46 carriers, five late-onset Tay-Sachs [LOTS]), 16 had negative, and seven had inconclusive results. NGS + 7.6 kb del screening of HEXA found a pathogenic mutation, pseudoallele, or variant of unknown significance (VUS) in 100% of the enzyme-positive or obligate carrier/enzyme-inconclusive samples. NGS detected the B1 allele in two enzyme-negative obligate carriers. Our data indicate that NGS can be used as a TSD clinical carrier screening tool. We demonstrate that NGS can be superior in detecting TSD carriers compared to traditional enzyme and genotyping methodologies, which are limited by false-positive and false-negative results and ethnically focused, limited mutation panels, respectively, but is not ready for sole use due to lack of information regarding some VUS. PMID:24498621

  19. Next Steps: Water Technology Advances (Research)

    Science.gov (United States)

    This project will focus on contaminants and their impact on health, adequate removal of contaminants from various water systems, and water and resource recovery within treatment systems. It will develop the next generation of technological advances to provide guidance in support ...

  20. Cryogenic instrumentation needs in the controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    The magnet development effort for the controlled thermonuclear research program will require extensive testing of superconducting coils at various sizes from small-scale models to full-size prototypes. Extensive use of diagnostic instrumentation will be required and to make detailed comparisons of predicted and actual performance in magnet tests and to monitor the test facility for incipient failure modes. At later stages of the program, cryogenic instrumentation will be required to monitor magnet system performance in fusion power reactors. Measured quantities may include temperature, strain, deflection, coil resistance, helium coolant pressure and flow, current, voltages, etc. The test environment, which includes high magnetic fields (up to 8-10 T) and low temperature, makes many commercial measuring devices inoperative or at least inaccurate. In order to ensure reliable measurements, careful screening of commercial devices for performance in the test environment will be required. A survey of potentially applicable instrumentation is presented along with available information on operation in the test environment based on experimental data or on analysis of the physical characteristics of the device. Areas where further development work is needed are delineated

  1. Taking the Plunge: Next Steps in Engaged Learning: Project Kaleidoscope-Connecticut Conference of Independent Colleges Conference for Science Educators.

    Science.gov (United States)

    Frederick, Jennifer

    2010-09-01

    College and university science educators from across Connecticut gathered at Yale's West Campus in April 2010 for a Project Kaleidoscope (PKAL) program entitled "Taking the Plunge: Next Steps in Engaged Learning." Funded by the National Science Foundation (NSF) and co-sponsored by the Connecticut Conference of Independent Colleges (CCIC) and Yale's McDougal Graduate Teaching Center, the event was the latest in a PKAL series of one-day conferences aimed at equipping science, technology, engineering, and math (STEM) instructors with effective approaches to engaging students and training future scientists.

  2. Enhancing Advocacy for Eye Care at National Levels: What Steps to Take for the Next Decade?

    Science.gov (United States)

    Rabiu, Muhammad Mansur; Al Rajhi, Abdulaziz; Qureshi, Mohammed Babar; Gersbeck, Jennifer

    2012-01-01

    The global initiative for the elimination of avoidable blindness by the year 2020-(VISION 2020- The Right to Sight), established in 1999, is a partnership of nongovernmental organizations (NGOs), governments, bilateral organizations, corporate bodies and the World Health Organization. The goal is to eliminate the major causes of avoidable blindness by the year 2020. Significant progress has been made in the last decade. For example, the adoption of three major World Health Assembly resolutions (WHA 56.26, 59.25 and 62.1) requesting governments to increase support and funding for the prevention of blindness and eye care. Additionally, the approval of the VISION 2020 declaration, development of plans and establishment of prevention of blindness committees and a designation of a coordinator by most participating countries represent other major achievements. Furthermore there has been increased political and professional commitment to the prevention of visual impairment and an increase in the provision of high-quality, sustainable eye care. Most of these achievements have been attributed to the advocacy efforts of VISION 2020 at the international level. The full success of this global initiative will likely depend on the extent to which the WHA resolutions are implemented in each country. However, most ratifying countries have not moved forward with implementation of these resolutions. To date, only few countries have shown consistent government support and funding for eye care pursuant to the resolutions. One of the main reasons for this may be inadequate and inappropriate advocacy for eye care at the national level. As such it is believed that the success of VISION 2020 in the next decade will depend on intense advocacy campaigns at national levels. This review identified some of the countries and health programs that have had fruitful advocacy efforts, to determine the factors that dictated success. The review highlights the factors of successful advocacy in two

  3. International Thermonuclear Experimental Reactor U.S. Home Team Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Sowder, W. K.

    1998-10-01

    The International Thermonuclear Experimental Reactor (ITER) project is unique in that the work is divided among an international Joint Central Team and four Home Teams, with the overall responsibility for the quality of activities performed during the project residing with the ITER Director. The ultimate responsibility for the adequacy of work performed on tasks assigned to the U.S. Home Team resides with the U.S. Home Team Leader and the U.S. Department of Energy Office of Fusion Energy (DOE-OFE). This document constitutes the quality assurance plan for the ITER U.S. Home Team. This plan describes the controls exercised by U.S. Home Team management and the Performing Institutions to ensure the quality of tasks performed and the data developed for the Engineering Design Activities assigned to the U.S. Home Team and, in particular, the Research and Development Large Projects (7). This plan addresses the DOE quality assurance requirements of 10 CFR 830.120, "Quality Assurance." The plan also describes U.S. Home Team quality commitments to the ITER Quality Assurance Program. The ITER Quality Assurance Program is based on the principles described in the International Atomic Energy Agency Standard No. 50-C-QA, "Quality Assurance for Safety in Nuclear Power Plants and Other Nuclear Facilities." Each commitment is supported with preferred implementation methodology that will be used in evaluating the task quality plans to be submitted by the Performing Institutions. The implementing provisions of the program are based on guidance provided in American National Standards Institute/American Society of Mechanical Engineers NQA-1 1994, "Quality Assurance." The individual Performing Institutions will implement the appropriate quality program provisions through their own established quality plans that have been reviewed and found to comply with U.S. Home Team quality assurance plan commitments to the ITER Quality Assurance Program. The extent of quality program provisions

  4. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    International Nuclear Information System (INIS)

    Plank, Harald

    2015-01-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga + liquid ion sources towards higher resolution gas field ion sources (He + and Ne + ). Process simulations not only improve the fundamental understanding of the relevant ion–matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion–solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818–23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne + beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications. (viewpoint)

  5. The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century

    International Nuclear Information System (INIS)

    Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

    1994-04-01

    The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%

  6. Mars Sample Return: The Next Step Required to Revolutionize Knowledge of Martian Geological and Climatological History

    Science.gov (United States)

    Mittlefehldt, D. W.

    2012-01-01

    The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic

  7. The LOFT perspective on neutron star thermonuclear bursts

    DEFF Research Database (Denmark)

    in ’t Zand, J.J.M.; Altamirano, D.; Ballantyne, D. R.

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of thermonuclear X-ray bursts on accreting neutron stars. For a summary, we refer to the paper....

  8. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  9. An analysis of the impact of the thermonuclear pilot project ITER on industry and research in Austria

    International Nuclear Information System (INIS)

    Hangel, G.

    2007-03-01

    An analysis of the influence of the thermonuclear pilot project ITER on Austrian research and industrial activities is presented in terms of the following subjects: fusion research history, ITER technique, security, nuclear fusion, ITER (reactor, project specifications for quotations), possibilities for Austrian companies and fusion research in Austria. (nevyjel)

  10. Challenges for Plasma Diagnostic in a Next Step Device (FIRE)

    International Nuclear Information System (INIS)

    Young, Kenneth M.

    2002-01-01

    The physics program of any next-step tokamak such as FIRE [Fusion Ignition Research Experiment] sets demands for plasma measurement which are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. The diagnostic instrumentation must be able to provide the fine spatial and temporal resolution required for the advanced tokamak plasma scenarios. It must also be able to overcome the effects of neutron- and gamma-induced electrical noise in ceramic components or detectors, and fluorescence and absorption in optical components. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many diagnostics will require components at or close to the first wall, e.g., ceramics and MI cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be mounted to operate, and survive, i n fluxes which require special material selection. A better set of diagnostics of alpha-particles than that available for the TFTR [Tokamak Fusion Test Reactor] is essential; it must be qualified well before moving into D-T [deuterim-tritium] experiments. A start has been made to assessing the potential implementation of key diagnostics for the FIRE device. The present status is described

  11. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  12. Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

    International Nuclear Information System (INIS)

    Joo, Kyung Kwang; Shin, Chang Dong

    2014-01-01

    For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angle θ 13 , providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements of θ 12 ,Δm 12 2 , and mass hierarchy will be explored. The precise measurement of θ 13 would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package

  13. Following the Yellow Brick Road: Next Steps in the Synthesis of Pediatric Bioethics and Child Rights.

    Science.gov (United States)

    Goldhagen, Jeffrey

    2016-01-01

    The Symposium on "The Interface of Child Rights and Pediatric Bioethics in the Clinical Setting" brought together a diverse group of pediatric bioethicists and child rights advocates to explore how the junction of these disciplines could inform their respective work. In retrospect, it is clear how the diversity of personal histories, professional disciplines, knowledge, experience, language, culture, and politics of the participants influenced the outcomes of the Symposium and provided both challenges and opportunities for further collaboration. Several themes emerged from the meeting, including the relevance of the U.N. Convention on the Rights of the Child (CRC), the role of the family, and consideration of the best interests of the child to complex medical decision-making; research ethics; and the applicability of the principles of bioethics and child rights to the social determinants of health. This essay poses questions related to each of these themes that can serve as a framework for further collaboration. It concludes with a statement by Da Silva and his coauthors that the CRC and the principles of child rights can provide "increased conceptual clarity and a widely endorsed language that can assist pediatric bioethicists in clinical, organizational, and international consultations, as well as in education and policy development."

  14. THE DECISION TO RECOMMEND YUCCA MOUNTAIN AND THE NEXT STEPS TOWARD LICENSED REPOSITORY DEVELOPMENT

    International Nuclear Information System (INIS)

    Barrett, L. H.

    2002-01-01

    After more than 20 years of carefully planned and reviewed scientific field work by the U.S. Department of Energy, the U.S. Geological Survey, and numerous other organizations, Secretary of Energy Abraham concluded in January that the Yucca Mountain site is suitable, within the meaning of the Nuclear Waste Policy Act, for development as a permanent nuclear waste and spent fuel repository. In February, the Secretary recommended to the President that the site be developed for licensed disposal of these wastes, and the President transmitted this recommendation to Congress. This paper summarizes key technical and national interest considerations that provided the basis for the recommendation. It also discusses the program's near-term plans for repository development if Congress designates the site

  15. The triad enters its fourth decade: The next steps in U.S. strategic forces

    International Nuclear Information System (INIS)

    Nolan, J.

    1990-01-01

    There is a distinct correlation between development and deployment of US deterrent systems - our strategic triad- and the incentive for potential adversaries to engagin in meaningful arms control discussions. The USSR has, and will retain, enormous strategic strength and conventional forces with attendant moderization programs under way. If the threat diminishes, it will do so slowly. While the strategic forces on which the US relies for deterrence account for only a small percentage of the DOD budget, they but a great deal of deterrence. Continued modernization of the strategic triad is essential as restructuring goes on in the wake of impending arms control agreements

  16. Dolphin Therapy: The Playful Way to Work toward the Next Step

    Science.gov (United States)

    Wermer, Maaike

    2008-01-01

    More than 400 children with a physical and/or mental challenge visit the Curacao Dolphin Therapy and Research Center (CDTC) for dolphin-assisted therapy every year. Dolphin therapy appears to be the right approach for many children. With the help of these special and very social animals, it is easier to make contact with the children. It motivates…

  17. The Urban Environmental Monitoring/100 Cities Project: Legacy of the First Phase and Next Steps

    Science.gov (United States)

    Stefanov, William L.; Wentz, Elizabeth A.; Brazel, Anthony; Netzband, Maik; Moeller, Matthias

    2009-01-01

    The Urban Environmental Monitoring (UEM) project, now known as the 100 Cities Project, at Arizona State University (ASU) is a baseline effort to collect and analyze remotely sensed data for 100 urban centers worldwide. Our overarching goal is to use remote sensing technology to better understand the consequences of rapid urbanization through advanced biophysical measurements, classification methods, and modeling, which can then be used to inform public policy and planning. Urbanization represents one of the most significant alterations that humankind has made to the surface of the earth. In the early 20th century, there were less than 20 cities in the world with populations exceeding 1 million; today, there are more than 400. The consequences of urbanization include the transformation of land surfaces from undisturbed natural environments to land that supports different forms of human activity, including agriculture, residential, commercial, industrial, and infrastructure such as roads and other types of transportation. Each of these land transformations has impacted, to varying degrees, the local climatology, hydrology, geology, and biota that predate human settlement. It is essential that we document, to the best of our ability, the nature of land transformations and the consequences to the existing environment. The focus in the UEM project since its inception has been on rapid urbanization. Rapid urbanization is occurring in hundreds of cities worldwide as population increases and people migrate from rural communities to urban centers in search of employment and a better quality of life. The unintended consequences of rapid urbanization have the potential to cause serious harm to the environment, to human life, and to the resulting built environment because rapid development constrains and rushes decision making. Such rapid decision making can result in poor planning, ineffective policies, and decisions that harm the environment and the quality of human life

  18. Taking the moral hazard out of banking: the next fundamental step in financial reform

    Directory of Open Access Journals (Sweden)

    Rainer Masera

    2011-01-01

    Full Text Available The path between financial meltdown and moral hazard in banking is, at best, narrow and impervious. During the financial crisis, public support became the standard response to save the banks in difficulty, heightening and broadening the moral hazard issue: subordinated/senior debt holders and large depositors were bailed out and equity holders were partially sheltered. In the Eurozone, the implicit promise to bail-out governments in difficulty has encouraged SIFIs and other financial operators to speculate on the yield differential between sovereigns and the ECB money market interest rates. The policy framework proposed here is two-pronged: the EFSF should evolve to permit more flexible and wide-ranging interventions, and be able to manage sovereign debt restructuring; with respect to SIFIs, very early corporate, market and supervisory responses are suggested. Intervention of supervisory authorities with mandatory (special powers would occur before the threshold of non-viability and, on a gone-concern basis, in terms of a European resolution procedure.

