WorldWideScience

Sample records for the geysers

  1. Geysers

    Science.gov (United States)

    1971-01-01

    A geyser is a special type of hot spring that from time to time spurts water above ground. It differs from most hot springs in having periodic eruptions separated by intervals without flow of water. The temperature of the erupting water is generally nearly at boiling for pure water (212°F or 100°C at sea level). Some geysers erupt less than a foot high, and a few geysers erupt to more than 150 feet. Some small geysers erupt every minute or so, but other geysers are inactive for months or even years between eruptions. Contrary to popular opinion, most geysers are very irregular in their behavior, and each is different in some respects from all others. Among the major geysers, only a few such as Old Faithful in Yellowstone National Park are predictable enough to satisfy an impatient tourist. But even for Old Faithful the interval varies from about 30 to 90 minutes between eruptions, with an average interval of about 65 minutes.

  2. Temporal variations of geyser water chemistry in the Upper Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    Hurwitz, Shaul; Hunt, Andrew G.; Evans, William C.

    2012-01-01

    Geysers are rare features that reflect a delicate balance between an abundant supply of water and heat and a unique geometry of fractures and porous rocks. Between April 2007 and September 2008, we sampled Old Faithful, Daisy, Grand, Oblong, and Aurum geysers in Yellowstone National Park's Upper Geyser Basin and characterized temporal variations in major element chemistry and water isotopes (δ18O, δD, 3H). We compare these temporal variations with temporal trends of Geyser Eruption Intervals (GEI). SiO2 concentrations and geothermometry indicate that the geysers are fed by waters ascending from a reservoir with temperatures of ∼190 to 210°C. The studied geysers display small and complex chemical and isotopic seasonal variations, and geysers with smaller volume display larger seasonal variations than geysers with larger volumes. Aurum and Oblong Geysers contain detectable tritium concentrations, suggesting that erupted water contains some modern meteoric water. We propose that seasonal GEI variations result from varying degrees of evaporation, meteoric water recharge, water table fluctuations, and possible hydraulic interaction with the adjacent Firehole River. We demonstrate that the concentrations of major dissolved species in Old Faithful Geyser have remained nearly constant since 1884 despite large changes in Old Faithful's eruption intervals, suggesting that no major changes have occurred in the hydrothermal system of the Upper Geyser Basin for >120 years. Our data set provides a baseline for monitoring future changes in geyser activity that might result from varying climate, earthquakes, and changes in heat flow from the underlying magmatic system.

  3. Geysers from the Tiger Stripes of Enceladus

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    Enceladus, the sixth-largest moon of Saturn, is a cold, icy world but its also remarkably active. Recent studies have charted over a hundred geysers venting gas and dust into space from Enceladus south polar region. New research addresses the question of how the moons extreme surface terrain influences the locations and behavior of these geysers.Active PlumesEnceladus orbiting within Saturns E ring. Enceladus plumes probably created this ring. [NASA/JPL/Space Science Institute]A decade ago, scientists discovered that Enceladus south polar region is home to a prominent set of four fractures known as the tiger stripes. This region was found to contain roughly 100 geyser jets, which form plumes of gas and dust venting into space at a combined rate of ~200 kilograms per second! These plumes are probably the source of the material in Saturns E ring, in which Enceladus orbits.Recently, Carolyn Porco (UC Berkeley and CICLOPS Space Science Institute) led a study that analyzed 6.5 years of Cassini data, surveying the locations and orientations of 101 geysers. The outcome was peculiar: the geysers are distributed along the tiger stripes, but their directions are not all pointing vertically from the surface (see the video below!).Now, Paul Helfenstein (Cornell University) has teamed up with Porco to examine whether the surface terrain surrounding the geysers affects where the jets erupt, what direction they point, and even when theyre active.Surface InfluenceHelfenstein and Porco demonstrate that the locations and behavior of the geysers are very likely influenced by Enceladus surface features in this region. In particular, they find:The spacing of the geyser jets on Enceladus is not random.The jets are roughly uniformly distributed along the three most active tiger stripes, spaced about 5 kilometers apart. This fixed spacing might be due to shear fractures produced by fault motion along the tiger stripes cutting across the stripes at regular intervals and providing

  4. Virtual infrastructure planning: the GEYSERS approach

    NARCIS (Netherlands)

    Tzanakaki, A.; Anastasopoulos, M.P.; Georgakilas, K.; Garcia-Espin, J.A.; Ferrer Riera, J.; Figuerola, S.; Ghijsen, M.; Demchenko, Y.; de Laat, C.T.A.M.; Vicat-Blanc, P.; Soudan, S.; Anhalt, F.; Peng, S.; Escalona, E.; Nejabati, R.; Simeonidou, D.; Cunningham, P.; Cunningham, M.

    2012-01-01

    The new and emerging IT services require very high network capacities and specific IT resources that cannot be intrinsically delivered by the current Best Effort Internet. In response to this the European project GEYSERS (Generalised Architecture for Dynamic Infrastructure Services) is proposing a

  5. A database for The Geysers geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. (Lawrence Berkeley Lab., CA (USA)); Truesdell, A. (Geological Survey, Menlo Park, CA (USA))

    1989-09-01

    In Fiscal Year 1985-1986 the Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) began a multi-year project for SLC to organize and analyze the field data from The Geysers. In the first year, most of the work concentrated on the development of a comprehensive database for The Geysers, and conventional reservoir engineering analysis of the data. Essentially, all non-proprietary data for wells at The Geysers have been incorporated into the database, as well as proprietary data from wells located on State leases. In following years, a more detailed analysis of The Geysers data has been carried out. This report is a summary of the non- proprietary work performed in FY 1985--1986. It describes various aspects of the database and also includes: review sections on Field Development, Geology, Geophysics, Geochemistry and Reservoir Engineering. It should be emphasized that these background chapters were written in 1986, and therefore only summarize the information available at that time. The appendices contain individual plots of wellhead pressures, degree of superheat, steam flow rates, cumulative mass flows, injection rates and cumulative injection through 1988 for approximately 250 wells. All of the data contained in this report are non-proprietary, from State and non-State leases. The production/injection and heat flow data from the wells were obtained from the California State Division of Oil and gas (DOG) (courtesy of Dick Thomas). Most of the other data were obtained from SLC files in Sacramento (courtesy of Charles Priddy), or DOG files in Santa Rosa (courtesy of Ken Stelling). 159 refs., 23 figs., 3 tabs.

  6. Reservoir assessment of The Geysers Geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  7. Resource, technology, and environment at the geysers

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Tsao, K.; Wood, B.

    1977-06-01

    A general review, description, and history of geothermal development at the Geysers is presented. Particular emphasis is placed on environmental impacts of development of the area. The discussion is presented under the following chapter titles: introduction; energy, enthalpy and the First Law; vapor-producing geothermal reservoirs--review and models; geothermal; entropy and the Second Law; power plants--basics; H/sub 2/S emissions; hydrogen sulfide--possible health effects and odor; other emissions; power plant hydrogen sulfide abatement; hot water based geothermal development; phytotoxicity of geothermal emissions; appendices; and bibliography. (JGB)

  8. Geologic research at the Geysers -- 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.

    1997-12-31

    In response to the onset of field-wide pressure declines at The Geysers geothermal field in northern California the Department of Energy`s Geothermal Division in 1990 inaugurated sponsorship of a dedicated, multiyear research effort designed to mitigate the pressure drop and to allow steamfield operators to make more informed forecasts of steam supply and quality well into the 21st century. EGI and its predecessor, the University of Utah Research Institute, have from the onset been key participants in this important research effort. For example, utilizing fluid-inclusion and stable-isotopic methods, deciphered the field`s intricate magmatic-hydrothermal history. Hulen et al. (1991, 1992) and Hulen and Nielson (1995a) identified major textural and mineralogic differences between the productive steam reservoir and its relatively impermeable caprock.

  9. The Geysers Geothermal Field Update1990/2010

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible

  10. Dynamics within geyser conduits, and sensitivity to environmental perturbations: Insights from a periodic geyser in the El Tatio geyser field, Atacama Desert, Chile

    Science.gov (United States)

    Munoz-Saez, Carolina; Manga, Michael; Hurwitz, Shaul; Rudolph, Maxwell L.; Namiki, Atsuko; Wang, Chi-Yuen

    2015-02-01

    Despite more than 200 years of scientific study, the internal dynamics of geyser systems remain poorly characterized. As a consequence, there remain fundamental questions about what processes initiate and terminate eruptions, and where eruptions begin. Over a one-week period in October 2012, we collected down-hole measurements of pressure and temperature in the conduit of an exceptionally regular geyser (132 s/cycle) located in the Chilean desert. We identified four stages in the geyser cycle: (1) recharge of water into the conduit after an eruption, driven by the pressure difference between water in the conduit and in a deeper reservoir; (2) a pre-eruptive stage that follows the recharge and is dominated by addition of steam from below; (3) the eruption, which occurs by rapid boiling of a large mass of water at the top of the water column, and decompression that propagates boiling conditions downward; and (4) a relaxation stage during which pressure and temperature decrease until conditions preceding the recharge stage are restored. Eruptions are triggered by the episodic addition of steam coming from depth, suggesting that the dynamics of the eruptions are dominated by geometrical and thermodynamic complexities in the conduit and reservoir. Further evidence favoring the dominance of internal processes in controlling periodicity is also provided by the absence of responses of the geyser to environmental perturbations (air pressure, temperature and probably also Earth tides).

  11. Castle Geyser and Bobby Sox Trees: Pulses and Pauses in the Development of Hydrothermal Features in the Upper Geyser Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Foley, D.

    2007-12-01

    Preliminary 14-C dating of Castle Geyser, combined with observations of living and dead trees in hydrothermal areas, suggests that hydrothermal systems in Yellowstone have pulses of activity interspersed with pauses of little or no activity. Between the time scale of volcanic activity, with pulses and pauses over thousands to hundreds of thousands of years, and geyser eruptions, with pulses and pauses over minutes to decades, lies the time scale for pulses and pauses in the development of individual hydrothermal systems and large thermal basins. Castle Geyser has long been noted as being among the largest, and therefore probably oldest, geysers in Yellowstone. Watson (1961) proposed an age of 8000 years for the geyser cone, and Bryan (2001) suggested that it is 5000 to 15000 years old. Recent dating, accompanied by 3-D laser mapping, suggests a complex, multi- stage development of the geyser. AMS 14C dating of microbial and pollen carbon trapped in siliceous sinter that forms a broad, gently-sloping shield at the base of the geyser cone yields ages of 8787 +/- 60 years BP and 10472 +/- 70 years BP. Carbon from sinter on the cone of the geyser yields ages equal to or younger than 1038 +/- 35 years BP. No samples dated so far have ages between 8787 and 1038 years BP. The morphology of the geyser suggests that the pause after shield formation was followed at least one stage of terrace formation (from either hot spring or pool-type geyser activity), which in turn has been followed by the construction and partial destruction of a massive cone. Where thermal waters are high in silica, thermally killed trees may develop white lower trunks, informally known as "bobby sox." Forest growth implies a time of no thermal activity; forest death, where clear evidence of thermal activity exists, implies inception or rejuvenation of hydrothermal activity. Many thermal features, such as Castle and Old Faithful geysers, have evidence of trees that are now encrusted by silica. The

  12. Understanding the Structure of the Subsurface of the El Tatio Geyser field: A Velocity Model of the El Jefe Geyser from Ambient Seismic Noise

    Science.gov (United States)

    LongJohn, T.; Kelly, C.; Seats, K.; Lawrence, J.

    2013-12-01

    Hydrothermal system studies are important for geothermal energy exploration and geysers are also believed to be functional analogues of volcanoes. However, the mechanism of eruption and the characteristics of the plumbing system of most geysers are poorly understood given their subsurface location and sparse global distribution. An accurate acoustic velocity model could yield important insight into subsurface density and thermal variations in a geyser system. Passive seismic data was collected at El Jefe geyser in El Tatio Geyser Field, northern Chile during October of 2012. An array of 6 broadband seismometers and 51 high frequency geophones were deployed for ~1 week in a grid array with station spacing of 2-10 meters (geophones) and 3-50 meters (broadbands) centered around El Jefe Geyser. Using ambient seismic noise generated by the geyser system, I constructed a preliminary subsurface velocity model for El Jefe Geyser. As a result of the close station spacing, the seismic signals sampled shallow depths corresponding to high frequency waves. Coherent seismic records from different seismic station pairs were cross correlated to produce noise correlation functions (NCF). Adaptive covariance filtering and stacking techniques were utilized to amplify the signal of the NCFs and one-dimensional velocities between station pairs at varying depths were determined. Next, a tomographic inversion was done to interpolate between the one-dimensional velocities and produce a three-dimensional velocity model for the entire geyser area. From the velocity model, we can identify regions of low and high acoustic velocity that potentially represent water reservoirs and bedrock respectively.

  13. Challenges in determining b value in the Northwest Geysers

    Energy Technology Data Exchange (ETDEWEB)

    Saltiel, S.; Boyle, K.; Majer, E.

    2011-02-01

    Past analyses of the Gutenberg-Richter b-value in the Geysers and other geothermal settings have revealed a deviation from the assumed linear relationship in log space between magnitude and the number of earthquakes. In this study of the Northwest Geysers, we found a gently-sloping discontinuity in the b-value curve. This is especially apparent when comparing the least-squares fit (LSQ) of the curve to the fit obtained by the maximum likelihood estimation (MLE), a widely-respected method of analyzing magnitude-frequency relationships. This study will describe the assumptions made when using each of these two methods and will also explore how they can be used in conjunction to investigate the characteristics of the observed b-value curve. To understand whether slope-fit differences in the LSQR and MLE methods is due to physical properties of the system or due to artifacts from errors in sampling, it is extremely important to consider the catalog completeness, magnitude bin size, number of events, and differences in source mechanisms for the events comprising the study volume. This work will hopefully lead to informative interpretations of frequency-magnitude curves for the Northwest Geysers, a geothermal area of ongoing high-volume coldwater injection and steam production. Through this statistical investigation of the catalog contents, we hope to better understand the dominant source mechanisms and the role of injected fluids in the creation of seismic clustering around nearly 60 wells of varying depths and injection volumes.

  14. The mathematical model that describes the periodic spouting of a geyser induced by boiling

    Science.gov (United States)

    Kagami, Hiroyuki

    2017-04-01

    We have derived and modified the dynamical model of a geyser induced by gas inflow and regular or irregular spouting dynamics of geysers induced by gas inflow has been reproduced by the model. On the other hand, though we have derived the dynamical model of a geyser induced by boiling, periodic change between the spouting state and the pause state has not been adequately modeled by the model. In this connection, concerning a geyser induced by gas inflow we have proposed the model as described below. Because pressure in the spouting tube decreases obeying to the Bernoulli's theorem when the spouting state begins and water in the spouting tube begins to flow, inflow of groundwater into the spouting tube occurs. When the amount of this inflow reaches a certain amount, the spouting state transforms to the pause state. In this study, by applying this idea to the dynamical model of a geyser induced by boiling, the periodic change between the spouting state and the pause state could be reappeared. As a result, the whole picture of the spouting mechanism of a geyser induced by boiling became clear. This research results would give hints on engineering repair in order to prevent the weakening or the depletion of the geyser. And this study would be also useful for protection of geysers as tourism and environmental resources.

  15. Source Mechanisms of Induced Earthquakes at The Geysers Geothermal Reservoir

    Science.gov (United States)

    Johnson, Lane R.

    2014-08-01

    At The Geysers geothermal reservoir in northern California, evidence strongly suggests that activities associated with production of electric power cause an increase in the number of small earthquakes. First-degree dynamic moment tensors are used to investigate the relationship between induced earthquakes and injection of water into a well as part of a controlled experiment in the northwest Geysers. The estimation of dynamic moment tensors in the complex shallow crust at The Geysers is challenging, so the method is described in detail with particular attention given to the uncertainty in the results. For seismic events in the moment magnitude range of 0.9-2.8, spectral moduli of dynamic moment tensors are reliably recovered in the frequency range of 1-100 Hz, but uncertainty in the associated spectral phases limits their use to a few simple results. A number of different static moment tensors are investigated, with the preferred one obtained from parameters of a model fitted to the spectral modulus of the dynamic moment tensor. Moment tensors estimated for a group of 20 earthquakes exhibit a range of source mechanisms, with over half having significant isotropic parts of either positive or negative sign. Corner frequencies of the isotropic part of the moment tensor are about 40 % larger than the average of the deviatoric moment tensor. Some spatial patterns are present in source mechanisms, with earthquakes closely related in space tending to have similar mechanisms, but at the same time, some nearby earthquakes have very different mechanisms. Tensional axes of displacement in the source regions are primarily horizontal, while the pressure axes range from near horizontal to vertical. Injection of water into the well in the center of the study area clearly causes an increase in the number of earthquakes per day, but an effect upon source mechanisms is not evident.

  16. Protecting the geyser basins of Yellowstone National Park: toward a new national policy for a vulnerable environmental resource.

    Science.gov (United States)

    Barrick, Kenneth A

    2010-01-01

    Geyser basins provide high value recreation, scientific, economic and national heritage benefits. Geysers are globally rare, in part, because development activities have quenched about 260 of the natural endowment. Today, more than half of the world's remaining geysers are located in Yellowstone National Park, northwest Wyoming, USA. However, the hydrothermal reservoirs that supply Yellowstone's geysers extend well beyond the Park borders, and onto two "Known Geothermal Resource Areas"-Island Park to the west and Corwin Springs on the north. Geysers are sensitive geologic features that are easily quenched by nearby geothermal wells. Therefore, the potential for geothermal energy development adjacent to Yellowstone poses a threat to the sustainability of about 500 geysers and 10,000 hydrothermal features. The purpose here is to propose that Yellowstone be protected by a "Geyser Protection Area" (GPA) extending in a 120-km radius from Old Faithful Geyser. The GPA concept would prohibit geothermal and large-scale groundwater wells, and thereby protect the water and heat supply of the hydrothermal reservoirs that support Yellowstone's geyser basins and important hot springs. Proactive federal leadership, including buyouts of private groundwater development rights, can assist in navigating the GPA through the greater Yellowstone area's "wicked" public policy environment. Moreover, the potential impacts on geyser basins from intrusive research sampling techniques are considered in order to facilitate the updating of national park research regulations to a precautionary standard. The GPA model can provide the basis for protecting the world's few remaining geyser basins.

  17. Performance history of the Geysers steam field, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, K.P.; Conant, T.T. [Calpine Corporation, 10350 Socrates Mine Road, Middletown, CA 95461 (United States)

    2010-12-15

    The performance of Calpine's Geysers steam field from startup in 1960 to 2008 is described in this paper. Since October 2003, Calpine has received approximately 482 L/s of tertiary-treated reclaimed water from the City of Santa Rosa. To accommodate and derive benefit from this water, Calpine has converted 20 wells (ten producers, six shut-in, two observation, and two suspended wells) to high-rate injection service. Additional nine wells were also converted to low-rate injectors that receive 12.6 L/s or less. Annual recovery factors (i.e., fieldwide increase in annual steam production divided by annual injection) for the first 5 years of Santa Rosa Geysers Recharge Project (SRGRP) operation have been estimated at 17.6%, 26.1%, 37.1%, 39% and 44.6%, respectively; reasonably close to or slightly higher than the values, predicted prior to SRGRP startup. Using a revised definition that includes the amount of un-boiled water in the reservoir, the annual recovery factors turn out to be 17.6%, 16.1%, 14.6%, 12.4% and 12.2% from year one through year five. Improvements in the wellfield, water injection, and power plant modifications from January 1995 through December 2008 are also discussed in this paper. (author)

  18. Video Observations Inside Channels of Erupting Geysers, Geyser Valley, Russia

    Science.gov (United States)

    Belousov, A.; Belousova, M.; Nechaev, A.

    2011-12-01

    Geysers are a variety of hot springs characterized by violent ejections of water and steam separated by periods of repose. While ordinary boiling springs are numerous and occur in many places on Earth, geysers are very rare. In total, less than 1000 geysers are known worldwide, and most of them are located in three large geyser fields: Yellowstone (USA), Geyser Valley (Russia), and El Tatio (Chile). Several physical models were suggested to explain periodic eruptions of geysers, but realistic understanding of processes was hampered by the scarcity of field data on the internal plumbing of geyser systems. Here we present data based on video observations of interior conduit systems for geysers in Geyser Valley in Kamchatka, Russia. To investigate geyser plumbing systems we lowered a video camera (with thermal and water insulation) into the conduits of four erupting geysers. These included Velikan and Bolshoy, the largest geysers in the field, ejecting about 20 and 15 cub.m of water to heights of 25 and 15 m, respectively, with rather stable periods of approximately 5 h and 1 h. We also investigated Vanna and Kovarny, small geysers with irregular regimes, ejecting about ten liters of water to heights as much as 1.5 m, with periods of several minutes. The video footage reveals internal plumbing geometries and hydrodynamic processes that contradict the widely accepted "simple vertical conduit model", which regards geyser eruptions as caused by flashing of superheated water into steam. In contrast, our data fit the long-neglected "boiler model", in which steam accumulates in an underground cavity (boiler) and periodically erupts out through a water-filled, inverted siphon. We describe the physical rationale and conditions for the periodic discharge of steam from a boiler. Channels of the studied geysers are developed by ascending hot water in deposits of several voluminous prehistoric landslides (debris avalanches). The highly irregular contacts between adjacent debris

  19. MOSCAB: direct dark matter search using the geyser technique

    Science.gov (United States)

    Ardid, M.; Bou-Cabo, M.; Felis, I.; Martínez-Mora, J. A.; MOSCAB Collaboration

    2016-04-01

    The MOSCAB experiment (Materia OSCura A Bolle) uses the Geyser technique for dark matter search. The results of the first 0.5 kg mass prototype detector using superheated C3F8 liquid were very encouraging, achieving a 5 keV nuclear recoil threshold with high insensitivity to gamma radiation. Additionally, the technique seems to be easily scalable to higher masses for both in terms of complexity and costs, resulting in a very competitive technique for direct dark matter search, especially for the spin dependent case. Here, we report as well in the construction and commissioning of the big detector of 40 kg at the Milano-Bicocca University. The detector, the calibration tests and the evaluation of the background will be presented. Once demonstrated the functionality of the detector, it will be operated at the Gran Sasso National Laboratory in 2015.

  20. Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin

    Science.gov (United States)

    Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.

    2017-10-01

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.

  1. Illuminating the Voluminous Subsurface Structures of Old Faithful Geyser, Yellowstone National Park

    Science.gov (United States)

    Hurwitz, Shaul; Shelly, David R.

    2017-10-01

    Old Faithful geyser in Yellowstone National Park has attracted scientific research for almost a century and a half. Temperature and pressure measurements and video recordings in the geyser's conduit led to proposals of many quantitative eruption models. Nevertheless, information on the processes that initiate the geyser's eruption in the subsurface remained limited. Two new studies, specifically Wu et al. (2017) and Ward and Lin (2017), take advantage of recent developments in seismic data acquisition technology and processing methods to illuminate subsurface structures. Using a dense array of three-component nodal geophones, these studies delineate subsurface structures on a scale larger than previously realized, which exert control on the spectacular eruptions of Old Faithful geyser.

  2. Imaging and structural analysis of the Geyser field, Iceland, from underwater and drone based photogrammetry

    Science.gov (United States)

    Walter, Thomas R.; Jousset, Philippe; Allahbakhshi, Massoud; Witt, Tanja; Gudmundsson, Magnus T.; Pall Hersir, Gylfi

    2017-04-01

    The Haukadalur thermal area, southwestern Iceland, is composed of a large number of individual thermal springs, geysers and hot pots that are roughly elongated in a north-south direction. The Haukadalur field is located on the eastern slope of a hill, that is structurally delimited by fissures associated with the Western Volcanic Zone. A detailed analysis on the spatial distribution, structural relations and permeability in the Haukadalur thermal area remained to be carried out. By use of high resolution unmanned aerial vehicle (UAV) based optical and radiometric infrared cameras, we are able to identify over 350 distinct thermal spots distributed in distinct areas. Close analysis of their arrangement yields a preferred direction that is found to be consistent with the assumed tectonic trend in the area. Furthermore by using thermal isolated deep underwater cameras we are able to obtain images from the two largest geysers. Geysir, name giving for all geysers in the world, and Strokkur at depths exceeding 20 m. Near to the surface, the conduit of the geysers are near circular, but at a depth the shape changes into a crack-like elongated fissure. In this presentation we discuss the structural relationship of the deeper and shallower parts of these geysers and elaborate on the conditions of geyser and hot pot formations, with general relevance also for other thermal fields elsewhere.

  3. Aerometric measurement and modeling of the mass of CO2 emissions from Crystal Geyser, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, F J; Johnson, M R; Leif, R N; Friedmann, S J

    2005-02-07

    Crystal Geyser in eastern Utah is a rare, non-geothermal geyser that emits carbon dioxide gas in periodic eruptions. This geyser is the largest single source of CO{sub 2} originating from a deep reservoir. For this study, the amount of CO{sub 2} emitted from Crystal Geyser is estimated through measurements of downwind CO{sub 2} air concentration applied to an analytical model for atmospheric dispersion. Five eruptions occurred during the 48-hour field study, for a total of almost 3 hours of eruption. Pre-eruption emissions were also timed and sampled. Slow wind during three of the active eruptions conveyed the plume over a grid of samplers arranged in arcs from 25 to 100 m away from the geyser. An analytical, straight-line Gaussian model matched the pattern of concentration measurements. Plume width was determined from least-squares fit of the CO{sub 2} concentrations integrated over time. The CO{sub 2} emission rate was found to be between 2.6 and 5.8 kg/s during the eruption events, and about 0.17 kg/s during the active pre-eruptive events. Our limited field study can be extrapolated to an annual CO{sub 2} emission of 12 kilotonnes from this geyser. As this is the first application of Gaussian dispersion modeling and objective timing to CO{sub 2} emissions from a geyser of any type, the present study demonstrates the feasibility of applying this method more completely in the future.

  4. Protecting the Geyser Basins of Yellowstone National Park: Toward a New National Policy for a Vulnerable Environmental Resource

    Science.gov (United States)

    Barrick, Kenneth A.

    2010-01-01

    Geyser basins provide high value recreation, scientific, economic and national heritage benefits. Geysers are globally rare, in part, because development activities have quenched about 260 of the natural endowment. Today, more than half of the world’s remaining geysers are located in Yellowstone National Park, northwest Wyoming, USA. However, the hydrothermal reservoirs that supply Yellowstone’s geysers extend well beyond the Park borders, and onto two “Known Geothermal Resource Areas”—Island Park to the west and Corwin Springs on the north. Geysers are sensitive geologic features that are easily quenched by nearby geothermal wells. Therefore, the potential for geothermal energy development adjacent to Yellowstone poses a threat to the sustainability of about 500 geysers and 10,000 hydrothermal features. The purpose here is to propose that Yellowstone be protected by a “Geyser Protection Area” (GPA) extending in a 120-km radius from Old Faithful Geyser. The GPA concept would prohibit geothermal and large-scale groundwater wells, and thereby protect the water and heat supply of the hydrothermal reservoirs that support Yellowstone’s geyser basins and important hot springs. Proactive federal leadership, including buyouts of private groundwater development rights, can assist in navigating the GPA through the greater Yellowstone area’s “wicked” public policy environment. Moreover, the potential impacts on geyser basins from intrusive research sampling techniques are considered in order to facilitate the updating of national park research regulations to a precautionary standard. The GPA model can provide the basis for protecting the world’s few remaining geyser basins.

  5. Nuclear geyser model of the origin of life: Driving force to promote the synthesis of building blocks of life

    Directory of Open Access Journals (Sweden)

    Toshikazu Ebisuzaki

    2017-03-01

    Full Text Available We propose the nuclear geyser model to elucidate an optimal site to bear the first life. Our model overcomes the difficulties that previously proposed models have encountered. Nuclear geyser is a geyser driven by a natural nuclear reactor, which was likely common in the Hadean Earth, because of a much higher abundance of 235U as nuclear fuel. The nuclear geyser supplies the following: (1 high-density ionizing radiation to promote chemical chain reactions that even tar can be used for intermediate material to restart chemical reactions, (2 a system to maintain the circulation of material and energy, which includes cyclic environmental conditions (warm/cool, dry/wet, etc. to enable to produce complex organic compounds, (3 a lower temperature than 100 °C as not to break down macromolecular organic compounds, (4 a locally reductive environment depending on rock types exposed along the geyser wall, and (5 a container to confine and accumulate volatile chemicals. These five factors are the necessary conditions that the birth place of life must satisfy. Only the nuclear geyser can meet all five, in contrast to the previously proposed birth sites, such as tidal flat, submarine hydrothermal vent, and outer space. The nuclear reactor and associated geyser, which maintain the circulations of material and energy with its surrounding environment, are regarded as the nuclear geyser system that enables numerous kinds of chemical reactions to synthesize complex organic compounds, and where the most primitive metabolism could be generated.

  6. A Reservoir Assessment of the Geysers Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Richard P.; Chapman, Rodger H.; Dykstra, Herman; Stockton, A.D.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Upon moderately dipping, fracture network. Condensed steam at the steep reservoir flank drains back to the hot water table. These flanks are defined roughly by marginally-producing geothermal wells. Field extensions are expected to be on the southeast and northwest. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably represent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resitivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. Monitoring gravity and geodetic changes with time and mapping microearthquake activity are methods that show promise for determining reservoir size, possible recharge, production lifetime, and other characteristics of the known stream field. Seismic reflection data may contribute to the efficient exploitation of the field by identifying fracture zones that serve as conduits for the steam. (DJE-2005)

  7. Cumulative biological impacts of The Geysers geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, J.A.

    1981-10-01

    The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxic to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.

  8. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne

    2018-03-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  9. Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.

    2018-01-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.

  10. Geyser Interaction: Two examples from El Tatio, Chile

    Science.gov (United States)

    Munoz Saez, Carolina; Namiki, Atsuko; Manga, Michael

    2015-04-01

    Geysers are eruptive hot springs that episodically discharge steam, liquid water, and non-condensable gases. While hot springs are abundant in geothermal areas, geysers are uncommon and they require special conditions of water supply, heat flow, and fractures and/or porous rocks. Despite more than 200 years of study, there are still open questions about how and why geysers erupt: How is geyser cycle influenced by other adjacent and distant thermal sources? Are hot springs and geyser connected through permeable pathways? Why do only a few hot springs erupt as geysers? We conducted two week-long field studies of geyser interactions in the El Tatio geyser field, Chile during Oct. 2012 and Oct. 2014. We found two different cases: geyser-pool interaction and geyser-geyser interaction. In the first case, we documented how the water level of the pool varies as the geyser eruption evolves. Measured temperature in the geyser conduit has a repeatable pattern, when it reaches boiling the eruption occurs. In contrast, the temperature in the adjacent pool is constant and never reaches the boiling point, suggesting that heat is supplied only to the geyser conduit. Pressure in the geyser conduit and pool have a similar evolution over time so that the side pool acts as a barometer for the conduit. The geyser-geyser interaction was documented in 2014. A geyser with long eruption intervals (1-3 hours) changes the behavior of a short-interval geyser (c.a. 10 minutes). When the long-interval geyser erupts, the short-interval geyser stops erupting. When the eruption of the long-interval geyser becomes less vigorous, the short-interval geyser resumes its eruptions with shorter intervals. During the week of measurements in 2012, we did not observe the short-interval geyser erupting. At that time, the eruption of the long-interval geyser was regular (4 hours and 40 minutes, ref 1). We thus infer that the geyser-geyser interaction made the eruption cycle chaotic. Geyser-pool and geyser-geyser

  11. Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

    KAUST Repository

    Wu, Sin-Mei

    2017-10-03

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh-wave seismic signals between 1-10 Hz utilizing non-diffusive seismic waves excited by nearby active hydrothermal features with the following results. 1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, 2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and 3) resolving a relatively shallow (10-60 m) and large reservoir located ~100 m southwest of Old Faithful geyser.

  12. Tectonic controls on magmatism in the Geysers-Clear Lake region: Evidence from new geophysical models

    Science.gov (United States)

    Stanley, W.D.; Benz, H.M.; Walters, M.A.; Villasenor, A.; Rodriguez, B.D.

    1998-01-01

    In order to study magmatism and geothermal systems in The Geysers-Clear Lake region, we developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granitic pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. The regional model outlines low velocities at depths of 8-12 km in The Geysers-Clear Lake area, which extend eastward to the Coast Range thrust. These low velocities are inferred to be related to unmetamorphosed Mesozoic sedimentary rocks. In addition, the regional velocity model indicates high velocities in the lower crust beneath the Clear Lake volcanic field, which we interpret to be associated with mafic underplating. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has been developed in the area of the tomographic imaging. Our gravity model demonstrates that all density contrasts can be accounted for in the upper 5-7 km of the crust. Two-dimensional magnetotelluric models of data from a regional, east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. On the basis of heat flow and geologic evidence, Holocene intrusive activity is thought to have

  13. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  14. Air quality as the limiting factor on development of the Geysers geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, R.A.; Joyce, L.

    1978-08-16

    An air quality problem exists at the Geysers California as a result of hydrogen sulfide (H/sub 2/S) emissions from geothermal power generation. The policy and legal issues engulfing the air quality problem and efforts to mitigate the problem are examined. Estimates are made of the air quality impacts of future generation capacity based on utility electricity supply plans as submitted to California Energy Commission (CEC). The status of current and developing H/sub 2/S abatement technologies is examined for availability and technical characteristics. Analysis is provided on the prospect and consequences of inadequate control of H/sub 2/S emissions. H/sub 2/S control efficiencies of less than 95 percent may ultimately be ineffective if full field development is to be achieved at the Geysers.

  15. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

  16. Statistical Studies of Induced and Triggered Seismicity at The Geysers, California

    Science.gov (United States)

    Hawkins, A.; Turcotte, D. L.; Yıkılmaz, M. B.; Kellogg, L. H.; Rundle, J. B.

    2017-06-01

    This study considers the statistics of fluid-induced and remotely triggered seismicity at The Geysers geothermal field, California. Little seismicity was reported before steam extraction began in 1960. Beginning in 1980 the residual water associated with power generation was re-injected, producing induced seismicity. Beginning in 1997 large-scale injections of cold water began to enhance the generation of steam. This led to an increase in M 1.25 events. The GR and decay statistics are given. However, to separate aftershocks from remotely triggered earthquakes, an additional triggered sequence is studied. The M = 7.2 4/4/10 Baja earthquake triggered some 34 M > 1.25 earthquakes at The Geysers in the first hour including an M = 3.37 event. We conclude that the remotely triggered seismicity is dominated by local aftershocks of the larger remotely triggered earthquakes.

  17. Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, K.M.

    1982-05-01

    Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

  18. The hot spring and geyser sinters of El Tatio, Northern Chile

    Science.gov (United States)

    Fernandez-Turiel, J. L.; Garcia-Valles, M.; Gimeno-Torrente, D.; Saavedra-Alonso, J.; Martinez-Manent, S.

    2005-10-01

    The siliceous sinter deposits of El Tatio geothermal field in northern Chile have been examined petrographically and mineralogically. These sinters consist of amorphous silica (opal-A) deposited around hot springs and geysers from nearly neutral, silica-saturated, sodium chloride waters. Water cooling and evaporation to dryness are the main processes that control the opal-A deposition in both subaqueous and subaerial settings, in close spatial relation to microbial communities. All fingerprints of organisms observed in the studied sinter samples represent microbes and suggest that the microbial community is moderately diverse (cyanobacteria, green bacteria, and diatoms). The most important ecological parameter is the temperature gradient, which is closely related to the observed depositional settings: 1) Geyser setting: water temperature = 70-86 °C (boiling point at El Tatio: 4200 m a.s.l.); coarse laminated sinter macrostructure with rapid local variations; biota comprises non-photosynthetic hyperthermophilic bacteria. 2) Splash areas around geysers: water temperature = 60-75 °C; laminated spicule and column macrostructure, locally forming cupolas (El Tatio is a natural laboratory of great interest because the sedimentary macrostructures and microtextures reflect the geological and biological processes involved in the primary deposition and early diagenesis of siliceous sinters.

  19. Mechanics of Old Faithful Geyser, Calistoga, CA

    Science.gov (United States)

    Rudolph, M.L.; Manga, M.; Hurwitz, Shaul; Johnston, Malcolm J.; Karlstrom, L.; Wang, Chun-Yong

    2012-01-01

    In order to probe the subsurface dynamics associated with geyser eruptions, we measured ground deformation at Old Faithful Geyser of Calistoga, CA. We present a physical model in which recharge during the period preceding an eruption is driven by pressure differences relative to the aquifer supplying the geyser. The model predicts that pressure and ground deformation are characterized by an exponential function of time, consistent with our observations. The geyser's conduit is connected to a reservoir at a depth of at least 42 m, and pressure changes in the reservoir can produce the observed ground deformations through either a poroelastic or elastic mechanical model.

  20. Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA

    Energy Technology Data Exchange (ETDEWEB)

    O' Banion, K.; Hall, C.

    1980-07-14

    This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

  1. Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, D.R.

    1986-12-01

    The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallow primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.

  2. Land-use conflicts in The Geysers-Calistoga KGRA: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    O' Banion, K.; Hall, C.; Haven, K.

    1979-12-01

    This preliminary study of potential land use conflicts of geothermal development in The Geysers region, one component of the LLL/LBL socioeconomic program, focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. The land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems and each factor is depicted on a map. Then those factors are analyzed for potential conflicts with both geothermal and urban development and the conflicts displayed on respective maps. A brief review of laws and methods germane to geothermal land-use regulation is included.

  3. Engineering geology of the Geysers Geothermal Resource Area, Lake, Mendocino, and Sonoma Counties, California. Special report 122

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, C.F.; Amimoto, P.Y.; Sherburne, R.W.; Slosson, J.E.

    1976-01-01

    Guidelines for the engineering geology assessment of The Geysers Geothermal Resource Area (GRA) are presented. Approximately 50 percent of the geothermal wells and some of the power plants are presently located on landslide areas. Several geothermal wells have failed, causing additional land instability, loss of energy resource, and unnecessary expense. Hazardous geologic conditions in the area are identified, and measures for mitigating those hazardous conditions are recommended. Such measures or other equally adequate measures should be considered for any proposed development activity in The Geysers area.

  4. Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: A 40Ar/39Ar and U-Pb study

    Science.gov (United States)

    Dalrymple, G.B.; Grove, M.; Lovera, O.M.; Harrison, T.M.; Hulen, J.B.; Lanphere, M.A.

    1999-01-01

    Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yield 207Pb/206Pb vs. 238U/206Pb concordia ages ranging from 1.13 ?? 0.04 Ma to 1.25 ?? 0.04 (1??) Ma. The weighted mean of the U/Pb model ages is 1.18 ?? 0.03 Ma. The U-Pb ages coincide closely with 40Ar/39Ar age spectrum plateau and 'terminal' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350??C by ~0.9-1.0 Ma. Interpretation of the feldspar 40Ar/39Ar age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350??to 300??C between 1.0 and 0.4 Ma or transitory reheating to 300-350??C at about 0.4-0.6 Ma. Subsequent rapid cooling to below 260??C between 0.4 and 0.2 Ma is in agreement with previous proposals that vapor-dominated conditions were initiated within the hydrothermal system at this time. Heat flow calculations constrained with K-feldspar thermal histories and the present elevated regional heat flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2 to 0.6 Ma.

  5. How the geysers, tidal stresses, and thermal emission across the south polar terrain of enceladus are related

    Energy Technology Data Exchange (ETDEWEB)

    Porco, Carolyn; DiNino, Daiana [CICLOPS, Space Science Institute, 4750 Walnut Street, Boulder, CO 80304 (United States); Nimmo, Francis, E-mail: Carolyn@ciclops.org [Department of Earth and Planetary Sciences, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-09-01

    We present the first comprehensive examination of the geysering, tidal stresses, and anomalous thermal emission across the south pole of Enceladus and discuss the implications for the moon's thermal history and interior structure. A 6.5 yr survey of the moon's south polar terrain (SPT) by the Cassini imaging experiment has located ∼100 jets or geysers erupting from four prominent fractures crossing the region. Comparing these results with predictions of diurnally varying tidal stresses and with Cassini low resolution thermal maps shows that all three phenomena are spatially correlated. The coincidence of individual jets with very small (∼10 m) hot spots detected in high resolution Cassini VIMS data strongly suggests that the heat accompanying the geysers is not produced by shearing in the upper brittle layer but rather is transported, in the form of latent heat, from a sub-ice-shell sea of liquid water, with vapor condensing on the near-surface walls of the fractures. Normal stresses modulate the geysering activity, as shown in the accompanying paper; we demonstrate here they are capable of opening water-filled cracks all the way down to the sea. If Enceladus' eccentricity and heat production are in steady state today, the currently erupting material and anomalous heat must have been produced in an earlier epoch. If regional tidal heating is occurring today, it may be responsible for some of the erupting water and heat. Future Cassini observations may settle the question.

  6. TRACKING THE GEYSERS OF ENCELADUS INTO SATURN’S E RING

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C. J.; Porco, C. C. [Cassini Imaging Central Laboratory for Operations, 4750 Walnut Street Suite 205, Boulder, CO 80301 (United States); Weiss, J. W. [Saint Martin' s University, Lacey, WA 98503 (United States)

    2015-05-15

    We examine Cassini Imaging Science Subsystem images of the E ring taken over a period of almost 7 yr, from 2006 September to 2013 July, in which long, sinuous structures dubbed tendrils are present. We model these structures by numerically integrating the trajectories of particles launched from the sources of the most active geysers recently located along the four main fractures crossing the south polar terrain of the moon, and producing from these integrations synthetic images that we then compare to the real ones. We include the effects of charging and the electromagnetic forces on the particles in addition to the gravity of Saturn and Enceladus. We demonstrate that these structures are produced by the highest velocity particles erupting from the most active geysers and entering Saturn’s orbit, and not perturbations of E ring particles by Enceladus. The detailed structures of the tendrils change with the orbital position of Enceladus, a finding likely to be the result of the diurnal variability in the source activity.

  7. Final Report: Natural State Models of The Geysers Geothermal System, Sonoma County, California

    Energy Technology Data Exchange (ETDEWEB)

    T. H. Brikowski; D. L. Norton; D. D. Blackwell

    2001-12-31

    Final project report of natural state modeling effort for The Geysers geothermal field, California. Initial models examined the liquid-dominated state of the system, based on geologic constraints and calibrated to match observed whole rock delta-O18 isotope alteration. These models demonstrated that the early system was of generally low permeability (around 10{sup -12} m{sup 2}), with good hydraulic connectivity at depth (along the intrusive contact) and an intact caprock. Later effort in the project was directed at development of a two-phase, supercritical flow simulation package (EOS1sc) to accompany the Tough2 flow simulator. Geysers models made using this package show that ''simmering'', or the transient migration of vapor bubbles through the hydrothermal system, is the dominant transition state as the system progresses to vapor-dominated. Such a system is highly variable in space and time, making the rock record more difficult to interpret, since pressure-temperature indicators likely reflect only local, short duration conditions.

