WorldWideScience

Sample records for thc prevents mdma

  1. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    2010-02-01

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  2. Sex-Dependent Psychoneuroendocrine Effects of THC and MDMA in an Animal Model of Adolescent Drug Consumption

    Science.gov (United States)

    Llorente-Berzal, Alvaro; Puighermanal, Emma; Burokas, Aurelijus; Ozaita, Andrés; Maldonado, Rafael; Marco, Eva M.; Viveros, Maria-Paz

    2013-01-01

    Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd) 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46), MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB), whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs. PMID:24223797

  3. Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption.

    Directory of Open Access Journals (Sweden)

    Alvaro Llorente-Berzal

    Full Text Available Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46, MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB, whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs.

  4. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Llorente-Berzal, Alvaro; Garcia-Segura, Luis M; Viveros, Maria-Paz

    2014-03-01

    Many young people consume ecstasy as a recreational drug and often in combination with cannabis. In this study, we aimed to mimic human consumption patterns and investigated, in male and female animals, the long-term effects of Δ(9) -tetrahydrocannabinol (THC) and 3,4-methylenedioxymethamphetamine (MDMA) on diverse neuroinflammation and neurotoxic markers. Male and female Wistar rats were chronically treated with increasing doses of THC and/or MDMA during adolescence. The effects of THC and/or MDMA on glial reactivity and on serotoninergic and cannabinoid systems were assessed by immunohistochemistry in the hippocampus and parietal cortex. THC increased the area staining for glial fibrilar acidic protein in both sexes. In males, both drugs, either separately or in combination, increased the proportion of reactive microglia cells [ionized calcium binding adaptor molecule 1 (Iba-1)]. In contrast, in females, each drug, administered alone, decreased of this proportion, whereas the combination of both drugs resulted in a 'normalization' to control values. In males, MDMA reduced the number of SERT positive fibres, THC induced the opposite effect and the group receiving both drugs did not significantly differ from the controls. In females, MDMA reduced the number of SERT positive fibres and the combination of both drugs counteracted this effect. THC also reduced immunostaining for CB1 receptors in females and this effect was aggravated by the combination with MDMA. Adolescent exposure of rats to THC and/or MDMA induced long-term, sex-dependent neurochemical and glial alterations, and revealed interactions between the two drugs. This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6. © 2013 The British Pharmacological Society.

  5. Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G.J.H.; Van Hasselt, J.G.C.; De Kam, M.; Van Gerven, J.M.A.; Touw, D.J.; Buitelaar, J.K.; Verkes, R.J.

    In Western societies a considerable percentage of young people expose themselves to the combination of 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') and cannabis. The aim of the present study was to assess the acute effects of co-administration of MDMA and THC (the main psychoactive compound

  6. Acute psychomotor, memory and subjective effects of MDMA and THC (co-) administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G.; Van Hasselt, J.; De Kam, M.; Van Gerven, J.; Touw, D.; Buitelaar, J.; Verkes, R.

    Introduction: In Western societies a considerable percentage of young people expose themselves to the combination of 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”). Cannabis (main active compound D9-tetrahydrocannabinol or THC) is frequently co-used with ecstasy (Parrott et al., 2007).

  7. Cannabis co-administration potentiates MDMA effects on temperature and heart rate

    NARCIS (Netherlands)

    Dumont, G.; Kramers, C.; Sweep, E.; Touw, D.; Van Hasselt, J.; De Kam, M.; Van Gerven, J.; Buitelaar, J.; Verkes, R.J.

    2009-01-01

    3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) is a frequently used club-drug in Western societies. Ecstasy users generally are multi-drug users, and cannabis (THC) is commonly combined with MDMA. MDMA is a potent psychostimulant, increasing heart rate, blood pressure and body temperature.

  8. Motivations for Using MDMA (Ecstasy/Molly) among African Americans: Implications for Prevention and Harm-Reduction Programs.

    Science.gov (United States)

    Rigg, Khary K

    2017-01-01

    Despite the growing popularity of MDMA (ecstasy/molly) among African Americans, their motives for using the drug are still largely unknown. The purpose of this study was to identify and describe the most salient motivations for using MDMA among this understudied population. In-depth interviews (n = 15) were conducted with a sample of African American young adults in Southwest Florida between August 2014 and November 2015. The primary motivations for using MDMA included: (1) altering the effects of marijuana and alcohol; (2) lasting longer sexually; (3) enhancing sexual pleasure; and (4) facilitating "freaky" sexual experiences. This is the first study to directly examine MDMA motivations specifically among African American drug users, and findings shed light on why some African Americans use MDMA. A better understanding of why African Americans use this drug should help to inform prevention and harm-reduction efforts. Study findings show the need for health messages that include the potential consequences of mixing MDMA with other drugs, and engaging in high-risk sexual behaviors after taking MDMA. These data contrast with motivations (e.g., introspection, self-enlightenment, getting into the music) commonly reported among groups of largely White MDMA users, suggesting that interventions tailored specifically for African American users are needed.

  9. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Science.gov (United States)

    2011-01-01

    Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA. PMID:22114930

  10. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Directory of Open Access Journals (Sweden)

    Mayado Andrea

    2011-11-01

    Full Text Available Abstract Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p. 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.. IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v. prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA.

  11. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    Science.gov (United States)

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  12. MDMA (Ecstasy/Molly)

    Science.gov (United States)

    ... Molly often actually get other drugs such as synthetic cathinones ("bath salts") instead (see " Added Risk of MDMA "). Some people take MDMA in combination with other drugs such as alcohol or marijuana. How does MDMA affect the brain? MDMA increases ...

  13. Repeated MDMA administration increases MDMA-produced locomotor activity and facilitates the acquisition of MDMA self-administration: role of dopamine D2 receptor mechanisms.

    Science.gov (United States)

    van de Wetering, Ross; Schenk, Susan

    2017-04-01

    Repeated exposure to ±3, 4-methylenedioxymethamphetamine (MDMA) produces sensitization to MDMA-produced hyperactivity, but the mechanisms underlying the development of this sensitized response or the relationship to the reinforcing effects of MDMA is unknown. This study determined the effect of a sensitizing regimen of MDMA exposure on the acquisition of MDMA self-administration and investigated the role of dopamine D 2 receptor mechanisms. Rats received the selective D 2 antagonist, eticlopride (0.0 or 0.3 mg/kg, i.p.) and MDMA (0.0 or 10.0 mg/kg, i.p.) during a five-day pretreatment regimen. Two days following the final session, the locomotor activating effects of MDMA (5 mg/kg, i.p.) and the latency to acquisition of MDMA self-administration were determined. Pretreatment with MDMA enhanced the locomotor activating effects of MDMA and facilitated the acquisition of MDMA self-administration. Administration of eticlopride during MDMA pretreatment completely blocked the development of sensitization to MDMA-produced hyperactivity but failed to significantly alter the facilitated acquisition of MDMA self-administration. Pretreatment with eticlopride alone facilitated the acquisition of self-administration. These data suggest that repeated MDMA exposure sensitized both the locomotor activating and reinforcing effects of MDMA. Activation of D 2 receptors during MDMA pretreatment appears critical for the development of sensitization to MDMA-produced hyperactivity. The role of D 2 receptor mechanisms in the development of sensitization to the reinforcing effects of MDMA is equivocal.

  14. Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release.

    Science.gov (United States)

    Bradbury, Sarah; Bird, Judith; Colussi-Mas, Joyce; Mueller, Melanie; Ricaurte, George; Schenk, Susan

    2014-09-01

    The current study aimed to elucidate the role of pharmacokinetic (PK) parameters and neurotransmitter efflux in explaining variability in (±) 3, 4-methylenedioxymethamphetamine (MDMA) self-administration in rats. PK profiles of MDMA and its major metabolites were determined after the administration of 1.0 mg/kg MDMA (iv) prior to, and following, the acquisition of MDMA self-administration. Synaptic levels of 5-hydroxytryptamine (5HT) and dopamine (DA) in the nucleus accumbens were measured following administration of MDMA (1.0 and 3.0 mg/kg, iv) using in vivo microdialysis and compared for rats that acquired or failed to acquire MDMA self-administration. Effects of the 5HT neurotoxin, 5,7 dihydroxytryptamine (5, 7-DHT), on the acquisition of MDMA and cocaine self-administration were also determined. In keeping with previous findings, approximately 50% of rats failed to meet a criterion for acquisition of MDMA self-administration. The PK profiles of MDMA and its metabolites did not differ between rats that acquired or failed to acquire MDMA self-administration. MDMA produced more overflow of 5HT than DA. The MDMA-induced 5HT overflow was lower in rats that acquired MDMA self-administration compared with those that did not acquire self-administration. In contrast, MDMA-induced DA overflow was comparable for the two groups. Prior 5,7-DHT lesions reduced tissue levels of 5HT and markedly increased the percentage of rats that acquired MDMA self-administration and also decreased the latency to acquisition of cocaine self-administration. These data suggest that 5HT limits the initial sensitivity to the positively reinforcing effects of MDMA and delays the acquisition of reliable self-administration. © 2013 Society for the Study of Addiction.

  15. Memory and mood during MDMA intoxication, with and without memantine pretreatment.

    Science.gov (United States)

    de Sousa Fernandes Perna, E B; Theunissen, E L; Kuypers, K P C; Heckman, P; de la Torre, R; Farre, M; Ramaekers, J G

    2014-12-01

    Previous studies have shown that single doses of MDMA can affect mood and impair memory in humans. The neuropharmacological mechanisms involved in MDMA-induced memory impairment are not clear. Memantine, an NMDA and alpha 7 nicotinic acetylcholine (ACh) receptor antagonist, was able to reverse MDMA-induced memory impairment in rats. This study investigated whether treatment with memantine can prevent MDMA-induced memory impairment in humans. 15 subjects participated in a double-blind, placebo controlled, within-subject design. Subjects received both pre-treatment (placebo/memantine 20 mg) (T1) and treatment (placebo/MDMA 75 mg) (T2) on separate test days. T1 preceded T2 by 120 min. Memory function was assessed 90 min after T2 by means of a Visual Verbal Learning Task, a Prospective Memory Task, the Sternberg Memory Task and the Abstract Visual Pattern Learning Task. Profile of Mood State and psychomotor performance were also assessed to control whether MDMA and memantine interactions would selectively pertain to memory or transfer to other domains as well. MDMA significantly impaired performance in the visual verbal learning task and abstract visual pattern learning task. Pre-treatment with memantine did not prevent MDMA-induced memory impairment in these two tasks. Both positive (vigour, arousal, elation) and negative mood effects (anxiety) were increased by MDMA. The responses were not altered by pretreatment with memantine which had no effect on memory or mood when given alone. These preliminary results suggest that memantine does not reverse MDMA-induced memory impairment and mood in humans. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  17. Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251.

    Science.gov (United States)

    Nawata, Yoko; Kitaichi, Kiyoyuki; Yamamoto, Tsuneyuki

    2016-03-01

    3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Determination of ∆-9-Tetrahydrocannabinol (THC), 11-hydroxy-THC, 11-nor-9-carboxy-THC and Cannabidiol in Human Plasma using Gas Chromatography–Tandem Mass Spectrometry

    Science.gov (United States)

    Andrenyak, David M.; Slawson, Matthew H.; O'Leary, Daniel S.; Haney, Margaret

    2017-01-01

    Abstract Two marijuana compounds of particular medical interest are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). A gas chromatography–tandem mass spectrometry (GC–MS-MS) method was developed to test for CBD, THC, hydroxy-THC (OH-THC) and carboxy-THC (COOH-THC) in human plasma. Calibrators (THC and OH-THC, 0.1 to 100; CBD, 0.25 to 100; COOH-THC, 0.5–500 ng/mL) and controls (0.3, 5 and 80 ng/mL, except COOH-THC at 1.5, 25 and 400 ng/mL) were prepared in blank matrix. Deuterated (d3) internal standards were added to 1-mL samples. Preparation involved acetonitrile precipitation, liquid–liquid extraction (hexane:ethyl acetate, 9:1), and MSTFA derivatization. An Agilent 7890 A GC was interfaced with an Agilent 7000 MS Triple Quadrupole. Selected reaction monitoring was employed. Blood samples were provided from a marijuana smoking study (two participants) and a CBD ingestion study (eight participants). Three analytes with the same transitions (THC, OH-THC and COOH-THC) were chromatographically separated. Matrix selectivity studies showed endogenous chromatographic peak area ratios (PAR) at the analyte retention times were THC, OH-THC and COOH-THC were seen; low concentrations of CBD were detected at early time points. In moderate users who had not smoked for at least 9 hours before ingesting an 800 mg oral dose of CBD, the method was sensitive enough to follow residual concentrations of THC and OH-THC; sustained COOH-THC concentrations over 50 ng/mL validated its higher analytical range. PMID:28069869

  19. Determination of ∆-9-Tetrahydrocannabinol (THC), 11-hydroxy-THC, 11-nor-9-carboxy-THC and Cannabidiol in Human Plasma using Gas Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Andrenyak, David M; Moody, David E; Slawson, Matthew H; O'Leary, Daniel S; Haney, Margaret

    2017-05-01

    Two marijuana compounds of particular medical interest are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). A gas chromatography-tandem mass spectrometry (GC-MS-MS) method was developed to test for CBD, THC, hydroxy-THC (OH-THC) and carboxy-THC (COOH-THC) in human plasma. Calibrators (THC and OH-THC, 0.1 to 100; CBD, 0.25 to 100; COOH-THC, 0.5-500 ng/mL) and controls (0.3, 5 and 80 ng/mL, except COOH-THC at 1.5, 25 and 400 ng/mL) were prepared in blank matrix. Deuterated (d3) internal standards were added to 1-mL samples. Preparation involved acetonitrile precipitation, liquid-liquid extraction (hexane:ethyl acetate, 9:1), and MSTFA derivatization. An Agilent 7890 A GC was interfaced with an Agilent 7000 MS Triple Quadrupole. Selected reaction monitoring was employed. Blood samples were provided from a marijuana smoking study (two participants) and a CBD ingestion study (eight participants). Three analytes with the same transitions (THC, OH-THC and COOH-THC) were chromatographically separated. Matrix selectivity studies showed endogenous chromatographic peak area ratios (PAR) at the analyte retention times were THC, OH-THC and COOH-THC were seen; low concentrations of CBD were detected at early time points. In moderate users who had not smoked for at least 9 hours before ingesting an 800 mg oral dose of CBD, the method was sensitive enough to follow residual concentrations of THC and OH-THC; sustained COOH-THC concentrations over 50 ng/mL validated its higher analytical range. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Postmortem Fluid and Tissue Concentrations of THC, 11-OH-THC and THC-COOH.

    Science.gov (United States)

    Saenz, Sunday R; Lewis, Russell J; Angier, Mike K; Wagner, Jarrad R

    2017-07-01

    Marijuana is the most commonly abused illicit drug worldwide. Marijuana is used for its euphoric and relaxing properties. However, marijuana use has been shown to result in impaired memory, cognitive skills and psychomotor function. The Federal Aviation Administration's Civil Aerospace Medical Institute conducts toxicological analysis on aviation fatalities. Due to severe trauma associated with aviation accidents, blood is not always available; therefore, the laboratory must rely on specimens other than blood for toxicological analysis in ~30-40% of cases. However, the postmortem distribution of cannabinoids has not been well characterized. The purpose of this research is to evaluate the distribution of Δ9-tetrahydrocannabinol (THC), and its metabolites, 11-hydroxy-tetrahydrocannabinol (11-OH-THC) and THC-COOH, in postmortem fluid and tissue specimens from 11 fatal aviation accident cases (2014-2015) previously found positive for cannabinoids. Specimens evaluated, when available, included: blood, urine, vitreous humor, liver, lung, kidney, spleen, muscle, brain, heart and bile. We developed and validated (following SWGTOX guidelines) a sensitive and robust method using solid-phase extraction and liquid chromatography-tandem mass spectrometry to identify and quantify THC, 11-OH-THC and THC-COOH in postmortem fluids and tissues. The method readily identified and quantified these cannabinoids in postmortem fluids and tissues below 1 ng/mL. Qualitative cannabinoid results within each case were comparable between blood and non-blood specimens. However, there was no consistent distribution of the cannabinoids between blood and any other fluids or tissues. Therefore, while quantitative interpretation of non-blood postmortem fluid and tissues samples is not prudent, a majority of the non-blood specimens tested could be suitable alternative/supplemental choices for qualitative cannabinoid detection. Published by Oxford University Press 2017. This work is written by (a) US

  1. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    Science.gov (United States)

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Oral fluid and plasma 3,4-methylenedioxymethamphetamine (MDMA) and metabolite correlation after controlled oral MDMA administration.

    Science.gov (United States)

    Desrosiers, Nathalie A; Barnes, Allan J; Hartman, Rebecca L; Scheidweiler, Karl B; Kolbrich-Spargo, Erin A; Gorelick, David A; Goodwin, Robert S; Huestis, Marilyn A

    2013-05-01

    Oral fluid (OF) offers a noninvasive sample collection for drug testing. However, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in OF has not been adequately characterized in comparison to plasma. We administered oral low-dose (1.0 mg/kg) and high-dose (1.6 mg/kg) MDMA to 26 participants and collected simultaneous OF and plasma specimens for up to 143 h after dosing. We compared OF/plasma (OF/P) ratios, time of initial detection (t first), maximal concentrations (C max), time of peak concentrations (t max), time of last detection (t last), clearance, and 3,4-methylenedioxyamphetamine (MDA)-to-MDMA ratios over time. For OF MDMA and MDA, C max was higher, t last was later, and clearance was slower compared to plasma. For OF MDA only, t first was later compared to plasma. Median (range) OF/P ratios were 5.6 (0.1-52.3) for MDMA and 3.7 (0.7-24.3) for MDA. OF and plasma concentrations were weakly but significantly correlated (MDMA: R(2) = 0.438, MDA: R(2) = 0.197, p MDMA low = 5.2 (0.1-40.4), high = 6.0 (0.4-52.3, p MDMA ratios in plasma were higher than those in OF (p MDMA ratios significantly increased over time in OF and plasma. The MDMA and MDA concentrations were higher in OF than in plasma. OF and plasma concentrations were correlated, but large inter-subject variability precludes the estimation of plasma concentrations from OF.

  3. Key interindividual determinants in MDMA pharmacodynamics.

    Science.gov (United States)

    Papaseit, E; Torrens, M; Pérez-Mañá, C; Muga, R; Farré, M

    2018-02-01

    MDMA, 3,4-methylenedioxymethamphetamine, is a synthetic phenethylamine derivative with structural and pharmacological similarities to both amphetamines and mescaline. MDMA produces characteristic amphetamine-like actions (euphoria, well-being), increases empathy, and induces pro-social effects that seem to motivate its recreational consumption and provide a basis for its potential therapeutic use. Areas covered: The aim of this review is to present the main interindividual determinants in MDMA pharmacodynamics. The principal sources of pharmacodynamic variability are reviewed, with special emphasis on sex-gender, race-ethnicity, genetic differences, interactions, and MDMA acute toxicity, as well as possible therapeutic use. Expert opinion: Acute MDMA effects are more pronounced in women than they are in men. Very limited data on the relationship between race-ethnicity and MDMA effects are available. MDMA metabolism includes some polymorphic enzymes that can slightly modify plasma concentrations and effects. Although a considerable number of studies exist about the acute effects of MDMA, the small number of subjects in each trial limits evaluation of the different interindividual factors and does not permit a clear conclusion about their influence. These issues should be considered when studying possible MDMA therapeutic use.

  4. Blunting of the HPA-axis underlies the lack of preventive efficacy of early post-stressor single-dose Delta-9-tetrahydrocannabinol (THC).

    Science.gov (United States)

    Mayer, Tzur Alexander; Matar, Michael Alex; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2014-07-01

    The therapeutic value of Delta-9-tetrahydrocannabinol (Δ9-THC) in the aftermath of trauma has recently raised interest. A prospective animal model for posttraumatic stress disorder was employed to assess the behavioral effects of a single dose of Δ9-THC administered intraperitoneally following exposure to psychogenic stress. Animals were exposed to predator scent stress and treated 1h later with Δ9-THC (1, 5 and 10mg/kg) or vehicle. The outcome measures included behavior in an elevated plus-maze and acoustic startle response 1, 6 and 24 h or 7 days after exposure and freezing behavior upon exposure to a trauma cue on day 8. Pre-set cut-off behavioral criteria classified exposed animals as those with "extreme," "minimal" or "intermediate" (partial) response. Circulating corticosterone levels were assessed over 2h after exposure with and without Δ9-THC. The behavioral effects of a CB1 antagonist (AM251) administered systemically 1h post exposure were evaluated. In the short term (1-6 h), 5 mg/kg of Δ9-THC effectively attenuated anxiety-like behaviors. In the longer-term (7 days), it showed no effect in attenuating PTSD-like behavioral stress responses, or freezing response to trauma cue. Δ9-THC significantly decreased corticosterone levels. In contrast, administration of AM251 (a CB1 antagonist/inverse agonist) 1 h post exposure attenuated long-term behavioral stress responses through activation of the HPA-axis. The demonstrated lack of preventive efficacy of early Δ9-THC treatment and reports of its anxiogenic effects in many individuals raises doubts not only regarding its potential clinical value, but also the advisability of clinical trials. The endocannabinoids exert complex effects on behavioral responses mediating glucocorticoid effects on memory of traumatic experiences. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Effects of (± 3,4-Methylenedioxymethamphetamine (MDMA on Sleep and Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Una D. McCann

    2007-01-01

    Full Text Available Abuse of stimulant drugs invariably leads to a disruption in sleep-wake patterns by virtue of the arousing and sleep-preventing effects of these drugs. Certain stimulants, such as 3,4-methylenedioxymethamphetamine (MDMA, may also have the potential to produce persistent alterations in circadian regulation and sleep because they can be neurotoxic toward brain monoaminergic neurons involved in normal sleep regulation. In particular, MDMA has been found to damage brain serotonin (5-HT neurons in a variety of animal species, including nonhuman primates, with growing evidence that humans are also susceptible to MDMA-induced brain 5-HT neurotoxicity. 5-HT is an important modulator of sleep and circadian rhythms and, therefore, individuals who sustain MDMA-induced 5-HT neurotoxicity may be at risk for developing chronic abnormalities in sleep and circadian patterns. In turn, such abnormalities could play a significant role in other alterations reported in abstinent in MDMA users (e.g., memory disturbance. This paper will review preclinical and clinical studies that have explored the effects of prior MDMA exposure on sleep, circadian activity, and the circadian pacemaker, and will highlight current gaps in knowledge and suggest areas for future research.

  6. Is THC-COOH-glucuronide a useful marker for Tetrahydrocannabinol (THC) in DUID cases?

    DEFF Research Database (Denmark)

    Telving, Rasmus; Hasselstrøm, Jørgen Bo; Andreasen, Mette Findal

    Is THC-COOH-glucuronide a useful marker for Tetrahydrocannabinol (THC) in DUID cases? Retrospective data analysis on UPLC-HR-TOFMS data files from 2 years of DUID cases. Telving R.(rt@forens.au.dk)*, Hasselstrøm J.B., Andreasen M.F. Department of Forensic Medicine, Aarhus University (Denmark......). Introduction The physical and chemical nature of THC makes it difficult to include in traditional screening procedures along with other common legal and illegal drugs. Development of multi-component toxicological screening procedures that include THC is therefore a challenge but also highly desirable in high...... throughput laboratories. Aims The aim of the present study was to evaluate the detection of THC indirectly by detecting the presence of THC-COOH-glucuronide in whole blood from individuals suspected of driving under the influence of drugs (DUID). We will compare existing data from THC screening...

  7. Identification and characterization of N-tert-butoxycarbonyl-MDMA: a new MDMA precursor.

    Science.gov (United States)

    Collins, Michael; Donnelly, Christopher; Cameron, Shane; Tahtouh, Mark; Salouros, Helen

    2017-03-01

    In September 2015, 80 litres of a viscous, light-red liquid, described as hair product, was seized by the Australian Border Force (ABF). Initial testing by ABF indicated that the liquid was the 3,4-methylenedioxymethamphetamine (MDMA) precursor chemical safrole and custody of the material was transferred to the Australian Federal Police (AFP) who coordinated all subsequent investigations. Initial gas chromatography-mass spectrometry (GC-MS) analysis by the AFP indicated that the material was not safrole and samples of the liquid were transferred to the National Measurement Institute Australia (NMIA) for identification. Using a combination of nuclear magnetic resonance spectroscopy (NMR), GC-MS, infrared spectroscopy, and synthesis, the unknown substance was identified as N-tert.-butoxycarbonyl-MDMA (t-BOC-MDMA). The substance was also converted in high yield to MDMA (aqueous HCl, 80 °C, 30 min). The possibility that the t-BOC-MDMA may act as a pro-drug following ingestion was explored by exposure to simulated gastric juice (pH 1.5) and monitored by NMR (37 °C) at various intervals. The majority of t-BOC-MDMA was converted to MDMA after 305 min, which suggested that this derivatized form might serve as a pro-drug in vivo. An investigation into the chemistry of potential pro-drugs showed that t-BOC derivatives of methamphetamine, pseudoephedrine and 4-methylmethcahtinone (mephedrone) could also be prepared using di-tert.-butyl dicarbonate. The appearance of t-BOC-derivatives on the drug market requires further monitoring. © 2016 Commonwealth of Australia. Drug Testing and Analysis © 2016 John Wiley & Sons, Ltd. © 2016 Commonwealth of Australia. Drug Testing and Analysis © 2016 John Wiley & Sons, Ltd.

  8. MDMA enhances emotional empathy and prosocial behavior

    Science.gov (United States)

    Hysek, Cédric M.; Schmid, Yasmin; Simmler, Linda D.; Domes, Gregor; Heinrichs, Markus; Eisenegger, Christoph; Preller, Katrin H.; Quednow, Boris B.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) releases serotonin and norepinephrine. MDMA is reported to produce empathogenic and prosocial feelings. It is unknown whether MDMA in fact alters empathic concern and prosocial behavior. We investigated the acute effects of MDMA using the Multifaceted Empathy Test (MET), dynamic Face Emotion Recognition Task (FERT) and Social Value Orientation (SVO) test. We also assessed effects of MDMA on plasma levels of hormones involved in social behavior using a placebo-controlled, double-blind, random-order, cross-over design in 32 healthy volunteers (16 women). MDMA enhanced explicit and implicit emotional empathy in the MET and increased prosocial behavior in the SVO test in men. MDMA did not alter cognitive empathy in the MET but impaired the identification of negative emotions, including fearful, angry and sad faces, in the FERT, particularly in women. MDMA increased plasma levels of cortisol and prolactin, which are markers of serotonergic and noradrenergic activity, and of oxytocin, which has been associated with prosocial behavior. In summary, MDMA sex-specifically altered the recognition of emotions, emotional empathy and prosociality. These effects likely enhance sociability when MDMA is used recreationally and may be useful when MDMA is administered in conjunction with psychotherapy in patients with social dysfunction or post-traumatic stress disorder. PMID:24097374

  9. Elucidating the neurotoxic effects of MDMA and its analogs.

    Science.gov (United States)

    Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Deruiter, Jack; Clark, Randall; Dhanasekaran, Muralikrishnan

    2014-04-17

    There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. MDMA enhances emotional empathy and prosocial behavior.

    Science.gov (United States)

    Hysek, Cédric M; Schmid, Yasmin; Simmler, Linda D; Domes, Gregor; Heinrichs, Markus; Eisenegger, Christoph; Preller, Katrin H; Quednow, Boris B; Liechti, Matthias E

    2014-11-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') releases serotonin and norepinephrine. MDMA is reported to produce empathogenic and prosocial feelings. It is unknown whether MDMA in fact alters empathic concern and prosocial behavior. We investigated the acute effects of MDMA using the Multifaceted Empathy Test (MET), dynamic Face Emotion Recognition Task (FERT) and Social Value Orientation (SVO) test. We also assessed effects of MDMA on plasma levels of hormones involved in social behavior using a placebo-controlled, double-blind, random-order, cross-over design in 32 healthy volunteers (16 women). MDMA enhanced explicit and implicit emotional empathy in the MET and increased prosocial behavior in the SVO test in men. MDMA did not alter cognitive empathy in the MET but impaired the identification of negative emotions, including fearful, angry and sad faces, in the FERT, particularly in women. MDMA increased plasma levels of cortisol and prolactin, which are markers of serotonergic and noradrenergic activity, and of oxytocin, which has been associated with prosocial behavior. In summary, MDMA sex-specifically altered the recognition of emotions, emotional empathy and prosociality. These effects likely enhance sociability when MDMA is used recreationally and may be useful when MDMA is administered in conjunction with psychotherapy in patients with social dysfunction or post-traumatic stress disorder. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Delta-9-tetrahydrocannabinol (THC) history fails to affect THC's ability to induce place preferences in rats.

    Science.gov (United States)

    Hempel, Briana J; Wakeford, Alison G P; Clasen, Matthew M; Friar, Mary A; Riley, Anthony L

    2016-05-01

    In pre-clinical models of marijuana abuse, there is relatively limited evidence of delta-9-tetrahydrocannabinol's (THC) rewarding effects, as indexed by its general inability to induce a place preference. One explanation for this failure is that its rewarding effects are masked by its concurrently occurring aversive properties. Consistent with this explanation, THC pre-exposure, which presumably weakens its aversive effects, induces place preferences. Such demonstrations are limited to mice and given reported species differences in THC reactivity, it is unknown to what extent the same shift in affective properties would be evident in rats. The present experiment examined the effect of THC history (3.2mg/kg) on THC (1 or 3.2mg/kg) induced place preference conditioning in rats. An assessment of taste avoidance was also run to independently characterize THC's aversive effects and any changes that occurred with drug pre-exposure. These assessments were made in a combined taste avoidance/place preference procedure in which a novel saccharin solution and environment were paired with THC (0, 1 or 3.2mg/kg). THC did not induce place conditioning, and a history of THC was ineffective in increasing THC's ability to do so, despite the fact that this same history significantly attenuated the aversive effects of THC. The failure of THC to consistently induce place preferences has been argued to be a function of its concurrently occurring aversive effects masking its rewarding properties. The fact that pre-exposure to THC significantly reduced its aversive effects without impacting THC's ability to induce place preferences suggests that THC has weak rewarding effects and/or its residual aversive affects may have still masked its rewarding properties. An important area for future work will be characterizing under what conditions THC is rewarding and whether its overall reinforcing effects are impacted by the relationship between its affective properties. Copyright © 2016

  12. Drift-Scale THC Seepage Model

    International Nuclear Information System (INIS)

    C.R. Bryan

    2005-01-01

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC submodel uses a drift

  13. The effects of MDMA on socio-emotional processing: Does MDMA differ from other stimulants?

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; Baggott, Matthew J; de Wit, Harriet

    2016-12-01

    ±3,4-Methylenedioxymethamphetamine (MDMA) is a popular recreational drug that enhances sociability and feelings of closeness with others. These "prosocial" effects appear to motivate the recreational use of MDMA and may also form the basis of its potential as an adjunct to psychotherapy. However, the extent to which MDMA differs from prototypic stimulant drugs, such as dextroamphetamine, methamphetamine, and methylphenidate, in either its behavioral effects or mechanisms of action, is not fully known. The purpose of this review is to evaluate human laboratory findings of the social effects of MDMA compared to other stimulants, ranging from simple subjective ratings of sociability to more complex elements of social processing and behavior. We also review the neurochemical mechanisms by which these drugs may impact sociability. Together, the findings reviewed here lay the groundwork for better understanding the socially enhancing effects of MDMA that distinguish it from other stimulant drugs, especially as these effects relate to the reinforcing and potentially therapeutic effects of the drug. © The Author(s) 2016.

  14. [Pharmacokinetics and relative bioavailability of THC and THC-solid dispersion orally to mice at single dose].

    Science.gov (United States)

    Liao, Li; Hua, Hua; Zhao, Jun-Ning; Luo, Heng; Yang, An-Dong

    2014-03-01

    To establish a fast sensitive, reproducible LC-MS/MS method to study pharmacokinetic properties of THC, and compare relative bioavailability of THC and its solid dispersion in mice. 200 mice were divided randomly into two groups, and administered orally with THC and THC-solid dispersion after fasting (calculate on THC:400 mg x kg(-1)), used HPLC-MS/MS method to determine the THC concentration of each period at the following times: baseline ( predose ), 15, 30, 45 min, 1, 1.5, 2, 3, 4, 6, 24 h after dosing. Calculating the pharmacokinetic parameters according to the C-t curv, and then use the Phoenix WinNonlin software for data analysis. The calibration curves were linear over the range 9.06-972 microg x L(-1) for THC (R2 = 0.999). The limit of detection (LOD) was 0.7 microg x L(-1), respectively. The average extraction recoveries for THC was above 75%, The methodology recoveries were between 79% and 108%. The intra-day and inter-day RSD were less than 13%, the stability test showed that the plasma samples was stable under different conditions (RSD THC and THC-solid dispersion orally to mice shows as fllows: T(max), were 60 and 15 min, AUC(0-t) were 44 500.43 and 57 497.81 mg x L(-1) x min, AUC(0-infinity) were 51 226.00 and 68 031.48 mg x L(-1) x min, MRT(0-infinity) were 596.915 6, 661.747 7 min, CL(z)/F were 0.007 809 and 0.005 88 L x min(-1) x kg(-1). Compared with THC, the MRT and t1/2 of the THC-solid dispersion were all slightly extended, the t(max) was significantly reduced, AUC(0-24 h), AUC(0-infinity) and C(max) were all significantly higher, the relative bioavailability of THC-solid dispersion is 1.34 times of THC. The results of the experiment shows that the precision, accuracy, recovery and applicability were found to be adequate for the pharmacokinetic studies. After oral administration to mice, the relative bioavailability of THC-solid dispersion show significant improvement compared to THC.

  15. Development and validation of an automated liquid-liquid extraction GC/MS method for the determination of THC, 11-OH-THC, and free THC-carboxylic acid (THC-COOH) from blood serum.

    Science.gov (United States)

    Purschke, Kirsten; Heinl, Sonja; Lerch, Oliver; Erdmann, Freidoon; Veit, Florian

    2016-06-01

    The analysis of Δ(9)-tetrahydrocannabinol (THC) and its metabolites 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) from blood serum is a routine task in forensic toxicology laboratories. For examination of consumption habits, the concentration of the phase I metabolite THC-COOH is used. Recommendations for interpretation of analysis values in medical-psychological assessments (regranting of driver's licenses, Germany) include threshold values for the free, unconjugated THC-COOH. Using a fully automated two-step liquid-liquid extraction, THC, 11-OH-THC, and free, unconjugated THC-COOH were extracted from blood serum, silylated with N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and analyzed by GC/MS. The automation was carried out by an x-y-z sample robot equipped with modules for shaking, centrifugation, and solvent evaporation. This method was based on a previously developed manual sample preparation method. Validation guidelines of the Society of Toxicological and Forensic Chemistry (GTFCh) were fulfilled for both methods, at which the focus of this article is the automated one. Limits of detection and quantification for THC were 0.3 and 0.6 μg/L, for 11-OH-THC were 0.1 and 0.8 μg/L, and for THC-COOH were 0.3 and 1.1 μg/L, when extracting only 0.5 mL of blood serum. Therefore, the required limit of quantification for THC of 1 μg/L in driving under the influence of cannabis cases in Germany (and other countries) can be reached and the method can be employed in that context. Real and external control samples were analyzed, and a round robin test was passed successfully. To date, the method is employed in the Institute of Legal Medicine in Giessen, Germany, in daily routine. Automation helps in avoiding errors during sample preparation and reduces the workload of the laboratory personnel. Due to its flexibility, the analysis system can be employed for other liquid-liquid extractions as

  16. Altered Insula Connectivity under MDMA.

    Science.gov (United States)

    Walpola, Ishan C; Nest, Timothy; Roseman, Leor; Erritzoe, David; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2017-10-01

    Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.

  17. 3,4-methylenedioxymethamphetamine (MDMA: current perspectives

    Directory of Open Access Journals (Sweden)

    Meyer JS

    2013-11-01

    Full Text Available Jerrold S Meyer Department of Psychology, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA Abstract: Ecstasy is a widely used recreational drug that usually consists primarily of 3,4-methylenedioxymethamphetamine (MDMA. Most ecstasy users consume other substances as well, which complicates the interpretation of research in this field. The positively rated effects of MDMA consumption include euphoria, arousal, enhanced mood, increased sociability, and heightened perceptions; some common adverse reactions are nausea, headache, tachycardia, bruxism, and trismus. Lowering of mood is an aftereffect that is sometimes reported from 2 to 5 days after a session of ecstasy use. The acute effects of MDMA in ecstasy users have been attributed primarily to increased release and inhibited reuptake of serotonin (5-HT and norepinephrine, along with possible release of the neuropeptide oxytocin. Repeated or high-dose MDMA/ecstasy use has been associated with tolerance, depressive symptomatology, and persisting cognitive deficits, particularly in memory tests. Animal studies have demonstrated that high doses of MDMA can lead to long-term decreases in forebrain 5-HT concentrations, tryptophan hydroxylase activity, serotonin transporter (SERT expression, and visualization of axons immunoreactive for 5-HT or SERT. These neurotoxic effects may reflect either a drug-induced degeneration of serotonergic fibers or a long-lasting downregulation in 5-HT and SERT biosynthesis. Possible neurotoxicity in heavy ecstasy users has been revealed by neuroimaging studies showing reduced SERT binding and increased 5-HT2A receptor binding in several cortical and/or subcortical areas. MDMA overdose or use with certain other drugs can also cause severe morbidity and even death. Repeated use of MDMA may lead to dose escalation and the development of dependence, although such dependence is usually not as profound as is seen with many other drugs of abuse

  18. 3,4-methylenedioxymethamphetamine (MDMA): current perspectives.

    Science.gov (United States)

    Meyer, Jerrold S

    2013-01-01

    Ecstasy is a widely used recreational drug that usually consists primarily of 3,4-methylenedioxymethamphetamine (MDMA). Most ecstasy users consume other substances as well, which complicates the interpretation of research in this field. The positively rated effects of MDMA consumption include euphoria, arousal, enhanced mood, increased sociability, and heightened perceptions; some common adverse reactions are nausea, headache, tachycardia, bruxism, and trismus. Lowering of mood is an aftereffect that is sometimes reported from 2 to 5 days after a session of ecstasy use. The acute effects of MDMA in ecstasy users have been attributed primarily to increased release and inhibited reuptake of serotonin (5-HT) and norepinephrine, along with possible release of the neuropeptide oxytocin. Repeated or high-dose MDMA/ecstasy use has been associated with tolerance, depressive symptomatology, and persisting cognitive deficits, particularly in memory tests. Animal studies have demonstrated that high doses of MDMA can lead to long-term decreases in forebrain 5-HT concentrations, tryptophan hydroxylase activity, serotonin transporter (SERT) expression, and visualization of axons immunoreactive for 5-HT or SERT. These neurotoxic effects may reflect either a drug-induced degeneration of serotonergic fibers or a long-lasting downregulation in 5-HT and SERT biosynthesis. Possible neurotoxicity in heavy ecstasy users has been revealed by neuroimaging studies showing reduced SERT binding and increased 5-HT2A receptor binding in several cortical and/or subcortical areas. MDMA overdose or use with certain other drugs can also cause severe morbidity and even death. Repeated use of MDMA may lead to dose escalation and the development of dependence, although such dependence is usually not as profound as is seen with many other drugs of abuse. MDMA/ecstasy-dependent patients are treated with standard addiction programs, since there are no specific programs for this substance and no proven

  19. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  20. Ecstasy (MDMA) dependence.

    Science.gov (United States)

    Jansen, K L

    1999-01-07

    Methylenedioxymethamphetamine (MDMA) is generally described as non-addictive. However, this report describes three cases in which criteria for dependence were met. A wider understanding that MDMA can be addictive in rare cases is important as very heavy use may cause lasting neuronal changes. This risk could be reduced with effective identification and treatment of dependent persons. In one case dependence was linked with self-medication of post-traumatic stress disorder (PTSD).

  1. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density.

    Science.gov (United States)

    Abad, Sònia; Fole, Alberto; del Olmo, Nuria; Pubill, David; Pallàs, Mercè; Junyent, Fèlix; Camarasa, Jorge; Camins, Antonio; Escubedo, Elena

    2014-03-01

    Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.

  2. Cannabis-based medicines--GW pharmaceuticals: high CBD, high THC, medicinal cannabis--GW pharmaceuticals, THC:CBD.

    Science.gov (United States)

    2003-01-01

    GW Pharmaceuticals is undertaking a major research programme in the UK to develop and market distinct cannabis-based prescription medicines [THC:CBD, High THC, High CBD] in a range of medical conditions. The cannabis for this programme is grown in a secret location in the UK. It is expected that the product will be marketed in the US in late 2003. GW's cannabis-based products include selected phytocannabinoids from cannabis plants, including D9 tetrahydrocannabinol (THC) and cannabidiol (CBD). The company is investigating their use in three delivery systems, including sublingual spray, sublingual tablet and inhaled (but not smoked) dosage forms. The technology is protected by patent applications. Four different formulations are currently being investigated, including High THC, THC:CBD (narrow ratio), THC:CBD (broad ratio) and High CBD. GW is also developing a specialist security technology that will be incorporated in all its drug delivery systems. This technology allows for the recording and remote monitoring of patient usage to prevent any potential abuse of its cannabis-based medicines. GW plans to enter into agreements with other companies following phase III development, to secure the best commercialisation terms for its cannabis-based medicines. In June 2003, GW announced that exclusive commercialisation rights for the drug in the UK had been licensed to Bayer AG. The drug will be marketed under the Sativex brand name. This agreement also provides Bayer with an option to expand their license to include the European Union and certain world markets. GW was granted a clinical trial exemption certificate by the Medicines Control Agency to conduct clinical studies with cannabis-based medicines in the UK. The exemption includes investigations in the relief of pain of neurological origin and defects of neurological function in the following indications: multiple sclerosis (MS), spinal cord injury, peripheral nerve injury, central nervous system damage, neuroinvasive

  3. MDMA: interactions with other psychoactive drugs.

    Science.gov (United States)

    Mohamed, Wael M Y; Ben Hamida, Sami; Cassel, Jean-Christophe; de Vasconcelos, Anne Pereira; Jones, Byron C

    2011-10-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is one of the most widely abused illegal drugs. Some users self-report euphoria and an increased perception and feeling of closeness to others. When taken in warm environments, MDMA users may develop acute complications with potential fatal consequences. In rodents, MDMA increases locomotor activity and, depending on ambient temperature, may produce a dose-dependent, potentially lethal hyperthermia. Like most other recreational drugs, MDMA is frequently taken in combination with other substances including tobacco, EtOH, marijuana, amphetamines, cocaine and, caffeine. Although polydrug use is very common, the understanding of the effects of this multiple substance use, as well as the analysis of consequences of different drug-drug associations, received rather little attention. The purpose of this review is to summarize our current knowledge about the changes on MDMA-related behavior, pharmacology, and neurotoxicity associated with co-consumption of other drugs of abuse and psychoactive agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Prosocial effects of MDMA: A measure of generosity.

    Science.gov (United States)

    Kirkpatrick, Matthew; Delton, Andrew W; Robertson, Theresa E; de Wit, Harriet

    2015-06-01

    3,4-methylenedioxymethamphetamine (MDMA) produces "prosocial" effects that contribute to its recreational use. Few studies have examined the cognitive and behavioral mechanisms by which MDMA produces these effects. Here we examined the effect of MDMA on a specific prosocial effect, i.e. generosity, using a task in which participants make decisions about whether they or another person will receive money (Welfare Trade-Off Task; WTT). The project included one study without drug administration and one with MDMA. In Study 1, we administered the WTT to healthy adults (N = 361) and examined their performance in relation to measures of personality and socioeconomic status. In Study 2, healthy volunteers with MDMA experience (N = 32) completed the WTT after MDMA administration (0, 0.5, or 1.0 mg/kg). As expected, in both studies participants were more generous with a close friend than an acquaintance or stranger. In Study 1, WTT generosity was related to household income and trait Agreeableness. In Study 2, MDMA (1.0 mg/kg) increased generosity toward a friend but not a stranger, whereas MDMA (0.5 mg/kg) slightly increased generosity toward a stranger, especially among female participants. These data indicate that the WTT is a valuable, novel tool to assess a component of prosocial behavior, i.e. generosity to others. The findings support growing evidence that MDMA produces prosocial effects, but, as with oxytocin, these appear to depend on the social proximity of the relationships. The brain mechanisms underlying the construct of generosity, or the effects of MDMA on this measure, remain to be determined. © The Author(s) 2015.