  19. Fractional laser therapy – the next step in alleviating the symptoms of skin aging (own observations

    Directory of Open Access Journals (Sweden)

    Adam Halbina

    2014-05-01

    Full Text Available Skin aging is a natural process of the skin, which accelerates in menopause and is additionally intensified by accumulating effects of repeated exposure to solar UV radiation and other external factors. Anti-aging skin treatment and constant improvement of its methods have become an important area of current research. The need to apply effective skin anti-aging methods that minimize traumatization resulted in the development of fractional laser technology delivering a laser beam to microscopic column skin zones in order to achieve skin photo-remodeling.

  20. High temperature structural integrity evaluation method and application studies by ASME-NH for the next generation reactor design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2006-01-01

    The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500 .deg. C and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated

  1. Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-28

    The Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps report, published by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) provides an overview of the current state of alternative aviation fuels, based upon findings from recent peer-reviewed studies, scientific working groups, and BETO stakeholder input provided during the Alternative Aviation Fuel Workshop.

  2. Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype

    Science.gov (United States)

    Kerr, Peter J.; Cattadori, Isabella M.; Liu, June; Sim, Derek G.; Dodds, Jeff W.; Brooks, Jason W.; Kennett, Mary J.; Holmes, Edward C.

    2017-01-01

    In host–pathogen arms races, increases in host resistance prompt counteradaptation by pathogens, but the nature of that counteradaptation is seldom directly observed outside of laboratory models. The best-documented field example is the coevolution of myxoma virus (MYXV) in European rabbits. To understand how MYXV in Australia has continued to evolve in wild rabbits under intense selection for genetic resistance to myxomatosis, we compared the phenotypes of the progenitor MYXV and viral isolates from the 1950s and the 1990s in laboratory rabbits with no resistance. Strikingly, and unlike their 1950s counterparts, most virus isolates from the 1990s induced a highly lethal immune collapse syndrome similar to septic shock. Thus, the next step in this canonical case of coevolution after a species jump has been further escalation by the virus in the face of widespread host resistance. PMID:28808019

  3. Conditions of vacuum physics for selection of the material of first wall and diaphragm of the demonstration thermonuclear reactor-tokamak (T-20)

    International Nuclear Information System (INIS)

    Gusev, V.M.; Guseva, M.I.; Gervids, V.I.; Kogan, V.I.; Martynenko, Yu.V.; Mirnov, S.V.

    A model is given for plasma interaction with the wall and the introduction of contaminants. The model was characterized by two kinds of uncertainty. First, the uncertain behavior of the contaminants, and second, the uncertainty of boundary conditions. Some of the conclusions from the study are described

  4. BepiColombo — The Next Step of Mercury Exploration with Two Orbiting Spacecraft

    Science.gov (United States)

    Benkhoff, J.

    2018-05-01

    BepiColombo is a joint project between ESA and JAXA. The mission consists of two orbiters — the Mercury Planetary Orbiter and the Mercury Magnetospheric Orbiter. From dedicated orbits, the spacecraft will be studying the planet and its environment.

  5. 75 FR 29359 - Draft Environmental Impact Statement for the Tamiami Trail Modifications: Next Steps Project...

    Science.gov (United States)

    2010-05-25

    ... and for the purpose of restoring habitat within the Park and the ecological connectivity between the... create 2.2 miles of ecological connectivity and better distribute flows in the western area of the 11... of ecological connectivity and moderately reduce the adverse effects of high velocity discharges...

  6. The Strengthening Nuclear Security Implementation initiative: evolution, status and next steps

    NARCIS (Netherlands)

    Dal, B.; Herbach, J.; Luongo, K.N.

    2015-01-01

    The "Strengthening Nuclear Security Implementation" initiative broke new ground at the 2014 Nuclear Security Summit in the effort to harmonize and strengthen the global nuclear security regime. This report discusses the significance of the initiative, the importance of expanding its signatories, and

  7. The US Network of Pediatric Multiple Sclerosis Centers: Development, Progress, and Next Steps

    Science.gov (United States)

    Casper, T. Charles; Rose, John W.; Roalstad, Shelly; Waubant, Emmanuelle; Aaen, Gregory; Belman, Anita; Chitnis, Tanuja; Gorman, Mark; Krupp, Lauren; Lotze, Timothy E.; Ness, Jayne; Patterson, Marc; Rodriguez, Moses; Weinstock-Guttman, Bianca; Browning, Brittan; Graves, Jennifer; Tillema, Jan-Mendelt; Benson, Leslie; Harris, Yolanda

    2014-01-01

    Multiple sclerosis and other demyelinating diseases in the pediatric population have received an increasing level of attention by clinicians and researchers. The low incidence of these diseases in children creates a need for the involvement of multiple clinical centers in research efforts. The Network of Pediatric Multiple Sclerosis Centers was created initially in 2006 to improve the diagnosis and care of children with demyelinating diseases. In 2010, the Network shifted its focus to multicenter research while continuing to advance the care of patients. The Network has obtained support from the National Multiple Sclerosis Society, the Guthy-Jackson Charitable Foundation, and the National Institutes of Health. The Network will continue to serve as a platform for conducting impactful research in pediatric demyelinating diseases of the central nervous system. This article provides a description of the history and development, organization, mission, research priorities, current studies, and future plans of the Network. PMID:25270659

  8. Trends in Mobile Computing: State-of-the-Art and Next Steps

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Computing is moving to the edge of the network. It is becoming increasingly personal and allowing people to enjoy and express themselves in unprecedented ways. The same development allows professionals and enterprises to increase quality and productivity through improved mobility. The seminar discusses the underlying technical and societal trends and the state-of-the-art of mobile computing. Examples of current developments include the transformation of mobile devices into servers, augmented reality in mobile devices and the opportunities offered by wireless sensor networks. The fusion of the physical and digital worlds enabled by mobile computing is driving industry and society to adopt new uses of digital technologies and causing the focus of development to shift from hardware products to new services. Bio:Since 2004 Prof. Jan Bosch is working as Vice President and Head of the Software and Application Technology Laboratory of Nokia Research Centre in Helsinki, Finland. The Software & Application Tec...

  9. A truly international lunar base as the next logical step for human spaceflight

    Science.gov (United States)

    Bonneville, Richard

    Recent fora (e.g. the ISECG’s Global Exploration Roadmap) have highlighted a human mission to Mars as the long term goal for space exploration, with intermediate stages such as missions to the Moon and/or to asteroids. But actually a human mission to Mars will not be feasible before several decades, whereas in the meantime robotic missions will be able to provide an enormous amount of information on the history and the environment of the red planet, at a rather moderate cost. And if we consider missions to asteroids, introducing a human in the loop will require a considerably higher complexity and cost than using robots, with no significant additional benefit. The only sensible and feasible objective of a near-term human spaceflight program would be the edification of a lunar base, under the condition that this base is built as a true international venture. Science will not be the main driver; it has to be acknowledged from the beginning that the true main goal will be peace and a nucleus of international cooperation between the big countries. The ISS in the 1990’s had illustrated a calmed relation between the USA, together with Europe, Canada and Japan, and Russia. A lunar base should be the symbol of a similar calmed relation between the same partners and China. For the benefit of all humankind this extra continent, the Moon, will be used only for peaceful purposes, like Antarctica today, and will not become the theatre or the stake of conflicts. The financial cost of that venture will be high, but not that high if it is compared with the cost of recent wars; so let us go to the Moon, OK, but let us get there together.

  10. From single-species advice to mixed-species management: taking the next step

    DEFF Research Database (Denmark)

    Vinther, Morten; Reeves, S.A.; Patterson, K.R.

    2004-01-01

    Fishery management advice has traditionally been given on a stock-by-stock basis. Recent problems in implementing this advice, particularly for the demersal fisheries of the North Sea, have highlighted the limitations of the approach. In the long term, it would be desirable to give advice...... that accounts for mixed-fishery effects, but in the short term there is a need for approaches to resolve the conflicting management advice for different species within the same fishery, and to generate catch or effort advice that accounts for the mixed-species nature of the fishery. This paper documents...... a recent approach used to address these problems. The approach takes the single-species advice for each species in the fishery as a starting point, then attempts to resolve it into consistent catch or effort advice using fleet-disaggregated catch forecasts in combination with explicitly stated management...

  11. Tritium retention in next step devices and the requirements for mitigation and removal techniques

    International Nuclear Information System (INIS)

    Counsell, G; Coad, P; Grisola, C; Hopf, C

    2006-01-01

    Mechanisms underlying the retention of fuel species in tokamaks with carbon plasma-facing components are presented, together with estimates for the corresponding retention of tritium in ITER. The consequential requirement for new and improved schemes to reduce the tritium inventory is highlighted and the results of ongoing studies into a range of techniques are presented, together with estimates of the tritium removal rate in ITER in each case. Finally, an approach involving the integration of many tritium removal techniques into the ITER operational schedule is proposed as a means to extend the period of operations before major intervention is required

  12. Persistent Identifiers for Field Expeditions: A Next Step for the US Oceanographic Research Fleet

    Science.gov (United States)

    Arko, Robert; Carbotte, Suzanne; Chandler, Cynthia; Smith, Shawn; Stocks, Karen

    2016-04-01

    Oceanographic research cruises are complex affairs, typically requiring an extensive effort to secure the funding, plan the experiment, and mobilize the field party. Yet cruises are not typically published online as first-class digital objects with persistent, citable identifiers linked to the scientific literature. The Rolling Deck to Repository (R2R; info@rvdata.us) program maintains a master catalog of oceanographic cruises for the United States research fleet, currently documenting over 6,000 expeditions on 37 active and retired vessels. In 2015, R2R started routinely publishing a Digital Object Identifier (DOI) for each completed cruise. Cruise DOIs, in turn, are linked to related persistent identifiers where available including the Open Researcher and Contributor ID (ORCID) for members of the science party, the International Geo Sample Number (IGSN) for physical specimens collected during the cruise, the Open Funder Registry (FundRef) codes that supported the experiment, and additional DOIs for datasets, journal articles, and other products resulting from the cruise. Publishing a persistent identifier for each field expedition will facilitate interoperability between the many different repositories that hold research products from cruises; will provide credit to the investigators who secured the funding and carried out the experiment; and will facilitate the gathering of fleet-wide altmetrics that demonstrate the broad impact of oceanographic research.

  13. Achieving the Desired Transformation: Thoughts on Next Steps for Outcomes-Based Medical Education.

    Science.gov (United States)

    Holmboe, Eric S; Batalden, Paul

    2015-09-01

    Since the introduction of the outcomes-based medical education (OBME) movement, progress toward implementation has been active but challenging. Much of the angst and criticism has been directed at the approaches to assessment that are associated with outcomes-based or competency frameworks, particularly defining the outcomes. In addition, these changes to graduate medical education (GME) are concomitant with major change in health care systems--specifically, changes to increase quality and safety while reducing cost. Every sector, from medical education to health care delivery and financing, is in the midst of substantial change and disruption.The recent release of the Institute of Medicine's report on the financing and governance of GME highlights the urgent need to accelerate the transformation of medical education. One source of continued tension within the medical education community arises from the assumption that the much-needed increases in value and improvement in health care can be achieved by holding the current educational structures and architecture of learning in place while concomitantly withdrawing resources. The authors of this Perspective seek to reframe the important and necessary debate surrounding the current challenges to implementing OBME. Building on recent change and service theories (e.g., Theory U and coproduction), they propose several areas of redirection, including reexamination of curricular models and greater involvement of learners, teachers, and regulators in cocreating new training models, to help facilitate the desired transformation in medical education.

  14. Elise - The next step in development of induction heavy ion drivers for inertial fusion energy

    International Nuclear Information System (INIS)

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.; Deadeick, F.

    1995-01-01

    This document presents the main features of Elise, a future electric-focused accelerator proposed by the Lawrence Berkeley Laboratory (LBL) and the Lawrence Livermore National Laboratory (LLNL). The goal of the Heavy Ion Fusion Accelerator Research Program is to develop accelerators for fusion energy production. The Elise accelerator would be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and would be designed to be extendible so as to meet this goal. (TEC). 3 refs., 3 figs

  15. The next step in a development of negative ion beam plasma neutraliser for ITER NBI

    International Nuclear Information System (INIS)

    Kulygin, V.M.; Dlougach, E.D.; Gorbunov, E.P.

    2001-01-01

    Injectors of deuterium atom beams developing for ITER plasma heating and current drive are based on the negative ion acceleration and further neutralization with a gas target. The maximal efficiency of a gas stripping process is 60%. The replacement of the gas neutralizer by plasma one must increase the neutral yield to 80%. The experimental study overview of the microwave discharge in a multi-cusp magnetic system chosen as a base device for Plasma Neutralizer realization and the design development for ITER Neutral Beam Injectors are presented. The experimental results achieved at a plasma neutralizer model PNX-U is discussed. Plasma confinement, gas flows, ionization degree were investigated. The plasma in the volume 0.5m 3 with density n e ∼ 10 18 m -3 has been achieved at power density 80kW/m 3 in operation with Argon. (author)

  16. An Initial Evaluation of Tablet Devices & What Are the Next Steps?

    Science.gov (United States)

    McKillen, Tracey

    2016-01-01

    This paper describes an evaluation of tablet devices for a Graduate Entry Medical School (GEMS). The purpose of this evaluation is to assess what type of tablet device could meet the needs of a GEMS student. GEMS requirements for the evaluation include; using the tablet device to replace paper teaching resources in lectures and tutorials and…

  17. VICI (Venus In Situ Composition Investigations): The Next Step in Understanding Venus Climate Evolution

    Science.gov (United States)

    Glaze, L. S.; Garvin, J. B.

    2017-12-01

    Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental

  18. What is the Plasma Focus Thermonuclear Pulsors Technology?

    International Nuclear Information System (INIS)

    Ramos, R.; Gonzalez, J.; Moreno, C.; Clausse, A.

    2003-01-01

    In this paper we describe a type of neutron generators, called Plasma Focus, which is suitable to several applications, where traditional generators are non-applicable.The main characteristics are its transportability and to be non-contaminating, which would allow in-situ tests.The Plasma Focus, produces neutron pulses by thermonuclear fusion reactions, satisfy these requirements and it is comparatively non expensive.This last feature would assure competitivity in the neutron sources market

  19. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes.