  8. Laboratory measurements of reservoir rock from the Geysers geothermal field, California

    Science.gov (United States)

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.

    1982-01-01

    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  9. Industrially induced changes in Earth structure at the Geysers Geothermal Area, California

    Science.gov (United States)

    Foulger, G. R.; Grant, C. C.; Ross, A.; Julian, B. R.

    Industrial exploitation is causing clearly-measurable changes in Earth structure at The Geysers geothermal area, California. Production at The Geysers peaked in the late 1980s at ˜3.5 × 10³ kg s-1 of steam and 1800 MW of electricity. It subsequently decreased by about 10% per year [Barker et al., 1992] because of declining reservoir pressure. The steam reservoir coincides with a strong negative anomaly (˜0.16, ˜9%) in the compressional-to-shear seismic wave speed ratio VP/ VS, consistent with the expected effects of low-pressure vapor-phase pore fluid [Julian et al., 1996]. Between 1991 and 1994 this anomaly increased in amplitude by up to about 0.07 (˜4%). This is consistent with the expected effects of continued pressure reduction and conversion of pore water to steam as a result of exploitation. These unique results show that VP/VS tomography can easily detect saturation changes caused by exploitation of reservoirs, and is a potentially valuable technique for monitoring environmental change. They also provide geophysical observational evidence that geothermal energy is not a renewable energy source.

  10. Infrasound characterization of some Yellowstone geysers' eruptions

    Science.gov (United States)

    Quezada-Reyes, A.; Johnson, J.

    2012-12-01

    Geysers are springs that intermittently erupt hot water and steam. As with volcanoes, infrasonic airwaves produced by different geysers provide information about the processes that occur near the nozzle, such as the amount of fluid released during eruptive episodes. The aim of this study was to investigate acoustic sources from different geyser behaviors observed at Lone Star, Sawmill and Great Fountain geysers, Yellowstone National Park, Wyoming. Acoustic signal were measured by arrays of microphones deployed around Lone Star and Great Fountain geysers between August 9th to 14th, 2011, and during one hour on August 16th, 2011 at Sawmill Geyser. Infrasound was analyzed with coincident video recordings to quantify and compare the pressure fields generated during explosive phases at the three geysers. We propose that the periodic infrasound recorded at Sawmill, and dominated by energy at 1 to 40 Hz, is generated by: 1) steam-filled bubble oscillations, and 2) subsequent bursting at the free surface resulting in a violent steam and water discharge. At Lone Star geyser, where ~18 m/s eruption jets endure for about 30 minutes, sound is dominated by higher frequency infrasound and audio-band signal evolving from 20 - 60 Hz to 40 - 85 Hz. We suggest that the infrasound tremor amplitudes are related to the transition of the erupted two-phase mixture from mostly water (low acoustic radiation) to steam (high acoustic radiation). At Great Fountain we observed three explosive bursts of water and steam during the last stage on the August 11 eruption with bi-modal infrasound pulses of up to 0.7 Pa-m. We model these pulses as volumetric sound sources and infer up to 32 m3 of fluid ejection. The variety of recordings reflect the variety of eruption mechanisms at the different geyser systems. Better understanding of the mechanisms of geyser infrasound radiation may help us to understand infrasound analogues at erupting silicic volcanoes, which are considerably more difficult to

  11. How and Why Do Geysers Erupt?

    Science.gov (United States)

    Manga, M.

    2014-12-01

    Geysers are features that produce episodic eruptions of water, steam and sometimes non-condensable gases. Natural geysers are rare, with fewer than 1,000 worldwide. They are more than curiosities and popular tourist attractions: they offer a direct window into geothermal processes, and may serve as a natural small-scale laboratory to study larger-scale eruptive process such as those at volcanoes, and other self-organized, intermittent processes that result from phase separation and localized input of energy and mass. Despite > 200 years of scientific study, basic questions remain: Do eruptions begin from the bottom or top of the geyser? What controls eruption duration? Why do eruptions end? What are the required special subsurface geometries? Why are some geysers periodic, and others irregular? How and why do they respond to external influences such as weather, tides, and earthquakes? This presentation will review new insights from field studies at Lone Star geyser, Yellowstone National Park, geysers in the El Tatio geyser field, Chile, and laboratory models. At Lone Star we infer that dynamics are controlled by thermal and mechanical coupling between the conduit and a deeper, laterally-offset reservoir (called a "bubble trap" in previous studies). At El Tatio, we measured pressure and temperature within geysers over multiple eruption cycles: this data document the heating of liquid water by steam delivered from below. The laboratory experiments reveal how episodic release of steam from a bubble trap prepares a conduit for eruption and can generate a range of eruption intensities. In all cases, the eruption initiation, duration and termination are controlled by the interaction between the accumulation and transport of steam and liquid, and modulated by the geometry of the geyser's plumbing. Time series of thousands of eruptions confirm that internal processes control eruptions, with only pool geysers showing a sensitivity to air temperature; only very large stress

  12. Surface deformation and seismic signatures associated with the eruption cycle of Lone Star Geyser, Yellowstone National Park

    Science.gov (United States)

    Gomez, F. G.; Johnson, H. E., III; LeWinter, A. L.; Finnegan, D. C.; Sandvol, E. A.; Nayak, A.; Hurwitz, S.

    2014-12-01

    Geysers are important subjects for studying processes involved with multi-phase eruptions. As part of a larger field effort, this study applies imaging geodesy and seismology to study eruptive cycles of the Lone Star Geyser in Yellowstone National Park. Lone Star Geyser is an ideal candidate for such study, as it erupts with a nearly regular period of approximately 3 hours. The geyser includes a 5 m diameter cone that rises 2 meters above the sinter terrace, and the entire system can be viewed from a nearby hillside. Fieldwork was accomplished during April 2014. Ground-based interferometric radar (GBIR) and terrestrial laser scanning (TLS) were used to image possible surface deformations associated with Lone Star Geyer's eruption cycles. Additional observations were provided by global positioning system (GPS) measurements and six broad-band seismometers deployed in the immediate vicinity of the geyser. The GBIR and TLS were deployed approximately 65 meters from the sinter cone of the geyser. The GBIR involves a ku-band radar (1.7 cm wavelength) that is sensitive to approximately half-millimeter changes in the line-of-sight distance. Radar images were acquired every minute for 3 or more eruptions per day. Temporally redundant, overlapping interferograms were used to improve the sensitivity and interpolate a minute-wise time series of line-of-sight displacement, and efforts were made to account for possible path-delay effects resulting from water vapor around the geyser cone. Repeat (every minute) high-speed TLS scans were acquired for multiple eruption cycles over the course of two-days. Resulting measurement point spacing on the sinter cone was ~3cm. The TLS point-clouds were geo-referenced using static surveyed reflectors and scanner positions. In addition to measuring ground deformation, filtering and classification of the TLS point cloud was used to construct a mask that allows radar interferometry to exclude non-ground areas (vegetation, snow, sensors

  13. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  14. The carbonate deposits underneath the geysering Lusi eruption (Java, Indonesia)

    Science.gov (United States)

    Samankassou, Elias; Mazzini, Adriano; Chiaradia, Massimo; Spezzaferri, Silvia

    2017-04-01

    The eruption site in East Java nicknamed Lusi is an active sedimentary hosted hydrothermal system that has been active since the 29th of May 2006. The sedimentary sequences pierced by the Lusi feeder channel are brecciated and expelled at the surface as mud breccia mixed with boiling fluids. The depth of the conduit remains so far unknown as well as the age of some of the inferred stratigraphic sequences. Over the years we documented and collected a large set of erupted clast specimens since the initiation of the eruption. Here we describe the results of foraminifera and 87Sr/86Sr dating of selected scleractinian coral fragments and carbonate clasts rich in planktonic foraminifera collected around the eruption crater site. The clasts were collected in 2006 during the early eruptive phases of Lusi. The aim of this work is to constrain the age of the components and to improve the understanding of the, so far unknown, sequence of carbonate deposits inferred in this region of Java. Kujung and Tuban are the two formations consisting of carbonates known from this region. Based on planktonic foraminifera biostratigraphy, one group of the samples reveal to belong to the Planktonic Foraminifera Zone M5, with an age comprised between 16.29 and 15.10 Ma (Miocene, Latest Burdighalian to Langhian). The Sr isotope-based ages of clasts analysed for 87Sr/86Sr cover a larger time window spanning from Pliocene (Zanclean and Piacenzian), Miocene (Messinian) down to Oligocene (Chatian). The Pliocene and Messinian ages are unreasonably young from what is known of the local geology and one sample provided an 87Sr/86Sr age that is 8 My younger compared to that obtained from the planktonic foraminifera assemblage occurring in that sample. This suggests that this and the young samples have been contaminated by geological sediments with higher radiogenic Sr isotope composition. Therefore these samples may be ascribed to the Miocene Tuban Formation. The minimum age of 23.77 Ma obtained by 87

  15. A Community Grows around the Geysering World of Enceladus.

    Science.gov (United States)

    Porco, Carolyn C

    2017-09-01

    The discovery by NASA's Cassini mission at Saturn in 2005 of a large plume of material erupting from the south polar terrain of Enceladus, sourced within a subsurface ocean of salty liquid water laced with organic compounds, has brought together scientists from a diverse range of disciplines over the last decade to evaluate this small moon's potential for extraterrestrial life. The collection of papers published today in Astrobiology, as the mission draws to a close, is the outcome of our most recent meeting at UC Berkeley in June 2016. Key Words: Enceladus-Enceladus Focus Group-Ocean world-Search for biosignatures. Astrobiology 17, 815-819.

  16. Detection and Isolation Techniques for Methanogens from Microbial Mats (in the El Tatio Geyser Field, Chile)

    Science.gov (United States)

    Pearson, E. Z.; Franks, M. A.; Bennett, P.

    2010-12-01

    Isolating methanogenic archea from an extreme environment such as El Tatio (high altitude, arid climate) gives insight to the methanogenic taxas able to adapt and grow under extreme conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85° C) with high levels of arsenic and low DIC levels. Despite these challenges, many of El Tatio’s hundred plus hydrothermal features host extensive microbial mat communities, many showing evidence of methanogenesis. When trying to isolate methanogens unique to this area, various approaches and techniques were used. To detect the presence of methanogens in samples taken from the field, dissolved methane concentrations were determined via gas chromatography (GC) analysis. Samples were then selected for culturing and most probable number (MPN) enumeration, where growth was assessed using both methane production and observations of fluorescence under UV light. PCR was used to see if the archeal DNA was apparent directly from the field, and shotgun cloning was done to determine phylogenetic affiliation. Several culturing techniques were carried out in an attempt to isolate methanogens from samples that showed evidence of methanogenesis. The slant culturing method was used because of the increased surface area for colonization combined with the relative ease of keeping anaerobic. After a few weeks, when colonies were apparent, some were aseptically selected and inoculated to observe growth in a liquid media containing ampicillin to inhibit bacterial growth. Culturing techniques proved successful after inoculation, showing a slow growth of methanogens via GC and autofluorescence. Further PCR tests and subsequent sequencing were done to confirm and identify isolates.

  17. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    Science.gov (United States)

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the

  18. Thermal History of the Felsite Unit, Geysers Geothermal Field, From Thermal Modeling of 40Ar/39Ar Incremental Heating Data

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Harrison (U of California); G. B. Dalrymple (Oregon State U); J. B. Hulen (U of Utah); M. A. Lanphere; M. Grove; O. M. Lovera

    1999-08-19

    An Ar-40/Ar-39 and U-Pb study was performed of the Geysers plutonic complex of the Geysers Geothermal Field in California. Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yielded Pb-207/Pb-206 vs. U-238/Pb-206 concordia ages ranging from 1.13 {+-} 0.04 Ma to 1.25 {+-} 0.04 Ma. The U-Pb ages coincide closely with Ar-40/Ar-39 age spectrum plateau and ''terminal'' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350 C by {approximately}0.9-1.0 Ma. Interpretation of the feldspar Ar-40/Ar-39 age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350-300 C between 1.0 and 0.4 Ma or transitory reheating to 300-350 C at about 0.4-0.6 Ma. Heat flow calculations constrained with K-feldspar thermal histories and the pre sent elevated regional heal flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2-0.6 Ma.

  19. Using a Large N Geophone Array to Identify Hydrothermal Seismic Sources in the Upper Geyser Basin of Yellowstone National Park

    Science.gov (United States)

    Farrell, J.; Lin, F. C.; Allam, A. A.; Smith, R. B.; Karplus, M. S.

    2016-12-01

    The recent availability of large N seismic arrays provides a unique capability for recording environmental seismic signals that can be monitored in detail. In November 2015, the University of Utah, in collaboration with Yellowstone National Park and the University of Texas El Paso, installed a seismic array in the Upper Geyser Basin of Yellowstone National Park centered on Old Faithful geyser. The array consisted of 133 three-component 5 Hz geophones recording continuously at 1000Hz for two weeks, with an average station spacing of 50 m and an aperture of 1 km. The array recorded numerous hydrothermal seismic sources including distinct seismic signals that could be attributed to surficial hydrothermal features as well as those that do not appear to be related to any individual surface feature. Old Faithful geyser eruptions themselves are largely aseismic. However, hydrothermal tremor, likely due to collapsing bubbles within the subsurface plumbing system, starts building about 45 minutes prior to an Old Faithful eruption. Tremor amplitudes slowly increase with time until they reach a peak about 25 minutes prior to the eruption and then slowly decrease until the eruption begins. The seismic signal related to the buildup of the Old Faithful subsurface reservoir is recorded at stations north, south and to the east of Old Faithful but is missing on stations to the northwest. This suggests a shallow subsurface feature that strongly attenuates the seismic signal immediately NW of the cone of Old Faithful. Another of the more interesting signals is observed regularly about every 38 minutes and may come from Doublet Pool on Geyser Hill. This signal has large seismic wave amplitudes and is recorded across much of the seismic array. The Geyser Hill signal may also be affected by the aforementioned subsurface attenuating feature NW of the Old Faithful cone. Interestingly, there is a persistent 20-25 Hz signal at several stations that seems to be affected by variations air

  20. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    Energy Technology Data Exchange (ETDEWEB)

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  1. Water discharge from Lone Star Geyser, Yellowstone NP, WY

    Science.gov (United States)

    Murphy, F.; Randolph-Flagg, N. G.; Hurwitz, S.

    2014-12-01

    During four days in April, 2014 we made a series of measurements at Lone Star Geyser in Yellowstone National Park, WY. This work included the continuous measurement of liquid water discharge from the geyser and some nearby not springs, and concurrent meteorological measurements. The discharge of the geyser and the hot springs was measured in channels that carry the water to the Firehole River. We found that average measured discharge varies from day to night, likely due to melting of geyser-generated and meteoric snow during warmer daylight hours and freezing of erupted liquid and vapor during the night. The nearby hot springs contribute a nearly constant flow of about 3 l/s to the Firehole River, while during eruptions the total discharge increases to a maximum of about 25 l/s. Two small geysers within 5 meters of the Lone Star Geyser cone were observed to erupt during a time when Lone Star Geyser was not erupting. The water discharged from these small geysers is a very small fraction of that from Lone Star Geyser.

  2. Social and economic research program for the Geysers-Calistoga known geothermal resource area

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.; O' Banion, K.

    1979-03-27

    The purpose of this study is to assess the economic and social effects of projected geothermal resource development for both direct use and electric power generation and to analyze local regulatory policy options designed to mitigate adverse effects. The key issues are land use, fiscal and public infrastructure systems, demography, and the local economy. The study has seven elements: a computer-based inventory and analysis of land characteristics, constraints, sensitivity, and suitability for various land uses; projections of direct and electric geothermal development; primary and induced economic activity using an input-output model; demographic changes; the land and infrastructural demand created; an assessment of the economic and social effects of various configurations in land use that could result; and an analysis of various local regulatory policy options to mitigate adverse effects. The study is a cooperative effort among two national laboratories, a regional agency, and the four Geysers-area counties (Lake, Mendocino, Napa, and Sonoma). The assessment results are intended to guide Department of Energy planners on the environmental consequences of program implementation. The regulatory policy analysis is intended for local officials who are implementing development-management policy.

  3. Unexplained neurological events during bathing in young people: Possible association with the use of gas geysers

    Directory of Open Access Journals (Sweden)

    Singh Prabhjeet

    2008-01-01

    Full Text Available Here, we report sudden, unexplained neurological collapse in 14 young people while bathing with hot water associated with the use of liquefied petroleum gas (LPG-based water heaters (gas geysers in ill-ventilated bathrooms. None of the patients reported any circumstantial evidence of seizures or prior epilepsy. One patient developed cortical blindness and demonstrated posterior leucoencephalopathy on imaging studies. The remaining patients made rapid and excellent recovery without any residual neurological sequelae. In these cases, the results of all routine investigations, i.e., serum chemistry, brain imaging (computed tomography in 2 and magnetic resonance imaging in 10 and electroencephalography were normal. The clinical clustering of these cases in winter months with similar presentations of reversible encephalopathy probably indicates an inhalational toxin exposure. Therefore, we postulate a hypothesis that harmful emissions consisting of carbon monoxide (CO, hydrocarbon gases (HC and nitrogen oxides (NOx, produced by incomplete combustion of LPG might be responsible for the cellular injury and subsequent transient neurological deficits. Physicians should be aware of this entity in order to avoid misdiagnosis of this condition as seizures, and a public awareness should also be created regarding the proper use of these devices.

  4. Status of the S.E. Geysers effluent pipeline & injection project

    Energy Technology Data Exchange (ETDEWEB)

    Dellinger, M. [Lake County Sanitation District, Lakeport, CA (United States)

    1997-12-31

    A unique public/private partnership of local, state, federal, and corporate stakeholders is constructing the world`s first wastewater-to-electricity system in Lake County, California. A rare example of a genuinely {open_quotes}sustainable{close_quotes} system, three Lake County communities will recycle their treated wastewater effluent through the Geysers geothermal steamfield to produce an estimated 625,000 MWh of electricity annually from six existing geothermal power plants. The concept is shown schematically. Construction was initiated in October 1995, and as of this writing, the system is approximately 85% complete. Operational start-up is expected in October 1997. The key to the project`s success thus far has been its emphasis on cooperative action among affected stakeholders; and a broad, community-based view of solving problems rather than the traditional, narrower view of engineering-driven technical solutions. Special attention has been given to environmentally-responsive engineering design to avoid or minimize adverse environmental impacts.

  5. Environmental controls on methanogen viability in the hydrothermal waters of the El Tatio geyser field, Chile.

    Science.gov (United States)

    Franks, M. A.; Bennett, P. C.; Omelon, C.; Engel, A. S.

    2007-12-01

    At the El Tatio geyser field, a unique hydrothermal site located in the Andes Mountains in Chile, methanogenic archaea were found in only two of the hundreds of hydrothermal features. Reported here is an investigation into the environmental and geochemical controls on the distribution of methanogenic archaea. Located in the hyper- arid Atacama Desert, El Tatio waters are characterized by high salinity (95-175mM), Na-Cl type waters and circum-neutral pH (6.5-7), with very low inorganic carbon (0.1-0.5 mM TIC), but very high concentrations of As and Sb (300-700 uM As, 10-30uM Sb). Extensive bacterial mats thrive in most of the shallow run-off streams originating from hydrothermal features. In order to determine geochemical controls on methanogen populations, major and trace elements, including As and Sb speciation and concentrations, were determined using IC and HPLC-ICP-MS methods. The structure of microbial communities was analyzed using MPN enumeration of methanogens, culturing, and phylogenetic analysis using molecular techniques. Here, as in many hydrothermal regions, temperature and geochemical gradients influence the microbial ecology. Results from MPN enumeration indicate methanogen populations are dominated by H2-utilizing (carbonate reducing) archaea at both of the sites, with some acetate-oxidizing archaea present. These sites contain comparatively high DIC concentrations; however, it is unclear whether this is a control or a product of methanogenic archaea. Water quality analyses also show a strong correlation between antimony concentrations and the presence of methanogens; methanogenic archaea being present only at sites with 17 uM Sb concentrations or less.

  6. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    National Research Council Canada - National Science Library

    Vandemeulebrouck, Jean; Sohn, Robert A; Rudolph, Maxwell L; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J. S; Soule, S. Adam; McPhee, Darcy; Glen, Jonathan M. G; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle...

  7. Geyser Decline and Extinction in New Zealand—Energy Development Impacts and Implications for Environmental Management

    Science.gov (United States)

    Barrick, Kenneth A.

    2007-06-01

    Geysers are rare natural phenomena that represent increasingly important recreation, economic, and scientific resources. The features of geyser basins, including hot springs, mud pots, and fumaroles, are easily damaged by human development. In New Zealand, the extinction of more than 100 geysers provides important lessons for the environmental management of the world’s remaining geyser basins. The impacts on New Zealand’s geysers are described in sequential “phases,” including the following: the first use of geothermal resources by the indigenous people—the Maori; early European-style tourism and spa development; streamside geyser decline caused by river level modification at the Spa geyser basin; multiple geyser basin extinctions caused by industrial-scale geothermal well withdrawal at Wairakei; the drowning of geysers at Orakeikorako after the filling of a hydroelectric reservoir; and geyser decline caused by geothermal well heating systems in Rotorua City. The crisis in Rotorua prompted preservation of the few remaining geysers at Whakarewarewa—the last major geyser basin in New Zealand. The New Zealand government ordered the geothermal wells within 1.5 km of Pohutu Geyser, Whakarewarewa, to be closed, which was a locally controversial measure. The well closure program resulted in a partial recovery of the Rotorua geothermal reservoir, but no extinct geysers recovered. The implications of recent geothermal computer modeling and future planning are discussed. The New Zealand case suggests that the protection of geysers requires strong regulations that prevent incompatible development at the outset, a prescription that is especially relevant for the future management of the geothermal fields adjacent to the geyser basins of Yellowstone National Park, U.S.A.

  8. Geyser decline and extinction in New Zealand: energy development impacts and implications for environmental management.

    Science.gov (United States)

    Barrick, Kenneth A

    2007-06-01

    Geysers are rare natural phenomena that represent increasingly important recreation, economic, and scientific resources. The features of geyser basins, including hot springs, mud pots, and fumaroles, are easily damaged by human development. In New Zealand, the extinction of more than 100 geysers provides important lessons for the environmental management of the world's remaining geyser basins. The impacts on New Zealand's geysers are described in sequential "phases," including the following: the first use of geothermal resources by the indigenous people-the Maori; early European-style tourism and spa development; streamside geyser decline caused by river level modification at the Spa geyser basin; multiple geyser basin extinctions caused by industrial-scale geothermal well withdrawal at Wairakei; the drowning of geysers at Orakeikorako after the filling of a hydroelectric reservoir; and geyser decline caused by geothermal well heating systems in Rotorua City. The crisis in Rotorua prompted preservation of the few remaining geysers at Whakarewarewa -- the last major geyser basin in New Zealand. The New Zealand government ordered the geothermal wells within 1.5 km of Pohutu Geyser, Whakarewarewa, to be closed, which was a locally controversial measure. The well closure program resulted in a partial recovery of the Rotorua geothermal reservoir, but no extinct geysers recovered. The implications of recent geothermal computer modeling and future planning are discussed. The New Zealand case suggests that the protection of geysers requires strong regulations that prevent incompatible development at the outset, a prescription that is especially relevant for the future management of the geothermal fields adjacent to the geyser basins of Yellowstone National Park, U.S.A.

  9. Low-Q structure related to partially saturated pores within the reservoir beneath The Geysers area in the northern California

    Science.gov (United States)

    Matsubara, M.

    2011-12-01

    A large reservoir is located beneath The Geysers geothermal area, northern California. Seismic tomography revealed high-velocity (high-V) and low-Vp/Vs zones in the reservoir (Julian et al., 1996) and a decrease of Vp/Vs from 1991 to 1998 (Guasekera et al., 2003) owing to withdrawal of steam from the reservoir. I perform attenuation tomography in this region to investigate the state of vapor and liquid within the reservoir. The target region, 38.5-39.0°N and 122.5-123°W, covers The Geysers area. I use seismograms of 1,231 events whose focal mechanism are determined among 65,810 events recorded by the Northern California Earthquake Data Center from 2002 to 2008 in the target region. The band-pass filtered seismograms are analyzed for collecting the maximum amplitude data. There are 26 stations that have a three-component seismometer among 47 seismic stations. I use the P- and S-wave maximum amplitudes during the two seconds after the arrival of those waves in order to avoid coda effects. A total of 8,545 P- and 1,168 S-wave amplitude data for 949 earthquakes recorded at 47 stations are available for the analysis using the attenuation tomographic method derived from the velocity tomographic method (Matsubara et al., 2005, 2008) in which spatial velocity correlation and station corrections are introduced to the original code of Zhao et al. (1992). I use 3-D velocity structure obtained by Thurber et al. (2009). The initial Q value is set to 150, corresponding to the average Q of the northern California (Ford et al., 2010). At sea level, low-Q zones are found extending from the middle of the steam reservoir within the main greywacke to the south part of the reservoir. At a depth of 1 km below sea level, a low-Q zone is located solely in the southern part of the reservoir. However, at a depth of 2 km a low-Q zone is located beneath the northern part of the reservoir. At depths of 1 to 3 km a felsite batholith in the deeper portions of the reservoir, and it corresponds

  10. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    water hardness as a chemical parameter that may impact the power consumption of electrical geyser heating elements. An accelerated scaling .... pictures of the geyser heating elements tested are shown in Fig. 1. Water hardness meters .... The aim of heating cycle and temperature experiments was to show whether scaling ...

  11. Site Specific Probabilistic Seismic Hazard and Risk Analysis for Surrounding Communities of The Geysers Geothermal Development Area

    Science.gov (United States)

    Miah, M.; Hutchings, L. J.; Savy, J. B.

    2014-12-01

    We conduct a probabilistic seismic hazard and risk analysis from induced and tectonic earthquakes for a 50 km radius area centered on The Geysers, California and for the next ten years. We calculate hazard with both a conventional and physics-based approach. We estimate site specific hazard. We convert hazard to risk of nuisance and damage to structures per year and map the risk. For the conventional PSHA we assume the past ten years is indicative of hazard for the next ten years from Msurprising since they were calculated by completely independent means. The conventional approach used the actual catalog of the past ten years of earthquakes to estimate the hazard for the next ten year. While the physics-based approach used geotechnical modeling to calculate the catalog for the next ten years. Similarly, for the conventional PSHA, we utilized attenuation relations from past earthquakes recorded at the Geysers to translate the ground motion from the source to the site. While for the physics-based approach we calculated ground motion from simulation of actual earthquake rupture. Finally, the source of the earthquakes was the actual source for the conventional PSHA. While, we assumed random fractures for the physics-based approach. From all this, we consider the calculation of the conventional approach, based on actual data, to validate the physics-based approach used.

  12. Testing Geyser Models using Down-vent Data

    Science.gov (United States)

    Wang, C.; Munoz, C.; Ingebritsen, S.; King, E.

    2013-12-01

    Geysers are often studied as an analogue to magmatic volcanoes because both involve the transfer of mass and energy that leads to eruption. Several conceptual models have been proposed to explain geyser eruption, but no definitive test has been performed largely due to scarcity of down-vent data. In this study we compare simulated time histories of pressure and temperature against published data for the Old Faithful geyser in the Yellowstone National Park and new down-vent measurements from geysers in the El Tatio geyser field of northern Chile. We test two major types of geyser models by comparing simulated and field results. In the chamber model, the geyser system is approximated as a fissure-like conduit connected to a subsurface chamber of water and steam. Heat supplied to the chamber causes water to boil and drives geyser eruptions. Here the Navier-Stokes equation is used to simulate the flow of water and steam. In the fracture-zone model, the geyser system is approximated as a saturated fracture zone of high permeability and compressibility, surrounded by rock matrix of relatively low permeability and compressibility. Heat supply from below causes pore water to boil and drives geyser eruption. Here a two-phase form of Darcy's law is assumed to describe the flow of water and steam (Ingebritsen and Rojstaczer, 1993). Both models can produce P-T time histories qualitatively similar to field results, but the simulations are sensitive to assumed parameters. Results from the chamber model are sensitive to the heat supplied to the system and to the width of the conduit, while results from the fracture-zone model are most sensitive to the permeability of the fracture zone and the adjacent wall rocks. Detailed comparison between field and simulated results, such as the phase lag between changes of pressure and temperature, may help to resolve which model might be more realistic.

  13. The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    White, Donald Edward; Hutchinson, Roderick A.; Keith, Terry E.C.

    1988-01-01

    Norris Geyser Basin, normally shortened to Norris Basin, is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. An east-west fault zone terminates the Gallatin Range at its southern end and extends from Hebgen Lake, west of the park, to Norris Basin. No local evidence exists at the surface in Norris Basin for the two oldest Yellowstone volcanic caldera cycles (~2.0 and 1.3 m.y.B.P.). The third and youngest cycle formed the Yellowstone caldera, which erupted the 600,000-year-old Lava Creek Tuff. No evidence is preserved of hydrothermal activity near Norris Basin during the first 300,000.years after the caldera collapse. Glaciation probably removed most of the early evidence, but erratics of hot-spring sinter that had been converted diagenetically to extremely hard, resistant chalcedonic sinter are present as cobbles in and on some moraines and till from the last two glacial stages, here correlated with the early and late stages of the Pinedale glaciation Lava Creek Tuff were subaerial, perhaps in part windblown and redeposited by streams. A few small rounded pebbles are interpreted as chalcedonic sinter of a still older cycle. None of these are precisely dated but are unlikely to be more than 150,000 to 200,000 years old. ...Most studies of active hydrothermal areas have noted chemical differences in fluids and alteration products but have given little attention to differences and models to explain evolution in types. This report, in contrast, emphasizes the kinds of changes in vents and their changing chemical types of waters and then provides models for explaining these differences. Norris Basin is probably not an independent volcanic-hydrothermal system. The basin and nearby acid-leached areas (from oxidation of H2S-enriched vapor) are best considered as parts of the

  14. Moment Tensors and their Uncertainties for M3 Earthquakes in the Geysers, California, from Waveform Modeling and First Motions

    Science.gov (United States)

    Guilhem, A.; Dreger, D. S.; Hutchings, L. J.; Johnson, L.

    2012-12-01

    We investigate moment tensor solutions and their uncertainties for magnitude (M) ~3 earthquakes located in the northwest Geysers geothermal field, California. We are exploiting an unusual opportunity where data for M~3 events have been recorded by three different networks and have moment tensor solutions calculated by three different methods. We solve for both deviatoric and full moment tensor solutions. The data sets include local short-period instruments (4.5 Hz) of the 30 stations of the Lawrence Berkeley National Laboratory (LBNL), with which we obtain waveform inversion solutions at relatively high frequencies (i.e., up to 2.5 Hz), and regionally distributed broadband stations operated by the Berkeley Seismological Laboratory (BSL), with which are used to provide waveform inversion solutions with data filtered at longer periods (i.e., > 10 sec). We also utilize the LBNL data to obtain moment tensor solutions by fitting the P-wave first motions. The USGS, LBNL, and BSL obtain different event locations, utilize different velocity models, and analyze different frequency bands and wave types (i.e., body waves for LBNL method and primarily surface waves for the BSL analysis). Preliminary results indicate that the BSL and LBNL waveform modeling analyses give similar results in terms of nodal plane characteristics, moment magnitude, and moment tensor decomposition. Analysis of the P-wave first motions recorded by LBNL stations can illuminate complexities in the source processes when compared to waveform moment tensor solutions. We discuss uncertainties in the source inversions that use broadband and/or short-period waveform modeling, and in the source inversions from first motions only. We also combine the different datasets and compare their individual importance as they can help illustrate the complex source processes happening in the Geysers. This study introduces the possibility to interpret the seismic sources as complex processes in which both shear and tensile

  15. Dynamics within geyser conduits: Insights from downhole measurements in El Jefe geyser, El Tatio Geyser Field, Chile

    Science.gov (United States)

    Munoz Saez, C.; Manga, M.; Hurwitz, S.; Rudolph, M. L.; Namiki, A.; Wang, C.; King, E.; Patel, A.

    2013-12-01

    The El Tatio geothermal area is located in the Atacama Desert at an elevation of 4200 m asl. It is the third largest geyser field in the world, with more than 100 active geysers. Recharge of meteoric waters from the NE is limited, and temperatures vary daily from -5 to 10 C. We studied a geyser that we named 'El Jefe' (601768 E, 7530174 S, WGS84 19S). Its conduit has a constriction at a depth of 1.5 m and its diameter is 30 cm. Erupted water ponds in a natural pool around the conduit, and a large fraction then flows back into to the conduit at the end of the eruption. To quantify the mechanics and thermodynamics of the geyser's eruptions, we measured temperature, and pressure continuously inside the geyser conduit for 7 days. Pressure was measured at three depths at a frequency of 100 Hz and temperature was measured at depth intervals of 30 cm at a frequency of 1Hz. During the period of our study, eruption duration was 25 +/- 1.5 seconds and the interval between eruptions was 132 +/-2.5 sec. Variations of the eruption duration and intervals did not correlate with atmospheric pressure and temperature variations. The eruption cycle consists of four distinct stages: (1) Pre-play: lasts for 15 seconds prior to the surface manifestation of the eruption. (2) Eruption: lasts for 25 seconds (3) Post-eruption relaxation: pressure decreases rapidly in two steps, but temperature decreases gradually lagging behind the pressure decrease. Erupted water is drained into the conduit. (4) Recharge: temperature remains nearly constant while pressure increases, suggesting recharge of cold water from below.

  16. Hydrologic Connection Between Geysers and Adjacent Thermal Pools, Two Examples: El Tatio, Chile and Yellowstone, USA

    Science.gov (United States)

    Munoz Saez, C.; Fauria, K.; Manga, M.; Hurwitz, S.; Namiki, A.

    2014-12-01

    Geyser eruption cycles can be influenced by adjacent and distant thermals sources, suggesting a hydraulic connection through permeable pathways. Diffusion of fluid pressure can be responsible for the communication between geysers. In this study we examine the processes linking two different geysers with adjacent thermal pools. The first was Vega Rinconada, located at El Tatio geyser field, Chile, where we measured temperature inside the conduit between the ground surface and a depth of seven meters, at one-meter intervals. The second was Lone Star Geyser in Yellowstone National Park, where we measured temperature of the overflow water at the base of the cone. Concurrently, we measured temperature and the water level in pools adjacent to both geysers. We found common elements in both geyser - pool systems: First, water temperature in both adjacent pools was below the boiling point and cooler than water in the geysers. Second, changes in pool water levels were correlated with eruptions of the geysers. During the quiescent period of the geysers, the water level increased in adjacent pools, while water level in the pools deceased during eruptions. Additionally, measurements inside of the conduit in Vega Rinconada Geyser showed that water temperature increased in the deepest part of the conduit during eruptions, while water temperature decreased in the shallow part of the geyser conduit (~1 to 2 m). These drops in temperature in the shallow conduit were coincident with the drop in water level in the adjacent pool. This suggests that after the initiation of an eruption, water may drain from the pool to the geyser. Furthermore, we observed a temperature drop of 3oC in the shallow conduit immediately preceding the end of an eruption. This suggests that flow from the pool to geyser contributes to eruption shut off. Our observations of geyser-pool systems indicate a hydrologic connection between the geysers and their adjacent pools. In the case of Vega Rinconada, cold water

  17. Bimodal Distribution of Geyser Preplay Eruptions: Lone Star Geyser, Yellowstone National Park

    Science.gov (United States)

    Namiki, A.; Hurwitz, S.; Murphy, F.; Manga, M.

    2014-12-01

    Geyser eruption intervals are determined by rates of water and heat discharge into shallow subsurface reservoirs and the conduit. In some geysers, small amounts of water discharge prior to a main eruption ('Preplay') can affect eruption intervals. Water discharge during preplay reduces the hydrostatic pressure, which in turn, induces boiling of water that is at, or near the critical temperature. Ascending steam slugs from depth can also lead to shorter eruption intervals (Namiki et al., 2014). In April 2014, we carried a five day experiment at Lone Star Geyser, Yellowstone National Park. Eruptions and their preplays were recorded with an infrared sensor that measured temperature variations immediately above the geyser cone (3.4~m high), temperature loggers that measured water temperature at the base of the cone and in the outflow channels, and visual observations. At Lone Star Geyser, during the preplay phase of the eruption, mainly liquid water is erupted, whereas the main phase of the eruption begins with the liquid-water dominated eruption and turns into the steam discharge. The temperature rise in an outflow channel indicates the occurrence of preplays and initiation of the main eruption. The acquired data suggests that the preplay patterns of Lone Star Geyser are vigorous and complex, consistent with previous observations (Karlstrom et al., 2013). Our new observations reveal two typical styles: 1) vigorous preplays with few events (20~minutes) that last approximately 40~minutes, and 2) less vigorous preplays that include several events (>5) with short intervals (few minutes), and continue approximately for one hour. Probability distributions of preplay durations show two peaks indicating the bimodal activity. The bimodality of Lone Star preplays may be a result of subtle change of temperature distribution in a convecting reservoir which has been observed in laboratory experiments (Toramaru and Maeda, 2013).

  18. Chemical analyses of waters from geysers, hot springs, and pools in Yellowstone National Park, Wyoming from 1974 to 1978

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.M.; Yadav, S.

    1979-01-01

    Waters from geysers, hot springs, and pools of Yellowstone National Park have been analyzed. We report 422 complete major ion analyses from 330 different locations of geysers, hot springs, and pools, collected from 1974 to 1978. Many of the analyses from Upper, Midway, Lower, and Norris Geyser Basin are recollections of features previously reported.

  19. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland.

    Science.gov (United States)

    Gaisin, Vasil A; Ivanov, Timophey M; Kuznetsov, Boris B; Gorlenko, Vladimir M; Grouzdev, Denis S

    2016-07-21

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain's ecological role as a phototrophic bacterium within the bacterial community. Copyright © 2016 Gaisin et al.

  20. Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-01-01

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  1. Micro-digitate Silica Structures on Earth and Mars: Potential Biosignatures Revealed in the Geyser Field of El Tatio, Chile

    Science.gov (United States)

    Ruff, S. W.; Farmer, J. D.

    2015-12-01

    Opaline silica outcrops and soil identified by the Spirit rover adjacent to "Home Plate" in Gusev crater are associated with a suite of geologic features that demonstrates that they are the products of a volcanic hydrothermal system, the first such example verified on Mars [1]. Fumarolic acid-sulfate leaching of basaltic precursor materials was suggested as the origin of the opaline silica, based largely on geochemical arguments. A more complete analysis by Ruff et al. [2] included stratigraphic and textural observations of the outcrops to advance the hypothesis of a hot spring and/or geyser-related origin under alkaline-neutral conditions; acid-sulfate leaching appears much less tenable. But the nodular expression of many of the outcrops and sub-cm-scale "digitate protrusions" they contain remained enigmatic, precluding a complete explanation for the silica. Now, new observations of silica deposits produced in small discharge channels from hot springs and geysers in a high elevation geothermal field known as El Tatio in the Atacama Desert of northern Chile reveal remarkably similar features, including infrared spectral characteristics and what we describe here as micro-digitate silica structures. We hypothesize that these structures at El Tatio arise through microbial mediation of silica precipitation, i.e., that they are microstromatolites and that they provide favorable environments for the capture and preservation of microbial biosignatures. Similar features have been identified among hot spring silica deposits in Yellowstone National Park, the Taupo Volcanic Zone of New Zealand, and Iceland [e.g., 3; 4; 5]. Our ongoing field and lab studies are intended provide a robust assessment of the biogenicity of the micro-digitate silica structures and other aspects of El Tatio silica sinter deposits and test their viability as direct analogs to similar features found among the Home Plate silica deposits on Mars. [1] Squyres, S. W., et al. (2008), Science, 320, 1063

  2. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    Science.gov (United States)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field

  3. Geyser eruption intervals and interactions: Examples from El Tatio, Atacama, Chile

    Science.gov (United States)

    Munoz-Saez, Carolina; Namiki, Atsuko; Manga, Michael

    2015-11-01

    We compare and contrast data collected in 2012 and 2014 from the El Tatio geyser field, Chile. We identify geyser systems that evolve over time, including changes in the interval between eruptions, development of new thermal features, and interactions between geysers. We study three different cases: (a) an isolated geyser, which is periodic and has nearly identical eruptions every cycle; (b) a geyser and coupled noneruptive pool, where the geyser has nonregular cycles and several preplay eruptions before the main eruption; and (c) two geysers and a mud volcano, which have nonregular cycles and are all interacting. Though geysers erupt with different styles, we recognize some common features: the conduit recharges with liquid during the quiescent period, bubbles enter the conduit before eruptions, and eruptions occur when water boils in the upper part of the conduit. The episodic addition of heat may govern the periodicity, while the depth where heat is added dictates the eruption style: conduits with deeper heat input are more likely to show preplay or minor eruptions. The interactions between thermal features can be explained by pressure transmission in subsurface permeable layers between geyser conduits.

  4. Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    King, Jonathan M.; Hurwitz, Shaul; Lowenstern, Jacob B.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2016-01-01

    A multireaction chemical equilibria geothermometry (MEG) model applicable to high-temperature geothermal systems has been developed over the past three decades. Given sufficient data, this model provides more constraint on calculated reservoir temperatures than classical chemical geothermometers that are based on either the concentration of silica (SiO2), or the ratios of cation concentrations. A set of 23 chemical analyses from Ojo Caliente Spring and 22 analyses from other thermal features in the Lower Geyser Basin of Yellowstone National Park are used to examine the sensitivity of calculated reservoir temperatures using the GeoT MEG code (Spycher et al. 2013, 2014) to quantify the effects of solute concentrations, degassing, and mineral assemblages on calculated reservoir temperatures. Results of our analysis demonstrate that the MEG model can resolve reservoir temperatures within approximately ±15°C, and that natural variation in fluid compositions represents a greater source of variance in calculated reservoir temperatures than variations caused by analytical uncertainty (assuming ~5% for major elements). The analysis also suggests that MEG calculations are particularly sensitive to variations in silica concentration, the concentrations of the redox species Fe(II) and H2S, and that the parameters defining steam separation and CO2 degassing from the liquid may be adequately determined by numerical optimization. Results from this study can provide guidance for future applications of MEG models, and thus provide more reliable information on geothermal energy resources during exploration.

  5. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John P.

    2016-01-01

    To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15-152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.