  5. Effects of stress and MDMA on hippocampal gene expression.

    Science.gov (United States)

    Weber, Georg F; Johnson, Bethann N; Yamamoto, Bryan K; Gudelsky, Gary A

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.

  6. Safety pharmacology of acute MDMA administration in healthy subjects.

    Science.gov (United States)

    Vizeli, Patrick; Liechti, Matthias E

    2017-05-01

    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is being investigated in MDMA-assisted psychotherapy. The present study characterized the safety pharmacology of single-dose administrations of MDMA (75 or 125 mg) using data from nine double-blind, placebo-controlled, crossover studies performed in the same laboratory in a total of 166 healthy subjects. The duration of the subjective effects was 4.2 ± 1.3 h (range: 1.4-8.2 h). The 125 mg dose of MDMA produced greater 'good drug effect' ratings than 75 mg. MDMA produced moderate and transient 'bad drug effect' ratings, which were greater in women than in men. MDMA increased systolic blood pressure to >160 mmHg, heart rate >100 beats/min, and body temperature >38°C in 33%, 29% and 19% of the subjects, respectively. These proportions of subjects with hypertension (>160 mmHg), tachycardia, and body temperature >38°C were all significantly greater after 125 mg MDMA compared with the 75 mg dose. Acute and subacute adverse effects of MDMA as assessed by the List of Complaints were dose-dependent and more frequent in females. MDMA did not affect liver or kidney function at EOS 29 ± 22 days after use. No serious adverse events occurred. In conclusion, MDMA produced predominantly acute positive subjective drug effects. Bad subjective drug effects and other adverse effects were significantly more common in women. MDMA administration was overall safe in physically and psychiatrically healthy subjects and in a medical setting. However, the risks of MDMA are likely higher in patients with cardiovascular disease and remain to be investigated in patients with psychiatric disorders.

  7. The potential dangers of using MDMA for psychotherapy.

    Science.gov (United States)

    Parrott, Andrew C

    2014-01-01

    MDMA has properties that may make it attractive for psychotherapy, although many of its effects are potentially problematic. These contrasting effects will be critically reviewed in order to assess whether MDMA could be safe for clinical usage. Early studies from the 1980s noted that MDMA was an entactogen, engendering feelings of love and warmth. However, negative experiences can also occur with MDMA since it is not selective in the thoughts or emotions it releases. This unpredictability in the psychological material released is similar to another serotonergic drug, LSD. Acute MDMA has powerful neurohormonal effects, increasing cortisol, oxytocin, testosterone, and other hormone levels. The release of oxytocin may facilitate psychotherapy, whereas cortisol may increase stress and be counterproductive. MDMA administration is followed by a period of neurochemical recovery, when low serotonin levels are often accompanied by lethargy and depression. Regular usage can also lead to serotonergic neurotoxicity, memory problems, and other psychobiological problems. Proponents of MDMA-assisted therapy state that it should only be used for reactive disorders (such as PTSD) since it can exacerbate distress in those with a prior psychiatric history. Overall, many issues need to be considered when debating the relative benefits and dangers of using MDMA for psychotherapy.

  8. Differential response of nNOS knockout mice to MDMA ("ecstasy")- and methamphetamine-induced psychomotor sensitization and neurotoxicity.

    Science.gov (United States)

    Itzhak, Yossef; Anderson, Karen L; Ali, Syed F

    2004-10-01

    It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.

  9. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors.

    Science.gov (United States)

    Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel

    2014-08-01

    The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.

  10. MDMA reinstates cocaine-seeking behaviour in mice.

    Science.gov (United States)

    Trigo, José Manuel; Orejarena, Maria Juliana; Maldonado, Rafael; Robledo, Patricia

    2009-06-01

    MDMA effects are mediated by monoaminergic systems, which seem to play a central role in cocaine craving and relapse. CD1 mice trained to self-administer cocaine (1 mg/kg/infusion) underwent an extinction procedure in which the cues contingent with drug self-administration remained present. Mice achieving extinction were injected with MDMA (10 mg/kg), d-amphetamine (1 and 2 mg/kg) or saline and tested for reinstatement. Acute MDMA, but not d-amphetamine or saline reinstated cocaine-seeking behaviour in mice in which cocaine self-administration and contingent cues were previously extinguished. Acute MDMA can reinstate cocaine-seeking behaviour in mice.

  11. Effects of Stress and MDMA on Hippocampal Gene Expression

    Directory of Open Access Journals (Sweden)

    Georg F. Weber

    2014-01-01

    Full Text Available MDMA (3,4-methylenedioxymethamphetamine is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD. On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.

  12. Methylenedioxymethamphetamine (MDMA, 'Ecstasy': Neurodegeneration versus Neuromodulation

    Directory of Open Access Journals (Sweden)

    Elena Puerta

    2011-07-01

    Full Text Available The amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’ is widely abused as a recreational drug due to its unique psychological effects. Of interest, MDMA causes long-lasting deficits in neurochemical and histological markers of the serotonergic neurons in the brain of different animal species. Such deficits include the decline in the activity of tryptophan hydroxylase in parallel with the loss of 5-HT and its main metabolite 5-hydoxyindoleacetic acid (5-HIAA along with a lower binding of specific ligands to the 5-HT transporters (SERT. Of concern, reduced 5-HIAA levels in the CSF and SERT density have also been reported in human ecstasy users, what has been interpreted to reflect the loss of serotonergic fibers and terminals. The neurotoxic potential of MDMA has been questioned in recent years based on studies that failed to show the loss of the SERT protein by western blot or the lack of reactive astrogliosis after MDMA exposure. In addition, MDMA produces a long-lasting down-regulation of SERT gene expression; which, on the whole, has been used to invoke neuromodulatory mechanisms as an explanation to MDMA-induced 5-HT deficits. While decreased protein levels do not necessarily reflect neurodegeneration, the opposite is also true, that is, neuroregulatory mechanisms do not preclude the existence of 5-HT terminal degeneration.

  13. Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 4 h apart Human pharmacology of MDMA after repeated doses taken 4 h apart.

    Science.gov (United States)

    Farré, Magí; Tomillero, Angels; Pérez-Mañá, Clara; Yubero, Samanta; Papaseit, Esther; Roset, Pere-Nolasc; Pujadas, Mitona; Torrens, Marta; Camí, Jordi; de la Torre, Rafael

    2015-10-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a popular psychostimulant, frequently associated with multiple administrations over a short period of time. Repeated administration of MDMA in experimental settings induces tolerance and metabolic inhibition. The aim is to determine the acute pharmacological effects and pharmacokinetics resulting from two consecutive 100mg doses of MDMA separated by 4h. Ten male volunteers participated in a randomized, double-blind, crossover, placebo-controlled trial. The four conditions were placebo plus placebo, placebo plus MDMA, MDMA plus placebo, and MDMA plus MDMA. Outcome variables included pharmacological effects and pharmacokinetic parameters. After a second dose of MDMA, most effects were similar to those after a single dose, despite a doubling of MDMA concentrations (except for systolic blood pressure and reaction time). After repeated MDMA administration, a 2-fold increase was observed in MDMA plasma concentrations. For a simple dose accumulation MDMA and MDA concentrations were higher (+23.1% Cmax and +17.1% AUC for MDMA and +14.2% Cmax and +10.3% AUC for MDA) and HMMA and HMA concentrations lower (-43.3% Cmax and -39.9% AUC for HMMA and -33.2% Cmax and -35.1% AUC for HMA) than expected, probably related to MDMA metabolic autoinhibition. Although MDMA concentrations doubled after the second dose, most pharmacological effects were similar or slightly higher in comparison to the single administration, except for systolic blood pressure and reaction time which were greater than predicted. The pharmacokinetic-effects relationship suggests that when MDMA is administered at a 4h interval there exists a phenomenon of acute tolerance to its effects. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  14. Maternal MDMA administration in mice leads to neonatal growth delay.

    Science.gov (United States)

    Kaizaki, Asuka; Tanaka, Sachiko; Yoshida, Takemi; Numazawa, Satoshi

    2014-02-01

    The psychoactive recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is widely abused. The fact that MDMA induces neurotoxic damage in serotonergic nerve endings is well known. However, the effects of MDMA on pregnant and neonatal animals remain unknown. Therefore, we studied the effects of gestational exposure to MDMA on birth, growth, and behavior of pups. Female BALB/c mice were orally administered either water (10 ml/kg) or MDMA (20 mg/10 ml/kg) from gestational day 1 to postnatal day (P) 21. MDMA did not affect the birth rate, but the survival rate of the pups significantly decreased. A significant reduction in body weight gain was observed in pups from MDMA-administered dams during P3-P21. Maternal MDMA treatment caused an attenuated cliff avoidance reaction and decreased motor function in the pups, as determined by the wire hanging test. These results suggest that MDMA treatment during pregnancy and lactation causes growth retardation and dysfunction of motor neurons in mouse pups.

  15. POST-PROCESSING ANALYSIS FOR THC SEEPAGE

    International Nuclear Information System (INIS)

    SUN, Y.

    2004-01-01

    This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and management of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The THC-PPA provides a data selection concept and direct input to the physical and chemical environment (P and CE) report that supports the TSPA model. The purpose of the THC-PPA is further discussed in Section 1.2. The data selection methodology of the post-processing analysis (Section 6.2.1) was initially applied to results of the THC seepage model as presented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). Other outputs from the THC seepage model (DTN: LB0302DSCPTHCS.002 [DIRS 161976]) used in the P and CE (BSC 2004 [DIRS 169860

  16. Differential effects of 3,4-methylenedioxypyrovalerone (MDPV) and 4-methylmethcathinone (mephedrone) in rats trained to discriminate MDMA or a d-amphetamine + MDMA mixture.

    Science.gov (United States)

    Harvey, Eric L; Baker, Lisa E

    2016-02-01

    Recent reports on the abuse of novel synthetic cathinone derivatives call attention to serious public health risks of these substances. In response to this concern, a growing body of preclinical research has characterized the psychopharmacology of these substances, particularly mephedrone (MEPH) or methylenedioxypyrovalerone (MDPV), noting their similarities to 3,4-methylenedioxymethamphetamine (MDMA) and cocaine. Few studies have utilized drug discrimination methodology to characterize the psychopharmacological properties of these substances. The present study employed a rodent drug discrimination assay to further characterize the stimulus effects of MEPH and MDPV in comparison to MDMA and to a drug mixture comprised of d-amphetamine and MDMA. Eight male Sprague-Dawley rats were trained to discriminate 1.5 mg/kg MDMA, and eight rats were trained to discriminate a mixture of 1.5 mg/kg MDMA and 0.5 mg/kg d-amphetamine (MDMA + AMPH) from vehicle. Substitution tests were conducted with MDMA, d-amphetamine, MDPV, MEPH, and cocaine. Dose-response curves generated with MDMA and MEPH were comparable between training groups. In contrast, AMPH, MDPV, and cocaine produced only partial substitution in animals trained to discriminate MDMA but produced full substitution in animals trained to discriminate the MDMA + AMPH mixture. These findings indicate that MDPV's effects may be more similar to those of traditional psychostimulants, whereas MEPH exerts stimulus effects more similar to those of MDMA. Additional experiments with selective DA and 5-hydroxytryptamine (5-HT) receptor antagonists are required to further elucidate specific receptor mechanisms mediating the discriminative stimulus effects of MDPV and mephedrone.

  17. Crime and Violence among MDMA Users in the United States

    Directory of Open Access Journals (Sweden)

    Michael G. Vaughn

    2015-03-01

    Full Text Available The question of whether MDMA use is associated with increased crime and violence has not been adequately explored especially in nationally representative samples. This study used data from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC to assess the association between MDMA use and violent and non-violent antisocial behavior while controlling for sociodemographic variables, lifetime psychiatric, alcohol and drug use disorders, and family history of antisocial behavior. MDMA users, both male and female, were involved in a number of crimes in acts of violence including drunk driving, shoplifting, theft, intimate partner violence, and fighting. Notably, female MDMA users were more antisocial than male non-MDMA users. Although adjusting the results for numerous confounds attenuated the relationships, MDMA users were still at significantly greater odds of engaging in violent and nonviolent crime than non-MDMA users. Although MDMA has been considered a facilitator of empathy and closeness, the current study suggests a dark side as MDMA is associated with a broad array of crimes and transgressions. Additional tests of the MDMA-crime link are needed to properly inform policy.

  18. A novel fast method for aqueous derivatization of THC, OH-THC and THC-COOH in human whole blood and urine samples for routine forensic analyses.

    Science.gov (United States)

    Stefanelli, Fabio; Pesci, Federica Giorgia; Giusiani, Mario; Chericoni, Silvio

    2018-04-01

    A novel aqueous in situ derivatization procedure with propyl chloroformate (PCF) for the simultaneous, quantitative analysis of Δ 9 -tetrahydrocannabinol (THC), 11-hydroxy-Δ 9 -tetrahydrocannabinol (OH-THC) and 11-nor-Δ 9 -tetrahydrocannabinol-carboxylic acid (THC-COOH) in human blood and urine is proposed. Unlike current methods based on the silylating agent [N,O-bis(trimethylsilyl)trifluoroacetamide] added in an anhydrous environment, this new proposed method allows the addition of the derivatizing agent (propyl chloroformate, PCF) directly to the deproteinized blood and recovery of the derivatives by liquid-liquid extraction. This novel method can be also used for hydrolyzed urine samples. It is faster than the traditional method involving a derivatization with trimethyloxonium tetrafluoroborate. The analytes are separated, detected and quantified by gas chromatography-mass spectrometry in selected ion monitoring mode (SIM). The method was validated in terms of selectivity, capacity of identification, limits of detection (LOD) and quantification (LOQ), carryover, linearity, intra-assay precision, inter-assay precision and accuracy. The LOD and LOQ in hydrolyzed urine were 0.5 and 1.3 ng/mL for THC and 1.2 and 2.6 ng/mL for THC-COOH, respectively. In blood, the LOD and LOQ were 0.2 and 0.5 ng/mL for THC, 0.2 and 0.6 ng/mL for OH-THC, and 0.9 and 2.4 ng/mL for THC-COOH, respectively. This method was applied to 35 urine samples and 50 blood samples resulting to be equivalent to the previously used ones with the advantage of a simpler method and faster sample processing time. We believe that this method will be a more convenient option for the routine analysis of cannabinoids in toxicological and forensic laboratories. Copyright © 2017 John Wiley & Sons, Ltd.

  19. NEURAL AND CARDIAC TOXICITIES ASSOCIATED WITH 3,4-METHYLENEDIOXYMETHAMPHETAMINE (MDMA)

    OpenAIRE

    Baumann, Michael H.; Rothman, Richard B.

    2009-01-01

    (±)-3,4-Methylenedioxymethamphetamine (MDMA) is a commonly abused illicit drug which affects multiple organ systems. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been viewed as neurotoxicity. Recent data implicate MDMA in the development of valvular heart disease (VHD). The present paper reviews several issues related to MDMA-associated neural and cardiac toxicities. The hypothesis of MDMA neurotoxicit...

  20. Sex differences in MDMA-induced toxicity in Sprague-Dawley rats

    Science.gov (United States)

    Asl, Sara Soleimani; Mehdizadeh, Mehdi; Shahraki, Soudabeh Hamedi; Artimani, Tayebeh; Joghataei, Mohammad Taghi

    2015-01-01

    Summary Recent evidence demonstrates that female subjects show exaggerated responses to 3,4-methylenedioxymethamphetamine (MDMA) compared with males. The aim of our study was to evaluate sex differences and the role of endogenous gonadal hormones on the effects of MDMA. Fifty-six intact and gonadectomized male and female Sprague-Dawley rats were randomly assigned to either MDMA (5 mg/kg) or saline treatment. Learning and memory were assessed using the Morris water maze (MWM). The expression of Bax and Bcl-2 in the hippocampus was detected by Western blotting. Behavioral analysis showed that MDMA led to memory impairment in both male and female rats. The female rats showed more sensitivity to impairment than the males, as assessed using all the memory parameters in the MWM. Ovariectomy attenuated the MDMA-induced memory impairment. By contrast, orchiectomized rats showed more impairment than MDMA-treated intact male rats. Bcl-2 and Bax were down-regulated and up-regulated in MDMA-treated male and female rats, respectively. MDMA treatment in the orchiectomized rats led to up-regulation of Bax and down-regulation of Bcl-2. Ovariectomy attenuated the MDMA-induced up-regulation of Bax and caused more expression of Bcl-2 compared with what was observed in the MDMA-treated intact female rats. In summary, female rats showed exaggerated responses to the effects of MDMA and this may be explained by endogenous gonadal hormones. PMID:26415786

  1. Effects of MDMA on body temperature in humans

    Science.gov (United States)

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  2. Psychiatric disorders and their correlates among young adult MDMA users in Ohio.

    Science.gov (United States)

    Falck, Russel S; Carlson, Robert G; Wang, Jichuan; Siegal, Harvey A

    2006-03-01

    This study describes the lifetime prevalence, correlates, and age of onset of selected psychiatric disorders among a community sample of MDMA users (n = 402), aged 18 to 30, in Ohio. Participants responded to interviewer-administered questionnaires, including sections of the computerized Diagnostic Interview Schedule for DSM-IV. Fifty-five percent of the sample had at least one lifetime disorder, with major depression (35.3%) and antisocial personality disorder (ASPD) (25.4%) the most common. Proportionately more women were diagnosed with depression, generalized anxiety disorder, and posttraumatic stress disorder (PTSD), while proportionately more men were diagnosed with ASPD. Proportionately more non-White participants had attention deficit/hyperactivity disorder (AD/HD). Higher levels of education were associated with proportionately less PTSD, ASPD, and AD/HD. Higher frequencies of MDMA use were associated with proportionately more ASPD and AD/HD. Comparing the age of first MDMA use with the age of onset for selected psychiatric disorders revealed that for most participants disorders preceded use. Multivariate analysis revealed participants with more than a high school education were less likely to have experienced a lifetime disorder, while those who had used MDMA more than 50 times were more likely. Variations in the prevalence of psychiatric disorders have practical implications for drug abuse prevention and treatment programs.

  3. MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its stereoisomers: Similarities and differences in behavioral effects in an automated activity apparatus in mice.

    Science.gov (United States)

    Young, Richard; Glennon, Richard A

    2008-01-01

    Racemic MDMA (0.3-30 mg/kg), S(+)-MDMA (0.3-30 mg/kg), R(-)-MDMA (0.3-50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (+/-)-MDMA usually being more potent than R(-)-MDMA in measures such as movement (time, distance, velocity), margin distance, rotation (clockwise and counterclockwise), and retraced activities. Interestingly, racemic MDMA appeared to exert a greater than expected potency and/or an enhanced effect on measures such as movement episodes, center actions (entries and distance), clockwise rotations, and jumps; actions that might be explained by additive or synergistic (i.e. potentiation) effects of the stereoisomers. In other measures, the enantiomers displayed different effects: S(+)-MDMA produced a preference to induce counterclockwise (versus clockwise) rotations, and each isomer exerted a different profile of effect on vertical activities and jumps. Furthermore, each isomer of MDMA appeared to attenuate the effect of its opposite enantiomer on some behaviors; antagonism effects that were surmised from a lack of expected activities by racemic MDMA. S(+)-MDMA (but not R(-)-MDMA), for example, produced an increase in vertical entries (rearing) and a preference to increase counterclockwise (versus clockwise) rotations; (+/-)-MDMA also should have induced such effects but did not. Apparently, R(-)-MDMA, when combined with S(+)-MDMA to form (+/-)-MDMA, prevented the appearance of those increases (from control) in activities. Similarly, R(-)-MDMA (but not S(+)-MDMA) produced increases in episodes (i.e. jumps) and vertical distance that racemic MDMA also should have, but were not, exhibited. Evidently, the presence of S(+)-MDMA in the

  4. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    Science.gov (United States)

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  5. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus.

    Science.gov (United States)

    Pérez-Hernández, Mercedes; Fernández-Valle, María Encarnación; Rubio-Araiz, Ana; Vidal, Rebeca; Gutiérrez-López, María Dolores; O'Shea, Esther; Colado, María Isabel

    2017-05-15

    The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X 7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The psychoactive compound of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC) inhibits the human trophoblast cell turnover.

    Science.gov (United States)

    Costa, M A; Fonseca, B M; Marques, F; Teixeira, N A; Correia-da-Silva, G

    2015-08-06

    The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. THC and CBD in blood samples and seizures in Norway: Does CBD affect THC-induced impairment in apprehended subjects?

    Science.gov (United States)

    Havig, Stine Marie; Høiseth, Gudrun; Strand, Maren Cecilie; Karinen, Ritva Anneli; Brochmann, Gerd-Wenche; Strand, Dag Helge; Bachs, Liliana; Vindenes, Vigdis

    2017-07-01

    Several publications have suggested increasing cannabis potency over the last decade, which, together with lower amounts of cannabidiol (CBD), could contribute to an increase in adverse effects after cannabis smoking. Naturalistic studies on tetrahydrocannabinol (THC) and CBD in blood samples are, however, missing. This study aimed to investigate the relationship between THC- and CBD concentrations in blood samples among cannabis users, and to compare cannabinoid concentrations with the outcome of a clinical test of impairment (CTI) and between traffic accidents and non-accident driving under the influence of drugs (DUID)-cases. Assessment of THC- and CBD contents in cannabis seizures was also included. THC- and CBD concentrations in blood samples from subjects apprehended in Norway from April 2013-April 2015 were included (n=6134). A CTI result was compared with analytical findings in cases where only THC and/or CBD were detected (n=705). THC- and CBD content was measured in 41 cannabis seizures. Among THC-positive blood samples, 76% also tested positive for CBD. There was a strong correlation between THC- and CBD concentrations in blood samples (Pearson's r=0.714, pblood samples testing positive for THC, among subjects apprehended in Norway, also tested positive for CBD, suggesting frequent consumption of high CBD cannabis products. The simultaneous presence of CBD in blood does, however, not appear to affect THC-induced impairment on a CTI. Seizure sample analysis did not reveal high potency cannabis products, and while CBD content appeared high in hashish, it was almost absent in marijuana. Copyright © 2017. Published by Elsevier B.V.

  8. MDMA and the "ecstasy paradigm".

    Science.gov (United States)

    Cole, Jon C

    2014-01-01

    For nearly 30 years, there has been a steady flow of research papers highlighting the dangers of MDMA and the implications for ecstasy users. After such a long time, it would be reasonable to expect that these dangers would be obvious due to the large number of ecstasy users. The available evidence does not indicate that there are millions of ecstasy users experiencing any problems linked to their ecstasy use. The "precautionary principle" suggests that, in the absence of knowing for certain, "experts" should argue that MDMA be avoided. However, this may have been taken too far, as the dire warnings do not seem to be reducing with the lack of epidemiological evidence of clinically relevant problems. The "ecstasy paradigm" is one way of articulating this situation, in that the needs of research funders and publication bias lead to a specific set of subcultural norms around what information is acceptable in the public domain. By digging a little deeper, it is easy to find problems with the evidence base that informs the public debate around MDMA. The key question is whether it is acceptable to maintain this status quo given the therapeutic potential of MDMA.

  9. Serotonin antagonists fail to alter MDMA self-administration in rats.

    Science.gov (United States)

    Schenk, Susan; Foote, Jason; Aronsen, Dane; Bukholt, Natasha; Highgate, Quenten; Van de Wetering, Ross; Webster, Jeremy

    2016-09-01

    Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA. Rats received extensive experience with self-administered MDMA prior to tests with 5-HT ligands. Doses of the 5-HT1A antagonist, WAY 100635 (0.1-1.0mg/kg), 5-HT1B antagonist, GR 127935 (1.0-3.0mg/kg), and the 5-HT2A antagonist, ketanserin (1.0-3.0mg/kg) that have previously been shown to decrease self-administration of other psychostimulants and that decreased MDMA-produced hyperactivity in the present study did not alter MDMA self-administration. Experimenter-administered injections of MDMA (10.0mg/kg, ip) reinstated extinguished drug-taking behavior, but this also was not decreased by any of the antagonists. In contrast, both WAY 100635 and ketanserin, but not GR 127935, decreased cocaine-produced drug seeking in rats that had been trained to self-administered cocaine. The 5-HT1A agonist, 8-OH-DPAT (0.1-1.0mg/kg), but not the 5-HT1B/1A agonist, RU 24969 (0.3-3.0mg/kg), decreased drug-seeking produced by the reintroduction of a light stimulus that had been paired with self-administered MDMA infusions. These findings suggest a limited role of activation of 5-HT1A, 5-HT1B or 5-HT2 receptor mechanisms in MDMA self-administration or in MDMA-produced drug-seeking following extinction. The data suggest, however, that 5-HT1A agonists inhibit cue-induced drug-seeking following extinction of MDMA self-administration and might, therefore, be useful adjuncts to therapies to limit relapse to MDMA use. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Potential Psychiatric Uses for MDMA

    OpenAIRE

    Yazar?Klosinski, BB; Mithoefer, MC

    2017-01-01

    Phase II trials of 3,4?methylenedioxymethamphetamine (MDMA)?assisted psychotherapy have demonstrated initial safety and efficacy for treatment of posttraumatic stress disorder (PTSD), with potential for expansion to depression and anxiety disorders. In these trials, single doses of MDMA are administered in a model of medication?assisted psychotherapy, differing from trials involving daily drug administration without psychotherapy. This model presents an opportunity to utilize accelerated regu...

  11. Neuroimaging in human MDMA (Ecstasy) users: A cortical model

    Science.gov (United States)

    Cowan, Ronald L; Roberts, Deanne M; Joers, James M

    2009-01-01

    MDMA (3,4 methylenedioxymethamphetamine) has been used by millions of people worldwide as a recreational drug. MDMA and Ecstasy are often used synonymously but it is important to note that the purity of Ecstasy sold as MDMA is not certain. MDMA use is of public health concern, not so much because MDMA produces a common or severe dependence syndrome, but rather because rodent and non-human primate studies have indicated that MDMA (when administered at certain dosages and intervals) can cause long-lasting reductions in markers of brain serotonin (5-HT) that appear specific to fine diameter axons arising largely from the dorsal raphe nucleus (DR). Given the popularity of MDMA, the potential for the drug to produce long-lasting or permanent 5-HT axon damage or loss, and the widespread role of 5-HT function in the brain, there is a great need for a better understanding of brain function in human users of this drug. To this end, neuropsychological, neuroendocrine, and neuroimaging studies have all suggested that human MDMA users may have long-lasting changes in brain function consistent with 5-HT toxicity. Data from animal models leads to testable hypotheses regarding MDMA effects on the human brain. Because neuropsychological and neuroimaging findings have focused on the neocortex, a cortical model is developed to provide context for designing and interpreting neuroimaging studies in MDMA users. Aspects of the model are supported by the available neuroimaging data but there are controversial findings in some areas and most findings have not been replicated across different laboratories and using different modalities. This paper reviews existing findings in the context of a cortical model and suggests directions for future research. PMID:18991874

  12. Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA: regulation by CB2 receptors and implications for neurotoxicity

    Directory of Open Access Journals (Sweden)

    O'Shea Esther

    2011-05-01

    Full Text Available Abstract Background 3,4-Methylenedioxymethamphetamine (MDMA produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra levels and IL-1 receptor type I (IL-1RI expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p. and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p. was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v. was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity.

  13. 40 CFR 1065.660 - THC and NMHC determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false THC and NMHC determination. 1065.660... CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.660 THC and NMHC determination. (a) THC determination and THC/CH 4 initial contamination corrections. (1) If we require you to...

  14. Tolerance to the locomotor-activating effects of 3,4-methylenedioxymethamphetamine (MDMA) predicts escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking in rats

    OpenAIRE

    Ball, Kevin T.; Slane, Mylissa

    2014-01-01

    Pre-clinical studies of individual differences in addiction vulnerability have been increasing over recent years, but the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) has received relatively little attention in this regard. Previously, we reported large individual differences both in rats' initial behavioral response to experimenter-administered MDMA and their degree of behavioral sensitization to repeated administration. To determine whether these differences coul...

  15. Discrete memory impairments in largely pure chronic users of MDMA.

    Science.gov (United States)

    Wunderli, Michael D; Vonmoos, Matthias; Fürst, Marina; Schädelin, Katrin; Kraemer, Thomas; Baumgartner, Markus R; Seifritz, Erich; Quednow, Boris B

    2017-10-01

    Chronic use of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") has repeatedly been associated with deficits in working memory, declarative memory, and executive functions. However, previous findings regarding working memory and executive function are inconclusive yet, as in most studies concomitant stimulant use, which is known to affect these functions, was not adequately controlled for. Therefore, we compared the cognitive performance of 26 stimulant-free and largely pure (primary) MDMA users, 25 stimulant-using polydrug MDMA users, and 56 MDMA/stimulant-naïve controls by applying a comprehensive neuropsychological test battery. Neuropsychological tests were grouped into four cognitive domains. Recent drug use was objectively quantified by 6-month hair analyses on 17 substances and metabolites. Considerably lower mean hair concentrations of stimulants (amphetamine, methamphetamine, methylphenidate, cocaine), opioids (morphine, methadone, codeine), and hallucinogens (ketamine, 2C-B) were detected in primary compared to polydrug users, while both user groups did not differ in their MDMA hair concentration. Cohen's d effect sizes for both comparisons, i.e., primary MDMA users vs. controls and polydrug MDMA users vs. controls, were highest for declarative memory (d primary =.90, d polydrug =1.21), followed by working memory (d primary =.52, d polydrug =.96), executive functions (d primary =.46, d polydrug =.86), and attention (d primary =.23, d polydrug =.70). Thus, primary MDMA users showed strong and relatively discrete declarative memory impairments, whereas MDMA polydrug users displayed broad and unspecific cognitive impairments. Consequently, even largely pure chronic MDMA use is associated with decreased performance in declarative memory, while additional deficits in working memory and executive functions displayed by polydrug MDMA users are likely driven by stimulant co-use. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  16. Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans

    Science.gov (United States)

    Hysek, CM; Schmid, Y; Rickli, A; Simmler, LD; Donzelli, M; Grouzmann, E; Liechti, ME

    2012-01-01

    BACKGROUND AND PURPOSE The use of ±3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is associated with cardiovascular complications and hyperthermia. EXPERIMENTAL APPROACH We assessed the effects of the α1- and β-adrenoceptor antagonist carvedilol on the cardiostimulant, thermogenic and subjective responses to MDMA in 16 healthy subjects. Carvedilol (50 mg) or placebo was administered 1 h before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, four-period crossover design. KEY RESULTS Carvedilol reduced MDMA-induced elevations in blood pressure, heart rate and body temperature. Carvedilol did not affect the subjective effects of MDMA including MDMA-induced good drug effects, drug high, drug liking, stimulation or adverse effects. Carvedilol did not alter the plasma exposure to MDMA. CONCLUSIONS AND IMPLICATIONS α1- and β-Adrenoceptors contribute to the cardiostimulant and thermogenic effects of MDMA in humans but not to its psychotropic effects. Carvedilol could be useful in the treatment of cardiovascular and hyperthermic complications associated with ecstasy use. PMID:22404145

  17. Separate and combined effects of the GABAB agonist baclofen and Δ9-THC in humans discriminating Δ9-THC

    Science.gov (United States)

    Lile, Joshua A.; Kelly, Thomas H.; Hays, Lon R.

    2012-01-01

    Background Our previous research with the GABA reuptake inhibitor tiagabine suggested the involvement GABA in the interoceptive effects of Δ9-THC. The aim of the present study was to determine the potential involvement of the GABAB receptor subtype by assessing the separate and combined effects of the GABAB-selective agonist baclofen and Δ9-THC using pharmacologically specific drug-discrimination procedures. Methods Eight cannabis users learned to discriminate 30 mg oral Δ9-THC from placebo and then received baclofen (25 and 50 mg), Δ9-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Results Δ9-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug), elevated heart rate and impaired rate and accuracy on a psychomotor performance task. Baclofen alone (50 mg) substituted for the Δ9-THC discriminative stimulus, and both baclofen doses shifted the discriminative-stimulus effects of Δ9-THC leftward/upward. Similar results were observed on other cannabinoid-sensitive outcomes, although baclofen generally did not engender Δ9-THC-like subjective responses when administered alone. Conclusions These results suggest that the GABAB receptor subtype is involved in the abuse-related effects of Δ9-THC, and that GABAB receptors were responsible, at least in part, for the effects of tiagabine-induced elevated GABA on cannabinoid-related behaviors in our previous study. Future research should test GABAergic compounds selective for other GABA receptor subtypes (i.e., GABAA) to determine the contribution of the different GABA receptors in the effects of Δ9-THC, and by extension cannabis, in humans. PMID:22699093

  18. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.

    Science.gov (United States)

    Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela

    2015-01-01

    Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. MDMA, cortisol, and heightened stress in recreational ecstasy users.

    Science.gov (United States)

    Parrott, Andrew C; Montgomery, Cathy; Wetherell, Mark A; Downey, Luke A; Stough, Con; Scholey, Andrew B

    2014-09-01

    Stress develops when an organism requires additional metabolic resources to cope with demanding situations. This review will debate how recreational 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') can increase some aspects of acute and chronic stress in humans. Laboratory studies on the acute effects of MDMA on cortisol release and neurohormone levels in drug-free regular ecstasy/MDMA users have been reviewed, and the role of the hypothalamic-pituitary-adrenal (HPA) axis in chronic changes in anxiety, stress, and cognitive coping is debated. In the laboratory, acute ecstasy/MDMA use can increase cortisol levels by 100-200%, whereas ecstasy/MDMA-using dance clubbers experience an 800% increase in cortisol levels, because of the combined effects of the stimulant drug and dancing. Three-month hair samples of abstinent users revealed cortisol levels 400% higher than those in controls. Chronic users show heightened cortisol release in stressful environments and deficits in complex neurocognitive tasks. Event-related evoked response potential studies show altered patterns of brain activation, suggestive of increased mental effort, during basic information processing. Chronic mood deficits include more daily stress and higher depression in susceptible individuals. We conclude that ecstasy/MDMA increases cortisol levels acutely and subchronically and that changes in the HPA axis may explain why recreational ecstasy/MDMA users show various aspects of neuropsychobiological stress.

  20. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    Science.gov (United States)

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  1. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination.

    Science.gov (United States)

    Hysek, Cédric M; Simmler, Linda D; Schillinger, Nathalie; Meyer, Nicole; Schmid, Yasmin; Donzelli, Massimiliano; Grouzmann, Eric; Liechti, Matthias E

    2014-03-01

    Methylphenidate and 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') are widely misused psychoactive drugs. Methylphenidate increases brain dopamine and norepinephrine levels by blocking the presynaptic reuptake transporters. MDMA releases serotonin, dopamine and norepinephrine through the same transporters. Pharmacodynamic interactions of methylphenidate and MDMA are likely. This study compared the pharmacodynamic and pharmacokinetic effects of methylphenidate and MDMA administered alone or in combination in healthy subjects using a double-blind, placebo-controlled, crossover design. Methylphenidate did not enhance the psychotropic effects of MDMA, although it produced psychostimulant effects on its own. The haemodynamic and adverse effects of co-administration of methylphenidate and MDMA were significantly higher compared with MDMA or methylphenidate alone. Methylphenidate did not change the pharmacokinetics of MDMA and vice versa. Methylphenidate and MDMA shared some subjective amphetamine-type effects; however, 125 mg of MDMA increased positive mood more than 60 mg of methylphenidate, and methylphenidate enhanced activity and concentration more than MDMA. Methylphenidate and MDMA differentially altered facial emotion recognition. Methylphenidate enhanced the recognition of sad and fearful faces, whereas MDMA reduced the recognition of negative emotions. Additionally, the present study found acute pharmacodynamic tolerance to MDMA but not methylphenidate. In conclusion, the combined use of methylphenidate and MDMA does not produce more psychoactive effects compared with either drug alone, but potentially enhances cardiovascular and adverse effects. The findings may be of clinical importance for assessing the risks of combined psychostimulant misuse. Trial registration identification number: NCT01465685 (http://clinicaltrials.gov/ct2/show/NCT01465685).

  3. Cocaine enhances the conditioned rewarding effects of MDMA in adolescent mice.

    Science.gov (United States)

    Aguilar, M A; Roger-Sánchez, C; Rodríguez-Arias, M; Miñarro, J

    2015-04-01

    Although the consumption of cocaine is frequent in young users of MDMA (3,4-methylenedioxymethamphetamine), the influence of exposure to cocaine on the rewarding effects of MDMA in adolescents has not been studied. The purpose of the present work was to evaluate the effect of co-administration of cocaine (1 and 10 mg/kg) and a sub-threshold dose of MDMA (1.25 mg/kg) on the acquisition of conditioned place preference (CPP) (experiment 1). In addition, the effect of pre-treatment with cocaine on MDMA-induced CPP was evaluated (experiment 2). Levels of monoamines in striatum, hippocampus and cortex were measured in both experiments. Our hypotheses were that cocaine co-administration or pre-treatment would increase the rewarding effects of MDMA, and that these effects would be related with changes in brain monoamine levels. Our results showed that cocaine potentiated the rewarding effects of MDMA, since a sub-threshold dose of MDMA, which did not induce CPP by itself, induced a significant CPP in adolescent mice when administered along with cocaine during conditioning (experiment 1). Moreover, pre-treatment with cocaine several days before conditioning also increased the rewarding effects of MDMA (experiment 2). No significant changes in the levels of biogenic amines, which correlated with these behavioural effects, were observed. Our results confirm the involvement of the dopaminergic system in MDMA-induced CPP in adolescent mice and suggest that combined consumption with or pre-exposure to cocaine increases the conditioned rewarding effects of MDMA, which may enhance the capacity of MDMA to induce dependence. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Stereoselective effects of MDMA on inhibition of monoamine uptake

    International Nuclear Information System (INIS)

    Steele, T.D.; Nichols, D.E.; Yim, G.K.W.

    1986-01-01

    The R(-)-isomers of hallucinogenic phenylisopropylamines are most active, whereas the S(+)-enantiomers of amphetamine (AMPH) and methylenedioxymethamphetamine (MDMA) are more potent centrally. To determine if MDMA exhibits stereoselective effects at the biochemical level that resemble either those of amphetamine or the potent hallucinogen 2,5-dimethoxy-4-methylamphetamine (DOM), the ability of the isomers of MDMA, AMPH and DOM to inhibit uptake of radiolabelled monoamines into synaptosomes was measured. AMPH was more potent than MDMA in inhibiting uptake of 3 H-norepinephrine (NE) into hypothalamic synaptosomes and 3 H-dopamine (DA) into striatal synaptosomes. The S(+)-isomer was more active in each case. MDMA was more potent than AMPH in inhibiting uptake of 3 H-serotonin (5-HT) into hippocampal synaptosomes and exhibited a high degree of stereoselectivity, in favor of the S(+)-isomer. DOM showed only minimal activity in inhibiting uptake of any monoamine (IC 50 > 10 -5 M). These results suggest that MDMA exhibits stereoselective effects similar to those of amphetamine on monoamine uptake inhibition, a parameter that is unrelated to the mechanism of action of the hallucinogen DOM

  5. Human Pharmacology of Mephedrone in Comparison with MDMA.

    Science.gov (United States)

    Papaseit, Esther; Pérez-Mañá, Clara; Mateus, Julián-Andrés; Pujadas, Mitona; Fonseca, Francina; Torrens, Marta; Olesti, Eulàlia; de la Torre, Rafael; Farré, Magí

    2016-10-01

    Mephedrone (4-methylmethcathinone) is a novel psychoactive substance popular among drug users because it displays similar effects to MDMA (3,4-methylenedioxymethamphetamine, ecstasy). Mephedrone consumption has been associated with undesirable effects and fatal intoxications. At present, there is no research available on its pharmacological effects in humans under controlled and experimental administration. This study aims to evaluate the clinical pharmacology of mephedrone and its relative abuse liability compared with MDMA. Twelve male volunteers participated in a randomized, double-blind, crossover, and placebo-controlled trial. The single oral dose conditions were: mephedrone 200 mg, MDMA 100 mg, and placebo. Outcome variables included physiological, subjective, and psychomotor effects, and pharmacokinetic parameters. The protocol was registered in ClinicalTrials.gov (NCT02232789). Mephedrone produced a significant increase in systolic and diastolic blood pressure, heart rate, and pupillary diameter. It elicited stimulant-like effects, euphoria, and well-being, and induced mild changes in perceptions with similar ratings to those observed after MDMA administration although effects peaked earlier and were shorter in duration. Maximal plasma concentration values for mephedrone and MDMA peaked at 1.25 h and 2.00 h, respectively. The elimination half-life for mephedrone was 2.15 h and 7.89 h for MDMA. In a similar manner to MDMA, mephedrone exhibits high abuse liability. Its earlier onset and shorter duration of effects, probably related to its short elimination half-life, could explain a more compulsive pattern of use as described by the users.

  6. MDMA alters emotional processing and facilitates positive social interaction.

    Science.gov (United States)

    Wardle, Margaret C; de Wit, Harriet

    2014-10-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") produces "prosocial" effects, such as feelings of empathy and closeness, thought to be important to its abuse and its value in psychotherapy. However, it is not fully understood how MDMA alters basic emotional processes to produce these effects, or whether it produces corresponding changes in actual social behavior. Here, we examined how MDMA affects perceptions of and responses to emotional expressions, and tested its effects on behavior during a social interaction. We also examined whether MDMA's prosocial effects related to a measure of abuse liability. Over three sessions, 36 healthy volunteers with previous ecstasy use received MDMA (0.75, 1.5 mg/kg) and placebo under double-blind conditions. We measured (i) mood and cardiovascular effects, (ii) perception of and psychophysiological responses to emotional expressions, (iii) use of positive and negative words in a social interaction, and (iv) perceptions of an interaction partner. We then tested whether these effects predicted desire to take the drug again. MDMA slowed perception of angry expressions, increased psychophysiological responses to happy expressions, and increased positive word use and perceptions of partner empathy and regard in a social interaction. These effects were not strongly related to desire to take the drug again. MDMA alters basic emotional processes by slowing identification of negative emotions and increasing responses to positive emotions in others. Further, it positively affects behavior and perceptions during actual social interaction. These effects may contribute to the efficacy of MDMA in psychotherapy, but appear less closely related to its abuse potential.

  7. A mechanistic insight into MDMA-mediated hepatotoxicity

    NARCIS (Netherlands)

    Antolino Lobo, I.|info:eu-repo/dai/nl/304833088

    2011-01-01

    methylenedioxymethamphetamine (MDMA, Ecstasy) is a popular drug of abuse among young people that can induce adverse effects. However, these effects lack a specific pattern, as consumption quantities are not correlated with the initiation and severity of the injury. MDMA can cause drug-induced liver

  8. Investigating the potential neurotoxicity of Ecstasy (MDMA): an imaging approach

    NARCIS (Netherlands)

    Reneman, Liesbeth; Booij, Jan; Majoie, Charles B. L. M.; van den Brink, Wim; den Heeten, Gerard J.

    2001-01-01

    Human users of 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') users may be at risk of developing MDMA-induced neuronal injury. Previously, no methods were available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivo neuroimaging

  9. Adolescent delta-9-tetrahydrocannabinol (THC) exposure fails to affect THC-induced place and taste conditioning in adult male rats.