    Science.gov (United States)

    Wang, Jinhui; Faust, Susan M; Rabinowitz, Joseph E

    2011-05-01

    Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy". Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Advancing the conversation: next steps for lesbian, gay, bisexual, trans, and queer (LGBTQ health sciences librarianship

    Directory of Open Access Journals (Sweden)

    Blake W. Hawkins

    2017-10-01

    Full Text Available In recent years, librarians in various sectors have been moving forward a conversation on the distinct information needs and information-seeking behavior of our lesbian, gay, bisexual, trans, and queer (LGBTQ patrons and how well the profession recognizes and meets those needs. Health sciences librarianship has been slower than other areas of the profession in creating an evidence base covering the needs of its LGBTQ patrons, with, until recently, only very limited literature on this subject. LGBTQ health sciences librarianship is now starting to attract new interest, with librarians working together to bring this emerging specialization to the attention of the broader professional community. In this paper, the authors report on a dedicated panel discussion that took place at the 2016 joint annual meeting of the Medical Library Association and Canadian Health Libraries Association/Association des bibliothèques de la santé du Canada in Toronto, Ontario, Canada; discuss subsequent reflections; and highlight the emerging role for health sciences librarians in providing culturally competent services to the LGBTQ population. Recommendations are also provided for establishing a tool kit for LGBTQ health sciences librarianship from which librarians can draw. We conclude by highlighting the importance of critically reflective practice in health sciences librarianship in the context of LGBTQ health information.

  1. Advancing the conversation: next steps for lesbian, gay, bisexual, trans, and queer (LGBTQ) health sciences librarianship.

    Science.gov (United States)

    Hawkins, Blake W; Morris, Martin; Nguyen, Tony; Siegel, John; Vardell, Emily

    2017-10-01

    In recent years, librarians in various sectors have been moving forward a conversation on the distinct information needs and information-seeking behavior of our lesbian, gay, bisexual, trans, and queer (LGBTQ) patrons and how well the profession recognizes and meets those needs. Health sciences librarianship has been slower than other areas of the profession in creating an evidence base covering the needs of its LGBTQ patrons, with, until recently, only very limited literature on this subject. LGBTQ health sciences librarianship is now starting to attract new interest, with librarians working together to bring this emerging specialization to the attention of the broader professional community. In this paper, the authors report on a dedicated panel discussion that took place at the 2016 joint annual meeting of the Medical Library Association and Canadian Health Libraries Association/Association des bibliothèques de la santé du Canada in Toronto, Ontario, Canada; discuss subsequent reflections; and highlight the emerging role for health sciences librarians in providing culturally competent services to the LGBTQ population. Recommendations are also provided for establishing a tool kit for LGBTQ health sciences librarianship from which librarians can draw. We conclude by highlighting the importance of critically reflective practice in health sciences librarianship in the context of LGBTQ health information.

  2. Patient-centered hand hygiene: the next step in infection prevention.

    Science.gov (United States)

    Landers, Timothy; Abusalem, Said; Coty, Mary-Beth; Bingham, James

    2012-05-01

    Hand hygiene has been recognized as the most important means of preventing the transmission of infection, and great emphasis has been placed on ways to improve hand hygiene compliance by health care workers (HCWs). Despite increasing evidence that patients' flora and the hospital environment are the primary source of many infections, little effort has been directed toward involving patients in their own hand hygiene. Most previous work involving patients has included patients as monitors or auditors of hand hygiene practices by their HCWs. This article reviews the evidence on the benefits of including patients more directly in hand hygiene initiatives, and uses the framework of patient-centered safety initiatives to provide recommendations for the timing and implementation of patient hand hygiene protocols. It also addresses key areas for further research, practice guideline development, and implications for training of HCWs. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  3. Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers?

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, Antonius A.; Picchioni, Francesco

    2009-01-01

    We developed thermally self-healing polymeric materials on the basis of furan-functionalized, alternating thermosetting polyketones (PK-furan) and bis-maleimide by using the Diels-Alder (DA) and Retro-Diels-Alder (RDA) reaction sequence. PK-furan can be easily obtained under mild conditions by the

  4. Preoperative radio-chemotherapy for rectal cancer: Forecasting the next steps through ongoing and forthcoming studies

    International Nuclear Information System (INIS)

    Crehange, G.; Maingon, P.; Bosset, J.F.

    2011-01-01

    Protracted preoperative radio-chemotherapy with a 5-FU-based scheme, or a short course of preoperative radiotherapy without chemotherapy, are the standard neo-adjuvant treatments for resectable stage II-III rectal cancer. Local failure rates are low and reproducible, between 6 and 15% when followed with a 'Total Meso-rectal Excision'. Nevertheless, the therapeutic strategy needs to be improved: distant metastatic recurrence rates remain stable around 30 to 35%, while both sphincter and sexual sequels are still significant. The aim of the present paper was to analyse the ongoing trials listed on the following search engines: the Institut National du Cancer in France, the National Cancer Institute and the National Institute of Health in the United States, and the major cooperative groups. Keywords for the search were: 'rectal cancer', 'preoperative radiotherapy', 'phase II-III', 'preoperative chemotherapy', 'adjuvant chemotherapy' and 'surgery'. Twenty-three trials were selected and classified in different groups, each of them addressing a question of strategy: (1) place of adjuvant chemotherapy; (2) optimization of preoperative radiotherapy; (3) evaluation of new radiosensitization protocols and/or neo-adjuvant chemotherapy; (4) optimization of techniques and timing of surgery; (5) place of radiotherapy for non resectable or metastatic tumors. (authors)

  5. Non-dairy probiotic beverages: the next step into human health.

    Science.gov (United States)

    Gawkowski, D; Chikindas, M L

    2013-06-01

    Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit to the host. The two main genera of microorganisms indicated as sources of probiotic bacteria are Lactobacillus and Bifidobacterium. Historically used to produce fermented dairy products, certain strains of both genera are increasingly utilised to formulate other functional foods. As the consumers' understanding of the role of probiotics in health grows, so does the popularity of food containing them. The result of this phenomenon is an increase in the number of probiotic foods available for public consumption, including a rapidly-emerging variety of probiotic-containing non-dairy beverages, which provide a convenient way to improve and maintain health. However, the composition of non-dairy probiotic beverages can pose specific challenges to the survival of the health conferring microorganisms. To overcome these challenges, strain selection and protection techniques play an integral part in formulating a stable product. This review discusses non-dairy probiotic beverages, characteristics of an optimal beverage, and commonly used probiotic strains, including spore-forming bacteria. It also examines the most recent developments in probiotic encapsulation technology with focus on nano-fibre formation as a means of protecting viable cells. Utilising bacteria's natural armour or creating barrier mechanisms via encapsulation technology will fuel development of stable non-dairy probiotic beverages.

  6. Capability and Technology Performance Goals for the Next Step in Affordable Human Exploration of Space

    Science.gov (United States)

    Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.

    2015-01-01

    The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.

  7. Mobile phones: the next step towards healthcare delivery in rural India?

    Science.gov (United States)

    DeSouza, Sherwin I; Rashmi, M R; Vasanthi, Agalya P; Joseph, Suchitha Maria; Rodrigues, Rashmi

    2014-01-01

    Given the ubiquity of mobile phones, their use to support healthcare in the Indian context is inevitable. It is however necessary to assess end-user perceptions regarding mobile health interventions especially in the rural Indian context prior to its use in healthcare. This would contextualize the use of mobile phone communication for health to 70% of the country's population that resides in rural India. To explore the acceptability of delivering healthcare interventions through mobile phones among users in a village in rural Bangalore. This was an exploratory study of 488 mobile phone users, residing in a village, near Bangalore city, Karnataka, South India. A pretested, translated, interviewer-administered questionnaire was used to obtain data on mobile phone usage patterns and acceptability of the mobile phone, as a tool for health-related communication. The data is described using basic statistical measures. The primary use of mobile phones was to make or receive phone calls (100%). Text messaging (SMS) was used by only 70 (14%) of the respondents. Most of the respondents, 484 (99%), were willing to receive health-related information on their mobile phones and did not consider receiving such information, an intrusion into their personal life. While receiving reminders for drug adherence was acceptable to most 479 (98%) of our respondents, 424 (89%) preferred voice calls alone to other forms of communication. Nearly all were willing to use their mobile phones to communicate with health personnel in emergencies and 367 (75%) were willing to consult a doctor via the phone in an acute illness. Factors such as sex, English literacy, employment status, and presence of chronic disease affected preferences regarding mode and content of communication. The mobile phone, as a tool for receiving health information and supporting healthcare through mHealth interventions was acceptable in the rural Indian context.

  8. Mobile Phones: The Next Step towards Healthcare Delivery in Rural India?

    Science.gov (United States)

    DeSouza, Sherwin I.; Rashmi, M. R.; Vasanthi, Agalya P.; Joseph, Suchitha Maria; Rodrigues, Rashmi

    2014-01-01

    Background Given the ubiquity of mobile phones, their use to support healthcare in the Indian context is inevitable. It is however necessary to assess end-user perceptions regarding mobile health interventions especially in the rural Indian context prior to its use in healthcare. This would contextualize the use of mobile phone communication for health to 70% of the country's population that resides in rural India. Objectives To explore the acceptability of delivering healthcare interventions through mobile phones among users in a village in rural Bangalore. Methods This was an exploratory study of 488 mobile phone users, residing in a village, near Bangalore city, Karnataka, South India. A pretested, translated, interviewer-administered questionnaire was used to obtain data on mobile phone usage patterns and acceptability of the mobile phone, as a tool for health-related communication. The data is described using basic statistical measures. Results The primary use of mobile phones was to make or receive phone calls (100%). Text messaging (SMS) was used by only 70 (14%) of the respondents. Most of the respondents, 484 (99%), were willing to receive health-related information on their mobile phones and did not consider receiving such information, an intrusion into their personal life. While receiving reminders for drug adherence was acceptable to most 479 (98%) of our respondents, 424 (89%) preferred voice calls alone to other forms of communication. Nearly all were willing to use their mobile phones to communicate with health personnel in emergencies and 367 (75%) were willing to consult a doctor via the phone in an acute illness. Factors such as sex, English literacy, employment status, and presence of chronic disease affected preferences regarding mode and content of communication. Conclusion The mobile phone, as a tool for receiving health information and supporting healthcare through mHealth interventions was acceptable in the rural Indian context. PMID

  9. Mobile phones: the next step towards healthcare delivery in rural India?

    Directory of Open Access Journals (Sweden)

    Sherwin I DeSouza

    Full Text Available BACKGROUND: Given the ubiquity of mobile phones, their use to support healthcare in the Indian context is inevitable. It is however necessary to assess end-user perceptions regarding mobile health interventions especially in the rural Indian context prior to its use in healthcare. This would contextualize the use of mobile phone communication for health to 70% of the country's population that resides in rural India. OBJECTIVES: To explore the acceptability of delivering healthcare interventions through mobile phones among users in a village in rural Bangalore. METHODS: This was an exploratory study of 488 mobile phone users, residing in a village, near Bangalore city, Karnataka, South India. A pretested, translated, interviewer-administered questionnaire was used to obtain data on mobile phone usage patterns and acceptability of the mobile phone, as a tool for health-related communication. The data is described using basic statistical measures. RESULTS: The primary use of mobile phones was to make or receive phone calls (100%. Text messaging (SMS was used by only 70 (14% of the respondents. Most of the respondents, 484 (99%, were willing to receive health-related information on their mobile phones and did not consider receiving such information, an intrusion into their personal life. While receiving reminders for drug adherence was acceptable to most 479 (98% of our respondents, 424 (89% preferred voice calls alone to other forms of communication. Nearly all were willing to use their mobile phones to communicate with health personnel in emergencies and 367 (75% were willing to consult a doctor via the phone in an acute illness. Factors such as sex, English literacy, employment status, and presence of chronic disease affected preferences regarding mode and content of communication. CONCLUSION: The mobile phone, as a tool for receiving health information and supporting healthcare through mHealth interventions was acceptable in the rural Indian

  10. CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps

    Science.gov (United States)

    Pallamraju, D.; Kozyra, J.; Basu, S.

    Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future

  11. Concurrent Engineering Working Group White Paper Distributed Collaborative Design: The Next Step in Aerospace Concurrent Engineering

    Science.gov (United States)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.

  12. Identifying knowledge gaps for gene drive research to control invasive animal species: The next CRISPR step

    Directory of Open Access Journals (Sweden)

    Dorian Moro

    2018-01-01

    Full Text Available Invasive animals have been linked to the extinctions of native wildlife, and to significant agricultural financial losses or impacts. Current approaches to control invasive species require ongoing resources and management over large geographic scales, and often result in the short-term suppression of populations. New and innovative approaches are warranted. Recently, the RNA guided gene drive system based on CRISPR/Cas9 is being proposed as a potential gene editing tool that could be used by wildlife managers as a non-lethal addition or alternative to help reduce pest animal populations. While regulatory control and social acceptance are crucial issues that must be addressed, there is an opportunity now to identify the knowledge and research gaps that exist for some important invasive species. Here we systematically determine the knowledge gaps for pest species for which gene drives could potentially be applied. We apply a conceptual ecological risk framework within the gene drive context within an Australian environment to identify key requirements for undertaking work on seven exemplar invasive species in Australia. This framework allows an evaluation of the potential research on an invasive species of interest and within a gene drive and risk context. We consider the currently available biological, genetic and ecological information for the house mouse, European red fox, feral cat, European rabbit, cane toad, black rat and European starling to evaluate knowledge gaps and identify candidate species for future research. We discuss these findings in the context of future thematic areas of research worth pursuing in preparation for a more formal assessment of the use of gene drives as a novel strategy for the control of these and other invasive species. Keywords: Invasive species, Gene drive, CRISPR, Pest management, Islands

  13. Evaluating stakeholder management performance using a stakeholder report card: the next step in theory and practice.

    Science.gov (United States)

    Malvey, Donna; Fottler, Myron D; Slovensky, Donna J

    2002-01-01

    In the highly competitive health care environment, the survival of an organization may depend on how well powerful stakeholders are managed. Yet, the existing strategic stakeholder management process does not include evaluation of stakeholder management performance. To address this critical gap, this paper proposes a systematic method for evaluation using a stakeholder report card. An example of a physician report card based on this methodology is presented.