  6. Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    King, Jonathan M.; Hurwitz, Shaul; Lowenstern, Jacob B.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2016-12-01

    A multireaction chemical equilibria geothermometry (MEG) model applicable to high-temperature geothermal systems has been developed over the past three decades. Given sufficient data, this model provides more constraint on calculated reservoir temperatures than classical chemical geothermometers that are based on either the concentration of silica (SiO2), or the ratios of cation concentrations. A set of 23 chemical analyses from Ojo Caliente Spring and 22 analyses from other thermal features in the Lower Geyser Basin of Yellowstone National Park are used to examine the sensitivity of calculated reservoir temperatures using the GeoT MEG code (Spycher et al. 2013, 2014) to quantify the effects of solute concentrations, degassing, and mineral assemblages on calculated reservoir temperatures. Results of our analysis demonstrate that the MEG model can resolve reservoir temperatures within approximately ± 15 °C, and that natural variation in fluid compositions represents a greater source of variance in calculated reservoir temperatures than variations caused by analytical uncertainty (assuming 5% for major elements). The analysis also suggests that MEG calculations are particularly sensitive to variations in silica concentration, the concentrations of the redox species Fe(II) and H2S, and that the parameters defining steam separation and CO2 degassing from the liquid may be adequately determined by numerical optimization. Results from this study can provide guidance for future applications of MEG models, and thus provide more reliable information on geothermal energy resources during exploration.

  7. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John

    2016-01-01

    To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15–152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.

  8. Geysers advanced direct contact condenser research

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  9. Potential application of radiogenic isotopes and geophysical methods to understand the hydrothermal dystem of the Upper Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Paces, James B.; Long, Andrew J.; Koth, Karl R.

    2015-01-01

    Numerous geochemical and geophysical studies have been conducted at Yellowstone National Park to better understand the hydrogeologic processes supporting the thermal features of the Park. This report provides the first 87Sr/86Sr and 234U/238U data for thermal water from the Upper Geyser Basin (UGB) intended to evaluate whether heavy radiogenic isotopes might provide insight to sources of groundwater supply and how they interact over time and space. In addition, this report summarizes previous geophysical studies made at Yellowstone National Park and provides suggestions for applying non-invasive ground and airborne studies to better understand groundwater flow in the subsurface of the UGB. Multiple samples from Old Faithful, Aurum, Grand, Oblong, and Daisy geysers characterized previously for major-ion concentrations and isotopes of water (δ2H, δ18O, and 3H) were analyzed for Sr and U isotopes. Concentrations of dissolved Sr and U are low (4.3–128 ng g-1 Sr and 0.026–0.0008 ng g-1 U); consequently only 87Sr/86Sr data are reported for most samples. Values of 87Sr/86Sr for most geysers remained uniform between April and September 2007, but show large increases in all five geysers between late October 2007 and early April, 2008. By late summer of 2008, 87Sr/86Sr values returned to values similar to those observed a year earlier. Similar patterns are not present in major-ion data measured on the same samples. Furthermore, large geochemical differences documented between geysers are not observed in 87Sr/86Sr data, although smaller differences between sites may be present. Sr-isotope data are consistent with a stratified hydrologic system where water erupted in spring and summer of 2007 and summer of 2008 equilibrated with local intracaldera rhyolite flows at shallower depths. Water erupted between October 2007 and April 2008 includes greater amounts of groundwater that circulated deep enough to acquire a radiogenic 87Sr/86Sr, most likely from Archean basement

  10. Physical and Geochemical Controls on the Structure and Function of Microbial Mat Communities at El Tatio Geyser Field, Chile

    Science.gov (United States)

    Myers, K. D.; Omelon, C. R.; Bennett, P.

    2013-12-01

    Cyanobacteria are important primary producers that form the basis of most hot spring microbial mat communities in waters between 30-73°C. Primary producers shape microbial mat communities by fixing the dissolved inorganic carbon (DIC) pool to organic carbon and providing nutrients for diverse microorganisms that perform a broad range of biogeochemical transformations. This study compares the microbial community structure and net primary productivity of cyanobacterially-based and non-cyanobacterially based microbial mats collected from the El Tatio Geyser Field, a high elevation geyser complex in the Andes Mountains in Region II, Chile. In addition to extreme conditions imparted by high elevation and its location in the Atacama Desert, El Tatio has a suite of extreme geochemical stressors for life, including high arsenic as As(III) and As(V) (0.4-0.6 mM). El Tatio also has unusually low concentrations of DIC in some streams (0.1-0.3 mM), low enough to severely limit primary production in microbial mats. In contrast to other geothermal sites around the world where microbial diversity is controlled primarily by temperature, observations of unusual patterns in microbial mat composition in low-DIC streams at El Tatio suggest alternate controls their distribution. For instance, we observe less biomass in low-DIC streams compared to nearby high DIC streams, and less biomass in high temperature regions of low-DIC streams, compared to low-temperature locations that are dominated by cyanobacteria. To further investigate these patterns, a field assay was conducted to compare carbon assimilation, the relative importance of photo- and chemoautotrophy, and bacterial 16S rRNA sequence abundance at two distinct sites along a low-DIC stream. Water temperature at the upstream site measured 60°C, is dominated by high As(III), and is composed of sparse, red-colored mat material, whereas the downstream site measured a water temperature of 40°C, is dominated by high As(V), and is

  11. Effects of geothermal energy utilization on stream biota and water quality at The Geysers, California. Final report. [Big Sulphur, Little Sulphur, Squaw, and Pieta Creeks

    Energy Technology Data Exchange (ETDEWEB)

    LeGore, R.S.

    1975-01-01

    The discussion is presented under the following section headings: biological studies, including fish, insects, and microbiology; stream hydrology; stream water quality, including methods and results; the contribution of tributaries to Big Sulphur Creek, including methods, results, and tributary characterization; standing water at wellheads; steam condensate quality; accidental discharges; trout spawning bed quality; major conclusions; list of references; and appendices. It is concluded that present operational practices at Geysers geothermal field do not harm the biological resources in adjacent streams. The only effects of geothermal development observed during the study were related to operational accidents. (JGB)

  12. El Cobreloa: A geyser with two distinct eruption styles

    Science.gov (United States)

    Namiki, Atsuko; Muñoz-Saez, Carolina; Manga, Michael

    2014-08-01

    We performed field measurements at a geyser nicknamed "El Cobreloa," located in the El Tatio Geyser Field, Northern Andes, Chile. The El Cobreloa geyser has two distinct eruption styles: minor eruptions and more energetic and long-lived major eruptions. Minor eruptions splash hot water intermittently over an approximately 4 min time period. Major eruptions begin with an eruption style similar to minor eruptions, but then transition to a voluminous liquid water-dominated eruption, and finally end with energetic steam discharge that continues for approximately 1 h. We calculated eruption intervals by visual observations, acoustic measurements, and ground temperature measurements and found that each eruption style has a regular interval: 4 h and 40 min for major eruptions and ˜14 min for minor eruptions. Eruptions of El Cobreloa and geochemical measurements suggest interaction of three water sources. The geyser reservoir, connected to the surface by a conduit, is recharged by a deep, hot aquifer. More deeply derived magmatic fluids heat the reservoir. Boiling in the reservoir releases steam and hot liquid water to the overlying conduit, causing minor eruptions, and heating the water in the conduit. Eventually the water in the conduit becomes warm enough to boil, leading to a steam-dominated eruption that empties the conduit. The conduit is then recharged by a shallow, colder aquifer, and the eruption cycle begins anew. We develop a model for minor eruptions which heat the water in the conduit. El Cobreloa provides insight into how small eruptions prepare the geyser system for large eruptions.

  13. An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers

    Science.gov (United States)

    Aminzadeh, Fred; Tafti, Tayeb A.; Maity, Debotyam

    2013-04-01

    Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures provide porosity for fluid storage and permeability for fluid movement and play an important role in production from this kind of reservoirs. Hence, characterization of fractures has become a vitally important consideration in every aspect of exploration, development and production so as to provide additional energy resources for the world. During the injection or production of fluid, induced seismicity (micro-seismic events) can be caused by reactivated shears created fractures or the natural fractures in shear zones and faults. Monitoring these events can help visualize fracture growth during injection stimulation. Although the locations of microseismic events can be a useful characterization tool and have been used by many authors, we go beyond these locations to characterize fractures more reliably. Tomographic inversion, fuzzy clustering, and shear wave splitting are three methods that can be applied to microseismic data to obtain reliable characteristics about fractured areas. In this article, we show how each method can help us in the characterization process. In addition, we demonstrate how they can be integrated with each other or with other data for a more holistic approach. The knowledge gained might be used to optimize drilling targets or stimulation jobs to reduce costs and maximize production. Some of the concepts discussed in this paper are general in nature, and may be more applicable to unconventional hydrocarbon reservoirs than the metamorphic and igneous reservoir rocks at The Geysers geothermal field.

  14. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    Science.gov (United States)

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J.S.; Soule, S. Adam; McPhee, Darcy K.; Glen, Jonathan M.G.; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  15. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    Science.gov (United States)

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J. S.; Soule, S. Adam; McPhee, Darcy; Glen, Jonathan M. G.; Karlstrom, Leif; Murphy, Fred

    2014-12-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5-40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  16. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    Science.gov (United States)

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-03-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1-0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  17. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    Science.gov (United States)

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  18. Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Meyer-Dombard, D'Arcy R; Swingley, Wesley; Raymond, Jason; Havig, Jeff; Shock, Everett L; Summons, Roger E

    2011-08-01

    In Yellowstone National Park, a small percentage of thermal features support streamer biofilm communities (SBCs), but their growth criteria are poorly understood. This study investigates biofilms in two SBC hosting, and two non-SBC springs. Sequencing of 16S rRNA clones indicates changing community structure as a function of downstream geochemistry, with many novel representatives particularly among the Crenarchaeota. While some taxonomic groups show little genetic variation, others show specialization by sample location. The transition fringe environment between the hotter chemosynthetic and cooler photosynthetic zones hosts a larger diversity of organisms in SBC bearing springs. This transition is proposed to represent an ecotone; this is the first description of an ecotone in a hydrothermal environment. The Aquificales are ubiquitous and dominate among the Bacteria in the hottest environments. However, there is no difference in species of Aquificales from SBC and non-SBC locations, suggesting they are not responsible for the formation of SBCs, or that their role in SBC formation is competitively suppressed in non-SBC sites. In addition, only SBC locations support Thermotogales-like organisms, highlighting the potential importance these organisms may have in SBC formation. Here, we present a novel view of SBC formation and variability in hydrothermal ecosystems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Climate-induced variations of geyser periodicity in Yellowstone National Park, USA

    Science.gov (United States)

    Hurwitz, S.; Kumar, A.; Taylor, R.; Heasler, H.

    2008-01-01

    The geysers of Yellowstone National Park, United States, attract millions of visitors each year, and their eruption dynamics have been the subject of extensive research for more than a century. Although many of the fundamental aspects associated with the dynamics of geyser eruptions have been elucidated, the relationship between external forcing (Earth tides, barometric pressure, and precipitation) and geyser eruption intervals (GEIs) remains a matter of ongoing debate. We present new instrumental GEI data and demonstrate, through detailed time-series analysis, that geysers respond to both long-term precipitation trends and to the seasonal hydrologic cycle. Responsiveness to long-term trends is reflected by a negative correlation between the annual averages of GEIs and stream flow in the Madison River. This response is probably associated with long-term pressure changes in the underlying hydrothermal reservoir. We relate seasonal GEI lengthening to snowmelt recharge. ?? 2008 The Geological Society of America.

  20. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    Science.gov (United States)

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-01-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  1. Energy sources for Triton's geyser-like plumes

    Science.gov (United States)

    Brown, R. H.; Johnson, T. V.; Kirk, R. L.; Soderblom, L. A.

    1990-01-01

    Four geyser-like plumes were discovered near Triton's south pole in areas now in permanent sunlight. Because Triton's southern hemisphere is nearing a maximum summer solstice, insolation as a driver or a trigger for Triton's geyser-like plumes is an attractive hypothesis. Trapping of solar radiation in a translucent, low-conductivity surface layer (in a solid-state greenhouse), which is subsequently released in the form of latent heat of sublimation, could provide the required energy. Both the classical solid-state greenhouse consisting of exponentially absorbed insolation in a gray, translucent layer of solid nitrogen, and the 'super' greenhouse consisting of a relatively transparent solid-nitrogen layer over an opaque, absorbing layer are plausible candidates. Geothermal heat may also play a part if assisted by the added energy input of seasonal cycles of insolation.

  2. Environmental review of geyser basins: resources, scarcity, threats, and benefits

    National Research Council Canada - National Science Library

    Barrick, Kenneth A

    2010-01-01

    .... A geyser basin is a composite resource made up of geysers and hot springs that cluster around a common hydrothermal reservoir, and might also contain other hydrothermal features like fumaroles and mud pots...

  3. Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds

    Science.gov (United States)

    Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team

    2018-01-01

    A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.

  4. Broadband Seismic Observations of Lone Star Geyser, Yellowstone National Park, Wyoming, USA

    Science.gov (United States)

    Nayak, A.; Hurwitz, S.; Johnson, H. E., III; Manga, M.; Gomez, F. G.

    2014-12-01

    Geysers are natural phenomena that episodically erupt water and steam. Geophysical observations at geysers are analyzed to shed light on subsurface multi-phase mass and heat exchange processes and geometries controlling geyser eruptions, which are still are not completely understood. Lone Star Geyser (LSG) in Yellowstone National Park, Wyoming, USA erupts every ~3 hours, with brief episodes (~5-10 min) of water and steam fountaining (preplays) leading up to the main eruption (~28 min), and the discharge evolves from a water-dominated phase to a steam-dominated phase as the main eruption proceeds in time. We describe observations from multiple seismometers deployed around LSG as part of a comprehensive geophysical survey conducted in April 2014. 3-component seismograms were continuously recorded at 250 samples per second by 6 Nanometrics Trillium 120 P/PA broadband seismometers (lower corner frequency at 120 seconds) and Taurus dataloggers at distances ~10 to 25 m from the geyser cone for a period of 3 days. We identify distinct episodes of hydrothermal tremor associated with preplay events and main eruptions. We find that the dominant tremor frequencies during main eruptions are consistently higher (> 10.0 Hz) than those during preplays (> 1.0 Hz) indicating slightly different source locations or processes controlling the two phenomena. Unlike seismic observations at the Old Faithful Geyser, we also observe subtle harmonic tremor and spectral gliding in the frequency range ~1.0-8.0 Hz towards the end of both main eruption and preplay tremor episodes. We interpret long-period pulses on horizontal components of the seismometers located close to the geyser and synchronous with preplays, as pseudo-tilts resulting from deformation of the sinter terrace. We also compare the evolution of hydrothermal tremor in time with synchronous changes in temperature, acoustic emission and discharge for interpretation of the possible tremor source processes.

  5. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

    Science.gov (United States)

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.

    2016-01-01

    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  6. Odorless inhalant toxic encephalopathy in developing countries household: Gas geyser syndrome

    Directory of Open Access Journals (Sweden)

    Anish Mehta

    2016-01-01

    Full Text Available Background: Liquefied petroleum gas geysers are used very frequently for heating water in developing countries such as India. However, these gas geysers emit various toxic gases; one among them is colorless, odorless carbon monoxide (CO. In the past few years, there were reports of unexplained loss of consciousness in the bathroom. However, the exact cause for these episodes has been recognized as toxic encephalopathy due to toxic gases inhalation mainly CO. Objective: To analyze the clinical profile and outcome of patients brought with loss of consciousness in the bathroom while bathing using gas geyser. Materials and Methods: Case records of patients with the diagnosis of gas geyser syndrome from 2013 to 2015 were retrieved and analyzed. Twenty-four cases were identified and included in the study. This was a retrospective, descriptive study. Results: Twenty-four patients were brought to our Emergency Department with loss of consciousness in the bathroom while bathing. Twenty-one cases had loss of consciousness during bathing and recovered spontaneously. Two cases were found dead in the bathroom and were brought to the Department of Forensic Medicine for postmortem. One case was brought in deep altered state of consciousness and succumbed to illness within 1 week.Conclusion: Awareness regarding CO intoxication due to usage of ill-fitted, ill-ventilated gas geyser is necessary as they are entirely preventable conditions.

  7. Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California

    Science.gov (United States)

    Picozzi, M.; Oth, A.; Parolai, S.; Bindi, D.; De Landro, G.; Amoroso, O.

    2017-05-01

    The accurate determination of stress drop, seismic efficiency, and how source parameters scale with earthquake size is an important issue for seismic hazard assessment of induced seismicity. We propose an improved nonparametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for attenuation and site contributions. Then, the retrieved source spectra are inverted by a nonlinear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (Mw 2-3.8) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations, more than 17.000 velocity records). We find a nonself-similar behavior, empirical source spectra that require an ωγ source model with γ > 2 to be well fit and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes and that the proportion of high-frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping faults in the fluid pressure diffusion.

  8. Periodic flow instabilities during Lone Star Geyser (YNP) eruptions, as deduced from acoustic measurements

    Science.gov (United States)

    Vandemeulebrouck, J.; Hurwitz, S.; Johnston, M. J.; Rudolph, M. L.; Karlstrom, L.; Sohn, R. A.; Murphy, F.; McPhee, D. K.; Glen, J. M.; Soule, S. A.; Meertens, C. M.

    2011-12-01

    We performed continuous acoustic measurements during four days at Lone Star Geyser, Yellowstone National Park, USA. The microphone was located at 10 meters from the geyser's cone, and the acoustic signal was sampled at 1000 Hz. The 3-hour-long eruptive cycle at Lone Star Geyser contains several water fountaining episodes followed by the main eruption, which generally lasts 25 minutes. During the 30 main eruptions that we studied, the acoustic signal patterns are very similar, and indicate the flow is unstable and clearly follows a pulsating regime. The period of the acoustic pulses drastically increases during the liquid to steam transition in the flow. This abrupt change in the flow regime corresponds to the start of the ground deflation recorded by tiltmeters, and could be due to a transition from hydro-static to vapor-static conditions in the vent.

  9. Back-Projection Imaging of extended pre-, co-, and post-eruptive seismic sources through multiple eruption cycles at Jefe Geyser, El Tatio Geyser Field, Chile

    Science.gov (United States)

    Kelly, C. L.

    2016-12-01

    El Tatio Geyser Field on the western flanks of the Andes Mountains in northern Chile at 4300 m elevation is the 3rd largest geyser field in the world. The three basins that comprise the field contain over 100 accessible hydrothermal features, and its relatively non-pristine condition makes it an ideal place to perform minimally invasive geophysical experiments. We deployed a dense array of 51 L-28 3-component geophones (1-10 meter spacing, corner frequency 4.5 Hz, 1000 Hz sampling rate), and 6 Trillium 120 broadband seismometers (2-20 meter spacing, long period corner 120 s, 500 Hz sampling rate) in a 50 x 50 m grid in the central Upper Geyser Basin (the largest basin in area at 5 x 5 km) during October 2012 as part of a collaborative effort to study hydrothermal system dynamics between U.C. Berkeley; Stanford University; the University of Chile, Santiago; the University of Tokyo; and the USGS. The array was designed to target El Jefe Geyser, an easily accessible columnar geyser with a consistent periodic eruption cycle of 129 s. The 2-week seismic deployment recorded approximately 2500 eruptions that we use to study the evolution of seismic source locations throughout an eruption and over multiple eruption cycles. We use a new back-projection processing technique to locate geyser signals, which tend to be harmonic and diffuse in nature. We obtain Vp and Vs from ambient-field tomography and use these velocities to correlate and back-project seismic signals from all available receiver-pairs to potential subsurface source locations assuming straight-line raypaths. We then create 4D time-lapse images of individual and concurrent geyser sources. We use spectral observations of long duration sources to target specific seismic observations (i.e., high or low frequency bands) and apply polarization filtering to isolate P and S phases during different stages of the eruption cycle. We use our results to evaluate changes in source distributions before, during and after

  10. MOSCAB: a geyser-concept bubble chamber to be used in a dark matter search

    Science.gov (United States)

    Antonicci, A.; Ardid, M.; Bertoni, R.; Bruno, G.; Burgio, N.; Caruso, G.; Cattaneo, D.; Chignoli, F.; Clemenza, M.; Corcione, M.; Cretara, L.; Cundy, D.; Felis, I.; Frullini, M.; Fulgione, W.; Lucchini, G.; Manara, L.; Maspero, M.; Mazza, R.; Papagni, A.; Perego, M.; Podviyanuk, R.; Pullia, A.; Quintino, A.; Redaelli, N.; Ricci, E.; Santagata, A.; Sorrenti, D.; Zanotti, L.

    2017-11-01

    The MOSCAB experiment (Materia OSCura A Bolle) uses the "geyser technique", a variant of the superheated liquid technique of extreme simplicity. Operating principles of the new dark matter detector and technical solutions of the device are reported in detail. First results obtained in a series of test runs taken in laboratory demonstrate that we have successfully built and tested a geyser-concept bubble chamber that can be used in particle physics, especially in dark matter searches, and that we are ready to move underground for extensive data taking.

  11. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  12. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Schubotz, F; Meyer-Dombard, D R; Bradley, A S; Fredricks, H F; Hinrichs, K-U; Shock, E L; Summons, R E

    2013-11-01

    Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco-phospho head groups with tetraether cores, having 0-4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one-fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco-phospholipids containing N-acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono-, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound-specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, 'Bison Pool' and Flat Cone, lipids derived from Aquificales are enriched in (13) C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales-diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show

  13. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field

    OpenAIRE

    Roberto Barbieri; Barbara Cavalazzi

    2014-01-01

    Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo-) environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth—when these extreme environments had t...

  14. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field

    Science.gov (United States)

    Barbieri, Roberto; Cavalazzi, Barbara

    2014-11-01

    Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo-) environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth - when these extreme environments had to be common - probably resembled Mars during its most suitable time to host life, research on terrestrial extreme hydrothermal habitats may assist in understanding how to recognize life on Mars. A number of geological and environmental reasons, and logistics opportunities, make the geothermal field of El Tatio, in the Chilean Andes an ideal location to study.

  15. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field

    Directory of Open Access Journals (Sweden)

    Roberto Barbieri

    2014-11-01

    Full Text Available Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo- environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth—when these extreme environments had to be common—probably resembled Mars during its most suitable time to host life, research on terrestrial extreme hydrothermal habitats may assist in understanding how to recognize life on Mars. A number of geological and environmental reasons, and logistics opportunities, make the geothermal field of El Tatio, in the Chilean Andes an ideal location to study.

  16. Timing and prediction of CO2 eruptions from Crystal Geyser, UT

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, F J; Friedmann, S J

    2006-05-30

    Special instruments were deployed at Crystal Geyser, Utah, in August 2005 creating a contiguous 76-day record of eruptions from this cold geyser. Sensors measured temperature and fluid movement at the base of the geyser. Analysis of the time series that contains the start time and duration of 140 eruptions reveals a striking bimodal distribution in eruption duration. About two thirds of the eruptions were short (7-32 min), and about one third were long (98-113 min). No eruption lasted between 32 and 98 min. There is a strong correlation between the duration of an eruption and the subsequent time until the next eruption. A linear least-squares fit of these data can be used to predict the time of the next eruption. The predictions were within one hour of actual eruption time for 90% of the very short eruptions (7-19 min), and about 45% of the long eruptions. Combined with emission estimates from a previous study, we estimate the annual CO{sub 2} emission from Crystal Geyser to be about 11 gigagrams (11,000 tons).

  17. Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Mark A.

    2013-04-25

    The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

  18. Back-Projecting Volcano and Geyser Seismic Signals to Sources

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.; Ebinger, C. J.

    2015-12-01

    Volcanic and hydrothermal systems are generally characterized by persistent, low-amplitude seismic "noise" with no clear onset or end. Outside of active eruptions and earthquakes, which tend to occur only a small fraction of the time, seismic records and spectrograms from these systems are dominated by long-duration "noise" (typically around 1-5Hz) generated by ongoing processes in the systems' subsurface. Although it has been shown that these low-amplitude signals can represent a series of overlapping low-magnitude displacements related to fluid and volatile movement at depth, because of their "noisy" properties compared to typical active or earthquake sources they are difficult to image using traditional seismic techniques (i.e. phase-picking). In this study we present results from applying a new ambient noise back-projection technique to improve seismic source imaging of diffuse signals found in volcanic and hydrothermal systems. Using this new method we show how the distribution of all seismic sources - particularly sources associated with volcanic tremor - evolves during a proposed intrusion in early June 2010 at Sierra Negra Volcano on the Galápagos Archipelago off the coast of Ecuador. We use a known velocity model for the region (Tepp et al., 2014) to correlate and back-project seismic signals from all available receiver-pairs to potential subsurface source locations assuming bending raypaths and accounting for topography. We generate 4D time-lapsed images of the source field around Sierra Negra before, during and after the proposed intrusion and compare the consistency of our observations with previously identified seismic event locations and tomography results from the same time period. Preliminary results from applying the technique to a dense grid of geophones surrounding a periodically erupting geyser at El Tatio Geyser Field in northern Chile (>2000 eruptions recorded) will also be presented.

  19. Fabrication of Flat Plate Solar Geyser with Flat Grooved Heat Exchanger Having Special Exit System

    OpenAIRE

    Malik, Muhammad Suleman; Malik, Muhammad Arsalan; Shah, Haseeb Ali; Khan Afridi, Adnan Anwar; Asif, Muhammad

    2017-01-01

    International audience; The main objective of this paper is to introduce the concept of novel flat plate solar geyser with integrated heat exchanger and open loop passive system.The heat exchanger acts both as collector for solar radiations and as a heat exchanger its self for cold water beneath it. Contrary to the conventional flat plate solar collectors, water is in direct contact with the collector or flat grooved heat exchanger. A safety control box is installed to minimize hydraulic pres...

  20. Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Landrum, J.T. [Department of Geological Sciences, The University of Texas, Austin, TX 78759 (United States); Bennett, P.C., E-mail: pbennett@mail.utexas.edu [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States); Engel, A.S. [Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803 (United States); Alsina, M.A.; Pasten, P.A. [Departamento de Ingenieria Hidraulica y Ambiental, Pontificia Universidad Catolica de Chile, Santiago (Chile); Milliken, K. [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States)

    2009-04-15

    The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with {approx}0.45 and 0.021 mmol L{sup -1} total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb{sub 2}O{sub 3}. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.

  1. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    Science.gov (United States)

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  2. Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of yellowstone national park.

    Science.gov (United States)

    Walter, M R; Bauld, J; Brock, T D

    1972-10-27

    Growing algal and bacterial stromatolites composed of nearly amorphous silica occur around hot springs and geysers in Yellowstone National Park, Wyoming. Some Precambrian stromatolites may be bacterial rather than algal, which has important implications in atmospheric evolution, since bacterial photo-synthesis does not release oxygen. Conophyton stromatolites were thought to have become extinct at the end of the Precambrian, but are still growing in hot spring effluents.

  3. Santa Rosa Geysers Recharge Project: GEO-98-001. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Edwin Jr.; Carlson, Daniel C.

    2002-10-01

    The Geysers steamfields in northern Sonoma County have produced reliable ''green'' power for many years. An impediment to long-term continued production has been the ability to provide a reliable source of injection water to replace water extracted and lost in the form of steam. The steamfield operators have historcially used cooling towers to recycle a small portion of the steam and have collected water during the winter months using stream extraction. These two sources, however, could not by themselves sustain the steamfield in the long term. The Lake County Reclaimed Water Project (SEGEP) was inititated in 1997 and provides another source of steamfield replenishment water. The Santa Rosa Geysers Recharge Project provides another significant step in replenishing the steamfield. In addition, the Santa Rosa Geysers Recharge Project has been built with capacity to potentially meet virtually all injection water requirements, when combined with these other sources. Figure 2.1 graphically depicts the combination of injection sources.

  4. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Aminzadeh, Fred [Univ. of Southern California, Los Angeles, CA (United States); Sammis, Charles [Univ. of Southern California, Los Angeles, CA (United States); Sahimi, Mohammad [Univ. of Southern California, Los Angeles, CA (United States); Okaya, David [Univ. of Southern California, Los Angeles, CA (United States)

    2015-04-30

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  5. The role of extremophile in the redox reaction of Fe and As relating with the formation of secondary phase mineral in extreme environment, Norris Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    Koo, T. H.; Kim, J. Y.; Park, K. R.; Jung, D. H.; Geesey, G. G.; Kim, J. W.

    2015-12-01

    Redox reaction associated with microbial elemental respiration is a ubiquitous process in sediments and suspended particles at various temperatures or pH/Eh conditions. Particularly, changes in elemental redox states (structural or dissolved elemental form) induced by microbial respiration result in the unexpected biogeochemical reactions in the light of biotic/abiotic mineralization. The objective of the present study is, therefore to investigate the secondary phase mineralization through a-/biogeochemical Fe and As redox cycling in the acido-hyperhtermal Norris Geyser Basin (NGB) in Yellowstone National Park, USA, typical of the extreme condition. X-ray diffraction, scanning electron microscope with energy dispersive x-ray spectroscopy, X-ray absorption near edge structure, inductively coupled plasma-atomic emission spectrometer and liquid chromatography with ICP-mass spectroscopy with filtrated supernatant were performed for the mineralogical and hydro-geochemical analysis. The clay slurry collected from the active hot-spring of the NGB area (pH=3.5 and Temperature=78 ℃) was incubated with ("enrichment") or without the growth medium ("natural"). The control was prepared in the same condition except adding the glutaraldehyde to eliminate the microbial activity. The secondary phase mineral formation of the oxidative phase of Fe and As, and K identified as 'Pharmacosiderite' only appeared in the enrichment set suggesting a role of extremophiles in the mineral formation. The considerable population of Fe-oxidizer (Metallosphera yellowstonensis MK-1) and As-oxidizer (Sulfurihydrogenibium sp.) was measured by phylogenetic analysis in the present study area. The inhibition of As-oxidation in the low pH conditions was reported in the previous study, however the As-redox reaction was observed and consequently, precipitated the Pharmacosiderite only in the enrichment set suggesting a biotic mineralization. The present study collectively suggests that the microbial

  6. “Om nie te dink bó wat in die Skrif geskrywe staan nie” – konsistensie en ontwikkeling in die teologie van Piet Geyser

    Directory of Open Access Journals (Sweden)

    Andries G. van Aarde

    2004-10-01

    This article reflects a conversation between Andries G van Aarde and Piet A Geyser. P A Geyser was professor of Biblical and Religious Studies at the University of Pretoria. He retired in January 2004. The following issues are discussed: critique against the Calvinist doctrine of predestination from the perspective of Karl Barth’s theology; the unity of the church; theology for lay people; the authority of Scripture; the relevance of historical Jesus studies; Biblical testimony on homosexuality and the pastoral care of gays. The article aims to demonstrate the growth and development in Geyser’s hermeneutics while he remains within the parameters of Scripture.

  7. Fabrication of Flat Plate Solar Geyser with Flat Grooved Heat Exchanger Having Special Exit System

    OpenAIRE

    Muhammad Suleman Malik; Muhammad Arsalan Malik; Haseeb Ali Shah; Adnan Anwar khan afridi; Muhammad Asif

    2017-01-01

    The main objective of this paper is to introduce the concept of novel flat plate solar geyser with integrated heat exchanger and open loop passive system.The heat exchanger acts both as collector for solar radiations and as a heat exchanger its self for cold water beneath it. Contrary to the conventional flat plate solar collectors, water is in direct contact with the collector or flat grooved heat exchanger. A safety control box is installed to minimize hydraulic pressure of cold water rese...

  8. An organic geochemical investigation into lipid distribution at Imperial Geyser, Yellowstone National Park

    Science.gov (United States)

    Bird, L. R.; Krukenberg, V.; Lohman, E.; Santillan, E.; Urrejola, C.; Caporaso, J. G.; Sessions, A. L.; Spear, J. R.

    2011-12-01

    Imperial Geyser, Yellowstone National Park, is an alkaline, silica-rich thermal spring with a diverse microbial constituency. In order to characterize this microbial community, mat samples growing downstream from the vent were studied for lipid composition and abundance. Both fatty acids and hopanoids were extracted from the mat samples and analyzed using GC-MS and GC-FID. Microbial community profiling was also performed targeting the 16S rRNA gene and the SHC (squalene-hopene cyclase) gene. Results for both lipid and metagenomic data were compared using principle components analysis (PCA). PCA revealed the clustering of sample sites for both lipids and genes. A strong correlation (p value Chloroflexus and Chlorobium, indicating that they are the likely source of these lipids at Imperial Geyser. Hopanoid data shows the ratio of methylated to unmethylated hopanoids varies with distance from the vent, potentially representing a response to environmental stress. The ratio of methylated to unmethylated hopanoids appears to be controlled environmentally, being produced by organisms beyond Cyanobacteria. Thus in this setting the 2-methylhopanoid index does not correspond directly to the relative abundance of Cyanobacteria. Results indicate that temperature and pH exert some control over community composition between sample sites and that this is reflected in the lipid composition. However, we also expect to see additional geochemical variants, such as dissolved inorganic carbon, nitrogen, phosphorous, and sulfur from the stream water, contributing to the beta diversity of our results. This research was undertaken as part of the International Geobiology Course 2011.

  9. Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile.

    Science.gov (United States)

    Engel, Annette Summers; Johnson, Lindsey R; Porter, Megan L

    2013-03-01

    Arsenic concentrations (450-600 μmol L(-1)) at the El Tatio Geyser Field in northern Chile are an order of magnitude greater than at other natural geothermal sites, making El Tatio an ideal location to investigate unique microbial diversity and metabolisms associated with the arsenic cycle in low sulfide, > 50 °C, and circumneutral pH waters. 16S rRNA gene and arsenite oxidase gene (aioA) diversities were evaluated from biofilms and microbial mats from two geyser-discharge stream transects. Chloroflexi was the most prevalent bacterial phylum at flow distances where arsenite was converted to arsenate, corresponding to roughly 60 °C. Among aioA-like gene sequences retrieved, most had homology to whole genomes of Chloroflexus aurantiacus, but others were homologous to alphaproteobacterial and undifferentiated beta- and gammaproteobacterial groups. No Deinococci, Thermus, Aquificales, or Chlorobi aioA-like genes were retrieved. The functional importance of amino acid sites was evaluated from evolutionary trace analyses of all retrieved aioA genes. Fifteen conserved residue sites identified across all phylogenetic groups highlight a conserved functional core, while six divergent sites demonstrate potential differences in electron transfer modes. This research expands the known distribution and diversity of arsenite oxidation in natural geothermal settings, and provides information about the evolutionary history of microbe-arsenic interactions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Ground Penetrating Radar Investigation of Sinter Deposits at Old Faithful Geyser and Immediately Adjacent Hydrothermal Features, Yellowstone National Park, Wyoming, USA

    Science.gov (United States)

    Foley, D.; Lynne, B. Y.; Jaworowski, C.; Heasler, H.; Smith, G.; Smith, I.

    2015-12-01

    Ground Penetrating Radar (GPR) was used to evaluate the characteristics of the shallow subsurface siliceous sinter deposits around Old Faithful Geyser. Zones of fractures, areas of subsurface alteration and pre-eruption hydrologic changes at Old Faithful Geyser and surrounding hydrothermal mounds were observed. Despite being viewed directly by about 3,000,000 people a year, shallow subsurface geologic and hydrologic conditions on and near Old Faithful Geyser are poorly characterized. GPR transects of 5754 ft (1754m) show strong horizontal to sub-horizontal reflections, which are interpreted as 2.5 to 4.5 meters of sinter. Some discontinuities in reflections are interpreted as fractures in the sinter, some of which line up with known hydrothermal features and some of which have little to no surface expression. Zones with moderate and weak amplitude reflections are interpreted as sinter that has been hydrothermally altered. Temporal changes from stronger to weaker reflections are correlated with the eruption cycle of Old Faithful Geyser, and are interpreted as post-eruption draining of shallow fractures, followed by pre-eruption fracture filling with liquid or vapor thermal fluids.

  11. Heat Budget Monitoring in Norris Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Mohamed, R. A. M.; Neale, C. M. U.; Jaworowski, C.

    2014-12-01

    Frequent estimation of heat flux in active hydrothermal areas are required to monitor the variation in activity. Natural changes in geothermal and hydrothermal features can include rapid significant changes in surface temperature distribution and may be an indication of "re-plumbing" of the systems or potential hydrothermal explosions. Frequent monitoring of these systems can help Park managers make informed decisions on infrastructure development and/or take precautionary actions to protect the public. Norris Geyser Basin (NGB) is one of Yellowstone National Park's hottest and most dynamic basins. Airborne high-resolution thermal infrared remote sensing was used to estimate radiometric temperatures within NGB and allow for the estimation of the spatial and temporal distribution of surface temperatures and the heat flow budget. The airborne monitoring occurred in consecutive years 2008-2012 allowing for the temporal comparison of heat budget in NGB. Airborne thermal infrared images in the 8-12 µm bands with 1-m resolution were acquired using a FLIR SC640 scanner. Digital multispectral images in the green (0.57 μm), red (0.65 μm), and near infrared (0.80 μm) bands were also acquired to classify the terrain cover and support the atmospheric and emissivity correction of the thermal images. The airborne images were taken in the month of September on selected days with similar weather and under clear sky conditions. In the winter of 2012, images were also taken in March to compare the effect of the cold weather and snow cover on the heat budget. Consistent methods were used to acquire and process the images each year to limit the potential variability in the results to only the variability in the hydrothermal system. Data from radiation flux towers installed within the basin were used to compare with airborne radiometric surface temperatures and compensate for residual solar heating in the imagery. The presentation will discuss the different mechanisms involved in

  12. Preliminary report on the Pacific Gas and Electric Company's notice of intention to seek certification for Geysers Unit 16 (78-NOI-6)

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The preliminary findings of fact and conclusion adopted by the Commission Committee are presented. Also, a description of the proposed project, a summary of the proceedings to date, and local, state, and federal government agency comments on the proposal are included. Preliminary findings and conclusions are presented on: (a) conformity to the forecast of statewide and service area electric power demands; (b) the degree to which the proposed site and facility conform with applicable local, regional, state, and federal standards, ordinances and laws; (c) the safety and reliability of the facility; and (d) the relative merit of the proposed transmission line corridors. (MHR)

  13. Direct heat applications of geothermal energy in The Geysers/Clear Lake region. Volume I. Geotechnical assessment, agribusiness applications, socioeconomic assessment, engineering assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The different uses to which geothermal heat and fluids could be applied as a direct utilization of resource or as heat utilization are explored. The following aspects are covered: geotechnical assessment, agricultural and industrial applications, socioeconomic assessment, and engineering assessment. (MHR)

  14. ERDA sponsored non-electric uses of geothermal energy in the Geysers/Clear Lake Area. Progress report, November 12, 1976-February 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-07

    A program is described of combined geotechnical, environmental, socioeconomic impact, and engineering study undertaken to identify the different uses to which geothermal heat and fluids could be applied as a direct utilization of resource or as heat utilization. (MHR)

  15. Direct heat applications of geothermal energy in The Geysers/Clear Lake region. Volume I. Geotechnical assessment, agribusiness applications, socioeconomic assessment, engineering assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    Discussion is presented under the following section headings: background and some technical characteristics of geothermal resources; geology and geohydrology, geophysics, and, conclusions regarding availability of geothermal energy for nonelectric uses; agricultural assessment of Lake County, site assessment for potential agricultural development, analysis of potential agricultural applications, special application of low cost geothermal energy to algae harvesting, development of an integrated agribusiness, geothermal complex in Lake County, analysis of individual enterprises, and, recommendations for subsequent work; demographic characteristics, economic condition and perspective of Lake County, economic impact of geothermal in Lake County, social and economic factors related to geothermal resource development, socioeconomic impact of nonelectric uses of geothermal energy, and, identification of direct heat applications of geothermal energy for Lake County based on selected interviews; cost estimate procedure, example, justification of procedure, and, typical costs and conclusions; and, recommended prefeasibility and feasibility studies related to construction of facilities for nonelectric applications of geothermal resource utilization. (JGB)

  16. Surface and subsurface hydrothermal flow pathways at Norris Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Graham Wall, B. R.

    2005-12-01

    During summer 2003 at Yellowstone's Norris Geyser Basin notable changes were observed in the discharge of heat and steam, creating new thermal features, dying vegetation, and the consequent closure of trails to protect public safety. In order to interpret data collected from GPS, seismic, and temperature instruments deployed in response to the increased hydrothermal activity, a study has been undertaken to provide a more complete knowledge of the spatial distribution of subsurface fluid conduits. Geologic data, including mapped outcrops, aerial imagery, thermal infrared imagery, and subsurface core, indicate that fracture pathways in the Lava Creek Tuff (LCT) channel flow in the hydrothermal system. These data show clear evidence that NE-SW and NW-SE trending structures provide major flow pathways at Norris. By mapping fracture sets in outcrops of LCT with varied degrees of hydrothermal alteration, one can consistently identify fractures that localize hydrothermal fluid flow, alteration, and the geometry of surface thermal features. Alteration is characterized by acid leaching that quickly alters LCT mafic minerals and glassy groundmass, which in outcrop is recognized by corroded and disaggregated LCT with local secondary mineral deposition. Mapping the sequence from unaltered to altered LCT has identified vertical cooling joints as primary conduits for hydrothermal fluids. These vertical joints correlate with the NE-SW trending geomorphic expression of the LCT in this area, and parallel the adjacent caldera boundary. Horizontal fractures parallel depositional stratigraphy, and in core from drill holes Y-9 (248 m) and Y-12 (332 m) appear to initiate at collapsed vapor-phase cavities or regions of altered fiamme. Vertical fractures in the core show sequences of hydrothermal minerals locally derived from water-rock interaction that line fracture walls, characteristic of mineral deposition associated with repeat reactivation. Although the hydrothermal system is

  17. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences; Rosen, M.R. [Wairakei Research Centre, Taupo (New Zealand). Inst. of Geological and Nuclear Sciences

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  18. Using environmental tracers and numerical simulation to investigate regional hydrothermal basins—Norris Geyser Basin area, Yellowstone National Park, USA

    National Research Council Canada - National Science Library

    Gardner, W. Payton; Susong, David D; Solomon, D. Kip; Heasler, Henry P

    2013-01-01

    Heat and fluid flow fields are simulated for several conceptual permeability fields and compared to processes inferred from environmental tracers in springs around Norris Geyser Basin, Yellowstone National Park...