    Science.gov (United States)

    Wakeford, Alison G P; Flax, Shaun M; Pomfrey, Rebecca L; Riley, Anthony L

    2016-01-01

    Adolescent initiation of drug use has been linked to problematic drug taking later in life and may represent an important variable that changes the balance of the rewarding and/or aversive effects of abused drugs which may contribute to abuse vulnerability. The current study examined the effects of adolescent THC exposure on THC-induced place preference (rewarding effects) and taste avoidance (aversive effects) conditioning in adulthood. Forty-six male Sprague-Dawley adolescent rats received eight injections of an intermediate dose of THC (3.2mg/kg) or vehicle. After these injections, animals were allowed to mature and then trained in a combined CTA/CPP procedure in adulthood (PND ~90). Animals were given four trials of conditioning with intervening water-recovery days, a final CPP test and then a one-bottle taste avoidance test. THC induced dose-dependent taste avoidance but did not produce place conditioning. None of these effects was impacted by adolescent THC exposure. Adolescent exposure to THC had no effect on THC taste and place conditioning in adulthood. The failure to see an effect of adolescent exposure was addressed in the context of other research that has assessed exposure of drugs of abuse during adolescence on drug reactivity in adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Differential effects of MDMA and methylphenidate on social cognition.

    Science.gov (United States)

    Schmid, Yasmin; Hysek, Cédric M; Simmler, Linda D; Crockett, Molly J; Quednow, Boris B; Liechti, Matthias E

    2014-09-01

    Social cognition is important in everyday-life social interactions. The social cognitive effects of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and methylphenidate (both used for neuroenhancement and as party drugs) are largely unknown. We investigated the acute effects of MDMA (75 mg), methylphenidate (40 mg) and placebo using the Facial Emotion Recognition Task, Multifaceted Empathy Test, Movie for the Assessment of Social Cognition, Social Value Orientation Test and the Moral Judgment Task in a cross-over study in 30 healthy subjects. Additionally, subjective, autonomic, pharmacokinetic, endocrine and adverse drug effects were measured. MDMA enhanced emotional empathy for positive emotionally charged situations in the MET and tended to reduce the recognition of sad faces in the Facial Emotion Recognition Task. MDMA had no effects on cognitive empathy in the Multifaceted Empathy Test or social cognitive inferences in the Movie for the Assessment of Social Cognition. MDMA produced subjective 'empathogenic' effects, such as drug liking, closeness to others, openness and trust. In contrast, methylphenidate lacked such subjective effects and did not alter emotional processing, empathy or mental perspective-taking. MDMA but not methylphenidate increased the plasma levels of oxytocin and prolactin. None of the drugs influenced moral judgment. Effects on emotion recognition and emotional empathy were evident at a low dose of MDMA and likely contribute to the popularity of the drug. © The Author(s) 2014.

  11. Progress and promise for the MDMA drug development program.

    Science.gov (United States)

    Feduccia, Allison A; Holland, Julie; Mithoefer, Michael C

    2018-02-01

    Pharmacotherapy is often used to target symptoms of posttraumatic stress disorder (PTSD), but does not provide definitive treatment, and side effects of daily medication are often problematic. Trauma-focused psychotherapies are more likely than drug treatment to achieve PTSD remission, but have high dropout rates and ineffective for a large percentage of patients. Therefore, research into drugs that might increase the effectiveness of psychotherapy is a logical avenue of investigation. The most promising drug studied as a catalyst to psychotherapy for PTSD thus far is 3,4-methylenedioxymethamphetamine (MDMA), commonly known as the recreational drug "Ecstasy." MDMA stimulates the release of hormones and neurochemicals that affect key brain areas for emotion and memory processing. A series of recently completed phase 2 clinical trials of MDMA-assisted psychotherapy for treatment of PTSD show favorable safety outcomes and large effect sizes that warrant expansion into multi-site phase 3 trials, set to commence in 2018. The nonprofit sponsor of the MDMA drug development program, the Multidisciplinary Association for Psychedelic Studies (MAPS), is supporting these trials to explore whether MDMA, administered on only a few occasions, can increase the effectiveness of psychotherapy. Brain imaging techniques and animal models of fear extinction are elucidating neural mechanisms underlying the robust effects of MDMA on psychological processing; however, much remains to be learned about the complexities of MDMA effects as well as the complexities of PTSD itself.

  12. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin.

    Science.gov (United States)

    Benzenhöfer, Udo; Passie, Torsten

    2010-08-01

    Alexander T. Shulgin is widely thought of as the 'father' of +/-3,4-methylenedioxymethamphetamine (MDMA). This paper re-assesses his role in the modern history of this drug. We analysed systematically Shulgin's original publications on MDMA, his publications on the history of MDMA and his laboratory notebook. According to Shulgin's book PIHKAL (1991), he synthesized MDMA in 1965, but did not try it. In the 1960s Shulgin also synthesized MDMA-related compounds such as 3,4-methylenedioxyamphetamine (MDA), 3-methoxy-4,5-methylenedioxyamphetamine (MMDA) and 3,4-methylenedioxyethylamphetamine (MDE), but this had no impact on his rediscovery of MDMA. In the mid-1970s Shulgin learned of a 'special effect' caused by MDMA, whereupon he re-synthesized it and tried it himself in September 1976, as confirmed by his laboratory notebook. In 1977 he gave MDMA to Leo Zeff PhD, who used it as an adjunct to psychotherapy and introduced it to other psychotherapists. Shulgin was not the first to synthesize MDMA, but he played an important role in its history. It seems plausible that he was so impressed by its effects that he introduced it to psychotherapist Zeff in 1977. This, and the fact that in 1978 he published with David Nichols the first paper on the pharmacological action of MDMA in humans, explains why Shulgin is sometimes (erroneously) called the 'father' of MDMA.

  13. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users.

    Science.gov (United States)

    Cowan, Ronald L; Bolo, Nicolas R; Dietrich, Mary; Haga, Erica; Lukas, Scott E; Renshaw, Perry F

    2007-08-15

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n=9) versus non-MDMA using (n=7) controls. Mean NAA in non-MDMA users was 10.47 mM (+/-2.51), versus 9.83 mM (+/-1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (+/-.68), versus 6.57 mM (+/-1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results.

  14. Proton magnetic resonance spectroscopy in ecstasy (MDMA) users.

    Science.gov (United States)

    Daumann, Jörg; Fischermann, Thomas; Pilatus, Ulrich; Thron, Armin; Moeller-Hartmann, Walter; Gouzoulis-Mayfrank, Euphrosyne

    2004-05-20

    The popular recreational drug 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has well-recognized neurotoxic effects upon central serotonergic systems in animal studies. In humans, the use of MDMA has been linked to cognitive problems, particularly to deficits in long-term memory and learning. Recent studies with proton magnetic resonance spectroscopy (1H MRS) have reported relatively low levels of the neuronal marker N-acetylaspartate (NAA) in MDMA users, however, these results have been ambiguous. Moreover, the only available 1H MRS study of the hippocampus reported normal findings in a small sample of five MDMA users. In the present study, we compared 13 polyvalent ecstasy users with 13 matched controls. We found no differences between the NAA/creatine/phosphocreatine (Cr) ratios of users and controls in neocortical regions, and only a tendency towards lower NAA/Cr ratios in the left hippocampus of MDMA users. Thus, compared with cognitive deficits, 1H MRS appears to be a less sensitive marker of potential neurotoxic damage in ecstasy users. Copyright 2004 Elsevier Ireland Ltd.

  15. Designer Drug Confusion: A Focus on MDMA.

    Science.gov (United States)

    Beck, Jerome; Morgan, Patricia A.

    1986-01-01

    Discusses the competing definitions and issues surrounding various designer drugs, primarily 3, 4-methylenedioxy-methamphetamine (MDMA). Offers a rationale for why interest in MDMA, which possesses both stimulant and psychedelic properties, will continue to grow despite the drug's recent illegality and increasing evidence of neurotoxicity.…

  16. A theoretical study for thorium monocarbide (ThC)

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, S.; Tatar, A. [Gazi University, Department of Physics, Teknikokullar 06500, Ankara (Turkey); Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr [Gazi University, Department of Physics, Teknikokullar 06500, Ankara (Turkey)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We focused on high pressure behavior of ThC. Black-Right-Pointing-Pointer ThC is metallic, and mechanically stable. Black-Right-Pointing-Pointer The obtained results agree with the other available values. Black-Right-Pointing-Pointer ThC is hard material, and hardness increases properly with pressure. - Abstract: The structural, mechanical, electronic and thermodynamic properties of thorium monocarbide (ThC) with NaCl-type structure have been investigated by using first-principles plane wave density functional calculations with GGA, LDA and LDA + U functionals. It is shown that calculated equilibrium structural parameters of ThC are in agreement with the experimental results. It is seen from calculated single-crystal elastic constants that ThC with NaCl-type structure is mechanically stable. And from calculated density of states and band structure, it is observed that ThC is metallic. After the properties at 0 GPa are clarified, pressure dependency of the structural parameters, the elastic properties and related mechanical properties, density of states (DOS) and hardness are studied. Furthermore, the thermodynamic properties of ThC are obtained from the quasi-harmonic Debye model (QHM) over high pressure and temperature ranges for three functionals. The results are compared to each other, and the available experimental and theoretical data.

  17. A theoretical study for thorium monocarbide (ThC)

    International Nuclear Information System (INIS)

    Aydin, S.; Tatar, A.; Ciftci, Y.O.

    2012-01-01

    Highlights: ► We focused on high pressure behavior of ThC. ► ThC is metallic, and mechanically stable. ► The obtained results agree with the other available values. ► ThC is hard material, and hardness increases properly with pressure. - Abstract: The structural, mechanical, electronic and thermodynamic properties of thorium monocarbide (ThC) with NaCl-type structure have been investigated by using first-principles plane wave density functional calculations with GGA, LDA and LDA + U functionals. It is shown that calculated equilibrium structural parameters of ThC are in agreement with the experimental results. It is seen from calculated single-crystal elastic constants that ThC with NaCl-type structure is mechanically stable. And from calculated density of states and band structure, it is observed that ThC is metallic. After the properties at 0 GPa are clarified, pressure dependency of the structural parameters, the elastic properties and related mechanical properties, density of states (DOS) and hardness are studied. Furthermore, the thermodynamic properties of ThC are obtained from the quasi-harmonic Debye model (QHM) over high pressure and temperature ranges for three functionals. The results are compared to each other, and the available experimental and theoretical data.

  18. From ecstasy to MDMA: Recreational drug use, symbolic boundaries, and drug trends.

    Science.gov (United States)

    Edland-Gryt, Marit; Sandberg, Sveinung; Pedersen, Willy

    2017-12-01

    Ecstasy pills with MDMA as the main ingredient were introduced in many European countries in the 1980s, and were often linked to the rave and club scenes. However, use gradually levelled off, in part as a response to increased concerns about possible mental health consequences and fatalities. Extensive use of MDMA now seems to be re-emerging in many countries. In this study, we investigated the cultural and social meaning associated with MDMA use in Oslo, Norway, with an emphasis on how users distinguish MDMA crystals and powder from "old ecstasy pills". Qualitative in-depth interviews (n=31, 61,3% males) were conducted with young adult party-goers and recreational MDMA/ecstasy users (20-34 years old, mean age 26.2 years). Research participants emphasised three important perceived differences between the MDMA crystals and ecstasy pills: (i) The effects of MDMA were described as better than ecstasy; (ii) MDMA was regarded as a safer drug; (iii) Users of MDMA crystals were described as more distinct from and less anchored in out-of-fashion rave culture than those using ecstasy. These differences were an important part of the symbolic boundary work MDMA users engaged in when justifying their drug use. MDMA has re-emerged as an important psychoactive substance in Oslo's club scene. One important reason for this re-emergence seems to be its perceived differentiation from ecstasy pills, even though the active ingredient in both drugs is MDMA. This perceived distinction between MDMA and ecstasy reveals the importance of social and symbolic meanings in relation to psychoactive substance use. Insights from this study can be important in terms of understanding how trends in drug use develop and how certain drugs gain or lose popularity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)

    Science.gov (United States)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2016-01-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  20. 3,4-methylenedioxymethamphetamine (MDMA): current perspectives

    OpenAIRE

    Meyer, Jerry

    2013-01-01

    Jerrold S Meyer Department of Psychology, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA Abstract: Ecstasy is a widely used recreational drug that usually consists primarily of 3,4-methylenedioxymethamphetamine (MDMA). Most ecstasy users consume other substances as well, which complicates the interpretation of research in this field. The positively rated effects of MDMA consumption include euphoria, arousal, enhanced mood, increased sociability, and heighten...

  1. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ⁹-THC in humans discriminating Δ⁹-THC.

    Science.gov (United States)

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2014-10-01

    Our previous research suggested the involvement of γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ(9)-THC using pharmacologically selective drug-discrimination procedures. Ten cannabis users learned to discriminate 30 mg oral Δ(9)-THC from placebo and then received diazepam (5 and 10mg), Δ(9)-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Δ(9)-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ(9)-THC discriminative stimulus or alter the Δ(9)-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ(9)-THC. These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ(9)-THC, and by extension cannabis, in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Separate and combined effects of the cannabinoid agonists nabilone and Δ⁹-THC in humans discriminating Δ⁹-THC.

    Science.gov (United States)

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2011-07-01

    Agonist replacement treatment is a promising strategy to manage cannabis-use disorders. The aim of this study was to assess the combined effects of the synthetic cannabinoid agonist nabilone and Δ⁹-tetrahydrocannabinol (Δ⁹-THC) using drug-discrimination procedures, which are sensitive to drug interactions. Testing the concurrent administration of nabilone and Δ⁹-THC was also conducted to provide initial safety and tolerability data, which is important because cannabis users will likely lapse during treatment. Six cannabis users learned to discriminate 30 mg oral Δ⁹-THC from placebo and then received nabilone (0, 1 and 3mg) and Δ⁹-THC (0, 5, 15 and 30 mg), alone and in combination. Subjects completed the multiple-choice procedure to assess drug reinforcement, and self-report, task performance and physiological measures were collected. Δ⁹-THC and nabilone alone shared discriminative-stimulus effects with the training dose of Δ⁹-THC, increased crossover point on the multiple-choice procedure, produced overlapping subject ratings and decreased skin temperature. Nabilone alone also elevated heart rate. In combination, nabilone shifted the discriminative-stimulus effects of Δ⁹-THC leftward/upward and enhanced Δ⁹-THC effects on the other outcome measures. These results replicate a previous study demonstrating that nabilone shares agonist effects with the active constituent of cannabis in cannabis users, and contribute further by indicating that nabilone would likely be safe and well tolerated when combined with cannabis. These data support the conduct of future studies to determine if nabilone treatment would produce cross-tolerance to the abuse-related effects of cannabis and reduce cannabis use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. A Cross-Reactivity of Fenofibric Acid With MDMA DRI Assay.

    Science.gov (United States)

    Bugier, Sarah; Garcia-Hejl, Carine; Vest, Philippe; Plantamura, Julie; Chianea, Denis; Renard, Christophe

    2016-09-01

    Within the framework of routine fitness examinations, French Air Force military crew underwent urine testing for 3,4 methylenedioxymetamphetamine (MDMA [ecstasy]). The cross-reactivity of a dyslipidemic drug, fenofibrate, with an MDMA immunoassay was studied and confirmed on a large population sample. A 3-year retrospective study was performed on the MDMA DRI Ecstasy Assay on the Unicel DXC 600. In the event of positive test result, a confirmatory testing was carried out by gas chromatography/mass spectrometry (GC/MS) to establish the presence of MDMA. When analysis by GC/MS did not confirm the presence of MDMA, a false-positive result was suspected and the samples were analyzed by high-performance liquid chromatography-mass spectrometry to identify a potential interfering substance. A total of 15,169 urine samples, from 7,803 patients, were tested for 3 years. Of the tested samples, 22 (0.15%) were positive by DRI Ecstasy Assay. None of them were positive by GC/MS. A cross-reactivity of fenofibrate's metabolite with MDMA using this assay was systematically found. Fenofibrate's interference with MDMA immunoassay was confirmed. Fenofibrate being widely prescribed, physicians had to be alerted that this treatment could lead to false-positive results. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  4. Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.

    Science.gov (United States)

    Yeh, S Y

    1997-11-01

    The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.

  5. Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol.

    Science.gov (United States)

    Heather, Erin; Shimmon, Ronald; McDonagh, Andrew M

    2015-03-01

    This work examines the organic impurity profile of 3,4-methylenedioxymethamphetamine (MDMA) that has been synthesised from catechol (1,2-dihydroxybenzene), a common chemical reagent available in industrial quantities. The synthesis of MDMA from catechol proceeded via the common MDMA precursor safrole. Methylenation of catechol yielded 1,3-benzodioxole, which was brominated and then reacted with magnesium allyl bromide to form safrole. Eight organic impurities were identified in the synthetic safrole. Safrole was then converted to 3,4-methylenedioxyphenyl-2-propanone (MDP2P) using two synthetic methods: Wacker oxidation (Route 1) and an isomerisation/peracid oxidation/acid dehydration method (Route 2). MDMA was then synthesised by reductive amination of MDP2P. Thirteen organic impurities were identified in MDMA synthesised via Route 1 and eleven organic impurities were identified in MDMA synthesised via Route 2. Overall, organic impurities in MDMA prepared from catechol indicated that synthetic safrole was used in the synthesis. The impurities also indicated which of the two synthetic routes was utilised. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Social Cognition and Interaction in Chronic Users of 3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy").

    Science.gov (United States)

    Wunderli, Michael D; Vonmoos, Matthias; Treichler, Lorena; Zeller, Carmen; Dziobek, Isabel; Kraemer, Thomas; Baumgartner, Markus R; Seifritz, Erich; Quednow, Boris B

    2018-04-01

    The empathogen 3,4-methylenedioxymethamphetamine (MDMA) is the prototypical prosocial club drug inducing emotional openness to others. It has recently been shown that acutely applied 3,4-MDMA in fact enhances emotional empathy and prosocial behavior, while it simultaneously decreases cognitive empathy. However, the long-term effects of 3,4-MDMA use on socio-cognitive functions and social interactions have not been investigated yet. Therefore, we examined emotional and cognitive empathy, social decision-making, and oxytocin plasma levels in chronic 3,4-MDMA users. We tested 38 regular but recently abstinent 3,4-MDMA users and 56 3,4-MDMA-naïve controls with the Movie for the Assessment of Social Cognition, the Multifaceted Empathy Test, and the Distribution Game and the Dictator Game. Drug use was objectively quantified by 6-month hair analyses. Furthermore, oxytocin plasma levels were determined in smaller subgroups (24 3,4-MDMA users, 9 controls). 3,4-MDMA users showed superior cognitive empathy compared with controls in the Multifaceted Empathy Test (Cohen's d=.39) and in the Movie for the Assessment of Social Cognition (d=.50), but they did not differ from controls in emotional empathy. Moreover, 3,4-MDMA users acted less self-serving in the Distribution Game. However, within 3,4-MDMA users, multiple regression analyses showed that higher 3,4-MDMA concentrations in hair were associated with lower cognitive empathy (βMDMA=-.34, t=-2.12, P<.05). Oxytocin plasma concentrations did not significantly differ between both groups. We conclude that people with high cognitive empathy abilities and pronounced social motivations might be more prone to 3,4-MDMA consumption. In contrast, long-term 3,4-MDMA use might nevertheless have a detrimental effect on cognitive empathy capacity.

  7. Increased cortisol levels in hair of recent Ecstasy/MDMA users.

    Science.gov (United States)

    Parrott, A C; Sands, H R; Jones, L; Clow, A; Evans, P; Downey, L A; Stalder, T

    2014-03-01

    Previous research has revealed an acute 8-fold increase in salivary cortisol following self-administrated Ecstasy/MDMA in dance clubbers. It is currently not known to what extent repeated usage impacts upon activity of the hypothalamic-pituitary-adrenal axis over a more prolonged period of time. This study investigated the integrated cortisol levels in 3-month hair samples from recent Ecstasy/MDMA users and non-user controls. One hundred and one unpaid participants (53 males, 48 females; mean age 21.75 years) completed the University of East London recreational drug use questionnaire, modified to cover the past 3-months of usage. They comprised 32 light recent Ecstasy/MDMA users (1-4 times in last 3 months), 23 recent heavy MDMA users (+5 times in last 3 months), and 54 non-user controls. Volunteers provided 3 cm hair samples for cortisol analysis. Hair cortisol levels were observed to be significantly higher in recent heavy MDMA users (mean = 55.0 ± 80.1 pg/mg), compared to recent light MDMA users (19.4 ± 16.0 pg/mg; p=0.015), and to non-users (13.8 ± 6.1 pg/mg; pEcstasy/MDMA was associated with almost 4-fold raised hair cortisol levels, in comparison with non-user controls. The present results are consistent with the bio-energetic stress model for Ecstasy/MDMA, which predicts that repeated stimulant drug use may increase cortisol production acutely, and result in greater deposits of the hormone in hair. These data may also help explain the neurocognitive, psychiatric, and other psychobiological problems of some abstinent users. Future study design and directions for research concerning the psychoneuroendocrinological impact of MDMA are also discussed. © 2013 Published by Elsevier B.V. and ECNP.

  8. Effects of Stress and MDMA on Hippocampal Gene Expression

    OpenAIRE

    Weber, Georg F.; Johnson, Bethann N.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neuro...

  9. 3,4-Methylenedioxymethamphetamine's (MDMA's) Impact on Posttraumatic Stress Disorder.

    Science.gov (United States)

    White, C Michael

    2014-07-01

    Review the current literature assessing the role of 3,4-methylenedioxymethamphetamine (MDMA) on posttraumatic stress disorder (PTSD). OVID MEDLINE search (1960-February 2014) using the terms MDMA, 3,4-methylenedioxymethamphetamine, Molly, and Ecstasy crossed with posttraumatic stress disorder with backwards citation tracking using references from procured articles. English language studies assessing MDMA in patients with PTSD. Three randomized controlled trials (RCTs) were conducted along with follow-up open-label and extension evaluations. In the 3 RCTs, therapy with MDMA-assisted psychotherapy is promising, with reductions in PTSD rating scale scores (Clinician-Administered PTSD Scale, Severity of Symptoms Scale for PTSD Scale), although 2 of 3 trials did not show significant results, and all three had methodological limitations. The direction of effect for all trials was toward benefit in patients who were refractory to other PTSD therapies; the percentage reductions on rating scores ranged from 23% to 68%; and in 1 trial, the effect was sustained over a long period of time. MDMA ingestion without sustained psychotherapy over a 6- to 8-hour period is unlikely to be beneficial; trying to prolong the duration of effect with supplemental dosing is unlikely to provide additional benefits; and there are adverse effects on blood pressure and heart rate that should be appreciated. These studies used unadulterated MDMA with known and reproducible potency, which may not happen with street purchase of the product. MDMA-assisted psychotherapy may be an effective therapy in refractory PTSD but needs further evaluation to determine its place in contemporary therapy. © The Author(s) 2014.

  10. Intimate insight: MDMA changes how people talk about significant others

    Science.gov (United States)

    Baggott, Matthew J.; Kirkpatrick, Matthew G.; Bedi, Gillinder; de Wit, Harriet

    2015-01-01

    Rationale ±3,4-methylenedioxymethamphetamine (MDMA) is widely believed to increase sociability. The drug alters speech production and fluency, and may influence speech content. Here, we investigated the effect of MDMA on speech content, which may reveal how this drug affects social interactions. Method 35 healthy volunteers with prior MDMA experience completed this two-session, within-subjects, double-blind study during which they received 1.5 mg/kg oral MDMA and placebo. Participants completed a 5-min standardized talking task during which they discussed a close personal relationship (e.g., a friend or family member) with a research assistant. The conversations were analyzed for selected content categories (e.g., words pertaining to affect, social interaction, and cognition), using both a standard dictionary method (Pennebaker’s Linguistic Inquiry and Word Count: LIWC) and a machine learning method using random forest classifiers. Results Both analytic methods revealed that MDMA altered speech content relative to placebo. Using LIWC scores, the drug increased use of social and sexual words, consistent with reports that MDMA increases willingness to disclose. Using the machine learning algorithm, we found that MDMA increased use of social words and words relating to both positive and negative emotions. Conclusions These findings are consistent with reports that MDMA acutely alters speech content, specifically increasing emotional and social content during a brief semistructured dyadic interaction. Studying effects of psychoactive drugs on speech content may offer new insights into drug effects on mental states, and on emotional and psychosocial interaction. PMID:25922420

  11. Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice.

    Science.gov (United States)

    García-Pardo, M P; Blanco-Gandía, M C; Valiente-Lluch, M; Rodríguez-Arias, M; Miñarro, J; Aguilar, M A

    2015-12-03

    Previous studies have demonstrated that social defeat stress increases the rewarding effects of psychostimulant drugs such as cocaine and amphetamine. In the present study we evaluated the long-term effects of repeated social defeat (RSD) on the rewarding effects of ±3,4-methylenedioxymethamphetamine (MDMA) hydrochloride in the conditioned place preference (CPP) paradigm. Adolescent and young adult mice were exposed to four episodes of social defeat (on PND 29-40 and PND 47-56, respectively) and were conditioned three weeks later with 1.25 or 10mg/kg i.p. of MDMA (experiment 1). The long-term effects of RSD on anxiety, social behavior and cognitive processes were also evaluated in adult mice (experiment 2). RSD during adolescence enhanced vulnerability to priming-induced reinstatement in animals conditioned with 1.25mg/kg of MDMA and increased the duration of the CPP induced by the 10mg/kg of MDMA. The latter effect was also observed after RSD in young adult mice, as well as an increase in anxiety-like behavior, an alteration in social interaction (reduction in attack and increase in avoidance/flee and defensive/submissive behaviors) and an impairment of maze learning. These results support the idea that RSD stress increases the rewarding effects of MDMA and induces long-term alterations in anxiety, learning and social behavior in adult mice. Thus, exposure to stress may increase the vulnerability of individuals to developing MDMA dependence, which is a factor to be taken into account in relation to the prevention and treatment of this disorder. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine.

    Science.gov (United States)

    Ball, Kevin T; Jarsocrak, Hanna; Hyacinthe, Johanna; Lambert, Justina; Lockowitz, James; Schrock, Jordan

    2015-11-01

    Although exposure to acute stress has been shown to reinstate extinguished responding for a wide variety of drugs, no studies have investigated stress-induced reinstatement in animals with a history of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) self-administration. Thus, rats were trained to press a lever for MDMA (0.50 mg/kg/infusion) in daily sessions, and lever pressing was subsequently extinguished in the absence of MDMA and conditioned cues (light and tone). We then tested the ability of acute yohimbine (2.0 mg/kg), a pharmacological stressor, to reinstate lever-pressing under extinction conditions. Additionally, to model chronic stress, some rats were injected daily with yohimbine (5.0 mg/kg × 10 days) prior to reinstatement tests. To assess dopaminergic involvement, chronic yohimbine injections were combined with injections of SCH-23390 (0.0 or 10.0 μg/kg), a dopamine D1-like receptor antagonist. In a separate experiment, rats with a history of food self-administration were treated and tested in the same way. Results showed that acute yohimbine injections reinstated extinguished MDMA and food seeking, but only in rats with a history of chronic yohimbine exposure. Co-administration of SCH-23390 with chronic yohimbine injections prevented the potentiation of subsequent food seeking, but not MDMA seeking. These results suggest that abstinent MDMA users who also are exposed to chronic stress may be at increased risk for future relapse, and also that the effects of chronic stress on relapse may be mediated by different mechanisms depending on one's drug use history. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Reasons for Synthetic THC Use among College Students

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Burbage, Michelle L.

    2013-01-01

    Synthetic THC, also known as fake marijuana, is used by college students in the United States. The present study examined reasons for recent synthetic THC use among college students (N = 339). Students completed a 3-page survey during regularly scheduled class times. Results indicated students reported using synthetic THC for curiosity, to get…

  14. Critical Role of Peripheral Vasoconstriction in Fatal Brain Hyperthermia Induced by MDMA (Ecstasy) under Conditions That Mimic Human Drug Use

    Science.gov (United States)

    Kim, Albert H.; Wakabayashi, Ken T.; Baumann, Michael H.; Shaham, Yavin

    2014-01-01

    MDMA (Ecstasy) is an illicit drug used by young adults at hot, crowed “rave” parties, yet the data on potential health hazards of its abuse remain controversial. Here, we examined the effect of MDMA on temperature homeostasis in male rats under standard laboratory conditions and under conditions that simulate drug use in humans. We chronically implanted thermocouple microsensors in the nucleus accumbens (a brain reward area), temporal muscle, and facial skin to measure temperature continuously from freely moving rats. While focusing on brain hyperthermia, temperature monitoring from the two peripheral locations allowed us to evaluate the physiological mechanisms (i.e., intracerebral heat production and heat loss via skin surfaces) that underlie MDMA-induced brain temperature responses. Our data confirm previous reports on high individual variability and relatively weak brain hyperthermic effects of MDMA under standard control conditions (quiet rest, 22−23°C), but demonstrate dramatic enhancements of drug-induced brain hyperthermia during social interaction (exposure to male conspecific) and in warm environments (29°C). Importantly, we identified peripheral vasoconstriction as a critical mechanism underlying the activity- and state-dependent potentiation of MDMA-induced brain hyperthermia. Through this mechanism, which prevents proper heat dissipation to the external environment, MDMA at a moderate nontoxic dose (9 mg/kg or ∼1/5 of LD50 in rats) can cause fatal hyperthermia under environmental conditions commonly encountered by humans. Our results demonstrate that doses of MDMA that are nontoxic under cool, quiet conditions can become highly dangerous under conditions that mimic recreational use of MDMA at rave parties or other hot, crowded venues. PMID:24899699

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  16. Memory deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of frontal dysfunction.

    Science.gov (United States)

    Quednow, Boris B; Jessen, Frank; Kuhn, Kai-Uwe; Maier, Wolfgang; Daum, Irene; Wagner, Michael

    2006-05-01

    Chronic administration of the common club drug 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is associated with long-term depletion of serotonin (5-HT) and loss of 5-HT axons in the brains of rodents and non-human primates, and evidence suggests that recreational MDMA consumption may also affect the human serotonergic system. Moreover, it was consistently shown that abstinent MDMA users have memory deficits. Recently, it was supposed that these deficits are an expression of a temporal or rather hippocampal dysfunction caused by the serotonergic neurotoxicity of MDMA. The aim of this study is to examine the memory deficits of MDMA users neuropsychologically in order to evaluate the role of different brain regions. Nineteen male abstinent MDMA users, 19 male abstinent cannabis users and 19 male drug-naive control subjects were examined with a German version of the Rey Auditory Verbal Learning Test (RAVLT). MDMA users showed widespread and marked verbal memory deficits, compared to drug-naive controls as well as compared to cannabis users, whereas cannabis users did not differ from control subjects in their memory performance. MDMA users revealed impairments in learning, consolidation, recall and recognition. In addition, they also showed a worse recall consistency and strong retroactive interference whereby both measures were previously associated with frontal lobe function. There was a significant correlation between memory performance and the amount of MDMA taken. These results suggest that the memory deficits of MDMA users are not only the result of a temporal or hippocampal dysfunction, but also of a dysfunction of regions within the frontal cortex.

  17. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    Science.gov (United States)

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  18. Oxytocin and MDMA ('Ecstasy') enhance social reward in rats.

    Science.gov (United States)

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; Goodwin, Jack; McGregor, Iain S

    2015-07-01

    Oxytocin (OT), vasopressin (AVP) and 3,4 methylenedioxymethamphetamine (MDMA, 'Ecstasy') all increase social interaction in rats, perhaps by enhancing the rewarding value of social encounters. Here, we used the conditioned place preference (CPP) paradigm to assess the intrinsic rewarding effects of OT, AVP and MDMA, and whether these effects are enhanced by the presence of a conspecific, or a dynamic, tactile object (a tennis ball). Adult male rats received conditioning sessions in a CPP apparatus twice a day (vehicle at 10 a.m., drug at 3 p.m.). Experiment 1 involved conditioning with OT (0.5 mg/kg, intraperitoneal (i.p.)), AVP (0.005 mg/kg, i.p.) or MDMA (5 mg/kg, i.p.). Experiments 2 and 3 involved conditioning with the same treatments but in the presence of a conspecific receiving the same treatment (social-CPP) or in the presence of a tennis ball (object-CPP), respectively. Conditioned place preference was assessed 24 h, 2 weeks and 4 weeks later. OT, AVP and MDMA did not produce a conventional CPP. However, when the conditioning environment also contained a conspecific both OT and MDMA induced a significant CPP lasting for at least 4 weeks. Rats given OT and MDMA also developed a more modest yet significant CPP for the environment where they encountered a tennis ball. These results indicate that OT and MDMA can augment the rewarding effects of social interaction, but also interaction with a dynamic and tactile non-social object. AVP does not condition social- or object-CPPs and may promote social proximity by inducing generalized anxiety and defensive aggregation.

  19. Total hydrocarbon content (THC) testing in liquid oxygen (LOX) systems

    Science.gov (United States)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2015-12-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  20. Monitoring MDMA metabolites in urban wastewater as novel biomarkers of consumption.

    Science.gov (United States)

    González-Mariño, Iria; Zuccato, Ettore; Santos, Miquel M; Castiglioni, Sara

    2017-05-15

    Consumption of 3,4-methylendioxymethamphetamine (MDMA) has been always estimated by measuring the parent substance through chemical analysis of wastewater. However, this may result in an overestimation of the use if the substance is directly disposed in sinks or toilets. Using specific urinary metabolites may overcome this limitation. This study investigated for the first time the suitability of a panel of MDMA metabolites as biomarkers of consumption, considering the specific criteria recently proposed, i.e. being detectable and stable in wastewater, being excreted in a known percentage in urine, and having human excretion as the sole source. A new analytical method was developed and validated for the extraction and analysis of MDMA and three of its main metabolites in wastewater. 24-h composite raw wastewater samples from three European cities were analysed and MDMA use was back-calculated. Results from single MDMA loads, 4-hydroxy-3-methoxymethamphetamine (HMMA) loads and from the sum of MDMA, HMMA and 4-hydroxy-3-methoxyamphetamine (HMA) loads were in line with the well-known recreational use of this drug: consumption was higher during the weekend in all cities. HMMA and HMA turned out to be suitable biomarkers of consumption; however, concentrations measured in wastewater did not resemble the expected pharmacokinetic profiles, quite likely due to the very limited information available on excretion profiles. Different options were tested to back-calculate MDMA use, including the sum of MDMA and its metabolites, to balance the biases associated with each single substance. Nevertheless, additional pharmacokinetic studies are urgently needed in order to get more accurate excretion rates and, therefore, improve the estimates of MDMA use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The preclinical pharmacology of mephedrone; not just MDMA by another name.

    Science.gov (United States)

    Green, A R; King, M V; Shortall, S E; Fone, K C F

    2014-05-01

    The substituted β-keto amphetamine mephedrone (4-methylmethcathinone) was banned in the UK in April 2010 but continues to be used recreationally in the UK and elsewhere. Users have compared its psychoactive effects to those of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'). This review critically examines the preclinical data on mephedrone that have appeared over the last 2-3 years and, where relevant, compares the pharmacological effects of mephedrone in experimental animals with those obtained following MDMA administration. Both mephedrone and MDMA enhance locomotor activity and change rectal temperature in rodents. However, both of these responses are of short duration following mephedrone compared with MDMA probably because mephedrone has a short plasma half-life and rapid metabolism. Mephedrone appears to have no pharmacologically active metabolites, unlike MDMA. There is also little evidence that mephedrone induces a neurotoxic decrease in monoamine concentration in rat or mouse brain, again in contrast to MDMA. Mephedrone and MDMA both induce release of dopamine and 5-HT in the brain as shown by in vivo and in vitro studies. The effect on 5-HT release in vivo is more marked with mephedrone even though both drugs have similar affinity for the dopamine and 5-HT transporters in vitro. The profile of action of mephedrone on monoamine receptors and transporters suggests it could have a high abuse liability and several studies have found that mephedrone supports self-administration at a higher rate than MDMA. Overall, current data suggest that mephedrone not only differs from MDMA in its pharmacological profile, behavioural and neurotoxic effects, but also differs from other cathinones. © 2014 The British Pharmacological Society.

  2. The History of MDMA as an Underground Drug in the United States, 1960-1979.

    Science.gov (United States)

    Passie, Torsten; Benzenhöfer, Udo

    2016-01-01

    MDMA (3,4-methylenedioxy-methylamphetamine, a.k.a. "ecstasy") was first synthesized in 1912 and resynthesized more than once for pharmaceutical reasons before it became a popular recreational drug. Partially based on previously overlooked U.S. government documentation, this article reconstructs the early history of MDMA as a recreational drug in the U.S. from 1960 to 1979. According to the literature, MDMA was introduced as a street drug at the end of the 1960s. The first forensic detection of MDMA "on the street" was reported in 1970 in Chicago. It appears that MDMA was first synthesized by underground chemists in search of "legal alternatives" for the closely related and highly sought-after drug MDA, which was scheduled under the Controlled Substances Act (CSA) in 1970. Until 1974, nearly all MDMA street samples seized came from the U.S. Midwest, the first "hot region" of MDMA use. In Canada, MDMA was first detected in 1974 and scheduled in 1976. From 1975 to 1979, MDMA was found in street samples in more than 10 U.S. states, the West Coast becoming the major "hot region" of MDMA use. Recreational use of MDMA spread across the U.S. in the early 1980s, and in 1985 it was scheduled under the CSA.

  3. Can MDMA play a role in the treatment of substance abuse?

    Science.gov (United States)

    Jerome, Lisa; Schuster, Shira; Yazar-Klosinski, B Berra

    2013-03-01

    A wider array of treatments are needed for people with substance abuse disorders. Some psychedelic compounds have been assessed as potential substance abuse treatments with promising results. MDMA may also help treat substance abuse based on shared features with psychedelic compounds and recent reports indicating that MDMAassisted psychotherapy can reduce symptoms of PTSD. Narrative reports and data from early investigations found that some people reduced or eliminated their substance use after receiving MDMA, especially in a therapeutic setting. MDMA is a potent monoamine releaser with sympathomimetic effects that may indirectly activate 5-HT2A receptors. It increases interpersonal closeness and prosocial feelings, potentially through oxytocin release. Findings suggest that ecstasy, material represented as containing MDMA, is associated with deleterious long-term effects after heavy lifetime use, including fewer serotonin transporter sites and impaired verbal memory. Animal and human studies demonstrate moderate abuse liability for MDMA, and this effect may be of most concern to those treating substance abuse disorders. However, subjects who received MDMA-assisted psychotherapy in two recent clinical studies were not motivated to seek out ecstasy, and tested negative in random drug tests during follow-up in one study. MDMA could either directly treat neuropharmacological abnormalities associated with addiction, or it could indirectly assist with the therapeutic process or reduce symptoms of comorbid psychiatric conditions, providing a greater opportunity to address problematic substance use. Studies directly testing MDMA-assisted psychotherapy in people with active substance abuse disorder may be warranted.

  4. The novelty-seeking phenotype modulates the long-lasting effects of adolescent MDMA exposure.

    Science.gov (United States)

    Rodríguez-Arias, Marta; Vaccaro, Sonia; Arenas, M Carmen; Aguilar, María A; Miñarro, José

    2015-03-15

    Exposure to drugs such as ethanol or cocaine during adolescence induces alterations in the central nervous system that are modulated by the novelty-seeking trait. Our aim was to evaluate the influence of this trait on the long-term effects of MDMA administration during adolescence on spontaneous behavior and conditioned rewarding effects in adulthood. Adolescent mice were classified as high or low novelty seekers (HNS or LNS) according to the hole-board test and received either MDMA (0, 10 or 20mg/kg PND 33-42) or saline. Three weeks later, having entered adulthood (PND>68), one set of mice performed the elevated plus maze and social interaction tests, while another set performed the conditioning place preference (CPP) test induced by cocaine-(1mg/kg) or MDMA-(1mg/kg). Only HNS mice treated with MDMA during adolescence acquired CPP in adulthood with a non-effective dose of cocaine or MDMA. Although it did not produce changes in motor activity, exposure to MDMA during adolescence was associated with more aggressive behaviors (threat and attack) and increased social contacts in HNS mice, while an anxiolytic effect was noted in LNS mice pre-treated with the highest dose of MDMA (20mg/kg). Administration of MDMA (10 or 20mg/kg) induced a decrease in DA levels in the striatum in LNS mice only and lower striatal serotonin levels in mice treated with the highest MDMA dose. Our findings show that adolescent MDMA exposure results in higher sensitivity to the conditioned reinforcing properties of MDMA and cocaine in adult HNS mice, which suggests that the relationship between exposure to MDMA in adolescence and a higher probability of substance is a feature of high novelty seekers only. Copyright © 2015. Published by Elsevier Inc.

  5. Memory performance in abstinent 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") users.

    Science.gov (United States)

    Groth-Marnat, Gary; Howchar, Hennedy; Marsh, Ali

    2007-02-01

    Research with animals and humans has suggested that acute and subacute use of 3,4-methylenedioxymethamphetamine (MDMA "ecstasy") may lead to memory impairment. However, research is limited by (1) low power due to small sample sizes, (2) the possible confound of polydrug use, and (3) the failure to consider intelligence as a covariate. The present study compared the memory performance on the Wechsler Memory Scale-III of 26 abstinent (2-wk. minimum) recreational MDMA users with 26 abstinent (2-wk. minimum) recreational polydrug users. Despite significantly greater polydrug use amongst these MDMA users, no significant group differences in memory were observed. Regression of total lifetime amount of MDMA use also did not predict memory performance after accounting for intelligence. In addition, the length of time since abstinence (at least 2 wk.) was not associated with an increase in memory performance. Greater total lifetime cocaine use, rather than total lifetime MDMA use, was significantly associated with greater decrements in General Memory and Delayed Verbal Memory performance.

  6. Behavioral effects and pharmacokinetics of (±)-3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) after intragastric administration to baboons.

    Science.gov (United States)

    Goodwin, Amy K; Mueller, Melanie; Shell, Courtney D; Ricaurte, George A; Ator, Nancy A

    2013-06-01

    (±)-3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug of abuse. We aimed to characterize the behavioral effects of intragastric MDMA in a species closely related to humans and to relate behavioral effects to plasma MDMA and metabolite concentrations. Single doses of MDMA (0.32-7.8 mg/kg) were administered via an intragastric catheter to adult male baboons (N = 4). Effects of MDMA on food-maintained responding were assessed over a 20-hour period, whereas untrained behaviors and fine-motor coordination were characterized every 30 minutes until 3 hours postadministration. Levels of MDMA and metabolites in plasma were measured in the same animals (n = 3) after dosing on a separate occasion. MDMA decreased food-maintained responding over the 20-hour period, and systematic behavioral observations revealed increased frequency of bruxism as the dose of MDMA was increased. Drug blood level determinations showed no MDMA after the lower doses of MDMA tested (0.32-1.0 mg/kg) and modest levels after higher MDMA doses (3.2-7.8 mg/kg). High levels of 3,4-dihydroxymethamphetamine (HHMA) were detected after all doses of MDMA, suggesting extensive first-pass metabolism of MDMA in the baboon. The present results demonstrate that MDMA administered via an intragastric catheter produced behavioral effects that have also been reported in humans. Similar to humans, blood levels of MDMA after oral administration may not be predictive of the behavioral effects of MDMA. Metabolites, particularly HHMA, may play a significant role in the behavioral effects of MDMA.

  7. Cannabis and Δ9-tetrahydrocannabinol (THC) for weight loss?

    Science.gov (United States)

    Le Foll, Bernard; Trigo, Jose M; Sharkey, Keith A; Le Strat, Yann

    2013-05-01

    Obesity is one of the highest preventable causes of morbidity and mortality in the developed world [1]. It has been well known for a long time that exposure to cannabis produces an increase of appetite (a phenomenon referred to as the 'munchies'). This phenomenon led to an exploration of the role of the endocannabinoid system in the regulation of obesity and associated metabolic syndrome. This effort subsequently led to the development of a successful therapeutic approach for obesity that consisted of blocking the cannabinoid CB1 receptors using ligands such as Rimonabant in order to produce weight loss and improve metabolic profile [2]. Despite being efficacious, Rimonabant was associated with increased rates of depression and anxiety and therefore removed from the market. We recently discovered that the prevalence of obesity is paradoxically much lower in cannabis users as compared to non-users and that this difference is not accounted for by tobacco smoking status and is still present after adjusting for variables such as sex and age. Here, we propose that this effect is directly related to exposure to the Δ(9)-tetrahydrocannabinol (THC) present in cannabis smoke. We therefore propose the seemingly paradoxical hypothesis that THC or a THC/cannabidiol combination drug may produce weight loss and may be a useful therapeutic for the treatment of obesity and its complications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Predictive model accuracy in estimating last Δ9-tetrahydrocannabinol (THC) intake from plasma and whole blood cannabinoid concentrations in chronic, daily cannabis smokers administered subchronic oral THC.