  14. Nutrition and public health in medical education in the UK: reflections and next steps.

    Science.gov (United States)

    Broad, Jonathan; Wallace, Megan

    2018-04-30

    Doctors play an important role in the identification of nutritional disorders and as advocates for a healthy diet, and although the key tenets of good nutrition education for medical students have been discussed, reports on implementation are sparse. The present commentary responds to a gap in UK medical students' understanding of nutrition and public health and suggests ways to improve it. We review literature about nutrition education in medical schools and discuss a 6-week elective in public health nutrition for medical students. We discuss suggested competencies in nutrition and compare means of students' confidence and knowledge before and after. A nutrition and public health elective in a UK medical school, discussing advocacy, motivational interviewing, supplements, nutritional deficits, parenteral nutrition, obesity services. We utilised multidisciplinary teaching approaches including dietitians, managers and pharmacists, and students implemented a public health activity in a local school. Fifteen final-year medical students were enrolled; sixty school pupils participated in the public health activity. The students were not confident in nutrition competencies before and were taught less than European counterparts. Students enjoyed the course, had improved knowledge, and felt more confident in interviewing and prescribing supplements. Feedback from the local school was positive. Students in our UK medical school were not confident in their required competencies within the confines of the current educational programme. An elective course can improve medical students' knowledge. Similar courses could be implemented in other medical schools to improve nutrition and public health knowledge and practice in future doctors.

  15. The Next Step to Creating a More Efficient Form of Paperless Contracting

    National Research Council Canada - National Science Library

    Sweet, Gerald L

    2008-01-01

    .... The author, a contracting officer whose background includes programming, business administration, management information systems, geographic information systems, and systems design, will explore...

  16. The Written Corrective Feedback Debate: Next Steps for Classroom Teachers and Practitioners

    Science.gov (United States)

    Brown, Dan

    2012-01-01

    Language teachers spend much of their time providing corrective feedback on students' writing in hope of helping them improve grammatical accuracy. Turning to research for guidance, however, can leave practitioners with few concrete answers as to the effectiveness of written corrective feedback (CF). Debate in the literature continues, reflecting…

  17. The next step in coastal numerical models: spectral/hp element methods?

    DEFF Research Database (Denmark)

    Eskilsson, Claes; Engsig-Karup, Allan Peter; Sherwin, Spencer J.

    2005-01-01

    In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations....

  18. Next steps in determining the overall sustainability of perennial bioenergy crops

    Science.gov (United States)

    Perennial bioenergy crops are being developed and evaluated in the United States to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. For example, c...

  19. The Next Steps in Our Understanding of Gene-Peer Interplay: A Commentary

    Science.gov (United States)

    Burt, S. Alexandra

    2014-01-01

    The studies included in this special issue on gene-peer interplay in child and adolescent outcomes can uniformly be described as cutting edge and methodologically sophisticated. When viewed together, they all but conclusively document the presence and importance of gene-peer interplay in child and adolescent outcomes. Nevertheless, more work on…

  20. The Mussel Watch California pilot study on contaminants of emerging concern (CECs): synthesis and next steps

    Science.gov (United States)

    Maruya, Keith A.; Dodder, Nathan G.; Weisberg, Stephen B.; Gregorio, Dominic; Bishop, Jonathan S.; Klosterhaus, Susan; Alvarez, David A.; Furlong, Edward T.; Bricker, Suzanne B.; Kimbrough, Kimani L.; Lauenstein, Gunnar G.

    2014-01-01

    A multiagency pilot study on mussels (Mytilus spp.) collected at 68 stations in California revealed that 98% of targeted contaminants of emerging concern (CECs) were infrequently detectable at concentrations ⩽1 ng/g. Selected chemicals found in commercial and consumer products were more frequently detected at mean concentrations up to 470 ng/g dry wt. The number of CECs detected and their concentrations were greatest for stations categorized as urban or influenced by storm water discharge. Exposure to a broader suite of CECs was also characterized by passive sampling devices (PSDs), with estimated water concentrations of hydrophobic compounds correlated with Mytilus concentrations. The results underscore the need for focused CEC monitoring in coastal ecosystems and suggest that PSDs are complementary to bivalves in assessing water quality. Moreover, the partnership established among participating agencies led to increased spatial coverage, an expanded list of analytes and a more efficient use of available resources.

  1. Collaborative learning: A next step in the training of peer support providers.

    Science.gov (United States)

    Cronise, Rita

    2016-09-01

    This column explores how peer support provider training is enhanced through collaborative learning. Collaborative learning is an approach that draws upon the "real life" experiences of individual learners and encompasses opportunities to explore varying perspectives and collectively construct solutions that enrich the practice of all participants. This description draws upon published articles and examples of collaborative learning in training and communities of practice of peer support providers. Similar to person-centered practices that enhance the recovery experience of individuals receiving services, collaborative learning enhances the experience of peer support providers as they explore relevant "real world" issues, offer unique contributions, and work together toward improving practice. Three examples of collaborative learning approaches are provided that have resulted in successful collaborative learning opportunities for peer support providers. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Moving Toward Quantifying Reliability - The Next Step in a Rapidly Maturing PV Industry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah; Sample, Tony; Wohlgemuth, John; Zhou, Wei; Bosco, Nick; Althaus, Joerg; Phillips, Nancy; Deceglie, Michael; Flueckiger, Chris; Hacke, Peter; Miller, David; Kempe, Michael; Yamamichi, Masaaki; Kondo, Michio

    2015-12-07

    Some may say that PV modules are moving toward being a simple commodity, but most major PV customers ask: 'How can I minimize chances of a module recall?' Or, 'How can I quantify the added value of a 'premium' module?' Or, 'How can I assess the value of an old PV system that I'm thinking of purchasing?' These are all questions that PVQAT (the International PV Quality Assurance Task Force) and partner organizations are working to answer. Defining standard methods for ensuring minimal acceptable quality of PV modules, differentiating modules that provide added value in the toughest of environments, and creating a process (e.g. through IECRE [1]) that can follow a PV system from design through installation and operation are tough tasks, but having standard approaches for these will increase confidence, reduce costs, and be a critical foundation of a mature PV industry. This paper summarizes current needs for new tests, some challenges for defining those tests, and some of the key efforts toward development of international standards, emphasizing that meaningful quantification of reliability (as in defining a service life prediction) must be done in the context of a specific product with design parameters defined through a quality management system.

  3. Thermonuclear land of plenty

    Science.gov (United States)

    Gasior, P.

    2014-11-01

    Since the process of energy production in the stars has been identified as the thermonuclear fusion, this mechanism has been proclaimed as a future, extremely modern, reliable and safe for sustaining energetic needs of the humankind. However, the idea itself was rather straightforward and the first attempts to harness thermonuclear reactions have been taken yet in 40s of the twentieth century, it quickly appeared that physical and technical problems of domesticating exotic high temperature medium known as plasma are far from being trivial. Though technical developments as lasers, superconductors or advanced semiconductor electronics and computers gave significant contribution for the development of the thermonuclear fusion reactors, for a very long time their efficient performance was out of reach of technology. Years of the scientific progress brought the conclusions that for the development of the thermonuclear power plants an enormous interdisciplinary effort is needed in many fields of science covering not only plasma physics but also material research, superconductors, lasers, advanced diagnostic systems (e.g. spectroscopy, interferometry, scattering techniques, etc.) with huge amounts of data to be processed, cryogenics, measurement-control systems, automatics, robotics, nanotechnology, etc. Due to the sophistication of the problems with plasma control and plasma material interactions only such a combination of the research effort can give a positive output which can assure the energy needs of our civilization. In this paper the problems of thermonuclear technology are briefly outlined and it is shown why this domain can be a broad field for the experts dealing with electronics, optoelectronics, programming and numerical simulations, who at first glance can have nothing common with the plasma or nuclear physics.

  4. Endoscopic non-technical skills team training: the next step in quality assurance of endoscopy training.

    Science.gov (United States)

    Matharoo, Manmeet; Haycock, Adam; Sevdalis, Nick; Thomas-Gibson, Siwan

    2014-12-14

    To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes. A novel endoscopy team training intervention for BCS teams was developed and evaluated as a pre-post intervention study. Four multi-disciplinary BCS teams constituting BCS endoscopist(s), specialist screening practitioners, endoscopy nurses and administrative staff (A) from English BCS training centres participated. No patients were involved in this study. Expert multidisciplinary faculty delivered a single day's training utilising real clinical examples. Pre and post-course evaluation comprised participants' patient safety awareness, attitudes, and knowledge. Global course evaluations were also collected. Twenty-three participants attended and their patient safety knowledge improved significantly from 43%-55% (P ≤ 0.001) following the training intervention. 12/41 (29%) of the safety attitudes items significantly improved in the areas of perceived patient safety knowledge and awareness. The remaining safety attitude items: perceived influence on patient safety, attitudes towards error management, error management actions and personal views following an error were unchanged following training. Both qualitative and quantitative global course evaluations were positive: 21/23 (91%) participants strongly agreed/agreed that they were satisfied with the course. Qualitative evaluation included mandating such training for endoscopy teams outside BCS and incorporating team training within wider endoscopy training. Limitations of the study include no measure of increased patient safety in clinical practice following training. A novel comprehensive training package addressing patient safety, non-technical skills and adverse event analysis was successful in improving multi-disciplinary teams' knowledge and safety attitudes.

  5. Endoscopic non-technical skills team training: The next step in quality assurance of endoscopy training

    Science.gov (United States)

    Matharoo, Manmeet; Haycock, Adam; Sevdalis, Nick; Thomas-Gibson, Siwan

    2014-01-01

    AIM: To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes. METHODS: A novel endoscopy team training intervention for BCS teams was developed and evaluated as a pre-post intervention study. Four multi-disciplinary BCS teams constituting BCS endoscopist(s), specialist screening practitioners, endoscopy nurses and administrative staff (A) from English BCS training centres participated. No patients were involved in this study. Expert multidisciplinary faculty delivered a single day’s training utilising real clinical examples. Pre and post-course evaluation comprised participants’ patient safety awareness, attitudes, and knowledge. Global course evaluations were also collected. RESULTS: Twenty-three participants attended and their patient safety knowledge improved significantly from 43%-55% (P ≤ 0.001) following the training intervention. 12/41 (29%) of the safety attitudes items significantly improved in the areas of perceived patient safety knowledge and awareness. The remaining safety attitude items: perceived influence on patient safety, attitudes towards error management, error management actions and personal views following an error were unchanged following training. Both qualitative and quantitative global course evaluations were positive: 21/23 (91%) participants strongly agreed/agreed that they were satisfied with the course. Qualitative evaluation included mandating such training for endoscopy teams outside BCS and incorporating team training within wider endoscopy training. Limitations of the study include no measure of increased patient safety in clinical practice following training. CONCLUSION: A novel comprehensive training package addressing patient safety, non-technical skills and adverse event analysis was successful in improving multi-disciplinary teams’ knowledge and safety attitudes. PMID:25516665

  6. Regionalization of surgical services in central Florida: the next step in acute care surgery.

    Science.gov (United States)

    Block, Ernest F J; Rudloff, Beth; Noon, Charles; Behn, Bruce

    2010-09-01

    There is a national loss of access to surgeons for emergencies. Contributing factors include reduced numbers of practicing general surgeons, superspecialization, reimbursement issues, emphasis on work and life balance, and medical liability. Regionalizing acute care surgery (ACS), as exists for trauma care, represents a potential solution. The purpose of this study is to assess the financial and resources impact of transferring all nontrauma ACS cases from a community hospital (CH) to a trauma center (TC). We performed a case mix and financial analysis of patient records with ACS for a rural CH located near an urban Level I TC. ACS patients were analyzed for diagnosis, insurance status, procedures, and length of stay. We estimated physician reimbursement based on evaluation and management codes and procedural CPT codes. Hospital revenues were based on regional diagnosis-related group rates. All third-party remuneration was set at published Medicare rates; self-pay was set at nil. Nine hundred ninety patients were treated in the CH emergency department with 188 potential surgical diseases. ACS was necessary in 62 cases; 25.4% were uninsured. Extrapolated to 12 months, 248 patients would generate new TC physician revenue of >$155,000 and hospital profits of >$1.5 million. CH savings for call pay and other variable costs are >$100,000. TC operating room volume would only increase by 1%. Regionalization of ACS to TCs is a viable option from a business perspective. Access to care is preserved during an approaching crisis in emergency general surgical coverage. The referring hospital is relieved of an unfavorable payer mix and surgeon call problems. The TC receives a new revenue stream with limited impact on resources by absorbing these patients under its fixed costs, saving the CH variable costs.

  7. APNs taking the next step: disseminating practice information via effective poster presentations.

    Science.gov (United States)

    Bischof, Janet

    2013-02-10

    Advanced practice nurses (APNs) have a responsibility to share information from projects and research with other professionals. Poster presentations offer a way to visually share the information to a wide audience. Key elements include title, objective/purpose, data collection, results, analysis, implications for nursing, and appropriate references.

  8. The Next Step in Educational Program Budgets and Information Resource Management: Integrated Data Structures.

    Science.gov (United States)

    Jackowski, Edward M.

    1988-01-01

    Discusses the role that information resource management (IRM) plays in educational program-oriented budgeting (POB), and presents a theoretical IRM model. Highlights include design considerations for integrated data systems; database management systems (DBMS); and how POB data can be integrated to enhance its value and use within an educational…

  9. A Risk Management Process for Consumers: The Next Step in Information Security

    NARCIS (Netherlands)

    van Cleeff, A.

    2010-01-01

    Simply by using information technology, consumers expose themselves to considerable security risks. Because no technical or legal solutions are readily available, and awareness programs have limited impact, the only remedy is to develop a risk management process for consumers. Consumers need to

  10. technical guidelines for the design and construction of the next generation of nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    2009-01-01

    These technical guidelines present the opinion of the French 'Groupe Permanent charge des Reacteurs nucleaires' (GPR) concerning the safety philosophy and approach as well as the general safety requirements to be applied for the design and construction of the next generation of nuclear power plants of the PWR (pressurized water reactor) type, assuming the construction of the first units of this generation would start at the beginning of the 21. century. These technical guidelines are based on common work of the French Institut de Protection et de Surete Nucleaire (IPSN) and of the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). Moreover, these technical guidelines were extensively discussed with members of the German Reaktor Sicherheitskommission (RSK) until the end of 1998 and further with German experts. The context of these technical guidelines must be clearly understood. Faced with the current situation of nuclear energy in the world, the various nuclear steam supply system designers are developing new products, all of them claiming their intention of obtaining a higher safety level, by various ways. GPR believes that, for the operation of a new series of nuclear power plants at the beginning of the next century, the adequate way is to derive the design of these plants in an 'evolutionary' way from the design of existing plants, taking into account the operating experience and the in-depth studies conducted for such plants. Nevertheless, introduction of innovative features must also be considered in the frame of the design of the new generation of plants, especially in preventing and mitigating severe accidents. GPR underlines here that a significant improvement of the safety of the next generation of nuclear power plants at the design stage is necessary, compared to existing plants. If the search for improvement is a permanent concern in the field of safety, the necessity of a significant step at the design stage clearly derives from better

  11. Indicator disease-guided testing for HIV--the next step for Europe?

    DEFF Research Database (Denmark)

    Gazzard, B; Clumeck, N; d'Arminio Monforte, A

    2008-01-01

    with sexually transmitted diseases should be offered an HIV test, as should patients with certain types of cancers and laboratory abnormalities. Governments should consider adopting opt-out testing for pregnant women. These recommendations should be considered for implementation by all types of health......HIV should preferably be diagnosed in its earlier stages. To optimize the chances of doing so, HIV testing in patients presenting with one of several indicator diseases and conditions is recommended. Patients presenting with tuberculosis and other AIDS-defining conditions should be tested. Patients...