  19. Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene stromatolites

    Science.gov (United States)

    McCall, Joseph

    2010-11-01

    I carried out the first regional geological survey of the central Gregory Rift Valley in Kenya in 1958-60, and review here the numerous subsequent specialised studies focused on the unique endoreic Lake Bogoria (formerly Hannington), studies which embraced the sedimentology of the Holocene sediments around the lake shores, the hot-spring and geyser activities and the coring of the sediments beneath the lake. I focus on the occurrences of stromatolites in a hydrothermal environment, both in two closely spaced late Holocene (~ 4500 yr BP) generations at the lake margin, associated with algae and cyanobacteria, which represent a final more humid climatic phase after the several interglacial more humid phases (also represented by stromatolite occurrences in other rift valley lakes); and also at present being formed, at the edge of the now highly saline lake, in the very hot springs in association with thermophilic bacteria and with silica. I briefly mention the older occurrences in Lake Magadi to the south, which are quite different; and form three generations; and also present-day occurrences of stromatolites in a flood-plain environment, unlike the present-day environment at Lake Bogoria. Other stromatolite occurrences are mentioned, around Lake Turkana and the former lake in the Suguta River valley to the north. I suggest that the hot waterfall at Kapedo, at the head of the Suguta River, and the central island of Ol Kokwe (with hot springs, amidst the fresh water Lake Baringo) could well be investigated for stromatolite occurrences. Lake Bogoria, an empty wilderness occupied only by flamingos when I mapped it, is now more accessible and provides a unique open-air laboratory for such researches, but like all the Rift Valley lakes, is unique, sui generis. Results of detailed investigations of the type reviewed here, can only be applied to other occurrences of stromatolites elsewhere in the rift system or beyond the rift system with reservation.

  20. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  1. Variability in microbial community composition between geochemically distinct hydrothermal features at El Tatio geyser field

    Science.gov (United States)

    Franks, M. A.; Bennett, P.

    2010-12-01

    The distinctive geochemistry of the hydrothermal waters at El Tatio Geyser Field (ETGF), which includes the highest reported naturally occurring concentrations of arsenic, is a unique environment where diverse microbial mat communities inhabit many of its features. As(III) in fact is the most abundant bioavailable electron donor at ETGF and could represent an energy source for chemolithoautotrophic microorganisms. Found at concentrations of ~0.5 mM, As levels exceed the concentrations often used in microbial toxicity experiments, which suggests that novel, As-resistant taxa might be found here. This study examines four sites at ETGF, each with distinct physical and geochemical constraints. Two low temperature (~30°C) and two high temperature (~65°C) sites were included, and the geochemical variables include salinity, As and Sb concentrations, As speciation, dissolved inorganic carbon concentration, and dissolved hydrogen concentration. The microbial community at each site was determined using a combination of shotgun cloning and pyrosequencing to determine the archaeal and bacterial taxa present. Relationships between microbial community composition and water chemistry variables were tested using Unifrac to determine if any statistically significant correlations were present. Two analyses were completed; in the first, community composition was defined in terms of populations of metabolic guilds (particularly methanogenic Archaea), and in the second, phylogenetic affiliation was used. Results show that bacterial diversity exceeds archaeal diversity at each of the four sites tested, and that methanogens dominate the Archaea found at each site except one, which was mostly comprised of Crenarchaea. While each site tested had a unique microbial community composition, construction of a maximum likelihood phylogenetic tree shows ETGF sequences group together, despite differences in water chemistry. Additionally, both tree construction and BLAST results indicate the

  2. Isolation and Characterization of a Novel CO2-Tolerant Lactobacillus Strain from Crystal Geyser, UT

    Science.gov (United States)

    Santillan, E. U.; Major, J. R.; Omelon, C. R.; Shanahan, T. M.; Bennett, P.

    2013-12-01

    Capnophiles are microbes that grow in CO2 enriched environments. Cultured capnophiles generally, grow in 2 to 25% CO2, or 0.02 to 0.25 atm. When CO2 is sequestered in deep saline aquifers, the newly created high CO2 environment may select for capnophlic organisms. In this study, a capnophile was isolated from Crystal Geyser, a CO2 spring along the Little Grand Wash Fault, UT, a site being investigated as an analogue to CO2 sequestration. Crystal Geyser periodically erupts with CO2 charged water, indicating the presence of very high CO2 pressures below the subsurface, similar to sequestration conditions. Biomass was sampled by pumping springwater from approximately 10 m below the surface through filters. Filters were immediately placed in selective media within pressure vessels where they were pressurized to 10 atm in the field. Subsequent recultures produced an isolate, designated CG-1, that is most closely (99%) related to Lactobacillus casei on the strain level. CG-1 grows in tryptic soy broth, in PCO2 ranging from 0 atm to 10 atm, 40 times higher than pressures of previously cultured capnophiles. At 25 atm, growth is inhibited though survival can be as long as 5 days. At 50 atm, survival is poor, with sterilization occurring by 24 hours. Growth is optimal between pH values of 6 to 8, though sluggish if no CO2 is present. Its optimal salinity is 0.25 M NaCl though growth is observed ranging from 0 to 1 M NaCl. Growth is observed between 25o to 45o C, but optimal at 25oC. It consumes long-chained carbon molecules such as glucose, sucrose, and crude oil, and exhibits poor growth when supplied with lactate, acetate, formate, and pyruvate. The organism likely performs lactic acid fermentation as it requires no electron acceptors for growth and produces no acid, gas, and sulfide in triple sugar iron agar slants. CG-1 also expresses a variety of lipids, most notably cyclopropyl C19 (cycC19), or lactobacillic acid, characteristic of organisms belonging to the

  3. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Moran, James J; Whitmore, Laura M; Isern, Nancy G; Romine, Margaret F; Riha, Krystin M; Inskeep, William P; Kreuzer, Helen W

    2016-05-01

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  4. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.; Romine, Margaret F.; Riha, Krystin M.; Inskeep, William P.; Kreuzer, Helen W.

    2016-03-19

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  5. Physicochemical and Biological Zonation of High Temperature Silica and Arsenic-Rich Streams at El Tatio Geyser Field, Chile

    Science.gov (United States)

    Myers, K. D.; Engel, A. S.; Omelon, C. R.; Bennett, P.

    2012-12-01

    El Tatio Geyser Field is a geothermal complex comprised of three main basins in the northern Atacama Desert (Region II), Chile. Located at 4400 m elevation in the Andes Mountains it experiences intense solar radiation and a UV flux 33% higher than at Yellowstone National Park (Wyoming). Local boiling point is 86°C, and geothermal waters are Na-Ca-Cl type with circumneutral pH, high dissolved silica, and high dissolved arsenic concentrations (30-50 ppm). Most thermal features contain scant dissolved inorganic carbon (DIC as CO2(aq) + HCO3- + CO3-2). There is a conspicuous lack of microbial mat development in temperature zones where thick mats are seen at other geothermal sites. This investigation focused on understanding the physicochemical controls on microbial diversity that lead to microbial mat colonization and development within specific thermal regions of the geothermal features. Temperature surveys were done at three geothermal features where microbial mats and water chemistry were sampled, and a high-resolution thermal survey was conducted at one geyser orifice through the discharge channel where chemistry and mineralogy have been characterized, and microbial diversity was evaluated from 16S rRNA gene sequences. At the main study geyser, the stream is 0.25 m wide near its source, and for the first 20 m, the discharge stream is constrained by a solid silica bank with a mineralized channel bottom and no obvious microbial mat development. Temperatures decrease from ~86°C to ~67°C. In this zone sparse filaments were observed on rare sediments below the water surface consisting of ~80% Thermus spp. with rare uncultured Chloroflexus spp. and Candidate Division OP1 sequences. At 12 m, visible red-orange mat development starts on the sides of the channel where bulk water temperature is 67°C. Photosynthetic Chloroflexus spp. dominate red-orange filaments that form the first conspicuous mats (between 43-88% of the 16S rRNA sequences from different samples), with

  6. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006-2008

    Science.gov (United States)

    Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk

    2010-01-01

    Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the

  7. Space-Time Evolution of Seismicity in North-Western Geysers Geothermal Field and its Connection to Stimulation Processes

    Science.gov (United States)

    Leptokaropoulos, Konstantinos; Staszek, Monika; Lasocki, Stanislaw; Kwiatek, Grzegorz; Martinez-Garzon, Patricia

    2017-04-01

    The rising needs for energy along with the recent requirements for more efficient usage and exploitation of the deep underground have resulted to a growing scientific and public concern on related environmental impacts. Hydraulic fracturing that has been carried out during the last decades is occasionally connected with triggered and induced seismicity worldwide. Data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity since they are both tightly connected to hydraulic fracturing. For that reason we utilize 'The Geysers' data from the compiled SHEER (Shale Gas Exploration and Exploitation Induced Risks) database. The Geysers (California, USA) is the largest producing geothermal field in the world and has been sufficiently monitored and studied since the last decades. Seismic and technological data gathered during the past 40 years indicate a connection of seismic activity with the fluctuations of the injected fluid volume. In this study we verify and quantify this correlation by analyzing the data associated with 2 injection wells (Prati-9 and Prati-29) which covers a time period of approximately 7 years (from November 2007 to August 2014). The correlation between spatio-temporal seismicity evolution and variation of the injection data is performed by elaboration of original and smoothed time-series through specified statistical tools (cross correlation, binomial test to investigate significant rate changes, b-value variation). Our analysis indicate a short time delay of seismicity occurrence at distances larger than 200m from the injection well, whereas no evidence of significant correlation between injection rates and b-values was discovered. The obtained results are expected to contribute to a better comprehension of the role of hydraulic fracturing and the physical processes controlling seismogenesis in fluid injection sites. Acknowledgements: This work was supported within SHEER: "Shale Gas Exploration and

  8. Chloroflexus islandicus sp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from a geyser.

    Science.gov (United States)

    Gaisin, Vasil A; Kalashnikov, Alexander M; Grouzdev, Denis S; Sukhacheva, Marina V; Kuznetsov, Boris B; Gorlenko, Vladimir M

    2017-05-01

    A novel, thermophilic filamentous anoxygenic phototrophic bacterium, strain isl-2T, was isolated from the Strokkur Geyser, Iceland. Strain isl-2T formed unbranched multicellular filaments with gliding motility. The cells formed no spores and stained Gram-negative. The existence of pili was described in a species of the genus Chloroflexus for the first time, to our knowledge. Optimal growth occurred at a pH range of 7.5-7.7 and at a temperature of 55 °C. Strain isl-2T grew photoheterotrophically under anaerobic conditions in the light and chemoheterotrophically under aerobic conditions in the dark. The major cellular fatty acids were C18 : 1ω9, C16 : 0, C18 : 0 and C18 : 0-OH. The major quinone was menaquinone-10. The photosynthetic pigments were bacteriochlorophylls c and a as well as β- and γ-carotenes. The results of phylogenetic analysis of the 16S rRNA gene sequences placed strain isl-2T into the genus Chloroflexus of the phylum Chloroflexi with Chloroflexus aggregans DSM 9485T as the closest relative (97.0 % identity). The whole-genome sequence of isl-2T was determined. Average nucleotide identity values obtained for isl-2T in comparison to available genomic sequences of other strains of members of the genus Chloroflexus were 81.4 % or less and digital DNA-DNA hybridisation values 22.8 % or less. The results of additional phylogenetic analysis of the PufLM and BchG amino acid sequences supported the separate position of the isl-2T phylotype from the phylotypes of other members of the genus Chloroflexus. On the basis of physiological and phylogenetic data as well as genomic data, it was suggested that isl-2T represents a novel species within the genus Chloroflexus, with the proposed name Chloroflexus islandicus sp. nov. The type strain of the species is isl-2T (=VKM B-2978T,=DSM 29225T,=JCM 30533T).

  9. A coupled geochemical and geophysical investigation of phase separation in Norris Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Carr, B.; Sims, K. W. W.; Scott, S. R.; Holbrook, W. S.; Heasler, H.; Jaworwski, C.

    2016-12-01

    Geochemical and hydrological evidence has been used for decades to imagine the subsurface plumbing of the Yellowstone (YS) hydrothermal system. An accepted paradigm of the YS hydrothermal system is phase separation, or boiling, of the hydrothermal fluid as it rises through the flow-paths of the subsurface. Neutral-chloride fluids are thought to represent the liquid portion of the two-phase fluid, and acid-sulfate fluids are thought to represent a condensed version of the steam portion. While this first-order hypothesis explains much of the chemical variation in YS hydrothermal fluids it is only a theoretical construct; this phase separation has never been actually imaged nor has it ever been definitively established that the phase separated waters come from the same source. Here, we use isotopic and geophysical methods to examine phase separation in two adjacent neutral chloride-acid sulfate pools in Norris Geyser Basin that are 14 meters apart: Perpetual Spouter (pH of 7.5, Cl 790 mg/L; SO4 37mg/L) and "Acid Bubbler" (pH of 3, Cl 340 mg/L, SO4 207 mg/L). Using: 1) Sr, Nd, and Pb radiogenic isotopic measurements we examine whether these waters come from the same source in terms of their water-rock interaction signatures; and, 2) geophysical methods to see if we can image the phase separation in the subsurface. These adjacent pools have different isotopic compositions suggesting they have come from different sources or that their waters have interacted with different rock types. Perpetual Spouter has a 208Pb/206Pb ratio of 2.10, similar to the underlying Paleozoic and Mesozoic sedimentary rocks indicating these waters came from a deep source; whereas Acid Bubbler has a 208b/206Pb of 2.22 suggesting its water has interacted with surficial Lava Creek rhyolite. Numerous 1D, 2D, and 3D geophysical methods were acquired and integrated over an area 30 m x 30 m to image subsurface geophysical properties, groundwater flow pathways, and structural constraints. These data

  10. GEYSERS: a novel architecture for virtualization and co-provisioning of dynamic optical networks and IT services

    NARCIS (Netherlands)

    Escalona, E.; Peng, S.; Nejabati, R.; Simeonidou, D.; García-Espín, J.A.; Ferrer, J.; Figuerola, S.; Landi, G.; Ciulli, N.; Jiménez, J.; Belter, B.; Demchenko, Y.; de Laat, C.; Chen, X.; Yukan, A.; Soudan, S.; Vicat-Blanc, P.; Buysse, J.; de Leenheer, M.; Develder, C.; Tzanakaki, A.; Robinson, P.; Brogle, M.; Bohnert, T.M.

    2011-01-01

    GEYSERS aims at defining an end-to-end network architecture that offers a novel planning, provisioning and operational framework for optical network and IT infrastructure providers and operators. In this framework, physical infrastructure resources (network and IT) are dynamically partitioned to

  11. High-resolution in-situ thermal imaging of microbial mats at El Tatio Geyser, Chile shows coupling between community color and temperature

    Science.gov (United States)

    Dunckel, Anne E.; Cardenas, M. Bayani; Sawyer, Audrey H.; Bennett, Philip C.

    2009-12-01

    Microbial mats have spatially heterogeneous structured communities that manifest visually through vibrant color zonation often associated with environmental gradients. We report the first use of high-resolution thermal infrared imaging to map temperature at four hot springs within the El Tatio Geyser Field, Chile. Thermal images with millimeter resolution show drastic variability and pronounced patterning in temperature, with changes on the order of 30°C within a square decimeter. Paired temperature and visual images show that zones with specific coloration occur within distinct temperature ranges. Unlike previous studies where maximum, minimum, and optimal temperatures for microorganisms are based on isothermally-controlled laboratory cultures, thermal imaging allows for mapping thousands of temperature values in a natural setting. This allows for efficiently constraining natural temperature bounds for visually distinct mat zones. This approach expands current understanding of thermophilic microbial communities and opens doors for detailed analysis of biophysical controls on microbial ecology.

  12. RPL: Lessons from abroad | Geyser | South African Journal of ...

    African Journals Online (AJOL)

    In this article, the focus is on recognition of prior learning (RPL) in the United States of America (USA) and Canada. The aim is to inform policy makers and RPL implementers (in South Africa) regarding the principles and implementation of RPL. Methods of assessment, financial implications, best practices, etc are discussed.

  13. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    South Africa is an electricity-stressed country with a growing energy demand. Globally, hot water appliances are major consumers of electricity. Poor water quality for domestic purposes is a concern that may affect the efficiency of hot water appliances. Therefore, the Eskom Research, Testing, and Development Business ...

  14. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M; Fields, Matthew W

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  15. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    Kara Bowen De León

    2013-11-01

    Full Text Available The Heart Lake Geyser Basin (HLGB is remotely located at the base of Mount Sheridan in southern Yellowstone National Park, Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5 hot springs with varying temperatures (44°C, 63°C, 75°C. The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44°C and 63°C springs and a hyperthermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  16. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003-2005

    Science.gov (United States)

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.

    2008-01-01

    Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved

  17. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    Science.gov (United States)

    Santillan, Eugenio Felipe; Shanahan, Timothy; Omelon, Christopher; Major, Jonathan; Bennett, Philip

    2015-07-01

    When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.

  18. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    Directory of Open Access Journals (Sweden)

    Eugenio Felipe U Santillan

    2015-07-01

    Full Text Available When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99% to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.

  19. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  20. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, Eugenio-Felipe U.; Shanahan, Timothy M.; Omelon, Christopher R.; Major, Jonathan R.; Bennett, Philip C.

    2015-07-23

    When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analog, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 and 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 h. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° and 45°C and consumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 and 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the

  1. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-12-31

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig.

  2. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 1999-2000

    Science.gov (United States)

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were

  3. Effects of fault-controlled CO2 alteration on mineralogical and geomechanical properties of reservoir and seal rocks, Crystal Geyser, Green River, Utah

    Science.gov (United States)

    Major, J. R.; Eichhubl, P.; Urquhart, A.; Dewers, T. A.

    2012-12-01

    An understanding of the coupled chemical and mechanical properties of reservoir and seal units undergoing CO2 injection is critical for modeling reservoir behavior in response to the introduction of CO2. The implementation of CO2 sequestration as a mitigation strategy for climate change requires extensive risk assessment that relies heavily on computer models of subsurface reservoirs. Numerical models are fundamentally limited by the quality and validity of their input parameters. Existing models generally lack constraints on diagenesis, failing to account for the coupled geochemical or geomechanical processes that affect reservoir and seal unit properties during and after CO2 injection. For example, carbonate dissolution or precipitation after injection of CO2 into subsurface brines may significantly alter the geomechanical properties of reservoir and seal units and thus lead to solution-enhancement or self-sealing of fractures. Acidified brines may erode and breach sealing units. In addition, subcritical fracture growth enhanced by the presence of CO2 could ultimately compromise the integrity of sealing units, or enhance permeability and porosity of the reservoir itself. Such unknown responses to the introduction of CO2 can be addressed by laboratory and field-based observations and measurements. Studies of natural analogs like Crystal Geyser, Utah are thus a critical part of CO2 sequestration research. The Little Grand Wash and Salt Wash fault systems near Green River, Utah, host many fossil and active CO2 seeps, including Crystal Geyser, serving as a faulted anticline CO2 reservoir analog. The site has been extensively studied for sequestration and reservoir applications, but less attention has been paid to the diagenetic and geomechanical aspects of the fault zone. XRD analysis of reservoir and sealing rocks collected along transects across the Little Grand Wash Fault reveal mineralogical trends in the Summerville Fm (a siltstone seal unit) with calcite and

  4. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    Science.gov (United States)

    Kieffer, S.W.

    1984-01-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding

  5. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA: I. Low-flow discharge and major solute chemistry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.

    2010-01-01

    The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO2, Cl, F, HCO3, SO4, NO3, and NH4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO4, and N loads (35–58%) in the Gibbon River. The largest source of HCO3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9–14% of the river discharge at the gage is from thermal flows during this period.

  6. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    Norris Geyser Basin in Yellowstone National Park is home to several acidic, sulfidic hot springs. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The microbial communities in the iron oxidation zones are dominated by Archaea, including several members that appear to define previously unrecognized taxa. Abiotic iron oxidation rates are very slow at these temperatures (typically ~ 65-70 oC) and pH's (typically ~3). Therefore, the relatively rapid iron oxide deposition rate strongly suggests the process is microbially mediated, and an organism previously isolated from these springs, Metallosphaera yellowstonensis, has been shown to oxide iron in culture. M. yellowstonensis has been observed in the all microbial communities analyzed in the iron oxidizing zones of these springs, though metagenomic profiling suggests it constitutes only ~20% of the community membership. When we began our studies of C flow in the iron-oxidizing community, no C source had been demonstrated. Observed potential carbon sources in the springs include dissolved inorganic carbon, dissolved organic carbon, and methane, as well as random inputs of heterotrophic carbon in the forms of insect carcasses, pine needles, and animal scat. The temperatures in the iron oxidation zones are above the photosynthetic upper temperature limit, thus precluding photosynthetic-based autotrophy within the community itself. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. We have demonstrated that M. yellowstonensis as well as excised samples of iron oxide mat communities can fix CO2, and our estimated isotopic fractionation factor is consistent with the 3-hydroxypropionate 4-hydroxybutyrate pathway. Genes of this pathway have been identified in the M. yellowstonensis genome. We have tentatively identified small amounts of organic compounds

  7. Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach

    Science.gov (United States)

    Lewicki, Jennifer L.; Kelly, Peter; Bergfeld, Deborah; Vaughan, R. Greg; Lowenstern, Jacob B.

    2017-01-01

    We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from − 56 to 885 g m− 2 d− 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2emission rate from the study area ranged from 8.6 t d− 1 based on eddy covariance measurements to 9.8 t d− 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m− 2 d− 1. Nighttime H and LEwere considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m− 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The

  8. Hermeneutiese uitgangspunte in historiese-Jesus navorsing, Deel 1: Sosiaal-wetenskaplike vooronderstellings P A Geyser

    Directory of Open Access Journals (Sweden)

    P. A. Geyser

    2000-01-01

    Full Text Available Hermeneutical premises in historical Jesus research, Part 1:social-scientific presuppositions. The aim of this article is to reflect on social-scientific theoies, models and methods in historical Jesus research. The discussion focuses on ive epistemological aspects. The first aspect is the social conditioning of the epistemological process. All knowledge is socially conditioned and perspectival in nature. The second aspect is the situational discourse of the interpreter and the object of investigation. The third aspect concerns the process of knowing where theories and models are discussed. Distinctions are drawn between paradigms, theories, models and methods. Heuristics is the fourth matter to be discussed. Three approaches are evaluated critically: deduction, induction and abduction. Fifthly, the world of the Bible will be considered as a pre-industrial and advanced agrarian society.

  9. Geothermal policy development program: expediting the local geothermal permitting process

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    For a number of years, concerns have been raised about the length of time and the complexity involved in obtaining required permits in order to develop the geothermal resource at the Geysers. Perhaps the most important factor is jurisdiction. At the Geysers, all three levels of government - local, state, and federal - exercise significant authority over various aspects of geothermal development. In addition, several agencies within each governmental level play an active role in the permitting process. The present study is concerned primarily with the local permitting process, and the ways in which this process could be expedited. This report begins by looking at the local role in the overall permitting process, and then reviews the findings and conclusions that have been reached in other studies of the problem. This is followed by a case study evaluation of recent permitting experience in the four Geysers-Calistoga KGRA counties, and the report concludes by outlining several approaches to expediting the local permitting process.

  10. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    Science.gov (United States)

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  11. Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure

    Science.gov (United States)

    ,; Foley, Duncan; Fournier, Robert O.; Heasler, Henry P.; Hinckley, Bern; Ingebritsen, Steven E.; Lowenstern, Jacob B.; Susong, David D.

    2014-01-01

    A panel of leading experts (The Old Faithful Science Review Panel) was convened by Yellowstone National Park (YNP) to review and summarize the geological and hydrological understanding that can inform National Park Service management of the Upper Geyser Basin area. We give an overview of present geological and hydrological knowledge of the Old Faithful hydrothermal (hot water) system and related thermal areas in the Upper Geyser Basin. We prioritize avenues for improving our understanding of key knowledge gaps that limit informed decision-making regarding human use in this fragile natural landscape. Lastly, we offer guidelines to minimize impacts to the hydrothermal system that could be used to aid decisions by park management.

  12. Balancing energy and the environment: the case of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Brewer, S.

    1978-06-01

    The results of part of a Rand study on the federal role in resolving environmental issues arising out of the implementation of energy projects are reported. The projects discussed are two geothermal programs in California: the steam resource development at The Geysers (Lake and Sonoma counties) in northern California, and the wet brine development in the Imperial Valley in southern California.

  13. HYDROGEOLOGY OF THE THERMAL LANDSLIDE

    Energy Technology Data Exchange (ETDEWEB)

    Vantine, J.

    1985-01-22

    The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.

  14. The dark side of the mushroom spring microbial mat: Life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomics

    Science.gov (United States)

    Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflex...

  15. Final environmental impact report. Part I. Pacific Gas and Electric Company Geysers Unit 16, Geothermal Power Plant, Lake County, California

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The environmental analysis includes the following: geology, soils, hydrology, water quality, vegetation, wildlife, air resources, health and safety, noise, waste management, cultural resources, land use, aesthetics, socioeconomics, public services, transportation, and energy and material resources. Also included are: the project description, a summary of environmental consequences, and alternatives to the proposed action. (MHR)

  16. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. The Role of Cost Shared R&D in the Development of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  18. The Lusi mud eruption dynamics: constraints from field data.

    Science.gov (United States)

    Mazzini, Adriano; Sciarra, Alessandra; Lupi, Matteo; Mauri, Guillaume; Karyono, Karyono; Husein, Alwi; Aquino, Ida; Ricco, Ciro; Obermann, Anne; Hadi, Soffian

    2017-04-01

    The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Since its birth Lusi erupted with a pulsating behavior showing intermittent periods of stronger activity resulting in higher fluids and solid emissions intervals. Since 2010 two active vents are constantly active. We conducted detailed monitoring of such clastic geysering activity and this allowed us to distinguish four distinct phases that follow each other and that reoccur every 30 minutes: (1) regular bubbling activity (constant emission of water, mud breccia, and gas); (2) clastic geysering phase with intense bubbling (consisting in reduced vapor emission and more powerful diffused mud bursting); (3) clastic geysering with mud bursts and intense vapour discharge (typically dense plume that propagates up to 100 m in height); (4) quiescent phase marking the end of the geysering activity (basically no gas emissions or bursts observed). In order to better understand this pulsating behavior and to constrain the mechanisms controlling its activity, we designed a multidisciplinary monitoring of the eruption site combining the deployment of numerous instruments around the crater site. Processing of the collected data reveals the dynamic activity of Lusi's craters. Satellite images show that the location of these vents migrated along a NE-SW direction. This is subparallel to the direction of the Watukosek fault system that is the zone of (left) lateral deformation upon which Lusi developed in 2006. Coupling HR camera images with broadband and short period seismic stations allowed us to describe the seismic signal generated by clastic geysering and to constrain the depth of the source generating the signal. We measure a delay between the seismic (harmonic) record and the associated

  19. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant

    OpenAIRE

    Rahman, D. Y.; Sarian, F. D.; van Wijk, A; Martinez-Garcia, M; van der Maarel, M. J. E. C.

    2017-01-01

    The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products. The thermoacidophilic red microalga Cyanidioschyzon merolae might provide an alternative source of phycocyanin. Cyanidioschyzon merolae belongs to the order Cyanidiophyceae of the phylum Rhodophyta. Its natural habitat are sulfuric hot springs and geysers fou...

  20. Geothermal development and land use/energy planning by the State of California and its political subdivisions

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-30

    California law contains several vehicles for the implementation of geothermal planning. These mechanisms and their impact are examined. First, at the State level upon the California Energy Commission and the Division of Oil and Gas in the Department of Conservation. After some background on county planning in California, the unique situation in the counties of greatest geothermal potential is presented: Imperial County and the four Geysers counties as well as their joint powers agency. Conclusions and recommendations are included. (MHR)

  1. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Loiacono, Sara T; Meyer-Dombard, D'Arcy R; Havig, Jeff R; Poret-Peterson, Amisha T; Hartnett, Hilairy E; Shock, Everett L

    2012-05-01

    Genes encoding nitrogenase (nifH) were amplified from sediment and photosynthetic mat samples collected in the outflow channel of Mound Spring, an alkaline thermal feature in Yellowstone National Park. Results indicate the genetic capacity for nitrogen fixation over the entire range of temperatures sampled (57.2°C to 80.2°C). Amplification of environmental nifH transcripts revealed in situ expression of nifH genes at temperatures up to 72.7°C. However, we were unable to amplify transcripts of nifH at the higher-temperature locations (> 72.7°C). These results indicate that microbes at the highest temperature sites contain the genetic capacity to fix nitrogen, yet either do not express nifH or do so only transiently. Field measurements of nitrate and ammonium show fixed nitrogen limitation as temperature decreases along the outflow channel, suggesting nifH expression in response to the downstream decrease in bioavailable nitrogen. Nitrogen stable isotope values of Mound Spring sediment communities further support geochemical and genetic data. DNA and cDNA nifH amplicons form several unique phylogenetic clades, some of which appear to represent novel nifH sequences in both photosynthetic and chemosynthetic microbial communities. This is the first report of in situ nifH expression in strictly chemosynthetic zones of terrestrial (non-marine) hydrothermal systems, and sets a new upper temperature limit (72.7°C) for nitrogen fixation in alkaline, terrestrial hydrothermal environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Cullings, K.; Makhija, S.

    2001-01-01

    Molecular methods and comparisons of fruiting patterns (i.e., presence or absence of fungal fruiting bodies in different soil types) were used to determine ectomycorrhizal (EM) associates of Pinus contorta in soils associated with a thermal soil classified as ultra-acidic to extremely acidic (pH 2 to 4). EM were sampled by obtaining 36 soil cores from six paired plots (three cores each) of both thermal soils and forest soils directly adjacent to the thermal area. Fruiting bodies (mushrooms) were collected for molecular identification and to compare fruiting body (above-ground) diversity to below-ground diversity. Our results indicate (i) that there were significant decreases in both the level of EM infection (130 +/- 22 EM root tips/core in forest soil; 68 +/- 22 EM root tips/core in thermal soil) and EM fungal species richness (4.0 +/- 0.5 species/core in forest soil; 1.2 +/- 0.2 species/core in thermal soil) in soils associated with the thermal feature; (ii) that the EM mycota of thermal soils was comprised of a small set of dominant species and included very few rare species, while the EM mycota of forest soils contained a few dominant species and several rare EM fungal species; (iii) that Dermocybe phoenecius and a species of Inocybe, which was rare in forest soils, were the dominant EM fungal species in thermal soils; (iv) that other than the single Inocybe species, there was no overlap in the EM fungal communities of the forest and thermal soils; and (v) that the fungal species forming the majority of the above-ground fruiting structures in thermal soils (Pisolithus tinctorius, which is commonly used in remediation of acid soils) was not detected on a single EM root tip in either type of soil. Thus, P. tinctorius may have a different role in these thermal soils. Our results suggest that this species may not perform well in remediation of all acid soils and that factors such as pH, soil temperature, and soil chemistry may interact to influence EM fungal

  3. Draft Genome Sequences of Three Cellulolytic Bacillus licheniformis Strains Isolated from Imperial Geyser, Amphitheater Springs, and Whiterock Springs inside Yellowstone National Park.

    Science.gov (United States)

    O' Hair, Joshua A; Li, Hui; Thapa, Santosh; Scholz, Matthew; Zhou, Suping

    2017-03-30

    Novel cellulolytic microorganisms are becoming more important for rapidly growing biofuel industries. This paper reports the draft genome sequences of Bacillus licheniformis strains YNP2-TSU, YNP3-TSU, and YNP5-TSU. These cellulolytic isolates were collected from several hydrothermal features inside Yellowstone National Park. Copyright © 2017 O' Hair et al.

  4. Ectomycorrhizal Fungal Associates of Pinus contorta in Soils Associated with a Hot Spring in Norris Geyser Basin, Yellowstone National Park, Wyoming

    OpenAIRE

    Cullings, Ken; Makhija, Shilpa

    2001-01-01

    Molecular methods and comparisons of fruiting patterns (i.e., presence or absence of fungal fruiting bodies in different soil types) were used to determine ectomycorrhizal (EM) associates of Pinus contorta in soils associated with a thermal soil classified as ultra-acidic to extremely acidic (pH 2 to 4). EM were sampled by obtaining 36 soil cores from six paired plots (three cores each) of both thermal soils and forest soils directly adjacent to the thermal area. Fruiting bodies (mushrooms) w...

  5. Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    NARCIS (Netherlands)

    Tzanakaki, A.; Anastasopoulos, M.; Georgakilas, K.; Buysse, J.; de Leenheer, M.; Develder, C.; Peng, S.; Nejabati, R.; Escalona, E.; Simeonidou, D.; Ciulli, N.; Landi, G.; Brogle, M.; Manfredi, A.; Lopez, E.; Ferrer Riera, J.; García-Espín, J.A.; Donaldio, P.; Parladori, G.; Jimenez, J.; Tovar De Duenyas, A.; Vicat-Blanc, P.; van der Ham, J.; de Laat, C.; Ghijsen, M.; Belter, B.; Binczewski, A.; Antoniak-Lewandowska, M.; Jaworski, M.; Marciniak, M.

    2011-01-01

    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS

  6. Geothermal regimes of the Clearlake region, northern California

    Energy Technology Data Exchange (ETDEWEB)

    Amador, M. [ed.; Burns, K.L.; Potter, R.M.

    1998-06-01

    The first commercial production of power from geothermal energy, at The Geysers steamfield in northern California in June 1960, was a triumph for the geothermal exploration industry. Before and since, there has been a search for further sources of commercial geothermal power in The Geysers--Clear Lake geothermal area surrounding The Geysers. As with all exploration programs, these were driven by models. The models in this case were of geothermal regimes, that is, the geometric distribution of temperature and permeability at depth, and estimates of the physical conditions in subsurface fluids. Studies in microseismicity and heat flow, did yield geophysical information relevant to active geothermal systems. Studies in stable-element geochemistry found hiatuses or divides at the Stoney Creek Fault and at the Collayomi Fault. In the region between the two faults, early speculation as to the presence of steamfields was disproved from the geochemical data, and the potential existence of hot-water systems was predicted. Studies in isotope geochemistry found the region was characterized by an isotope mixing trend. The combined geochemical data have negative implications for the existence of extensive hydrothermal systems and imply that fluids of deep origin are confined to small, localized systems adjacent to faults that act as conduits. There are also shallow hot-water aquifers. Outside fault-localized systems and hot-water aquifers, the area is an expanse of impermeable rock. The extraction of energy from the impermeable rock will require the development and application of new methods of reservoir creation and heat extraction such as hot dry rock technology.

  7. Final environmental statement for the geothermal leasing program

    Energy Technology Data Exchange (ETDEWEB)

    1973-12-31

    This second of the four volumes of the Geothermal Leasing Program final impact statement contains the individual environmental statements for the leasing of federally owned geothermal resources for development in three specific areas: Clear Lake-Geysers; Mono Lake-Long Valley; and Imperial Valley, all in California. It also includes a summary of the written comments received and departmental responses relative to the Draft Environmental Impact Statement issued in 1971; comments and responses on the Draft Environmental Impact Statement; consultation and coordination in the development of the proposal and in the preparation of the Draft Environmental Statement; and coordination in the review of the Draft Environmental Statement.

  8. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 4

    Science.gov (United States)

    2008-04-01

    volcanoes, Mentos geysers, cake baking instructions, and soda pop-soaked teeth at home. My daughter, Hannah, was inspired by MythBusters to determine...bet – provided you don’t have a fire extinguisher on hand. Hannah noticed the refrigerator and freezer seemed very slow to cool. I noticed Hannah left...the fastest way to cool a can of soda pop [2]. The results, in the Cool It Pop graph, determined that a cooler full of ice and salt water is your best

  9. An Overview of the ASCOT Multi-Laboratory Field Experiments in Relation to Drainage Winds and Ambient Flow.

    Science.gov (United States)

    Orgill, M. M.; Schreck, R. I.

    1985-10-01

    Preliminary analyses of the Atmospheric Studies in Complex Terrain data were conducted by Pacific Northwest Laboratory to determine how the development and persistence of local nocturnal drainage flow are affected by large-scale (synoptic- and mesoscale) pressure and wind systems. The data were collected in the Geysers Geothermal Resource Area of California during July 1979, September 1980, and August 1981. Topics considered in this overview are the local wind cycle, migratory synoptic/mesoscale disturbances, marine-air intrusion, effect of ambient winds and turbulent mixing on drainage conditions, temperature-inversion variations, and transport and dispersion of fluorescent-particle tracer plumes.

  10. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  11. Hydrogeology and geochemistry of the El Tatio geothermal basin, Atacama, Chile

    Science.gov (United States)

    Munoz Saez, C.; Manga, M.; Namiki, A.; Hurwitz, S.

    2016-12-01

    We collected water samples for isotopic and geochemical analysis and measured temperature and discharge from hydrothermal features and streams in the El Tatio geothermal basin in the Northern Chilean Andes. We found two sources of meteoric water, thermal water ascending from depth and precipitation of water from higher elevation. Andean high elevation precipitation can mix with magmatic water to generate the thermal fluids in the main aquifer, while a secondary aquifer appears to be diluted by local meteoric water. Thermal features are located on the hanging wall of a normal fault. These features present different degrees of mixing. The normal fault would allow the circulation and mixing of fluids. As the thermal fluids ascend to the surface they are affected by steam separation and dilution with local meteoric water. Dilution at shallow depth occurs in thermal springs located in marshy areas where the water table is close to the surface. At the surface, evaporation plays an important role controlling the chemistry of the fluids in thermal pools, perpetual spouters and fountain geysers. Water in discharge channels can lose as much as 30% of their water by evaporation. A field experiment performed at El Jefe geyser allows us to quantify the enthalpy of the erupting water. The specific enthalpy is lower than that in the reservoir implying that heat is lost during ascent or that ascending water mixes with cooler water. For the whole basin, the discharged thermal fluids from deep aquifers are 0.5 m3/s.

  12. Non Parametric Estimation of Inhibition for Point Process Data

    OpenAIRE

    Beyor, Alexa Lake

    2015-01-01

    For a single geyser one eruption may inhibit another eruption. The objective is to estimate the inhibition function of geyser eruptions using a non parametric algorithm by extending the non parametric estimation method of Marsan and Lenglin?(2008) for clustered Hawkes processes to the case where there may be inhibition. The proposed method is tested using simulated geyser eruption data from known densities: Exponential, Pareto, Normal, and Uniform. The method is then applied ot the actual dat...

  13. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    2010-01-01

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  14. A Feasibility Study of H{sub 2}S Abatement by Incineration of Noncondensable Gases in Vented Steam Flow from Davies-State 5206-1 Geothermal Steam Well, Geysers Geothermal Steam Field, Lake County, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-25

    Determine feasibility of using an incineration-type device to accomplish the required reduction in vent steam H{sub 2}S content to meet ICAPCO rules. This approach is to be the only method considered in this feasibility study.

  15. The Marysville, Montana Geothermal Project. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    1975-09-01

    This report describes the exploration of an anomalous site near Marysville, Montana, where the geothermal heat flow is about 10 times the regional average. The site arouses scientific interest because there are no surface manifestations such as young volcanics, hot springs, geysers, etc., within 20 miles of it. Also, there is significant economic interest in exploring the source of heat as a potential for the generation of electricity. Included herein are independent sections prepared by each contractor. Consequently, there is some overlapping information, generally presented from different viewpoints. The project consists of geophysical surveys in 1973 and 1974, the drilling of the deep well in the summer of 1974 to a depth of 6790 feet, the coring and logging of the well, the supporting scientific studies, and the data analysis. Since so much data are available on the Marysville system, it can serve as a testing and research area to help locate and understand similar systems. (GRA)

  16. Aesthetics, mysticism and the art of living

    Directory of Open Access Journals (Sweden)

    Pieter G.R. de Villiers

    2016-05-01

    Full Text Available This article analyses aesthetics and mysticism in the writings of Albert Geyser, the prominent South African theologian who is mostly known for his brave, uncompromising struggle against the apartheid system. In the first part of the article, brief introductory comments are made about Geyser’s theological and political role in South Africa in the light of his Protestan tcontext and his opposition to apartheid. It is then investigated how his reputation as a Biblical scholar and his protracted, much publicised stance against apartheid obfuscate his remarkable interest in aesthetics and mysticism and explains why his other theological interests and especially his interest in mysticism have not yet been researched. In the second part of the paper Geyser’s mystical interests are investigated by analysing his comments on church architecture, worship, music, liturgy and his pioneering translation of Thomas á Kempis’ Imitatio Christi.

  17. Flow and permeability structure of the Beowawe, Nevada hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Faulder, D.D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Johnson, S.D.; Benoit, W.R. [Oxbow Power Services, Inc., Reno, NV (United States)

    1997-05-01

    A review of past geologic, geochemical, hydrological, pressure transient, and reservoir engineering studies of Beowawe suggests a different picture of the reservoir than previously presented. The Beowawe hydrothermal contains buoyant thermal fluid dynamically balanced with overlying cold water, as shown by repeated temperature surveys and well test results. Thermal fluid upwells from the west of the currently developed reservoir at the intersection of the Malpais Fault and an older structural feature associated with mid-Miocene rifting. A tongue of thermal fluid rises to the east up the high permeability Malpais Fault, discharges at the Geysers area, and is in intimate contact with overlying cooler water. The permeability structure is closely related to the structural setting, with the permeability of the shallow hydrothermal system ranging from 500 to 1,000 D-ft, while the deeper system ranges from 200 to 400 D-ft.

  18. Evaluation of the evolving stress field of the Yellowstone volcanic plateau, 1988 to 2010, from earthquake first-motion inversions

    Science.gov (United States)

    Russo, E.; Waite, G. P.; Tibaldi, A.

    2017-03-01

    Although the last rhyolite eruption occurred around 70 ka ago, the silicic Yellowstone volcanic field is still considered active due to high hydrothermal and seismic activity and possible recent magma intrusions. Geodetic measurements document complex deformation patterns in crustal strain and seismic activity likewise reveal spatial and temporal variations in the stress field. We use earthquake data recorded between 1988 and 2010 to investigate these variations and their possible causes in more detail. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events have normal-faulting solutions, subordinate strike-slip kinematics, and very rarely, reverse motions. The dominant direction of extension throughout the 0.64 Ma Yellowstone caldera is nearly ENE, consistent with the perpendicular direction of alignments of volcanic vents within the caldera, but our study also reveals spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years around Norris Geyser Basin, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The presence of ;chocolate tablet; structures, with two sets of nearly perpendicular normal faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera.

  19. Frequency analysis for the thermal hydraulic characterization of a natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Walmir M.; Macedo, Luiz A.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Mesquita, Roberto N.; Masotti, Paulo H.; Angelo, Gabriel, E-mail: wmtorres@ipen.b, E-mail: lamacedo@ipen.b, E-mail: gdjian@ipen.b, E-mail: delvonei@ipen.b, E-mail: umbehaun@ipen.b, E-mail: tnconti@ipen.b, E-mail: , E-mail: rnavarro@ipen.b, E-mail: pmasotti@ipen.b, E-mail: gabriel.angelo@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the frequency analysis studies of the pressure signals from an experimental natural circulation circuit during a heating process. The main objective is to identify the characteristic frequencies of this process using fast Fourier transform. Video images are used to associate these frequencies to the observed phenomenology in the circuit during the process. Sub-cooled and saturated flow boiling, heaters vibrations, overall circuit vibrations, chugging and geysering were observed. Each phenomenon has its specific frequency associated. Some phenomena and their frequencies must be avoided or attenuated since they can cause damages to the natural circulation circuit and its components. Special operation procedures and devices can be developed to avoid these undesirable frequencies. (author)

  20. Application of seismic tomographic techniques in the investigation of geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Jr., Arturo Espejo [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing zone. This study concludes that microearthquake monitoring may be useful as an active reservoir management tool. Seismic velocity and attenuation structures as well as the distribution of microearthquake activity can be used to identify and delineate the geothermal reservoir, while temporal variations in these quantities would be useful in tracking changes during exploitation.