    Science.gov (United States)

    Karschner, Erin L; Schwope, David M; Schwilke, Eugene W; Goodwin, Robert S; Kelly, Deanna L; Gorelick, David A; Huestis, Marilyn A

    2012-10-01

    Determining time since last cannabis/Δ9-tetrahydrocannabinol (THC) exposure is important in clinical, workplace, and forensic settings. Mathematical models calculating time of last exposure from whole blood concentrations typically employ a theoretical 0.5 whole blood-to-plasma (WB/P) ratio. No studies previously evaluated predictive models utilizing empirically-derived WB/P ratios, or whole blood cannabinoid pharmacokinetics after subchronic THC dosing. Ten male chronic, daily cannabis smokers received escalating around-the-clock oral THC (40-120 mg daily) for 8 days. Cannabinoids were quantified in whole blood and plasma by two-dimensional gas chromatography-mass spectrometry. Maximum whole blood THC occurred 3.0 h after the first oral THC dose and 103.5h (4.3 days) during multiple THC dosing. Median WB/P ratios were THC 0.63 (n=196), 11-hydroxy-THC 0.60 (n=189), and 11-nor-9-carboxy-THC (THCCOOH) 0.55 (n=200). Predictive models utilizing these WB/P ratios accurately estimated last cannabis exposure in 96% and 100% of specimens collected within 1-5h after a single oral THC dose and throughout multiple dosing, respectively. Models were only 60% and 12.5% accurate 12.5 and 22.5h after the last THC dose, respectively. Predictive models estimating time since last cannabis intake from whole blood and plasma cannabinoid concentrations were inaccurate during abstinence, but highly accurate during active THC dosing. THC redistribution from large cannabinoid body stores and high circulating THCCOOH concentrations create different pharmacokinetic profiles than those in less than daily cannabis smokers that were used to derive the models. Thus, the models do not accurately predict time of last THC intake in individuals consuming THC daily. Published by Elsevier Ireland Ltd.

  9. Nonlinear pharmacokinetics of (+/-)3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat.

    Science.gov (United States)

    Concheiro, Marta; Baumann, Michael H; Scheidweiler, Karl B; Rothman, Richard B; Marrone, Gina F; Huestis, Marilyn A

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA's safety are needed. We evaluated MDMA's pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography-tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P MDMA's behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses.

  10. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    Science.gov (United States)

    Shimshoni, Jakob A; Winkler, Ilan; Golan, Ezekiel; Nutt, David

    2017-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT 2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT 2a,b,c and NE α2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT 2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT 2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC 50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT 2a,c receptors as compared to MDMA.

  11. Potential Psychiatric Uses for MDMA.

    Science.gov (United States)

    Yazar-Klosinski, B B; Mithoefer, M C

    2017-02-01

    Phase II trials of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy have demonstrated initial safety and efficacy for treatment of posttraumatic stress disorder (PTSD), with potential for expansion to depression and anxiety disorders. In these trials, single doses of MDMA are administered in a model of medication-assisted psychotherapy, differing from trials involving daily drug administration without psychotherapy. This model presents an opportunity to utilize accelerated regulatory pathways, such as the US Food and Drug Administration (FDA) Breakthrough Therapy Designation, to most effectively and expeditiously test such novel approaches. © 2016, The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  12. Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects

    NARCIS (Netherlands)

    Reneman, Liesbeth; de Win, Maartje M. L.; van den Brink, Wim; Booij, Jan; den Heeten, Gerard J.

    2006-01-01

    Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in

  13. Effects of MDMA on olfactory memory and reversal learning in rats.

    Science.gov (United States)

    Hawkey, Andrew; April, L Brooke; Galizio, Mark

    2014-10-01

    The effects of acute and sub-chronic MDMA were assessed using a procedure designed to test rodent working memory capacity: the odor span task (OST). Rats were trained to select an odor that they had not previously encountered within the current session, and the number of odors to remember was incremented up to 24 during the course of each session. In order to separate drug effects on the OST from more general performance impairment, a simple olfactory discrimination was also assessed in each session. In Experiment 1, acute doses of MDMA were administered prior to select sessions. MDMA impaired memory span in a dose-dependent fashion, but impairment was seen only at doses (1.8 and 3.0 mg/kg) that also increased response omissions on both the simple discrimination and the OST. In Experiment 2, a sub-chronic regimen of MDMA (10.0 mg/kg, twice daily over four days) was administered after OST training. There was no evidence of reduced memory span following sub-chronic MDMA, but a temporary increase in omission errors on the OST was observed. In addition, rats exposed to sub-chronic MDMA showed delayed learning when the simple discrimination was reversed. Overall, the disruptive effects of both acute and sub-chronic MDMA appeared to be due to non-mnemonic processes, rather than effects on specific memory functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The influence of genetic and environmental factors among MDMA users in cognitive performance.

    Directory of Open Access Journals (Sweden)

    Elisabet Cuyàs

    Full Text Available This study is aimed to clarify the association between MDMA cumulative use and cognitive dysfunction, and the potential role of candidate genetic polymorphisms in explaining individual differences in the cognitive effects of MDMA. Gene polymorphisms related to reduced serotonin function, poor competency of executive control and memory consolidation systems, and high enzymatic activity linked to bioactivation of MDMA to neurotoxic metabolites may contribute to explain variations in the cognitive impact of MDMA across regular users of this drug. Sixty ecstasy polydrug users, 110 cannabis users and 93 non-drug users were assessed using cognitive measures of Verbal Memory (California Verbal Learning Test, CVLT, Visual Memory (Rey-Osterrieth Complex Figure Test, ROCFT, Semantic Fluency, and Perceptual Attention (Symbol Digit Modalities Test, SDMT. Participants were also genotyped for polymorphisms within the 5HTT, 5HTR2A, COMT, CYP2D6, BDNF, and GRIN2B genes using polymerase chain reaction and TaqMan polymerase assays. Lifetime cumulative MDMA use was significantly associated with poorer performance on visuospatial memory and perceptual attention. Heavy MDMA users (>100 tablets lifetime use interacted with candidate gene polymorphisms in explaining individual differences in cognitive performance between MDMA users and controls. MDMA users carrying COMT val/val and SERT s/s had poorer performance than paired controls on visuospatial attention and memory, and MDMA users with CYP2D6 ultra-rapid metabolizers performed worse than controls on semantic fluency. Both MDMA lifetime use and gene-related individual differences influence cognitive dysfunction in ecstasy users.

  15. Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia.

    Science.gov (United States)

    Shortall, S E; Green, A R; Swift, K M; Fone, K C F; King, M V

    2013-02-01

    Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α(1) -adrenoceptor and dopamine D(1) receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  16. MDMA ('Ecstasy'), oxytocin and vasopressin modulate social preference in rats: A role for handling and oxytocin receptors.

    Science.gov (United States)

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; Couto, Kalliu; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    In laboratory rats, peripheral administration of the neuropeptides oxytocin (OT) and vasopressin (AVP) induces similar prosocial effects (i.e. increased adjacent lying) to the party drug 3,4-methylenedioxymethamphetamine (MDMA), which are sensitive to vasopressin V 1A receptor (V 1A R) antagonism. Here, we employed a social preference paradigm to further compare the prosocial effects of OT, AVP and MDMA. We also investigated the possible involvement of the V 1A R and oxytocin receptor (OTR) in rodent social preference. The social preference paradigm measures investigation times towards an empty wire cage (presented for 4min) followed by an identical cage containing a novel rat (also presented for 4min). Social preference is defined as greater investigation time towards the inhabited cage than the empty cage. Results indicated that well-handled rats exhibited no social preference at baseline, while intraperitoneally injected MDMA (5mg/kg), OT (0.5mg/kg) and AVP (0.005mg/kg) increased social preference. However, this effect was primarily due to reduced investigation of the empty cage. In contrast, rats that received minimal prior handling displayed a social preference at baseline, while MDMA (5mg/kg), OT (0.5mg/kg) and AVP (0.005mg/kg) reduced investigation times towards both the empty and inhabited cages. Lower doses of MDMA, OT and AVP were ineffective. The OTR antagonist Compound 25 (C25, 5mg/kg), but not the V 1A R antagonist SR49059 (1mg/kg), reduced the baseline social preference seen in minimally-handled rats and prevented the social preference induced by OT and AVP (but not MDMA) in well-handled rats. Overall, these results further confirm prosocial actions of MDMA, OT and AVP, which are dependent on handling history. These findings also indicate that social preference is sensitive to OTR rather than V 1A R modulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine.

    Science.gov (United States)

    Colado, M I; Murray, T K; Green, A R

    1993-03-01

    1. The present study has investigated whether the neurotoxic effects of the relatively selective 5-hydroxytryptamine (5-HT) neurotoxins, 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy'), p-chloroamphetamine (PCA) and fenfluramine on hippocampal and cortical 5-HT terminals in rat brain could be prevented by administration of either chlormethiazole or dizocilpine. 2. Administration of MDMA (20 mg kg-1, i.p.) resulted in an approximate 30% loss of cortical and hippocampal 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) content 4 days later. Injection of chlormethiazole (50 mg kg-1) 5 min before and 55 min after the MDMA provided complete protection in both regions, while dizocilpine (1 mg kg-1, i.p.) protected only the hippocampus. 3. Administration of a single dose of chlormethiazole (100 mg kg-1) 20 min after the MDMA also provided complete protection to the hippocampus but not the cortex. This regime also attenuated the sustained hyperthermia (approx +2.5 degrees C) induced by the MDMA injection. 4. Injection of PCA (5 mg kg-1, i.p.) resulted in a 70% loss of 5-HT and 5-HIAA content in hippocampus and cortex 4 days later. Injection of chlormethiazole (100 mg kg-1, i.p.) or dizocilpine (1 mg kg-1, i.p.) 5 min before and 55 min after the PCA failed to protect against the neurotoxicity, nor was protection afforded by chlormethiazole when a lower dose of PCA (2.5 mg kg-1, i.p.) was given which produced only a 30% loss of 5-HT content. Chlormethiazole did prevent the hyperthermia induced by PCA (5 mg kg-1), while the lower dose of PCA (2.5 mg kg-1) did not produce a change in body temperature.5. Neither chlormethiazole nor dizocilpine prevented the neurotoxic loss of hippocampal or cortical 5-HT neurones measured 4 days following administration of fenfluramine (25 mg kg-1, i.p.).6. In general, chlormethiazole and dizocilpine were effective antagonists of the 5-HT-mediated behaviours of head weaving and forepaw treading which appeared following injection of all three

  18. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.

    Science.gov (United States)

    Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2016-10-01

    Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology.

    Science.gov (United States)

    Mercer, Linda D; Higgins, Gavin C; Lau, Chew L; Lawrence, Andrew J; Beart, Philip M

    2017-05-01

    Toxicity of 3,4-methylenedioxymethamphetamine (MDMA) towards biogenic amine neurons is well documented and in primate brain predominantly affects serotonin (5-HT) neurons. MDMA induces damage of 5-HT axons and nerve fibres and intracytoplasmic inclusions. Whilst its pathobiology involves mitochondrially-mediated oxidative stress, we hypothesised MDMA possessed the capacity to activate autophagy, a proteostatic mechanism for degradation of cellular debris. We established a culture of ventral pons from embryonic murine brain enriched in 5-HT neurons to explore mechanisms of MDMA neurotoxicity and recruitment of autophagy, and evaluated possible neuroprotective actions of the clinically approved agent rilmenidine. MDMA (100 μM-1 mM) reduced cell viability, like rapamycin (RM) and hydrogen peroxide (H 2 O 2 ), in a concentration- and time-dependent manner. Immunocytochemistry revealed dieback of 5-HT arbour: MDMA-induced injury was slower than for RM and H 2 O 2 , neuritic blebbing occurred at 48 and 72 h and Hoechst labelling revealed nuclear fragmentation with 100 μM MDMA. MDMA effected concentration-dependent inhibition of [ 3 H]5-HT uptake with 500 μM MDMA totally blocking transport. Western immunoblotting for microtubule associated protein light chain 3 (LC3) revealed autophagosome formation after treatment with MDMA. Confocal analyses and immunocytochemistry for 5-HT, Hoechst and LC3 confirmed MDMA induced autophagy with abundant LC3-positive puncta within 5-HT neurons. Rilmenidine (1 μM) protected against MDMA-induced injury and image analysis showed full preservation of 5-HT arbours. MDMA had no effect on GABA neurons, indicating specificity of action at 5-HT neurons. MDMA-induced neurotoxicity involves autophagy induction in 5-HT neurons, and rilmenidine via beneficial actions against toxic intracellular events represents a potential treatment for its pathobiology in sustained usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. MDMA ("ecstasy") abuse as an example of dopamine neuroplasticity.

    Science.gov (United States)

    Schenk, Susan

    2011-04-01

    A number of reviews have focused on the short- and long-term effects of MDMA and, in particular, on the persistent deficits in serotonin neurotransmission that accompany some exposure regimens. The mechanisms underlying the serotonin deficits and their relevance to various behavioral and cognitive consequences of MDMA use are still being debated. It has become clear, however, that some individuals develop compulsive and uncontrolled drug-taking that is consistent with abuse. For other drugs of abuse, this transition has been attributed to neuroadaptations in central dopamine mechanisms that occur as a function of repeated drug exposure. A question remains as to whether similar neuroadaptations occur as a function of exposure to MDMA and the impact of serotonin neurotoxicity in the transition from use to abuse. This review focuses specifically on this issue by first providing an overview of human studies and then reviewing the animal literature with specific emphasis on paradigms that measure subjective effects of drugs and self-administration as indices of abuse liability. It is suggested that serotonin deficits resulting from repeated exposure to MDMA self-administration lead to a sensitized dopaminergic response to the drug and that this sensitized response renders MDMA comparable to other drugs of abuse. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Motor delays in MDMA (ecstasy) exposed infants persist to 2 years.

    Science.gov (United States)

    Singer, Lynn T; Moore, Derek G; Min, Meeyoung O; Goodwin, Julia; Turner, John J D; Fulton, Sarah; Parrott, Andrew C

    2016-01-01

    Recreational use of 3,4 methylenedioxymethamphetamine (ecstasy, MDMA) is increasing worldwide. Its use by pregnant women causes concern due to potentially harmful effects on the developing fetus. MDMA, an indirect monoaminergic agonist and reuptake inhibitor, affects the serotonin and dopamine systems. Preclinical studies of fetal exposure demonstrate effects on learning, motor behavior, and memory. In the first human studies, we found prenatal MDMA exposure related to poorer motor development in the first year of life. In the present study we assessed the effects of prenatal exposure to MDMA on the trajectory of child development through 2 years of age. We hypothesized that exposure would be associated with poorer mental and motor outcomes. The DAISY (Drugs and Infancy Study, 2003-2008) employed a prospective longitudinal cohort design to assess recreational drug use during pregnancy and child outcomes in the United Kingdom. Examiners masked to drug exposures followed infants from birth to 4, 12, 18, and 24 months of age. MDMA, cocaine, alcohol, tobacco, cannabis, and other drugs were quantified through a standardized clinical interview. The Bayley Scales (III) of Mental (MDI) and Motor (PDI) Development and the Behavior Rating Scales (BRS) were primary outcome measures. Statistical analyses included a repeated measures mixed model approach controlling for multiple confounders. Participants were pregnant women volunteers, primarily white, of middle class socioeconomic status, average IQ, with some college education, in stable partner relationships. Of 96 women enrolled, children of 93 had at least one follow-up assessment and 81 (87%) had ≥ two assessments. Heavier MDMA exposure (M=1.3±1.4 tablets per week) predicted lower PDI (pMDMA use during pregnancy had motor delays from 4 months to two years of age that were not attributable to other drug or lifestyle factors. Women of child bearing age should be cautioned about the use of MDMA and MDMA-exposed infants

  2. MDMA does not alter responses to the Trier Social Stress Test in humans.

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; de Wit, Harriet

    2017-07-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a stimulant-psychedelic drug with unique social effects. It may dampen reactivity to negative social stimuli such as social threat and rejection. Perhaps because of these effects, MDMA has shown promise as a treatment for post-traumatic stress disorder (PTSD). However, the effect of single doses of MDMA on responses to an acute psychosocial stressor has not been tested. In this study, we sought to test the effects of MDMA on responses to stress in healthy adults using a public speaking task. We hypothesized that the drug would reduce responses to the stressful task. Volunteers (N = 39) were randomly assigned to receive placebo (N = 13), 0.5 mg/kg MDMA (N = 13), or 1.0 mg/kg MDMA (N = 13) during a stress and a no-stress session. Dependent measures included subjective reports of drug effects and emotional responses to the task, as well as salivary cortisol, heart rate, and blood pressure. The stress task produced its expected increase in physiological responses (cortisol, heart rate) and subjective ratings of stress in all three groups, and MDMA produced its expected subjective and physiological effects. MDMA alone increased ratings of subjective stress, heart rate, and saliva cortisol concentrations, but contrary to our hypothesis, it did not moderate responses to the Trier Social Stress Test. Despite its efficacy in PTSD and anxiety, MDMA did not reduce either the subjective or objective responses to stress in this controlled study. The conditions under which MDMA relieves responses to negative events or memories remain to be determined.

  3. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor

    Directory of Open Access Journals (Sweden)

    Drew J. Puxty

    2017-07-01

    Full Text Available Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol, which are elevated by MDMA. In order to investigate the role of the 5-HT2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg, combined with placebo or a single oral dose of the 5-HT2 receptor blocker ketanserin (40 mg. Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations. Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA.

  4. Direct and indirect cardiovascular actions of cathinone and MDMA in the anaesthetized rat.

    Science.gov (United States)

    Alsufyani, Hadeel A; Docherty, James R

    2015-07-05

    The stimulants cathinone (from Khat leaves) and methylenedioxymeth-amphetamine (MDMA) produce adrenoceptor mediated tachycardia and vasopressor actions that may be the result of direct receptor stimulation, actions on the noradrenaline transporter, and/or displacement of noradrenaline from nerve terminals. Effects of cathinone or MDMA were compared with those of the indirect sympathomimetic tyramine. Male Wistar rats were anaesthetized with pentobarbitone for blood pressure and heart rate recording. Some rats were sympathectomised by treatment with 6-hydroxydopamine. In the anaesthetised rat, cathinone, MDMA and tyramine (all 0.001-1 mg/kg) produced marked tachycardia, tyramine produced marked pressor responses and MDMA produced small pressor responses. The tachycardia to cathinone and MDMA was almost abolished by propranolol (1mg/kg). Pretreatment with cocaine (1mg/kg) did not significantly affect the tachycardia to cathinone or MDMA, but reduced the response to tyramine. However, in sympathectomised rats, the tachycardia to cathinone or MDMA was markedly attenuated, but the tachycardia to tyramine was only partially reduced. Blood pressure effects of tyramine and MDMA were also markedly attenuated by sympathectomy. The results demonstrate firstly that cocaine may not be the most suitable agent for assessing direct versus indirect agonism in cardiovascular studies. Secondly, the use of chemical sympathectomy achieved the desired goal of demonstrating that cardiac β-adrenoceptor mediated actions of cathinone and MDMA are probably largely indirect. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Cerebral (1)H MRS alterations in recreational 3, 4-methylenedioxymethamphetamine (MDMA, "ecstasy") users.

    Science.gov (United States)

    Chang, L; Ernst, T; Grob, C S; Poland, R E

    1999-10-01

    3,4-methylenedioxymethamphetamine (MDMA) is an illicit drug that has been associated with serotonergic axonal degeneration in animals. This study evaluates neurochemical abnormalities in recreational MDMA users. Twenty-two MDMA users and 37 normal subjects were evaluated with magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H MRS) in the mid-frontal, mid-occipital, and parietal brain regions. (1)H MRS showed normal N-acetyl (NA) compounds in all brain regions. The myo-inositol (MI) concentration (+16.3%, P = 0.04) and the MI to creatine (CR) ratio (+14.1%, P = 0. 01) were increased in the parietal white matter of MDMA users. The cumulative lifetime MDMA dose showed significant effects on [MI] in the parietal white matter and the occipital cortex. The normal NA concentration suggests a lack of significant neuronal injury in recreational MDMA users. However, the usage-related increase in MI suggests that exposure to MDMA, even at recreational doses, may cause increased glial content. J. Magn. Reson. Imaging 1999;10:521-526. Copyright 1999 Wiley-Liss, Inc.

  6. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Pontes, Helena; Sousa, Carla; Silva, Renata; Fernandes, Eduarda; Carmo, Helena; Remiao, Fernando; Carvalho, Felix; Bastos, Maria Lourdes

    2008-01-01

    Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 deg. C) and hyperthermic (40.5 deg. C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24 h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent

  7. Reduced efficacy of fluoxetine following MDMA ("Ecstasy")-induced serotonin loss in rats.

    Science.gov (United States)

    Durkin, Sarah; Prendergast, Alison; Harkin, Andrew

    2008-12-12

    Long-term serotonin (5-HT) neuronal loss is currently a major cause of concern associated with recreational use of the substituted amphetamine 3,4 methylenedioxymethamphetamine (MDMA; "Ecstasy"). Such loss may be problematic considering that psychiatric disorders such as depression and anxiety and responses to first line treatments for these disorders are associated with 5-HT. In this study the effects of prior exposure to MDMA on behavioural and central neurochemical changes induced by the serotonin (5-HT) re-uptake inhibitor and antidepressant fluoxetine were examined in rats. Animals were administered MDMA (10 mg/kg. i.p.) four times daily for two consecutive days. One week later the animals were subjected to treatment with fluoxetine (10 mg/kg, i.p.). Fluoxetine treatment groups received either acute (saline injections for 20 days followed by 3 fluoxetine treatments over 24 h) or chronic (once daily fluoxetine for 21 days) drug administration. Prior exposure to MDMA resulted in an attenuation of fluoxetine-induced swimming behaviour in the modified forced swimming test (FST); a behavioural test of antidepressant action. In parallel MDMA treatment resulted in significant regional depletions of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) accompanied by a reduction in cortical [3H] paroxetine binding to nerve terminal 5-HT transporters. MDMA-induced 5-HT loss was enhanced in animals following chronic fluoxetine administration. Elimination of fluoxetine and its metabolite norfluoxetine from the brain abolished this interaction between MDMA and fluoxetine treatment. Fluoxetine administration reduced both 5-HIAA and the 5-HIAA:5-HT metabolism ratio, which was attenuated in animals pre-treated with MDMA. Overall the results show that MDMA induces long-term 5-HT loss in the rodent brain and consequently diminishes behaviour and reductions in 5-HT metabolism induced by the antidepressant fluoxetine. These results have potential clinical relevance

  8. Evidence for chronically altered cortical serotonin function in human female recreational ecstasy (MDMA) polydrug users

    Science.gov (United States)

    Di Iorio, Christina R; Watkins, Tristan J; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Rogers, Baxter; Ansari, Mohammed S; Baldwin, Ronald M; Li, Rui; Kessler, Robert M; Salomon, Ronald M; Benningfield, Margaret; Cowan, Ronald L

    2012-01-01

    Context MDMA (ecstasy) is a popular recreational drug that produces loss of serotonin (5-HT) axons in animal models. Whether MDMA produces chronic reductions in 5-HT signaling in humans remains controversial. Objective To determine if MDMA use is associated with chronic reductions in serotonin signaling in female human cerebral cortex as reflected by increased 5-HT2A receptors. Design Cross sectional case-control study comparing 5-HT2A receptor levels in abstinent female MDMA polydrug users to MDMA-naive females; within-group design assessing the association of lifetime MDMA use and 5-HT2A receptors. Subjects had at least 90 days abstinence from MDMA use as verified by hair sampling. Cortical 5-HT2A receptor levels were assayed with the 5HT2A-specific Positron Emission Tomography (PET) radioligand [18F]setoperone. Setting Academic Medical Center Research Laboratory. Participants Volunteer female MDMA users (N=14) and MDMA-naive controls (N=10). Main exclusion criteria were non-drug-related DSM-IV axis I psychiatric disorders and general medical illness. Main Outcome Measure Cortical 5-HT2A receptor non-displaceable binding potential (5-HT2ABPND). Results MDMA users had increased 5-HT2ABPND in occipital-parietal (19.7%), temporal (20.5%), occipito-temporal-parietal (18.3%), frontal (16.6%), and fronto-parietal (18.5%) regions (pMDMA use associated positively with 5-HT2ABPND in fronto-parietal (β=0.665;p=0.007), occipito-temporal (β=0.798;p=0.002), fronto-limbic (β=0.634;p=0.024), and frontal (β=0.691;p=0.008) regions. In contrast, there were no regions in which MDMA use was inversely associated with receptor levels. There were no statistically significant effects of the duration of MDMA abstinence on 5-HT2ABPND. Conclusions Human recreational MDMA use is associated with long-lasting increases in 5-HT2A receptor density. 5-HT2A receptor levels correlate positively with lifetime MDMA use and do not decrease with abstinence. These results suggest that MDMA produces

  9. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    OpenAIRE

    Shimshoni, JA; Winkler, I; Golan, E; Nutt, D

    2016-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-...

  10. Making a medicine out of MDMA.

    Science.gov (United States)

    Sessa, Ben; Nutt, David

    2015-01-01

    From its first use 3,4,-methylenedioxymethamphetamine (MDMA) has been recognised as a drug with therapeutic potential. Research on its clinical utility stopped when it entered the recreational drug scene but has slowly resurrected in the past decade. Currently there is enough evidence for MDMA to be removed from its Schedule 1 status of 'no medical use' and moved into Schedule 2 (alongside other misused but useful medicines such as heroin and amphetamine). Such a regulatory move would liberate its use as a medicine for patients experiencing severe mental illnesses such as treatment-resistant post-traumatic stress disorder. Royal College of Psychiatrists.

  11. Strenuous exercise aggravates MDMA-induced skeletal muscle damage in mice

    International Nuclear Information System (INIS)

    Duarte, Jose A.; Leao, Anabela; Magalhaes, Jose; Ascensao, Antonio; Bastos, Maria L.; Amado, Francisco L.; Vilarinho, Laura; Quelhas, Dulce; Appell, Hans J.; Carvalho, Felix

    2005-01-01

    The aim of this study was to investigate the influence of ecstasy (MDMA) administration on body temperature and soleus muscle histology in exercised and non-exercised mice. Charles-River mice were distributed into four groups: Control (C), exercise (EX), MDMA treated (M), and M + EX. The treated animals received an i.p. injection (10 mg/kg) of MDMA (saline for C and EX), and the exercise consisted of a 90 min level run at a velocity of 900 m/h, immediately after the MDMA or saline administration. Body temperature was recorded every 30 min via subcutaneous implanted transponder. Animals were sacrificed 1.5, 25.5, and 49.5 h after i.p. injection and the soleus muscles were removed and processed for light and electron microscopy. The MDMA-treated animals showed a significant increase in body temperature (similar in M and M + EX groups), reaching the peak 90 min after i.p. administration; their temperature remained higher than control for more than 5 h. The EX group evidenced a similar and parallel, yet lower temperature increase during exercise and recovery. Morphological signs of damage were rarely encountered in the EX group; they were more pronounced in M group and even aggravated in M + EX group. In conclusion, MDMA and exercise per se increased body temperature but in conjunction did not have a cumulated effect. However, ecstasy and concomitant physical activity might severely accumulate with regard to skeletal muscle toxicity and may lead to rhabdomyolysis

  12. MDMA (Ecstasy) Decreases the Number of Neurons and Stem Cells in Embryonic Cortical Cultures

    DEFF Research Database (Denmark)

    Kindlundh-Högberg, Anna M S; Pickering, Chris; Wicher, Grzegorz

    2010-01-01

    Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated...... CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 muM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 muM) in NeuN-positive cells. By q......PCR, MDMA (200 muM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells...

  13. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.

    Science.gov (United States)

    Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M

    2016-02-01

    The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.

  14. Release of [3H]-monoamines from superfused rat striatal slices by methylenedioxymethamphetamine (MDMA)

    International Nuclear Information System (INIS)

    Levin, J.A.; Schmidt, C.J.; Lovenberg, W.

    1986-01-01

    MDMA is a phenylisopropylamine which is reported to have unique behavioral effects in man. Because of its structural similarities to the amphetamines the authors have compared the effects of MDMA and two related amphetamines on the spontaneous release of tritiated dopamine (DA) and serotonin (5HT) from superfused rat striatal slices. At concentrations of 10 -7 - 10 -5 M MDMA and the serotonergic neurotoxin, p-chloroamphetamine, were equipotent releasers of [ 3 H]5HT being approximately 10x more potent than methamphetamine. However, methamphetamine was the more potent releaser of [ 3 H]DA by a factor of approximately 10x. MDMA-induced release of both [ 5 H]5HT and [ 3 H]DA was Ca 2+ -independent and inhibited by selective monoamine uptake blockers suggesting a carrier-dependent release mechanism. Synaptosomal uptake experiments with (+)[ 3 H]MDMA indicated no specific uptake of the drug further suggesting the effect of uptake blockers may be to inhibit the carrier-mediated export of amines displaced by MDMA

  15. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA).

    Science.gov (United States)

    Young, Matthew B; Norrholm, Seth D; Khoury, Lara M; Jovanovic, Tanja; Rauch, Sheila A M; Reiff, Collin M; Dunlop, Boadie W; Rothbaum, Barbara O; Howell, Leonard L

    2017-10-01

    3,4-Methylenedioxymethamphetamine (MDMA) persistently improves symptoms of post-traumatic stress disorder (PTSD) when combined with psychotherapy. Studies in rodents suggest that these effects can be attributed to enhancement of fear memory extinction. Therefore, MDMA may improve the effects of exposure-based therapy for PTSD, particularly in treatment-resistant patients. However, given MDMA's broad pharmacological profile, further investigation is warranted before moving to a complex clinical population. We aimed to inform clinical research by providing a translational model of MDMA's effect, and elucidating monoaminergic mechanisms through which MDMA enhances fear extinction. We explored the importance of monoamine transporters targeted by MDMA to fear memory extinction, as measured by reductions in conditioned freezing and fear-potentiated startle (FPS) in mice. Mice were treated with selective inhibitors of individual monoamine transporters prior to combined MDMA treatment and fear extinction training. MDMA enhanced the lasting extinction of FPS. Acute and chronic treatment with a 5-HT transporter (5-HTT) inhibitor blocked MDMA's effect on fear memory extinction. Acute inhibition of dopamine (DA) and norepinephrine (NE) transporters had no effect. 5-HT release alone did not enhance extinction. Blockade of MDMA's effect by 5-HTT inhibition also downregulated 5-HT 2A -mediated behavior, and 5-HT 2A antagonism disrupted MDMA's effect on extinction. We validate enhancement of fear memory extinction by MDMA in a translational behavioral model, and reveal the importance of 5-HTT and 5-HT 2A receptors to this effect. These observations support future clinical research of MDMA as an adjunct to exposure therapy, and provide important pharmacological considerations for clinical use in a population frequently treated with 5-HTT inhibitors.

  16. Effects of repeated treatment with MDMA on working memory and behavioural flexibility in mice.

    Science.gov (United States)

    Viñals, Xavier; Maldonado, Rafael; Robledo, Patricia

    2013-03-01

    Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) produces dopaminergic neurotoxicity in mice. However, it is still not clear whether this exposure induces deficits in cognitive processing related to specific subsets of executive functioning. We evaluated the effects of neurotoxic and non-neurotoxic doses of MDMA (0, 3 and 30 mg/kg, twice daily for 4 days) on working memory and attentional set-shifting in mice, and changes in extracellular levels of dopamine (DA) in the striatum. Treatment with MDMA (30 mg/kg) disrupted performance of acquired operant alternation, and this impairment was still apparent 5 days after the last drug administration. Decreased alternation was not related to anhedonia because no differences were observed between groups in the saccharin preference test under similar experimental conditions. Correct responding on delayed alternation was increased 1 day after repeated treatment with MDMA (30 mg/kg), probably because of general behavioural quiescence. Notably, the high dose regimen of MDMA impaired attentional set-shifting related to an increase in total perseveration errors. Finally, basal extracellular levels of DA in the striatum were not modified in mice repeatedly treated with MDMA with respect to controls. However, an acute challenge with MDMA (10 mg/kg) failed to increase DA outflow in mice receiving the highest MDMA dose (30 mg/kg), corroborating a decrease in the functionality of DA transporters. Seven days after this treatment, the effects of MDMA on DA outflow were recovered. These results suggest that repeated neurotoxic doses of MDMA produce lasting impairments in recall of alternation behaviour and reduce cognitive flexibility in mice. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  17. MDMA enhances "mind reading" of positive emotions and impairs "mind reading" of negative emotions.

    Science.gov (United States)

    Hysek, Cédric M; Domes, Gregor; Liechti, Matthias E

    2012-07-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) increases sociability. The prosocial effects of MDMA may result from the release of the "social hormone" oxytocin and associated alterations in the processing of socioemotional stimuli. We investigated the effects of MDMA (125 mg) on the ability to infer the mental states of others from social cues of the eye region in the Reading the Mind in the Eyes Test. The study included 48 healthy volunteers (24 men, 24 women) and used a double-blind, placebo-controlled, within-subjects design. A choice reaction time test was used to exclude impairments in psychomotor function. We also measured circulating oxytocin and cortisol levels and subjective drug effects. MDMA differentially affected mind reading depending on the emotional valence of the stimuli. MDMA enhanced the accuracy of mental state decoding for positive stimuli (e.g., friendly), impaired mind reading for negative stimuli (e.g., hostile), and had no effect on mind reading for neutral stimuli (e.g., reflective). MDMA did not affect psychomotor performance, increased circulating oxytocin and cortisol levels, and produced subjective prosocial effects, including feelings of being more open, talkative, and closer to others. The shift in the ability to correctly read socioemotional information toward stimuli associated with positive emotional valence, together with the prosocial feelings elicited by MDMA, may enhance social approach behavior and sociability when MDMA is used recreationally and facilitate therapeutic relationships in MDMA-assisted psychotherapeutic settings.

  18. MDMA-assisted therapy: A new treatment model for social anxiety in autistic adults.

    Science.gov (United States)

    Danforth, Alicia L; Struble, Christopher M; Yazar-Klosinski, Berra; Grob, Charles S

    2016-01-04

    The first study of 3,4-methylenedioxymethamphetamine (MDMA)-assisted therapy for the treatment of social anxiety in autistic adults commenced in the spring of 2014. The search for psychotherapeutic options for autistic individuals is imperative considering the lack of effective conventional treatments for mental health diagnoses that are common in this population. Serious Adverse Events (SAEs) involving the administration of MDMA in clinical trials have been rare and non-life threatening. To date, MDMA has been administered to over 1133 individuals for research purposes without the occurrence of unexpected drug-related SAEs that require expedited reporting per FDA regulations. Now that safety parameters for limited use of MDMA in clinical settings have been established, a case can be made to further develop MDMA-assisted therapeutic interventions that could support autistic adults in increasing social adaptability among the typically developing population. As in the case with classic hallucinogens and other psychedelic drugs, MDMA catalyzes shifts toward openness and introspection that do not require ongoing administration to achieve lasting benefits. This infrequent dosing mitigates adverse event frequency and improves the risk/benefit ratio of MDMA, which may provide a significant advantage over medications that require daily dosing. Consequently, clinicians could employ new treatment models for social anxiety or similar types of distress administering MDMA on one to several occasions within the context of a supportive and integrative psychotherapy protocol. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    Science.gov (United States)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  20. Simultaneous quantification of delta-9-THC, THC-acid A, CBN and CBD in seized drugs using HPLC-DAD.

    Science.gov (United States)

    Ambach, Lars; Penitschka, Franziska; Broillet, Alain; König, Stefan; Weinmann, Wolfgang; Bernhard, Werner

    2014-10-01

    An HPLC-DAD method for the quantitative analysis of Δ(9)-tetrahydrocannabinol (THC), Δ(9)-tetrahydrocannabinolic acid-A (THCA-A), cannabidiol (CBD), and cannabinol (CBN) in confiscated cannabis products has been developed, fully validated and applied to analyse seized cannabis products. For determination of the THC content of plant material, this method combines quantitation of THCA-A, which is the inactive precursor of THC, and free THC. Plant material was dried, homogenized and extracted with methanol by ultrasonication. Chromatographic separation was achieved with a Waters Alliance 2695 HPLC equipped with a Merck LiChrospher 60 RP-Select B (5μm) precolumn and a Merck LiChroCart 125-4 LiChrospher 60 RP-Select B (5μm) analytical column. Analytes were detected and quantified using a Waters 2996 photo diode array detector. This method has been accepted by the public authorities of Switzerland (Bundesamt für Gesundheit, Federal Office of Public Health), and has been used to analyse 9092 samples since 2000. Since no thermal decarboxylation of THCA-A occurs, the method is highly reproducible for different cannabis materials. Two calibration ranges are used, a lower one for THC, CBN and CBD, and a higher one for THCA-A, due to its dominant presence in fresh plant material. As provider of the Swiss proficiency test, the robustness of this method has been tested over several years, and homogeneity tests even in the low calibration range (1%) show high precision (RSD≤4.3%, except CBD) and accuracy (bias≤4.1%, except CBN). Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms?

    Science.gov (United States)

    Feduccia, Allison A; Mithoefer, Michael C

    2018-06-08

    MDMA-assisted psychotherapy for treatment of PTSD has recently progressed to Phase 3 clinical trials and received Breakthrough Therapy designation by the FDA. MDMA used as an adjunct during psychotherapy sessions has demonstrated effectiveness and acceptable safety in reducing PTSD symptoms in Phase 2 trials, with durable remission of PTSD diagnosis in 68% of participants. The underlying psychological and neurological mechanisms for the robust effects in mitigating PTSD are being investigated in animal models and in studies of healthy volunteers. This review explores the potential role of memory reconsolidation and fear extinction during MDMA-assisted psychotherapy. MDMA enhances release of monoamines (serotonin, norepinephrine, dopamine), hormones (oxytocin, cortisol), and other downstream signaling molecules (BDNF) to dynamically modulate emotional memory circuits. By reducing activation in brain regions implicated in the expression of fear- and anxiety-related behaviors, namely the amygdala and insula, and increasing connectivity between the amygdala and hippocampus, MDMA may allow for reprocessing of traumatic memories and emotional engagement with therapeutic processes. Based on the pharmacology of MDMA and the available translational literature of memory reconsolidation, fear learning, and PTSD, this review suggests a neurobiological rationale to explain, at least in part, the large effect sizes demonstrated for MDMA in treating PTSD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information.

    Science.gov (United States)

    Ranganathan, Mohini; Radhakrishnan, Rajiv; Addy, Peter H; Schnakenberg-Martin, Ashley M; Williams, Ashley H; Carbuto, Michelle; Elander, Jacqueline; Pittman, Brian; Andrew Sewell, R; Skosnik, Patrick D; D'Souza, Deepak Cyril

    2017-10-03

    Cannabis and agonists of the brain cannabinoid receptor (CB 1 R) produce acute memory impairments in humans. However, the extent to which cannabinoids impair the component processes of encoding and retrieval has not been established in humans. The objective of this analysis was to determine whether the administration of Δ 9 -Tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, impairs encoding and/or retrieval of verbal information. Healthy subjects were recruited from the community. Subjects were administered the Rey-Auditory Verbal Learning Test (RAVLT) either before administration of THC (experiment #1) (n=38) or while under the influence of THC (experiment #2) (n=57). Immediate and delayed recall on the RAVLT was compared. Subjects received intravenous THC, in a placebo-controlled, double-blind, randomized manner at doses known to produce behavioral and subjective effects consistent with cannabis intoxication. Total immediate recall, short delayed recall, and long delayed recall were reduced in a statistically significant manner only when the RAVLT was administered to subjects while they were under the influence of THC (experiment #2) and not when the RAVLT was administered prior. THC acutely interferes with encoding of verbal memory without interfering with retrieval. These data suggest that learning information prior to the use of cannabis or cannabinoids is not likely to disrupt recall of that information. Future studies will be necessary to determine whether THC impairs encoding of non-verbal information, to what extent THC impairs memory consolidation, and the role of other cannabinoids in the memory-impairing effects of cannabis. Cannabinoids, Neural Synchrony, and Information Processing (THC-Gamma) http://clinicaltrials.gov/ct2/show/study/NCT00708994 NCT00708994 Pharmacogenetics of Cannabinoid Response http://clinicaltrials.gov/ct2/show/NCT00678730 NCT00678730. Copyright © 2017. Published by Elsevier Inc.

  3. Detection of "bath salts" and other novel psychoactive substances in hair samples of ecstasy/MDMA/"Molly" users.

    Science.gov (United States)

    Palamar, Joseph J; Salomone, Alberto; Vincenti, Marco; Cleland, Charles M

    2016-04-01

    Ecstasy (MDMA) in the US is commonly adulterated with other drugs, but research has not focused on purity of ecstasy since the phenomenon of "Molly" (ecstasy marketed as pure MDMA) arose in the US. We piloted a rapid electronic survey in 2015 to assess use of novel psychoactive substances (NPS) and other drugs among 679 nightclub/festival-attending young adults (age 18-25) in New York City. A quarter (26.1%) of the sample provided a hair sample to be analyzed for the presence of select synthetic cathinones ("bath salts") and some other NPS. Samples were analyzed using fully validated UHPLC-MS/MS methods. To examine consistency of self-report, analyses focused on the 48 participants with an analyzable hair sample who reported lifetime ecstasy/MDMA/Molly use. Half (50.0%) of the hair samples contained MDMA, 47.9% contained butylone, and 10.4% contained methylone. Of those who reported no lifetime use of "bath salts", stimulant NPS, or unknown pills or powders, about four out of ten (41.2%) tested positive for butylone, methylone, alpha-PVP, 5/6-APB, or 4-FA. Racial minorities were more likely to test positive for butylone or test positive for NPS after reporting no lifetime use. Frequent nightclub/festival attendance was the strongest predictor of testing positive for MDMA, butylone, or methylone. Results suggest that many ecstasy-using nightclub/festival attendees may be unintentionally using "bath salts" or other NPS. Prevention and harm reduction education is needed for this population and "drug checking" (e.g., pill testing) may be beneficial for those rejecting abstinence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Thermodynamics of the vaporization of non-stoichiometric thorium monocarbide ThC1±x

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Koyama, Tadafumi; Takahashi, Yoichi

    1989-01-01

    Vaporization thermodynamics of thorium monocarbide phase ThC 1±x was studied by mass spectrometric Knudsen effusion method at the compositions of ThC 0.891 , ThC 0.975 , ThC 1.007 and ThC 1.074 . The partial vapor pressure of Th(g) and activities of Th and C in ThC 1±x were determined at 2060 to 2330 K. Gibbs energies of formation of ThC 1±x were also determined. Congruent vaporization composition of ThC 1±x was evaluated at 2300 K to be ThC 1.09 . Congruent vaporization and congruent effusing compositions were defined explicitly and their characteristics brought out. (orig.)

  5. MDMA ("Ecstasy") and its association with cerebrovascular accidents: preliminary findings

    NARCIS (Netherlands)

    Reneman, L.; Habraken, J. B.; Majoie, C. B.; Booij, J.; den Heeten, G. J.

    2000-01-01

    BACKGROUND AND PURPOSE: Abuse of the popular recreational drug "Ecstasy" (MDMA) has been linked to the occurrence of cerebrovascular accidents. It is known that MDMA alters brain serotonin (5-HT) concentrations and that brain postsynaptic 5-HT(2) receptors play a role in the regulation of brain

  6. Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies.