  12. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  13. HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS

    International Nuclear Information System (INIS)

    GREENFIELD, C.M.; MURAKAMI, M.; FERRON, J.R.; WADE, M.R.; LUCE, T.C.; PETTY, C.C.; MENARD, J.E; PETRIE, T.W.; ALLEN, S.L.; BURRELL, K.H.; CASPER, T.A; DeBOO, J.C.; DOYLE, E.J.; GAROFALO, A.M; GORELOV, Y.A; GROEBNER, R.J.; HOBIRK, J.; HYATT, A.W; JAYAKUMAR, R.J; KESSEL, C.E; LA HAYE, R.J; JACKSON, G.L; LOHR, J.; MAKOWSKI, M.A.; PINSKER, R.I.; POLITZER, P.A.; PRATER, R.; STRAIT, E.J.; TAYLOR, T.S; WEST, W.P.

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic (MHD) stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half-radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding (ELMing) H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts

  14. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  15. Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step

    Directory of Open Access Journals (Sweden)

    Rodrigues Davide

    2015-12-01

    Full Text Available The nuclear fuel reprocessing is a prerequisite for nuclear energy to be a clean and sustainable energy. In the case of the molten salt reactor containing a liquid fuel, pyrometallurgical way is an obvious way. The method for treatment of the liquid fuel is divided into two parts. In-situ injection of helium gas into the fuel leads to extract the gaseous fission products and a part of the noble metals. The second part of the reprocessing is performed by ‘batch’. It aims to recover the fissile material and to separate the minor actinides from fission products. The reprocessing involves several chemical steps based on redox and acido-basic properties of the various elements contained in the fuel salt. One challenge is to perform a selective extraction of actinides and lanthanides in spent liquid fuel. Extraction of actinides and lanthanides are successively performed by a reductive extraction in liquid bismuth pool containing metallic lithium as a reductive reagent. The objective of this paper is to give a description of the several steps of the reprocessing retained for the molten salt fast reactor (MSFR concept and to present the initial results obtained for the reductive extraction experiments realized in static conditions by contacting LiF-ThF4-UF4-NdF3 with a lab-made Bi-Li pool and for which extraction efficiencies of 0.7% for neodymium and 14.0% for uranium were measured. It was concluded that in static conditions, the extraction is governed by a kinetic limitation and not by the thermodynamic equilibrium.

  16. The next 20 years operation of the 36 years old Hungarian training reactor

    International Nuclear Information System (INIS)

    Aszodi, A.

    2007-01-01

    Hungary prepares for extending the design lifetime of the four VVER-440/213 type units; in that case they will finish operation between 2032 and 2037. Discussion on possible new nuclear units in Hungary was recently commenced. The paper describes actions in human resource management and knowledge management, and also the new safety analysis methods which were applied during the recent Periodic Safety Review of the Hungarian Training Reactor

  17. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  18. Performance of cable-in-conduit conductors in ITER [International Thermonuclear Experimental Reactor] toroidal field coils with varying heat loads

    International Nuclear Information System (INIS)

    Kerns, J.A.; Wong, R.L.

    1989-01-01

    The toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) will operate with varying heat loads generated by ac losses and nuclear heating. The total heat load is estimated to be 2 kW per TF coil under normal operation and can be higher for different operating scenarios. Ac losses are caused by ramping the poloidal field (PF) for plasma initiation, burn, and shutdown; nuclear heating results from neutrons that penetrate into the coil past the shield. Present methods to reduce or eliminate these losses lead to larger and more expensive machines, which are unacceptable with today's budget constraints. A suitable solution is to design superconductors that operate with high heat loads. The cable-in-conduit conductor (CICC) can operate with high heat loads. One CICC design is analyzed for its thermal performance using two computer codes developed at LLNL. One code calculates the steady state flow conditions along the flow path, while the other calculates the transient conditions in the flow. We have used these codes to analyze the superconductor performance during the burn phase of the ITER plasma. The results of these analyses give insight to the choice of flow rate on superconductor performance. 4 refs., 5 figs

  19. Analysis of quench-vent pressures for present design of ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coils

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three-dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 3 figs., 1 tab

  20. Proposal and analysis of the benchmark problem suite for reactor physics study of LWR next generation fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    In order to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels, the Research Committee on Reactor Physics organized by JAERI has established the Working Party on Reactor Physics for LWR Next Generation Fuels. The next generation fuels mean the ones aiming for further extended burn-up such as 70 GWd/t over the current design. The Working Party has proposed six benchmark problems, which consists of pin-cell, PWR fuel assembly and BWR fuel assembly geometries loaded with uranium and MOX fuels, respectively. The specifications of the benchmark problem neglect some of the current limitations such as 5 wt% {sup 235}U to achieve the above-mentioned target. Eleven organizations in the Working Party have carried out the analyses of the benchmark problems. As a result, status of accuracy with the current data and method and some problems to be solved in the future were clarified. In this report, details of the benchmark problems, result by each organization, and their comparisons are presented. (author)

  1. Breeder control fusion reactor. Topical interview

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, A [Max-Planck-Institut fuer Plasmaphysik, Garching/Muenchen (Germany, F.R.)

    1977-09-01

    The energy sources of the future are extremely controversial. The consumption of fossil fuel shall decrease during the next decades, because exhaustion of the resources, pollution, increase of CO/sub 2/ in the atmosphere and other reasons. But at present the question it not yet settled which alternative energy system should replace the fossil fuel. First of all nuclear energy in the form of fission reactions seems to come into operation to a larger extent. The next step may be the controlled thermonuclear fusion reaction. Furthermore, a comparison between fusion and fission is given which shows that fusion would bring about less risks than the breeders. An advantage of the fusion reactor would be the fact that the fuel cycle is closed. Unfortunately, the physical questions are not as yet satisfactorily clarified so that one cannot be sure whether a fusion reactor can really be built.

  2. Approximating the r-process on earth with thermonuclear explosions

    International Nuclear Information System (INIS)

    Becker, S.A.

    1992-01-01

    The astrophysical r-process can be approximately simulated in certain types of thermonuclear explosions. Between 1952 and 1969 twenty-three nuclear tests were fielded by the United States which had as one of their objectives the production of heavy transuranic elements. Of these tests, fifteen were at least partially successful. Some of these shots were conducted under the project Plowshare Peaceful Nuclear Explosion Program as scientific research experiments. A review of the program, target nuclei used, and heavy element yields achieved, will be presented as well as discussion of plans for a new experiment in a future nuclear test

  3. Plasma and controlled thermonuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kapitsa, P L [AN SSSR, Moscow. Inst. Fizicheskikh Problem

    1980-06-01

    Two contemporary trends of research are characterized aiming at the thermonuclear reactor, viz., tokamak type equipment and pulsed heating of a deuterium-tritium mixture using focused laser light. There is a third trend based on the use of high-power continuous wave (CW) microwave generators which allow producing a rope discharge. The design is described of an anticipated CW thermonuclear reactor. Using current experimental facilities, a continuous high-frequency discharge can be obtained at a pressure of 25 atm and electron temperature of 50 million K. The major problem involved in the design of a CW reactor is the heating of ions to the same temperature as the electron temperature and the reduction in ion gas thermal conductivity.

  4. Proposal for a decision of the Council concerning the planning of a research- and education-program (1982-1986) on the field of thermonuclear fusion

    International Nuclear Information System (INIS)

    The thermonuclear fusion is in an early development state and has however in principle possible advantages which could be especially valuable for Europe. The primary fusion fuels (D, Li) are plentiful existent, wide spread and cheap (1 g natural Lithium could generate 15 MHW); both fuels and the end product of the reactions - Helium - are stable. From the nuclear-technological point of view a thermonuclear reactor could be built with high safety; the doubling time for breeding of new fuels in principle could be very short. These potential advantages however are balanced by certain disadvantages, e.g. high costs for the construction of a thermonuclear reactor etc. The research program, other possibilities and the costs are outlined. (orig./HT) [de

  5. Proposal for a decision of the EC Council concerning the planning of a research- and education-program (1982-1986) on the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The thermonuclear fusion is in a early development state and has, however, in principle possible advantages which could be especially valuable for Europe: the primary fusion fuels (D, Li) are plentiful existent, wide spread and cheap (1 g natural Lithium could generate 15 MWh); both fuels and the end product of the reactions - Helium - are stable. From the nuclear-technological point of view a thermonuclear reactor could be built with high safety; the doubling time for breeding of new fuels in principle could be very short. These potential advantages, however, are balanced by certain disadvantages, e.g. high costs for the construction of a thermonuclear reactor etc. The research program, other possibilities and the costs are outlined. (orig./HT) [de

  6. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2003-01-01

    This final report for the Swiss Federal Office of Education and Science presents a review of activities carried out in 2002 within the framework of the International Experimental Thermonuclear Reactor (ITER) project that involves contributions from Canada, Japan, the Russian Federation and the European Union. Further agreements on the development of a fusion reactor with other countries, including Switzerland, the USA and China, are mentioned. The first chapter describes the current state of research on electricity production using nuclear fusion and discusses feasibility, safety, environmental, fuel supply and economic aspects. A second chapter reviews global efforts in the fusion area, including ITER and EURATOM projects and the activities running under the European Fusion Development Agreement EFDA and the JET Implementing Agreement. Finally, a third chapter deals with fusion research activities in Switzerland and the contributions made to international research by Swiss universities and institutes

  7. Nuclear Physics Constraints on the Characteristics of Astrophysical Thermonuclear Flashes

    International Nuclear Information System (INIS)

    Truran, James W

    2012-01-01

    We review the nuclear physics that is associated with the outbursts of Type Ia (thermonuclear) supernova explosions and with the thermonuclear runaway events that define the outbursts of both classical novae and recurrent novae. We describe how distinguishing characteristics of these two classes of astrophysical explosion are strongly dependent both upon fuel ignition in degenerate matter and upon the rates of critical charged-particle reaction rates and weak interaction rates. In this centennial celebration of the important contributions of Rutherford and his collaborators to our understanding of the structure of the nucleus of an atom, it is quite interesting to note the evolution of the α-particle scattering experiments described in Rutherford's seminal paper (Rutherford 1911) to current studies of α-particle induced reactions and their defining roles in studies of stellar, nova, and supernova nucleosynthesis. We identify and discuss for example: (1) the manner in which (α, p) reactions in proximity to the Z = N line carry the major flows from 12 C and 16 O to 56 Ni in Type Ia supernovae; and (2) the critical role of the 15 O(α, γ) 19 Ne reaction in possibly effecting 'breakout' of the Hot CNO cycles at the highest temperatures achievable in Classical Novae. In this contribution, we first review the current status our understanding of Type Ia supernova events and then that of Classical Novae.

  8. Modelling of thermal and thermalhydraulic in a heat exchanger of a fusion thermonuclear reactor using 'GENEPI' computer code

    International Nuclear Information System (INIS)

    Langlais, Gilles

    1999-01-01

    The work presented in this report has been performed in the frame of fusion safety studies for thermonuclear reactors of ITER type (International Thermonuclear Experimental Reactor). It is particularly related to the thermal and two-phases thermalhydraulic studies of heat exchangers facing plasma. These components are submitted to unidirectional high heat flux between 1 to 10 MW/m 2 . The cooling fluid is then heat by an anisotropic heat flux. This non-uniform distribution induces the presence of different heat transfer on the cooling channel (single phase forced convection, subcooled nucleate boiling). The thermal and the thermalhydraulic three-dimensional study has been performed using experimental data and coupled computer calculations developed in the frame of this thesis work. The heat transfer between solid and fluid are modelled using correlations selected after the bibliography study. These heat exchange correlations as well as the CHF ones have been assessed by comparison to the available experimental data. This allowed to modify the single phase heat transfer correlation and to select two CHF correlations. (author) [fr

  9. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    Science.gov (United States)

    Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration

    2018-04-01

    Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.

  10. Design concepts and status of the Korean next generation reactor (KNGR)

    International Nuclear Information System (INIS)

    Cho, Sung Jae; Kim, Han Gon

    1999-01-01

    The national project to develop KNGR, a 4000 MWth evolutionary advanced light water reactor (ALWR), has been organized in three phases according to the development status in 1992. During the first phase, the top-tier design requirements and the design concepts to meet the requirements had been established. The project is currently in the second phase of which the major objective is to complete the basic design sufficient to confirm the plant safety. This paper describes the overall design concepts and status of the KNGR briefly which developed and/or being developed through the project. (author)

  11. Safety of next generation power reactors

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address

  12. Neutral pumping rates for a next step tokamak ignition device

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.; Heifetz, D.

    1985-01-01

    Neutral pumping rates are calculated for pump-limiter and divertor options of a next step tokamak ignition device using a method that accounts for the coupled effects of neutral transport and plasma transport. For both pump limiters and divertors the plasma flow into the channel surrounding the neutralizer plate is greatly reduced by the neutral recycling. The fraction of this flow that is pumped can be large (>50%) but in general is dependent on the particular geometry and plasma conditions. It is estimated that pumping speeds greater than or approximately 10 5 L/s are adequate for the exhaust requirements in the pump-limiter and the divertor cases

  13. What next steps in nuclear power?

    International Nuclear Information System (INIS)

    Novak, J.