  1. Conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming. [Proposed aquifer at depth of 2 to 4 km. , at 340 to 370/sup 0/C, and containing about 1,000 ppM NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H.; Fournier, R.O.

    1976-01-01

    It is suggested that beneath Yellowstone thermal systems there is a large aquifer at a depth of 2 to 4 kilometers which contains a relatively homogeneous body of water at 340 to 370/sup 0/C containing about 1,000 ppM NaCl. This aquifer may be controlled entirely or in part by solution or fracture permeability that transects rock types. Water flows upwards from the deep aquifer along available fractures, losing steam in the process, and into more shallow aquifers that in turn feed the geyser and hot spring systems. In these shallow systems, it is diluted, reacts with rocks and fluids, and loses more steam to produce the varied hot spring waters of the Park. The deposition of silica at the bottom of the system and increased convection at near-critical temperatures will limit the maximum temperatures and depth of circulation of dilute high temperature thermal waters such as those of Yellowstone.

  2. Impact of geothermal development on stockraising homestead landowners

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-16

    Surface use and compensation conflicts have developed at the Geysers in California between owners of surface lands acquired under the Stockraising Homestead Act of 1916 and geothermal lessees with the right to develop the mineral interests reserved to the Federal Government. Several recommendations are made to the Secretary of the Interior concerning the problems identified. The following are discussed: conditions at the Geysers concerning geothermal development on stockraising lands that could be considered in regard to compensation, existence or potential for similar conflicts on this land outside the Geysers, protection and compensation provided surface owners in existence of legislation and the need for amendments, and alternative methods for paying compensation.

  3. GRIPS bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-31

    This GRIPS (Geothermal Resources Impact Project Study) contains over 1700 references on a wide variety of subjects dealing directly or indirectly with geothermal development at the Geysers/Calistoga KGRA. (MHR)

  4. Regional Moment Tensor Source-Type Discrimination Analysis

    Science.gov (United States)

    2015-11-16

    geothermal environment, those occurring as the result of the collapse of a brine cavity in a salt dome, and for a shallow mining related explosion. 3...the Napoleonville Salt Dome, Louisiana, an industrial quarry explosion and an earthquake at The Geysers geothermal field, Northern California are...for industrial applications (Chiang, A., et al, 2015), and (3) event TE3, an earthquake at The Geysers geothermal field, Northern California (Table 1

  5. The United States of America country update

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Bloomquist, R. Gordon; Boyd, Tonya L.; Renner, Joel

    2005-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity (gross) for electric power generation is 2,534 MWe with about 2,000 MWe net delivering power to the grid producing approximately 17,840 GWh per year for a 80.4% gross capacity factor. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The latest development at The Geysers, starting in 1998, is injecting recycled wastewater from two communities into the reservoir, which presently has recovered about 100 MWe of power generation. The second pipeline from the Santa Rosa area has just come on line. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and groundsource heat pumps. The installed capacity is 7,817 MWt and the annual energy use is about 31,200 TJ or 8,680 GWh. The largest application is ground-source (geothermal) heat pumps (69% of the energy use), and the next largest direct-uses are in space heating and agricultural drying. Direct utilization (without heat pumps) is increasing at about 2.6% per year; whereas electric power plant development is almost static, with only about 70 MWe added since 2000 (there were errors in the WGC2000 tabulation). A new 185-MWe plant being proposed for the Imperial Valley and about 100 MWe for Glass Mountain in northern California could be online by 2007-2008. Several new plants are proposed for Nevada totaling about 100 MWe and projects have been proposed in Idaho, New Mexico, Oregon and Utah. The total planned in the next 10 years is 632 MWe. The energy savings from electric power generation, direct-uses and ground-source heat pumps amounts to almost nine million tonnes

  6. The United States of America Country Update

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W. (1); Bloomquist, R. Gordon (2); Boyd, Tonya L. (1); Renner, Joel (3); (1) Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR; (2) Washington State University Energy Program, Olympia, WA; (3) Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID

    0001-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity (gross) for electric power generation is 2,534 MWe with about 2,000 MWe net delivering power to the grid producing approximately 17,840 GWh per year for a 80.4% gross capacity factor. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The latest development at The Geysers, starting in 1998, is injecting recycled wastewater from two communities into the reservoir, which presently has recovered about 100 MWe of power generation. The second pipeline from the Santa Rosa area has just come on line. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and groundsource heat pumps. The installed capacity is 7,817 MWt and the annual energy use is about 31,200 TJ or 8,680 GWh. The largest application is ground-source (geothermal) heat pumps (69% of the energy use), and the next largest direct-uses are in space heating and agricultural drying. Direct utilization (without heat pumps) is increasing at about 2.6% per year; whereas electric power plant development is almost static, with only about 70 MWe added since 2000 (there were errors in the WGC2000 tabulation). A new 185-MWe plant being proposed for the Imperial Valley and about 100 MWe for Glass Mountain in northern California could be online by 2007-2008. Several new plants are proposed for Nevada totaling about 100 MWe and projects have been proposed in Idaho, New Mexico, Oregon and Utah. The total planned in the next 10 years is 632 MWe. The energy savings from electric power generation, direct-uses and ground-source heat pumps amounts to almost nine million tonnes

  7. Hot and Saline Spring Behaviour in the Taupo Volcanic Zone and the North-East German Basin

    Science.gov (United States)

    Cacace, M.; Kissling, W.

    2012-04-01

    Hot springs occur in geothermal regions worldwide, and often have important economic or cultural values which can be threatened by geothermal developments. In this paper we describe models of hot springs in the Taupo Volcanic Zone (TVZ) in New Zealand, and of saline springs in the Northeast German Basin (NEGB). In New Zealand, the operation of the Wairakei geothermal power station in the 1950's and early 1960's lead to the collapse of the thermal area known as 'Geyser Valley', and more recently, the spring and Geyser activity in Rotorua was threatened by the widespread and uncontrolled drawoff of geothermal water for domestic use. Similarly, in the NEGB, discharge of saline springs poses serious challenges for groundwater management for agricultural and domestic use, having additional implications for future geothermal energy projects. Despite their obviously very different nature the springs in NEGB and TVZ do have some common characteristics: they both feed fluid to the surface from deeper (geothermal) aquifers through embedded hydrogeological heterogeneities (e.g. fracture systems, erosional gaps and unconformities in the internal stratigraphic sequence), and data shows that they both exhibit irregular flowrates, temperatures and chemistries. Currently used models of hot/saline springs do not show these types of behaviour and offer no understanding of the mechanisms of variability in either setting, or indeed the nature of the connections to deeper aquifers. In this paper we present early results from a study aimed at identifying the most important physical mechanisms governing the dynamics of these systems. We use the simulation code NaCl-Tough2 (Kissling, 2005a,b) to accurately represent the thermodynamics of fluids in both systems. Though relatively simplistic in terms of the modelled geometry these models provide new important insights into the variability of the observed flow dynamics as well as in their causative processes at depths. The results obtained

  8. The Tarawera eruption, Lake Rotomahana, and the origin of the Pink and White Terraces

    Science.gov (United States)

    Keam, Ronald F.

    2016-03-01

    This chapter introduces the historical and geographical background for the scientific studies at Tarawera and Lake Rotomahana in the Taupo Volcanic Zone of New Zealand as detailed in this Special Issue of the Journal of Volcanology and Geothermal Research. It also presents the results of some original investigations. These are based partly on the large body of historical information that exists about the 1886 Tarawera eruption and the geothermal system at Rotomahana, and partly on the results of dedicated geological studies by other researchers within the Okataina Volcanic Centre where the historical events took place. Specifically, the new material here presented includes a detailed analysis of a previously almost neglected narrative by the only observer to witness the 1886 eruption from the southeast of the erupting craters and leave an account of his observations. The importance of a co-operative interplay between pre-existing tectonic deformation and its responses to strong seismic activity induced by magmatic intrusion is emphasised as being a major determinant in the course of the eruption, and as the main trigger of the eruption explosions that were audible throughout half of the land area of New Zealand. The chapter then concentrates on showing how the recent geological studies, in conjunction with ideas on the architecture of geysers, permit an explanation to be given as to how the unique Pink and White Terraces came to be formed.

  9. Three Short Videos by the Yellowstone Volcano Observatory

    Science.gov (United States)

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  10. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    Science.gov (United States)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  11. AS GEYSER. De 7(er& 77:ms. Zondag^oeAr. UM Holland ...

    African Journals Online (AJOL)

    Test

    om die Evangelie te bring op die Sondag, en ook op die weeksdag, aan hulle wat nie in die geleentheid is om die gereelde erediens by te woon nie. Ek dink dadelik aan die onskatbare waarde van 'n dergelike boek vir ons afgeleë lidmate, vir leesdienste in ons konsulent-gemeentes; en hier in ons stede, vir die groot aantal ...

  12. Tracing time scales of fluid residence and migration in the crust (Invited)

    Science.gov (United States)

    Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.

    2013-12-01

    Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in

  13. Revealing fate of CO2 leakage pathways in the Little Grand Wash Fault, Green River, Utah

    Science.gov (United States)

    Han, K.; Han, W. S.; Watson, Z. T.; Guyant, E.; Park, E.

    2015-12-01

    To assure long-term security of geologic carbon sequestration site, evaluation of natural CO2 leakage should be preceded before actual construction of the CO2 facility by comparing natural and artificial reservoir systems. The Little Grand Wash fault is located at the northwestern margin of the Paradox Basin and roles on a bypass of deep subsurface CO2 and brine water onto the surface, e.g., cold water geyser, CO2 spring, and surface travertine deposits. CO2 degassed out from brine at the Little Grand Wash fault zone may react with formation water and minerals while migrating through the fault conduit. Leakage observed by soil CO2 flux on the fault trace shows this ongoing transition of CO2, from supersaturated condition in deep subsurface to shallow surface equilibria. The present study aims to investigate the reactions induced by changes in hydrological and mineralogical factors inside of the fault zone. The methodology to develop site-specific geochemical model of the Little Grand Wash Fault combines calculated mechanical movements of each fluid end-member, along with chemical reactions among fluid, free CO2 gas and rock formations. Reactive transport modeling was conducted to simulate these property changes inside of the fault zone, using chemistry dataset based on 86 effluent samples of CO2 geysers, springs and in situ formation water from Entrada, Carmel, and Navajo Sandstone. Meanwhile, one- and two-dimensional models were separately developed to delineate features mentioned above. The results from the 3000-year simulation showed an appearance of self-sealing processes near the surface of the fault conduit. By tracking physicochemical changes at the depth of 15 m on the 2-dimensional model, significant changes induced by fluid mixing were indicated. Calculated rates of precipitation for calcite, illite, and pyrite showed increase in 2.6 x 10-4, 2.25 x 10-5, and 3.0 x 10-6 in mineral volume fraction at the depth of 15m, respectively. Concurrently

  14. Extremophile Diatoms: Implications to the Drake Equation

    Science.gov (United States)

    Sterrenburg, Frithjof A. S.; Hoover, Richard B.

    2011-01-01

    Diatoms are unicellular Eukaryotes that (as a group and phylogenetically) are not strictly regarded as extremophiles , since the vast majority of diatoms are mesophilic photoautotrophs. However, among the terrestrial Eukaryotes, diatoms are by far the single group of organisms with the ability to inhabit the greatest range of hostile environments on Earth. They are the dominant eukaryotes in the polar regions; in fumaroles, hot springs and geysers; and in hypersaline and hyperalkaline lakes and pools. Cryophilic species such as Fragilaria sublinearis and Chaetoceras fragilis are able to carry out respiration at extremely low rates at low temperatures in darkness. The Drake Equation refers to the likelihood of there being intelligent life at the technological level of electromagnetic communication. However, consideration of the range of conditions suitable for the habitability of eukaryotic diatoms and prokaryotic extremophiles, the likelihood that life exists elsewhere in the cosmos becomes many orders of magnitude greater than that predicted by the classical Drake Equation. In this paper we review the characteristics of diatoms as eukaryotic extremophiles and consider the implications to adjustments needed to the Drake Equation to assess the possibility that life exists elsewhere in the Universe.

  15. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  16. Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park

    Science.gov (United States)

    McCleskey, R. Blaine; Clor, Laura; Lowenstern, Jacob B.; Evans, William C.; Nordstrom, D. Kirk; Heasler, Henry; Huebner, Mark

    2012-01-01

    The thermal output from the Yellowstone magma chamber can be estimated from the Cl flux in the major rivers in Yellowstone National Park; and by utilizing continuous discharge and electrical conductivity measurements the Cl flux can be calculated. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes (Na, SO4, F, HCO3, SiO2, K, Li, B, and As) was quantified at monitoring sites along the Madison, Gibbon, and Firehole Rivers, which receive discharge from some of the largest and most active geothermal areas in Yellowstone. Except for some trace elements, most solutes behave conservatively and the ratios between geothermal solute concentrations are constant in the Madison, Gibbon, and Firehole Rivers. Hence, dissolved concentrations of Cl, Na, SO4, F, HCO3, SiO2, K, Li, Ca, B and As correlate well with conductivity (R2 > 0.9 for most solutes) and most exhibit linear trends. The 2011 flux for Cl, SO4, F and HCO3 determined using automated conductivity sensors and discharge data from nearby USGS gaging stations is in good agreement with those of previous years (1983–1994 and 1997–2008) at each of the monitoring sites. Continuous conductivity monitoring provides a cost- and labor-effective alternative to existing protocols whereby flux is estimated through manual collection of numerous water samples and subsequent chemical analysis. Electrical conductivity data also yield insights into a variety of topics of research interest at Yellowstone and elsewhere: (1) Geyser eruptions are easily identified and the solute flux quantified with conductivity data. (2) Short-term heavy rain events can produce conductivity anomalies due to dissolution of efflorescent salts that are temporarily trapped in and around geyser basins during low-flow periods. During a major rain event in October 2010, 180,000 kg of additional solute was measured in the Madison River. (3) The output of thermal water from the Gibbon River appears to have

  17. Rare earth element contents of the Lusi mud: An attempt to identify the environmental origin of the hot mudflow in East Java - Indonesia

    Science.gov (United States)

    Agustawijaya, Didi Supriadi; Karyadi, Karyadi; Krisnayanti, Baiq Dewi; Sutanto, Sutanto

    2017-12-01

    The Sidoarjo mudflow in East Java, Indonesia, has been erupting since May 29th, 2006. The eruption has been known as the Lusi (lumpur Sidoarjo), which was previously considered as a remote seismic event consequence, but current geyser-like activities show an association with a geothermal phenomenon. A method of characterizing rare earth elements (REE) is commonly an effective tool for recognizing a geothermal system, and here it is adapted to particularly indicate the environmental origin of the Lusi mud. Results show that the Lusi hot mud is made of a porous smectite structure of a shale rock type, which becomes an ideal tank for trapping the REE, especially the light REE. Volcanic activities seem to be an important influence in the eruption; however, since there is a lack of significant isotopic evidences in the mobilization of the REE during the eruption, the chloride neutral pH water of the Lusi may hardly contain the REE. The moderate Ce and Eu anomalies found in the REE patterns of the mud strongly indicate a sea-floor basin as the most probable environment for the REE fractionation during the sedimentary rock formation, in which the weathering processes of volcanic rock origin enriched the Lusi shale with the REE.

  18. The station of modeling the mine resources in economical geology investigations and determination of mineral deposits genes & reserves

    Directory of Open Access Journals (Sweden)

    Sharif, J.A.

    2015-05-01

    Full Text Available In recent days, computer is becoming one of the most essential instruments in advanced countries for the researchers and the domain of its application is going to be increased every day. Using the 3D modeling of the earth, its mine resources and the brilliant details which are given by the models, the researching and exploring groups will find out the inconspicuous and attractive aspects of the genetic structure and the geological history of these resources. In this paper which is a result of the researches done as the case study on a group of aragonite deposits in West Azarbaijan province, modeling of under study mineral deposits and the genetic approaches obtained from the models lead into explore and discover some other resources of the same minerals which is widely accepted recently in the market of decorative rocks in Iran. In modeling procedure of these resources which is a product of the geysers, the profile of these lime generating springs and their directional order on some specific hidden fracture is determined and approximate location of the new resources for the next explorations is assigned. At the moment, these assigned locations as new resources are being explored and even exploited.

  19. A guide to geothermal energy and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Kagel, Alyssa; Bates, Diana; Gawell, Karl

    2005-04-22

    Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

  20. Metabolic Interactions in the Gastrointestinal Tract (GIT: Host, Commensal, Probiotics, and Bacteriophage Influences

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2015-12-01

    Full Text Available Life on this planet has been intricately associated with bacterial activity at all levels of evolution and bacteria represent the earliest form of autonomous existence. Plants such as those from the Leguminosae family that form root nodules while harboring nitrogen-fixing soil bacteria are a primordial example of symbiotic existence. Similarly, cooperative activities between bacteria and animals can also be observed in multiple domains, including the most inhospitable geographical regions of the planet such as Antarctica and the Lower Geyser Basin of Yellowstone National Park. In humans bacteria are often classified as either beneficial or pathogenic and in this regard we posit that this artificial nomenclature is overly simplistic and as such almost misinterprets the complex activities and inter-relationships that bacteria have with the environment as well as the human host and the plethora of biochemical activities that continue to be identified. We further suggest that in humans there are neither pathogenic nor beneficial bacteria, just bacteria embraced by those that tolerate the host and those that do not. The densest and most complex association exists in the human gastrointestinal tract, followed by the oral cavity, respiratory tract, and skin, where bacteria—pre- and post-birth—instruct the human cell in the fundamental language of molecular biology that normally leads to immunological tolerance over a lifetime. The overall effect of this complex output is the elaboration of a beneficial milieu, an environment that is of equal or greater importance than the bacterium in maintaining homeostasis.

  1. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia).

    Science.gov (United States)

    Rozanov, Alexey S; Bryanskaya, Alla V; Malup, Tatiana K; Meshcheryakova, Irina A; Lazareva, Elena V; Taran, Oksana P; Ivanisenko, Timofey V; Ivanisenko, Vladimir A; Zhmodik, Sergey M; Kolchanov, Nikolay A; Peltek, Sergey E

    2014-01-01

    Geothermal areas are of great interest for the study of microbial communities. The results of such investigations can be used in a variety of fields (ecology, microbiology, medicine) to answer fundamental questions, as well as those with practical benefits. Uzon caldera is located in the Uzon-Geyser depression that is situated in the centre of the Karym-Semyachin region of the East Kamchatka graben-synclinorium. The microbial communities of Zavarzin spring are well studied; however, its benthic microbial mat has not been previously described. Pyrosequencing of the V3 region of the 16S rRNA gene was used to study the benthic microbial community of the Zavarzin thermal spring (Uzon Caldera, Kamchatka). The community is dominated by bacteria (>95% of all sequences), including thermophilic, chemoorganotrophic Caldiserica (33.0%) and Dictyoglomi (24.8%). The benthic community and the previously examined planktonic community of Zavarzin spring have qualitatively similar, but quantitatively different, compositions. In this study, we performed a metagenomic analysis of the benthic microbial mat of Zavarzin spring. We compared this benthic community to microbial communities found in the water and of an integral probe consisting of water and bottom sediments. Various phylogenetic groups of microorganisms, including potentially new ones, represent the full-fledged trophic system of Zavarzin. A thorough geochemical study of the spring was performed.

  2. Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  3. Relationship between water chemistry and sediment mineralogy in the Cerro Prieto geothermal field: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N. (Univ. de Perpignan, France); Thompson, J.M.; Ball, J.W.

    1981-01-01

    The chemical compositions of waters collected from the Cerro Prieto geothermal production wells and hydrothermal emanations are different. Compared to the Cerro Prieto well waters, the surficial waters generally contain significantly less potassium, slightly less calcium and chloride, and significantly more magnesium and sulfate. In comparison to the unaltered sediments, the changes in the mineralogy of the altered sediments appear to be controlled by the type of emanation (well, spring, mud pot, geyser, fumarole, or cold pool). However, an increase in quartz and potassium feldspar percentages seems to be characteristic of the majority of the sediments in contact with geothermal fluids. Preliminary attempts to model the chemical processes occurring in the Cerro Prieto geothermal field using chemical equilibrium calculations are reported. For this purpose the chemical compositions of thermal waters (well and surficial emanation) were used as input data to make calculations with SOLMNEQ and WATEQ2 computer programs. Then the theoretical mineral composition of altered sediments was predicted and compared to the mineralogy actually observed in the solid samples.

  4. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  5. An experimental study of the role of subsurface plumbing on geothermal discharge

    Science.gov (United States)

    Namiki, Atsuko; Ueno, Yoshinori; Hurwitz, Shaul; Manga, Michael; Munoz-Saez, Carolina; Murphy, Fred

    2016-09-01

    In order to better understand the diverse discharge styles and eruption intervals observed at geothermal features, we performed three series of laboratory experiments with differing plumbing geometries. A single, straight conduit that connects a hot water bath (flask) to a vent (funnel) can originate geyser-like periodic eruptions, continuous discharge like a boiling spring, and fumarole-like steam discharge, depending on the conduit length and radius. The balance between the heat loss from the conduit walls and the heat supplied from the bottom determines whether and where water can condense which in turn controls discharge style. Next, we connected the conduit to a cold water reservoir through a branch, simulating the inflow from an external water source. Colder water located at a higher elevation than a branching point can flow into the conduit to stop the boiling in the flask, controlling the periodicity of the eruption. When an additional branch is connected to a second cold water reservoir, the two cold reservoirs can interact. Our experiments show that branching allows new processes to occur, such as recharge of colder water and escape of steam from side channels, leading to greater variation in discharge styles and eruption intervals. This model is consistent with the fact that eruption duration is not controlled by emptying reservoirs. We show how differences in plumbing geometries can explain various discharge styles and eruption intervals observed in El Tatio, Chile, and Yellowstone, USA.

  6. An experimental study of the role of subsurface plumbing on geothermal discharge

    Science.gov (United States)

    Namiki, Atsuko; Ueno, Yoshinori; Hurwitz, Shaul; Manga, Michael; Munoz-Saez, Carolina; Murphy, Fred

    2016-01-01

    In order to better understand the diverse discharge styles and eruption intervals observed at geothermal features, we performed three series of laboratory experiments with differing plumbing geometries. A single, straight conduit that connects a hot water bath (flask) to a vent (funnel) can originate geyser-like periodic eruptions, continuous discharge like a boiling spring, and fumarole-like steam discharge, depending on the conduit length and radius. The balance between the heat loss from the conduit walls and the heat supplied from the bottom determines whether and where water can condense which in turn controls discharge style. Next, we connected the conduit to a cold water reservoir through a branch, simulating the inflow from an external water source. Colder water located at a higher elevation than a branching point can flow into the conduit to stop the boiling in the flask, controlling the periodicity of the eruption. When an additional branch is connected to a second cold water reservoir, the two cold reservoirs can interact. Our experiments show that branching allows new processes to occur, such as recharge of colder water and escape of steam from side channels, leading to greater variation in discharge styles and eruption intervals. This model is consistent with the fact that eruption duration is not controlled by emptying reservoirs. We show how differences in plumbing geometries can explain various discharge styles and eruption intervals observed in El Tatio, Chile, and Yellowstone, USA.

  7. Use of high-resolution satellite images for characterization of geothermal reservoirs in the Tarapaca Region, Chile

    Science.gov (United States)

    Arellano-Baeza, A. A.; Montenegro A., C.

    2010-12-01

    The use of renewable and clean sources of energy is becoming crucial for sustainable development of all countries, including Chile. Chilean Government plays special attention to the exploration and exploitation of geothermal energy, total electrical power capacity of which could reach 16.000 MW. In Chile the main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the Lansat satellite have been used to characterize the geothermal field in the region of the Puchuldiza geysers, Colchane, Region of Tarapaca, North of Chile, located at the altitude of 4000 m. Structure of lineaments associated to the geothermal field have been extracted from the images using the lineament detection technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament analysis is a power tool for the detection of faults and joint zones associated to the geothermal fields.

  8. The M 7.7 Tocopilla earthquake and its aftershock sequence: deployment of a Task Force local network

    Science.gov (United States)

    Sobiesiak, M.; Eggert, S.; Woith, H.; Grosser, H.; Peyrat, S.; Vilotte, J.; Medina, E.; Ruch, J.; Walter, T.; Victor, P.; Barrientos, S.; Gonzalez, G.

    2008-05-01

    After the November 14, 2007 Tocopilla earthquake in northern Chile, a local network of 20 short period seismic stations, 5 strong motion instruments, 6 GPS stations and 3 extensometers has been installed in the fault plane area between Tocopilla and Antofagasta by the German Task Force for earthquakes (GFZ Potsdam). The hydrogeology group of the TF sampled 20 thermal water sources in the area of the El Tatio geyser field, located about 170 km E of the epicentre. In collaboration with the IPG Paris, 4 broad band stations were deployed at the northern end of the fault plane between Tocopilla and Maria Elena. Major targets of the investigations of the aftershock sequence are the segment boundary between the 1995 Antofagasta earthquake and the recent Tocopilla event, stress transfer between both successively ruptured subduction zone segments, structural properties of the fault plane, possible consequences for the northern adjacent Iquique segment, and the influence of earthquake seismic waves on the El Tatio hydrothermal field. In our presentation we would like to show first results on the spatial distribution of the aftershocks and discuss these in relation to studies we have made on the Antofagasta aftershock sequence.

  9. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant.

    Science.gov (United States)

    Rahman, D Y; Sarian, F D; van Wijk, A; Martinez-Garcia, M; van der Maarel, M J E C

    2017-01-01

    The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products. The thermoacidophilic red microalga Cyanidioschyzon merolae might provide an alternative source of phycocyanin. Cyanidioschyzon merolae belongs to the order Cyanidiophyceae of the phylum Rhodophyta. Its natural habitat are sulfuric hot springs and geysers found near volcanic areas in, e.g., Yellowstone National Park in the USA and in Java, Indonesia. It grows optimally at a pH between 0.5 and 3.0 and at temperatures up to 56 °C. The low pH at which C. merolae grows minimizes the risk of microbial contamination and could limit production loss. As C. merolae lacks a cell wall, phycocyanin with a high purity number of 9.9 could be extracted by an osmotic shock using a simple ultrapure water extraction followed by centrifugation. The denaturation midpoint at pH 5 was 83 °C, being considerably higher than the A. platensis phycocyanin (65 °C). The C. merolae phycocyanin was relatively stable at pH 4 and 5 up to 80 °C. The high thermostability at slightly acidic pH makes the C. merolae phycocyanin an interesting alternative to A. platensis phycocyanin as a natural blue food colorant.

  10. Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand

    Science.gov (United States)

    Stoffers, P.; Hannington, M.; Wright, I.; Herzig, P.; de Ronde, C.; Scientific Party, Shipboard

    1999-10-01

    Hot springs in active geothermal areas such as Yellowstone National Park, the Geysers geothermal field in California, and the Taupo volcanic zone in New Zealand are notably enriched in the trace metals Au, Ag, As, Sb, and Hg. Such near-surface hot springs have formed many of the world's important deposits of gold and silver and some of the largest deposits of mercury. The majority of these are associated with continental geothermal systems in subaerial environments. Here we report the discovery of active mercury-depositing hot springs in a submarine setting, at nearly 200 m water depth, within the offshore extension of the Taupo volcanic zone of New Zealand. These vents contain the first documented occurrence of elemental mercury on the sea floor and provide an important link between offshore hydrothermal activity and mercury-depositing geothermal systems on land. The discovery has implications for mercury transport in sea-floor hydrothermal systems and underscores the importance of submarine volcanic and geothermal activity as a source of mercury in the oceans.

  11. A parametric study of Enceladus plumes based on DSMC calculations for retrieving the outgassing parameters as measured by Cassini instruments

    Science.gov (United States)

    Mahieux, Arnaud; Goldstein, David B.; Varghese, Philip; Trafton, Laurence M.

    2017-10-01

    The vapor and particulate plumes arising from the southern polar regions of Enceladus are a key signature of what lies below the surface. Multiple Cassini instruments (INMS, CDA, CAPS, MAG, UVIS, VIMS, ISS) measured the gas-particle plume over the warm Tiger Stripe region and there have been several close flybys. Numerous observations also exist of the near-vent regions in the visible and the IR. The most likely source for these extensive geysers is a subsurface liquid reservoir of somewhat saline water and other volatiles boiling off through crevasse-like conduits into the vacuum of space.In this work, we use a DSMC code to simulate the plume as it exits a vent, considering axisymmetric conditions, in a vertical domain extending up to 10 km. Above 10 km altitude, the flow is collisionless and well modeled in a separate free molecular code. We perform a DSMC parametric and sensitivity study of the following vent parameters: vent diameter, outgassed flow density, water gas/water ice mass flow ratio, gas and ice speed, and ice grain diameter. We build parametric expressions of the plume characteristics at the 10 km upper boundary (number density, temperature, velocity) that will be used in a Bayesian inversion algorithm in order to constrain source conditions from fits to plume observations by various instruments on board the Cassini spacecraft and assess the parametric sensitivity study.

  12. Good to the bone: microbial community thrives within bone cavities of a bison carcass at Yellowstone National Park.

    Science.gov (United States)

    Reeb, Valérie; Kolel, Avraham; McDermott, Timothy R; Bhattacharya, Debashish

    2011-09-01

    The discovery of unanticipated microbial diversity in remote, often hostile environments has led to a greater appreciation of the complexity and richness of the natural world. Yellowstone National Park (YNP) has long been a focus of work on taxa that inhabit extreme environments. Here we report the finding of microbial flora that inhabit an unexpected niche: the cavities of bone remnants from a bison carcass in Norris Geyser Basin in YNP. Although bleached white on the surface, the bone cavities are bright green due to the presence of Stichococcus-like trebouxiophyte green algae. The cavities also harbour different fungi and bacteria. Stichococcus species are common lichen photobionts and the Thelebolales fungi present in the bone cavities have previously been found in association with animal remains. Scanning electron microscope analysis suggests the fungi and algae do not form lichen-like associations in the bone. Rather these taxa and the bacteria appear to be opportunists that have colonized an isolated oasis that provides nutrients and protection from desiccation and UV radiation. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Acromioclavicular joint cyst: nine cases of a pseudotumor of the shoulder

    Energy Technology Data Exchange (ETDEWEB)

    Tshering Vogel, Dechen W.; Anderson, Suzanne E. [University Hospital of Bern, Department of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, California (United States); Hertel, Ralph [University Hospital of Bern, Department of Orthopedics, Plastic and Hand Surgery, Bern (Switzerland); Bernhard, Juerg [Burgerspital, Department of Rheumatology, Solothurn (Switzerland); Stauffer, Edouard [University Hospital of Bern, Department of Pathology, Bern (Switzerland)

    2005-05-01

    (1) To analyse the imaging appearances of nine patients with acromioclavicular joint cysts presenting as shoulder masses for tumor staging with operative, histopathological and joint aspiration findings. Retrospective review of imaging and correlation with clinical, operative and surgical notes. Images were reviewed by two musculoskeletal radiologists by consensus. Nine patients who presented clinically with a shoulder mass were evaluated by radiographs (n=9), ultrasound (n=1), conventional arthrography (n=3), MRI (n=6; with direct MR arthrography n=2, indirect MR arthrography n=4). All patients had a focal mass superior to the AC joint, with a size ranging from 1.5 cm to 6 cm and a mean of 3.27 cm. Correlation was available with surgery (n=7), histopathology (n=2) and cyst aspiration (n=2). Two patients were managed conservatively. Geyser sign was positive in all three arthrograms. All MRIs revealed extensive rotator cuff tears with a column of fluid extending from the glenohumeral joint through the rotator cuff tear into the acromioclavicular joint and acromioclavicular cyst. Chondrocalcinosis was seen in the acromioclavicular joint cyst (n=2) and in the glenohumeral joint (n=1). Aspirate in two patients contained calcium pyrophosphate dihydrate crystals. (orig.)

  14. SDSS-IV MaNGA: Evidence of the importance of AGN feedback in low-mass galaxies

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Smethurst, Rebecca; Nichol, Robert C.; Krawczyk, Coleman M.; Bizyaev, Dmitry; Greene, Olivia; Liu, Charles; Marinelli, Mariarosa; Rembold, Sandro B.; Riffel, Rogemar A.; da Silva Ilha, Gabriele; Wylezalek, Dominika; Andrews, Brett H.; Bundy, Kevin; Drory, Niv; Oravetz, Daniel; Pan, Kaike

    2018-01-01

    We present new evidence for AGN feedback in a subset of 69 quenched low-mass galaxies (M⋆ ≲ 5 × 109 M⊙, Mr > -19) selected from the first two years of the SDSS-IV MaNGA survey. The majority (85 per cent) of these quenched galaxies appear to reside in a group environment. We find 6 galaxies in our sample that appear to have an active AGN that is preventing on-going star-formation; this is the first time such a feedback mechanism has been observed in this mass range. Interestingly, five of these six galaxies have an ionised gas component that is kinematically offset from their stellar component, suggesting the gas is either recently accreted or outflowing. We hypothesise these six galaxies are low-mass equivalents to the "red geysers" observed in more massive galaxies. Of the other 62 galaxies in the sample, we find 8 do appear for have some low-level, residual star formation, or emission from hot, evolved stars. The remaining galaxies in our sample have no detectable ionised gas emission throughout their structures, consistent with them being quenched. This work shows the potential for understanding the detailed physical properties of dwarf galaxies through spatially resolved spectroscopy.

  15. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    Energy Technology Data Exchange (ETDEWEB)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  16. Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.W.; Grim, P.J.; Ikelman, J.A. (comps.)

    1980-06-01

    The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

  17. Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G)

    Science.gov (United States)

    Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.

    2011-01-01

    The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.

  18. The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Elizabeth [Los Alamos National Laboratory; Fessenden, Julianna [Los Alamos National Laboratory; Kanjorski, Nancy [NON LANL; Koning, Dan [NM BUREAU OF GEOLOGY AND MINERAL RESOURCES; Pawar, Rajesh [Los Alamos National Laboratory

    2008-01-01

    In a natural analog study of risks associated with carbon sequestration, impacts of CO{sub 2} on shallow groundwater quality have been measured in a sandstone aquifer in New Mexico, USA. Despite relatively high levels of dissolved CO{sub 2}, originating from depth and producing geysering at one well, pH depression and consequent trace element mobility are relatively minor effects due to the buffering capacity of the aquifer. However, local contamination due to influx of saline waters in a subset of wells is significant. Geochemical modeling of major ion concentrations suggests that high alkalinity and carbonate mineral dissolution buffers pH changes due to CO{sub 2} influx. Analysis oftrends in dissolved trace elements, chloride, and CO2 reveal no evidence of in-situ trace element mobilization. There is clear evidence, however, that As, U, and Pb are locally co-transported into the aquifer with CO{sub 2}-rich saline water. This study illustrates the role that local geochemical conditions will play in determining the effectiveness of monitoring strategies for CO{sub 2} leakage. For example, if buffering is significant, pH monitoring may not effectively detect CO2 leakage. This study also highlights potential complications that CO{sub 2}carrier fluids, such as saline waters, pose in monitoring impacts ofgeologic sequestration.

  19. MOSCAB (Materia OSCura A Bolle)

    Science.gov (United States)

    Pullia, Antonino

    2016-05-01

    This kind of detector (Geyser) has never been realized for the Elementary Particle Physics (it was constructed once in BERN A in 1964 by Hahn and Reist to detect transuranic nuclei. The Geyser is substantially a Vessel consisting of a “FLASK” containing a superheated liquid (f.i. some kind of freon) and a “NECK” (containing partially a separation liquid and partially the freon vapor). The Geyser was realized in Milano by setting the two different parts of the detector (flask and neck, filled in our case by freon C3 F8 , at different temperatures. The part of the overheated liquid was kept at higher temperature (f.i. 25 degree) and the gaseous part was kept at lower temperature (f.i. 18 degrees).

  20. Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-04-01

    In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

  1. Effect of the tiger stripes on the tidal deformation of Enceladus

    Science.gov (United States)

    Soucek, Ondrej; Hron, Jaroslav; Behounkova, Marie; Cadek, Ondrej

    2016-10-01

    The south polar region of Saturn's moon Enceladus has been subjected to a thorough scientific scrutiny since the Cassini mission discovery of an enigmatic system of fractures informally known as "tiger stripes". This fault system is possibly connected to the internal water ocean and exhibits a striking geological activity manifesting itself in the form of active water geysers on the moon's surface.The effect of the faults on periodic tidal deformation of the moon has so far been neglected because of the difficulties associated with the implementation of fractures in continuum mechanics models. Employing an open source finite element FEniCS package, we provide a numerical estimate of the maximum possible impact of the tiger stripes on the tidal deformation and the heat production in Enceladus's ice shell by representing the faults as narrow zones with negligible frictional and bulk resistance passing vertically through the whole shell.For a uniform ice shell thickness of 25 km, consistent with the recent estimate of libration, and for linear elastic rheology, we demonstrate that the faults can dramatically change the distribution of stress and strain in Enceladus's south polar region, leading to a significant increase of the heat flux and to a complex deformation pattern in this area. We also present preliminary results studying the effects of (i) variable ice-shell thickness, based on the recent topography, gravity and libration inversion model by Čadek et al. (2016) and (ii) Maxwell viscoelastic rheology on the global tidal deformation of the ice shell.O.S. acknowledges support by the Grant Agency of the Czech Republic through the project 15-14263Y.

  2. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Array Information Technology, Greenbelt, MD (United States); Dreger, Douglas [Univ. of California, Berkeley, CA (United States); Heidbach, Oliver [Helmholtz Centre Potsdam (Germany, German Research Center for Geosciences; Hutchings, Lawrence [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  3. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses

    Directory of Open Access Journals (Sweden)

    Vera Thiel

    2017-06-01

    Full Text Available Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat

  4. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses

    Science.gov (United States)

    Thiel, Vera; Hügler, Michael; Ward, David M.; Bryant, Donald A.

    2017-01-01

    Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat microorganisms have genes for

  5. Track of the Yellowstone hotspot: young and ongoing geologic processes from the Snake River Plain to the Yellowstone Plateau and Tetons

    Science.gov (United States)

    Morgan, Lisa A.; Pierce, Kenneth L.; Shanks, Pat; Raynolds, Robert G.H.

    2008-01-01

    This field trip highlights various stages in the evolution of the Snake River Plain–Yellowstone Plateau bimodal volcanic province, and associated faulting and uplift, also known as the track of the Yellowstone hotspot. The 16 Ma Yellowstone hotspot track is one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Recent interest in young and possible renewed volcanism at Yellowstone along with new discoveries and synthesis of previous studies, i.e., tomographic, deformation, bathymetric, and seismic surveys, provide a framework of evidence of plate motion over a mantle plume. This 3-day trip is organized to present an overview into volcanism and tectonism in this dynamically active region. Field trip stops will include the young basaltic Craters of the Moon, exposures of 12–4 Ma rhyolites and edges of their associated collapsed calderas on the Snake River Plain, and exposures of faults which show an age progression similar to the volcanic fields. An essential stop is Yellowstone National Park, where the last major caldera-forming event occurred 640,000 years ago and now is host to the world's largest concentration of hydrothermal features (>10,000 hot springs and geysers). This trip presents a quick, intensive overview into volcanism and tectonism in this dynamically active region. Field stops are directly linked to conceptual models related to hotspot passage through this volcano-tectonic province. Features that may reflect a tilted thermal mantle plume suggested in recent tomographic studies will be examined. The drive home will pass through Grand Teton National Park, where the Teton Range is currently rising in response to the passage of the North American plate over the Yellowstone hotspot.

  6. World as The Biggest Clasroom. Travel as The Best Lesson. Independent Scientific School Expeditions.

    Science.gov (United States)

    Oleksik, Ireneusz; Lorek, Grzegorz; Dacy-Ignatiuk, Katarzyna

    2013-04-01

    We are a group of teachers from Poland who think that classroom lessons are not enough for our pupils to understand the world. We had a dream to take our students and show them the most beautiful places and phenomena on the Earth. But how to do it? Though today's travelling is so easy as never before, there are still some problems for young Poles - not only funding but also philosophy of travelling. It looks that we found a solution a few years ago - why not to organise quite independent school scientific expeditions? Without travel agencies and agents we can reduce costs of travelling 2-3 times! And we did it! We buy cheap flight tickets, fly to our destination and then... we must manage with all problems ourselves. We sleep in tents or budget hostels, use local means of transport and eat food from cheap markets or street eating places. Our motto is: "To see as much as possible for the minimum money". There are many more advantages - we decide where to go and how much time we spend in one area, we can change our route in every moment if something appears worth seeing. Our small groups are very mobile, sometimes local people invite us to visit their houses (like in Iran or Morocco). Expeditions allow students to watch, feel, touch, taste and smell phenomena, places and organisms which they could only read about in a classroom and to understand people from other cultures and religions. The list of nature and culture jewels that we have already seen is still growing - sands and oasis of Sahara, snow peaks of Himalayas, salt waters of Caspian Sea in Iran, geysers, volcanoes and glaciers of Iceland, the biggest sea birds colonies and whales in the North Atlantic, ancient cities - Fez, Marrakesh, Esfahan, Varanasi and Yazd.

  7. The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets

    Science.gov (United States)

    Quick, Lynnae C.; Roberge, Aki

    2018-01-01

    JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.

  8. Three-Dimensional Velocity Field of the Yellowstone Deformation from Ascending and Descending ENVISAT Observations

    Science.gov (United States)

    Aly, M. H.; Cochran, E. S.

    2009-05-01

    The complex Yellowstone volcanic system is characterized by episodic crustal deformation that occurs on a decadal scale. Previous geodetic studies indicated that the 640 k year-old Yellowstone Caldera was recently subsiding until mid 2004, and then a new episode of uplift has occurred with rapid rates up to 7 cm/yr. However, Synthetic Aperture Radar Interferometry (InSAR) from either ascending or descending orbits permits measurements only in the line-of-sight (LOS) direction; and the Global Positioning System (GPS) provides point measurements and thus a limited spatial view of the ongoing deformation. In this study, we present the three-dimensional velocity field of Yellowstone deformation constructed from ascending and descending ENVISAT LOS components. Based on the ENVISAT satellite imaging and the Digital Elevation Model (DEM) geometries, we calculated the look vector, the elevation angle (the angle between the look vector and the horizontal surface plane), and the orientation angle (the angle between the projection of the look vector on the horizontal surface plane and the East direction) for each InSAR image pixel. The outputs indicate that the majority of observed deformation across the Yellowstone Caldera (approximately 7 cm/yr) and near the Norris Geyser Basin (approximately 4 cm/yr) occurred in the vertical direction during July 2005 - August 2006; however, significant horizontal deformation in the East-West direction occurred at the southeastern rim of the caldera and around Hebgen Lake, and slight deformation in the North-South direction occurred across the caldera during the same time period. The constructed three-dimensional velocity field provides new constraints on the depth and geometry of the Yellowstone magma chamber.