    Science.gov (United States)

    Kuypers, Kim Pc; Dolder, Patrick C; Ramaekers, Johannes G; Liechti, Matthias E

    2017-05-01

    Previous placebo-controlled experimental studies have shown that a single dose of MDMA can increase emotional empathy in the multifaceted empathy test (MET) without affecting cognitive empathy. Although sufficiently powered to detect main effects of MDMA, these studies were generally underpowered to also validly assess contributions of additional parameters, such as sex, drug use history, trait empathy and MDMA or oxytocin plasma concentrations. The present study examined the robustness of the MDMA effect on empathy and investigated the moderating role of these additional parameters. Participants ( n = 118) from six placebo-controlled within-subject studies and two laboratories were included in the present pooled analysis. Empathy (MET), MDMA and oxytocin plasma concentrations were assessed after oral administration of MDMA (single dose, 75 or 125 mg). Trait empathy was assessed using the interpersonal reactivity index. We confirmed that MDMA increased emotional empathy at both doses without affecting cognitive empathy. This MDMA-related increase in empathy was most pronounced during presentation of positive emotions as compared with negative emotions. MDMA-induced empathy enhancement was positively related to MDMA blood concentrations measured before the test, but independent of sex, drug use history and trait empathy. Oxytocin concentrations increased after MDMA administration but were not associated with behavioral effects. The MDMA effects on emotional empathy were stable across laboratories and doses. Sex did not play a moderating role in this effect, and oxytocin levels, trait empathy and drug use history were also unrelated. Acute drug exposure was of significant relevance in the MDMA-induced emotional empathy elevation.

  7. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Dina Popova

    Full Text Available 3,4-methylenedioxymethamphetamine (MDMA; ecstasy is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT, that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A. The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  8. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Science.gov (United States)

    Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz; Jacobsson, Stig O P

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  9. Strong increase in total delta-THC in cannabis preparations sold in Dutch coffee shops.

    Science.gov (United States)

    Pijlman, F T A; Rigter, S M; Hoek, J; Goldschmidt, H M J; Niesink, R J M

    2005-06-01

    The total concentration of THC has been monitored in cannabis preparations sold in Dutch coffee shops since 1999. This annual monitoring was issued by the Ministry of Health after reports of increased potency. The level of the main psychoactive compound, Delta9-tetrahydrocannabinol (THC), is measured in marijuana and hashish. A comparison is made between imported and Dutch preparations, and between seasons. Samples of cannabis preparations from randomly selected coffee shops were analyzed using gas chromatography (GC-FID) for THC, CBD and CBN. In 2004, the average THC level of Dutch home-grown marijuana (Nederwiet) (20.4% THC) was significantly higher than that of imported marijuana (7.0% THC). Hashish derived from Dutch marijuana (Nederhasj) contained 39.3% THC in 2004, compared with 18.2% THC in imported hashish. The average THC percentage of Dutch marijuana, Dutch hashish and imported hashish was significantly higher than in previous years. It nearly doubled over 5 years. During this period, the THC percentage in imported marijuana remained unchanged. A higher price had to be paid for cannabis with higher levels of THC. Whether the increase in THC levels causes increased health risks for users can only be concluded when more data are available on adjusted patterns of use, abuse liability, bioavailability and levels of THC in the brain.

  10. MDMA (ecstasy/molly) use among African Americans: The perceived influence of hip-hop/rap music.

    Science.gov (United States)

    Rigg, Khary K; Estreet, Anthony T

    2018-02-12

    Over the past two decades, the demographic profile of MDMA (ecstasy/molly) users has changed. In particular, African American MDMA use has risen in some cities. One explanation of this new trend is the drug's recent popularity (as molly) in hip-hop/rap (HHR) music. Several top rappers endorse the drug as a way to have fun or get women "loose." There are currently no studies, however, that investigate the extent to which African American MDMA users listen to HHR music or the influence that these pro-MDMA messages have on their use of the drug. To address this gap, the current study used survey data to (a) identify the extent to which HHR music is listened to by African American MDMA users and (b) assess the perceived influence of HHR music on their decision to begin using. Qualitative interview data are also presented to contextualize the influence of these messages on their use of MDMA. The findings of this study suggest that African American MDMA users are high consumers of HHR music and that pro-MDMA messages in HHR music are influencing their expectations of the drug and their decision to initiate use. These findings add to the limited amount of research on African American MDMA use and have the potential to inform future interventions.

  11. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  12. Amphetamines and cannabinoids testing in hair: Evaluation of results from a two-year period.

    Science.gov (United States)

    Burgueño, María José; Alonso, Amaya; Sánchez, Sergio

    2016-08-01

    This paper presents an overview of a set of amphetamines and cannabinoids tests performed on head hair samples from the Medico-Legal sector at the Madrid Department of the Spanish National Institute of Toxicology and Forensic Sciences during the years 2013 and 2014. The hair samples were tested for five stimulant phenylalkylamine derivatives -amphetamine (AP), methamphetamine (MA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxy-amphetamine (MDA), and 3,4-methylenedioxy-N-ethylamphetamine (MDEA)- and/or two cannabinoids-Δ(9)-tetrahydrocannabinol (THC) and cannabinol (CBN)- by gas chromatography equipped with mass spectrometry detection in selected-ion monitoring mode, applying a method accredited to ISO/IEC 17025 standards. The test results were interpreted according to the confirmation cut-offs proposed by the Society of Hair Testing (SoHT) to identify chronic drug use. The ratios of positive results were studied in relation to gender, age, hair colour, dyeing and length of the tested samples to assess the independence from these variables or the association with them. Low, medium and high ranges of concentration were also estimated for each drug. 21.94% of the 2954 hair samples tested for phenylalkylamine derivatives were positive for one or more substances. 16.38% of the samples were positive for AP, 12.09% for MDMA and only 0.44% for MA. 6.60% of the tested samples were positive for AP/MDMA combination. A total of 3178 samples were tested for cannabinoids, resulting in 53.40% positive for THC and CBN. Simultaneous tests for phenylalkylamine derivatives and cannabinoids were performed in 2931 of the samples; 14.94% of them were positive for THC, CBN, and one or more amphetamines. According to the results from the statistical analysis, the use of THC and MDMA vary with age and gender among the Medico-Legal sector in an extended area of Spain, while the use of AP appears to be independent of these variables. On the other hand, the results of THC in

  13. Behavioral Effects and Pharmacokinetics of (±)-3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) after Intragastric Administration to Baboons

    OpenAIRE

    Goodwin, Amy K.; Mueller, Melanie; Shell, Courtney D.; Ricaurte, George A.; Ator, Nancy A.

    2013-01-01

    (±)-3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) is a popular drug of abuse. We aimed to characterize the behavioral effects of intragastric MDMA in a species closely related to humans and to relate behavioral effects to plasma MDMA and metabolite concentrations. Single doses of MDMA (0.32–7.8 mg/kg) were administered via an intragastric catheter to adult male baboons (N = 4). Effects of MDMA on food-maintained responding were assessed over a 20-hour period, whereas untrained behaviors...

  14. Effects of MDMA alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin on pupillary light reflex.

    Science.gov (United States)

    Hysek, Cédric M; Liechti, Matthias E

    2012-12-01

    Pupillometry can be used to characterize autonomic drug effects. This study was conducted to determine the autonomic effects of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), administered alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin, on pupillary function. Infrared pupillometry was performed in five placebo-controlled randomized studies. Each study included 16 healthy subjects (eight men, eight women) who received placebo-MDMA (125 mg), placebo-placebo, pretreatment-placebo, or pretreatment-MDMA using a crossover design. MDMA produced mydriasis, prolonged the latency, reduced the response to light, and shortened the recovery time. The impaired reflex response was associated with subjective, cardiostimulant, and hyperthermic drug effects and returned to normal within 6 h after MDMA administration when plasma MDMA levels were still high. Mydriasis was associated with changes in plasma MDMA concentration over time and longer-lasting. Both reboxetine and duloxetine interacted with the effects of MDMA on pupillary function. Clonidine did not significantly reduce the mydriatic effects of MDMA, although it produced miosis when administered alone. Carvedilol and doxazosin did not alter the effects of MDMA on pupillary function. The MDMA-induced prolongation of the latency to and reduction of light-induced miosis indicate indirect central parasympathetic inhibition, and the faster recovery time reflects an increased sympathomimetic action. Both norepinephrine and serotonin mediate the effects of MDMA on pupillary function. Although mydriasis is lasting and mirrors the plasma concentration-time curve of MDMA, the impairment in the reaction to light is associated with the subjective and other autonomic effects of MDMA and exhibits acute tolerance.

  15. Nonlinear Pharmacokinetics of (±)3,4-Methylenedioxymethamphetamine (MDMA) and Its Pharmacodynamic Consequences in the Rat

    Science.gov (United States)

    Concheiro, Marta; Baumann, Michael H.; Scheidweiler, Karl B.; Rothman, Richard B.; Marrone, Gina F.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA’s safety are needed. We evaluated MDMA’s pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography–tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P MDMA’s behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses. PMID:24141857

  16. Cognitive and behavioural effects induced by social stress plus MDMA administration in mice.

    Science.gov (United States)

    García-Pardo, M P; Roger-Sánchez, C; Rodríguez-Arias, M; Miñarro, J; Aguilar, M A

    2017-02-15

    Adverse life experiences such as social stress may make an individual more vulnerable to drug addiction and mental disorders associated with drug consumption. The present work aimed to evaluate the effects of stress induced by acute social defeat combined with the administration of 3,4-methylenedioxymethamphetamine (MDMA) on depression-like behaviour, memory function and motor response to drug in late adolescent male mice. Two groups of mice were exposed to social defeat (SD) during four encounters with an aggressive co-specific, which took place on alternate days. Immediately after defeat, animals were treated with saline or MDMA 10mg/kg (SD+SAL and SD+MDMA). In control groups, mice were placed in a neutral cage without an opponent (Control+SAL, Control+MDMA). Corticosterone levels and temperature were measured on the last day of this phase. During the following days, the behaviour of the animals was evaluated in the tail suspension test (an animal model of depression), memory tasks (passive avoidance and object recognition) and, after administration of 5mg/kg of MDMA, in the open-field test. Exposure of adult mice to acute social defeat plus MDMA increased immobility in the tail suspension test (depression-like behaviour), produced cognitive impairment, and reduced the motor response to MDMA. An increase in corticosterone levels and a decrease of temperature were also observed. As hypothesised, a combination of social stress and consumption of MDMA increases the risk of developing mental and cognitive disorders. Our results support the idea that stress is a common contributing factor to the high rate of comorbidity between substance abuse and mental disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p 1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Detection time for THC in oral fluid after frequent cannabis smoking.

    Science.gov (United States)

    Andås, Hilde T; Krabseth, Hege-Merete; Enger, Asle; Marcussen, Bjarne N; Haneborg, An-Magritt; Christophersen, Asbjørg S; Vindenes, Vigdis; Øiestad, Elisabeth L

    2014-12-01

    The use of oral fluid for detecting drugs of abuse has become increasingly more frequent. Few studies have, however, investigated the detection times for drugs of abuse in oral fluid, compared with that of in urine or in blood. Cannabis is the world's most widely used drug of abuse, and the detection times for cannabis, in different types of matrixes, are therefore important information to the laboratories or institutions performing and evaluating drugs of abuse analyses. It is well known that frequent use of high dosages of cannabis, for longer periods of time, might lead to prolonged detection times for THC-COOH in urine. Cannabis intake is detected in oral fluid as THC, and a positive finding is considered to be a result of recent smoking, although some studies have already reported longer detection times. The aim of this study was to investigate the detection time for THC in oral fluid, collected from drug addicts admitted for detoxification. Findings in oral fluid were compared with findings in urine, among 26 patients admitted to a closed detoxification unit. The study, being the first in doing so, describes the concentration-time profiles for THC in oral fluid among chronic cannabis users, during monitored abstinence, using the Intercept collection kit. The study also includes the concentration-time profiles for creatinine-corrected THC-COOH ratios in urine samples, included to monitor for the possibility of new intakes. THC was detected in oral fluid collected from 11 of the 26 patients in the study. The elimination curves for THC in oral fluid revealed that negative samples could be interspersed among positive samples several days after cessation, whereas the THC-COOH concentrations in urine were decreasing. THC was, in this study, detected in oral fluid for up to 8 days after admission. The study shows that frequent use of high dosages of cannabis may lead to prolonged detection times, and that positive samples can be interspersed among negative samples

  19. Dissociable effects of a single dose of ecstasy (MDMA) on psychomotor skills and attentional performance.

    Science.gov (United States)

    Lamers, C T J; Ramaekers, J G; Muntjewerff, N D; Sikkema, K L; Samyn, N; Read, N L; Brookhuis, K A; Riedel, W J

    2003-12-01

    Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is a psychoactive recreational drug widely used by young people visiting dance parties, and has been associated with poor cognitive function. The current study assessed the influence of a single dose of MDMA 75 mg and alcohol 0.5 g/kg on cognition, psychomotor performance and driving-related task performance. Twelve healthy recreational ecstasy users participated in an experimental study conducted according to a double-blind, double-dummy, placebo-controlled three-way cross-over design. MDMA improved psychomotor performance, such as movement speed and tracking performance in a single task, as well as in a divided attention task. MDMA impaired the ability to predict object movement under divided attention. However, the inability to accurately predict object movement after MDMA may indicate impairment of particular performance skills relevant to driving. There was no effect of MDMA on visual search, planning or retrieval from semantic memory.

  20. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  1. Effects of MDMA on blood glucose levels and brain glucose metabolism

    International Nuclear Information System (INIS)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M.; Arango, C.; Ricaurte, G.

    2007-01-01

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  2. Role of nitric oxide pathway in the conditioned rewarding effects of MDMA in mice.

    Science.gov (United States)

    García-Pardo, M P; Rodríguez-Arias, M; Miñarro, J; Aguilar, M A

    2017-07-14

    It is estimated that 2.1 million young adults used MDMA/Ecstasy in the last year in Europe. Vulnerable subjects can develop dependence after MDMA abuse but currently there does not exist an effective treatment for this disorder. The nitric oxide (NO) pathway seems to have an important role on the rewarding effects of different drugs and has been proposed as a new pharmacological treatment for psychostimulant addiction. In the present study, we intend to evaluate whether the blockade of the NO synthesis (NOS) interferes with the rewarding effects of MDMA in the conditioned preference place (CPP) paradigm in young adult male mice. Our results indicated that mice treated with 7-nitroindazole (a NOS inhibitor) did not show CPP after conditioning with MDMA (1.25mg/kg). These results demonstrated the role of the NO pathway in the rewarding effects of MDMA and suggested that the manipulation of this pathway could be a new therapeutic option for MDMA abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The combined effects of 3,4-methylenedioxymethamphetamine (MDMA) and selected substituted methcathinones on measures of neurotoxicity.

    Science.gov (United States)

    Miner, Nicholas B; O'Callaghan, James P; Phillips, Tamara J; Janowsky, Aaron

    2017-05-01

    The rise in popularity of substituted methcathinones (aka "bath salts") has increased the focus on their neurotoxic effects. Two commonly abused methcathinones, 3,4-methylenedioxymethcathinone (methylone, MDMC) and 3,4-methylenedioxypyrovalerone (MDPV), are often concomitantly ingested with the illicit drug 3,4-methylenedioxymethamphetamine (MDMA). To examine potential neurotoxic effects of these drug combinations, C57BL/6J mice were administered 4 i.p. injection of the drugs, at 2h intervals, either singularly: MDMA 15 or 30mg/kg, methylone 20mg/kg, MDPV 1mg/kg; or in combination: methylone/MDMA 20/15mg/kg, MDPV/MDMA 1/15mg/kg. Drug effects on thermoregulation were characterized and striatal tissue analyzed after 2 or 7days for dopamine (DA) and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. Two days following drug administration, DA and TH were decreased only in the MDMA 30mg/kg group, whereas GFAP expression was dose-dependently increased by MDMA alone. While the combination of the methcathinones with the lower MDMA dose did not affect DA or TH levels, both blocked the MDMA-induced increase in GFAP expression. Seven days following drug administration, there were no significant differences in DA, TH, or GFAP for any treatment group, indicating that changes in DA, TH, and GFAP were transient. Five of the six drug groups exhibited acute hypothermia followed by gradually increasing temperatures. Animals treated with MDPV did not exhibit these biphasic temperature changes, and resembled the saline group. These results indicate that specific effects of both methylone and MDPV on DA depletion or astrocyte activation in the striatum are not additive with effects of MDMA, but block astrogliosis caused by MDMA alone. Additionally, MDPV modulates thermoregulation through a different mechanism than methylone or MDMA. Published by Elsevier Inc.

  4. Effects of MDMA (ecstasy), and multiple drugs use on (simulated) driving performance and traffic safety

    NARCIS (Netherlands)

    Brookhuis, KA; de Waard, D; Samyn, N

    Rationale. The effects of MDMA on driving behaviour are not clear, since the direct effects of MDMA on cognitive performance are reported as not generally negative. Objectives. To assess in an advanced driving simulator acute effects on simulated driving behaviour and heart rate of MDMA, and effects

  5. Evaluation of drug incorporation into hair segments and nails by enantiomeric analysis following controlled single MDMA intakes.

    Science.gov (United States)

    Madry, Milena M; Steuer, Andrea E; Hysek, Cédric M; Liechti, Matthias E; Baumgartner, Markus R; Kraemer, Thomas

    2016-01-01

    Incorporation rates of the enantiomers of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA) into hair and nails were investigated after controlled administration. Fifteen subjects without MDMA use received two doses of 125 mg of MDMA. Hair, nail scrapings, and nail clippings were collected 9-77 days after the last administration (median 20 days). Hair samples were analyzed in segments of 1- to 2-cm length. After chiral derivatization with N-(2,4-dinitro-5-fluorophenyl)-L-valinamide, MDMA and MDA diastereomers were analyzed by liquid chromatography-tandem mass spectrometry. Highest concentrations in hair segments corresponded to the time of MDMA intake. They ranged from 101 to 3200 pg/mg and 71 to 860 pg/mg for R- and S-MDMA, and from 3.2 to 116 pg/mg and 4.4 to 108 pg/mg for R- and S-MDA, respectively. MDMA and MDA concentrations in nail scrapings and clippings were significantly lower than in hair samples. There was no significant difference between enantiomeric ratios of R/S-MDMA and R/S-MDA in hair and nail samples (medians 2.2-2.4 for MDMA and 0.85-0.95 for MDA). Metabolite ratios of MDA to MDMA were in the same range in hair and nail samples (medians 0.044-0.055). Our study demonstrates that administration of two representative doses of MDMA was detected in the hair segments corresponding to the time of intake based on average hair growth rates. MDMA was detected in all nail samples regardless of time passed after intake. Comparable R/S ratios in hair and nail samples may indicate that incorporation mechanisms into both matrices are comparable.

  6. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users

    OpenAIRE

    Cowan, Ronald L.; Bolo, Nicolas R.; Dietrich, Mary; Haga, Erica; Lukas, Scott E.; Renshaw, Perry F.

    2007-01-01

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent...

  7. Detection of “Bath Salts” and Other Novel Psychoactive Substances in Hair Samples of Ecstasy/MDMA/“Molly” Users

    Science.gov (United States)

    Palamar, Joseph J.; Salomone, Alberto; Vincenti, Marco; Cleland, Charles M.

    2016-01-01

    Background Ecstasy (MDMA) in the US is commonly adulterated with other drugs, but research has not focused on purity of ecstasy since the phenomenon of “Molly” (ecstasy marketed as pure MDMA) arose in the US. Methods We piloted a rapid electronic survey in 2015 to assess use of novel psychoactive substances (NPS) and other drugs among 679 nightclub/festival-attending young adults (age 18–25) in New York City. A quarter (26.1%) of the sample provided a hair sample to be analyzed for the presence of select synthetic cathinones (“bath salts”) and some other NPS. Samples were analyzed using fully validated UHPLC-MS/MS methods. To examine consistency of self-report, analyses focused on the 48 participants with an analyzable hair sample who reported lifetime ecstasy/MDMA/Molly use. Results Half (50.0%) of the hair samples contained MDMA, 47.9% contained butylone, and 10.4% contained methylone. Of those who reported no lifetime use of “bath salts”, stimulant NPS, or unknown pills or powders, about four out of ten (41.2%) tested positive for butylone, methylone, alpha-PVP, 5/6-APB, or 4-FA. Racial minorities were more likely to test positive for butylone or test positive for NPS after reporting no lifetime use. Frequent nightclub/festival attendance was the strongest predictor of testing positive for MDMA, butylone, or methylone. Discussion Results suggest that many ecstasy-using nightclub/festival attendees may be unintentionally using “bath salts” or other NPS. Prevention and harm reduction education is needed for this population and “drug checking” (e.g., pill testing) may be beneficial for those rejecting abstinence. PMID:26883685

  8. Repeatability of oral fluid collection methods for THC measurement

    NARCIS (Netherlands)

    Houwing, Sjoerd; Smink, Beitske E.; Legrand, Sara-Ann; Mathijssen, Rene P. M.; Verstraete, Alain G.; Brookhuis, Karel A.

    2012-01-01

    Study objectives: To determine the influence of sample collection for two different collection methods on THC concentrations and to compare THC concentrations collected by both methods. Methods: A total of 136 pairs of oral fluid samples from subjects who had recently smoked Cannabis were obtained

  9. Ecstasy (MDMA) and oral health

    NARCIS (Netherlands)

    Brand, H.S.; Dun, S.N.; Nieuw Amerongen, A.V.

    2008-01-01

    3,4-methylenedioxymethamphetamine (MDMA), more commonly known as 'ecstasy' or XTC, is frequently used by young adults in the major cities. Therefore, it is likely that dentists might be confronted with individuals who use ecstasy. This review describes systemic and oral effects of ecstasy.

  10. Radioimmunoanalysis of delta-9-THC in blood by means of an 125I tracer

    International Nuclear Information System (INIS)

    Owens, S.M.; McBay, A.J.; Reisner, H.M.

    1982-01-01

    A radioimmunoassay for delta-9-THC in plasma, whole blood, or hemolyzed blood specimens has been presented. Samples and standards were diluted with methanol and centrifuged. An aliquot of the supernatant fluid was incubated with RIA buffer, 125 I-labeled delta-8-THC and rabbit anti-THC serum. Solid phase goat anti-rabbit immunoglobulins were added to separate bound from free THC. After centrifugation the supernatant fluid was aspirated and the radioactivity of the precipitate was counted in a gamma counter. The concentration of THC was calculated from a standard curve using the logit-log transformation of the average counts of duplicate tubes. The assay had several advantages. Methanol dilution gave better results than direct analysis. The 125 I-labeled THC had high specific activity and could be counted in a gamma counter. The immunological separation of antibody-bound THC from free THC was better than separation techniques using ammonium sulfate and activated charcoal. THC was determined in 0.1 ml of sample with a sensitivity of 1.5 ng/ml in plasma and 3.0 ng/ml in hemolyzed blood

  11. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    Science.gov (United States)

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2010-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  12. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    Science.gov (United States)

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  13. The hyperthermia mediated by 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) is sensitive to sex differences

    International Nuclear Information System (INIS)

    Wyeth, Richard P.; Mills, Edward M.; Ullman, Alison; Kenaston, M. Alexander; Burwell, Johanna; Sprague, Jon E.

    2009-01-01

    Female subjects have been reported to be less sensitive to the hyperthermic effects of 3,4-methylenedioxymethamine (MDMA) than males. Studies were designed to examine the cellular mechanisms involved in these sex sensitive differences. Gonadectomized female and male rats were treated with a 200 μg 100 μL -1 of estrogen or 100 μg 100 μL -1 of testosterone respectively every 5 days for a total of three doses. Rats were then challenged with either saline or MDMA (20 mg kg -1 , sc). Rats were then euthanized and aortas were constricted, in vitro, by serial phenylephrine (Phe) addition with or without the inhibitor of nitric oxide (NO) synthase, g-nitro-L-Arginine-Methyl Ester (L-NAME). Skeletal muscle uncoupling protein-3 (UCP3) expression was measured as well as plasma norepinephrine (NE) levels. All males but no females developed hyperthermia following MDMA treatment. The EC 50 for Phe dose response curves increased only in the females treated with MDMA and T max for Phe increased following L-NAME only in the females. Both males and females demonstrated an increase in plasma NE following MDMA treatment; however, males displayed a significantly greater NE concentration. Skeletal muscle UCP3 expression was 80% less in females than in males. These results suggest that the inability of MDMA to induce a thermogenic response in the female subjects may be due to four sex-specific mechanisms: 1) Female subjects have reduced sympathetic activation following MDMA challenge; 2) Female vasculature is less sensitive to α 1 -AR stimulation following MDMA challenge; 3) Female vasculature has an increased sensitivity to NO; 4) UCP3 expression in skeletal muscle is less in females

  14. Repeatability of oral fluid collection methods for THC measurement.

    NARCIS (Netherlands)

    Houwing, S. Smink, B.E. Legrand, S.-A. Mathijssen, M.P.M. Verstraete, A.G. & Brookhuis, K.A.

    2013-01-01

    The study objective was to determine the influence of sample collection for two different collection methods on THC concentrations and to compare THC concentrations collected by both methods. A total of 136 pairs of oral fluid samples from subjects who had recently smoked Cannabis were obtained by

  15. A 3-lever discrimination procedure reveals differences in the subjective effects of low and high doses of MDMA.

    Science.gov (United States)

    Harper, David N; Langen, Anna-Lena; Schenk, Susan

    2014-01-01

    Drug discrimination studies have suggested that the subjective effects of low doses of (±)3,4-methylenedioxymethamphetamine (MDMA) are readily differentiated from those of d-amphetamine (AMPH) and that the discriminative stimulus properties are mediated by serotonergic and dopaminergic mechanisms, respectively. Previous studies, however, have primarily examined responses to doses that do not produce substantial increases in extracellular dopamine. The present study determined whether doses of MDMA that produce increases in synaptic dopamine would also produce subjective effects that were more like AMPH and were sensitive to pharmacological manipulation of D1-like receptors. A three-lever drug discrimination paradigm was used. Rats were trained to respond on different levers following saline, AMPH (0.5mg/kg, IP) or MDMA (1.5mg/kg, IP) injections. Generalization curves were generated for a range of different doses of both drugs and the effect of the D1-like antagonist, SCH23390 on the discriminative stimulus effects of different doses of MDMA was determined. Rats accurately discriminated MDMA, AMPH and saline. Low doses of MDMA produced almost exclusive responding on the MDMA lever but at doses of 3.0mg/kg MDMA or higher, responding shifted to the AMPH lever. The AMPH response produced by higher doses of MDMA was attenuated by pretreatment with SCH23390. The data suggest that low doses and higher doses of MDMA produce distinct discriminative stimuli. The shift to AMPH-like responding following administration of higher doses of MDMA, and the decrease in this response following administration of SCH23390 suggests a dopaminergic component to the subjective experience of MDMA at higher doses. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. [Time profile of serum THC levels in occasional and chronic marihuana smokers after acute drog use - implication for drivind motor vehicles].

    Science.gov (United States)

    Balíková, Marie; Hložek, Tomáš; Páleníček, Tomáš; Tylš, Filip; Viktorinová, Michaela; Melicher, Tomáš; Androvičová, Renáta; Tomíček, Pavel; Roman, Michal; Horáček, Jiří

    2014-01-01

    effects of THC can persist after the last drug dose. In chronic users there are well documented indications of long term adverse effects to neurocognitive functions. THC blood level itself can not directly document the intensity of impairment of a driver. Moreover, the concentration of THC in blood at the time of driving is probably substantially higher than at the time of blood sampling. Therefore due to the prevention of traffic risk, some countries adopted per se traffic legislation based on analytical principle with minimum tolerance to illegal drugs in blood of drivers at driving. Low blood concentrations of THC close to the limit of detection of a specific toxicological method (GC-MS or LC-MS) are justified in an effective traffic legislation.

  17. Measurement of 3,4-MDMA and related amines in diagnostic and forensic laboratories.

    Science.gov (United States)

    Skrinska, Victor A; Gock, Susan B

    2005-01-01

    The phenylalkylamine derivatives, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy, XTC, Adam), 3,4-methylenedioxyethamphetamine (MDEA, MDE, Eve), and 3,4-methylenedioxyamphetamine (MDA), are psychostimulants with hallucinogenic properties. MDA is also a metabolite of both MDMA and MDEA. These drugs are ring-substituted amphetamine derivatives that produce hallucinogenic, entactogenic ('love drug'), and stimulating effects. MDMA was initially developed as an appetite suppressant, however, its use as a therapeutic drug has been very limited. Because of its effects as a hallucinogenic psychostimulant with relatively low toxicity, it has emerged over the last two decades as a common recreational psychostimulant or 'club drug' at 'raves'. MDMA, MDEA, and MDA are often referred to as 'rave' or 'designer' drugs. They are produced in clandestine laboratories and have an increasing presence on the illicit drug market worldwide. Significant adverse health effects have been reported that include: serotonin neurotoxicity, severe psychiatric disorders, renal failure, malignant hyperthermia, hepatitis, rhabdomyolysis, and disseminated intravascular coagulation. A number of fatal outcomes associated with severe MDMA intoxication have been reported.

  18. Procedural and declarative memory performance, and the memory consolidation function of sleep, in recent and abstinent Ecstasy/MDMA users

    Science.gov (United States)

    Blagrove, Mark; Seddon, Jennifer; George, Sophie; Parrott, Andrew C.; Stickgold, Robert; Walker, Matthew; Jones, Katy; Morgan, Michael J.

    2013-01-01

    This study assessed the effects of ecstasy/MDMA on declarative memory (Rivermead Behavioral Memory task - RBMT), on procedural learning (Finger Tapping Task - FTT), and on the memory consolidation function of sleep for these two tasks. Testing occurred in 2 afternoon testing sessions, 24 hours apart so that a full period of sleep was allowed between them. Groups were: Non-drug taking Controls (n=24); Recent Ecstasy/MDMA users, who had taken ecstasy and/or MDMA 2–3 days before the first testing session (n=25), and Abstinent Ecstasy/MDMA users, who had not taken ecstasy/MDMA for at least 8 days before the first session (n=17). The recent ecstasy/MDMA users performed significantly worse than controls on the RBMT (mean recall 76.1% of control group recall), but did not differ from controls on FTT performance. Correspondingly there was a significant regression between the continuous variable of recency of ecstasy/MDMA use and RBMT performance. However, there was an interaction between ecstasy/MDMA use and subsequent other drug use. Controls had similar RBMT scores to recent ecstasy/MDMA users who did not take other drugs 48 – 24 hours before testing, but scored significantly better than recent ecstasy/MDMA users who took various other drugs (mainly cannabis) 48 – 24 hours before testing. For both tasks the control, recent ecstasy/MDMA and abstinent ecstasy/MDMA users did not differ in their change of performance across 24 hours; there was thus no evidence that ecstasy/MDMA impairs the memory consolidation function of sleep for either declarative or procedural memory. For participants in the two ecstasy/MDMA groups greater lifetime consumption of ecstasy tablets was associated with significantly more deficits in procedural memory. Furthermore, greater lifetime consumption of ecstasy tablets and of cocaine, were also associated with significantly more deficits in declarative memory. PMID:20615932

  19. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro.

    Science.gov (United States)

    Medveczky, Maria M; Sherwood, Tracy A; Klein, Thomas W; Friedman, Herman; Medveczky, Peter G

    2004-09-15

    The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development

  20. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    Science.gov (United States)

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  1. Verbal Memory Deficits Are Correlated with Prefrontal Hypometabolism in 18FDG PET of Recreational MDMA Users

    Science.gov (United States)

    Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.

    2013-01-01

    Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined

  2. Around-the-clock oral THC effects on sleep in male chronic daily cannabis smokers.

    Science.gov (United States)

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schroeder, Jennifer R; Schwope, David M; Kelly, Deanna L; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2013-01-01

    Δ9-tetrahydrocannabinol (THC) promotes sleep in animals; clinical use of THC is associated with somnolence. Human laboratory studies of oral THC have not shown consistent effects on sleep. We prospectively evaluated self-reported sleep parameters during controlled oral THC administration to research volunteers. Thirteen male chronic daily cannabis smokers (mean ± SD age 24.6± 3.7 years, self-reported smoking frequency of 5.5 ± 5.9 (range 1-24) joint-equivalents daily at study entry) were administered oral THC doses (20 mg) around-the-clock for 7 days (40-120 mg daily) starting the afternoon after admission. The St. Mary's Hospital Sleep Questionnaire was completed every morning. Plasma THC and 11-OH-THC (active metabolite) concentrations were measured in venous blood samples collected every evening. Changes in sleep characteristics over time and associations between sleep characteristics and plasma cannabinoid concentrations were evaluated with repeated measures mixed linear regression. Higher evening THC and 11-OH-THC concentrations were significantly associated with shorter sleep latency, less difficulty falling asleep, and more daytime sleep the following day. In contrast, the duration of calculated and self-reported nighttime sleep decreased slightly (3.54 and 5.34 minutes per night, respectively) but significantly during the study. These findings suggest that tolerance to the somnolent effects of THC may have occurred, but results should be considered preliminary due to design limitations. Somnolence from oral THC may dissipate with chronic, high-dose use. This has implications for patients who may take chronic oral THC for medicinal purposes, including cannabis dependence treatment. (Am J Addict 2013;22:510-514). Copyright © American Academy of Addiction Psychiatry.

  3. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats.

    Science.gov (United States)

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Pill content, dose and resulting plasma concentrations of 3,4-methylendioxymethamphetamine (MDMA) in recreational 'ecstasy' users.

    Science.gov (United States)

    Morefield, Kate M; Keane, Michael; Felgate, Peter; White, Jason M; Irvine, Rodney J

    2011-07-01

    To improve our understanding of the pharmacology of 'ecstasy' in recreational environments; in particular, to describe the composition of ecstasy pills, patterns of ecstasy use and the relationship between dose of 3,4-methylendioxymethamphetamine (MDMA) and resulting plasma concentrations. A naturalistic observational study of 56 experienced 'ecstasy' users in recreational settings in Australia. Drug use patterns (number of pills consumed, other drugs consumed). drug content of pills and resultant plasma concentrations of MDMA and related drugs were assessed by gas chromatography/mass spectrometry (GC/MS). Ecstasy pills generally contained MDMA, but this was often combined with other drugs such as 3,4-ethylendioxyethylamphetamine (MDEA) and methamphetamine. The dose of MDMA per pill ranged from 0 to 245 mg and users consumed from one-half to five pills, with the total dose consumed ranging up to 280 mg. Plasma concentrations of MDMA increased with number of pills consumed and cumulative MDMA dose. Use of larger numbers of pills was associated with extended exposure to the drug. MDMA is the major active drug in ecstasy pills, but there is a high degree of variation in doses. Use of multiple pills over the course of one session is common and results in a sustained increase in MDMA plasma concentrations over a number of hours. This is likely to lead to a much greater exposure of the brain to MDMA than would be predicted from controlled single-dose pharmacokinetic studies. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  5. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    Science.gov (United States)

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  6. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    Directory of Open Access Journals (Sweden)

    Javier Navarro-Zaragoza

    Full Text Available Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA. The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27, after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA. Drinking in the dark (DID procedure was used as a model of binge. Noradrenaline (NA turnover, tyrosine hydroxylase (TH, TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN were determined by high-performance liquid chromatography (HPLC; TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  7. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM) MODELS

    International Nuclear Information System (INIS)

    Y.S. Wu

    2005-01-01

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  8. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on

  9. Chronic exposure to MDMA (Ecstasy elicits behavioral sensitization in rats but fails to induce cross-sensitization to other psychostimulants

    Directory of Open Access Journals (Sweden)

    Swann Alan C

    2006-01-01

    Full Text Available Abstract Background The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. Methods The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg and a saline control group (N = 9/group. All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13. Rats were then given an additional 25-day washout period, and re-challenged (day 38 with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39. Open-field locomotor activity was recorded using a computerized automated activity monitoring system. Results Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group, while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change

  10. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC Induces Trophoblast Dysfunction

    Directory of Open Access Journals (Sweden)

    Xinwen Chang

    2017-06-01

    Full Text Available Aims: Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC, the major component of marijuana, on trophoblast function, placental development, and birth outcomes. Methods: The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3 were detected by western blot. Results: We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Conclusion: Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction.

  11. Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA ("Ecstasy") and MDA ("Love").

    Science.gov (United States)

    McNamara, Ruth; Kerans, Aoife; O'Neill, Barry; Harkin, Andrew

    2006-01-01

    The present study determined the effect of caffeine co-administration on the core body temperature response and long-term serotonin (5-HT) loss induced by methylenedioxymethamphetamine (MDMA; "Ecstasy") and its metabolite methylenedioxyamphetamine (MDA; "Love") to rats. In group-housed animals, caffeine (10 mg/kg) enhanced the acute toxicity of MDMA (15 mg/kg) and MDA (7.5 mg/kg), resulting in an exaggerated hyperthermic response (+2 degrees C for 5 h following MDMA and +1.5 degrees C for 3 h following MDA) when compared to MDMA (+1 degree C for 3 h) and MDA (+1 degree C for 1 h) alone. Co-administration of caffeine with MDMA or MDA was also associated with increased lethality. To reduce the risk of lethality, doses of MDMA and MDA were reduced in further experiments and the animals were housed individually. To examine the effects of repeated administration, animals received MDMA (10 mg/kg) or MDA (5 mg/kg) with or without caffeine (10 mg/kg) twice daily for 4 consecutive days. MDMA and MDA alone induced hypothermia (fall of 1 to 2 degrees C) over the 4 treatment days. Co-administration of caffeine with MDMA or MDA resulted in hyperthermia (increase of up to 2.5 degrees C) following acute administration compared to animals treated with caffeine or MDMA/MDA alone. This hyperthermic response to caffeine and MDMA was not observed with repeated administration, unlike caffeine + MDA, where hyperthermia was obtained over the 4 day treatment period. In addition, 4 weeks after the last treatment, co-administration of caffeine with MDA (but not MDMA) induced a reduction in 5-HT and 5-hydroxyindole acetic acid (5-HIAA) concentrations in frontal cortex (to 61% and 58% of control, respectively), hippocampus (48% and 60%), striatum (79% and 64%) and amygdala (63% and 37%). However, when caffeine (10 mg/kg) and MDMA (2.5 mg/kg) were co-administered four times daily for 2 days to group-housed animals, both hyperthermia and hippocampal 5-HT loss were observed (reduced to 68% of

  12. Delta-9 tetrahydrocannabinol (THC inhibits lytic replication of gamma oncogenic herpesviruses in vitro

    Directory of Open Access Journals (Sweden)

    Friedman Herman

    2004-09-01

    Full Text Available Abstract Background The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC, has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Methods Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV and Epstein-Barr virus (EBV replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS of monkeys, murine gamma herpesvirus 68 (MHV 68, and herpes simplex type 1 (HSV-1 was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Results Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. Conclusions THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC

  13. Memory function and serotonin transporter promoter gene polymorphism in ecstasy (MDMA) users

    NARCIS (Netherlands)

    Reneman, Liesbeth; Schilt, T.; de Win, Maartje M.; Booij, Jan; Schmand, Ben; van den Brink, Wim; Bakker, Onno

    2006-01-01

    Although 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) has been shown to damage brain serotonin (5-HT) neurons in animals and possibly humans, little is known about the long-term consequences of MDMA-induced 5-HT neurotoxic lesions on functions in which 5-HT is involved, such as cognitive

  14. MDMA (Ecstacy): Useful Information for Health Professionals Involved in Drug Education Programs.

    Science.gov (United States)

    Elk, Carrie

    1996-01-01

    Provides a brief history of 3,4-ethylenedioxymethamphetamine (MDMA). Presents a summation of current findings and implications including MDMA in drug education. Examines typical dosage, effects, user profile, and therapeutic aspects. Calls for increased research to address the lack of formal scientific data regarding the nature and effects of…

  15. Learning, Memory, and Executive Function in New MDMA Users: A Two-Year Follow-up Study

    Directory of Open Access Journals (Sweden)

    Daniel eWagner

    2015-12-01

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA is associated with changes in neurocognitive performance. Recent studies in laboratory animals have provided additional support for the neurodegeneration hypothesis. However, results from animal research need to be applied to humans with caution. Moreover, several of the studies that examine MDMA users suffer from methodological shortcomings. Therefore, a prospective cohort study was designed in order to overcome these previous methodological shortcomings and to assess the relationship between the continuing use of MDMA and cognitive performance in incipient MDMA users. It was hypothesized that, depending on the amount of MDMA taken, the continued use of MDMA over a two-year period would lead to further decreases in cognitive performance, especially in visual paired association learning tasks. 96 subjects were assessed at the second follow-up assessment: 31 of these were non-users, 55 moderate-users and 10 heavy-users. Separate repeated measures analyses of variance were conducted for each cognitive domain, including attention and information processing speed, episodic memory and executive functioning. Furthermore, possible confounders including age, general intelligence, cannabis use, alcohol use, use of other concomitant substances, recent medical treatment, participation in sports, level of nutrition, sleep patterns and subjective well-being were assessed.The Repeated measures analysis of variance (rANOVA revealed that a marginally significant change in immediate and delayed recall test performances of visual paired associates learning had taken place within the follow-up period of two years. No significant differences with the other neuropsychological tests were noted. It seems that MDMA use can impair visual paired associates learning in new users. However, in the recent study, further deterioration in continuing MDMA-users was not observed.

  16. Effects of MDMA Injections on the Behavior of Socially-Housed Long-Tailed Macaques (Macaca fascicularis).

    Science.gov (United States)

    Ballesta, Sébastien; Reymond, Gilles; Pozzobon, Matthieu; Duhamel, Jean-René

    2016-01-01

    3,4-methylenedioxy-N-methyl amphetamine (MDMA) is one of the few known molecules to increase human and rodent prosocial behaviors. However, this effect has never been assessed on the social behavior of non-human primates. In our study, we subcutaneously injected three different doses of MDMA (1.0, 1.5 or 2.0mg/kg) to a group of three, socially housed, young male long-tailed macaques. More than 200 hours of behavioral data were recorded, during 68 behavioral sessions, by an automatic color-based video device that tracked the 3D positions of each animal and of a toy. This data was then categorized into 5 exclusive behaviors (resting, locomotion, foraging, social contact and object play). In addition, received and given social grooming was manually scored. Results show several significant dose-dependent behavioral effects. At 1.5mg/kg only, MDMA induces a significant increase in social grooming behavior, thus confirming the prosocial effect of MDMA in macaques. Additionally, at 1.5 and 2.0 mg/kg MDMA injection substantially decreases foraging behavior, which is consistent with the known anorexigenic effect of this compound. Furthermore, at 2.0 mg/kg MDMA injection induces an increase in locomotor behavior, which is also in accordance with its known stimulant property. Interestingly, MDMA injected at 1.0mg/kg increases the rate of object play, which might be interpreted as a decrease of the inhibition to manipulate a unique object in presence of others, or, as an increase of the intrinsic motivation to manipulate this object. Together, our results support the effectiveness of MDMA to study the complex neurobiology of primates' social behaviors.

  17. Effects of MDMA Injections on the Behavior of Socially-Housed Long-Tailed Macaques (Macaca fascicularis.

    Directory of Open Access Journals (Sweden)

    Sébastien Ballesta

    Full Text Available 3,4-methylenedioxy-N-methyl amphetamine (MDMA is one of the few known molecules to increase human and rodent prosocial behaviors. However, this effect has never been assessed on the social behavior of non-human primates. In our study, we subcutaneously injected three different doses of MDMA (1.0, 1.5 or 2.0mg/kg to a group of three, socially housed, young male long-tailed macaques. More than 200 hours of behavioral data were recorded, during 68 behavioral sessions, by an automatic color-based video device that tracked the 3D positions of each animal and of a toy. This data was then categorized into 5 exclusive behaviors (resting, locomotion, foraging, social contact and object play. In addition, received and given social grooming was manually scored. Results show several significant dose-dependent behavioral effects. At 1.5mg/kg only, MDMA induces a significant increase in social grooming behavior, thus confirming the prosocial effect of MDMA in macaques. Additionally, at 1.5 and 2.0 mg/kg MDMA injection substantially decreases foraging behavior, which is consistent with the known anorexigenic effect of this compound. Furthermore, at 2.0 mg/kg MDMA injection induces an increase in locomotor behavior, which is also in accordance with its known stimulant property. Interestingly, MDMA injected at 1.0mg/kg increases the rate of object play, which might be interpreted as a decrease of the inhibition to manipulate a unique object in presence of others, or, as an increase of the intrinsic motivation to manipulate this object. Together, our results support the effectiveness of MDMA to study the complex neurobiology of primates' social behaviors.