    1991-01-01

    Following the political changes in Czechoslovakia in the late 1989, preparation of a new energy policy began in the second half of 1990. The principles of this new policy include an increase in the share of electricity in the energy balance, based on an increase in the contribution of nuclear power plants. This new nuclear policy should be oriented to the use of state-of-the-art technologies from world's foremost manufacturers such as Framatome, Siemens-KWU, ABB - Combustion Engineering, Mitsubishi and Westinghouse. In February 1991, companies associated in a consortium, viz. the Czech Power Company, the Slovak Power Company, the Czechoslovak Uranium Industry and Energoprojekt, sent the world manufacturers a preliminary invitation of tenders. The bids are now being evaluated by the Belgian company Belgatom and by the Czechoslovak company Energoprojekt. The completion of the feasibility study is conditional on the decision concerning the siting of a new nuclear power plant. (Z.S.). 1 tab

  14. Fast flux fluid fuel reactor: A concept for the next generation of nuclear power production

    International Nuclear Information System (INIS)

    Palmiotti, G.; Feldman, E.E.

    1999-01-01

    Nuclear energy has not become the preferred method of electrical energy production largely because of economic, safety, and proliferation concerns and challenges posed by nuclear waste disposal. Economies is the most important factor. To reduce the capital costs, the authors propose a compact configuration with a very high power density and correspondingly reduced reactor component sizes. Enhanced efficiency made possible by higher operating temperatures will also improve the economics of the design, and design simplicity will keep capital, operational, and maintenance costs down. The most direct solution to the nuclear waste problem is to eliminate waste production or, at least, minimize its amount and long-term radiotoxicity. This can be achieved by very high burnups, ideally 100%, and by the eventual transmutation of the long-lived fission products in situ. Very high burnups also improve the economics by optimal exploitation of the fuel. Safety concerns can be addressed by an inherently safe reactor design. Because of the intrinsic nature of nuclear materials, there probably is no definitive answer to proliferation concerns for systems that generate neutrons; however, it is important to minimize proliferation risks. The thorium cycle is a promising option because (a) plutonium is produced only in very small quantities, (b) the presence of 232 U makes handling the fuel very difficult and therefore proliferation resistant, and (c) 233 U is a fissile isotope that is less suitable than 239 Pu for making weapons and can be diluted with other uranium isotopes. An additional benefit of the thorium cycle is that it increases nuclear fuel resources by one order of magnitude. A fast flux fluid fuel reactor is a concept that can satisfy all the foregoing requirements. The fluid fuel systems have a very simple structure. Because integrity of the fuel is not an issue, these systems can operate at very high temperatures, can have high power densities, and can achieve very

  15. Next Step Mobile: Strategy, Services, & PRM

    Science.gov (United States)

    Thomas, Lisa Carlucci

    2012-01-01

    As emerging information technologies have driven demand for new library communication channels, there has been increased interest in the use of mobile tools to promote interaction, expand outreach, market programs, and enhance the library experience. Libraries today are at widely different levels of mobile engagement, a gap poised to grow as…

  16. Next steps in propositional horn contraction

    CSIR Research Space (South Africa)

    Booth, R

    2009-06-01

    Full Text Available not opted for this choice.) Our start- ing point for defining Horn e-contraction is in terms of Del- grande’s definition of e-remainder sets. Definition 3.1 (Horn e-Remainder Sets) For a belief setH , X ∈ H ↓e Φ iff (i) X ⊆ H , (ii) X 6|= Φ, and (iii...) for every X ′ s.t. X ⊂ X ′ ⊆ H , X ′ |= Φ. We refer to the elements of H ↓eΦ as the Horn e-remainder sets of H w.r.t. Φ. It is easy to verify that all Horn e-remainder sets are belief sets. Also, H ↓eΦ = ∅ iff |= Φ. We now proceed to define selection...

  17. Neutrino Oscillations at Reactors: What Next?

    OpenAIRE

    Mikaelyan, L. A.; Sinev, V. V.

    1999-01-01

    We shortly review past and future experiments at reactors aimed at searches for neutrino masses and mixing. We also consider new idea to search at Krasnoyarsk for small mixing angle oscillations in the atmosheric neutrino mass parameter region.

  18. 28. Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2001-01-01

    Theses of reports, presented at the 28th Conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 19-23 February 2001) are published. 246 reports were heard at the following sections: magnetic confinement, theory and experiments; inertial thermonuclear synthesis; plasma processes and physics of gas-discharge plasma; physical bases of plasma technologies. 17 reports had the summarizing character [ru

  19. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Beck; L. F. Pincock

    2011-04-01

    The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

  20. Direct Taxation in the Eu: The Common Corporate Tax Base as the Next Sub-Step towards Harmonization

    Directory of Open Access Journals (Sweden)

    Norbert Herzig

    2011-12-01

    Full Text Available This paper analyzes the Common Corporate Tax Base (CCTB as an interim alternative to the proposal of a Council directive on a Common Consolidated Corporate Tax Base (CCCTB. The CCCTB concept does not only include common rules for determining the tax base like the CCTB but also the steps of consolidation and subsequent formula apportionment. Therefore, the paper starts by showing that particularly these second and third steps of the CCCTB project meet fierce political opposition from several Member States and do leave leeway for tax planning. Afterwards, the CCCTB proposal's approach to common rules for determining the tax base is evaluated, i.e. tested for its suitability as a point of departure for drafting a CCTB. Finally, various other aspects of the proposal are examined in light of a CCTB without consolidation.

  1. Developing Boundary/PMI Solutions for Next-Step Fusion Devices

    Science.gov (United States)

    Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.

    2014-10-01

    The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.

  2. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  3. FIRE, A Next Step Option for Magnetic Fusion

    International Nuclear Information System (INIS)

    Meade, D.M.

    2002-01-01

    The next major frontier in magnetic fusion physics is to explore and understand the strong nonlinear coupling among confinement, MHD stability, self-heating, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. The Fusion Ignition Research Experiment (FIRE) Design Study has been undertaken to define the lowest cost facility to attain, explore, understand, and optimize magnetically confined fusion-dominated plasmas. The FIRE is envisioned as an extension of the existing Advanced Tokamak Program that could lead to an attractive magnetic fusion reactor. The FIRE activities have focused on the physics and engineering assessment of a compact, high-field tokamak with the capability of achieving Q approximately equal to 10 in the ELMy H-mode for a duration of about 1.5 plasma current redistribution times (skin times) during an initial burning-plasma science phase, and the flexibility to add Advanced Tokamak hardware (e.g., lower-hybrid current drive) later. The configuration chosen for FIRE is similar to that of ARIES-RS, the U.S. Fusion Power Plant study utilizing an Advanced Tokamak reactor. The key ''Advanced Tokamak'' features are: strong plasma shaping, double-null pumping divertors, low toroidal field ripple ( 5) for a duration of 1 to 3 current redistribution times

  4. Developing maintainability in controlled thermonuclear reactors. Progress report, October 1, 1977--April 30, 1978

    International Nuclear Information System (INIS)

    Zahn, H.S.

    1977-05-01

    During the period 1 October 1977 through 30 April 1978 the study has completed work on Task 6, Candidate Reference Systems. Four candidate reference systems have been defined. These are based on the conceptual designs of the UWMAK-III, the General Atomic Company Demonstration Power Reactor, the Oak Ridge National Laboratory Cassette defined in the Demonstration Power Study and the Culham laboratory Mark II Reactors. These reactor concepts are normalized to 3000 MW/sub th/ and near minimum cost of electricity. In addition, designs of four major subsystems have been selected and defined for application to these reactors. These include a primary coolant system, primary and secondary vacuum zone systems, the neutral beam injection system and the magnetic field system. These magnet systems are unique to each reactor. The cases for which maintenance plans are being developed in Task 7 have been selected to allow evaluation of design features, particularly the vacuum wall locations, and the impacts of unscheduled and contact maintenance of subsystems on the cost of electricity

  5. 3D Simulation of a Loss of Vacuum Accident (LOVA in ITER (International Thermonuclear Experimental Reactor: Evaluation of Static Pressure, Mach Number, and Friction Velocity

    Directory of Open Access Journals (Sweden)

    Jean-François Ciparisse

    2018-04-01

    Full Text Available ITER (International Thermonuclear Experimental Reactor is a magnetically confined plasma nuclear reactor. Inside it, due to plasma disruptions, the formation of neutron-activated powders, which are essentially made out of tungsten and beryllium, occurs. As many windows for diagnostics are present on the reactor, which operates at very low pressure, a LOVA (Loss of Vacuum Accident could be possible and may lead to dust mobilisation and a toxic and radioactive fallout inside the plant. This study is aimed at reproducing numerically the first seconds of a LOVA in ITER, in order to get information about the dust resuspension risk. This work has been carried out by means of a CFD (Computational Fluid Dynamics simulation of the beginning of the pressurisation transient inside the whole Tokamak. It has been found that the pressurization transient is extremely slow, and that the friction speed on the walls is very high, and therefore a high mobilization risk of the dust is expected on the entire internal surface of the reactor. It has been observed that a LOVA in a real-scale reactor is more severe than the one reproduced in reduced-scale facilities, as STARDUST-U, because the speeds are higher, and the dust resuspension capacity of the flow is greater.

  6. Free Modal Algebras Revisited: The Step-by-Step Method

    NARCIS (Netherlands)

    Bezhanishvili, N.; Ghilardi, Silvio; Jibladze, Mamuka

    2012-01-01

    We review the step-by-step method of constructing finitely generated free modal algebras. First we discuss the global step-by-step method, which works well for rank one modal logics. Next we refine the global step-by-step method to obtain the local step-by-step method, which is applicable beyond

  7. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to 'address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction.' (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to 'include the U.S. role in an interim period between the EDA and construction.' (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  8. Thermonuclear device

    International Nuclear Information System (INIS)

    Inoue, Toyokazu; Murata, Toru.

    1983-01-01

    Purpose: To shield superconducting coils for use in the generation of magnetic field against neutron irradiation thereby preventing tritium contamination. Constitution: The thermonuclear device comprises, in its inside, a vacuum container for containing plasmas, superconducting coils disposed to the outside of the vacuum container and neutron absorbers disposed between the super-conducting coils and the vacuum container. since neutrons issued from the plasma are absorbed by neutron absorbers and not irradiated to the superconducting coils, generation of tritium due to the reaction between 3 He in the liquid helium as the coolants for the super-conducting coils and the neutrons is prevented. (Aizawa, K.)

  9. Thermonuclear astrophysics

    International Nuclear Information System (INIS)

    Clayton, D.D.; Woosley, S.E.

    1974-01-01

    We discuss the types of thermonuclear reactions that are of importance to stellar evolution and nucleosynthesis, with particular attention to the explosive ejection of shells of He, C, O, and Si. We present tables of the reactions important in the various burning phases, including the reason for their importance and an estimate of the value of a carefully measured rate. This format is chosen for dual purpose: (1) to clarify the nuclear needs by evaluating the importance of specific reactions within the astronomical settings and (2) by assigning a value scale for cross-section measurements

  10. Production of synthetic methanol from air and water using controlled thermonuclear reactor power

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1977-01-01

    Energy requirement and process development of methanol production from air and water using controlled thermonuclear fusion power was discussed in Part 1 (Steinberg et al., Energy conversion;17:97(1977)). This second part presents an economic analysis of the nine processes presented for obtaining carbon dioxide recovery from the atmosphere or the sea for methanol production. It is found that the most economical process of obtaining carbon dioxide is by stripping from sea water. The process of absorption/stripping by dilute potassium carbonate solution is found to be the most economical for the extraction of carbon dioxide from air at atmospheric pressure. The total energy required for methanol synthesis from these sources of carbon dioxide is 3.90 kWh(e)/lb methanol of which 90% is used for generation of hydrogen. The process which consumes the greatest amount of energy is the absorption/stripping of air by water at high pressure and amounts to 13.2 kWh(e)/lb methanol. With nuclear fusion power plants of 1000to 9000 MW(e), it is found that the cost of methanol using the extraction of carbon dioxide from air with dilute potassium carbonate solution is estimated to be in the range between Pound1.73 and Pound2.90/MMB.t.u. (energy equivalent - 1974 cost) for plant capacities of 21 400 to 193 000 bbl/day methanol. This methanol cost is competitive with gasoline in the range of 19 approximately equal to 33c/gallon. For the process of stripping of carbon dioxide from sea water, the cost is found to lie in the range of Pound1.65 to Pound2.71/MMB.t.u. (energy equivalent) for plant capacities of 21 700 to 195 000 bbl/day methanol which is competitive with gasoline in the range of 18 approximately equal to 30 c/gallon. Projection of methanol demand in the year 2020 is presented based on both its conventional use as chemicals and as a liquid fuel substituting for oil and gas. (author)

  11. Annual report of the Division of Thermonuclear Fusion Research, JAERI

    International Nuclear Information System (INIS)

    1977-02-01

    The JFT-2 operating regime was extended to higher toroidal field of 18 kG. Plasma confinements were studied on impurities, instabilities, plasma-wall interaction. Properties of a plasma with a separatrix magnetic surface and plasma behaviour in the scrape-off layer were studied in JFT-2a. In the diagnostics, a grazing-incidence vacuum ultra-violet spectrometer for studies on impurities was completed and put into operation. Several minor improvement and remodelling on the JFT-2 and JFT-2a tokamaks were carried out for the convenience of operation. In the plasma heating, constructions of the JFT-2 neutral injection system and the injector test stand ITS-2 for development of the higher energy ion source were started. The design of 200 kW RF power source for the plasma heating in JFT-2 was also made. Research in surface effects in fusion devices started at April 1, 1975. Experimental apparatus was designed and constructed in this fiscal year. A group for superconducting magnet development for fusion device was set up in January, 1976. Theoretical works continued in the analyses on transport processes, plasma heating, and mhd stabilities with an increasing effort on computational studies. A preliminary design of the 100 MW sub(t) tokamak experimental fusion reactor has been started in April, 1975. At the same time a conceptual design of the 2000 MW sub(t) power reactor was further improved. In the development of large tokamak device of next generation, programs on JT-60 and JT-4 are being carried out. Research and development works and detailed design studies on JT-60 are started based on the preliminary design studies made in the previous year. Preliminary design studies on JT-4 are completed. (auth.)

  12. Alternative divertor target concepts for next step fusion devices

    Science.gov (United States)

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  13. Energy market reform - lessons learned and next steps

    International Nuclear Information System (INIS)

    Doucet, G.