  9. A novel method for direct investigation of dark matter

    Science.gov (United States)

    Bertoni, R.; Chignoli, F.; Chiesa, D.; Clemenza, M.; Ghezzi, A.; Lucchini, G.; Mazza, R.; Negri, P.; Pozzi, S.; Pullia, A.; Redaelli, N.; Zanotti, L.; Cundy, D.

    2014-07-01

    The Materia OSCura A Bolle (MOSCAB) experiment uses a new technique for Dark Matter search. The Geyser technique is applied to the construction of a prototype detector with a mass of 0.5 kg and the encouraging results are reported here; an accent is placed on a big detector of 40 kg in construction at the Milano Bicocca University and INFN.

  10. A new technique for direct investigation of dark matter

    CERN Document Server

    Bertoni, R; Chiesa, D.; Clemenza, M.; Lucchini, G.; Mazza, R.; Negri, P.; Pullia, A.; Redaelli, N.; Zanotti, L.; Cundy, D.

    2014-01-01

    The MOSCAB experiment (Materia OSCura A Bolle) uses a new technique for Dark Matter search. The Geyser technique is applied to the construction of a prototype detector with a mass of 0.5 kg and the encouraging results are reported here; an accent is placed on a big detector of 40 kg in construction at the Milano-Bicocca University and INFN.

  11. A new technique for direct investigation of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, R.; Chignoli, F.; Chiesa, D.; Clemenza, M.; Lucchini, G.; Mazza, R.; Negri, P. [University and INFN of Milano Bicocca (Italy); Pullia, A., E-mail: antonino.pullia@mib.infn.it [University and INFN of Milano Bicocca (Italy); Redaelli, N.; Zanotti, L. [University and INFN of Milano Bicocca (Italy); Cundy, D. [University and INFN of Milano Bicocca (Italy); IFSI Torino (Italy); CERN (Switzerland)

    2014-04-21

    The MOSCAB experiment (Materia OSCura A Bolle) uses a new technique for dark matter search. The Geyser technique is applied to the construction of a prototype detector with a mass of 0.5 kg and the encouraging results are reported here; an accent is placed on a big detector of 40 kg in construction at the Milano-Bicocca University and INFN.

  12. A new technique for direct investigation of dark matter

    Science.gov (United States)

    Bertoni, R.; Chignoli, F.; Chiesa, D.; Clemenza, M.; Lucchini, G.; Mazza, R.; Negri, P.; Pullia, A.; Redaelli, N.; Zanotti, L.; Cundy, D.

    2014-04-01

    The MOSCAB experiment (Materia OSCura A Bolle) uses a new technique for dark matter search. The Geyser technique is applied to the construction of a prototype detector with a mass of 0.5 kg and the encouraging results are reported here; an accent is placed on a big detector of 40 kg in construction at the Milano-Bicocca University and INFN.

  13. Stanford geothermal program. Final report, July 1990--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

  14. Tenth workshop on geothermal reservoir engineering: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  15. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  16. The Challenges of Data Rate and Data Accuracy in the Analysis of Volcanic Systems: An Assessment Using Multi-Parameter Data from the 2012-2013 Eruption Sequence at White Island, New Zealand

    Science.gov (United States)

    Jolly, A. D.; Christenson, B. W.; Neuberg, J. W.; Fournier, N.; Mazot, A.; Kilgour, G.; Jolly, G. E.

    2014-12-01

    Volcano monitoring is usually undertaken with the collection of both automated and manual data that form a multi-parameter time-series having a wide range of sampling rates and measurement accuracies. Assessments of hazards and risks ultimately rely on incorporating this information into usable form, first for the scientists to interpret, and then for the public and relevant stakeholders. One important challenge is in building appropriate and efficient strategies to compare and interpret data from these exceptionally different datasets. The White Island volcanic system entered a new eruptive state beginning in mid-2012 and continuing through the present time. Eruptive activity during this period comprised small phreatic and phreato-magmatic events in August 2012, August 2013 and October 2013 and the intrusion of a small dome that was first observed in November 2012. We examine the chemical and geophysical dataset to assess the effects of small magma batches on the shallow hydrothermal system. The analysis incorporates high data rate (100 Hz) seismic, and infrasound data, lower data rate (1 Hz to 5 min sampling interval) GPS, tilt-meter, and gravity data and very low data rate geochemical time series (sampling intervals from days to months). The analysis is further informed by visual observations of lake level changes, geysering activity through crater lake vents, and changes in fumarolic discharges. We first focus on the problems of incorporating the range of observables into coherent time frame dependant conceptual models. We then show examples where high data rate information may be improved through new processing methods and where low data rate information may be collected more frequently without loss of fidelity. By this approach we hope to improve the accuracy and efficiency of interpretations of volcano unrest and thereby improve hazard assessments.

  17. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  18. Continental Scientific Drilling Program.

    Science.gov (United States)

    1979-01-01

    assemblage associated with a Jurassic subduction zone. In this formation, ophiolites, cherts, pillow basalts, glaucophane schists, graywacke, and melanges...RESOURCES 121 follow clear-cut safeguards to avoid any degradation of the geyser and hot spring systems. Any such drilling must also be totally

  19. Volcano and Earthquake Monitoring Plan for the Yellowstone Volcano Observatory, 2006-2015

    Science.gov (United States)

    ,

    2006-01-01

    To provide Yellowstone National Park (YNP) and its surrounding communities with a modern, comprehensive system for volcano and earthquake monitoring, the Yellowstone Volcano Observatory (YVO) has developed a monitoring plan for the period 2006-2015. Such a plan is needed so that YVO can provide timely information during seismic, volcanic, and hydrothermal crises and can anticipate hazardous events before they occur. The monitoring network will also provide high-quality data for scientific study and interpretation of one of the largest active volcanic systems in the world. Among the needs of the observatory are to upgrade its seismograph network to modern standards and to add five new seismograph stations in areas of the park that currently lack adequate station density. In cooperation with the National Science Foundation (NSF) and its Plate Boundary Observatory Program (PBO), YVO seeks to install five borehole strainmeters and two tiltmeters to measure crustal movements. The boreholes would be located in developed areas close to existing infrastructure and away from sensitive geothermal features. In conjunction with the park's geothermal monitoring program, installation of new stream gages, and gas-measuring instruments will allow YVO to compare geophysical phenomena, such as earthquakes and ground motions, to hydrothermal events, such as anomalous water and gas discharge. In addition, YVO seeks to characterize the behavior of geyser basins, both to detect any precursors to hydrothermal explosions and to monitor earthquakes related to fluid movements that are difficult to detect with the current monitoring system. Finally, a monitoring network consists not solely of instruments, but requires also a secure system for real-time transmission of data. The current telemetry system is vulnerable to failures that could jeopardize data transmission out of Yellowstone. Future advances in monitoring technologies must be accompanied by improvements in the infrastructure for

  20. Sulfurihydrogenibium rodmanii sp. nov., a sulfur-oxidizing chemolithoautotroph from the Uzon Caldera, Kamchatka Peninsula, Russia, and emended description of the genus Sulfurihydrogenibium.

    Science.gov (United States)

    O'Neill, Andrew H; Liu, Yitai; Ferrera, Isabel; Beveridge, Terry J; Reysenbach, Anna-Louise

    2008-05-01

    Four thermophilic, sulfur-oxidizing, chemolithoautotrophic strains with >99 % 16S rRNA gene sequence similarity were isolated from terrestrial hot springs in the Geyser Valley and the Uzon Caldera, Kamchatka, Russia. One strain, designated UZ3-5T, was characterized fully. Cells of UZ3-5T were Gram-negative, motile, slightly oval rods (about 0.7 microm wide and 1.0 microm long) with multiple polar flagella. All four strains were obligately microaerophilic chemolithoautotrophs and could use elemental sulfur or thiosulfate as electron donors and oxygen (1-14 %, v/v) as the electron acceptor. Strain UZ3-5T grew at temperatures between 55 and 80 degrees C (optimally at 75 degrees C; 1.1 h doubling time), at pH 5.0-7.2 (optimally at pH 6.0-6.3) and at 0-0.9 % NaCl (optimally in the absence of NaCl). The G+C content of the genomic DNA of strain UZ3-5T was 35 mol%. Phylogenetic analysis revealed that strain UZ3-5T was a member of the genus Sulfurihydrogenibium, its closest relative in culture being Sulfurihydrogenibium azorense Az-Fu1T (98.3 % 16S rRNA gene sequence similarity). On the basis of its physiological and molecular characteristics, strain UZ3-5T represents a novel species of the genus Sulfurihydrogenibium, for which the name Sulfurihydrogenibium rodmanii sp. nov. is proposed. The type strain is UZ3-5T (=OCM 900T =ATCC BAA-1536T =DSM 19533T).

  1. Measuring Variable Scales of Surface Deformation in and around the Yellowstone Caldera with TerraSAR-X Interferometry

    Science.gov (United States)

    Wicks, C. W., Jr.; Dzurisin, D.

    2014-12-01

    Utilizing three years of TerraSAR-X (TSX) Stripmap data covering the Yellowstone Caldera, Wyoming, we identify several examples showing the benefits of the high spatial and temporal resolution TSX data. Although the Stripmap footprints are small, compared to those of past SAR satellites, we are nonetheless able to track subsidence/uplift cycles of the ~50 x 80 km Yellowstone caldera using multiple strips. The Stripmap data are also useful for measuring deformation associated with the area of the North Rim anomaly, an area of repeated uplift and subsidence, ~30 km in diameter near the intersection of the north caldera rim, north-trending Mammoth-Norris Corridor, and west-northwest trending seismic belt east of Hebgen Lake. We measured ~45 mm of uplift associated with an episode that occurred mostly during the winter of 2013-2014 (as verified by GPS), and ~15 mm of subsequent subsidence in the early summer of 2014. The TSX Stripmap data have also proven effective at measuring small-scale deformation features. Because of the high-resolution of the TSX Stripmap data, we have also been able to measure many small-scale deforming features in Yellowstone National Park that are associated with apparent aquifer discharge/recharge cycles, unstable slope movement, geyser basin deformation, and deformation related to other hydrothermal features. We present an example of ~3 cm of seasonal deformation likely resulting from water movement in and out of an aquifer along the southwest caldera rim. We also document subsidence of ~1 cm/yr in a circular area nearly 0.5 km across near the vent from the Pitchstone Plateau, a thick rhyolite flow that erupted nearly 70 ka. TSX data are instrumental in identifying the seasonal variation found in some of these features, and in measuring the small spatial areas of deformation associated with other features.

  2. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff

    Energy Technology Data Exchange (ETDEWEB)

    Vandevenne, Jan E. [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium); Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, Filip; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Mahachie John, Jestinah M. [University of Hasselt, Centre for Statistics, Diepenbeek (Belgium); Gelin, Geert [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium)

    2009-07-15

    The purpose of this paper was to evaluate if short volumetric interpolated breath-hold examination (VIBE) sequences can be used as a substitute for T1-weighted with fat saturation (T1-FS) sequences when performing magnetic resonance (MR) arthrography to diagnose rotator cuff tears. Eighty-two patients underwent direct MR arthrography of the shoulder joint using VIBE (acquisition time of 13 s) and T1-FS (acquisition time of 5 min) sequences in the axial and paracoronal plane on a 1.0-T MR unit. Two radiologists scored rotator cuff tendons on VIBE and T1-FS images separately as normal, small/large partial thickness and full thickness tears with or without geyser sign. T1-FS sequences were considered the gold standard. Surgical correlation was available in a small sample. Sensitivity, specificity, and positive and negative predictive values of VIBE were greater than 92% for large articular-sided partial thickness and full thickness tears. For detecting fraying and articular-sided small partial thickness tears, these parameters were 55%, 94%, 94%, and 57%, respectively. The simple kappa value was 0.76, and the weighted kappa value was 0.86 for agreement between T1-FS and VIBE scores. All large partial and full thickness tears at surgery were correctly diagnosed using VIBE or T1-FS MR images. Fast MR arthrography of the shoulder joint using VIBE sequences showed good concordance with the classically used T1-FS sequences for the appearance of the rotator cuff, in particular for large articular-sided partial thickness tears and for full thickness tears. Due to its very short acquisition time, VIBE may be especially useful when performing MR arthrography in claustrophobic patients or patients with a painful shoulder. (orig.)

  3. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  4. Thermal regime of the Great Basin and its implications for enhanced geothermal systems and off-grid power

    Science.gov (United States)

    Sass, John H.; Walters, Mark A.

    1999-01-01

    The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.

  5. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone

    Science.gov (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2017-11-01

    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  6. Carbon uptake in low dissolved inorganic carbon environments: the effect of limited carbon availability on photosynthetic organisms in thermal waters

    Science.gov (United States)

    Myers, K. D.; Omelon, C. R.; Bennett, P.

    2010-12-01

    Photosynthesis is the primary carbon fixation process in thermal waters below 70°C, but some hydrothermal waters have extremely low dissolved inorganic carbon (DIC), potentially limiting the growth of inorganic carbon fixing organisms such as algae and cyanobacteria. To address the issue of how carbon is assimilated by phototrophs in these environments, we conducted experiments to compare inorganic carbon uptake mechanisms by two phylogenetically distinct organisms collected from geographically distinct carbon limited systems: the neutral pH geothermal waters of El Tatio, Chile, and the acidic geothermal waters of Tantalus Creek in Norris Geyser Basin, Yellowstone National Park. Discharge waters at El Tatio have low total DIC concentrations (2 to 6 ppm) found mainly as HCO3-; this is in contrast to even lower measured DIC values in Tantalus Creek (as low as 0.13 ppm) that, due to a measured pH of 2.5, exists primarily as CO2. Cyanobacteria and algae are innately physiologically plastic, and we are looking to explore the possibility that carbon limitation in these environments is extreme enough to challenge that plasticity and lead to a suite of carbon uptake adaptations. We hypothesize that these microorganisms utilize adaptive modes of Ci uptake that allow them to survive under these limiting conditions. Cyanobacteria (primarily Synechococcus spp.) isolated from El Tatio can utilize either passive CO2 uptake or active HCO3- uptake mechanisms, in contrast to the eukaryotic alga Cyanidium spp. from Tantalus Creek, which is restricted to an energy-dependent CO2 uptake mechanism. To test this hypothesis, we conducted pH drift experiments (Omelon et al., 2008) to examine changes in pH and [DIC] under a range of pH and [DIC] culture conditions. This work provides baseline information upon which we will begin to investigate the effects of low [DIC] on the growth of phototrophs collected from these and other less carbon limited systems.

  7. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park.

    Science.gov (United States)

    Miller, Scott R; Strong, Aaron L; Jones, Kenneth L; Ungerer, Mark C

    2009-07-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for approximately 70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s).

  8. Proposal to neutralize acid fluids from wells in the Los Humeros, Pue., geothermal field; Propuesta para la neutralizacion de fluidos acidos provenientes de pozos del campo geotermico de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly del Carmen; Ramirez Montes, Miguel; Garcia Cuevas, Juan Manuel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: magaly.flores@cfe.gob.mx

    2009-07-15

    Neutralizing an acidic fluid consists of adding a sodium hydroxide solution to neutralize the H group of acids, therefore increasing the pH. The injection of sodium hydroxide has to be continuous and at a proper depth inside the well to protect against the corrosion of casing and surface equipment. Neutralization is a common practice used in geothermal fields, such as at The Geysers in the US and Miravalles in Costa Rica-places where aggressive fluids cause problems for extracting and using geothermal fluids commercially. A zone surrounding wells H-4, H-16 and H-29 in the northern section of the Los Humeros, Pue., geothermal field, known as the Colapso Central, has shown evidence of aggressively acidic fluids. Several wells drilled in the area had to be repaired, thus plugging and isolating the deepest production zones. Well H-43 was drilled two years ago in the northern zone of the field, and even though it is not located in the aggressive-fluid zone, the well presents mineralogical features possibly indicating the presence of acidic fluids. Therefore, before producing this well it has been proposed we install a neutralization system with general characteristics presented in this paper. The system will prevent corrosion that up to now has prevented exploitation of the deep portion of Colapso Central, helping to develop the field in a more profitable way. [Spanish] Neutralizar un fluido acido consiste en agregarle una solucion de hidroxido de sodio. Esto neutraliza el grupo de acidos H y en consecuencia aumenta el pH. La inyeccion de hidroxido de sodio se realiza de manera continua y a una profundidad adecuada dentro del pozo para proteger a la tuberia y a todo el equipo superficial contra la corrosion. La neutralizacion es una practica comun que se viene realizando en campos como Los Geysers en Estados Unidos y en Miravalles, Costa Rica, donde la presencia de fluidos agresivos causa problemas en la extraccion y aprovechamiento del fluido geotermico con fines

  9. Quantifying the undiscovered geothermal resources of the United States

    Science.gov (United States)

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  10. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    Science.gov (United States)

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  11. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  12. Downward transfer of a sub-cooled cryoliquid

    CERN Document Server

    Wertelaers, P

    2016-01-01

    An alternative is proposed to the traditional transfer of a cryo fluid in gaseous -- and warm -- form, a method of low productivity and high energy cost. In order to prevent the much-feared geysering, focus is on sub-cooling of the liquid, and the safe maintaining of such state all along the journey. A cryogenic transfer line of simplest construction is proposed, and the difficulties with such line extending over a transfer depth of the order of the kilometre, are discussed.

  13. Reduction of operations and maintenance costs at geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bruton, C.J.; Stevens, C.G.; Rard, J.A.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    To reduce chemical costs at geothermal power plants, we are investigating: (a) improved chemical processes associated with H{sub 2}S abatement techniques, and (b) the use of cross dispersive infrared spectrometry to monitor accurately, reliably, and continuously H{sub 2}S emissions from cooling towers. The latter is a new type of infrared optical technology developed by LLNL for non-proliferation verification. Initial work is focused at The Geysers in cooperation with Pacific Gas and Electric. Methods for deploying the spectrometer on-site at The Geysers are being developed. Chemical analysis of solutions involved in H{sub 2}S abatement technologies is continuing to isolate the chemical forms of sulfur produced.

  14. SeisCORK Engineering Design Study

    Science.gov (United States)

    2006-05-01

    Iceland [Foulger, 1988, for example], the Geysers geothermal area in California [Ross, et al., 1996, for example], and the Coso geothermal area in...Drilling Program Management International, Inc, College Station, TX. Fialko, Y., and M. Simons (2000), Deformation and seismicity in the Coso geothermal...upper crust will be necessary in order to provide the framework for the hydro-geological results. This will best be accomplished by a combined OBS 63

  15. Economic Analysis and Comparison of Two Solar Energy Systems with Domestic Water Heating Systems

    OpenAIRE

    KAYALI, R.

    1998-01-01

    In this work, an economic analysis of different types of thermosiphons and geysers and flat plate collectors and solar ponds employeed in conventional solar energy systems used in houses is analized and the results obtained for these systems are compared with each other. These comparisons show that when the inflation rate is 50% or less solar energy systems are more economical than the other conventional systems, except for conventional systems in which solid fuels are used. If the calculatio...

  16. Panel Discussion: Life in the Cosmos

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    Water appears to be essential to all life on Earth. For this reason, "Follow the Water" has been adopted as a mantra for the search for Life in the Cosmos. Expeditions have helped to establish the limits and biodiversity of life in the most extreme environments on Earth. Microbial extremophiles inhabit acidic streams; hypersaline and hyperalkaline lakes and pools; the cold deep sea floor, permafrost, rocks, glaciers, and perennially ice-covered lakes of the polar environments; geysers, volcanic fumaroles, hydrothermal vents and hot rocks deep within the Earth's crust. The ESA Venus Express Spacecraft entered Venusian Orbit in 2006 and continues to produce exciting results. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument made the first detection of hydroxyl in the atmosphere of Venus, indicating it is much more similar to Earth and Mars than previously thought. Huge hurricane-like vortices have been found above the poles of the planet and as yet unidentified UV absorbers that form mysterious dark bands in the upper atmosphere. At 70 km and below, water vapor and sulfur dioxide combine to form sulfuric acid droplets that create a haze above the cloud tops. Thermophilic acidophiles, such as have recently been discovered on Earth, could possibly survive in the hot sulfuric acid droplets that exist in the upper atmosphere of Venus. In order to understand how to search for life elsewhere in the Solar System, over 40 VIRTIS images of Earth from Venus have been obtained to search for evidence of life on Earth. The signatures of water and molecular Oxygen were detected in the Earth s atmosphere, but the atmosphere of Venus also exhibits these signatures. The water and water ice are far more abundant on comet, the polar caps and permafrost of Mars and the icy moons of Jupiter and Saturn. These "frozen worlds" of our Solar System, are much more promising regimes where extant or extinct microbial life may exist. The ESA Mars Advanced Radar for

  17. Areas of ground subsidence due to geofluid withdrawal

    Energy Technology Data Exchange (ETDEWEB)

    Grimsrud, G.P.; Turner, B.L.; Frame, P.A.

    1978-08-01

    Detailed information is provided on four geothermal areas with histories of subsidence. These were selected on the basis of: physical relevance of subsidence areas to high priority US geothermal sites in terms of withdrawn geofluid type, reservoir depth, reservoir geology and rock characteristics, and overburden characteristics; and data completeness, quality, and availability. The four areas are: Chocolate Bayou, Raft River Valley, Wairakei, and the Geysers. (MHR)

  18. Panel Discussion: Life in the Cosmos

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    Water appears to be essential to all life on Earth. For this reason, "Follow the Water" has been adopted as a mantra for the search for Life in the Cosmos. Expeditions have helped to establish the limits and biodiversity of life in the most extreme environments on Earth. Microbial extremophiles inhabit acidic streams; hypersaline and hyperalkaline lakes and pools; the cold deep sea floor, permafrost, rocks, glaciers, and perennially ice-covered lakes of the polar environments; geysers, volcanic fumaroles, hydrothermal vents and hot rocks deep within the Earth's crust. The ESA Venus Express Spacecraft entered Venusian Orbit in 2006 and continues to produce exciting results. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument made the first detection of hydroxyl in the atmosphere of Venus, indicating it is much more similar to Earth and Mars than previously thought. Huge hurricane-like vortices have been found above the poles of the planet and as yet unidentified UV absorbers that form mysterious dark bands in the upper atmosphere. At 70 km and below, water vapor and sulfur dioxide combine to form sulfuric acid droplets that create a haze above the cloud tops. Thermophilic acidophiles, such as have recently been discovered on Earth, could possibly survive in the hot sulfuric acid droplets that exist in the upper atmosphere of Venus. In order to understand how to search for life elsewhere in the Solar System, over 40 VIRTIS images of Earth from Venus have been obtained to search for evidence of life on Earth. The signatures of water and molecular Oxygen were detected in the Earth s atmosphere, but the atmosphere of Venus also exhibits these signatures. The water and water ice are far more abundant on comet, the polar caps and permafrost of Mars and the icy moons of Jupiter and Saturn. These "frozen worlds" of our Solar System, are much more promising regimes where extant or extinct microbial life may exist. The ESA Mars Advanced Radar for

  19. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    Science.gov (United States)

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring

  20. Correlations between Archaeal Diversity and Geochemical Parameters in an Arsenic-Rich Hydrothermal System

    Science.gov (United States)

    Franks, M.; Omelon, C.; Engel, A. S.; Bennett, P.

    2009-04-01

    Characterizing microbial communities within their geochemical environment is useful for understanding microbial distribution and microbial adaptations to extreme physical and chemical conditions. The hydrothermal waters at El Tatio geyser field (ETGF) demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85oC), arsenic concentrations of 0.5 mM, and inorganic carbon concentrations (DIC) as low as 0.2mM. Yet many of El Tatio's hundred plus hydrothermal features host extensive microbial mat communities. Recent work has shown correlations between the metabolic guilds of microorganisms present and variations in water chemistry. ETGF is a high-altitude hydrothermal basin with over 100 mapped hydrothermal features, located within a 30km2 area near the Chile-Bolivia border. The Na-Cl type waters have a circumneutral pH and contain abundant dissolved metals. Shallow runoff aprons extend tens of meters from some geyser features, where silica rapidly precipitates from cooling water. Thick mats, which appear microbial but consist primarily of silica, iron and arsenic mineral deposits, containing

  1. The Water-Quality Partnership for National Parks—U.S. Geological Survey and National Park Service, 1998–2016

    Science.gov (United States)

    Nilles, Mark A.; Penoyer, Pete E; Ludtke, Amy S.; Ellsworth, Alan C.

    2016-07-13

    The U.S. Geological Survey (USGS) and the National Park Service (NPS) work together through the USGS–NPS Water-Quality Partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks. The program was initiated in 1998 as part of the Clean Water Action Plan, a Presidential initiative to commemorate the 25th anniversary of the Clean Water Act. Partnership projects are developed jointly by the USGS and the NPS. Studies are conducted by the USGS and findings are used by the NPS to guide policy and management actions aimed at protecting and improving water quality.The National Park Service manages many of our Nation’s most highly valued aquatic systems across the country, including portions of the Great Lakes, ocean and coastal zones, historic canals, reservoirs, large rivers, high-elevation lakes and streams, geysers, springs, and wetlands. So far, the Water-Quality Partnership has undertaken 217 projects in 119 national parks. In each project, USGS studies and assessments (http://water.usgs.gov/nps_partnership/pubs.php) have supported science-based management by the NPS to protect and improve water quality in parks. Some of the current projects are highlighted in the NPS Call to Action Centennial initiative, Crystal Clear, which celebrates national park water-resource efforts to ensure clean water for the next century of park management (http://www.nature.nps.gov/water/crystalclear/).New projects are proposed each year by USGS scientists working in collaboration with NPS staff in specific parks. Project selection is highly competitive, with an average of only eight new projects funded each year out of approximately 75 proposals that are submitted. Since the beginning of the Partnership in 1998, 189 publications detailing project findings have been completed. The 217 studies have been conducted in 119 NPS-administered lands, extending from Denali National Park and Preserve in Alaska to Everglades

  2. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico

    Science.gov (United States)

    Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.

    1970-01-01

    New techniques, involving interpretation of panchromatic, ektachrome and ektachrome infrared aerographic photogaphs and thermographic infrared imagery recording emission from the earth's surface in middle and far infrared wavelengths (3-5??m and 8-14??m), are being introduced in geothermal investigations in Mexico to identify outstanding structural and geologic features in a rapid and economical manner. The object of this work is to evaluate the new airborne infrared techniques and equipment as a complement to the data obtained from panchromatic aerial photography. This project is part of the Mexican remote sensing program of natural resources carried out under the auspices of the Comision Nacional del Espacio Exterior and in which the Research Institute (Instituto de Investigaciones de la Industria Electrica) is actively participating. The present study was made cooperatively with the U.S. National Aeronautics and Space Administration and the U.S. Geological Survey. The Los Negritos-Ixtlan de los Hervores geothermal fields are located east of Lake Chapala at the intersection of the Sierra Madre occidental and the west-central segment of the neovolcanic axis of Mexico. The two principal zones of hydrothermal activity occur in a tectonic trench filled with lake sediments of the Quaternary intercalated with Quaternary and Holocene volcanic rocks and characterized by an intricate system of block-fault tectonics, part of the Chapala-Acambay tectonic system, along which there has been volcanic activity in modern time. Surface manifestations of geothermal activity consist of relatively high heat flow and hot springs, small geysers and small steam vents aligned along an E-W axis at Ixtlan, possibly at the intersection of major fault trends and mud volcanoes and hot pools aligned NE-SW at Los Negritos. More than 20 exit points of thermal waters are shown on infrared imagery to be aligned along an extension of the Ixtlan fault between Ixtlan and El Salitre. A narrow zone of

  3. Interplay Between Tectonics And Volcanic Processes Active In The Yellowstone Caldera Detected Via DInSAR And GPS Time-Series

    Science.gov (United States)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni; Lanari, Riccardo

    2014-05-01

    We discriminate and quantify the effects of different stress sources that are active in the Yellowstone volcanic region. In particular, the use of long-term deformation time series allows us to separate the spatial and temporal contributions of the regional tectonic field due to North American (NA) plate motion from the dynamic of magmatic/hydrothermal sources beneath the caldera area. Yellowstone volcano was formed by three major caldera forming eruptions that occurred around 2.0, 1.3 and 0.64 Ma, the most recent one responsible for the 60 km-wide and 40 km-long Yellowstone caldera. Two structural resurgent domes emerged after the last caldera forming eruption: the Mallard Lake (ML) resurgent dome in the southwestern region of Yellowstone caldera, and the Sour Creek (SC) resurgent dome in the northeast part of the caldera. In this work, we extensively exploit DInSAR and GPS measurements to investigate surface deformation at Yellowstone caldera over the last 18 years. We start by analyzing the 1992-2010 deformation time series retrieved by applying the Small BAseline Subset (SBAS) DInSAR technique. This allows us identifying three macro-areas: i) Norris Geyser Basin (NGB), ii) ML and SC resurgent domes and iii) Snake River Plain (SRP), characterized by unique deformation behaviors. In particular, SRP shows a signal related to tectonic deformation, while the other two regions are influenced by the caldera unrest. To isolate the deformation signals related to different stress sources in the Yellowstone caldera, we also remove from the retrieved mean deformation velocity maps the mean displacement rate associated to the northern sector of the Snake River Plain. This latter is the result of tectonic processes controlled by complex interactions between the NA plate, moving in the ENE - WSW direction with a rate of about 2 cm/yr, and the flow of the asthenosphere plume beneath the Yellowstone volcanic region. These de-trended data allow recognizing four major deformation

  4. Mantle-Crust Volcanics and Geodynamics of the Yellowstone Hotspot from Seismic and GPS Imaging and Earthquake Swarm Magmatic Interaction

    Science.gov (United States)

    Smith, R. B.; Farrell, J.; Puskas, C. M.

    2015-12-01

    The Yellowstone hotspot is the product of plume-plate interaction that has produced a large and active silicic volcanic field within the N. American Plate. Our newest research on Yellowstone includes: 1) A recent discovery by seismic imaging that the Yellowstone volcanic system extends as a connected magmatic system from at least 1000 km deep in the mantle with melt ascending upward in a WNW tilted plume to a newly discovered lower-crustal magma body at 20-45 km depth and 4x larger than the shallow crustal reservoir 5-15 km deep. Moreover the shallow 70 km NE-SW crustal magma body unexpectedly extends 15 km NE well beyond Yellowstone's volcanic field a distance that N. American Plate would advance in 640,000 years, i.e., the time of the last Yellowstone super eruption and hence reflecting plate motion over the Yellowstone mantle plume; 2) Yellowstone's giant mantle-crust connected magma system represents ~48,000 km3 with ~1800 km3 of melt that fuels Yellowstone's extraordinarily high heat flux of up to ~ 3 Watts/meter2 that in turn drives Yellowstone's world renown hydrothermal system; and 3) How migration of magma vertically into and laterally out of the crustal magma reservoir, measured by GPS and earthquake correlation, reveals the mechanics of Yellowstone's "natural volcano pressure relief valve" that retards volcanic eruptions for thousands of years, but that occasionally breach the brittle-ductile transition in volcanic eruptions. We will also discuss the most recent and largest earthquake in Yellowstone in over 30 years, a magnitude 4.8 event, on March 30, 2014 near Norris Geyser Basin. This earthquake was part of a larger sequence of swarm activity in the Norris area that began in September 2013 and continued into June 2014. GPS derived deformation at Norris revealed unusually high uplift rates at ~15 cm/yr. attaining 60 mm of uplift at the time of the MW4.8 event and that dramatically reversed to subsidence at rates of ~17 cm/yr. Notably, however the much

  5. Multi-method, multi-scale geophysical observations in the Obsidian Pool Thermal Area, Yellowstone National Park

    Science.gov (United States)

    Holbrook, W. S.; Carr, B.; Pasquet, S.; Sims, K. W. W.; Dickey, K.

    2016-12-01

    Despite the prominence of Yellowstone as the world's most active hydrothermal province, relatively little is known about the plumbing systems that link deeper hydrothermal fluids to the charismatic hot springs, geysers and mud pots at the surface. We present the results of a multi-method, multi-scale geophysical investigation of the Obsidian Pool Thermal Area (OPTA) in Yellowstone National Park. OPTA hosts acid-sulfate hot springs and mud pots with relatively low pH. We present the results of seismic refraction, electrical resistivity, time-domain EM (TEM), soil conductivity meter (EMI), and GPR data acquired in July 2016. There is a strong contrast in physical properties in the upper 50 m of the subsurface between the low-lying hydrothermal area and surrounding hills: the hydrothermal area has much lower seismic velocities ( 1 km/s vs 3 km/s) and electrical resistivity ( 20 ohm-m vs 300 ohm-m). A prominent zone of very low resistivity (<10 ohm-m) exists at about 20 m depth beneath all hydrothermal features. Poisson's ratio, calculated from P-wave refraction tomography and surface wave inversions, shows low values beneath the "frying pan," where gas is emerging in small fumaroles, suggesting that Poisson's ratio is an effective "gas detector" in hydrothermal areas. Near-surface resistivity mapped from EMI shows a strong correlation with hydrothermal areas previously mapped by heat flow, with areas of high heat flow generally having low resistivity near the surface. Two exceptions are (1) the "frying pan," which shows a central area of high resistivity (corresponding to escaping gas) surrounding by a halo of low resistivity, and (2) a broad area of low resistivity connecting the hydrothermal centers to the lake, which may be clay deposits. TEM data penetrate up to 200 m in depth and suggest that a reservoir of hydrothermal fluids may underlie the entire area, including beneath the forested hills, at depths greater than 100 m, but that they rise toward the surface in

  6. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    Science.gov (United States)

    Janik, Cathy J.; McLaren, Marcia K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270°C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240°C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤123°C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived

  7. Hervormde voetspore op die Tukkie-kampus: ’n Kroniek van die eerste 50 jaar

    Directory of Open Access Journals (Sweden)

    André G. Ungerer

    2017-02-01

    Full Text Available In 2017 the Nederduitsch Hervormde Kerk van Afrika (NHKA celebrates its centenary of theological education at the University of Pretoria (UP. In this article the focus is on the build-up to setting up the first 50 years 1917– 1967 at UP. From as early as 1909 there was a yearning for our own theological seminary; however, some of the church leaders expressed their desire for theological education at a university. At the dawn of 1916 everything was in place for the NHKA and the Presbyterian Church of South Africa, as the first two partners, to start a faculty of theology at the Transvaal University College (TUC. On 01 April 1917 the Faculty of Theology commenced its work with prof. J.H.J.A. Greyvenstein of the NHKA and prof. E. MacMillan from the Presbyterian Church. The Presbyterian link with the faculty was broken in 1933. From 1938 the Nederduitse Gereformeerde Kerk (NGK joined the NHKA and two independent sections were established: Section A for the NHKA and Section B for the NGK. There was a steady growth in the number of students and professors and on 13 June 1967 the NHKA filled its sixth professorship in the person of prof. I.J. de Wet. This era was also characterised by a lot of political tension in the heyday of the policy of apartheid. The NHKA was known for Article III in its constitution that propagates that church membership was for whites only. The NHKA support of the policy of apartheid was the cause of a dispute between the Church and prof. A.S. Geyser. In the end the matter was settled in favour of Geyser. There was also a dispute between professors A.G. Geyser and A.D. Pont that ended up in court in 1967. Pont was accused of defamation against Geyser. The court ruled against Pont and Geyser was granted the largest amount of compensation up till then.

  8. Hervormde voetspore op die Tukkie-kampus: ’n Kroniek van die eerste 50 jaar

    Directory of Open Access Journals (Sweden)

    André G. Ungerer

    2017-07-01

    Full Text Available In 2017 the Nederduitsch Hervormde Kerk van Afrika (NHKA celebrates its centenary of theological education at the University of Pretoria (UP. In this article the focus is on the build-up to setting up the first 50 years 1917– 1967 at UP. From as early as 1909 there was a yearning for our own theological seminary; however, some of the church leaders expressed their desire for theological education at a university. At the dawn of 1916 everything was in place for the NHKA and the Presbyterian Church of South Africa, as the first two partners, to start a faculty of theology at the Transvaal University College (TUC. On 01 April 1917 the Faculty of Theology commenced its work with prof. J.H.J.A. Greyvenstein of the NHKA and prof. E. MacMillan from the Presbyterian Church. The Presbyterian link with the faculty was broken in 1933. From 1938 the Nederduitse Gereformeerde Kerk (NGK joined the NHKA and two independent sections were established: Section A for the NHKA and Section B for the NGK. There was a steady growth in the number of students and professors and on 13 June 1967 the NHKA filled its sixth professorship in the person of prof. I.J. de Wet. This era was also characterised by a lot of political tension in the heyday of the policy of apartheid. The NHKA was known for Article III in its constitution that propagates that church membership was for whites only. The NHKA support of the policy of apartheid was the cause of a dispute between the Church and prof. A.S. Geyser. In the end the matter was settled in favour of Geyser. There was also a dispute between professors A.G. Geyser and A.D. Pont that ended up in court in 1967. Pont was accused of defamation against Geyser. The court ruled against Pont and Geyser was granted the largest amount of compensation up till then.

  9. Intermediate-Term Declines in Seismicity at Mt. Wrangell and Mt. Veniaminof Volcanoes, Alaska, Following the November 3, 2002 Mw 7.9 Denali Fault Earthquake

    Science.gov (United States)

    Sanchez, J. J.; McNutt, S. R.

    2003-12-01

    the Mw 7.9 earthquake. We conclude that intermediate-term seismicity drops occurred at Mt. Wrangell and Mt. Veniaminof volcanoes, in strong contrast to cases of short-term seismicity increases observed at volcanic systems such as Katmai, Mount Rainier, Yellowstone, Mammoth Mountain, and the Geysers, Coso and Cerro Prieto (Mexico) geothermal fields. This suggests that fundamentally different mechanisms may be acting to modify seismicity at volcanoes.

  10. Post subduction thermal regime of the western North America and effects on the Great Valley, Sierra Nevada and northern Baja California provinces

    Science.gov (United States)

    Erkan, Kamil

    the region shows that there is a significant lateral component of the heat flow in to the Sierra Nevada due to Basin and Range province and due to basal heating. The model further suggests that the lateral heating results in considerable thermal uplift at the eastern edge of the Sierra Nevada region. The model is also applicable in the Northern Baja California since this region was part of the same tectonic setting as the Sierra Nevada arc before the inland jump of the San Andreas Fault. The Coast Ranges are interesting with having spots of magmatic and volcanic arc activity likely associated with the cessation of subduction. The third paper is a study related to one of these spots 90 km north of San Francisco, characterized by elevated heat flow in an area of 2500 km2 (The Geysers anomaly). The geothermal system is associated with a very young (˜2 My) bimodal volcanism and magma intrusion at crustal levels. Taking advantage of a sealed, vapor dominated geothermal system due to rocks of very low permeability, forward and inverse models of the deeper magmatic source were constructed. We used extensive heat flow data that were collected over more than 20 years time period. The models revealed that the magmatic source in the Geysers must be as shallow as 7-8 km in order to satisfy the thermal data. Furthermore, the magma system must cover most of the thermally anomalous region. Another type of geothermal system is characterized by rising of hot waters by buoyancy forces without the necessity of a magmatic source at depth. We studied one of these systems in interior Alaska, called Chena Hot Springs, in the fourth paper. The explored system is 1 km long and temperatures are only 74°C. Although the system is moderate in temperature, the low-temperature surface conditions enable the system to be exploited for production of electricity. The geochemical analyses show that the source temperatures are around 121°C. We analyzed the temperature data from 17 exploration wells in

  11. Disparity of Chlorine to Fluorine Concentration Ratios Between Thermal Waters and Rocks of Yellowstone National Park, USA

    Science.gov (United States)

    McConville, E. G.; Szymanski, M. E.; Hurwitz, S.; Lowenstern, J. B.; Hayden, L. A.

    2016-12-01

    Low chlorine to fluorine concentration ratios (Cl/F) of 0.5 by weight are observed in Yellowstone rhyolites within glass inclusions and erupted rhyolitic glass. In contrast, Yellowstone thermal waters have Cl/F of >10 and Cl/F of waters at Norris Geyser Basin can exceed 100. Similar Cl/F have been observed in other volcanic hydrothermal systems (e.g., Lassen, Long Valley Caldera). The goal of this study is to identify fluorine-bearing minerals that could remove a substantial amount of F from the hydrothermal fluids within the Yellowstone caldera and in the Norris Geyser Basin near the northern margin of the caldera. We used a scanning electron microscope (SEM) to study thin sections from core samples obtained during research drilling by the USGS in the 1960s. The Y-2 well (Lower Geyser Basin) penetrated mostly Plateau Rhyolites ( 0.15 Ma) and Y-7 and Y-8 wells (Upper Geyser Basin) penetrated glacial sandstones and conglomerates, underlain by the Biscuit Basin flow ( 0.5 Ma). The thin sections from Y-12 in the Norris Geyser Basin are all from the Lava Creek Tuff. Fluorine-bearing minerals are found in all drill cores. Fluorite is present in Y-2 at a depth of 153 m, in Y-7 at 65m, and in Y-12 at 276 m. Fluoroapatite first appears in the Biscuit Basin flow at 60 m in Y-7 and 59 m in Y-8. Rare earth fluorocarbonates, such as bastnaesite (Ce,La,Y)CO3F and/or parisite Ca(Ce,La)2(CO3)3F2, are predominantly found in Y-12 at depths >276 m. Our estimated abundances of these fluorine-bearing minerals are at least 2 orders of magnitude less than required to substantially affect the Cl/F ratio in thermal waters. Fluorine-bearing minerals may be more abundant at greater depth. Another possible explanation is that the fluorite is too fine-grained to be identified by SEM. Finally, the high Cl/F in thermal waters could be explained by the ascent of Cl-rich fluid from a cooling magma body or from older crustal rocks that underlie the caldera.

  12. Geologic Exploration of the Planets: A Personal Retrospective of the First 50 years

    Science.gov (United States)

    Carr, M. H.