  18. MDMA induces oxytocin release in humans

    NARCIS (Netherlands)

    Dumont, G.; Sweep, F.C.G.J.; Van Der Steen, R.V.; Hermsen, R.; Touw, D.J.; Buitelaar, J.K.; Verkes, R.J.

    2008-01-01

    Introduction: Appropriate social behavior is vital for human health and well-being, nevertheless the neurobiological mechanisms which mediate social behavior remain poorly understood. Ecstasy (3,4-methylenedioxymethamphetamine (MDMA)) is a street drug which gained widespread use in the 'club' scene,

  19. Duloxetine inhibits effects of MDMA ("ecstasy" in vitro and in humans in a randomized placebo-controlled laboratory study.

    Directory of Open Access Journals (Sweden)

    Cédric M Hysek

    Full Text Available This study assessed the effects of the serotonin (5-HT and norepinephrine (NE transporter inhibitor duloxetine on the effects of 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence.Clinicaltrials.gov NCT00990067.

  20. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC) Induces Trophoblast Dysfunction.

    Science.gov (United States)

    Chang, Xinwen; Bian, Yiding; He, Qizhi; Yao, Julei; Zhu, Jingping; Wu, Jinting; Wang, Kai; Duan, Tao

    2017-01-01

    Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC), the major component of marijuana, on trophoblast function, placental development, and birth outcomes. The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC) staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3) were detected by western blot. We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure.

    Science.gov (United States)

    Coman, Daniel; Sanganahalli, Basavaraju G; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L

    2015-10-01

    (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions

  2. Sprague-Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)

    International Nuclear Information System (INIS)

    Fonsart, Julien; Menet, Marie-Claude; Decleves, Xavier; Galons, Herve; Crete, Dominique; Debray, Marcel; Scherrmann, Jean-Michel; Noble, Florence

    2008-01-01

    The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism of MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg -1 sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences

  3. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology.

    Science.gov (United States)

    Nguyen, Jacques D; Aarde, Shawn M; Vandewater, Sophia A; Grant, Yanabel; Stouffer, David G; Parsons, Loren H; Cole, Maury; Taffe, Michael A

    2016-10-01

    Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The high prevalence of substance use disorders among recent MDMA users compared with other drug users: implications for intervention

    Science.gov (United States)

    Wu, Li-Tzy; Parrott, Andy C.; Ringwalt, Christopher L.; Patkar, Ashwin A.; Mannelli, Paolo; Blazer, Dan G.

    2009-01-01

    Aim In light of the resurgence in MDMA use and its association with polysubstance use, we investigated the 12-month prevalence of substance use disorders (SUDs) among adult MDMA users to determine whether they are at risk of other drug-related problems that would call for targeted interventions. Methods Data were drawn from the 2006 National Survey on Drug Use and Health. Past-year adult drug users were grouped into three mutually exclusive categories: 1) recent MDMA users, who had used the drug within the past year; 2) former MDMA users, who had a history of using this drug but had not done so within the past year; and 3) other drug users, who had never used MDMA. Logistic regression procedures were used to estimate the association between respondents’ SUDs and MDMA use while adjusting for their socioeconomic status, mental health, age of first use, and history of polydrug use. Results Approximately 14% of adults reported drug use in the past year, and 24% of those past-year drug users reported a history of MDMA use. Recent MDMA users exhibited the highest prevalence of disorders related to alcohol (41%), marijuana (30%), cocaine (10%), pain reliever/opioid (8%), and tranquilizer (3%) use. Adjusted logistic regression analyses revealed that, relative to other drug users, those who had recently used MDMA were twice as likely to meet criteria for marijuana and pain reliever/opioid use disorders. They were also about twice as likely as former MDMA users to meet criteria for marijuana, cocaine, and tranquilizer use disorders. Conclusions Seven out of ten recent MDMA users report experiencing an SUD in the past year. Adults who have recently used MDMA should be screened for possible SUDs to ensure early detection and treatment. PMID:19361931

  5. Persistent effects of chronic Δ9-THC exposure on motor impulsivity in rats.

    Science.gov (United States)

    Irimia, Cristina; Polis, Ilham Y; Stouffer, David; Parsons, Loren H

    2015-08-01

    In humans, long-term marijuana use is associated with impaired impulse control and attentional capacity, though it has been difficult to distinguish pre-existing cognitive deficits from possible consequences of prolonged marijuana exposure. To evaluate the effects of long-term exposure to Δ9-Tetrahydrocannabinol (Δ9-THC), the primary psychoactive constituent in marijuana, on indices of impulse control and attentional capacity using the rat 5-Choice Serial Reaction Time Task (5-CSRTT). Ten 14-day cycles of Δ9-THC dosing and 5-CSRTT testing were employed, each comprised of 5-day Δ9-THC dosing (0.3 or 3 mg/kg b.i.d.) and 5-CSRTT testing during the 9 days of drug abstinence. Subsequent 5-CSRTT testing continued during 5 weeks of protracted abstinence. Dose-dependent increases in motor impulsivity (premature responses) and behavioral disinhibition (perseverative responses) emerged following 5 cycles of Δ9-THC exposure that persisted for the remaining dosing and testing cycles. Δ9-THC-related disruptions in motor impulsivity and behavioral inhibition were most pronounced during cognitively challenging 5-CSRTT sessions incorporating varying novel inter-trial intervals (ITIs), and these disruptions persisted for at least 5 weeks of Δ9-THC abstinence. Δ9-THC-related impairments in attentional capacity (response accuracy) were also evident during variable ITI challenge tests, though these attentional disruptions abated within 3 weeks of Δ9-THC abstinence. These observations demonstrate that long-term intermittent exposure to clinically meaningful Δ9-THC doses induces persistent impairments in impulse control and attentional function. If present in humans, these disruptions may impact academic and professional performance.

  6. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    Science.gov (United States)

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  7. MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users.

    Science.gov (United States)

    Parrott, Andrew C

    2013-09-01

    Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The identification of a chlorinated MDMA

    Czech Academy of Sciences Publication Activity Database

    Marešová, V.; Hampl, J.; Chundela, Z.; Zrcek, F.; Polášek, Miroslav; Chadt, J.

    2005-01-01

    Roč. 29, č. 5 (2005), s. 353-358 ISSN 0146-4760 Institutional research plan: CEZ:AV0Z40400503 Keywords : designer drugs ecstasy * 3,4-methylenedioxymethamphetamine MDMA * psychomot performance * clinical pharmacology Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.785, year: 2005

  9. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy.

    Science.gov (United States)

    Wagner, Mark T; Mithoefer, Michael C; Mithoefer, Ann T; MacAulay, Rebecca K; Jerome, Lisa; Yazar-Klosinski, Berra; Doblin, Rick

    2017-08-01

    A growing body of research suggests that traumatic events lead to persisting personality change characterized by increased neuroticism. Relevantly, enduring improvements in Post-Traumatic Stress Disorder (PTSD) symptoms have been found in response to 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy. There is evidence that lasting changes in the personality feature of "openness" occur in response to hallucinogens, and that this may potentially act as a therapeutic mechanism of change. The present study investigated whether heightened Openness and decreased Neuroticism served as a mechanism of change within a randomized trial of MDMA-assisted psychotherapy for chronic, treatment-resistant PTSD. The Clinician-Administered PTSD Scale (CAPS) Global Scores and NEO PI-R Personality Inventory (NEO) Openness and Neuroticism Scales served as outcome measures. Results indicated that changes in Openness but not Neuroticism played a moderating role in the relationship between reduced PTSD symptoms and MDMA treatment. Following MDMA-assisted psychotherapy, increased Openness and decreased Neuroticism when comparing baseline personality traits with long-term follow-up traits also were found. These preliminary findings suggest that the effect of MDMA-assisted psychotherapy extends beyond specific PTSD symptomatology and fundamentally alters personality structure, resulting in long-term persisting personality change. Results are discussed in terms of possible mechanisms of psychotherapeutic change.

  10. Human psychobiology of MDMA or 'Ecstasy': an overview of 25 years of empirical research.

    Science.gov (United States)

    Parrott, Andrew C

    2013-07-01

    This paper aimed to review how scientific knowledge about the human psychobiology of MDMA has developed over time. In this paper, the empirical findings from earlier and later studies will be reviewed. When MDMA was a 'novel psychoactive substance', it was not seen as a drug of abuse, as it displayed loss of efficacy. However, recreational users display a unique pattern of increasing doses, deteriorating cost-benefit ratios, and voluntary cessation. MDMA increases body temperature and thermal stress, with cortisol levels increased by 800% in dance clubbers. It can be extremely euphoric, although negative moods are also intensified. MDMA causes apoptosis (programmed cell death) and has been investigated for cancer therapy because of its anti-lymphoma properties. Recreational users show deficits in retrospective memory, prospective memory, higher cognition, problem solving, and social intelligence. Basic cognitive skills remain intact. Neuroimaging studies show reduced serotonin transporter levels across the cerebral cortex, which are associated with neurocognitive impairments. Deficits also occur in sleep architecture, sleep apnoea, complex vision, pain, neurohormones, and psychiatric status. Ecstasy/MDMA use during pregnancy leads to psychomotor impairments in the children. The damaging effects of Ecstasy/MDMA are far more widespread than was realized a few years ago, with new neuropsychobiological deficits still emerging. Copyright © 2013 John Wiley & Sons, Ltd.

  11. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    Science.gov (United States)

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  12. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    Science.gov (United States)

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  13. Duloxetine Inhibits Effects of MDMA (“Ecstasy") In Vitro and in Humans in a Randomized Placebo-Controlled Laboratory Study

    Science.gov (United States)

    Nicola, Valentina G.; Vischer, Nerina; Donzelli, Massimiliano; Krähenbühl, Stephan; Grouzmann, Eric; Huwyler, Jörg; Hoener, Marius C.; Liechti, Matthias E.

    2012-01-01

    This study assessed the effects of the serotonin (5-HT) and norepinephrine (NE) transporter inhibitor duloxetine on the effects of 3,4–methylenedioxy­methamphetamine (MDMA, ecstasy) in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence. Trial Registration Clinicaltrials.gov NCT00990067 PMID:22574166

  14. Oral fluid/plasma cannabinoid ratios following controlled oral THC and smoked cannabis administration.

    Science.gov (United States)

    Lee, Dayong; Vandrey, Ryan; Milman, Garry; Bergamaschi, Mateus; Mendu, Damodara R; Murray, Jeannie A; Barnes, Allan J; Huestis, Marilyn A

    2013-09-01

    Oral fluid (OF) is a valuable biological alternative for clinical and forensic drug testing. Evaluating OF to plasma (OF/P) cannabinoid ratios provides important pharmacokinetic data on the disposition of drug and factors influencing partition between matrices. Eleven chronic cannabis smokers resided on a closed research unit for 51 days. There were four 5-day sessions of 0, 30, 60, and 120 mg oral ∆(9)-tetrahydrocannabinol (THC)/day followed by a five-puff smoked cannabis challenge on Day 5. Each session was separated by 9 days ad libitum cannabis smoking. OF and plasma specimens were analyzed for THC and metabolites. During ad libitum smoking, OF/P THC ratios were high (median, 6.1; range, 0.2-348.5) within 1 h after last smoking, decreasing to 0.1-20.7 (median, 2.1) by 13.0-17.1 h. OF/P THC ratios also decreased during 5-days oral THC dosing, and after the smoked cannabis challenge, median OF/P THC ratios decreased from 1.4 to 5.5 (0.04-245.6) at 0.25 h to 0.12 to 0.17 (0.04-5.1) at 10.5 h post-smoking. In other studies, longer exposure to more potent cannabis smoke and oromucosal cannabis spray was associated with increased OF/P THC peak ratios. Median OF/P 11-nor-9-carboxy-THC (THCCOOH) ratios were 0.3-2.5 (range, 0.1-14.7) ng/μg, much more consistent in various dosing conditions over time. OF/P THC, but not THCCOOH, ratios were significantly influenced by oral cavity contamination after smoking or oromucosal spray of cannabinoid products, followed by time-dependent decreases. Establishing relationships between OF and plasma cannabinoid concentrations is essential for making inferences of impairment or other clinical outcomes from OF concentrations.

  15. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA,‘ecstasy’) exposure

    Science.gov (United States)

    Coman, Daniel; Sanganahalli, Basavaraju G.; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L.

    2015-01-01

    (+/−)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is an abused psychostimulant producing strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCP), primarily a type specific to skeletal muscle (UCP-3) and which is absent in brain, although other UCP types are expressed in brain (e.g., thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights of MDMA action, we measured spatial distributions of systemically-administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation of Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA4−)). The MDMA-induced temperature rise in cortex was greater than in subcortex (1.6±0.4°C vs. 1.3±0.4°C) and occurred more rapidly (2.0±0.2°C/h vs. 1.5±0.2°C/h). MDMA-induced temperature changes and dynamics in cortex and body were correlated, although body temperature exceeded cortex before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in cortex and subcortex (i.e., thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to cortex, a biphasic relationship was seen in subcortex (i.e., thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature >37°C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as

  16. Can oral fluid cannabinoid testing monitor medication compliance and/or cannabis smoking during oral THC and oromucosal Sativex administration?

    Science.gov (United States)

    Lee, Dayong; Karschner, Erin L; Milman, Garry; Barnes, Allan J; Goodwin, Robert S; Huestis, Marilyn A

    2013-06-01

    We characterize cannabinoid disposition in oral fluid (OF) after dronabinol, synthetic oral Δ(9)-tetrahydrocannabinol (THC), and Sativex, a cannabis-extract oromucosal spray, and evaluate whether smoked cannabis relapse or Sativex compliance can be identified with OF cannabinoid monitoring. 5 and 15 mg synthetic oral THC, low (5.4 mg THC, 5.0 mg cannabidiol (CBD)) and high (16.2 mg THC, 15.0 mg CBD) dose Sativex, and placebo were administered in random order (n=14). Oral fluid specimens were collected for 10.5 h after dosing and analyzed for THC, CBD, cannabinol (CBN), and 11-nor-9-carboxy-THC (THCCOOH). After oral THC, OF THC concentrations decreased over time from baseline, reflecting residual THC excretion from previously self-administered smoked cannabis. CBD and CBN also were rarely detected. After Sativex, THC, CBD and CBN increased greatly, peaking at 0.25-1 h. Median CBD/THC and CBN/THC ratios were 0.82-1.34 and 0.04-0.06, respectively, reflecting cannabinoids' composition in Sativex. THCCOOH/THC ratios within 4.5 h post Sativex were ≤ 1.6 pg/ng, always lower than after oral THC and placebo. THCCOOH/THC ratios increased throughout each dosing session. Lack of measurable THC, CBD and CBN in OF following oral THC, and high OF CBD/THC ratios after Sativex distinguish oral and sublingual drug delivery routes from cannabis smoking. Low THCCOOH/THC ratios suggest recent Sativex and smoked cannabis exposure. These data indicate that OF cannabinoid monitoring can document compliance with Sativex pharmacotherapy, and identify relapse to smoked cannabis during oral THC medication but not Sativex treatment, unless samples were collected shortly after smoking. Published by Elsevier Ireland Ltd.

  17. Contribution of Impulsivity and Serotonin Receptor Neuroadaptations to the Development of an MDMA ('Ecstasy') Substance Use Disorder.

    Science.gov (United States)

    Schenk, Susan; Aronsen, Dane

    As is the case with other drugs of abuse, a proportion of ecstasy users develop symptoms consistent with a substance use disorder (SUD). In this paper, we propose that the pharmacology of MDMA, the primary psychoactive component of ecstasy tablets, changes markedly with repeated exposure and that neuroadaptations in dopamine and serotonin brain systems underlie the shift from MDMA use to MDMA misuse in susceptible subjects. Data from both the human and laboratory animal literature are synthesized to support the idea that (1) MDMA becomes a less efficacious serotonin releaser and a more efficacious dopamine releaser with the development of behaviour consistent with an SUD and (2) that upregulated serotonin receptor mechanisms contribute to the development of the MDMA SUD via dysregulated inhibitory control associated with the trait of impulsivity.

  18. The Prosocial Effects of 3,4-methylenedioxymethamphetamine (MDMA): Controlled Studies in Humans and Laboratory Animals

    Science.gov (United States)

    Kamilar-Britt, Philip; Bedi, Gillinder

    2015-01-01

    Users of ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) report prosocial effects such as sociability and empathy. Supporting these apparently unique social effects, data from controlled laboratory studies indicate that MDMA alters social feelings, information processing, and behavior in humans, and social behavior in rodents. Here, we review this growing body of evidence. In rodents, MDMA increases passive prosocial behavior (adjacent lying) and social reward while decreasing aggression, effects that may involve serotonin 1A receptor mediated oxytocin release interacting with vasopressin receptor 1A. In humans, MDMA increases plasma oxytocin and produces feelings of social affiliation. It decreases identification of negative facial expressions (cognitive empathy) and blunts responses to social rejection, while enhancing responses to others’ positive emotions (emotional empathy) and increasing social approach. Thus, consistent with drug folklore, laboratory administration of MDMA robustly alters social processing in humans and increases social approach in humans and animals. Effects are consistent with increased sociability, with mixed evidence about enhanced empathy. These neurobiologically-complex prosocial effects likely motivate recreational ecstasy use. PMID:26408071

  19. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    OpenAIRE

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2009-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection...

  20. TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port ...

  1. The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice.

    Science.gov (United States)

    Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard

    2006-03-01

    When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.

  2. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    Science.gov (United States)

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The effect of acutely administered MDMA on subjective and BOLD-fMRI responses to favourite and worst autobiographical memories.

    Science.gov (United States)

    Carhart-Harris, R L; Wall, M B; Erritzoe, D; Kaelen, M; Ferguson, B; De Meer, I; Tanner, M; Bloomfield, M; Williams, T M; Bolstridge, M; Stewart, L; Morgan, C J; Newbould, R D; Feilding, A; Curran, H V; Nutt, D J

    2014-04-01

    3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine-releaser that is widely used as a recreational drug. Preliminary work has supported the potential of MDMA in psychotherapy for post-traumatic stress disorder (PTSD). The neurobiological mechanisms underlying its putative efficacy are, however, poorly understood. Psychotherapy for PTSD usually requires that patients revisit traumatic memories, and it has been argued that this is easier to do under MDMA. Functional magnetic resonance imaging (fMRI) was used to investigate the effect of MDMA on recollection of favourite and worst autobiographical memories (AMs). Nineteen participants (five females) with previous experience with MDMA performed a blocked AM recollection (AMR) paradigm after ingestion of 100 mg of MDMA-HCl or ascorbic acid (placebo) in a double-blind, repeated-measures design. Memory cues describing participants' AMs were read by them in the scanner. Favourite memories were rated as significantly more vivid, emotionally intense and positive after MDMA than placebo and worst memories were rated as less negative. Functional MRI data from 17 participants showed robust activations to AMs in regions known to be involved in AMR. There was also a significant effect of memory valence: hippocampal regions showed preferential activations to favourite memories and executive regions to worst memories. MDMA augmented activations to favourite memories in the bilateral fusiform gyrus and somatosensory cortex and attenuated activations to worst memories in the left anterior temporal cortex. These findings are consistent with a positive emotional-bias likely mediated by MDMA's pro-monoaminergic pharmacology.

  4. Sex differences in abuse-related neurochemical and behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats.

    Science.gov (United States)

    Lazenka, M F; Suyama, J A; Bauer, C T; Banks, M L; Negus, S S

    2017-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a substrate for dopamine (DA), norepinephrine and serotonin (5HT) transporters that produces greater pharmacological effects on certain endpoints in females than males in both clinical and rodent preclinical studies. To evaluate potential for sex differences in abuse-related MDMA effects, the present study compared MDMA effects on intracranial self-stimulation (ICSS) and on in vivo microdialysis measurements of DA or 5HT in the nucleus accumbens (NAc) in female and male Sprague-Dawley rats. For ICSS studies, electrodes were implanted in the medial forebrain bundle and rats trained to press for electrical stimulation over a range of frequencies (56-158Hz, 0.05 log increments) under a fixed-ratio 1 schedule, and the potency (0.32-3.2mg/kg, 10min pretreatment) and time course (3.2. mg/kg, 10-180min pretreatment) of MDMA effects were determined. For in vivo microdialysis, rats were implanted with bilateral guide cannulae targeting the NAc, and the time course of MDMA effects (1.0-3.2mg/kg, 0-180min) on DA and 5HT was determined. MDMA produced qualitatively similar effects in both sexes on ICSS (both increases in low ICSS rates maintained by low brain-stimulation frequencies and decreases in high ICSS rates maintained by high brain-stimulation frequencies) and microdialysis (increases in both DA and 5HT). The duration and peak levels of both abuse-related ICSS facilitation and increases in NAc DA were longer in females. MDMA was also more potent to increase 5HT in females. These results provide evidence for heightened sensitivity of females to abuse-related behavioral and neurochemical effects of MDMA in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its Stereoisomers: Similarities and Differences in Behavioral Effects in an Automated Activity Apparatus in Mice

    OpenAIRE

    Young, Richard; Glennon, Richard A.

    2007-01-01

    Racemic MDMA (0.3 – 30 mg/kg), S(+)-MDMA (0.3 – 30 mg/kg), R(-)-MDMA (0.3 – 50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (±)-MDMA usually being more potent than R(-)-MD...

  6. Effect of oral THC pretreatment on marijuana cue-induced responses in cannabis dependent volunteers.

    Science.gov (United States)

    Lundahl, Leslie H; Greenwald, Mark K

    2015-04-01

    The current study tested whether oral Δ(9)-tetrahydrocannabinol (THC: 0-, 10-, and 20-mg) pretreatment would attenuate polysensory cue-induced craving for marijuana. Cannabis dependent participants (7 males and 7 females, who smoked on average 5.4 ± 1.1 blunts daily) completed 3 experimental sessions (oral THC pretreatment dose; counterbalanced order) using a placebo-controlled within-subject crossover design. During each session, participants completed a baseline evaluation and were first exposed to neutral cues then marijuana cues while physiological measures and subjective ratings of mood, craving, and drug effect were recorded. Following placebo oral THC pretreatment, marijuana (vs. neutral) cues significantly increased ratings of marijuana craving (desire and urge to use, Marijuana Craving Questionnaire (MCQ)-Compulsivity scale), anxious mood and feeling hungry. Males also reported feeling more "Down" during marijuana cues relative to females. Pretreatment with oral THC (10-mg and/or 20-mg vs. placebo) significantly attenuated marijuana cue-induced increases in craving and anxiety but not hunger. Oral THC attenuation of the cue-induced increase in MCQ-Compulsivity ratings was observed in females only. Oral THC produced statistically (but not clinically) significant increases in heart rate and decreases in diastolic blood pressure, independent of cues. These marijuana-cue findings replicate earlier results and further demonstrate that oral THC can attenuate selected effects during marijuana multi-cue exposure, and that some of these effects may be sex-related. Results of this study suggest oral THC may be effective for reducing marijuana cue-elicited (conditioned) effects. Further study is needed to determine whether females may selectively benefit from oral THC for this purpose. Copyright © 2015. Published by Elsevier Ireland Ltd.

  7. Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users.

    Science.gov (United States)

    Lewis, John; Molnar, Anna; Allsop, David; Copeland, Jan; Fu, Shanlin

    2016-01-01

    Urinary 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (Carboxy-THC) concentrations, normalised to creatinine output, have been demonstrated to be a useful tool in the interpretation of the results of a series of urine tests for cannabis. These tests, often termed historical data, can be used to identify potential chronic cannabis users who may present occupational health and safety risks within the workplace. Conversely, the data can also be used to support employee claims of previous regular, rather than recent, cannabis use. This study aimed at examining the mean elimination of Carboxy-THC in 37 chronic users undergoing voluntary abstinence over a 2-week period. Urine specimens were collected prior to the study and after 1 and 2 weeks of abstinence. Carboxy-THC levels in urine were measured by gas chromatography-mass spectrometry (GC-MS) following alkaline hydrolysis, organic solvent extraction and derivatisation to form its pentafluoropropionic derivative. The creatinine-normalised Carboxy-THC concentrations declined rapidly over the 2 weeks of abstinence period and the majority of chronic cannabis users (73%) reduced their urinary Carboxy-THC levels to below the 15-μg/L confirmatory cutoff within that time. The study further highlights the value of historical urinary Carboxy-THC data as a means of identifying potential occupational health and safety risks among chronic cannabis users.

  8. Acute behavioral effects of co-administration of mephedrone and MDMA in mice.

    Science.gov (United States)

    Budzynska, Barbara; Michalak, Agnieszka; Frankowska, Małgorzata; Kaszubska, Katarzyna; Biała, Grażyna

    2017-04-01

    Abuse of more than one psychoactive drug is becoming a global problem. Our experiments were designed to examine the effects of a concomitant administration of 3,4-methylenedioxy-methamphetamine (MDMA) and mephedrone on depression- and anxiety-like behaviors and cognitive processes in Swiss mice. In order to investigate the drug interactions the forced swimming test (FST) - an animal model of depression, the passive avoidance (PA) test - a memory and learning paradigm, as well as the elevated plus maze (EPM) test - test for anxiety level were used. The results revealed that a concomitant administration of non-effective doses of mephedrone (1mg/kg) and MDMA (1mg/kg) exerted marked antidepressive effects in the FST. Also a co-administration of mephedrone (2.5mg/kg) and MDMA (1mg/kg) displayed a pro-cognitive action in the PA paradigm. Furthermore, even though mephedrone and MDMA can, in general, exert some anxiogenic effects in mice, the concomitant administration of nonactive doses of both drugs (0.05 and 0.1mg/kg, respectively) in the EPM test, did not show any synergistic effect in our study. The effects of mephedrone and MDMA combination on mammalian organisms were attempted to be evaluated in our study and the results are described in the present report. These results may help explain the reasons for and consequences of a concomitant administration of psychoactive substances with regards to the central nervous system, while being possibly useful in the treatment of polydrug intoxication. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  9. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.

    Science.gov (United States)

    Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L

    2015-06-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ghrelin Alleviates MDMA-Induced Disturbance of Serum Glucose and Lipids Levels in the Rat

    Directory of Open Access Journals (Sweden)

    Ravieh Golchoobian

    2018-01-01

    Full Text Available Hepatotoxicity is one of the clinically adverse effects of ecstasy (3, 4-methylenedioxymethamphetamine; MDMA consumption. The detoxification tissue, liver, plays a central role in maintaining circulating levels of glucose and lipid. Hypoglycemia and hypotriglyceridemia have been reported due to ecstasy abuse. Ghrelin is a 28-amino-acid peptide secreted predominantly from the stomach. It has been demonstrated that ghrelin has hepatoprotective effects and is able to increase blood glucose concentration. In the current study, we explored the effect of hepatotoxic dose of MDMA and therapeutic use of exogenous ghrelin on the serum levels of glucose and lipids in four groups of rats. MDMA caused a severe and transient reduction in circulating levels of glucose and triglyceride and increased serum LDL. However, cholesterol and HDL levels remained unchanged. Meanwhile, altered hepatic architecture was observed with intracellular vacuolation that may indicate intracellular accumulation of lipid droplets. In addition, following ghrelin administration, the blood sugar levels improved and LDL levels returned to the baseline value, and ghrelin treatment did not improve triglycerides levels. These results showed that MDMA causes hypoglycemia, hypotriglyceridemia, and hyper LDL-cholesterolemia. To our knowledge, this is the first report showing ghrelin administration could improve hypoglycemia and normalize LDL levels induced by MDMA and partially restore hepatic architecture.

  11. The most frequent psychopathology related to the use of 3,4-methylenedioxymethamphetamine (MDMA of medical help seekers: causality or coincidence?

    Directory of Open Access Journals (Sweden)

    Mercedes Lovrečič

    2011-11-01

    Full Text Available Background: 3,4-methylendioxymethamphetamine (MDMA represents the most popular recreational synthetic drug. The increasing popularity of MDMA, health consequences due to its recreational use and possibility of neurodegeneration of brain serotonin neurons are the reasons for increasing concern. Numerous studies suggest a link between exposure to MDMA and the consequent psychopathology. The literature indicates the incidence of various psychiatric disorders associated with single or multiple use of MDMA. The most frequent psychiatric disorders for which MDMA users search medical assistance are psychotic states, depression and panic attacks. However, it is not easy to conclude that there is a causal link between exposure to MDMA and psychopathology. This paper describes current knowledge of some aspects of this phenomenon, which represents the starting point for further challenges to various researchers and experts.

  12. Sprague-Dawley rats display sex-linked differences in the pharmacokinetics of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA)

    International Nuclear Information System (INIS)

    Fonsart, Julien; Menet, Marie-Claude; Debray, Marcel; Hirt, Deborah; Noble, Florence; Scherrmann, Jean-Michel; Decleves, Xavier

    2009-01-01

    The use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has increased in recent years; it can lead to life-threatening hyperthermia and serotonin syndrome. Human and rodent males appear to be more sensitive to acute toxicity than are females. MDMA is metabolized to five main metabolites by the enzymes CYP1A2, CYP2D and COMT. Little is presently known about sex-dependent differences in the pharmacokinetics of MDMA and its metabolites. We therefore analyzed MDMA disposition in male and female rats by measuring the plasma and urine concentrations of MDMA and its metabolites using a validated LC-MS method. MDA AUC last and C max were 1.6- to 1.7-fold higher in males than in females given MDMA (5 mg/kg sc), while HMMA C max and AUC last were 3.2- and 3.5-fold higher, respectively. MDMA renal clearance was 1.26-fold higher in males, and that of MDA was 2.2-fold higher. MDMA AUC last and t 1/2 were 50% higher in females given MDMA (1 mg/kg iv). MDA C max and AUC last were 75-82% higher in males, with a 2.8-fold higher metabolic index. Finally, the AUC last of MDA was 0.73-fold lower in males given 1 mg/kg iv MDA. The volumes of distribution of MDMA and MDA at steady-state were similar in the two sexes. These data strongly suggest that differences in the N-demethylation of MDMA to MDA are major influences on the MDMA and MDA pharmacokinetics in male and female rats. Hence, males are exposed to significantly more toxic MDA, which could explain previously reported sexual dysmorphism in the acute effects and toxicity of MDMA in rats.

  13. Inhibition of mirtazapine metabolism by Ecstasy (MDMA) in isolated perfused rat liver model.

    Science.gov (United States)

    Jamshidfar, Sanaz; Ardakani, Yalda H; Lavasani, Hoda; Rouini, Mohammadreza

    2017-06-28

    Nowadays MDMA (3,4-methylendioxymethamphetamine), known as ecstasy, is widely abused among the youth because of euphoria induction in acute exposure. However, abusers are predisposed to depression in chronic consumption of this illicit compound. Mirtazapine (MRZ), an antidepressant agent, may be prescribed in MDMA-induced depression. MRZ is extensively metabolized in liver by CYP450 isoenzymes. 8-hydroxymirtazapine (8-OH) is mainly produced by CYP2D6. N-desmethylmirtazapine (NDES) is generated by CYP3A4. MDMA is also metabolized by the mentioned isoenzymes and demonstrates mechanism-based inhibition (MBI) in association with CYP2D6. Several studies revealed that MDMA showed inhibitory effects on CYP3A4. In the present study, our aim was to evaluate the impact of MDMA on the metabolism of MRZ in liver. Therefore, isolated perfused rat liver model was applied as our model of choice in this assessment. The subjects of the study were categorized into two experimental groups. Rats in the control group received MRZ-containing Krebs-Henselit buffer (1 μg/ml). Rats in the treatment group received aqueous solution of 1 mg/ml MDMA (3 mg/kg) intraperitoneally 1 hour before receiving MRZ. Perfusate samples were analyzed by HPLC. Analyses of perfusate samples showed 80% increase in the parent drug concentrations and 50% decrease in the concentrations of both metabolites in our treatment group compared to the control group. In the treatment group compared to the control group, AUC (0-120) of the parent drug demonstrated 50% increase and AUC (0-120) of 8-OH and NDES showed 70% and 60% decrease, respectively. Observed decrease in metabolic ratios were 83% and 79% for 8-OH and NDES in treatment group compared to control group, respectively. Hepatic clearance (CL h ) and intrinsic clearance (Cl int ) showed 20% and 60% decrease in treatment group compared to control group. All findings prove the inhibitory effects of ecstasy on both CYP2D6 and CYP3A4 hepatic isoenzymes. In

  14. Effects of chronic delta-9-THC treatment on cardiac beta-adrenoceptors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.B.; Seifen, E.; Kennedy, R.H.; Kafiluddi, R.; Paule, M.G.; Scallet, A.C.; Ali, S.F.; Slikker, W. Jr.

    1987-10-01

    This study was designed to determine if chronic treatment with delta-9-tetrahydrocannabinol (THC) alters cardiac beta-adrenoceptors in the rat. Following daily oral administration of 10 or 20 mg/kg THC or an equivalent volume of control solvent for 90 days, rats were sacrificed, and sarcolemmal membranes were prepared from ventricular myocardium. Beta-adrenoceptor density and binding affinity estimated with (-)(/sup 3/H)dihydroalprenolol; a beta-adrenergic antagonist, were not significantly affected by treatment with THC when compared to vehicle controls. These results suggest that the tolerance to cardiovascular effects of THC which develops during chronic exposure in the rat is not associated with alterations in cardiac beta-adrenoceptors as monitored by radiolabeled antagonist binding.

  15. Effects of methylphenidate and MDMA on appraisal of erotic stimuli and intimate relationships.

    Science.gov (United States)

    Schmid, Yasmin; Hysek, Cédric M; Preller, Katrin H; Bosch, Oliver G; Bilderbeck, Amy C; Rogers, Robert D; Quednow, Boris B; Liechti, Matthias E

    2015-01-01

    Methylphenidate mainly enhances dopamine neurotransmission whereas 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") mainly enhances serotonin neurotransmission. However, both drugs also induce a weaker increase of cerebral noradrenaline exerting sympathomimetic properties. Dopaminergic psychostimulants are reported to increase sexual drive, while serotonergic drugs typically impair sexual arousal and functions. Additionally, serotonin has also been shown to modulate cognitive perception of romantic relationships. Whether methylphenidate or MDMA alter sexual arousal or cognitive appraisal of intimate relationships is not known. Thus, we evaluated effects of methylphenidate (40 mg) and MDMA (75 mg) on subjective sexual arousal by viewing erotic pictures and on perception of romantic relationships of unknown couples in a double-blind, randomized, placebo-controlled, crossover study in 30 healthy adults. Methylphenidate, but not MDMA, increased ratings of sexual arousal for explicit sexual stimuli. The participants also sought to increase the presentation time of implicit sexual stimuli by button press after methylphenidate treatment compared with placebo. Plasma levels of testosterone, estrogen, and progesterone were not associated with sexual arousal ratings. Neither MDMA nor methylphenidate altered appraisal of romantic relationships of others. The findings indicate that pharmacological stimulation of dopaminergic but not of serotonergic neurotransmission enhances sexual drive. Whether sexual perception is altered in subjects misusing methylphenidate e.g., for cognitive enhancement or as treatment for attention deficit hyperactivity disorder is of high interest and warrants further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  16. Sex differences in the subjective effects of oral Δ9-THC in cannabis users.

    Science.gov (United States)

    Fogel, Jessica S; Kelly, Thomas H; Westgate, Philip M; Lile, Joshua A

    2017-01-01

    Previous studies suggest that there are sex differences in endocannabinoid function and the response to exogenous cannabinoids, though data from clinical studies comparing acute cannabinoid effects in men and women under controlled laboratory conditions are limited. To further explore these potential differences, data from 30 cannabis users (N=18 M, 12 F) who completed previous Δ 9 -tetrahydrocannabinol (Δ 9 -THC) discrimination studies were combined for this retrospective analysis. In each study, subjects learned to discriminate between oral Δ 9 -THC and placebo and then received a range of Δ 9 -THC doses (0, 5, 15 and a "high" dose of either 25 or 30mg). Responses on a drug-discrimination task, subjective effects questionnaire, psychomotor performance tasks, and physiological measures were assessed. Δ 9 -THC dose-dependently increased drug-appropriate responding, ratings on "positive" Visual Analog Scale (VAS) items (e.g., good effects, like drug, take again), and items related to intoxication (e.g., high, stoned). Δ 9 -THC also dose-dependently impaired performance on psychomotor tasks and elevated heart rate. Sex differences on VAS items emerged as a function of dose. Women exhibited significantly greater subjective responses to oral drug administration than men at the 5mg Δ 9 -THC dose, whereas men were more sensitive to the subjective effects of the 15mg dose of Δ 9 -THC than women. These results demonstrate dose-dependent separation in the subjective response to oral Δ 9 -THC administration by sex, which might contribute to the differential development of problematic cannabis use. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence.

    Science.gov (United States)

    Cadoni, Cristina; Pisanu, Augusta; Simola, Nicola; Frau, Lucia; Porceddu, Pier Francesca; Corongiu, Silvia; Dessì, Christian; Sil, Annesha; Plumitallo, Antonio; Wardas, Jadwiga; Di Chiara, Gaetano

    2017-09-01

    Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats. MDMA reduced density of tyrosine hydroxylase (TH) positive neurons in the ventral tegmental area and in the substantia nigra pars compacta, and immunoreactivity of TH and DA transporter in the nucleus accumbens (NAc) shell and core, and caudate-putamen. This same treatment caused a reduction of basal dialysate DA in the NAc core. MDMA-pretreated rats also showed behavioral sensitization to a MDMA challenge at adulthood and potentiation of MDMA-induced increase of dialysate DA in the NAc core, but not in the NAc shell. In addition, MDMA-treated rats displayed a deficit in recognition memory. Caffeine co-administration did not affect the above outcomes. Our results show that adolescent exposure of rats to low doses of MDMA induces long-lasting and widespread reduction of DA neurons indicative of a neurotoxic effect on DA neurons and suggestive of a degeneration of the same neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Treating posttraumatic stress disorder with MDMA-assisted psychotherapy: A preliminary meta-analysis and comparison to prolonged exposure therapy.

    Science.gov (United States)

    Amoroso, Timothy; Workman, Michael

    2016-07-01

    Since the wars in Iraq and Afghanistan, posttraumatic stress disorder (PTSD) has become a major area of research and development. The most widely accepted treatment for PTSD is prolonged exposure (PE) therapy, but for many patients it is intolerable or ineffective. ±3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy (MDMA-AP) has recently re-emerged as a new treatment option, with two clinical trials having been published and both producing promising results. However, these results have yet to be compared to existing treatments. The present paper seeks to bridge this gap in the literature. Often the statistical significance of clinical trials is overemphasized, while the magnitude of the treatment effects is overlooked. The current meta-analysis aims to provide a comparison of the cumulative effect size of the MDMA-AP studies with those of PE. Effect sizes were calculated for primary and secondary outcome measures in the MDMA-AP clinical trials and compared to those of a meta-analysis including several PE clinical trials. It was found that MDMA-AP had larger effect sizes in both clinician-observed outcomes than PE did (Hedges' g=1.17 vs. g=1.08, respectively) and patient self-report outcomes (Hedges' g=0.87 vs. g=0.77, respectively). The dropout rates of PE and MDMA-AP were also compared, revealing that MDMA-AP had a considerably lower percentage of patients dropping out than PE did. These results suggest that MDMA-AP offers a promising treatment for PTSD. © The Author(s) 2016.

  19. Why MDMA therapy for alcohol use disorder? And why now?

    Science.gov (United States)

    Sessa, Ben

    2017-11-07

    Alcohol use disorder represents a serious clinical, social and personal burden on its sufferers and a significant financial strain on society. Current treatments, both psychological and pharmacological are poor, with high rates of relapse after medical detoxification and dedicated treatment programs. The earliest historical roots of psychedelic drug-assisted psychotherapy in the 1950s were associated with Lysergic acid diethylamide (LSD)-assisted psychotherapy to treat what was then called, alcoholism. But results were varied and psychedelic therapy with LSD and other 'classical' psychedelics fell out of favour in the wake of socio-political pressures and cultural changes. A current revisiting of psychedelic clinical research is now targeting substance use disorders - and particularly alcohol use disorder - again. 3,4-Methylenedioxymethamphetamine (MDMA)-assisted psychotherapy has never been formally explored as a treatment for any form of substance use disorder. But in recent years MDMA has risen in prominence as an agent to treat posttraumatic stress disorder (PTSD). With its unique receptor profile and a relatively well-tolerated subjective experience of drug effects when used clinically, MDMA Therapy is ideally suited to allow a patient to explore and address painful memories without being overwhelmed by negative affect. Given that alcohol use disorder is so often associated with early traumatic experiences, the author is proposing in a current on-going UK-based study that patients with alcohol use disorder who have undergone a medical detoxification from alcohol might benefit from a course of MDMA-assisted psychotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fasting and exercise increase plasma cannabinoid levels in THC pre-treated rats: an examination of behavioural consequences.

    Science.gov (United States)

    Wong, Alexander; Keats, Kirily; Rooney, Kieron; Hicks, Callum; Allsop, David J; Arnold, Jonathon C; McGregor, Iain S

    2014-10-01

    Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in fat tissue where it can remain for prolonged periods. Under conditions of increased fat utilisation, blood cannabinoid concentrations can increase. However, it is unclear whether this has behavioural consequences. Here, we examined whether rats pre-treated with multiple or single doses of THC followed by a washout would show elevated plasma cannabinoids and altered behaviour following fasting or exercise manipulations designed to increase fat utilisation. Behavioural impairment was measured as an inhibition of spontaneous locomotor activity or a failure to successfully complete a treadmill exercise session. Fat utilisation was indexed by plasma free fatty acid (FFA) levels with plasma concentrations of THC and its terminal metabolite (-)-11-nor-9-carboxy-∆(9)-tetrahydrocannabinol (THC-COOH) also measured. Rats given daily THC (10 mg/kg) for 5 days followed by a 4-day washout showed elevated plasma THC-COOH when fasted for 24 h relative to non-fasted controls. Fasted rats showed lower locomotor activity than controls suggesting a behavioural effect of fat-released THC. However, rats fasted for 20 h after a single 5-mg/kg THC injection did not show locomotor suppression, despite modestly elevated plasma THC-COOH. Rats pre-treated with THC (5 mg/kg) and exercised 20 h later also showed elevated plasma THC-COOH but did not differ from controls in their likelihood of completing 30 min of treadmill exercise. These results confirm that fasting and exercise can increase plasma cannabinoid levels. Behavioural consequences are more clearly observed with pre-treatment regimes involving repeated rather than single THC dosing.

  1. Neurochemical and neuroanatomic effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats

    International Nuclear Information System (INIS)

    Virus, R.; Commins, D.; Vosmer, G.; Woolverton, W.; Schuster, C.; Seiden, L.

    1986-01-01

    Rats injected s.c. twice daily for 4 consecutive days with 10,20, or 40 mg/kg MDMA or saline and sacrificed 2 weeks after the last injection showed dose-dependent reductions in serotonin (5-HT) concentrations in hypothalamus, hippocampus (HIP), striatum (STR), somatosensory cortex (SC) and other cortical areas (CTX). 5-HT depletion was maximal in HIP (11.5 +/- 1.7%) and SC (15.3 +/- 3.2%, p 3 H)5-HT uptake sites (V/sub max/ 35.2% of control) without affecting the affinity (K/sub m/) in HIP. Fink-Heimer staining showed that rats injected s.c. twice daily for 2 days with 80 mg/kg MDMA had greater degeneration of nerve terminals in STR (p<0.005) and pyramidal cells in Layer III of SC (p<0.01) than did control rats. These results clearly suggest that repeated exposure to MDMA selectively damages serotonergic neurons in the central nervous system of rats

  2. The relationship between observed signs of impairment and THC concentration in oral fluid.

    Science.gov (United States)

    Fierro, Inmaculada; González-Luque, Juan Carlos; Alvarez, F Javier

    2014-11-01

    Studies have shown that cannabis intake increases the risk of traffic accidents. Controlled experiments support these findings and have shown a positive dose-effect relationship. In this retrospective cross-sectional study of data from a roadside survey, we investigated whether a police officer's judgment regarding signs of impairment is related to the concentration of delta-9-tetrahydrocannabinol (THC) in the oral fluid (OF). We investigated 2,632 cases from a representative sample of 3,302 Spanish drivers: 253 drivers positive for THC only, 32 positive for THC and ethanol, 201 with only ethanol detected in their breath, and 2,146 drivers who tested negative for ethanol in breath and drugs in OF. Recorded data comprised breath alcohol concentrations, THC concentrations in the OF, and the 31 observed signs of impairment. Subject groups were compared using the chi-square test, and logistic regression was used to examine the risk of being categorized as exhibiting signs of impairment. A relationship was found between the OF THC concentration and some observed signs of impairment. Eye signs were noticeable from a THC concentration >3.0 ng/ml in OF, and >25 ng/ml was related to behavior, facial expression, and speech signs. Alcohol and THC contribute to impairment independently and, when taken simultaneously, the effects are comparable to the sum of the effects when consumed separately. The observation of signs of impairment due to cannabis occurs in an OF concentration-related manner but, as a clinical test, OF has low sensitivity and specificity in a random roadside survey. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Cannabis coadministration potentiates the effects of "ecstasy" on heart rate and temperature in humans

    NARCIS (Netherlands)

    Dumont, G J; Kramers, C; Sweep, F C; Touw, D J; van Hasselt, J G; de Kam, M; van Gerven, J M; Buitelaar, J K; Verkes, R J

    This study assessed the acute physiologic effects over time of (co)administration of Delta9-tetrahydrocannabinol (Delta9-THC) (the main psychoactive compound of cannabis) and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") in 16 healthy volunteers. Pharmacokinetics and cardiovascular,

  4. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics.