    2004-01-01

    This presentation will be based on the World Energy Council's recently published report, Energy Market Reform: Lessons Learned and Next Steps with Special Emphasis on the Energy Access Problems of Developing Countries. The report draws on practical lessons from past studies carried out by the World Energy Council and on current experiences on the desirable architecture of market reforms in electricity and natural gas. The approach of the study was not to further deepen the analysis or to provide technical recommendations but rather, to build a debate guided by the common thread of energy security and end-user e mpowerment , highlighting the possible areas of conflict of interest and the broad solutions that might be chosen depending on the local circumstances for different parts of the energy chains. The ambition was to identify key concerns and to initiate a debate on possible answers.(author)

  14. Safety design criteria for the next generation Sodium-cooled fast reactors based on lessons learned from the Fukushima NPS accident

    International Nuclear Information System (INIS)

    Sakai, Takaaki

    2012-01-01

    In this presentation, architecture of the safety design criteria as requirements for SFR system and the activities on safety research works to establish safety evaluation methods for the next generation SFRs are summarized with the basis on lessons learned from the Fukushima NPS accident. Nuclear safety is a grovel issue which should be achieved by the international cooperation. In respect of the development for the next generation reactor, it is necessary to build the harmonized safety criteria and evaluation methods to establish the next level of safety

  15. Serious Games for Health: Features, Challenges, Next Steps.

    Science.gov (United States)

    Blumberg, Moderators Fran C; Burke, Lauren C; Hodent, Participants Celia; Evans, Michael A; Lane, H Chad; Schell, Jesse

    2014-10-01

    As articles in this journal have demonstrated over the past 3 years, serious game development continues to flourish as a vehicle for formal and informal health education. How best to characterize a "serious" game remains somewhat elusive in the literature. Many researchers and practitioners view serious games as capitalizing on computer technology and state-of-the-art video graphics as an enjoyable means by which to provide and promote instruction and training, or to facilitate attitude change among its players. We invited four distinguished researchers and practitioners to further discuss with us how they view the characteristics of serious games for health, how those characteristics differ from those for academic purposes, the challenges posed for serious game development among players of different ages, and next steps for the development and empirical examination of the effectiveness of serious games for players' psychological and physical well-being.

  16. Advanced passive PWR AC-600: Development orientation of nuclear power reactors in China for the next century

    International Nuclear Information System (INIS)

    Huang Xueqing; Zhang Senru

    1999-01-01

    Based on Qinshan II Nuclear Power Plant that is designed and constructed by way of self-reliance, China has developed advanced passive PWR AC-600. The design concept of AC-600 not only takes the real situation of China into consideration, but also follows the developing trend of nuclear power in the world. The design of AC-600 has the following technical characteristics: Advanced reactor: 18-24 month fuel cycle, low neutron leakage, low power density of the core, no any penetration in the RPV below the level of the reactor coolant nozzles; Passive safety systems: passive emergency residual heat removal system, passive-active safety injection system, passive containment cooling system and main control room habitability system; System simplified and the number of components reduced; Digital I and C; Modular construction. AC-600 inherits the proven technology China has mastered and used in Qirtshan 11, and absorbs advanced international design concepts, but it also has a distinctive characteristic of bringing forth new ideas independently. It is suited to Chinese conditions and therefore is expected to become an orientation of nuclear power development by self-reliance in China for the next century. (author)

  17. Comparison of nuclear reactor types of the next generation; Komparativni prikaz novih tipova reaktorskih komercijalnih postrojenja slijedece generacije

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Z; Kastelan, M [NPP Krsko (Slovenia)

    1992-07-01

    The paper presents a comparison for a selected relevant set of parameters for different commercial nuclear reactor types at the next generation. This parameters overview could serve as the base for the semi-quantitative decision bases for the selection of the future nuclear strategy. The number of advanced reactor designs of the LWR, HWR, GCR and LMR type are presented. Even currently many of them are still on the drawing boards, the concepts and designs should be assessed in the sense of sensible approach for planning the possible future nuclear strategy. (author) Clanek predstavlja usporedbu odabranih bitnih parametara karakteristicnih za razlicite tipove energetskih nuklearnih postrojenja slijedece generacije. Prikazani pregled parametara omogucava osnov za polu kvantitativnu osnovu za odlucivanje u svrhu donosenja odluke oko odrednica buduce strategije uporabe nuklearne energije. Brojni koncepti naprednih nuklearnih reaktora tipa LWR, HWR, GCR i LMR su prezentirani. S obzirom na cinjenicu da se mnogi of prezentiranih nalaze jos uvijek na crtacim daskama projektanata, koncepti i projekti koji su iz njih proizasli zahtijevaju analizu u smislu kvalitativnog pristupa planiranja moguce buduce nuklearne startegije. (author)

  18. Joining of SiCf/SiC composites for thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Ferraris, M.; Badini, C.; Montorsi, M.; Appendino, P.; Scholz, H.W.

    1994-01-01

    Due to their favourable radiological behaviour, SiC f /SiC composites are promising structural materials for future use in fusion reactors. A problem to cope with is the joining of the ceramic composite material (CMC) to itself for more complex structures. Maintenance concepts for a reactor made of SiC f /SiC will demand a method of joining. The joining agents should comply with the low-activation approach of the base material. With the acceptable elements Si and Mg, sandwich structures of composite/metal/composite were prepared in Ar atmosphere at temperatures just above the melting points of the metals. Another promising route is the use of joining agents of boro-silicate glasses: their composition can be tailored to obtain softening temperatures of interest for fusion applications. The glassy joint can be easily ceramised to improve thermomechanical properties. The joining interfaces were investigated by SEM-EDS, XRD and mechanical tests. ((orig.))

  19. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention

    Science.gov (United States)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian

    2015-04-01

    In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk

  20. The gamma two-step cascade method at Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Pham Dinh Khang; Nguyen Nhi Dien; Nguyen Xuan Hai; Tran Tuan Anh; Ho Huu Thang; Pham Ngoc Son; Mangengo Lumengano

    2014-01-01

    The event-event coincidence spectroscopy system was successfully established and operated on thermal neutron beam of channel No. 3 at Dalat Nuclear Research Reactor (DNRR) with resolving time value of about 10 ns. The studies on level density, gamma strength function and decay scheme of intermediate-mass and heavy nuclei have been performed on this system. The achieved results are opening a new research of nuclear structure based on (n, 2γ) reaction. (author)

  1. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  2. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  3. XXXII Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2005-01-01

    Theses of the reports, presented at the XXXII International conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 14-18 February 2005) are published. The total number of reports is 322, including 16 summarizing ones. The other reports are distributed by the following sections: magnetic confinement of high-temperature plasma (88 reports), inertial thermonuclear fusion (65), physical processes in low-temperature plasma (99) and physical bases of the plasma and beam technologies (54) [ru

  4. The European Space Agency and the European Union: The Next Step on the Road to the Stars

    Directory of Open Access Journals (Sweden)

    Thomas Christian Hoerber

    2009-11-01

    Full Text Available Given the outlook, the main questions considered in this article are whether a European position on a genuine common space policy is developing. If so, why is this happening now?; and what kind of potentials do these developments hold for the European integration process as a whole? This article will approach these questions through an analysis of past European collaboration in space affairs. It will describe the recent process of closer involvement between European Space Agency (ESA and the European Union (EU. It will identify the motivations underlying this process. It will also try to gauge the strategic potential of an intensification of the coordination of national space efforts in ESA and the involvement of the EU. In the conclusion, the ever closer relationship between the EU and ESA will be considered against the larger picture of European politics and the ongoing process of European integration

  5. Thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Shohei

    1988-01-01

    Purpose: To obtain high voltage withstanding current introduction terminals not suffering from the effects of the reduction in the creeping voltage withstanding property by the application of magnetic fields. Constitution: This invention concerns a current introduction terminal for supplying electric current to coils for use in a thermonuclear device, etc. The conductor of the current introduction terminal on the side of vacuum is completely covered with solid insulator. This can eliminate the portion of securing the creeping withstanding voltage. The voltage withstanding characteristics of the solid insulator covering the portion of the conductor on the side of vacuum has a constant value irrespective of the atmosphere or the absence or presence of magnetic fields. Accordingly, the voltage withstanding characteristics of the current introduction terminal on the side of vacuum are determined by the property of the solid insulator, which is not reduced by the application of magnetic fields. (Ikeda, J.)

  6. Thermal insulation layer for the vacuum containers of a thermonuclear device

    International Nuclear Information System (INIS)

    Nishikawa, Masana; Yamada, Masao; Kameari, Akihisa; Niikura, Setsuo.

    1980-01-01

    Purpose: To prevent temperature rise of a thermal insulation layer for a vacuum container of a thermonuclear device higher than allowable value when irradiated by neutron by constructing the layer of a cooling unit in thermal insulation material. Constitution: A metal plate attached with cooling pipes is buried in a thermal insulation material forming a thermal insulation layer to form the layer provided between a vacuum container of a thermonuclear device and a shield. (Yoshihara, H.)

  7. Thermonuclear device

    International Nuclear Information System (INIS)

    Kajiura, Soji.

    1984-01-01

    Purpose: To suppress the generation of electromagnetic forces and improve the strength of a vacuum container for sealing plasmas and of a support frame for covering the coils disposed around the periphery of the vacuum container. Constitution: Either one of the vacuum container or the support frame is made of a composite material, whose first material has low radioactivatability and the second has low radioactivatability and stronger electrical resistance than that of the first; therein, with the first material being disposed on the surface. The damage caused by neutrons resulted from thermonuclear reaction can be extremely small since the constituent is made of the material having the low radioactivatability. Further, eddy current does not occurs in the second material, but in the first material only in case magnetic fields change rapidly, whereby the electromagnetic force resulted in this portion is decreased as a whole. (Moriyama, K.)

  8. Quantifying Reliability - The Next Step for a Rapidly Maturing PV Industry and China's Role

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2015-10-14

    PV customers wish to know how long their PV modules will last, but quantitatively predicting service life is difficult because of the large number of ways that a module can fail, the variability of the use environment, the cost of the testing, and the short product development time, especially when compared with the long desired lifetime. China should play a key role in developing international standards because China manufactures most of the world's PV modules. The presentation will describe the steps that need to be taken to create a service life prediction within the context of a defined bill of materials, process window and use environment. Worldwide standards for cost-effective approaches to service-life predictions will be beneficial to both PV customers and manufacturers since the consequences of premature module failure can be disastrous for both.

  9. Change in energy market in order to make the next cultural step; Umbruch im Energiemarkt als das Erklimmen einer neuen Kulturstufe

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Franz [mpc management project coaching, Esslingen (Germany)

    2011-07-01

    The upcoming radical change in energy market will be more than complete shift to renewables. It will change the usage of energy. Up to now we lived in an ''energy paradise''. Without a thought about the needs of the next generations we reduced the storages of fossil fuels. In the future we will use only energy offered by the sun - directly or indirectly (e.g. wind energy) - or energy we stored before. We will have to make the next cultural step. We have to cope the extremely volatility of energy production. It is similar to the times, when we made the change from hunters and gatherers to tillers and stockbreeders: They had to learn how to manage the volatile offering of water and to store harvest. (orig.)

  10. A Novel Molten Salt Reactor Concept to Implement the Multi-Step Time-Scheduled Transmutation Strategy

    International Nuclear Information System (INIS)

    Csom, Gyula; Feher, Sandor; Szieberthj, Mate

    2002-01-01

    Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutation capabilities are studied. The goal is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures and thus results in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named 'multi-region' MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a 'conventional' MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on. (authors)

  11. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  12. Simulation study of multi-step model algorithmic control of the nuclear reactor thermal power tracking system

    International Nuclear Information System (INIS)

    Shi Xiaoping; Xu Tianshu

    2001-01-01

    The classical control method is usually hard to ensure the thermal power tracking accuracy, because the nuclear reactor system is a complex nonlinear system with uncertain parameters and disturbances. A sort of non-parameter model is constructed with the open-loop impulse response of the system. Furthermore, a sort of thermal power tracking digital control law is presented using the multi-step model algorithmic control principle. The control method presented had good tracking performance and robustness. It can work despite the existence of unmeasurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method. The high accuracy matching between the thermal power and the referenced load is achieved

  13. World must build two atomic reactors each day the next hundred years. [Summary of and commentary on book, 'Mankind at the Turning Point'

    Energy Technology Data Exchange (ETDEWEB)

    1974-07-24

    In summarizing and commenting on the ideas presented in Mesarovic and Pestel's book ''Mankind at the Turning Point'' it is pointed out that the global energy crisis makes comprehensive long-term planning a necessity. Assuming, optimistically, that nuclear power alone is able to supply the total projected energy demand in 100 years, it is stated that this will require 3000 nuclear power stations, each with 8 fast breeder reactors, totally 100 GW(t). This means a net rate of construction of four reactors per week, which again means allowing for a 30-year life, two reactors per day, every day, for the next hundred years. Fueling of these reactors will require the production and transport of 15 x 10/sup 6/ kg of /sup 239/Pu per year. It is therefore obvious that the energy crisis is not only a technological, but also a political, social, and even psychological problem.

  14. World must build two atomic reactors each day the next hundred years. [Summary of and commentary on book, 'Mankind at the Turning Point'

    Energy Technology Data Exchange (ETDEWEB)

    1974-07-24

    In summarizing and commenting on the ideas presented in Mesarovic and Pestel's book ''Mankind at the Turning Point'' it is pointed out that the global energy crisis makes comprehensive long-term planning a necessity. Assuming, optimistically, that nuclear power alone is able to supply the total projected energy demand in 100 years, it is stated that this will require 3000 nuclear power stations, each with 8 fast breeder reactors, totally 100 GW(t). This means a net rate of construction of four reactors per week, which again means allowing for a 30-year life, two reactors per day, every day, for the next hundred years. Fueling of these reactors will require the production and transport of 15 x 10/sup 6/ kg of /sup 239/Pu per year. It is therefore obvious that the energy crisis is not only a technological, but also a political, social, and even psychological problem.

  15. Thermonuclear device

    International Nuclear Information System (INIS)

    Oosaki, Osamu; Masuda, Kenju.

    1980-01-01

    Purpose: To provide excellent electric properties and high reliability in a thermonuclear device by improving a current collecting board connected to a coil device. Constitution: A current collecting board element perforated with an opening for enserting a connecting terminal is sized to be inserted into a plating tank, and is surface treated in the plating tank. Only the current collecting board element preferably surface treated is picked up. A plurality of such current collecting board elements are connected and welded to form a large current collecting board. In this manner, the current collecting board having several m 2 to several ten order m 2 in area can be obtained as preferably surface treated at the connecting terminal hole. The current collecting board element can be determined in shape with the existing facility without increasing the size of a surface treating tank. (Kamimura, M.)

  16. Licensing the next generation of reactors in the USA: Recent experience, key issues and challenges

    International Nuclear Information System (INIS)

    Cyr, K.D.; Crockett, S.F.; Burns, S.G.