    2013-12-01

    The modern era of exploration of planets and satellites beyond the Earth-Moon system began on 14 December 1962 when the Mariner 2 spacecraft flew by Venus. Since that time roughly 80 spacecraft have successfully visited other planets and their satellites. In 1962 we knew nothing of the geology of the non-terrestrial planets and satellites; they were just variously shaded discs and dots. Most of us entering the new field of planetary geology at the time did so in anticipation of the Apollo lunar landings. I was hired by Gene Shoemaker to work on lunar issues and to participate in the lunar geologic mapping program that he had initiated at the USGS. Lunar studies led naturally to planetary studies but none of us could have anticipated the geologic variety that exists within the Solar System as exemplified by the coronae of Venus, the canyons of Mars, the volcanoes of Io, the ice tectonics of Europa and Ganymede, the geysers of Enceladus and the methane-carved valleys of Titan. Although Mars appeared lunar-like in the first close-up images from the Mariner 4 (1965) and Mariners 6 and 7 (1969) fly-bys, the Mariner 9 (1971) orbiter soon revealed Mars' geologic variety. Planning imaging for Mariner 9 was challenging; aids were primitive and we essentially had a blank sheet to fill. By 1971, the Viking Project with its main objective to land on Mars and search for signs of life was well underway. In 1969 I was appointed leader of the Viking Orbiter imaging team. The main function of the cameras was to ensure that the landing sites were safe before landing. In 1976 when we acquired the first close-up images of the pre-chosen landing sites they were greeted with elation and horror, elation because of their quality, horror because of the roughness of the terrain that had seemed so smooth in the Mariner 9 images. There followed an intense period of searching for safer sites and ultimately the two landers did land safely. The search for life then followed with hopes soaring as

  13. 3D geophysical insights into the Ciomadu volcano

    Science.gov (United States)

    Besutiu, Lucian; Zlagnean, Luminita

    2017-04-01

    in the numerical model through the presence of a liquid phase in the underground failed due to the relatively shallow position of the gravity source (approx 2 km beneath the Sf. Ana lake) which should imply significant thermal manifestations at the surface (e.g. geysers), not known in the area. Consequently, the unusual lowering of density in the inner part of the magmatic body might be due to the fissuring and late circulation of hot hydrothermal solutions. Located within geothermal fields volcanic rocks (like andesites and dacites that dominate the Ciomadu structure) interact with thermal water and intensity of alteration depends on the water temperature. The development of smectite-filled micro-cracks may decrease density from 2.6 to 2.1 g/cm3, and the total transformation may provide a significant density change, especially in the inner (hotter) part of the assumed intrusive body, in full agreement with figures provided by numerical modelling: from 2.5-2.6 g/cm3 (fresh andesites) down to 1.1-1.0 g/cm3 (clays). The assumption is strongly supported by the geothermal setting of the area. Temperature determinations in some wells laterally located have indicated high value geothermal gradients (up to 250-400 °C/km). Acknowledgement. Data processing and modelling benefited the IT infrastructure CYBERDYN achieved through the grant POS CCE O 2.1.2. ID 593 (contract 182/2010)

  14. The 1978 Yellowstone-Eastern Snake River Plain Seismic Profiling Experiment: Crustal structure of the Yellowstone Region and experiment design

    Science.gov (United States)

    Smith, R. B.; Schilly, M. M.; Braile, L. W.; Ansorge, J.; Lehman, J. L.; Baker, M. R.; Prodehl, C.; Healy, J. H.; Mueller, S.; Greensfelder, R. W.

    1982-04-01

    In 1978 a major seismic profiling experiment was conducted in the Yellowstone-eastern Snake River Plain region of Idaho and Wyoming. Fifteen shots were recorded that provided coverage to distances of 300 km. In this paper, travel time and synthetic seismogram modeling was used to evaluate an average P wave velocity and apparent Q structure of the crust from two seismic profiles (reversed) across the Yellowstone National Park region. This area includes the well-known hydrothermal features of Yellowstone National Park (geysers, fumeroles, etc.), a large collapse caldera, and extensive silicic volcanism of Quaternary age—features attributed to shallow crustal sources of magma. The averaged crustal structure for this region as interpreted from the seismic data consists of (1) a highly variable, near-surface layer approximately 2 km thick with variable velocities of 3.0 to 4.8 km/s and a low apparent Q of 30 that is interpreted to be composed of weathered rhyolites and sedimentary infill, (2) an upper crustal layer 3 to 4 km thick with variable velocities of 4.9 to 5.5 km/s and apparent Q of 50 to 200 that is thought to represent the accumulation of the Pleistocene-Quaternary rhyolite flows, ash flow tuffs, and possible Paleozoic and Precambrian metamorphic equivalents, (3) the crystalline, upper crust that is characterized by a laterally inhomogeneous layer that varies in velocity from 4.0 to 6.1 km/s, averaging 5 km thick with a Q of 300. This layer appears to be a cooling but still hot body of granitic composition beneath the Yellowstone caldera. It is thought to be a remnant of the magma chambers that produced the Quaternary silicic volcanic rocks of the Yellowstone Plateau and may still be a major contributor to the high heat flow, (4) a laterally homogeneous intermediate crustal layer 8 to 10 km thick with a velocity of 6.5 km/s and apparent Q of 100 to 300, (5) a homogeneous 25-km-thick lower crust with a velocity of 6.7 to 6.8 km/s and an apparent Q of 300

  15. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Boomer, Sarah M; Noll, Katherine L; Geesey, Gill G; Dutton, Bryan E

    2009-04-01

    In this study, glass rods suspended at the air-water interface in the runoff channel of Fairy Geyser, Yellowstone National Park, WY, were used as a substratum to promote the development of biofilms that resembled multilayered mat communities in the splash zone at the geyser's source. This approach enabled the establishment of the temporal relationship between the appearance of Cyanobacteria, which ultimately formed the outer green layer, and the development of a red underlayer containing Roseiflexus-like Chloroflexi. This is the first study to define time-dependent successional events involved in the development of differently colored layers within microbial mats associated with many thermal features in Yellowstone National Park. Initial (1-month) biofilms were localized below the air-water interface (60 to 70 degrees C), and the majority of retrieved bacterial sequence types were similar to Synechococcus and Thermus isolates. Biofilms then shifted, becoming established at and above the air-water interface after 3 months. During winter sampling (6 to 8 months), distinct reddish orange microcolonies were observed, consistent with the appearance of Roseiflexus-like sequences and bacteriochlorophyll a pigment signatures. Additionally, populations of Cyanobacteria diversified to include both unicellular and filamentous cell and sequence types. Distinct green and red layers were observed at 13 months. Planctomycetes-like sequences were also retrieved in high abundance from final biofilm layers and winter samples. Finally, biomass associated with geyser vent water contained Roseiflexus-like sequence types, in addition to other high-abundance sequence types retrieved from biofilm samples, supporting the idea that geothermal water serves as an inoculum for these habitats.

  16. Modeling a multiple tracer release experiment during nocturnal drainage flow in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lange, R.

    1981-06-01

    The complex conditions posed by very localized winds and turbulence, rugged topography, variable surface roughness, strong vertical motions and gravity flow require a three-dimensional modeling approach to realistically simulate the dispersal of hydrogen sulfide injected into the atmosphere at the Geysers geothermal area. In this study the three-dimensional particle-in-cell numerical diffusion model ADPIC (Lange, 1973 and 1978) was used to simulate the transport and diffusion of two simultaneous, distinguishable fluorescent tracer releases into the nighttime drainage flow regimes of the Putah and Anderson Creeks in the Anderson Springs Valley during the night of July 24, 1979.

  17. Thermographic mosaic of Yellowstone National Park

    Science.gov (United States)

    Williams, R. S., Jr.; Hasell, P. G., Jr.; Sellman, A. N.; Smedes, H. W.

    1976-01-01

    An uncontrolled aerial thermographic mosaic of Yellowstone National Park was assembled from the videotape record of 13 individual thermographs obtained with linescan radiometers. Post mission processing of the videotape record rectified the nadir line to a topographic map base, corrected for v/h variations in adjacent flight lanes, corrected for yaw and pitch distortions, and distortions produced by nonlinearity of the side-wise scan. One of the purposes of the thermographic study was to delineate the areas of thermal emission (hot springs, geysers, etc.) throughout the Park, a study which could have great value in reconnaissance surveys of geothermal areas in remote regions or regions of high relief.

  18. Cryogenic propellant management: Integration of design, performance and operational requirements

    Science.gov (United States)

    Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.

    1985-01-01

    The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.

  19. Efficiency and cost analysis of a designed in-line water heating system compared to a conventional water heating system in South Africa

    OpenAIRE

    Gouws, Rupert; Le Roux, Estie

    2012-01-01

    In this paper, the authors compares the efficiency and cost of a designed in-line water heating system with a conventional water heating system (geyser) in South Africa. The paper provides an overview on water heating systems and heating elements and provides the typical water consumption required by an average household in South Africa. A summary on the design of the in-line water heating system together with a system cost analysis is provided. The designed in-line water heating system ta...

  20. Yellowstone Volcano Observatory

    Science.gov (United States)

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  1. NCG turbocompressor development program

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, K.E.

    1997-12-31

    Barber-Nichols, Pacific Gas and Electric and UNOCAL as an industry group applied for a DOE grant under the GTO to develop a new type of compressor that could be used to extract non-condensable gas (NCG) from the condensers of geothermal power plants. This grant (DE-FG07-951A13391) was awarded on September 20, 1995. The installation and startup of the turbocompressor at the PG&E Geysers Unit 11 is covered by this paper. The turbocompressor has operated several days at 17000rpm while the plant was producing 50 to 70 MW.

  2. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    White, A.F.

    1980-08-01

    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  3. Suppressing star formation in quiescent galaxies with supermassive black hole winds

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; SDSS-IV/MaNGA

    2016-01-01

    In the last 10 billion years (i.e., since redshift z ~2) the number of quiescent galaxies with little to no ongoing star formation has grown by a factor ~25. This is challenging to understand since galaxy formation models predict that these galaxies will continue to accrete fresh gas over their lifetimes, relatively little of which is required to reignite measurable star formation. It is thought that feedback from fresh gas accreting onto a central active galactic nucleus (AGN) might help such galaxies maintain their quiescence, but observational evidence for such ``maintenance mode feedback'' remains sparse. Using novel imaging spectroscopy from the SDSS-IV MaNGA Survey (Sloan Digital Sky Survey IV: Mapping Nearby Galaxies at Apache Point Observatory), we present evidence for a new maintenance mode phenomenon we term ``red geysers,'' a potentially episodic but relatively low-power AGN driven wind present in typical quiescent field galaxies of moderate mass and spheroidal morphology. We examine an archetypal red geyser that appears to be accreting gas from a low-mass companion but has no corresponding star formation. Instead, we find evidence for a galaxy-scale ionized wind with outflow velocities reaching more than 300 km/s and high velocity dispersions. We also detect a narrow biconical pattern of strong emission line equivalent widths consistent with fast shocks. Given additional confirmation of a radio AGN present in the galaxy, we propose that red geysers such as this may be a common mode in which gas accretion activates an ionized wind feedback mechanism that prevents star formation and helps moderate luminosity quiescent galaxies maintain their quiescence.

  4. Session: Reservoir Technology

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  5. Occurrence of Volcanic CO2 by Groundwater Flow Systems in the Eifel Mountains, Germany

    Science.gov (United States)

    Weyer, K.; May, F.; Ellis, J. C.

    2011-12-01

    Weyer (2010) showed why and how discharge areas of regional groundwater flow systems are also discharge points of natural and stored CO2. As groundwater flow systems reach to great depth by penetrating aquitards and caprocks any successful design of on-shore geological carbon storage must regard the migration effects groundwater flow systems exert on stored CO2. Eventually all of the CO2 will be dissolved by groundwater and migrate to the discharge areas of these flow systems. By implication there will rarely be the anticipated permanent storage of CO2 in the subsurface. Instead the deep ground water flow will transport the dissolved CO2 into surface waters. A telling example of such a system is the Green River in Utah with its natural discharge points of volcanic CO2 and the artificial discharge point Crystal Geyser, a flowing abandoned well located at the bank of the Green River. The advantage of this situation is that there have been hydrogeological tools developed which allow the determination of the flow path of the groundwater flow systems and their approximate time scale to reach their groundwater discharge areas. These time spans may be as large as 50,000 to 100,000 years. In any case residence times of a thousand years and more would suffice in mitigating the atmospheric effect of CO2 discharge. The above concepts have so far not created much resonance in the scientific and practical world of geologic CO2 storage. Therefore the investigation of groundwater dynamics at areas with natural discharge of volcanic CO2 provides a test for the effect groundwater flow systems will exert on the geologic storage of CO2. The Eifel Mountains in Germany present such a natural laboratory as it contains over a hundred known Tertiary and Quaternary volcanoes. Its discharge points of water carrying CO2 are well-known as they have been used for generations for the production of carbonated mineral waters. For the western part of the Eifel-Mountains, May (2002) listed all

  6. Enceladus life finder: the search for life in a habitable moon.

    Science.gov (United States)

    Lunine, Jonathan; Waite, Hunter; Postberg, Frank; Spilker, Linda; Clark, Karla

    2015-04-01

    Is there life elsewhere in the solar system? Guided by the principle that we can most easily recognize life as we know it -- life that requires liquid water -- Enceladus is particularly attractive because liquid water from its deep interior is actively erupting into space, making sampling of the interior straightforward. The Cassini Saturn Orbiter has provided the motivation. In particular, at high resolution, spatial coincidences between individual geysers and small-scale hot spots revealed the liquid reservoir supplying the eruptions to be not in the near-surface but deeper within the moon [1], putting on a firm foundation the principle that sampling the plume allows us to know the composition of the ocean. Sensitive gravity and topography measurements established the location and dimensions of that reservoir: ~ 35 km beneath the SPT ice shell and extending out to at least 50 degrees latitude, implying an interior ocean large enough to have been stable over geologic time [2]. The Cassini ion neutral mass spectrometer (INMS) discovered organic and nitrogen-bearing molecules in the plume vapour, and the Cosmic Dust Analyser (CDA) detected salts in the plume icy grains, arguing strongly for ocean water being in con-tact with a rocky core [3], [4]. As much as Cassini has done, it cannot provide detailed information on the ocean environment that allow for a quantitative assessment of the potential for life. Acquiring such knowledge represents the essential first step in characterizing the nature of the subsurface ocean and its biological potential. Enceladus Life Finder, or ELF, is a solar-powered Saturn orbiter designed to fly multiple times through the plume of Enceladus.The goals of the mission are derived directly from the most recent decadal survey: first, to determine primordial sources of organics and the sites of organic synthesis today, and second, to determine if there are modern habitats in the solar system beyond Earth where the conditions for life exist

  7. A handbook of statistical graphics using SAS ODS

    CERN Document Server

    Der, Geoff

    2014-01-01

    An Introduction to Graphics: Good Graphics, Bad Graphics, Catastrophic Graphics and Statistical GraphicsThe Challenger DisasterGraphical DisplaysA Little History and Some Early Graphical DisplaysGraphical DeceptionAn Introduction to ODS GraphicsGenerating ODS GraphsODS DestinationsStatistical Graphics ProceduresODS Graphs from Statistical ProceduresControlling ODS GraphicsControlling Labelling in GraphsODS Graphics EditorGraphs for Displaying the Characteristics of Univariate Data: Horse Racing, Mortality Rates, Forearm Lengths, Survival Times and Geyser EruptionsIntroductionPie Chart, Bar Cha

  8. Cinder Pool's Sulfur Chemistry: Implications for the Origin of Life in Hydrothermal Environments

    Science.gov (United States)

    Sydow, L.; Bennett, P.; Nordstrom, D.

    2012-12-01

    One theory of the origin of life posits the abiotic formation of alkyl thiols as an initial step to forming biomolecules and eventually a simple chemoautotrophic cell. The premise of this theory is that a recurring reaction on the charged surfaces of pyrite served as a primordial metabolism analogous to the Acetyl-CoA pathway (Wächtershäuser 1988) and was later enveloped by a primitive cellular membrane. However, alkyl thiols have not previously been identified in terrestrial hot springs as unequivocally abiogenic. We have identified methanethiol (CH3SH), the simplest of the alkyl thiols, as well as dimethyl sulfide and dimethyldisulfide, in Cinder Pool, an acid-sulfate-chloride hot spring in the One Hundred Spring Plain of Norris Geyser Basin, Yellowstone National Park. It is unusual in that it contains a molten sulfur layer on the bottom (~20 m depth) and thousands of iron-sulfur-spherules floating on the surface (the iconic "cinders" the pool is named for), created by gas bubbling through the molten basement of the spring. These unique features make it a good candidate for abiotically generated CH3SH. Gas samples were collected from Cinder pool as well as an adjacent hydrothermal feature in the autumn of 2011 using the bubble strip method modified for use with hydrothermal waters. Several samples contained measurable quantities of methanethiol and other organic sulfur gases, with concentrations increasing with depth in the pool. Laboratory microcosm experiments were conducted to investigate the geochemical conditions required to abiotically form CH3SH. Sterile, artificial Cinder Pool water was injected into sterilized 60 mL serum bottles containing different iron-sulfur compounds, including cinders collected from the pool itself, as catalytic surfaces for the methanethiol-generating reaction. The bottles were then charged with hydrogen and carbon dioxide as reaction gases and incubated for a week at temperatures between 60 and 120oC. Bottles using FeS as a

  9. Probabilistic properties of injection induced seismicity - implications for the seismic hazard analysis

    Science.gov (United States)

    Lasocki, Stanislaw; Urban, Pawel; Kwiatek, Grzegorz; Martinez-Garzón, Particia

    2017-04-01

    Injection induced seismicity (IIS) is an undesired dynamic rockmass response to massive fluid injections. This includes reactions, among others, to hydro-fracturing for shale gas exploitation. Complexity and changeability of technological factors that induce IIS, may result in significant deviations of the observed distributions of seismic process parameters from the models, which perform well in natural, tectonic seismic processes. Classic formulations of probabilistic seismic hazard analysis in natural seismicity assume the seismic marked point process to be a stationary Poisson process, whose marks - magnitudes are governed by a Gutenberg-Richter born exponential distribution. It is well known that the use of an inappropriate earthquake occurrence model and/or an inappropriate of magnitude distribution model leads to significant systematic errors of hazard estimates. It is therefore of paramount importance to check whether the mentioned, commonly used in natural seismicity assumptions on the seismic process, can be safely used in IIS hazard problems or not. Seismicity accompanying shale gas operations is widely studied in the framework of the project "Shale Gas Exploration and Exploitation Induced Risks" (SHEER). Here we present results of SHEER project investigations of such seismicity from Oklahoma and of a proxy of such seismicity - IIS data from The Geysers geothermal field. We attempt to answer to the following questions: • Do IIS earthquakes follow the Gutenberg-Richter distribution law, so that the magnitude distribution can be modelled by an exponential distribution? • Is the occurrence process of IIS earthquakes Poissonian? Is it segmentally Poissonian? If yes, how are these segments linked to cycles of technological operations? Statistical tests indicate that the Gutenberg-Richter relation born exponential distribution model for magnitude is, in general, inappropriate. The magnitude distribution can be complex, multimodal, with no ready

  10. The Distribution, Diversity, and Geobiology of Thermoproteales Populations in Yellowstone National Park

    Science.gov (United States)

    Jay, Z.; Beam, J.; Bailey, C.; Dohnalkova, A.; Planer-Friedrich, B.; Romine, M.; Inskeep, W. P.

    2012-12-01

    The order Thermoproteales (phylum Crenarchaeota) consists of thermophilic, rod-shaped organisms that are found globally in geothermal habitats ranging in pH from ~3-9. Nearly all isolated Thermoproteales couple the respiration of inorganic sulfur species (e.g. elemental sulfur, thiosulfate, sulfate) to the oxidation of hydrogen or complex organic carbon. Prior 16S rRNA and metagenome analysis revealed four prominent Thermoproteales-like populations in hypoxic, sulfidic hot springs In Yellowstone National Park (YNP), WY, USA (Monarch Geyser [80° C, pH 4], Cistern Spring [76° C, pH 5] and Joseph's Coat Hot Spring [JCHS; 80° C, pH 6]). The objectives of this study were to 1) characterize and compare the indigenous Thermoproteales-like de novo assemblies identified from metagenomic sequence data available for geothermal systems across YNP, 2) determine the metabolic potential of the Thermoproteales-like populations and evaluate their role in the geochemical cycling of organic and inorganic constituents, and 3) contrast both the sequenced genome and growth physiology of the first Thermoproteales isolated from YNP ("Pyrobaculum yellowstonensis" strain WP30), to the indigenous Thermoproteales-like de novo assemblies. Sequences related to either Caldivirga or Vulcanisaeta spp. (Type I Thermoproteales) were identified in both aerobic and anaerobic habitats ranging in pH ~3 - 6. Thermoproteus or Pyrobaculum spp. (Type-II Thermoproteales) were identified in anoxic habitats, but were constrained to pH values >4. Annotation of the de novo assemblies indicate that both Type-I and Type-II Thermoproteales populations are primarily heterotrophic, although key proteins of the autotrophic dicarboxylate/4-hydroxybutyrate cycle were also identified. Caldivirga/Vulcanisaeta-like populations appear to respire on elemental sulfur, sulfate, or molecular oxygen, while the Thermoproteus/Pyrobaculum-like population may also oxidize hydrogen and respire on elemental sulfur, thiosulfate

  11. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  12. [Various report forms and letters regarding Rorabaugh A-11

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  13. [Various report forms and letters regarding Rorabaugh 6

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  14. [Various report forms and letters regarding Rorabaugh A-14

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  15. [Various report forms and letters regarding Rorabaugh A-4

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  16. [Various report forms and letters regarding Rorabaugh A-22

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  17. [Various report forms and letters regarding Rorabaugh A-3

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  18. [Various report forms and letters regarding MSR Abril 5B-1

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  19. [Various report forms and letters regarding Rorabaugh A-13

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  20. [Report forms and letters regarding Rorabaugh 1

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The documents described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  1. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  2. Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study

    Energy Technology Data Exchange (ETDEWEB)

    Sammel, E.A.; Craig, R.W.

    1981-01-01

    Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

  3. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    Science.gov (United States)

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  4. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park

    Science.gov (United States)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.

    2014-04-01

    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  5. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  6. Geothermal-Reservoir Well-Stimulation Program. Program status report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Seven experimental fracture stimulation treatments completed to date and the laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Six of the seven stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments in Raft River and the two in Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or flow rate. The acid etching treatment in the well at The Geysers did not have any material effect on producing rate.

  7. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  8. Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?

    Science.gov (United States)

    Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry

    2005-01-01

    Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.

  9. Geothermal Progress Monitor 12

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  10. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile

    Science.gov (United States)

    Ruff, Steven W.; Farmer, Jack D.

    2016-11-01

    The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2.nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.

  11. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits

    Science.gov (United States)

    Djokic, Tara; van Kranendonk, Martin J.; Campbell, Kathleen A.; Walter, Malcolm R.; Ward, Colin R.

    2017-05-01

    The ca. 3.48 Ga Dresser Formation, Pilbara Craton, Western Australia, is well known for hosting some of Earth's earliest convincing evidence of life (stromatolites, fractionated sulfur/carbon isotopes, microfossils) within a dynamic, low-eruptive volcanic caldera affected by voluminous hydrothermal fluid circulation. However, missing from the caldera model were surface manifestations of the volcanic-hydrothermal system (hot springs, geysers) and their unequivocal link with life. Here we present new discoveries of hot spring deposits including geyserite, sinter terracettes and mineralized remnants of hot spring pools/vents, all of which preserve a suite of microbial biosignatures indicative of the earliest life on land. These include stromatolites, newly observed microbial palisade fabric and gas bubbles preserved in inferred mineralized, exopolymeric substance. These findings extend the known geological record of inhabited terrestrial hot springs on Earth by ~3 billion years and offer an analogue in the search for potential fossil life in ancient Martian hot springs.

  12. Visualization of boiling flow structure in a natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab; Paruya, Swapan, E-mail: swapanparuya@gmail.com

    2015-04-15

    Highlights: • Vapor–liquid jet flows in natural circulation boiling loop. • Flow patterns and their transitions during geysering instability in the loop. • Evaluation of the efficiency of the needle probe in detecting the vapor–liquid and boiling flow structure. - Abstract: The present study reports vapor–liquid jet flows, flow patterns and their transitions during geysering instability in a natural circulation boiling loop under varied inlet subcooling ΔT{sub sub} (30–50 °C) and heater power Q (4–5 kW). Video imaging, voltage measurement using impedance needle probe, measurement of local pressure and loop flow rate have been carried out in this study. Power spectra of the voltage, the pressure and the flow rate reveal that at a high ΔT{sub sub} the jet flows have long period (21.36–86.95 s) and they are very irregular with a number of harmonics. The period decreases and becomes regular with a decrease of ΔT{sub sub}. The periods of the jet flows at ΔT{sub sub} = 30–50 °C and Q = 4 kW are in close agreement with those obtained from the video imaging. The probe was found to be more efficient than the pressure sensor in detecting the jet flows within an uncertainty of 9.5% and in detecting a variety of bubble classes. Both the imaging and the probe consistently identify the bubbly flow/vapor-mushrooms transition or the bubbly flow/slug flow transition on decreasing ΔT{sub sub} or on increasing Q.

  13. Geothermal materials project input for conversion technology task

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1991-04-01

    This ongoing laboratory-based high risk/high payoff R D program has already yielded several durable cost-effective materials of construction which are being used by the geothermal energy industry. In FY 1992, R D in the following areas will be performed: (1) advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive composites for heat exchange applications, (4) corrosion mitigation at the Geysers, and (5) high-temperature chemical coupling materials to bond elastomers to steel substrates. Work to address other materials problems will commence in FY 1993, as their needs are verified. All of the activities will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. 3 figs., 2 tabs.

  14. [Various report forms and letters regarding Rorabaugh 5

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2007-08-16

    The document(s) described here and the following may be found at the Website of the State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources, http://www.consrv.ca.gov/DOG/geothermal/unit_15/Unit15.htm. GEO Operator Corporation (formerly Thermogenics, Inc. and Geothermal Resources International Operator Corporation) drilled steam production and injection wells in the northwestern portion of The Geysers geothermal field from 1967 to 1985. These wells produced steam that was sold to PG&E's power plant 15. In 1989, the plant stopped operating so the wells stopped producing and GEO Operator Corporation went bankrupt. In 1997-1998, the U.S. Environmental Protection Agency and the Division of Oil, Gas, and Geothermal Resources, with funding from the California Energy Commission, plugged and abandoned most of these idle wells because of severe wellhead corrosion. Technical data and well cuttings were salvaged from an abandoned warehouse on the GEO Operator Corporation lease. These data have recently been scanned and added to the Division's existing scanned well records. The data are unique because GEO Operator Corporation performed an unusually high number of studies, well tests, and analyses. A total of over 10,300 pages and over 340 logs are included in the scans. The reservoir engineering section alone contains over 3,300 pages of reservoir characterization, well testing, and related studies. These data will be useful to the operators at The Geysers Geothermal field, as well as the public and researchers worldwide.

  15. Investigating Rapid Uplift and Subsidence Near Norris, Yellowstone, During 2013-2014

    Science.gov (United States)

    Stovall, W. K.; Cervelli, P. F.; Shelly, D. R.

    2014-12-01

    Although Yellowstone's last magmatic eruption occurred about 70,000 years ago, hydrothermal explosions, earthquakes, and ground deformation still occur as testament to ongoing volcanic and tectonic processes. Since the late 1990s, a network of continuously recording Global Positioning System (GPS) receivers has recorded uplift and subsidence of the caldera and northwest caldera margin near Norris Geyser Basin. Previous deformation episodes have shown opposing vertical motion at the two sites, which has been attributed to temporal variations in magmatic fluid flux from the caldera laterally through the Norris-Mammoth fault corridor that intersects the caldera's northwest margin (Dzurisin et al., 2012; Wicks et al., 2006). These episodes have exhibited gradual changes, transitioning from uplift to subsidence (and vice versa) over weeks to months. Large earthquake swarms accompanied transitions from caldera uplift to subsidence in 1985 and 2010. Recent deformation in Yellowstone differs from previously observed episodes. In the latter half of 2013, uplift began around Norris, and by January of 2014 it reached rates of over 15 cm/yr. Also at the start of 2014, caldera deformation shifted from approximately 4 years of slow subsidence to slow uplift. On March 30, 2014, a M4.8 earthquake, the largest in Yellowstone since 1980, occurred northwest of Norris Geyser Basin near the center of uplift. Shortly after the event, deformation near Norris abruptly reversed to rapid subsidence (over 20 cm/yr). Caldera uplift began to accelerate around the same time. Thus, uplift can occur simultaneously in both the caldera and the Norris area, and dramatic reversals from rapid uplift to rapid subsidence can occur within a matter of days. While the complexity of the deformation defies a simple explanation, we hypothesize that the rapid transition from uplift to subsidence at Norris may indicate that the M4.8 earthquake opened a pathway for fluid migration away from Norris and allowed an

  16. Photonics in nature: Yellowstone National Park in IR

    Science.gov (United States)

    Vollmer, Michael; Shaw, Joseph A.; Nugent, Paul W.; Harris, Wilson; Gillis, Kendra; Weiss, William; Carpenter, Logan; Carpenter, Amy; Scherrer, Bryan

    2017-08-01

    Infrared thermal imaging is a valuable tool not only in science but also in optics and photonics education and outreach activities. Observing natural optical phenomena in a different spectral region like the thermal infrared often offers new insights. The commonly used false color images not only allow extraction of useful information about thermal properties of objects, but they can also provide aesthetic sights and are thus an excellent tool for public outreach activities. Recently we have pursued this kind of study using IR imaging within Yellowstone National Park, complementing earlier work on thermal pool colors and spectroscopy. We will discuss and compare images of a variety of VIS and IR cameras of hot springs, geysers, mud pools and other natural phenomena recorded in the park during 2012 and 2016.

  17. Biomarkers and taphonomic processes in fresh and fossil biosignatures from Hot Spring silica deposits in El Tatio Chile, as a Mars Analogue

    Science.gov (United States)

    Carrizo, D.; Sánchez-García, L.; Parro, V.; Cady, S. L.; Cabrol, N. A.

    2017-09-01

    Biomarkers characterization and taphonomic process of recent and fossil biosignatures in extreme environments with analogies to Mars is essential to understanding how life could develop and survive in this conditions. Siliceous sinter deposits on Mars where similar to those found in the hydrothermal hot springs and geysers from El Tatio, Chile. Organic preservation have been shown in this study. Many different labile functional groups (i.e., carboxylic acids, alcohols, aldehydes, etc.) were found in both "age" samples. A shift in congener pattern for the different lipids families were found and discuss. This results give insight in taphonomic processes actin in this extreme environment, which could be used as a baseline in Mars exploration.

  18. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    Science.gov (United States)

    Finn, Carol A.; Morgan, Lisa A.

    2002-06-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  19. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  20. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park

    Science.gov (United States)

    Vaughan, R. Greg; Keszthelyi, Laszlo P.; Lowenstern, Jacob B.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The overarching aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within the Yellowstone geothermal area to meet the missions of both the U.S. Geological Survey and the Yellowstone National Park Geology Program. Specific goals were to: 1) address the challenges of monitoring the surface thermal characteristics of the > 10,000 spatially and temporally dynamic thermal features in the Park (including hot springs, pools, geysers, fumaroles, and mud pots) that are spread out over ~ 5000 km2, by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux (GHF) for Yellowstone's thermal areas, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., changes related to tectonic, hydrothermal, impending volcanic processes, or human activities, such as nearby geothermal development). ASTER TIR data (90-m pixels) were used to estimate the radiant GHF from all of Yellowstone's thermal features and update maps of thermal areas. MODIS TIR data (1-km pixels) were used to record background thermal radiance variations from March 2000 through December 2010 and establish thermal change detection limits. A lower limit for the radiant GHF estimated from ASTER TIR temperature data was established at ~ 2.0 GW, which is ~ 30–45% of the heat flux estimated through geochemical thermometry. Also, about 5 km2 of thermal areas was added to the geodatabase of mapped thermal areas. A decade-long time-series of MODIS TIR radiance data was dominated by seasonal cycles. A background subtraction technique was used in an attempt to isolate variations due to geothermal changes. Several statistically significant perturbations were noted in the time-series from Norris Geyser Basin, however many of these did not correspond to documented thermal disturbances. This study provides concrete examples of the

  1. Imaging spatial and temporal seismic source variations at Sierra Negra Volcano, Galapagos Islands using back-projection methods

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.; Ebinger, C. J.

    2013-12-01

    Imaging spatial and temporal seismic source variations at Sierra Negra Volcano, Galapagos Islands using back-projection methods Cyndi Kelly1, Jesse F. Lawrence1, Cindy Ebinger2 1Stanford University, Department of Geophysics, 397 Panama Mall, Stanford, CA 94305, USA 2University of Rochester, Department of Earth and Environmental Science, 227 Hutchison Hall, Rochester, NY 14627, USA Low-magnitude seismic signals generated by processes that characterize volcanic and hydrothermal systems and their plumbing networks are difficult to observe remotely. Seismic records from these systems tend to be extremely 'noisy', making it difficult to resolve 3D subsurface structures using traditional seismic methods. Easily identifiable high-amplitude bursts within the noise that might be suitable for use with traditional seismic methods (i.e. eruptions) tend to occur relatively infrequently compared to the length of an entire eruptive cycle. Furthermore, while these impulsive events might help constrain the dynamics of a particular eruption, they shed little insight into the mechanisms that occur throughout an entire eruption sequence. It has been shown, however, that the much more abundant low-amplitude seismic 'noise' in these records (i.e. volcanic or geyser 'tremor') actually represents a series of overlapping low-magnitude displacements that can be directly linked to magma, fluid, and volatile movement at depth. This 'noisy' data therefore likely contains valuable information about the processes occurring in the volcanic or hydrothermal system before, during and after eruption events. In this study, we present a new method to comprehensively study how the seismic source distribution of all events - including micro-events - evolves during different phases of the eruption sequence of Sierra Negra Volcano in the Galapagos Islands. We apply a back-projection search algorithm to image sources of seismic 'noise' at Sierra Negra Volcano during a proposed intrusion event. By analyzing

  2. Airborne CO2 and H2S Measurements at Hot Spring Basin, Yellowstone National Park

    Science.gov (United States)

    McGee, K. A.; Doukas, M. P.; Werner, C. A.

    2007-12-01

    Gas emission-rate measurements at thermal areas located in remote regions with difficult ground access and little topographic relief pose a special challenge to those attempting to assess volcanic hazards in those areas. Several attempts have been made to measure gas emission rates from geyser basins, thermal areas and discrete large fumaroles at Yellowstone National Park through the use of fixed-wing aircraft with an on-board measurement system similar to that employed elsewhere at large stratovolcanoes. Despite minimum flight elevation restrictions and relatively flat terrain that often make access to the lowest margins of the plume difficult in these areas, we have successfully measured plumes of CO2 and H2S at several such areas and features at Yellowstone. We report here the results of a series of airborne measurements on 7 Jun 2006 at Hot Spring Basin (HSB), a remote vapor-dominated hydrothermal system just outside the northeast margin of Yellowstone caldera containing multiple gas vents. Using a LI-COR infrared spectrometer and Interscan electrochemical detector system, we detected a 3-km-wide plume approximately 2 km downwind from HSB. Several airborne traverses through a vertical slice of the plume allowed us to construct a cross-section of the plume and yielded emission rates of 170 metric tonnes per day (t/d) for CO2 and 2 t/d for H2S, similar to rates measured at Mt. Baker, WA (USA) in September 2000. However, an August 2006 ground-based study of emissions from HSB yielded higher emission rates for both CO2 and H2S (Werner et al., this session), suggesting that not all of the diffuse emissions are reflected in the airborne measurement. Although a complete inventory of plume emission rates from the majority of degassing sources in Yellowstone National Park is not yet complete, HSB appears to be a smaller gas emitter than some of the other sources in the Park (e.g., Norris Geyser Basin, Brimstone Basin, Mud Volcano, Grand Prismatic Spring and Mammoth Hot

  3. Geophysical Well Logs Applied to Geothermal Resource Evaluation Application des diagraphies à l'évaluation des ressources géothermiques

    Directory of Open Access Journals (Sweden)

    Fertl W. H.

    2006-11-01

    Full Text Available Well logging in the petroleum industry has been developed over five decades into a mature industry, whereas geothermal well logging is a relatively new enterprise. Fundamental differences also occur in the geologic environments and key objectives of both logging applications. Geothermal reservoirs are frequently in fractured igneous and metamorphic rocks, which contain hot water or stem at temperature exceeding 150°C. The discussion focuses on present day logging technology, geologic and reservoir engineering objectives, and qualitive and quantitative formation interpretation techniques for geothermal resource evaluation. Specific field case studies illustrate the interpretive state-of-the-art, including examples from the Geysers dry steam field in the Imperial Valley of California, hot water fields in California, Nevada, and Idaho, and the LASL Hot Dry Rock test project in the Valles Caldera of New Mexico. Les diagraphies dans les forages pétroliers ont atteint leur maturité, alors que le contrôle diagraphique des sondages géothermiques est une entreprise relativement nouvelle. Des différences fondamentales apparaissent aussi dans les environnements géologiques et dans les objectifs clés des deux types d'applications des diagraphies. Les réservoirs géothermiques se situent souvent dans les roches ignées ou métamorphiques fracturées qui contiennent de l'eau chaude ou de la vapeur à des températures dépassant 150 °C. L'exposé sera concentré sur les techniques actuelles d'enregistrements, les objectifs géologiques et liés à l'exploitation des réserves et sur les techniques qualitatives et quantitatives d'interprétation des formations pour l'évaluation des ressources géothermiques. Quelques cas particuliers illustrent l'état actuel des techniques d'interprétation avec des exemples pris dans le champ de vapeur sèche des geysers dans Imperial Valley de Californie, des champs d'eau chaude en Californie, Nevada et Idaho et

  4. Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Margaux M. Meslé

    2017-05-01

    Full Text Available Hydrogen peroxide (H2O2, superoxide (O2•-, and hydroxyl radicals (OH• are produced in natural waters via ultraviolet (UV light-induced reactions between dissolved oxygen (O2 and organic carbon, and further reaction of H2O2 and Fe(II (i.e., Fenton chemistry. The temporal and spatial dynamics of H2O2 and other dissolved compounds [Fe(II, Fe(III, H2S, O2] were measured during a diel cycle (dark/light in surface waters of three acidic geothermal springs (Beowulf Spring, One Hundred Springs Plain, and Echinus Geyser Spring; pH = 3–3.5, T = 68–80°C in Norris Geyser Basin, Yellowstone National Park. In situ analyses showed that H2O2 concentrations were lowest (ca. 1 μM in geothermal source waters containing high dissolved sulfide (and where oxygen was below detection and increased by 2-fold (ca. 2–3 μM in oxygenated waters corresponding to Fe(III-oxide mat formation down the water channel. Small increases in dissolved oxygen and H2O2 were observed during peak photon flux, but not consistently across all springs sampled. Iron-oxide microbial mats were sampled for molecular analysis of ROS gene expression in two primary autotrophs of acidic Fe(III-oxide mat ecosystems: Metallosphaera yellowstonensis (Archaea and Hydrogenobaculum sp. (Bacteria. Expression (RT-qPCR assays of specific stress-response genes (e.g., superoxide dismutase, peroxidases of the primary autotrophs were used to evaluate possible changes in transcription across temporal, spatial, and/or seasonal samples. Data presented here documented the presence of H2O2 and general correlation with dissolved oxygen. Moreover, two dominant microbial populations expressed ROS response genes throughout the day, but showed less expression of key genes during peak sunlight. Oxidative stress response genes (especially external peroxidases were highly-expressed in microorganisms within Fe(III-oxide mat communities, suggesting a significant role for these proteins during survival and growth in

  5. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.

  6. Teleseismic studies indicate existence of deep magma chamber below Yellowstone National Park

    Science.gov (United States)

    Iyer, H.M.

    1974-01-01

    The secrets of Yellowstone National Park's spectacular geysers and other hot water and steam phenomena are being explored by the U.S Geological Survey with the aid of distant earthquakes (teleseisms). For some time geologists have known that the remarkable array of steam and hot water displays, for which the park is internationally famous, is associated with intense volcanic activity that occurred in the reigon during the last 2 million years. The most recent volcanic eruption took place about 600,000 years ago creating a large caldera, or crater, 75 kilometers long and 50 kilometers wide. This caldera occupies most of the central part of the present-day park. geologists knew from studies of the surface geology that the volcanic activity which creates the present caldera was caused the present caldera was caused by a large body of magma, a mixture composed of molten rock, hot liquids, and gases, that had forced its way from the deep interior of the Earth into the upper mantle and crust below the Yellowstone area. The dimensions and depth below the surface of this magma body were largely unknown, however, because there was no way to "see" deep below the surface. A tool was needed that would enable earth scientists to look into the curst and upper mantle of the Earth. Such a tool became availabe with the installation by the Geological Survey of a network of seismograph stations in the park. 

  7. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    Science.gov (United States)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  8. Geothermal Progress Monitor. Report No. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  9. Imaging Near-Surface Controls on Hot Spring Expression Using Shallow Seismic Refraction in Yellowstone National Park

    Science.gov (United States)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We used shallow seismic refraction to image near-surface materials in the vicinity of a small group of hot springs, located in the Morning Mist Springs area of Lower Geyser Basin, Yellowstone National Park, Wyoming. Seismic velocities in the area surveyed range from a low of 0.3 km/s to a high of approximately 2.5 km/s. The survey results indicate an irregular surface topography overlain by silty sediments. The observed seismic velocities are consistent with a subsurface model in which sorted sands and gravels, probably outwash materials from the Pinedale glaciation, are overlain by silts and fine sands deposited in the flat-lying areas of the Morning Springs area. These findings are supported by published geologic maps of the area and well logs from a nearby borehole. The near-surface materials appear to be saturated with discharging hydrothermal fluids of varying temperature, and interbedded with semi-lithified geothermal deposits (sinter). We hypothesize that the relatively low-conductivity deposits of fines at the surface may serve to confine a shallow, relatively low-temperature (sub-boiling) hydrothermal aquifer, and that the distribution of sinter in the shallow subsurface plays an important role in determining the geometry of hydrothermal discharge (hot springs) at the land surface. Few studies of the shallow controls on hot spring expression exist for the Yellowstone caldera, and the present study therefore offers a unique glimpse into near-subsurface fluid flow controls.

  10. Applications of Skew Models Using Generalized Logistic Distribution

    Directory of Open Access Journals (Sweden)

    Pushpa Narayan Rathie

    2016-04-01

    Full Text Available We use the skew distribution generation procedure proposed by Azzalini [Scand. J. Stat., 1985, 12, 171–178] to create three new probability distribution functions. These models make use of normal, student-t and generalized logistic distribution, see Rathie and Swamee [Technical Research Report No. 07/2006. Department of Statistics, University of Brasilia: Brasilia, Brazil, 2006]. Expressions for the moments about origin are derived. Graphical illustrations are also provided. The distributions derived in this paper can be seen as generalizations of the distributions given by Nadarajah and Kotz [Acta Appl. Math., 2006, 91, 1–37]. Applications with unimodal and bimodal data are given to illustrate the applicability of the results derived in this paper. The applications include the analysis of the following data sets: (a spending on public education in various countries in 2003; (b total expenditure on health in 2009 in various countries and (c waiting time between eruptions of the Old Faithful Geyser in the Yellow Stone National Park, Wyoming, USA. We compare the fit of the distributions introduced in this paper with the distributions given by Nadarajah and Kotz [Acta Appl. Math., 2006, 91, 1–37]. The results show that our distributions, in general, fit better the data sets. The general R codes for fitting the distributions introduced in this paper are given in Appendix A.