    Science.gov (United States)

    Johnson, Jeremy R; Lossignol, Dominique; Burnell-Nugent, Mary; Fallon, Marie T

    2013-08-01

    Chronic pain in patients with advanced cancer poses a serious clinical challenge. The Δ9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (U.S. Adopted Name, nabiximols; Sativex(®)) is a novel cannabinoid formulation currently undergoing investigation as an adjuvant therapy for this treatment group. This follow-up study investigated the long-term safety and tolerability of THC/CBD spray and THC spray in relieving pain in patients with advanced cancer. In total, 43 patients with cancer-related pain experiencing inadequate analgesia despite chronic opioid dosing, who had participated in a previous three-arm (THC/CBD spray, THC spray, or placebo), two-week parent randomized controlled trial, entered this open-label, multicenter, follow-up study. Patients self-titrated THC/CBD spray (n=39) or THC spray (n=4) to symptom relief or maximum dose and were regularly reviewed for safety, tolerability, and evidence of clinical benefit. The efficacy end point of change from baseline in mean Brief Pain Inventory-Short Form scores for "pain severity" and "worst pain" domains showed a decrease (i.e., improvement) at each visit in the THC/CBD spray patients. Similarly, the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30 scores showed a decrease (i.e., improvement) from baseline in the domains of insomnia, pain, and fatigue. No new safety concerns associated with the extended use of THC/CBD spray arose from this study. This study showed that the long-term use of THC/CBD spray was generally well tolerated, with no evidence of a loss of effect for the relief of cancer-related pain with long-term use. Furthermore, patients who kept using the study medication did not seek to increase their dose of this or other pain-relieving medication over time, suggesting that the adjuvant use of cannabinoids in cancer-related pain could provide useful benefit. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc

  5. Warning against co-administration of 3,4-methylenedioxymethamphetamine (MDMA) with methamphetamine from the perspective of pharmacokinetic and pharmacodynamic evaluations in rat brain.

    Science.gov (United States)

    Yuki, Fuchigami; Rie, Ikeda; Miki, Kuzushima; Mitsuhiro, Wada; Naotaka, Kuroda; Kenichiro, Nakashima

    2013-04-11

    3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine often cause serious adverse effects (e.g., rhabdomyolysis, and cardiac disease) following hyperthermia triggered by release of brain monoamines such as dopamine and serotonin. Therefore, evaluation of brain monoamine concentrations is useful to predict these drugs' risks in human. This study aimed to evaluate risks of co-administration of MDMA and methamphetamine, both of which are abused frequently in Japan, based on drug distribution and monoamine level in the rat brain. Rats were allocated to three groups: (1) sole MDMA administration (12 or 25 mg/kg, intraperitoneally), (2) sole methamphetamine administration (10 mg/kg, intraperitoneally) and (3) co-administration of MDMA (12 mg/kg, intraperitoneally) and methamphetamine (10 mg/kg, intraperitoneally). We monitored pharmacokinetic and pharmacodynamic variables for drugs and monoamines in the rat brain. Area under the curve for concentration vs. time until 600 min from drug administration (AUC₀₋₆₀₀) increased from 348.0 to 689.8 μgmin/L for MDMA and from 29.9 to 243.4 μMmin for dopamine in response to co-administration of methamphetamine and MDMA compared to sole MDMA (12 mg/kg) administration. After sole methamphetamine or that with MDMA administration, AUC₀₋₆₀₀ of methamphetamine were 401.8 and 671.1 μgmin/L, and AUC₀₋₆₀₀ of dopamine were 159.9 and 243.4 μMmin. In conclusion, the brain had greater exposure to MDMA, methamphetamine and dopamine after co-administration of MDMA and methamphetamine than when these two drugs were given alone. This suggests co-administration of MDMA with methamphetamine confers greater risk than sole administration, and that adverse events of MDMA ingestion may increase when methamphetamine is co-administered. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. MDMA and heightened cortisol: a neurohormonal perspective on the pregnancy outcomes of mothers used 'Ecstasy' during pregnancy.

    Science.gov (United States)

    Parrott, Andrew C; Moore, Derek G; Turner, John J D; Goodwin, Julia; Min, Meeyoung O; Singer, Lynn T

    2014-01-01

    The illicit recreational drug 3,4-methylenedioxymethamphetamine (MDMA) or Ecstasy has strong neurohormonal effects. When taken by recreational users at dance clubs and raves, it can generate an 800% increase in the stress hormone cortisol, whereas drug-free users show chronically raised levels of cortisol. The aim here is to critically debate this neurohormonal influence for the children of pregnant MDMA-using mothers. High levels of cortisol are known to be damaging for neuropsychobiological well-being in adult humans. MDMA can damage foetal development in laboratory animals, and the prospective Drugs and Infancy Study was established to monitor the effects of MDMA taken recreationally by pregnant women. The Drugs and Infancy Study revealed that young mothers, who took MDMA during the first trimester of pregnancy, gave birth to babies with significant gross psychomotor retardation. These mothers would have experienced high levels of cortisol due to Ecstasy/MDMA use, and since cortisol can cross the placenta, this is likely to have also occurred in the foetus. In terms of causation, the developmental problems may reflect a combination of neurotransmitter and neurohormonal effects on the hypothalamic-pituitary-adrenal axis, with serotonergic activity being influenced by the high levels of cortisol. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans.

    Science.gov (United States)

    Cortes-Briones, Jose; Skosnik, Patrick D; Mathalon, Daniel; Cahill, John; Pittman, Brian; Williams, Ashley; Sewell, R Andrew; Ranganathan, Mohini; Roach, Brian; Ford, Judith; D'Souza, Deepak Cyril

    2015-08-01

    Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.

  8. Central nervous system effects of haloperidol on THC in healthy male volunteers

    NARCIS (Netherlands)

    Liem-Moolenaar, Marieke; te Beek, Erik T; de Kam, Marieke L; Franson, Kari L; Kahn, René S; Hijman, Ron; Touw, Daan; van Gerven, Joop M A

    2010-01-01

    In this study, the hypothesis that haloperidol would lead to an amelioration of Δ9-tetrahydrocannabinol (THC)-induced 'psychotomimetic' effects was investigated. In a double-blind, placebo-controlled, partial three-way crossover ascending dose study the effects of THC, haloperidol and their

  9. Central nervous system effects of haloperidol on THC in healthy male volunteers

    NARCIS (Netherlands)

    Liem-Moolenaar, Marieke; te Beek, Erik T; de Kam, Marieke L; Franson, Kari L; Kahn, René S; Hijman, Ron; Touw, Daan; van Gerven, Joop M A

    In this study, the hypothesis that haloperidol would lead to an amelioration of Δ9-tetrahydrocannabinol (THC)-induced 'psychotomimetic' effects was investigated. In a double-blind, placebo-controlled, partial three-way crossover ascending dose study the effects of THC, haloperidol and their

  10. Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy in anxiety-like responses in mice

    Directory of Open Access Journals (Sweden)

    V. Ferraz-de-Paula

    2011-05-01

    Full Text Available Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group. The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05 effects: a a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e increased serum corticosterone levels, and f increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.

  11. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice

    OpenAIRE

    Walentiny, D. Matthew; Vann, Robert E.; Wiley, Jenny L.

    2015-01-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ9 -tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with sim...

  12. Clinical experience with THC:CBD oromucosal spray in patients with multiple sclerosis-related spasticity.

    Science.gov (United States)

    Koehler, Jürgen; Feneberg, Wolfgang; Meier, Martin; Pöllmann, Walter

    2014-09-01

    This detailed medical charts' data collection study conducted at a multiple sclerosis (MS) clinic in Germany evaluated the effectiveness of tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray in patients with resistant MS spasticity. Over a 15-month timeframe, THC:CBD spray was initiated in 166 patients. Mean follow-up was 9 months. In all, 120 patients remained on treatment for a response rate of 72%. THC:CBD spray was used as add-on therapy in 95 patients and as monotherapy in 25 patients to achieve best-possible therapeutic results. Among responders, the mean spasticity 0-10 numerical rating scale (NRS) score decreased by 57%, from 7.0 before treatment to 3.0 within 10 days of starting THC:CBD spray. The mean dosage was 4 sprays/day. Most patients who withdrew from treatment (40/46) had been receiving THC:CBD spray for less than 60 days. Main reasons for treatment discontinuation were: adverse drug reactions, mainly dizziness, fatigue and oral discomfort (23 patients; 13.9%); lack of efficacy (14 patients; 8.4%); or need for a baclofen pump (9 patients; 5.4%). No new safety signals were noted with THC:CBD spray during the evaluation period. In this routine clinical practice setting at an MS clinic in Germany, THC:CBD spray was effective and well tolerated as add-on therapy or as monotherapy in a relevant proportion of patients with resistant MS spasticity.

  13. Cannabinoids and metabolites in expectorated oral fluid after 8 days of controlled around-the-clock oral THC administration.

    Science.gov (United States)

    Milman, Garry; Barnes, Allan J; Schwope, David M; Schwilke, Eugene W; Goodwin, Robert S; Kelly, Deana L; Gorelick, David A; Huestis, Marilyn A

    2011-08-01

    Oral fluid (OF) is an increasingly accepted matrix for drug testing programs, but questions remain about its usefulness for monitoring cannabinoids. Expectorated OF specimens (n = 360) were obtained from 10 adult daily cannabis smokers before, during, and after 37 20-mg oral Δ(9)-tetrahydrocannabinol (THC) doses over 9 days to characterize cannabinoid disposition in this matrix. Specimens were extracted and analyzed by gas chromatography-mass spectrometry with electron-impact ionization for THC, 11-hydroxy-THC, cannabidiol, and cannabinol, and negative chemical ionization for 11-nor-9-carboxy-THC (THCCOOH). Linear ranges for THC, 11-hydroxy-THC, and cannabidiol were 0.25-50 ng/mL; cannabinol 1-50 ng/mL; and THCCOOH 5-500 pg/mL. THCCOOH was the most prevalent analyte in 344 specimens (96.9%), with concentrations up to 1,390.3 pg/mL. 11-hydroxy-THC, cannabidiol, and cannabinol were detected in 1, 1, and 3 specimens, respectively. THC was detected in only 13.8% of specimens. The highest THC concentrations were obtained at admission (median 1.4 ng/mL, range 0.3-113.6) from previously self-administered smoked cannabis. A total of 2.5 and 3.7% of specimens were THC-positive at the recommended Substance Abuse and Mental Health Services Administration (2 ng/mL) and Driving Under the Influence of Drugs, Alcohol and Medicines (DRUID) (1 ng/mL) confirmation cutoffs, respectively. THC is currently the only analyte for monitoring cannabis exposure in OF; however, these data indicate chronic therapeutic oral THC administration and illicit oral THC use are unlikely to be identified with current guidelines. Measurement of THCCOOH may improve the detection and interpretation of OF cannabinoid tests and minimize the possibility of OF contamination from passive inhalation of cannabis smoke.

  14. Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons

    NARCIS (Netherlands)

    Reneman, L.; Booij, J.; de Bruin, K.; Reitsma, J. B.; de Wolff, F. A.; Gunning, W. B.; den Heeten, G. J.; van den Brink, W.

    2001-01-01

    BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a popular recreational drug that has been shown to damage brain serotonin neurons in high doses. However, effects of moderate MDMA use on serotonin neurons have not been studied, and sex differences and the long-term effects of MDMA

  15. Reintoxication: the release of fat-stored delta(9)-tetrahydrocannabinol (THC) into blood is enhanced by food deprivation or ACTH exposure.

    Science.gov (United States)

    Gunasekaran, N; Long, L E; Dawson, B L; Hansen, G H; Richardson, D P; Li, K M; Arnold, J C; McGregor, I S

    2009-11-01

    Delta(9)-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in adipose tissue where it is stored for long periods of time. Here we investigated whether conditions that promote lipolysis can liberate THC from adipocytes to yield increased blood levels of THC. In vitro studies involved freshly isolated rat adipocytes that were incubated with THC before exposure to the lipolytic agent adrenocorticotrophic hormone (ACTH). A complementary in vivo approach examined the effects of both food deprivation and ACTH on blood levels of THC in rats that had been repeatedly injected with THC (10 mg.kg(-1)) for 10 consecutive days. Lipolysis promoted by ACTH or food deprivation was indexed by measurement of glycerol levels. ACTH increased THC levels in the medium of THC-pretreated adipocytes in vitro. ACTH also enhanced THC release from adipocytes in vitro when taken from rats repeatedly pretreated with THC in vivo. Finally, in vivo ACTH exposure and 24 h food deprivation both enhanced the levels of THC and its metabolite, (-)-11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH) in the blood of rats that had been pre-exposed to repeated THC injections. The present study shows that lipolysis enhances the release of THC from fat stores back into blood. This suggests the likelihood of 'reintoxication' whereby food deprivation or stress may raise blood THC levels in animals chronically exposed to the drug. Further research will need to confirm whether this can lead to functional effects, such as impaired cognitive function or 'flashbacks'.

  16. Mountain-Scale Coupled Processes (TH/THC/THM)

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  17. Rhabdomyolysis in MDMA intoxication : A rapid and underestimated killer. "clean" Ecstasy, a safe party drug?

    NARCIS (Netherlands)

    Eede, Herve Vanden; Montenij, Leon J.; Touw, Daan J.; Norris, Elizabeth M.

    Background: Ecstasy is a popular drug among young adults. It is often thought to be safe. The dose of methylenedioxymethamphetamine (MDMA) in a tablet of Ecstasy varies greatly, and there is also a difference in individual response to a dose of MDMA. Objectives: To increase the awareness of

  18. Dissociable effects of a single dose of ecstasy (MDMA) on psychomotor skills and attentional performance

    NARCIS (Netherlands)

    Lamers, CTJ; Ramaekers, JG; Muntjewerff, ND; Sikkema, KL; Samyn, N; Read, NL; Brookhuis, KA; Riedel, WJ

    2003-01-01

    Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is a psychoactive recreational drug widely used by young people visiting dance parties, and has been associated with poor cognitive function. The current study assessed the influence of a single dose of MDMA 75 mg and alcohol 0.5 g/kg on cognition,

  19. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data

  20. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Sonnenthale, E.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are

  1. Compression of ThC to 50 GPa

    International Nuclear Information System (INIS)

    Gerward, L.; Staun Olsen, J.; Benedict, U.; Luo, H.

    1990-01-01

    Thorium monocarbide crystallizes in the NaCl type structure (space group Fmanti 3m) at room temperature and atmospheric pressure. Very little has been published on the structural high-pressure behaviour of this compound. In a previous study ThC was compressed to 36 GPa and the bulk modulus B 0 was determined. No phase transformation was observed in contrast to the case of the corresponding uranium compound UC, which transforms to an orthorhombic structure at about 27 GPa. It has been suggested that the B 0 value might be too low, considering the bulk modulus scaling with specific volume for thorium and uranium compounds. Thus it should be useful to confirm the B 0 value for ThC and to look for structural phase transformations in an extended pressure range. (orig.)

  2. Tolerance to Chronic Delta-9-Tetrahydrocannabinol (Δ9-THC) in Rhesus Macaques Infected With Simian Immunodeficiency Virus

    Science.gov (United States)

    Winsauer, Peter J.; Molina, Patricia E.; Amedee, Angela M.; Filipeanu, Catalin M.; McGoey, Robin R.; Troxclair, Dana A.; Walker, Edith M.; Birke, Leslie L.; Stouwe, Curtis Vande; Howard, Jessica M.; Leonard, Stuart T.; Moerschbaecher, Joseph M.; Lewis, Peter B.

    2011-01-01

    Although Δ9-THC has been approved to treat anorexia and weight loss associated with AIDS, it may also reduce well-being by disrupting complex behavioral processes or enhancing HIV replication. To investigate these possibilities, four groups of male rhesus macaques were trained to respond under an operant acquisition and performance procedure, and administered vehicle or Δ9-THC before and after inoculation with simian immunodeficiency virus(SIVmac251, 100 TCID50/ml, i.v.). Prior to chronic Δ9-THC and SIV inoculation, 0.032– 0.32 mg/kg of Δ9-THC produced dose-dependent rate-decreasing effects and small, sporadic error-increasing effects in the acquisition and performance components in each subject. Following 28 days of chronic Δ9-THC (0.32 mg/kg, i.m.) or vehicle twice daily, delta-9-THC-treated subjects developed tolerance to the rate-decreasing effects, and this tolerance was maintained during the initial 7–12 months irrespective of SIV infection (i.e., +THC/−SIV, +THC/+SIV). Full necropsy was performed on all SIV subjects an average of 329 days post-SIV inoculation, with postmortem histopathology suggestive of a reduced frequency of CNS pathology as well as opportunistic infections in delta-9-THC-treated subjects. Chronic Δ9-THC also significantly reduced CB-1 and CB-2 receptor levels in the hippocampus, attenuated the expression of a proinflammatory cytokine (MCP-1), and did not increase viral load in plasma, cerebrospinal fluid, or brain tissue compared to vehicle-treated subjects with SIV. Together, these data indicate that chronic Δ9-THC produces tolerance to its behaviorally disruptive effects on complex tasks while not adversely affecting viral load or other markers of disease progression during the early stages of infection. PMID:21463073

  3. Significant decreases in frontal and temporal [11C]-raclopride binding after THC challenge.

    Science.gov (United States)

    Stokes, Paul R A; Egerton, Alice; Watson, Ben; Reid, Alistair; Breen, Gerome; Lingford-Hughes, Anne; Nutt, David J; Mehta, Mitul A

    2010-10-01

    Delta9-tetrahydrocannabinol (THC) increases prefrontal cortical dopamine release in animals, but this is yet to be examined in humans. In man, striatal dopamine release can be indexed using [11C]-raclopride positron emission tomography (PET), and recent reports suggest that cortical [11C]-raclopride binding may also be sensitive to dopaminergic challenges. Using an existing dataset we examined whether THC alters [11C]-raclopride binding potential (BP(ND)) in cortical regions. Thirteen healthy volunteers underwent two [11C]-raclopride PET scans following either oral 10 mg THC or placebo. Significant areas of decreased cortical [11C]-raclopride BP(ND) were identified using whole brain voxel-wise analysis and quantified using a region of interest (ROI) ratio analysis. Effect of blood flow on binding was estimated using a simplified reference tissue model analysis. Results were compared to [11C]-raclopride test-retest reliability in the ROIs identified using a separate cohort of volunteers. Voxel-wise analysis identified three significant clusters of decreased [11C]-raclopride BP(ND) after THC in the right middle frontal gyrus, left superior frontal gyrus and left superior temporal gyrus. Decreases in [11C]-raclopride BPND following THC were greater than test-retest variability in these ROIs. R1, an estimate of blood flow, significantly decreased in the left superior frontal gyrus in the THC condition but was unchanged in the other ROIs. Decreased frontal binding significantly correlated to catechol-o-methyl transferase (COMT) val108 status. We have demonstrated for the first time significant decreases in bilateral frontopolar cortical and left superior temporal gyrus [11C]-raclopride binding after THC. The interpretation of these findings in relation to prefrontal dopamine release is discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Validação de método para determinação de 3,4-metilenodioximetanfetamina (MDMA em comprimidos de ecstasy por cromatografia em fase gasosa Validation of a gas-chromatographic method for the determination of 3,4-methylenedioxymethamphetamine(MDMA in ecstasy tablets

    Directory of Open Access Journals (Sweden)

    Silvio Fernandes Lapachinske

    2004-03-01

    Full Text Available O ecstasy é comercializado, de maneira ilegal, normalmente sob a forma de comprimidos, com cores, aspectos, dimensões e logotipos variados. Quimicamente, é a metilenodioximetanfetamina (MDMA, um composto sintético com propriedades estimulante central e alucinogênicas. Devido à grande expansão do abuso de ecstasy, também tem aumentado o número de casos de intoxicações, decorrentes diretamente da droga (MDMA e análogas e/ou de eventuais adulterantes. Algumas substâncias análogas à MDMA, já identificadas em comprimidos de ecstasy são: metilenodioxietilanfetamina (MDEA, metilenodioxianfetamina (MDA, metanfetamina e anfetamina. Como possíveis adulterantes, geralmente são encontradas cafeína e efedrinas. O objetivo deste trabalho foi a validação de um método analítico para quantificar a MDMA em comprimidos ou cápsulas de ecstasy, através da cromatografia em fase gasosa com detector de nitrogênio/fósforo (GC/NPD. Além disso, substâncias análogas à MDMA e adulterantes também foram identificados. O método, que consiste na dissolução direta da amostra em metanol, centrifugação e diluição do sobrenadante, demonstrou ser simples, rápido e eficiente. Os limites de detecção e quantificação para a MDMA foram respectivamente de 1,5 e 3,0 mg/100 mg de comprimido. Amostras de comprimidos e cápsulas apreendidos como sendo ecstasy provenientes de 25 lotes foram analisadas, apresentando considerável variabilidade na composição e na quantidade de MDMA.Ecstasy is illegally commercialized in the form of tablets with different aspects, colors, sizes, and logotypes. Chemically, ecstasy is 3,4-methylenedioxymethamphetamine (MDMA, a synthetic compound with stimulant and hallucinogenic proprieties. Due to the great expansion of ecstasy abuse, the number of cases of intoxications by MDMA, analogs and eventual adulterant compounds has also increased. Some MDMA analog substances, such as 3,4-methylenedioxyethylamphetamine (MDEA

  5. 3,4-Methylenedioxymethamphetamine (MDMA) alters acute gammaherpesvirus burden and limits Interleukin 27 responses in a mouse model of viral infection

    Science.gov (United States)

    Nelson, Daniel A.; Singh, Sam J.; Young, Amy B.; Tolbert, Melanie D.; Bost, Kenneth L.

    2011-01-01

    Aims To test whether 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide. Methods Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse. Results Acute viral burden was significantly increased in MDMA-treated mice when compared to controls. However the latent viral burden, and physiological and behavioral responses were not altered in infected mice despite repeated bingeing with MDMA. MDMA could limit the IL-27 response of HV-68 infected or LPS-exposed macrophages and dendritic cells in vitro and in vivo, demonstrating the ability of this drug to alter normal cytokine responses in the context of a viral infection and/or a TLR4 agonist. Conclusion MDMA bingeing could alter the host’s immune response resulting in greater acute viral replication and reductions in the production of the cytokine, IL-27 during immune responses. PMID:21269783

  6. Psychiatric profiles of mothers who take Ecstasy/MDMA during pregnancy: reduced depression 1 year after giving birth and quitting Ecstasy.

    Science.gov (United States)

    Turner, John J D; Parrott, Andrew C; Goodwin, Julia; Moore, Derek G; Fulton, Sarah; Min, Meeyoung O; Singer, Lynn T

    2014-01-01

    The recreational drug MDMA (3,4-methylenedioxymethamphetamine) or 'Ecstasy' is associated with heightened psychiatric distress and feelings of depression. The Drugs and Infancy Study (DAISY) monitored the psychiatric symptom profiles of mothers who used Ecstasy/MDMA while pregnant, and followed them over the first year post-partum. We compared 28 young women whom took MDMA during their pregnancy with a polydrug control group of 68 women who took other psychoactive drugs while pregnant. The Brief Symptom Inventory (BSI) was completed for several periods: The first trimester of pregnancy; and 1, 4 and 12 months after childbirth. Recreational drug use was monitored at each time point. During the first trimester of pregnancy, MDMA-using mothers reported higher depression scores than the polydrug controls. At 1 year after childbirth, their BSI depression scores were significantly lower, now closer to the control group values. At the same time point, their self-reported use of MDMA became nearly zero, in contrast to their continued use of Cannabis/marijuana, nicotine and alcohol. We found significant symptom reductions in those with BSI obsessive-compulsive and interpersonal sensitivity, following Ecstasy/MDMA cessation. The findings from this unique prospective study of young recreational drug-using mothers are consistent with previous reports of improved psychiatric health after quitting MDMA.

  7. Greater sexual risk-taking in female and male recreational MDMA/ecstasy users compared with alcohol drinkers: a questionnaire study.

    Science.gov (United States)

    May, Aimee L; Parrott, Andrew C

    2015-07-01

    Previous studies have shown increased sexual risk-taking in experienced MDMA/ecstasy users. The main objectives of this study were to compare levels of sexual risk-taking between a young student sample of predominantly heterosexual MDMA users and alcohol-drinker controls and investigate potential gender differences. Recreational drug use and sexual risk questionnaires were completed by 20 MDMA users (10 females, 10 males) and 20 non-user controls (10 females, 10 males). They were predominantly university students, aged between 20-22 years, mainly heterosexual (n = 37), with three bisexual participants. MDMA users displayed significantly greater levels of sexual risk-taking than the alcohol-drinker controls. It involved significantly higher rates of casual sex, non-condom use during sex, and penetrative sexual risks. This increase in sexual riskiness occurred to a similar extent in males and females. These findings indicate that both female and male ecstasy/MDMA users reported more risky sexual behaviours, than the non-user controls. Further research into the sexual behaviour and sexual risk-taking of heterosexual MDMA users should be conducted because much of the past literature has focused on homosexual participants. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Acute and chronic effects of cannabidiol on Δ⁹-tetrahydrocannabinol (Δ⁹-THC)-induced disruption in stop signal task performance.

    Science.gov (United States)

    Jacobs, David S; Kohut, Stephen J; Jiang, Shan; Nikas, Spyros P; Makriyannis, Alexandros; Bergman, Jack

    2016-10-01

    Recent clinical and preclinical research has suggested that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized. To address this, we investigated the effects of Δ9-THC and CBD independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys (n = 6) performing a stop signal task (SST). Additionally, the development of tolerance to the effects of Δ9-THC on SST performance was evaluated by determining the effects of acutely administered Δ9-THC (0.1-3.2 mg/kg), during a 24-day chronic Δ9-THC treatment period with Δ9-THC alone or in combination with CBD. Results indicate that Δ9-THC (0.032-0.32 mg/kg) dose-dependently decreased go success but did not alter go reaction time (RT) or stop signal RT (SSRT); CBD (0.1-1.0 mg/kg) was without effect on all measures and, when coadministered in a 1:1 dose ratio, did not exacerbate or attenuate the effects of Δ9-THC. When coadministered in a 1:3 dose ratio, CBD (1.0 mg/kg) attenuated the disruptive effects of 0.32 mg/kg Δ9-THC but did not alter the effects of other Δ9-THC doses. Increases in ED50 values for the effects of Δ9-THC on SST performance were apparent during chronic Δ9-THC treatment, with little evidence for modification of changes in sensitivity by CBD. These results indicate that CBD, when combined with Δ9-THC in clinically available dose ratios, does not exacerbate and, under restricted conditions may even attenuate, Δ9-THC's behavioral effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

    DEFF Research Database (Denmark)

    Lozano-Torres, Beatriz; Pascual, Lluís; Bernardos, Andrea

    2017-01-01

    Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA).......Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA)....

  10. The influence of carbon non-stoichiometry on the electronic properties of thorium monocarbide ThC

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2010-01-01

    The first-principle band structure calculations are employed to examine the influence of carbon non-stoichiometry on the structural and electronic properties of the cubic thorium monocarbide ThC. As a result, the equilibrium geometries, electronic bands, densities of states (DOS), Sommerfeld constants and Pauli paramagnetic susceptibility for ThC 1-x (where x = 0, 0.25 and 0.50) are obtained and analyzed in comparison with available experimental data. Additionally, the formation energies of carbon vacancies are theoretically estimated for ThC 1-x . The results obtained indicate that the introduction of carbon vacancies in ThC is accompanied by pronounced DOS changes due to the appearance of novel 'vacancy states' in the near-Fermi region formed by comparable contributions of Th 6d and 5f states. The carbon deficiency strongly affects the structure and stability of thorium carbide. For example, for the hypothetical 'over-deficient' composition ThC 0.50 the initial cubic structure undergoes significant tetragonal distortions. On the contrary, for ThC 0.75 the value of Evf is positive and the cubic structure of this phase is preserved. (authors)

  11. Neurotoxicity of drugs of abuse - the case of methylenedioxy amphetamines (MDMA, ecstasy ), and amphetamines

    Science.gov (United States)

    Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2009-01-01

    Ecstasy (MDMA, 3,4-methylendioxymethamphetamine) and the stimulants methamphetamine (METH, speed) and amphetamine are popular drugs among young people, particularly in the dance scene. When given in high doses both MDMA and the stimulant amphetamines are clearly neurotoxic in laboratory animals. MDMA causes selective and persistent lesions of central serotonergic nerve terminals, whereas amphetamines damage both the serotonergic and dopaminergic systems. In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies in drug users. Despite large methodological problems, the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial recovery may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive impairments with ecstasy use, particularly with memory. In contrast, studies on possible long-term neurotoxic effects of stimulant use have been relatively scarce. Preliminary evidence suggests that alterations of the dopaminergic system may persist even after years of abstinence from METH, and may be associated with deficits in motor and cognitive performance. In this paper, we will review the literature focusing on human studies. PMID:19877498

  12. Pharmacokinetics and pharmacodynamics of 3,4-methylenedioxymethamphetamine (MDMA): interindividual differences due to polymorphisms and drug-drug interactions

    NARCIS (Netherlands)

    Rietjens, S.J.; Hondebrink, L.; Westerink, R.H.S.; Meulenbelt, J.

    2012-01-01

    Clinical outcome following 3,4-methylenedioxymethamphetamine (MDMA) intake ranges from mild entactogenic effects to a life-threatening intoxication. Despite ongoing research, the clinically most relevant mechanisms causing acute MDMA-induced adverse effects remain largely unclear. This complicates

  13. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling

    Science.gov (United States)

    Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894

  14. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics.

    Science.gov (United States)

    Heuberger, Jules A A C; Guan, Zheng; Oyetayo, Olubukayo-Opeyemi; Klumpers, Linda; Morrison, Paul D; Beumer, Tim L; van Gerven, Joop M A; Cohen, Adam F; Freijer, Jan

    2015-02-01

    Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.

  15. Hippocampal nicotinic receptors have a modulatory role for ethanol and MDMA interaction in memory retrieval.

    Science.gov (United States)

    Rostami, Maryam; Rezayof, Ameneh; Alijanpour, Sakineh; Sharifi, Khadijeh Alsadat

    2017-08-15

    The aim of the current study was to examine the effect of dorsal hippocampal nicotinic acetylcholine receptors (nAChRs) activation on the functional interaction between ethanol and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) in memory retrieval. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and memory retrieval was measured in a step-down type passive avoidance apparatus. Post-training or pre-test systemic administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol reversed pre-training ethanol-induced amnesia, suggesting ethanol state-dependent learning. Pre-test intra-CA1 microinjection of different doses of MDMA (0.25-1µg/mouse) with an ineffective dose of ethanol (0.25g/kg, i.p.) also induced amnesia. Interestingly, pre-test intra-CA1 microinjection of MDMA (0.25-1µg/mouse) potentiated ethanol state-dependent learning. On the other hand, the activation of the dorsal hippocampal nAChRs by pre-test microinjection of nicotine (0.1-1µg/mouse, intra-CA1) improved amnesia induced by the co-administration of MDMD and ethanol. It is important to note that intra-CA1 microinjection of the same doses of MDMA or nicotine could not affect memory formation by itself. Pre-test intra-CA1 microinjection of nicotine (0.3-0.9µg/mouse) could not reverse amnesia induced by pre-training administration of ethanol while this treatment enhanced MDMA response on ethanol state-dependent learning. Thus, it can be concluded that there may be functional interactions among ethanol, MDMA and nicotine via the dorsal hippocampal nicotinic acetylcholine receptor mechanism in memory retrieval and drug state-dependent learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of intermittent exposure to ethanol and MDMA during adolescence on learning and memory in adult mice

    Directory of Open Access Journals (Sweden)

    Vidal-Infer Antonio

    2012-06-01

    Full Text Available Abstract Background Heavy binge drinking is increasingly frequent among adolescents, and consumption of 3,4-methylenedioxymethamphetamine (MDMA is often combined with ethanol (EtOH. The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on learning and memory were evaluated in adult mice using the Hebb-Williams maze. Methods Adolescent OF1 mice were exposed to EtOH (1.25 g/kg on two consecutive days at 48-h intervals over a 14-day period (from PD 29 to 42. MDMA (10 or 20 mg/kg was injected twice daily at 4-h intervals over two consecutive days, and this schedule was repeated six days later (PD 33, 34, 41 and 42, resulting in a total of eight injections. Animals were initiated in the Hebb-Williams maze on PND 64. The concentration of brain monoamines in the striatum and hippocampus was then measured. Results At the doses employed, both EtOH and MDMA, administered alone or together, impaired learning in the Hebb-Williams maze, as treated animals required more time to reach the goal than their saline-treated counterparts. The groups treated during adolescence with EtOH, alone or plus MDMA, also presented longer latency scores and needed more trials to reach the acquisition criterion score. MDMA induced a decrease in striatal DA concentration, an effect that was augmented by the co-administration of EtOH. All the treatment groups displayed an imbalance in the interaction DA/serotonin. Conclusions The present findings indicate that the developing brain is highly vulnerable to the damaging effects of EtOH and/or MDMA, since mice receiving these drugs in a binge pattern during adolescence exhibit impaired learning and memory in adulthood.

  17. Êxtase (MDMA: efeitos farmacológicos e tóxicos, mecanismo de ação e abordagem clínica Ecstasy (MDMA: pharmacological and toxic effects, mechanism of action and clinical management

    Directory of Open Access Journals (Sweden)

    Caroline Addison Carvalho Xavier

    2008-01-01

    Full Text Available CONTEXTO: O 3,4-metilenodioximetanfetamina (MDMA, êxtase é um derivado da anfetamina, cujo consumo por jovens tem aumentado. OBJETIVOS: Conduzir uma revisão de literatura sobre os aspectos farmacológicos e fisiopatológicos do MDMA, incluindo o mecanismo de ação que possa explicar os efeitos neurotóxicos e a toxicidade aguda e a longo prazo. MÉTODOS: Revisão da literatura usando as palavras-chave: 3,4-methylenedioxymethamphetamine, ecstasy, neurotoxicity, intoxication, drug abuse, por intermédio do MEDLINE e LILACS. A busca incluiu todos os artigos publicados no período entre 1985 e 2007. RESULTADOS: Ainda existem muitas questões sem respostas sobre a farmacologia do êxtase e a fisiopatologia dos efeitos tóxicos dessa substância. A simples descrição do mecanismo de ação é insuficiente para explicar todos os efeitos induzidos pelo êxtase. O mecanismo exato responsável por mediar os efeitos tóxicos do MDMA sobre os neurônios da serotonina precisa ser elucidado. CONCLUSÕES: Existem poucas informações na literatura sobre a farmacologia e o mecanismo de ação do MDMA que possam explicar os efeitos neurotóxicos e outros efeitos fisiopatológicos. São necessários mais estudos para que o profissional de saúde possa obter informações e conhecimentos a fim de combater os efeitos terríveis do êxtase na população jovem vulnerável.BACKGROUND: The consumption of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy by young people increased in the past years. OBJECTIVES: To conduct a literature review on the pharmacology of MDMA and particularly with respect to the putative mechanism of action implicated in the acute and long-term toxicity and neurotoxic effects. METHODS: A literature review using the key words: 3,4-methylenedioxymethamphetamine, ecstasy, neurotoxicity, intoxication, abuse drugs was performed in the databases MEDLINE and LILACS. The search covered all articles published between 1985

  18. The effects of cannabidiol (CBD) on Δ⁹-tetrahydrocannabinol (THC) self-administration in male and female Long-Evans rats.

    Science.gov (United States)

    Wakeford, Alison G P; Wetzell, Bradley B; Pomfrey, Rebecca L; Clasen, Matthew M; Taylor, William W; Hempel, Briana J; Riley, Anthony L

    2017-08-01

    Despite widespread cannabis use in humans, few rodent models exist demonstrating significant Δ⁹-tetrahydrocannabinol (THC) self-administration, possibly due to THC's co-occurring aversive effects, which impact drug reinforcement. Cannabis contains a number of phytocannabinoids in addition to THC, one of which, cannabidiol (CBD), has been reported to antagonize some of the aversive effects of THC. Given such effects of CBD, it is possible that it might influence THC intravenous self-administration in rodents. Accordingly, male and female Long-Evans rats were trained to self-administer THC over a 3-week period and then were assessed for the effects of CBD on responding for THC at 1:1 and 1:10 dose ratios or for the establishment of cocaine self-administration (as a positive control for drug self-administration). Consistent with previous research, THC self-administration was modest and only evident in a subset of animals (and unaffected by sex). Cocaine self-administration was high and evident in the majority of animals tested, indicating that the design was sensitive to drug reinforcement. There was no effect of CBD pretreatment on THC intravenous self-administration at any CBD:THC dose ratio. Future developments of animal models of THC self-administration and the examination of factors that affect its display remain important to establish procedures designed to assess the basis for and treatment of cannabis use and abuse. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Fate of cocaine drug biomarkers in sewer system: the role of suspended solids in biotransformation and sorption

    DEFF Research Database (Denmark)

    Ramin, Pedram; Brock, Andreas Libonati; Polesel, Fabio

    on the fate of illicit drugs in sewer systems. This study aims at assessing the role of suspended solids on the biotransformation and sorption in raw sewage of eight illicit drug biomarkers (cocaine, heroin, methadone, mephedrone, ketamine, methamphetamine, MDMA and THC and their urinary metabolites...

  20. Effects of adenosine A2a receptor agonist and antagonist on cerebellar nuclear factor-kB expression preceded by MDMA toxicity.

    Science.gov (United States)

    Kermanian, Fatemeh; Soleimani, Mansoureh; Pourheydar, Bagher; Samzadeh-Kermani, Alireza; Mohammadzadeh, Farzaneh; Mehdizadeh, Mehdi

    2014-01-01

    Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliated emotional response. MDMA is a potent monoaminergic neurotoxin with the potential of damage to brain neurons. The NF-kB family of proteins are ubiquitously expressed and are inducible transcription factors that regulate the expression of genes involved in disparate processes such as immunity and ingrowth, development and cell-death regulation. In this study we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Sixty three male Sprague-Dawley rats were injected to MDMA (10 and 20mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03mg/kg) injection. The cerebellum were then removed forcresylviolet staining, western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results showed that MDMA increased the number of cerebellar dark neurons. We observed that administration of CGS following MDMA, significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. These results indicated that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.

  1. Morphine decreases social interaction of adult male rats, while THC does not affect it.

    Science.gov (United States)

    Šlamberová, R; Mikulecká, A; Macúchová, E; Hrebíčková, I; Ševčíková, M; Nohejlová, K; Pometlová, M

    2016-12-22

    The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.

  2. Effect of the CB1 cannabinoid agonist WIN 55212-2 on the acquisition and reinstatement of MDMA-induced conditioned place preference in mice

    Directory of Open Access Journals (Sweden)

    Miñarro José

    2010-03-01

    Full Text Available Abstract Background Numerous reports indicate that MDMA users consume other psychoactive drugs, among which cannabis is one of the most common. The aim of the present study was to evaluate, using the conditioned place preference, the effect of the cannabinoid agonist WIN 55,212-2 on the rewarding effects of MDMA in mice. Methods In the first experiment adolescent mice were initially conditioned with 1.25, 2.5 or 5 mg/kg of MDMA or 0.1 or 0.5 mg/kg of WIN and subsequently with both drugs. Reinstatement of the extinguished preference by priming doses was performed in the groups that showed CPP. In the second experiment, animals were conditioned with 2.5 or 5 mg/kg of MDMA and, after extinction, reinstatement of the preference was induced by 0.5 or 0.1 mg/kg of WIN. Results A low dose of WIN 55212-2 (0.1 mg/kg increased the rewarding effects of low doses of MDMA (1.25 mg/kg, although a decrease in the preference induced by MDMA (5 and 2.5 mg/kg was observed when the dose of WIN 55212-2 was raised (0.5 mg/kg. The CB1 antagonist SR 141716 also increased the rewarding effects of the lowest MDMA dose and did not block the effects of WIN. Animals treated with the highest WIN dose plus a non-neurotoxic dose of MDMA exhibited decreases of striatal DA and serotonin in the cortex. On the other hand, WIN 55212-2-induced CPP was reinstated by priming injections of MDMA, although WIN did not reinstate the MDMA-induced CPP. Conclusions These results confirm that the cannabinoid system plays a role in the rewarding effects of MDMA and highlights the risks that sporadic drug use can pose in terms of relapse to dependence. Finally, the potential neuroprotective action of cannabinoids is not supported by our data; on the contrary, they are evidence of the potential neurotoxic effect of said drugs when administered with MDMA.

  3. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study.

    Science.gov (United States)

    Kermanian, Fatemeh; Mehdizadeh, Mehdi; Soleimani, Mansureh; Ebrahimzadeh Bideskan, Ali Reza; Asadi-Shekaari, Majid; Kheradmand, Hamed; Haghir, Hossein

    2012-12-01

    There is abundant evidence showing that repeated use of MDMA (3, 4-Methylenedioxymethamphetamine, ecstasy) has been associated with depression, anxiety and deficits in learning and memory, suggesting detrimental effects on hippocampus. Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. In the present study, we investigated the role of A2a adenosine receptors agonist (CGS) and antagonist (SCH) on the body temperature, learning deficits, and hippocampal cell death induced by MDMA administration. In this study, 63 adult, male, Sprague - Dawley rats were subjected to MDMA (10 and 20 mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The animals were tested for spatial learning in the Morris water maze (MWM) task performance, accompanied by a recording of body temperature, electron microscopy and stereological study. Our results showed that MDMA treatment increased body temperature significantly, and impaired the ability of rats to locate the hidden platform(P learning deficits observed in MDMA users. However, the exact mechanism of these interactions requires further studies.

  4. Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains.

    OpenAIRE

    Shao, Z Q; Behki, R

    1996-01-01

    A cytochrome P-450 system in Rhodococcus strains, encoded by thcB, thcC, and thcD, participates in the degradation of thiocarbamates and several other pesticides. The regulation of the system was investigated by fusing a truncated lacZ in frame to thcB, the structural gene for the cytochrome P-450 monooxygenase. Analysis of the thcB-lacZ fusion showed that the expression of thcB was 10-fold higher in the presence of the herbicide EPTC (s-ethyl dipropylthiocarbamate). Similar enhancement of th...