    2006-01-01

    Over the past 20 years, the US Nuclear Regulatory Commission (NRC) has spent much effort on revising its procedures for reviewing nuclear power plant designs. Earlier procedures, instituted by the NRC's predecessor, the Atomic Energy Commission, permitted the resolution of important safety and environmental issues to be delayed until construction was underway. Moreover, the principal means of public participation in the resolution was through the medium of the courtroom trial. However, under new procedures, which have been upheld in the federal courts, nearly all safety and environmental issues are resolved before construction begins, and the public participates in the resolution of these issues without having to engage in a full-blown trial. The agency believes that safety and public participation are better served by the new procedures, and that the agency is thus well-positioned to review new designs. Nonetheless, the agency continues to seek improvements in its processes. This paper was presented in an earlier form by Mr. Burns at Nuclear Inter Jura 2005. (author)

  17. Financing the next generation of new reactors in the united states. Panel Discussion

    International Nuclear Information System (INIS)

    Turner, Kyle; Simard, Ron; Tran, K.C.; Kelly, Patrick; Green, Barrett E.; Quinn, Edward L.; Stamos, John

    2001-01-01

    Full text of publication follows: With the California energy shortage and new growth forecasts in the United States, significant new base-load generation will be needed in the near future to meet electricity demands. New figures for growth in electricity demand for the United States rose significantly because of Internet and related business expansion. Lack of sufficient natural gas supplies to support new generation in some regions is causing a renewed interest in building new nuclear plants. Speakers will address the current status of available and near-term design options including both the U.S. Department of Energy Generation III and IV design packages, infrastructure challenges, and financial models that show that nuclear is competitive with alternatives and a prudent and profitable investment. (authors)

  18. Investigations in the area of thermonuclear structural material science in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Tazhibayeva, I.; Shestakov, V.; Cherepnin, Yu.S.

    2001-01-01

    The investigations in the area of structural materials for fusion program initiated within the framework of ITER project in the Republic of Kazakhstan are devoted basically in the following direction: to studying the behaviour of hydrogen isotopes in structural elements of the first wall and the divertor in conditions simulating real conditions of material operation, accident situations arising during steam interaction with the beryllium armour of the first wall during accidental coolant loss, to establish an experimental facility for study aspects of tritium safety of thermonuclear installations, for example, levels of tritium accumulation and release; efficiency of barrier layers and protective coating; influence of brazing and welding zones on tritium permeation. The work on determination of tritium release from lead/lithium eutectic alloy by mass-spectrometry method and the development of permeation barriers has begun. At present, work has begun to create Kazakhstan's own tokamak type reactor for investigation of the behaviour of various first wall materials and divertor plates during normal and accident conditions. The concept of spherical tokamak will be used in the construction of KTM reactor. (author)

  19. The International conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development. Book of abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    The materials of the International Conference on Fast Reactors and Related Fuel Cycles (June 26-29, 2017, Yekaterinburg) are presented. The forum was organized by the IAEA with the assistance of Rosatom State Corporation. The theme of the conference: “The New Generation of Nuclear Systems for Sustainable Development”. About 700 specialists from more than 30 countries took part in the conference. The state and prospects for the development of the direction of fast reactors in countries dealing with this topic were discussed. A wide range of scientific issues covered the concepts of prospective reactors, reactor cores, fuel and fuel cycles, operation and decommissioning, safety, licensing, structural materials, industrial implementation [ru

  20. Safety reviews of next-generation light-water reactors

    International Nuclear Information System (INIS)

    Kudrick, J.A.; Wilson, J.N.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) is reviewing three applications for design certification under its new licensing process. The U.S. Advanced Boiling Water Reactor (ABWR) and System 80+ designs have received final design approvals. The AP600 design review is continuing. The goals of design certification are to achieve early resolution of safety issues and to provide a more stable and predictable licensing process. NRC also reviewed the Utility Requirements Document (URD) of the Electric Power Research Institute (EPRI) and determined that its guidance does not conflict with NRC requirements. This review led to the identification and resolution of many generic safety issues. The NRC determined that next-generation reactor designs should achieve a higher level of safety for selected technical and severe accident issues. Accordingly, NRC developed new review standards for these designs based on (1) operating experience, including the accident at Three Mile Island, Unit 2; (2) the results of probabilistic risk assessments of current and next-generation reactor designs; (3) early efforts on severe accident rulemaking; and (4) research conducted to address previously identified generic safety issues. The additional standards were used during the individual design reviews and the resolutions are documented in the design certification rules. 12 refs

  1. Group Health Coaching: Strengths, Challenges, and Next Steps

    Science.gov (United States)

    Wolever, Ruth Q.; Manning, Linda; Elam, Roy; Moore, Margaret; Frates, Elizabeth Pegg; Duskey, Heidi; Anderson, Chelsea; Curtis, Rebecca L.; Masemer, Susan; Lawson, Karen

    2013-01-01

    There is great need for cost effective approaches to increase patient engagement and improve health and well-being. Health and wellness coaching has recently demonstrated great promise, but the majority of studies to date have focused on individual coaching (ie, one coach with one client). Newer initiatives are bringing a group coaching model from corporate leadership development and educational settings into the healthcare arena. A group approach potentially increases cost-effective access to a larger number of clients and brings the possible additional benefit of group support. This article highlights some of the group coaching approaches currently being conducted across the United States. The group coaching interventions included in this overview are offered by a variety of academic and private sector institutions, use both telephonic and in-person coaching, and are facilitated by professionally trained health and wellness coaches as well as trained peer coaches. Strengths and challenges experienced in these efforts are summarized, as are recommendations to address those challenges. A working definition of “Group Health and Wellness Coaching” is proposed, and important next steps for research and for the training of group coaches are presented. PMID:24416678

  2. Group health coaching: strengths, challenges, and next steps.

    Science.gov (United States)

    Armstrong, Colin; Wolever, Ruth Q; Manning, Linda; Elam, Roy; Moore, Margaret; Frates, Elizabeth Pegg; Duskey, Heidi; Anderson, Chelsea; Curtis, Rebecca L; Masemer, Susan; Lawson, Karen

    2013-05-01

    There is great need for cost effective approaches to increase patient engagement and improve health and well-being. Health and wellness coaching has recently demonstrated great promise, but the majority of studies to date have focused on individual coaching (ie, one coach with one client). Newer initiatives are bringing a group coaching model from corporate leadership development and educational settings into the healthcare arena. A group approach potentially increases cost-effective access to a larger number of clients and brings the possible additional benefit of group support. This article highlights some of the group coaching approaches currently being conducted across the United States. The group coaching interventions included in this overview are offered by a variety of academic and private sector institutions, use both telephonic and in-person coaching, and are facilitated by professionally trained health and wellness coaches as well as trained peer coaches. Strengths and challenges experienced in these efforts are summarized, as are recommendations to address those challenges. A working definition of "Group Health and Wellness Coaching" is proposed, and important next steps for research and for the training of group coaches are presented.

  3. Thermonuclear pulsors engineering

    International Nuclear Information System (INIS)

    Ramos, Ruben F.

    2001-01-01

    The neutronic radiation has several applications, such as activation analysis of different substances, neutron radiography, molecular structures study, cancer therapy, humidity detection and materials surface treatment, among others. The main obstacle for these applications is the generation of neutronic beams. Nuclear reactors, isotopic sources and particle accelerators are neutron generators commonly used. They share the disadvantages of being non-portable, and quite expensive. This work is mainly focused on the development of neutron generators suitable to the applications mentioned before, in which traditional generators are non-applicable. The main characteristics should be transportability and to be non-contaminating, which would allow in-situ tests. Plasma focus generators, which produce neutron pulses by thermonuclear fusion reactions, satisfy these requirements and are economically convenient. This last feature would assure competitively in the neutron sources market. (author)

  4. COPDESS (Coalition for Publishing Data in the Earth & Space Sciences): An Update on Progress and Next Steps

    Science.gov (United States)

    Lehnert, Kerstin; Hanson, Brooks; Sallans, Andrew; Elger, Kirsten

    2016-04-01

    The Coalition for Publishing Data in the Earth and Space Sciences (http://www.copdess.org/) formed in October 2014 to provide an organizational framework for Earth and space science publishers and data facilities to jointly implement and promote common policies and procedures for the publication and citation of data across Earth Science journals. Since inception, it has worked to develop and promote adoption of data citation standards (e.g. FORCE11 Joint Declaration of Data Citation Principles), integrate community tools and services for greater discovery and adoption (e.g. COPDESS Directory of Repositories, https://copdessdirectory.osf.io/), and connect with related community efforts for greater transparency in research community (e.g. the Transparency and Openness Promotion Guidelines, http://cos.io/top). Following a second COPDESS workshop in Fall 2015, COPDESS is undertaking several concrete steps to increase participation and integration of efforts more deeply into the publishing and data facility workflows and to expand international participation. This talk will focus on details of specific initiatives, collection of feedback, and a call for new members. Specifically, we will present progress on the development of guidelines that aim to standardize publishers' recommended best practices by establishing "Best practices for best practices" that will allow a journal or data facility to tailor these practices to the sub-disciplines that they serve. COPDESS will further work to advance implementation of these best practices through increased outreach to and education of editors and authors. COPDESS plans to offer a Town Hall meeting at the EGU General Assembly as a forum for further information and discussion.

  5. Tritium isolation from lithium inorganic compounds applicable to thermonuclear reactor breeding blanket

    International Nuclear Information System (INIS)

    Vasil'ev, V.G.; Ershova, Z.V.; Nikiforov, A.S.

    1982-01-01

    Tritium separation from inorganic lithium compounds: Li 2 O, LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , LiF, LiBeF 3 , Li 2 BeF 4 irradiated with a beam of a gamma facility and a nuclear reactor, has been studied. In the first case the gas phase is absent. In the latter one- the tritium amount in the gas does not exceed 1-2% of its total amount in the salt. Based on the EPR spectra of irradiated salts the concentrations of paramagnetic centres are calculated. It is shown that during thermal annealing the main portion of tritium in the gas phase is in the form of oxide (HTO, T 2 O). Tritium is separated from lithium fluoroberyllates in the form of hydrogen (HT, T 2 ). The kinetics of tritium oxide isolation from irradiated lithium oxide aluminate, metha- and orthosilicates, lithium sulphate has been studied. The activation energies of tritium oxide separation process are presented. A supposition is made that chemical reaction of the HTO (T 2 O) or HT(T 2 ) or HF(TF) formation is a limiting stage. Clarification of the process stage limiting the rate of tritium recovery will permit to evaluate conditions for the optimum work of lithium material in the blanket, lithium zone to select the lithium element structure and temperature regime of irradiation

  6. Systems Analysis of a Compact Next Step Burning Plasma Experiment

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Meade, D.; Neumeyer, C.

    2002-01-01

    A new burning plasma systems code (BPSC) has been developed for analysis of a next step compact burning plasma experiment with copper-alloy magnet technology. We consider two classes of configurations: Type A, with the toroidal field (TF) coils and ohmic heating (OH) coils unlinked, and Type B, with the TF and OH coils linked. We obtain curves of the minimizing major radius as a function of aspect ratio R(A) for each configuration type for typical parameters. These curves represent, to first order, cost minimizing curves, assuming that device cost is a function of major radius. The Type B curves always lie below the Type A curves for the same physics parameters, indicating that they lead to a more compact design. This follows from that fact that a high fraction of the inner region, r < R-a, contains electrical conductor material. However, the fact that the Type A OH and TF magnets are not linked presents fewer engineering challenges and should lead to a more reliable design. Both the Type A and Type B curves have a minimum in major radius R at a minimizing aspect ratio A typically above 2.8 and at high values of magnetic field B above 10 T. The minimizing A occurs at larger values for longer pulse and higher performance devices. The larger A and higher B design points also have the feature that the ratio of the discharge time to the current redistribution time is largest so that steady-state operation can be more realistically prototyped. A sensitivity study is presented for the baseline Type A configuration showing the dependence of the results on the parameters held fixed for the minimization study

  7. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Sakanaka, P.H.

    1984-01-01

    A simplified review on the status of the controlled thermonuclear fusion research aiming to present the motivation, objective, necessary conditions and adopted methods to reach the objective. (M.C.K.) [pt

  8. Thermonuclear fusion in the UK: towards a new abundant and durable energy source; La fusion nucleaire au Royaume-Uni: vers une nouvelle source d'energie abondante et durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The ITER treaty (International thermonuclear experimental reactor) was signed in Paris on November 21, 2006, by the European Union, China, the USA, Japan and Russia. This treaty is devoted to the construction and exploitation of the biggest thermonuclear facility ever, capable to generate 500 MW during a reaction of 10 minutes. ITER is a priori the last experimental step before the construction of a fusion power plant for power generation at the industrial scale. The goal of ITER is to obtain a quasi-unexhaustible and less polluting energy source by the mid-21. century. The British research work has largely contributed to the development of this technology through a large number of projects that have preceded ITER but also through its present day involvement in the creation of the future reactor of Cadarache. This document presents: the UK fusion program, the projects carried out at the Culham science centre (Compass-D, Joint European Torus (JET), Small Tight Aspect Ratio Tokamak (START), Mega-Ampere Spherical Tokamak (MAST), EASY-2005 (European activation system)), the British involvement in ITER project and the transfer of technologies, and the nuclear fusion research in British universities (PPRG Imperial College London, CFSA Warwick university, Dalton nuclear institute (DNI), department of physics York university). (J.S.)

  9. The next generation of CANDU: reactor design to meet future energy markets

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Love, J.W.; Wren, D.J.

    2001-01-01

    Nuclear power plant designs for the future must respond to increasingly demanding market requirements. This means that value can be gained from substantial product development directed at these requirements. For the CANDU system, AECL has adopted the revolutionary approach, accommodating significant changes to design while retaining traditional CANDU strengths. The focus of the new design is to achieve a 40% reduction in capital cost, quicken construction time and higher efficiency. Key aspects of the new design include: light water coolant, smaller core, slightly enriched fuel, higher temperature and pressure coolant. Work is well advanced on the preliminary design

  10. Development of a draft of human factors safety review procedures for the Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Moon, B. S.; Park, J. C.; Lee, Y. H.; Oh, I. S.; Lee, H. C. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    In this study, a draft of human factors engineering (HFE) safety review procedures (SRP) was developed for the safety review of KNGR based on HFE Safety and Regulatory Requirements and Guidelines (SRRG). This draft includes acceptance criteria, review procedure, and evaluation