  11. Cementing of geothermal wells. Progress report No. 7, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Kukacka, L.E.

    1977-12-01

    Progress in work to implement the program plan for the development of improved high temperature cementing materials for geothermal wells is reported. Work on the first element of the program management plan (problem definition) was completed and a report issued. The materials development and property verification phases of the plan are in progress. Plans for the down-hole testing phase of the program are being formulated. The most promising high temperature polymer cement (PC) system identified to date consists of a cross-linked mixture of styrene, acrylonitrile, and acrylamide in conjunction with a sand-cement filler. A study is in progress to optimize the concentrations of the mix components with respect to properties. Work to determine the pumpability of the system is in progress. Samples of PC have been removed after exposure at The Geysers to dry steam at 460/sup 0/F (238/sup 0/C) for 2 yrs. Visual inspection of the specimens indicated little apparent deterioration. The appendix includes five reports from contributing researchers on the development of high temperature cementing materials for geothermal wells.

  12. Transient Universe: Popular, Not so Popular & Knowable Unknowns

    Science.gov (United States)

    Bildsten, L.; Fryer, C.; Kulkarni, S.

    2006-03-01

    MOTIVATION & PURPOSE: This informal two day workshop is intended to bring together astronomers who monitor the sky for transient phenomena - a field which is poised to take off in the optical band, thanks to the exponential growth in the availability of giga pixel detectors, rapid computing and communication. For somewhat similar technological reasons, decimeter and decameter radio astronomy is also poised to grow in this area. The workshop will focus on astronomical opportunities with ongoing searches and discuss the possibilities with planned facilities in the near term. We hope to rapidly review the status of 'popular' sources (e.g. GRB afterglows, Supernovae, Machos), less popular events (e.g. Novae, geysers and gushers) and then move onto 'odd' but not hopelessly rare events. The spirit is to anticipate some of the discoveries by extending the astrophysical parameter space of known (or knowable) classes of transients. This workshop is part of the ongoing KITP Program "The Supernova Gamma Ray Burst Connection" and has received funding Los Alamos National Laboratory. We will follow the well honed KITP tradition of having fewer talks at the expense of long discussions. All talks will be recorded (per KITP tradition) and made available on the web for enjoyment, education and posterity. In lieu of a traditional poster sessions with old-fashioned easels we offer the Virtual Presence (organized by J. Bloom).

  13. A biographical memoir of Donald Edward White

    Science.gov (United States)

    Muffler, L. J. Patrick

    2016-01-01

    Donald E. White was a leading scientist for the U.S. Geological Survey, where his career was devoted almost entirely to the study of hydrothermal processes in the Earth’s crust, from the dual perspectives of active geothermal systems and of extinct hydrothermal systems now represented only by ore deposits and alteration patterns. White was devoted to analyzing the mechanisms by which ore-forming metals are concentrated, transported, and deposited. His early work on antimony deposits and on mercury transport led to the understanding that these elements, as well as some precious metals, were concentrated in hydrothermal convection systems characterized by dilute chloride waters of predominantly meteoric origin. He concluded, on the other hand, that base metals required more concentrated brines, as was impressively confirmed in the early 1960s by the discovery of the metal-rich fluids of the Salton Sea geothermal system and subsequently by the recognition of sulfide-depositing hydrothermal systems on the sea floor. His studies of active hot-spring systems elucidated the principles of geyser activity and provided the scientific foundation for research programs aimed at the understanding of geothermal systems throughout the world.

  14. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M. [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  15. CO2 Jets and Wind Patterns on Mars

    Science.gov (United States)

    Hatcher, Chase; Aye, K.-Michael; Portyankina, Ganna

    2017-10-01

    In Martian winters, the poles get covered by a layer of transparent CO2 ice. In spring, sunlight causes substrate under the ice to heat up which sublimates CO2 under the ice. The accumulating gas eventually causes the ice above it to rupture and the CO2 and substrate mixture spews out like a geyser and settles back down on the surface. The shape, size, and alignment of the deposits on the surface as viewed by the HiRISE camera are related to physical processes like sublimation, weather, and wind on Mars. The jet deposits are identified by citizen scientists on a website called Planet Four. Users are shown sections of HiRISE images and asked to mark different surface features with different tools. The markings are averaged, filtered, and sorted to ensure that the data accurately represents the images. By analyzing trends in the change of different characteristics of these surface features over time, we conclude that different regions on Mars have different sublimation processes and different wind patterns. We also conclude that wind and weather patterns generally repeat from year to year, and that sediment deposits affect local weather as well.

  16. Emergence of patterns in random processes. II. Stochastic structure in random events.

    Science.gov (United States)

    Newman, William I

    2014-06-01

    Random events can present what appears to be a pattern in the length of peak-to-peak sequences in time series and other point processes. Previously, we showed that this was the case in both individual and independently distributed processes as well as for Brownian walks. In addition, we introduced the use of the discrete form of the Langevin equation of statistical mechanics as a device for connecting the two limiting sets of behaviors, which we then compared with a variety of observations from the physical and social sciences. Here, we establish a probabilistic framework via the Smoluchowski equation for exploring the Langevin equation and its expected peak-to-peak sequence lengths, and we introduce a concept we call "stochastic structure in random events," or SSRE. We extend the Brownian model to include antipersistent processes via autoregressive (AR) models. We relate the latter to describe the behavior of Old Faithful Geyser in Yellowstone National Park, and we devise a further test for the validity of the Langevin and AR models. Given our analytic results, we show how the Langevin equation can be adapted to describe population cycles of three to four years observed among many mammalian species in biology.

  17. Boiling radial flow in fractures of varying wall porosity

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  18. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  19. Geothermal resources of California sedimentary basins

    Science.gov (United States)

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  20. Regional Mapping and Spectral Analysis of Mounds in Acidalia Planitia, Mars

    Science.gov (United States)

    Amador, E. S.; Allen, Carlton; Oehler, D. Z.

    2010-01-01

    Acidalia Planitia is a approx.3000 km diameter planum located in the northern plains of Mars. It is believed to be a sedimentary basin containing an accumulation of sediments brought by Hesperian outflow channels that drained the Highlands. A large number of high-albedo mounds have been identified across this basin [1-2] and understanding the process that formed them should help us understand the history of this region. Farrand et al. [2] showed that the mounds are dark in THEMIS (Thermal Emission Imaging System) nighttime IR (infrared) image data. This implies that the mounds have a lower thermal inertia than the surrounding plains (Fig. 1), suggesting that the material of the mounds is fine-grained or unconsolidated. Farrand et al. [2] also reviewed potential analogs for the mounds and concluded that a combination of mud volcanoes with evaporites around geysers or springs is most consistent with all the data. We have built on this work by creating regional maps of the features and analyzing CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data to see if there are mineralogical differences between the mounds and surrounding plains.

  1. Geothermal Reservoirs: Products of Cooling Plutons

    Energy Technology Data Exchange (ETDEWEB)

    Denis L. Norton

    2002-09-24

    The goals of this project were to develop an in depth understanding of how geothermal reservoirs form and elucidate those features that could potentially be useful in exploration and development of additional energy reserves. Collaboration with Jeff Hulen, EGI helped closely coordinate theoretical concepts and computational experiments with geologic reality in fulfillment of the tasks for this project. Initial reconnaissance computations with Tom Brikowski, University of Texas were critical in realizing the final products of this project. The products of this work contribute basic understanding of the dynamical conditions attendant to the formation of reservoirs in general and the Geysers reservoir in particular. The most exciting of the discoveries were a combination of mineralogical, computational, and geothermometric data sets that revealed a chaotic-like behavior of the processes is critical in the formation of reservoirs near cooling plutions. This discovery provides a fundamental basis for improving resource assessment and exploration methods for geothermal energy associated with very young magmas. Some of the main results are documented in scientific publications, and DOE progress reports. An additional publication is in preparation on the overall significance of fracture propagation and microseismic activity around young magmas.

  2. Book review: Earthquakes and water

    Science.gov (United States)

    Bekins, Barbara A.

    2012-01-01

    It is really nice to see assembled in one place a discussion of the documented and hypothesized hydrologic effects of earthquakes. The book is divided into chapters focusing on particular hydrologic phenomena including liquefaction, mud volcanism, stream discharge increases, groundwater level, temperature and chemical changes, and geyser period changes. These hydrologic effects are inherently fascinating, and the large number of relevant publications in the past decade makes this summary a useful milepost. The book also covers hydrologic precursors and earthquake triggering by pore pressure. A natural need to limit the topics covered resulted in the omission of tsunamis and the vast literature on the role of fluids and pore pressure in frictional strength of faults. Regardless of whether research on earthquake-triggered hydrologic effects ultimately provides insight into the physics of earthquakes, the text provides welcome common ground for interdisciplinary collaborations between hydrologists and seismologists. Such collaborations continue to be crucial for investigating hypotheses about the role of fluids in earthquakes and slow slip. 

  3. Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

    1987-04-01

    The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

  4. WELCST: engineering cost model of geothermal wells. Description and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Entingh, D.J.; Lopez, A.

    1979-02-01

    WELCST, a FORTRAN code for estimating the effects of R and D project results upon the future cost of geothermal wells is described. The code simulates the drilling and completion of a well at 27 specific US geothermal prospects, given assumptions about well design and casing plan, formation drillability, and selected engineering and cost characteristics of today's drilling technology. The user may change many of the assumptions about engineering and cost characteristics to allow WELCST to simulate impacts of specific R and D projects on the estimated cost of wells at the prospects. An important capability of WELCST is that it simulates rates and costs of major drilling mishaps, based on drilling incident data from the Imperial Valley and Geysers geothermal fields. WELCST is capable of estimating geothermal well costs at liquid-dominated (hydrothermal) sites, vapor-dominated sites, geopressured sites, and Hot Dry Rock sites. The model can contribute to many system-optimization studies, and could be easily adapted to estimate well costs outside of the United States.

  5. Titan's methane clouds: Seasonal change and surface geology

    Science.gov (United States)

    Roe, Henry; Schaller, Emily; Brown, Michael; Trujillo, Chadwick

    2008-02-01

    Previously in this program we discovered Titan's mid-latitude clouds (Roe et al. 2005a), observed a massive storm engulfing the south pole (Schaller et al. 2006a), and found a near-disappearance of south polar cloud activity as the season moved further into southern summer (Schaller et al. 2006B). More recently we found that the mid-latitude clouds are controlled by surface processes, possibly including cryovolcanoes, geysering, and/or the opening of surface cracks, near 40°S, 350°W (Roe et al. 2005b). Observing Titan's clouds requires only a small amount (20-25 min) of large (8-10 meter) adaptive optics telescope time and queued Gemini observations are uniquely suited to this observing program. This semester we propose to use the Near-infrared Integral Field Spectrometer (NIFS) in a Target-of- Opportunity mode to maximize our observing efficiency. Continued observations are required to monitor the final seasonal gasps of the south polar clouds, search for the start of new seasonal clouds at central and northern latitudes, identify other regions of active surface geology, and better determine the behavior of the 40°S, 350°W region.

  6. Subsidence due to geothermal fluid withdrawal

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T. N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Univ. of California, Berkeley, CA (United States); Goyal, K. P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Univ. of California, Berkeley, CA (United States)

    1984-12-01

    Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the United States, and elsewhere. Vertical ground displacements of up to 4.5 m and horizontal ground displacements of up to 0.5 m have been observed at Wairakei, New Zealand, that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy, and Cerro Prieto, Mexico. In this paper, observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence, and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant thermal mechanisms. Finally, although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.

  7. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  8. Staff policy regarding mitigation of school enrollment impacts

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.S.

    1983-01-01

    Testimony in recent geothermal power plant siting cases in the Geysers-Calistoga KGRA has established that nine local school districts have reached or exceeded the design which induces immigration into these impacted districts will aggravate the situation. Several power plant applicants have agreed to provide annual mitigation payments to local school districts which can document adverse student enrollment impacts. The Lake County agreements with Occidental Geothermal, Inc. and the California Department of Water Resources require mitigation fees for students having at least one parent who either works directly with the power plant or works indirectly with the geothermal-service industry. An adjustment is made each year so that the applicant only pays a one-time fee for each student. An annual student survey is used to help identify students qualifying for mitigation payments. This paper presents an algorithms which CEC staff will propose to be used in the event that a power plant applicant and an impacted school district are unable to negotiate a mitigation agreement. The algorithm provides a basis for calculating an annual mitigation payment which would be used to help construct new permanent facilities and to purchase additional school buses.

  9. Coring in deep hardrock formations

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  10. Worldwide Geothermal Power Plants: Status as of June 1980

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, Ronald

    1980-12-01

    There are 100 geothermal power units now in operation throughout 12 countries, with a total installed capacity of just over 2110 MW. The average unit thus is rated at 21.1 MW. Newer units may be broadly classified as follows: (a) wellhead units of less than 5 MW; (b) small plants of about 10 MW; (c) medium plants of 30-35 MW; (d) large plants of about 55 MW; and (e) complexes typically consisting of several 55 MW units in a large geothermal field. There is a trend toward turbine units of the double-flow type with a 55 MW rating, used either alone or in a tandem-compound arrangement giving 110 MW in a single power house. This is particularly evident at The Geysers field in California. Double-flash units (separated-steam followed by a surface flash) are suited to high quality reservoirs having high temperature, high steam fractions at the wellhead, and low scaling potential. Single-flash units (separated steam) may be called for where scaling by the spent brine is a potential problem for the liquid disposal system. Binary plants are being used for some very low temperature reservoirs, particularly in the People's Republic of China, albeit in extremely small units. A large-scale pilot plant of the binary type is being planned for the Imperial Valley of California.

  11. Gender Diversity in Planetary Volcanology: Encouraging Equality

    Science.gov (United States)

    Gregg, T. K.; Lopes, R. M.

    2004-12-01

    We have brought together a group of respected and well-known female planetary volcanologists to create a book designed to encourage young women to pursue scientific careers. The book, entitled "Volcanic Worlds: Exploring the Solar System's Volcanoes," published by Praxis, is written for undergraduates who may have no background in geology or planetary sciences. Each chapter covers a different Solar System body or volcanic process, and is authored by a woman who is an expert in her field. Subjects covered include: the relation of plate tectonics to volcanism on Earth; the study of Mars' volcanoes from space and using rovers; geysers on Neptune's moon Triton and on Earth; eruptions on Io; and studying submarine lava flows from a submarine. Each chapter is written in a comfortable, readily accessible tone, with authors presenting not only science, but also some of the unique challenges faced by women conducting volcanological research today-and how these are overcome. Although not intended to be a textbook, this work could easily form the basis of an undergraduate geology seminar, honors course, or as a valuable accessory to an introductory geology course. In addition, it could be used in courses that would be cross-listed between geology departments and sociology departments. We will present more information on the book, and suggestions of how it could be used in the classroom to enhance gender diversity in the Earth and Space Sciences.

  12. Median Filtering Methods for Non-volcanic Tremor Detection

    Science.gov (United States)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.

    2016-12-01

    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  13. Tinjauan Kemungkinan Sebaran Unsur Tanah Jarang (REE di Lingkungan Panas Bumi

    Directory of Open Access Journals (Sweden)

    Danny Zulkifli Herman

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol4no1.20091Geothermal areas occur mainly in an environment of volcanic/magmatic arc where magma chambers play a role as heat sources. The environment is situated within the convergent plate boundaries. A variety of igneous rocks is associated with this environment ranging from basalt (gabbro to rhyolite (granite but andesite is normally the most abundant igneous rock. The most obvious geothermal indications are exhibited by some surface manifestations comprising hot water seepage, fumaroles, hot spring, geyser, and hydrotermal alteration zones which are being evidences of an active hydrothermal system beneath the surface as a part of volcanism. Despite being a causal factor for alteration of country rocks, most hydrothermal fluids enable to change distribution pattern and content of rare earth elements (REE for instance Ce, Eu, La, Lu, Sm, Nd, and Y particularly during a reaction process. This may have a connection with development of element mobility rates, whilst the characteristics of REE pattern within hydrothermal fluid would have a high variable due to dependency of their original magma source. Considering the important role of hydrothermal fluid in REE mobility development, it is inspired to review the possible relationship of active hydrothermal system and potency of REE distribution pattern in areas of geothermal manifestation.  

  14. A putative Type IIS restriction endonuclease GeoICI from Geobacillus sp.--A robust, thermostable alternative to mezophilic prototype BbvI.

    Science.gov (United States)

    Zebrowska, Joanna; Zolnierkiewicz, Olga; Skowron, Marta A; Zylicz-Stachula, Agnieszka; Jezewska-Frackowiak, Joanna; Skowron, Piotr M

    2016-03-01

    Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers' biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5'-GCAGC(N8/12)-3'DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (Λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of Λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-MTases and as a result, another putative REase- MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-methyltransferases (MTases) was detected.

  15. Trampling Impacts on Thermotolerant Vegetation of Geothermal Areas in New Zealand

    Science.gov (United States)

    Burns, Bruce R.; Ward, Jonet; Downs, Theresa M.

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  16. Gases in steam from Cerro Prieto geothermal wells with a discussion of steam/gas ratio measurements

    Science.gov (United States)

    Nehring, N.L.; Fausto, L.J.J.

    1979-01-01

    As part of a joint USGS-CFE geochemical study of Cerro Prieto, steam samples were collected for gas analyses in April, 1977. Analyses of the major gas components of the steam were made by wet chemistry (for H2O,CO2,H2S and NH3) and by gas chromatography (He,H2,Ar,O2,N2 and hydrocarbons). The hydrocarbon gases in Cerro Prieto steam closely resemble hydrocarbons in steam from Larderello, Italy and The Geysers, California which, although they are vapor-dominated rather than hot-water geothermal systems, also have sedimentary aquifer rocks. These sedimentary geothermal hydrocarbons are characterized by the presence of branched C4-6 compounds and a lack of unsaturated compounds other than benzene. Relatively large amounts of benzene may be characteristic of high-temperature geothermal systems. All hydrocarbons in these gases other than methane most probably originate from the thermal metamorphosis of organic matter contained in the sediments. ?? 1979.

  17. Geothermal reservoir engineering, second workshop summaries, December 1-3, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr.

    1976-12-01

    Workshop proceedings included the following: (1) During the Overview Session some papers, among others, discussed 'Geothermal Reservoir Engineering Research' and 'Geothermal Reservoir Engineering in Industry'; (2) Session I, Reservoir Physics, included papers on 'Steam Zone Temperature Gradients at the Geysers' and 'Water Influx in a Steam Producing Well'; (3) Session II, Well Testing, included papers on 'Borehole Geophysics in Geothermal Wells--Problems and Progress' and 'Herber-Pressure Interference Study'; (4) Session III, Field Development, included papers on 'A Reservoir Engineering Study of the East Mesa KGRA' and 'Determining the Optimal Rate of Geothermal Energy Extraction'; (5) Session IV, Well Stimulation, included papers on 'Fluid Flow Through a Large Vertical Crack in the Earth's Crust' and 'Explosive Stimulation of Geothermal Wells'; and (6) Session V, Modeling, included papers on 'Steam Transport in Porous Media' and 'Large-Scale Geothermal Field Parameters and Convection Theory.'

  18. Hydrothemal Alteration Mapping Using Feature-Oriented Principal Component Selection (fpcs) Method to Aster DATA:WIKKI and Mawulgo Thermal Springs, Yankari Park, Nigeria

    Science.gov (United States)

    Abubakar, A. J.; Hashim, M.; Pour, A. B.

    2017-10-01

    Geothermal systems are essentially associated with hydrothermal alteration mineral assemblages such as iron oxide/hydroxide, clay, sulfate, carbonate and silicate groups. Blind and fossilized geothermal systems are not characterized by obvious surface manifestations like hot springs, geysers and fumaroles, therefore, they could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park in northeastern Nigeria. The area is characterized by a number of thermal springs such as Wikki and Mawulgo. Feature-oriented Principal Component selection (FPCS) was applied to ASTER data based on spectral characteristics of hydrothermal alteration minerals for a systematic and selective extraction of the information of interest. Application of FPCS analysis to bands 5, 6 and 8 and bands 1, 2, 3 and 4 datasets of ASTER was used for mapping clay and iron oxide/hydroxide minerals in the zones of Wikki and Mawulgo thermal springs in Yankari Park area. Field survey using GPS and laboratory analysis, including X-ray Diffractometer (XRD) and Analytical Spectral Devices (ASD) were carried out to verify the image processing results. The results indicate that ASTER dataset reliably and complementarily be used for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.

  19. Program Setup Time and Learning Curves associated with "ready to fly" Drone Mapping Hardware and Software.

    Science.gov (United States)

    Wilcox, T.

    2016-12-01

    How quickly can students (and educators) get started using a "ready to fly" UAS and popular publicly available photogrammetric mapping software for student research at the undergraduate level? This poster presentation focuses on the challenges of starting up your own drone-mapping program for undergraduate research in a compressed timescale of three months. Particular focus will be given to learning the operation of the platforms, hardware and software interface challenges, and using these electronic systems in real-world field settings that pose a range of physical challenges to both operators and equipment. We will be using a combination of the popular DJI Phantom UAS and Pix4D mapping software to investigate mass wasting processes and potential hazards present in public lands popular with recreational users. Projects are aimed at characterizing active geological hazards that operate on short timescales and may include gully headwall erosion in Flaming Geyser State Park and potential landslide instability within Capital State Forest, both in the Puget Sound region of Washington State.

  20. HYDROTHEMAL ALTERATION MAPPING USING FEATURE-ORIENTED PRINCIPAL COMPONENT SELECTION (FPCS METHOD TO ASTER DATA:WIKKI AND MAWULGO THERMAL SPRINGS, YANKARI PARK, NIGERIA

    Directory of Open Access Journals (Sweden)

    A. J. Abubakar

    2017-10-01

    Full Text Available Geothermal systems are essentially associated with hydrothermal alteration mineral assemblages such as iron oxide/hydroxide, clay, sulfate, carbonate and silicate groups. Blind and fossilized geothermal systems are not characterized by obvious surface manifestations like hot springs, geysers and fumaroles, therefore, they could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park in northeastern Nigeria. The area is characterized by a number of thermal springs such as Wikki and Mawulgo. Feature-oriented Principal Component selection (FPCS was applied to ASTER data based on spectral characteristics of hydrothermal alteration minerals for a systematic and selective extraction of the information of interest. Application of FPCS analysis to bands 5, 6 and 8 and bands 1, 2, 3 and 4 datasets of ASTER was used for mapping clay and iron oxide/hydroxide minerals in the zones of Wikki and Mawulgo thermal springs in Yankari Park area. Field survey using GPS and laboratory analysis, including X-ray Diffractometer (XRD and Analytical Spectral Devices (ASD were carried out to verify the image processing results. The results indicate that ASTER dataset reliably and complementarily be used for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.

  1. Comprehensive air monitoring plan: general monitoring report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-31

    Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

  2. Dark matter searches using superheated liquids

    Science.gov (United States)

    Manuel, Bou-Cabo; Miguel, Ardid; Ivan, Felis

    2016-07-01

    Direct detection of dark matter is one of the most important topics in modern physics. It is estimated that 22% of universe matter is composed by dark matter in front of 0.4% of ordinary matter like stars, galaxies planets and all kind of known astrophysical objects. Several kinds of experiments are nowadays involved in detection of one of the more accepted particle candidates to be dark matter: WIMPs (Weakly Interacting Massive Particles). These detectors, using several kinds of techniques: Cryogenic semiconductors, scintillation materials like I Na or noble gas chambers among others, are reporting very interesting but inconclusive results. In this paper a review of detectors that are using the superheated liquid technique in bubble chambers in order to detect WIMPs is reported. Basically, we will report about Coupp (Chicagoland observatory for underground particle physics), PICO that is composed by Coupp and Picasso researchers having the aim to build a ton experiment and also about a new detector named MOSCAB (Materia oscura a bolle) that recently published a first results of a test chamber that uses also superheated liquid technique but as a Geyser chamber.

  3. Dark matter searches using superheated liquids

    Directory of Open Access Journals (Sweden)

    Manuel Bou-Cabo

    2016-01-01

    Full Text Available Direct detection of dark matter is one of the most important topics in modern physics. It is estimated that 22% of universe matter is composed by dark matter in front of 0.4% of ordinary matter like stars, galaxies planets and all kind of known astrophysical objects. Several kinds of experiments are nowadays involved in detection of one of the more accepted particle candidates to be dark matter: WIMPs (Weakly Interacting Massive Particles. These detectors, using several kinds of techniques: Cryogenic semiconductors, scintillation materials like I Na or noble gas chambers among others, are reporting very interesting but inconclusive results. In this paper a review of detectors that are using the superheated liquid technique in bubble chambers in order to detect WIMPs is reported. Basically, we will report about Coupp (Chicagoland observatory for underground particle physics, PICO that is composed by Coupp and Picasso researchers having the aim to build a ton experiment and also about a new detector named MOSCAB (Materia oscura a bolle that recently published a first results of a test chamber that uses also superheated liquid technique but as a Geyser chamber.

  4. n Studie in Nuwe- Testamentiese Grieks

    African Journals Online (AJOL)

    Sy noem dat 'n groot persentasie van Afrikaanse ontnominalise- rings van Franse nominale vorme op voorsetsels volg (Geyser 1981: 46). Byvoorbeeld ']' espérais pouvoir le garder prés de moi jusqu' á rarrivée du bateau' wat in die Afrikaanse vertaling 'Ek het gehoop ek kon hom by my hou tot die boot kom' geword het.

  5. Browse Title Index

    African Journals Online (AJOL)

    Vol 10, No 3 (1954), Die "Christian beacon", Abstract PDF. F.J van Zyl. Vol 4, No 2-3 (1947), Die dekaloog as bestanddeel van die vroeg-Chirstelike liturgie, Abstract PDF. AS Geyser. Vol 48, No 1-2 (1992), Die Departement Godsdiens- en Sendingwetenskap (Afd A), Universiteit van Pretoria, 1917-1978, Abstract PDF.

  6. Seismic hazard from induced seismicity: effect of time-dependent hazard variables

    Science.gov (United States)

    Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.

    2012-12-01

    Geothermal systems are drawing large attention worldwide as an alternative source of energy. Although geothermal energy is beneficial, field operations can produce induced seismicity whose effects can range from light and unfelt to severe damaging. In a recent paper by Convertito et al. (2012), we have investigated the effect of time-dependent seismicity parameters on seismic hazard from induced seismicity. The analysis considered the time-variation of the b-value of the Gutenberg-Richter relationship and the seismicity rate, and assumed a non-homogeneous Poisson model to solve the hazard integral. The procedure was tested in The Geysers geothermal area in Northern California where commercial exploitation has started in the 1960s. The analyzed dataset consists of earthquakes recorded during the period 2007 trough 2010 by the LBNL Geysers/Calpine network. To test the reliability of the analysis, we applied a simple forecasting procedure which compares the estimated hazard values in terms of ground-motion values having fixed probability of exceedance and the observed ground-motion values. The procedure is feasible for monitoring purposes and for calibrating the production/extraction rate to avoid adverse consequences. However, one of the main assumptions we made concern the fact that both median predictions and standard deviation of the ground-motion prediction equation (GMPE) are stationary. Particularly for geothermal areas where the number of recorded earthquakes can rapidly change with time, we want to investigate how a variation of the coefficients of the used GMPE and of the standard deviation influences the hazard estimates. Basically, we hypothesize that the physical-mechanical properties of a highly fractured medium which is continuously perturbed by field operations can produce variations of both source and medium properties that cannot be captured by a stationary GMPE. We assume a standard GMPE which accounts for the main effects which modify the scaling

  7. Comet Dust After Deep Impact

    Science.gov (United States)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  8. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  9. LIFE: Life Investigation For Enceladus A Sample Return Mission Concept in Search for Evidence of Life.

    Science.gov (United States)

    Tsou, Peter; Brownlee, Donald E; McKay, Christopher P; Anbar, Ariel D; Yano, Hajime; Altwegg, Kathrin; Beegle, Luther W; Dissly, Richard; Strange, Nathan J; Kanik, Isik

    2012-08-01

    Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10 μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission.

  10. Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations.

    Science.gov (United States)

    Teolis, Ben D; Perry, Mark E; Hansen, Candice J; Waite, J Hunter; Porco, Carolyn C; Spencer, John R; Howett, Carly J A

    2017-09-01

    During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data. Our results confirm a mixture of both low and high Mach gas emission from Enceladus' surface tiger stripes, with gas accelerated as fast as Mach 10 before escaping the surface. The vapor source fluxes and jet intensities/densities vary dramatically and stochastically, up to a factor 10, both spatially along the tiger stripes and over time between flyby observations. This complex spatial variability and dynamics may result from time-variable tidal stress fields interacting with subsurface fissure geometry and tortuosity beyond detectability, including changing gas pathways to the surface, and fluid flow and boiling in response evolving lithostatic stress conditions. The total plume gas source has 30% uncertainty depending on the contributions assumed for adiabatic and nonadiabatic gas expansion/acceleration to the high Mach emission. The overall vapor plume source rate exhibits stochastic time variability up to a factor ∼5 between observations, reflecting that found in the individual gas sources/jets. Key Words: Cassini at Saturn-Geysers-Enceladus-Gas dynamics-Icy satellites. Astrobiology 17, 926-940.

  11. Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

  12. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  13. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  14. Eleventh workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

    1986-01-23

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  15. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    Science.gov (United States)

    McKee, Kathleen; Fee, David; Yokoo, Akihiko; Matoza, Robin S.; Kim, Keehoon

    2017-06-01

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed ;jet noise;. We aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano's Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7-10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of 79 to 132 m/s. Using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at 160-270 kg/s (14,000-23,000 t/d).

  16. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    Energy Technology Data Exchange (ETDEWEB)

    McKee, Kathleen; Fee, David; Yokoo, Akihiko; Matoza, Robin S.; Kim, Keehoon

    2017-06-01

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. We aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano's Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).

  17. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  18. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  19. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    Science.gov (United States)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  20. Casual Empire: Video Games as Neocolonial Praxis

    Directory of Open Access Journals (Sweden)

    Sabine Harrer

    2018-01-01

    Full Text Available As a media form entwined in the U.S. military-industrial complex, video games continue to celebrate imperialist imagery and Western-centric narratives of the great white explorer (Breger, 2008; Dyer-Witheford & de Peuter, 2009; Geyser & Tshalabala, 2011; Mukherjee, 2016. While much ink has been spilt on the detrimental effects of colonial imagery on those it objectifies and dehumanises, the question is why these games still get made, and what mechanisms are at work in the enjoyment of empire-themed play experiences. To explore this question, this article develops the concept of ‘casual empire’, suggesting that the wish to play games as a casual pastime expedites the incidental circulation of imperialist ideology. Three examples – 'Resident Evil V' (2009, 'The Conquest: Colonization' (2015 and 'Playing History: Slave Trade' (2013 – are used to demonstrate the production and consumption of casual empire across multiple platforms, genres and player bases. Following a brief contextualisation of postcolonial (game studies, this article addresses casual design, by which I understand game designers’ casual reproduction of inferential racism (Hall, 1995 for the sake of entertainment. I then look at casual play, and players’ attitudes to games as rational commodities continuing a history of commodity racism (McClintock, 1995. Finally, the article investigates the casual involvement of formalist game studies in the construction of imperial values. These three dimensions of the casual – design, play and academia – make up the three pillars of the casual empire that must be challenged to undermine video games’ neocolonialist praxis.

  1. Using electrical conductivity to monitor geothermal solute flux in major rivers of Yellowstone National Park

    Science.gov (United States)

    McCleskey, R. B.; Mahony, D.; Lowenstern, J. B.; Heasler, H.; Nordstrom, D. K.

    2014-12-01

    Thermal output from the magma chamber underlying Yellowstone National Park (YNP) can be estimated by monitoring Cl flux in major rivers draining the park. The U.S. Geological Survey (USGS) and the National Park Service have collaborated on Cl flux monitoring towards this end since the 1970s. Researchers collected water samples from the major rivers in YNP, but funding restrictions, winter travel, and the great distances between sites limits the number of samples collected annually. The use of electrical conductivity, which is relatively easy to measure and can be automated, as a proxy for Cl enables a more consistent monitoring of thermal output. To accomplish this, it is crucial to accurately quantify the relationship between electrical conductivity, Cl, and other geothermal solutes (SO4, F, HCO3, SiO2, K, Li, B, and As) along the Madison, Firehole, Gibbon, Snake, Gardner, and Yellowstone Rivers. Conductivity measurements were made every 15 minutes adjacent to USGS stream gages, allowing for the determination of solute fluxes. In addition, continuous conductivity measurements can be used to identify changes in river chemistry as a result of geysers eruptions, rain events, or changes in thermal inputs as a result of earthquakes or other natural events. Depending on the site, we have collected 2 to 5 years of conductivity measurements. Except for some trace elements (Fe and Hg), most solutes behave conservatively, and the ratio of geothermal solute concentrations are constant. Hence, dissolved concentrations of Cl, SO4, F, HCO3, SiO2, K, Li, Ca, B, and As correlate well with conductivity (R2 > 0.96). The use of conductivity to estimate solute concentrations and fluxes will provide a greater understanding of the systematics of the Yellowstone thermal output and allow for monitoring of many more solutes at a much higher temporal frequency.

  2. Workshop on magma/hydrothermal drilling and instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G.; Colp, J.L. (eds.)

    1978-07-01

    The discussions, conclusions, and recommendations of the Magma/Hydrothermal Drilling and Instrumentation Workshop, Albuquerque, NM, May 31--June 2, 1978 are summarized. Three working groups were organized as follows: Drilling Location and Environment, Drilling and Completion Technology, and Logging and Instrumentation Technology. The first group discussed potential drilling sites and the environment that could be expected in drilling to magma depth at each site. Sites suggested for early detailed evaluation as candidate drilling sites were The Geysers-Clear Lake, CA, Kilauea, HI, Long Valley-Mono Craters, CA, and Yellowstone, WY. Magma at these sites is expected to range from 3 to 10 km deep with temperatures of 800 to 1100{sup 0}C. Detailed discussions of the characteristics of each site are given. In addition, a list of geophysical measurements desired for the hole is presented. The Drilling and Completion Group discussed limitations on current rotary drilling technology as a function of depth and temperature. The group concluded that present drilling systems can be routinely used to temperatures of 200{sup 0}C and depths to 10 km; drilling to 350{sup 0}C can be accomplished with modifications of present techniques, drilling at temperatures from 350{sup 0}C to 1100{sup 0}C will require the development of new drilling techniques. A summary of the limiting factors in drilling systems is presented, and recommendations for a program directed at correcting these limitations is described. The third group discussed requirements for instrumentation and established priorities for the development of the required instruments. Of highest priority for development were high resolution temperature tools, sampling techniques (core, formation fluids), chemical probes, and communications techniques. A description of instrumentation requirements for the postulated hole is given, and the tasks necessary to develop the required devices are delineated.

  3. Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. isolates from Yellowstone National Park.

    Science.gov (United States)

    Romano, Christine; D'Imperio, Seth; Woyke, Tanja; Mavromatis, Konstantinos; Lasken, Roger; Shock, Everett L; McDermott, Timothy R

    2013-05-01

    We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥ 99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized.

  4. Compilation of Abstracts for SC12 Conference Proceedings

    Science.gov (United States)

    Morello, Gina Francine (Compiler)

    2012-01-01

    1 A Breakthrough in Rotorcraft Prediction Accuracy Using Detached Eddy Simulation; 2 Adjoint-Based Design for Complex Aerospace Configurations; 3 Simulating Hypersonic Turbulent Combustion for Future Aircraft; 4 From a Roar to a Whisper: Making Modern Aircraft Quieter; 5 Modeling of Extended Formation Flight on High-Performance Computers; 6 Supersonic Retropropulsion for Mars Entry; 7 Validating Water Spray Simulation Models for the SLS Launch Environment; 8 Simulating Moving Valves for Space Launch System Liquid Engines; 9 Innovative Simulations for Modeling the SLS Solid Rocket Booster Ignition; 10 Solid Rocket Booster Ignition Overpressure Simulations for the Space Launch System; 11 CFD Simulations to Support the Next Generation of Launch Pads; 12 Modeling and Simulation Support for NASA's Next-Generation Space Launch System; 13 Simulating Planetary Entry Environments for Space Exploration Vehicles; 14 NASA Center for Climate Simulation Highlights; 15 Ultrascale Climate Data Visualization and Analysis; 16 NASA Climate Simulations and Observations for the IPCC and Beyond; 17 Next-Generation Climate Data Services: MERRA Analytics; 18 Recent Advances in High-Resolution Global Atmospheric Modeling; 19 Causes and Consequences of Turbulence in the Earths Protective Shield; 20 NASA Earth Exchange (NEX): A Collaborative Supercomputing Platform; 21 Powering Deep Space Missions: Thermoelectric Properties of Complex Materials; 22 Meeting NASA's High-End Computing Goals Through Innovation; 23 Continuous Enhancements to the Pleiades Supercomputer for Maximum Uptime; 24 Live Demonstrations of 100-Gbps File Transfers Across LANs and WANs; 25 Untangling the Computing Landscape for Climate Simulations; 26 Simulating Galaxies and the Universe; 27 The Mysterious Origin of Stellar Masses; 28 Hot-Plasma Geysers on the Sun; 29 Turbulent Life of Kepler Stars; 30 Modeling Weather on the Sun; 31 Weather on Mars: The Meteorology of Gale Crater; 32 Enhancing Performance of NASAs High

  5. Coniform stromatolites from geothermal systems, North Island, New Zealand

    Science.gov (United States)

    Jones, B.; Renaut, R.W.; Rosen, Michael R.; Ansdell, K.M.

    2002-01-01

    Coniform stromatolites are found in several sites in the Tokaanu and Whakarewarewa geothermal areas of North Island, New Zealand. At Tokaanu, silicification of these stromatolites is taking place in Kirihoro, a shallow hot springfed pool. At Whakarewarewa, subfossil silicified coniform stromatolites are found on the floor of "Waikite Pool" on the discharge apron below Waikite Geyser, and in an old sinter succession at Te Anarata. The microbes in the coniform stromatolites from Tokaanu, Waikite Pool, and Te Anarata have been well preserved through rapid silicification. Nevertheless, subtle differences in the silicification style induced morphological variations that commonly mask or alter morphological features needed for identification of the microbes in terms of extant taxa. The coniform stromatolites in the New Zealand hotspring pools are distinctive because (1) they are formed of upward tapering (i.e., conical) columns, (2) neighboring columns commonly are linked by vertical sheets or bridges, (3) internally, they are formed of alternating high- and low-porosity laminae that have a conical vertical profile, and (4) Phormidium form more than 90% of the biota. As such, they are comparable to modern coniform mats and stromatolites found in the geothermal systems of Yellowstone National Park and ice-covered lakes in Antarctica. Formation of the coniform stromatolites is restricted to pools that are characterized by low current energy and a microflora that is dominated by Phormidium. These delicate and intricate stromatolites could not form in areas characterized by fast flowing water or a diverse microflora. Thus, it appears that the distribution of these distinctive stromatolites is controlled by biological constraints that are superimposed on environmental needs.

  6. CIRS-lite, a Fourier Transform Spectrometer for Low-Cost Planetary Missions

    Science.gov (United States)

    Brasunas, J.; Bly, V.; Edgerton, M.; Gong, Q.; Hagopian, J.; Mamakos, W.; Morelli, A.; Pasquale, B.; Strojny, C.

    2011-01-01

    Passive spectroscopic remote sensing of planetary atmospheres and surfaces in the thermal infrared is a powerful tool for obtaining information about surface and atmospheric temperatures, composition, and dynamics (via the thermal wind equation). Due to its broad spectral coverage, the Fourier transform spectrometer (FTS) is particularly suited to the exploration and discovery of molecular species. NASA's Goddard Space Flight Center (GSFC) developed the CIRS (Composite Infrared Spectrometer) FTS for the NASA/ESA Cassini mission to the Saturnian system. CIRS observes Saturn, Titan, icy moons such as Enceladus, and the rings in thermal self-emission over the spectral range of 7 to 1000 ell11. CIRS has given us important new insights into stratospheric composition and jets on Jupiter and Saturn, the cryo-geyser and thermal stripes on Enceladus, and the winter polar vortex on Titan. CIRS has a mass of 43 kg, contrasted with the earlier GSFC FTS, pre-Voyager IRIS (14 kg). Future low-cost planetary missions will have very tight constraints on science payload mass, thus we must endeavor to return to IRIS-level mass while maintaining CIRS-level science capabilities ("do more with less"). CIRS-lite achieves this by pursuing: a) more sensitive infrared detectors (high Tc superconductor) to enable smaller optics. b) changed long wavelength limit from 1000 to 300 microns to reduce diffraction by smaller optics. c) CVD (chemical vapor deposition) diamond beam-splitter for broad spectral coverage. d) single FTS architecture instead of a dual FTS architecture. e) novel materials, such as single crystal silicon for the input telescope primary.

  7. Geothermal induced seismicity: What links source mechanics and event magnitudes to faulting regime and injection rates?

    Science.gov (United States)

    Martinez-Garzon, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco; Dresen, Georg

    2017-04-01

    Improving estimates of seismic hazard associated to reservoir stimulation requires advanced understanding of the physical processes governing induced seismicity, which can be better achieved by carefully processing large datasets. To this end, we investigate source-type processes (shear/tensile/compaction) and rupture geometries with respect to the local stress field using seismicity from The Geysers (TG) and Salton Sea geothermal reservoirs, California. Analysis of 869 well-constrained full moment tensors (MW 0.8-3.5) at TG reveals significant non-double-couple (NDC) components (>25%) for 65% of the events and remarkably diversity in the faulting mechanisms. Volumetric deformation is clearly governed by injection rates with larger NDC components observed near injection wells and during high injection periods. The overall volumetric deformation from the moment tensors increases with time, possibly reflecting a reservoir pore pressure increase after several years of fluid injection with no significant production nearby. The obtained source mechanisms and fault orientations are magnitude-dependent and vary significantly between faulting regimes. Normal faulting events (MW dilatancy, and they occur on varying fault orientations. In contrast, strike-slip events dominantly reveal a double-couple source, larger magnitudes (MW > 2) and mostly occur on optimally oriented faults with respect to the local stress field. NDC components indicating closure of cracks and pore spaces in the source region are found for reverse faulting events with MW > 2.5. Our findings from TG are generally consistent with preliminary source-type results from a reduced subset of well-recorded seismicity at the Salton Sea geothermal reservoir. Combined results imply that source processes and magnitudes of geothermal-induced seismicity are strongly affected by and systematically related to