  5. Acute and chronic effects of cannabidiol on Δ9-tetrahydrocannabinol (Δ9-THC)-induced disruption in stop signal task performance

    Science.gov (United States)

    Jacobs, David S.; Kohut, Stephen J.; Jiang, Shan; Nikas, Spyros P.; Makriyannis, Alexandros; Bergman, Jack

    2016-01-01

    Recent clinical and preclinical research suggests that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized. To address this, the effects of Δ9-THC and CBD were investigated independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys (n=6) performing a stop signal task (SST). Additionally, the development of tolerance to the effects of THC on SST performance was evaluated by determining the effects of acutely administered Δ9-THC (0.1-3.2 mg/kg), during a 24-day chronic Δ9-THC treatment period with Δ9-THC alone or with CBD. Results indicate that Δ9-THC (0.032 - 0.32 mg/kg) dose-dependently decreased ‘go’ success but did not alter ‘go’ reaction time or stop signal reaction time (SSRT); CBD (0.1-1.0 mg/kg) was without effect on all measures and, when co-administered in a 1:1 dose-ratio, did not exacerbate or attenuate the effects of Δ9-THC. When co-administered in a 1:3 dose-ratio, CBD (1.0 mg/kg) attenuated the disruptive effects of 0.32 mg/kg Δ9-THC but did not alter the effects of other Δ9-THC doses. Increases in ED50 values for the effects of Δ9-THC on SST performance were apparent during chronic Δ9-THC treatment, with little evidence for modification of changes in sensitivity by CBD. These results indicate that CBD, when combined with THC in clinically available dose-ratios does not exacerbate and, under restricted conditions, may even attenuate Δ9-THC’s behavioral effects. PMID:27690502

  6. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    Science.gov (United States)

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  8. A Case of 3,4-Dimethoxyamphetamine (3,4-DMA) and 3,4-Methylenedioxymethamphetamine (MDMA) Toxicity with Possible Metabolic Interaction.

    Science.gov (United States)

    Darracq, Michael A; Thornton, Stephen L; Minns, Alicia B; Gerona, Roy R

    2016-01-01

    We present a case of "ecstasy" ingestion revealing 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-dimethoxyamphetamine (3,4-DMA) and absence of cytochrome P450 (CYP)-2D6 MDMA metabolites. A 19-year-old presented following a seizure. Initial vital signs were normal. Laboratories were normal with the exception of sodium 127 mEq/L and urine drugs of abuse screen positive for amphetamines. Twelve hours later, serum sodium was 114 mEq/L and a second seizure occurred. After receiving hypertonic saline (3%), the patient had improvement in mental status and admitted to taking "ecstasy" at a rave prior to her initial presentation. Liquid chromatography-time-of-flight mass spectrometry (LC-TOF/MS) of serum and urine revealed MDMA, 3,4-DMA, and the CYP-2B6 MDMA metabolites 3,4-methylendioxyamphetamine (MDA) and 4-hydroxy-3-methoxyamphetamine (HMA). The CYP2D6 metabolites of MDMA, 3,4-dihydromethamphetamine (HHMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), were detected at very low levels. This case highlights the polypharmacy which may exist among users of psychoactive illicit substances and demonstrates that concurrent use of MDMA and 3,4-DMA may predispose patients to severe toxicity. Toxicologists and other healthcare providers should be aware of this potential toxicity.

  9. A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice.

    Science.gov (United States)

    Bilkei-Gorzo, Andras; Albayram, Onder; Draffehn, Astrid; Michel, Kerstin; Piyanova, Anastasia; Oppenheimer, Hannah; Dvir-Ginzberg, Mona; Rácz, Ildiko; Ulas, Thomas; Imbeault, Sophie; Bab, Itai; Schultze, Joachim L; Zimmer, Andreas

    2017-06-01

    The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ 9 -tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.

  10. A PET study of effects of chronic 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") on serotonin markers in Göttingen minipig brain

    DEFF Research Database (Denmark)

    Cumming, Paul; Møller, Mette; Benda, Kjeld

    2007-01-01

    The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive and neuroch......The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive...... with MDMA (i.m.), administered at a range of doses. In parallel PET studies, [(11)C]WAY-100635 was used to map the distribution of serotonin 5HT(1A) receptors. The acute MDMA treatment in awake pigs evoked 1 degrees C of hyperthermia. MDMA at total doses greater than 20 mg/kg administered over 2-4 days...... reduced the binding potential (pB) of [(11)C]DASB for serotonin transporters in porcine brain. A mean total dose of 42 mg/kg MDMA in four animals evoked a mean 32% decrease in [(11)C]DASB pB in mesencephalon and diencephalon, and a mean 53% decrease in telencephalic structures. However, this depletion...

  11. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    Science.gov (United States)

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling.

    Science.gov (United States)

    Chen, Rongqing; Zhang, Jian; Fan, Ni; Teng, Zhao-Qian; Wu, Yan; Yang, Hongwei; Tang, Ya-Ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-11-21

    Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Serotonin syndrome, disseminated intravascular coagulation, and hepatitis after a single ingestion of MDMA in an Asian woman.

    Science.gov (United States)

    Nadkarni, Girish N; Hoskote, Sumedh S; Piotrkowski, Jared; Annapureddy, Narender

    2014-01-01

    N-Methyl-3,4-methylenedioxyamphetamine (MDMA), also called "Ecstasy," is a commonly abused psychoactive drug among the American youth. We present the case of a 23-year-old Korean-American woman who presented with seizure, delirium, and rigidity after MDMA ingestion. She was febrile (38.7°C), tachycardic (188 beats/min), tachypneic (26 breaths/min) with a borderline blood pressure (95/43 mm Hg). Examination revealed generalized muscle rigidity, tremors, hyperreflexia, and ocular clonus, leading to the diagnosis of serotonin syndrome. Urine toxicology screen was only positive for amphetamines, consistent with the history of MDMA ingestion. Initial laboratory testing showed thrombocytopenia, further testing showed deranged prothrombin time, partial thromboplastin time, decreased fibrinogen, and elevated D-dimer, suggesting disseminated intravascular coagulation. Hepatic transaminases trended up dramatically reflecting acute hepatitis. The patient received supportive care and improved by hospital day 3. MDMA toxicity manifested as serotonin syndrome, hepatitis, and coagulopathy is exceedingly rare. MDMA is metabolized by the hepatic CYP2D6 enzyme. Certain populations, such as Koreans, Chinese, and Japanese have a high prevalence of a polymorphism that confers reduced enzyme activity. We discuss this hypothesis as a possible cause for this severe presentation in our patient after a single ingestion.

  14. Combined effects of THC and caffeine on working memory in rats

    Science.gov (United States)

    Panlilio, Leigh V; Ferré, Sergi; Yasar, Sevil; Thorndike, Eric B; Schindler, Charles W; Goldberg, Steven R

    2012-01-01

    BACKGROUND AND PURPOSE Cannabis and caffeine are two of the most widely used psychoactive substances. Δ9-Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, induces deficits in short-term memory. Caffeine, a non-selective adenosine receptor antagonist, attenuates some memory deficits, but there have been few studies addressing the effects of caffeine and THC in combination. Here, we evaluate the effects of these drugs using a rodent model of working memory. EXPERIMENTAL APPROACH Rats were given THC (0, 1 and 3 mg·kg−1, i.p.) along with caffeine (0, 1, 3 and 10 mg·kg−1, i.p.), the selective adenosine A1-receptor antagonist CPT (0, 3 and 10 mg·kg−1) or the selective adenosine A2A-receptor antagonist SCH58261 (0 and 5 mg·kg−1) and were tested with a delayed non-matching-to-position procedure in which behaviour during the delay was automatically recorded as a model of memory rehearsal. KEY RESULTS THC alone produced memory deficits at 3 mg·kg−1. The initial exposure to caffeine (10 mg·kg−1) disrupted the established pattern of rehearsal-like behaviour, but tolerance developed rapidly to this effect. CPT and SCH58261 alone had no significant effects on rehearsal or memory. When a subthreshold dose of THC (1 mg·kg−1) was combined with caffeine (10 mg·kg−1) or CPT (10 mg·kg−1), memory performance was significantly impaired, even though performance of the rehearsal-like pattern was not significantly altered. CONCLUSION AND IMPLICATIONS Caffeine did not counteract memory deficits induced by THC but actually exacerbated them. These results are consistent with recent findings that adenosine A1 receptors modulate cannabinoid signalling in the hippocampus. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10

  15. Combined effects of THC and caffeine on working memory in rats.

    Science.gov (United States)

    Panlilio, Leigh V; Ferré, Sergi; Yasar, Sevil; Thorndike, Eric B; Schindler, Charles W; Goldberg, Steven R

    2012-04-01

    Cannabis and caffeine are two of the most widely used psychoactive substances. Δ(9) -Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, induces deficits in short-term memory. Caffeine, a non-selective adenosine receptor antagonist, attenuates some memory deficits, but there have been few studies addressing the effects of caffeine and THC in combination. Here, we evaluate the effects of these drugs using a rodent model of working memory. Rats were given THC (0, 1 and 3 mg·kg(-1) , i.p.) along with caffeine (0, 1, 3 and 10 mg·kg(-1) , i.p.), the selective adenosine A(1) -receptor antagonist CPT (0, 3 and 10 mg·kg(-1) ) or the selective adenosine A(2A) -receptor antagonist SCH58261 (0 and 5 mg·kg(-1) ) and were tested with a delayed non-matching-to-position procedure in which behaviour during the delay was automatically recorded as a model of memory rehearsal. THC alone produced memory deficits at 3 mg·kg(-1) . The initial exposure to caffeine (10 mg·kg(-1) ) disrupted the established pattern of rehearsal-like behaviour, but tolerance developed rapidly to this effect. CPT and SCH58261 alone had no significant effects on rehearsal or memory. When a subthreshold dose of THC (1 mg·kg(-1) ) was combined with caffeine (10 mg·kg(-1) ) or CPT (10 mg·kg(-1) ), memory performance was significantly impaired, even though performance of the rehearsal-like pattern was not significantly altered. Caffeine did not counteract memory deficits induced by THC but actually exacerbated them. These results are consistent with recent findings that adenosine A(1) receptors modulate cannabinoid signalling in the hippocampus. This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7. Published 2011. This article is a U

  16. Chiral separation of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling and its effects on oxidative stress status in rat liver.

    Science.gov (United States)

    Lourenço, Tiago C; Bósio, Graziela C; Cassiano, Neila M; Cass, Quezia B; Moreau, Regina L M

    2013-01-25

    This work reports the multimiligram separation of 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling. The effect of both enantiomers compared to the racemic mixture was examined on the oxidative stress status of rat liver. The enantiomeric purification was performed using a based cyclodextrin chiral selector and methanol:ammonium acetate buffer (pH 6.0, 100mM) (30:70, v/v) as mobile phase. The average mass rate obtained was 40.0mg/day, providing 45.0mg of the (R)-(-)-MDMA (e.r. 99.0%) and 75.0mg (e.r. 96.0%) of (S)-(+)-MDMA. Racemic MDMA and both enantiomers were administered per orally to Wistar rats and oxidative stress status parameters, as liver total glutathione levels and malondialdehyde (MDA) production in liver were evaluated. There was a significant decrease in hepatic glutathione content in the racemic MDMA and the (R)-(-)-MDMA-treated rats when compared to the control and to (S)-(+)-MDMA. These results demonstrate that the R-enantiomer is the enantiomer that contributes to the depletion of hepatic glutathione induced by the racemic mixture. The high reactivity of the R-enantiomer of MDMA in the liver can also be observed in animals treated with (R)-(-)-MDMA. The production of malondialdehyde (MDA) by (R)-(-)-MDMA was significantly higher when compared to the other treated groups and control. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") administration in awake rats

    DEFF Research Database (Denmark)

    Gramsbergen, Jan Bert; Cumming, Paul

    2007-01-01

     The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose...... was monitored by telemetry. A single dose of MDMA (2-10-20 mg/kg i.v.) evoked a transient increase of interstitial glucose concentrations in striatum (139-223%) with rapid onset and of less than 2h duration, a concomitant but more prolonged lactate increase (>187%) at the highest MDMA dose and no significant...... depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1...

  18. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  19. Drugs of abuse and alcohol consumption among different groups of population on the Greek Island of Lesvos through sewage-based epidemiology.

    Science.gov (United States)

    Gatidou, Georgia; Kinyua, Juliet; van Nuijs, Alexander L N; Gracia-Lor, Emma; Castiglioni, Sara; Covaci, Adrian; Stasinakis, Athanasios S

    2016-09-01

    The occurrence of 22 drugs of abuse, their metabolites, and the alcohol metabolite ethyl sulphate was investigated in raw sewage samples collected during the non-touristic season from three sewage treatment plants (STPs), which serve different sizes and types of population in the Greek island of Lesvos. Using the sewage-based epidemiology approach, the consumption of these substances was estimated. Five target analytes, cocaine (COC), benzoylecgonine (BE), 3,4-methylenedioxymethamphetamine (MDMA), 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) and ethyl sulphate (EtS) were detected at concentrations above their limit of quantification, whereas the rest eighteen target compounds were not detected. THC-COOH was detected in most of the samples with concentrations ranging between drugs among city population than rural and University population with average values of 9.5 and 1.2mgday(-1) per 1000 inhabitants for COC (95% CI: -1.43-20.4) and MDMA (95% CI: 0.52-1.85), respectively, and 2.8gday(-1) per 1000 inhabitants for tetrahydrocannabinol (THC) (95% CI: 2.4-3.1), the active ingredient of cannabis. Alcohol consumption was observed to be higher in the city population (5.4mL pure alcohol per day per inhabitant) than in the rural population (3.4mL pure alcohol per day per inhabitant), but the difference was not statistically significant. Consumption of THC differed significantly among the three STPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The effect of the substituted amphetamines, 2.4-methylenedioxymethamphetamine (MDMA) and P-methoxyamphetamine (PMA), on platelet aggregation

    International Nuclear Information System (INIS)

    Sluggett, A.J.; Irvine, R.J.; Bochner, F.; Rodgers, S.; Lloyd, J.V.

    2001-01-01

    Full text: Illicit substituted amphetamines such as 3,4-methylenedioxymethamphetamine (MDMA) and p-methoxyamphetamine (PMA) can cause severe toxicity. Disruption of normal coagulation mechanisms have been observed in most fatal cases. However, the precise mechanisms underlying these events are not clearly understood. MDMA and PMA are known to inhibit serotonin transporter function in the central nervous system (Daws et al 2000) and platelet serotonin transporter sites (Rudnick and Wall 1992). Serotonin is in high concentrations in platelets and activation of 5HT 2 receptors on the platelet surface potentiates aggregation of platelets. Therefore, we postulated that MDMA and PMA may have effects on coagulation via inhibition of normal platelet function. Human citrated platelets were incubated in the presence of MDMA (43- 435μM) or PMA (49-498μM) and their aggregator y response to a critical dose of adenosine diphosphate (ADP) determined. These responses were compared to the serotonin reuptake inhibitor fluoxetine (13-130μM). All 3 compounds were found to inhibit platelet aggregation. The IC50s for % aggregation at 5 minutes were MDMA 197μM ± 63μM PMA 344μM ±76μM and fluoxetine 24μM ±1 1μM (n=4). The effect of these drugs on the uptake of 14 C-5HT (0.9 μM /ml) into platelets was also determined and the IC50s observed were MDMA 62.3 μM ±11μM , PMA 24μM ±6μM and fluoxetine 2.5μM ± 0.6μM (n=4). The in vitro effects of MDMA and PMA on aggregation and uptake observed here are close to concentrations reported to have occurred in human fatalities. Therefore it is possible that direct effects of these drugs on coagulation mechanisms may contribute to the toxicity of these compounds. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  1. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats.

    Science.gov (United States)

    Flax, Shaun M; Wakeford, Alison G P; Cheng, Kejun; Rice, Kenner C; Riley, Anthony L

    2015-09-01

    The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.

  2. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  3. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice.

    Science.gov (United States)

    Edut, S; Rubovitch, V; Rehavi, M; Schreiber, S; Pick, C G

    2014-12-01

    Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.

  4. First-principles study of structural, elastic and electronic properties of thorium dicarbide (ThC2) polymorphs

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2009-01-01

    The comparative study of the structural, elastic, cohesive and electronic properties of three polymorphs (α-monoclinic, β-tetragonal and γ-cubic) of thorium dicarbide ThC 2 is performed within the density-functional theory. The optimized atomic coordinates, lattice parameters, theoretical density (ρ), bulk moduli (B), compressibility (β), as well as electronic densities of states, electronic heat capacity (γ) and molar Pauli paramagnetic susceptibility (χ) for all ThC 2 polymorphs are obtained and analyzed in comparison with available experimental data. The peculiarities of inter-atomic bonding for thorium dicarbide are discussed. Besides, we have evaluated the formation energies (E f ) of ThC 2 polymorphs for different possible preparation routes (namely for the reactions with the participation of simple substances (metallic Th and graphite) or thorium monocarbide ThC and graphite). The results show that the synthesis of the ThC 2 polymorphs from simple substances is more favorable - in comparison with the reactions with participation of Th monocarbide.

  5. Novel psychopharmacological therapies for psychiatric disorders: psilocybin and MDMA.

    Science.gov (United States)

    Mithoefer, Michael C; Grob, Charles S; Brewerton, Timothy D

    2016-05-01

    4-phosphorloxy-N,N-dimethyltryptamine (psilocybin) and methylenedioxymethamfetamine (MDMA), best known for their illegal use as psychedelic drugs, are showing promise as therapeutics in a resurgence of clinical research during the past 10 years. Psilocybin is being tested for alcoholism, smoking cessation, and in patients with advanced cancer with anxiety. MDMA is showing encouraging results as a treatment for refractory post-traumatic stress disorder, social anxiety in autistic adults, and anxiety associated with a life-threatening illness. Both drugs are studied as adjuncts or catalysts to psychotherapy, rather than as stand-alone drug treatments. This model of drug-assisted psychotherapy is a possible alternative to existing pharmacological and psychological treatments in psychiatry. Further research is needed to fully assess the potential of these compounds in the management of these common disorders that are difficult to treat with existing methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists.

    Science.gov (United States)

    Aronsen, Dane; Schenk, Susan

    2016-04-01

    Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.

  7. The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum.

    Science.gov (United States)

    Górska, A M; Gołembiowska, K

    2015-04-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a role in the effect of caffeine by investigating the effect of the selective adenosine A1 and A2A receptor antagonists, DPCPX and KW 6002 on DA and 5-HT release induced by MDMA. Mice were treated with caffeine (10 mg/kg) and MDMA (20 or 40 mg/kg) alone or in combination. DA and 5-HT release in the mouse striatum was measured using in vivo microdialysis. Caffeine exacerbated the effect of MDMA on DA and 5-HT release. DPCPX or KW 6002 co-administered with MDMA had similar influence as caffeine, but KW 6002 was more potent than caffeine or DPCPX. To exclude the contribution of MAO inhibition by caffeine in the caffeine effect on MDMA-induced increase in DA and 5-HT, we also tested the effect of the nonxanthine adenosine receptor antagonist CGS 15943A lacking properties of MAO activity modification. Our findings indicate that adenosine A1 and A2A receptor blockade may account for the caffeine-induced exacerbation of the MDMA effect on DA and 5-HT release and may aggravate MDMA toxicity.

  8. MDMA and PTSD treatment: "PTSD: From novel pathophysiology to innovative therapeutics".

    Science.gov (United States)

    Sessa, Ben

    2017-05-10

    There is a range of therapies to treat Post Traumatic Stress Disorder (PTSD) but treatment resistance remains high, with many sufferers experiencing the chronic condition. Engagement in trauma-focused psychotherapy is difficult for some patients with PTSD, especially those with extreme affect dysregulation associated with recall of traumatic memories. In recent years there have been a number of neuroscientific and clinical studies examining the potential role for adjunctive drug-assisted psychotherapy using 3,4,-methylenedioxmethamphetamine (MDMA) as a treatment for PTSD. re-visiting of a novel approach to trauma-focused psychotherapy with Used just two or three times, under careful medical supervision and specialised psychotherapy support MDMA appears to facilitate the recall of traumatic memories without the user feeling overwhelmed by the negative affect that usually accompanies such memories. This therapeutic approach began in the 1980s and was subsequently shelved in the midst of public health concerns surrounding the recreational use of the drug ecstasy. When pharmaceutical grade MDMA is used in a clinical setting it does not share the same risk profiles as ecstasy. Recent phase one neurophysiological studies and phase two clinical studies are showing promise as a potential new approach to managing treatment-resistant PTSD. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Self-Reported Ecstasy/MDMA/"Molly" Use in a Sample of Nightclub and Dance Festival Attendees in New York City.

    Science.gov (United States)

    Palamar, Joseph J; Acosta, Patricia; Ompad, Danielle C; Cleland, Charles M

    2017-01-02

    Ecstasy (MDMA) use has regained popularity in the United States, particularly in the form of "Molly," which is often marketed as pure MDMA. Surveys have generally not included "Molly" in the definition of ecstasy, so rates of use may be underestimated. As popularity of ecstasy increases, research is needed to examine use among those at highest risk for use-nightlife attendees. We surveyed 679 young adults (age 18-25) entering nightclubs and festivals holding electronic dance music (EDM) parties in New York City in 2015. A variation of time-space sampling was utilized. We examined prevalence and correlates of self-reported lifetime ecstasy use. Self-reported lifetime ecstasy use was common (42.8%, 95% CI: 32.8, 52.7). Use was most common among older participants, frequent party attendees, and those reporting higher levels of exposure to users. Those surveyed outside of festivals were less likely to report use compared to those surveyed outside of nightclubs (AOR = 0.37, p = .015). Over a third of ecstasy users (36.8%)reported use in pill, powder, and crystal form. Ecstasy users were also more likely to report use of other drugs, including novel psychoactive substances (e.g., 2C series drugs, synthetic cathinones ["bath salts"]). Half (50.4%) reported suspecting (21.9%) or finding out (28.5%) that their ecstasy had ever contained a drug other than MDMA. A large percentage of nightlife attendees in NYC report lifetime ecstasy use. Findings should inform prevention and harm reduction programming. Further research is needed as ecstasy continues to change (e.g., in form, purity, and name).

  10. Who is 'Molly'? MDMA adulterants by product name and the impact of harm-reduction services at raves.

    Science.gov (United States)

    Saleemi, Sarah; Pennybaker, Steven J; Wooldridge, Missi; Johnson, Matthew W

    2017-08-01

    Methylenedioxymethamphetamine (MDMA), often sold as 'Ecstasy' or 'Molly', is commonly used at music festivals and reported to be responsible for an increase in deaths over the last decade. Ecstasy is often adulterated and contains compounds that increase morbidity and mortality. While users and clinicians commonly assume that products sold as Molly are less-adulterated MDMA products, this has not been tested. Additionally, while pill-testing services are sometimes available at raves, the assumption that these services decrease risky drug use has not been studied. This study analyzed data collected by the pill-testing organization, DanceSafe, from events across the United States from 2010 to 2015. Colorimetric reagent assays identified MDMA in only 60% of the 529 samples collected. No significant difference in the percentage of samples testing positive for MDMA was determined between Ecstasy and Molly. Individuals were significantly less likely to report intent to use a product if testing did not identify MDMA (relative risk (RR) = 0.56, p = 0.01). Results suggest that Molly is not a less-adulterated substance, and that pill-testing services are a legitimate harm-reduction service that decreases intent to consume potentially dangerous substances and may warrant consideration by legislators for legal protection. Future research should further examine the direct effects of pill-testing services and include more extensive pill-testing methods.

  11. A randomized, controlled pilot study of MDMA (± 3,4-Methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic Post-Traumatic Stress Disorder (PTSD).

    Science.gov (United States)

    Oehen, Peter; Traber, Rafael; Widmer, Verena; Schnyder, Ulrich

    2013-01-01

    Psychiatrists and psychotherapists in the US (1970s to 1985) and Switzerland (1988-1993) used MDMA legally as a prescription drug, to enhance the effectiveness of psychotherapy. Early reports suggest that it is useful in treating trauma-related disorders. Recently, the first completed pilot study of MDMA-assisted psychotherapy for PTSD yielded encouraging results. Designed to test the safety and efficacy of MDMA-assisted psychotherapy in patients with treatment-resistant PTSD; our randomized, double-blind, active-placebo controlled trial enrolled 12 patients for treatment with either low-dose (25 mg, plus 12.5 mg supplemental dose) or full-dose MDMA (125 mg, plus 62.5 mg supplemental dose). MDMA was administered during three experimental sessions, interspersed with weekly non-drug-based psychotherapy sessions. Outcome measures used were the Clinician-Administered PTSD Scale (CAPS) and the Posttraumatic Diagnostic Scale (PDS). Patients were assessed at baseline, three weeks after the second and third MDMA session (end of treatment), and at the 2-month and 1-year follow-ups. We found that MDMA-assisted psychotherapy can be safely administered in a clinical setting. No drug-related serious adverse events occurred. We did not see statistically significant reductions in CAPS scores (p = 0.066), although there was clinically and statistically significant self-reported (PDS) improvement (p = 0.014). CAPS scores improved further at the 1-year follow-up. In addition, three MDMA sessions were more effective than two (p = 0.016).

  12. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.

    Science.gov (United States)

    Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L

    2013-05-01

    Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.

  13. Oxidative stress and cannabinoid receptor expression in type-2 diabetic rat pancreas following treatment with Δ⁹-THC.

    Science.gov (United States)

    Coskun, Zeynep Mine; Bolkent, Sema

    2014-10-01

    The objectives of study were (a) to determine alteration of feeding, glucose level and oxidative stress and (b) to investigate expression and localization of cannabinoid receptors in type-2 diabetic rat pancreas treated with Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Rats were randomly divided into four groups: control, Δ(9)-THC, diabetes and diabetes + Δ(9)-THC groups. Diabetic rats were treated with a single dose of nicotinamide (85 mg/kg) 15 min before injection of streptozotocin (65 mg/kg). Δ(9)-THC was administered intraperitoneally at 3 mg/kg/day for 7 days. Body weights and blood glucose level of rats in all groups were measured on days 0, 7, 14 and 21. On day 15 after the Δ(9)-THC injections, pancreatic tissues were removed. Blood glucose levels and body weights of diabetic rats treated with Δ(9)-THC did not show statistically significant changes when compared with the diabetic animals on days 7, 14 and 21. Treatment with Δ(9)-THC significantly increased pancreas glutathione levels, enzyme activities of superoxide dismutase and catalase in diabetes compared with non-treatment diabetes group. The cannabinoid 1 receptor was found in islets, whereas the cannabinoid 2 receptor was found in pancreatic ducts. Their localization in cells was both nuclear and cytoplasmic. We can suggest that Δ(9) -THC may be an important agent for the treatment of oxidative damages induced by diabetes. However, it must be supported with anti-hyperglycaemic agents. Furthermore, the present study for the first time emphasizes that Δ(9)-THC may improve pancreatic cells via cannabinoid receptors in diabetes. The aim of present study was to elucidate the effects of Δ(9)-THC, a natural cannabinoid receptor agonist, on the expression and localization of cannabinoid receptors, and oxidative stress statue in type-2 diabetic rat pancreas. Results demonstrate that the cannabinoid receptors are presented in both Langerhans islets and duct regions. The curative effects

  14. Methamphetamine and MDMA: ‘Safe’ drugs of abuse

    Directory of Open Access Journals (Sweden)

    Allana M. Krolikowski

    2014-03-01

    Full Text Available Methamphetamine and MDMA have been called safe drugs of abuse. Worldwide there is an increased consumption of these drugs, which has become a focus of research in South Africa. As the number of methamphetamine users has increased in many African countries, it is essential that emergency care practitioners are able to diagnose and manage intoxication with methamphetamine, MDMA, and other derivatives. The most common presentations include restlessness, agitation, hypertension, tachycardia, and headache while hyperthermia, hyponatraemia, and rhabdomyolysis are among the most common serious complications. Most deaths are secondary to hyperthermia complicated by multiple organ failure. A number of laboratory analyses should be obtained if locally available. We provide a review of the current recommended general and specific management approaches. Benzodiazepines are the first line therapy for hyperthermia, agitation, critical hypertension, and seizures. Patients with serious complications are best managed in an intensive care unit if available. Emergency centres should create protocols and/or further train staff in the recognition and management of intoxication with these ‘not so safe’ drugs.

  15. Tolerance to the Diuretic Effects of Cannabinoids and Cross-Tolerance to a κ-Opioid Agonist in THC-Treated Mice.

    Science.gov (United States)

    Chopda, Girish R; Parge, Viraj; Thakur, Ganesh A; Gatley, S John; Makriyannis, Alexandros; Paronis, Carol A

    2016-08-01

    Daily treatment with cannabinoids results in tolerance to many, but not all, of their behavioral and physiologic effects. The present studies investigated the effects of 7-day exposure to 10 mg/kg daily of Δ(9)-tetrahydrocannabinol (THC) on the diuretic and antinociceptive effects of THC and the synthetic cannabinoid AM4054. Comparison studies determined diuretic responses to the κ-opioid agonist U50,488 and furosemide. After determination of control dose-response functions, mice received 10 mg/kg daily of THC for 7 days, and dose-response functions were re-determined 24 hours, 7 days, or 14 days later. THC and AM4054 had biphasic diuretic effects under control conditions with maximum effects of 30 and 35 ml/kg of urine, respectively. In contrast, antinociceptive effects of both drugs increased monotonically with dose to >90% of maximal possible effect. Treatment with THC produced 9- and 7-fold rightward shifts of the diuresis and antinociception dose-response curves for THC and, respectively, 7- and 3-fold rightward shifts in the AM4054 dose-response functions. U50,488 and furosemide increased urine output to >35 ml/kg under control conditions. The effects of U50,488 were attenuated after 7-day treatment with THC, whereas the effects of furosemide were unaltered. Diuretic effects of THC and AM4054 recovered to near-baseline levels within 14 days after stopping daily THC injections, whereas tolerance to the antinociceptive effects persisted longer than 14 days. The tolerance induced by 7-day treatment with THC was accompanied by a 55% decrease in the Bmax value for cannabinoid receptors (CB1). These data indicate that repeated exposure to THC produces similar rightward shifts in the ascending and descending limbs of cannabinoid diuresis dose-effect curves and to antinociceptive effects while resulting in a flattening of the U50,488 diuresis dose-effect function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Chronic Δ⁸-THC Exposure Differently Affects Histone Modifications in the Adolescent and Adult Rat Brain.

    Science.gov (United States)

    Prini, Pamela; Penna, Federica; Sciuccati, Emanuele; Alberio, Tiziana; Rubino, Tiziana

    2017-10-04

    Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ⁸-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we investigated the impact of chronic Δ⁸-THC exposure on histone modifications in different brain areas of female rats. We checked histone modifications associated to both transcriptional repression (H3K9 di- and tri-methylation, H3K27 tri-methylation) and activation (H3K9 and H3K14 acetylation) after adolescent and adult chronic Δ⁸-THC exposure in the hippocampus, nucleus accumbens, and amygdala. Chronic exposure to increasing doses of Δ⁸-THC for 11 days affected histone modifications in a region- and age-specific manner. The primary effect in the adolescent brain was represented by changes leading to transcriptional repression, whereas the one observed after adult treatment led to transcriptional activation. Moreover, only in the adolescent brain, the primary effect was followed by a homeostatic response to counterbalance the Δ⁸-THC-induced repressive effect, except in the amygdala. The presence of a more complex response in the adolescent brain may be part of the mechanisms that make the adolescent brain vulnerable to Δ⁸-THC adverse effects.

  17. Acute administration of THC impairs spatial but not associative memory function in zebrafish.

    Science.gov (United States)

    Ruhl, Tim; Prinz, Nicole; Oellers, Nadine; Seidel, Nathan Ian; Jonas, Annika; Albayram, Onder; Bilkei-Gorzo, Andras; von der Emde, Gerhard

    2014-10-01

    The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio). First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval. We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish. The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.

  18. Preventive effects of fructose and N-acetyl-L-cysteine against cytotoxicity induced by the psychoactive compounds N-methyl-5-(2-aminopropyl)benzofuran and 3,4-methylenedioxy-N-methamphetamine in isolated rat hepatocytes.

    Science.gov (United States)

    Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko

    2018-02-01

    Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Does cannabidiol protect against adverse psychological effects of THC?

    Directory of Open Access Journals (Sweden)

    Raymond J.M. eNiesink

    2013-10-01

    Full Text Available The recreational use of cannabis can have persistent adverse effects on mental health. Delta-9-tetrahydrocannabinol (THC is the main psychoactive constituent of cannabis, and most, if not all, of the effects associated with the use of cannabis are caused by THC. Recent studies have suggested a possible protective effect of another cannabinoid, cannabidiol (CBD. A literature search was performed in the bibliographic databases PubMed, PsycINFO and Web of Science using the keyword ‘cannabidiol.’ After removing duplicate entries, 1295 unique titles remained. Based on the titles and abstracts, an initial selection was made. The reference lists of the publications identified in this manner were examined for additional references. Cannabis is not a safe drug. Depending on how often someone uses, the age of onset, the potency of the cannabis that is used and someone's individual sensitivity, the recreational use of cannabis may cause permanent psychological disorders. Most recreational users will never be faced with such persistent mental illness, but in some individuals cannabis use leads to undesirable effects: cognitive impairment, anxiety, paranoia and increased risks of developing chronic psychosis or drug addiction. Studies examining the protective effects of CBD have shown that CBD can counteract the negative effects of THC. However, the question remains of how the laboratory results translate to the types of cannabis that are encountered by real-world recreational users.

  20. Current Perspective on MDMA-Assisted Psychotherapy for Posttraumatic Stress Disorder

    NARCIS (Netherlands)

    Thal, Sascha B.; Lommen, Miriam J.J.

    2018-01-01

    The present paper discusses the current literature with regard to substance-assisted psychotherapy with Methylenedioxymethamphetamine (MDMA) for posttraumatic stress disorder (PTSD). The aim of the paper is to give a comprehensive overview of the development from MDMA’s early application in

  1. Evaluation of brain SERT occupancy by resveratrol against MDMA-induced neurobiological and behavioral changes in rats: A 4-[¹⁸F]-ADAM/small-animal PET study.

    Science.gov (United States)

    Shih, Jui-Hu; Ma, Kuo-Hsing; Chen, Chien-Fu F; Cheng, Cheng-Yi; Pao, Li-Heng; Weng, Shao-Ju; Huang, Yuahn-Sieh; Shiue, Chyng-Yann; Yeh, Ming-Kung; Li, I-Hsun

    2016-01-01

    The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  2. Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells.

    Science.gov (United States)

    Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M; Rice, Kenner C; Gannon, Brenda M; Fantegrossi, William E; Gonzalez, Carmen; Paule, Merle G; Ali, Syed F

    2016-08-26

    Designer drugs such as synthetic psychostimulants are indicative of a worldwide problem of drug abuse and addiction. In addition to methamphetamine (METH), these drugs include 3,4-methylenedioxy-methamphetamine (MDMA) and commercial preparations of synthetic cathinones including 3,4-methylenedioxypyrovalerone (MDPV), typically referred to as "bath salts." These psychostimulants exert neurotoxic effects by altering monoamine systems in the brain. Additionally, METH and MDMA adversely affect the integrity of the blood-brain barrier (BBB): there are no current reports on the effects of MDPV on the BBB. The aim of this study was to compare the effects of METH, MDMA and MDPV on bovine brain microvessel endothelial cells (bBMVECs), an accepted in vitro model of the BBB. Confluent bBMVEC monolayers were treated with METH, MDMA and MDPV (0.5mM-2.5mM) for 24h. METH and MDMA increased lactate dehydrogenase release only at the highest concentration (2.5mM), whereas MDPV induced cytotoxicity at all concentrations. MDMA and METH decreased cellular proliferation only at 2.5mM, with similar effects observed after MDPV exposures starting at 1mM. Only MDPV increased reactive oxygen species production at all concentrations tested whereas all 3 drugs increased nitric oxide production. Morphological analysis revealed different patterns of compound-induced cell damage. METH induced vacuole formation at 1mM and disruption of the monolayer at 2.5mM. MDMA induced disruption of the endothelial monolayer from 1mM without vacuolization. On the other hand, MDPV induced monolayer disruption at doses ≥0.5mM without vacuole formation; at 2.5mM, the few remaining cells lacked endothelial morphology. These data suggest that even though these synthetic psychostimulants alter monoaminergic systems, they each induce BBB toxicity by different mechanisms with MDPV being the most toxic. Published by Elsevier Ireland Ltd.

  3. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats.

    Science.gov (United States)

    Stopponi, Serena; Soverchia, Laura; Ubaldi, Massimo; Cippitelli, Andrea; Serpelloni, Giovanni; Ciccocioppo, Roberto

    2014-07-01

    Cannabis derivatives are among the most widely used illicit substances among young people. The addictive potential of delta-9-tetrahydrocannabinol (THC), the major active ingredient of cannabis is well documented in scientific literature. However, the consequence of THC exposure during adolescence on occurrence of addiction for other drugs of abuse later in life is still controversial. To explore this aspect of THC pharmacology, in the present study, we treated adolescent rats from postnatal day (PND) 35 to PND-46 with increasing daily doses of THC (2.5-10mg/kg). One week after intoxication, the rats were tested for anxiety-like behavior in the elevated plus maze (EPM) test. One month later (starting from PND 75), rats were trained to operantly self-administer heroin intravenously. Finally, following extinction phase, reinstatement of lever pressing elicited by the pharmacological stressor, yohimbine (1.25mg/kg) was evaluated. Data revealed that in comparison to controls, animals treated with chronic THC during adolescence showed a higher level of anxiety-like behavior. When tested for heroin (20μg per infusion) self-administration, no significant differences were observed in both the acquisition of operant responding and heroin intake at baseline. Noteworthy, following the extinction phase, administration of yohimbine elicited a significantly higher level of heroin seeking in rats previously exposed to THC. Altogether these findings demonstrate that chronic exposure to THC during adolescence is responsible for heightened anxiety and increased vulnerability to drug relapse in adulthood. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  4. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Chuang-Hsin Chiu

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA, also known as "Ecstasy", is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI. Rats were injected subcutaneously six times with MDMA (5 mg/kg or saline once daily. Eight days after the last injection, manganese ions (Mn2+ were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB, and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.

  5. MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?

    Directory of Open Access Journals (Sweden)

    Rafael eDe La Torre

    2012-11-01

    Full Text Available In vitro human studies show that the metabolism of most amphetamine-like psychostimulants is regulated by the polymorphic cytochrome P450 isozyme CYP2D6. Two compounds, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA, were selected as archetypes to discuss the translation and clinical significance of in vitro to in vivo findings. Both compounds were chosen based on their differential interaction with CYP2D6 and their high abuse prevalence in society. Methamphetamine behaves as both a weak substrate and competitive inhibitor of CYP2D6, while MDMA acts as a high affinity substrate and potent mechanism-based inhibitor (MBI of the enzyme. The MBI behavior of MDMA on CYP2D6 implies that subjects, irrespective of their genotype/phenotype, are phenocopied to the poor metabolizer phenotype. The fraction of metabolic clearance regulated by CYP2D6 for both drugs is substantially lower than expected from in vitro studies. Other isoenzymes of cytochrome P450 and a relevant contribution of renal excretion play a part in their clearance. These facts tune down the potential contribution of CYP2D6 polymorphism in the clinical outcomes of both substances. Globally, the clinical relevance of CYP2D6 polymorphism is lower than that predicted by in vitro studies.

  6. Dose-Related Modulation of Event-Related Potentials to Novel and Target Stimuli by Intravenous Δ9-THC in Humans

    Science.gov (United States)

    D'Souza, Deepak Cyril; Fridberg, Daniel J; Skosnik, Patrick D; Williams, Ashley; Roach, Brian; Singh, Nagendra; Carbuto, Michelle; Elander, Jacqueline; Schnakenberg, Ashley; Pittman, Brian; Sewell, R Andrew; Ranganathan, Mohini; Mathalon, Daniel

    2012-01-01

    Cannabinoids induce a host of perceptual alterations and cognitive deficits in humans. However, the neural correlates of these deficits have remained elusive. The current study examined the acute, dose-related effects of delta-9-tetrahydrocannabinol (Δ9-THC) on psychophysiological indices of information processing in humans. Healthy subjects (n=26) completed three test days during which they received intravenous Δ9-THC (placebo, 0.015 and 0.03 mg/kg) in a within-subject, double-blind, randomized, cross-over, and counterbalanced design. Psychophysiological data (electroencephalography) were collected before and after drug administration while subjects engaged in an event-related potential (ERP) task known to be a valid index of attention and cognition (a three-stimulus auditory ‘oddball' P300 task). Δ9-THC dose-dependently reduced the amplitude of both the target P300b and the novelty P300a. Δ9-THC did not have any effect on the latency of either the P300a or P300b, or on early sensory-evoked ERP components preceding the P300 (the N100). Concomitantly, Δ9-THC induced psychotomimetic effects, perceptual alterations, and subjective ‘high' in a dose-dependent manner. Δ9-THC -induced reductions in P3b amplitude correlated with Δ9-THC-induced perceptual alterations. Lastly, exploratory analyses examining cannabis use status showed that whereas recent cannabis users had blunted behavioral effects to Δ9-THC, there were no dose-related effects of Δ9-THC on P300a/b amplitude between cannabis-free and recent cannabis users. Overall, these data suggest that at doses that produce behavioral and subjective effects consistent with the known properties of cannabis, Δ9-THC reduced P300a and P300b amplitudes without altering the latency of these ERPs. Cannabinoid agonists may therefore disrupt cortical processes responsible for context updating and the automatic orientation of attention, while leaving processing speed and earlier sensory ERP components intact

  7. Cognitive and psychomotor effects in males after smoking a combination of tobacco and cannabis containing up to 69 mg delta-9-tetrahydrocannabinol (THC).

    NARCIS (Netherlands)

    Hunault, C.C.; Mensinga, T.T.; Böcker, K.B.E.; Schipper, C.M.; Kruidenier, M.; Leenders, M.E.C.; de Vries, I.; Meulenbelt, J.

    2009-01-01

    RATIONALE: Delta(9)-Tetrahydrocannabinol (THC) is the main active constituent of cannabis. In recent years, the average THC content of some cannabis cigarettes has increased up to approximately 60 mg per cigarette (20% THC cigarettes). Acute cognitive and psychomotor effects of THC among

  8. Effects of oxidizing adulterants on detection of 11-nor-delta9-THC-9-carboxylic acid in urine.

    Science.gov (United States)

    Paul, Buddha D; Jacobs, Aaron

    2002-10-01

    Bleach, nitrite, chromate, and hydrogen peroxide-peroxidase are effective urine adulterants used by the illicit drug users to conceal marijuana-positive results. Methods for detecting nitrite and chromate are available. Effects of other oxidizing agents that could possibly be used as adulterants and are difficult to detect or measure are presented in this report. Urine samples containing 40 ng/mL of 11-nor-delta9-THC-9-carboxylic acid (THC-acid) were treated with 10 mmol/L of commonly available oxidizing agents. Effects of horseradish peroxidase of activity 10 unit/mL and extracts from 2.5 g of red radish (Raphanus sativus, Radicula group), horseradish (Armoracia rusticana), Japanese radish (Raphanus sativus, Daikon group), and black mustard seeds (Brassica nigra), all with 10 mmol/L of hydrogen peroxide, were also examined. After 5 min, 16 h and 48 h of exposure at room temperature (23 degrees C) the specimens were tested by a gas chromatographic-mass spectrometric method for THC-acid. A control group treated with sodium hydrosulfite to reduce the oxidants, was also tested to investigate the effect of oxidizing agents on THC-acid in the extraction method. THC-acid was lost completely in the extraction method when treated with chromate, nitrite, oxone, and hydrogen peroxide/ferrous ammonium sulfate (Fenton's reagent). Some losses were also observed with persulfate and periodate (up to 25%). These oxidants, and other oxidizing agents like permanganate, periodate, peroxidase, and extracts from red radish, horseradish, Japanese radish and black mustard seeds destroyed most of the THC-acid (> 94%) within 48 h of exposure. Chlorate, perchlorate, iodate, and oxychloride under these conditions showed little or no effect. Complete loss was observed when THC-acid was exposed to 50 mmol/L of oxychloride for 48 h. Several oxidizing adulterants that are difficult to test by the present urine adulterant testing methods showed considerable effects on the destruction of THC

  9. The prevalence, intensity, and assessment of craving for MDMA/ecstasy in recreational users.

    Science.gov (United States)

    Davis, Alan K; Rosenberg, Harold

    2014-01-01

    This study evaluated the prevalence, intensity, and correlates of craving for MDMA/ecstasy among recreational users employing a new multi-item, self-report questionnaire reflecting experiences of desire, intention to use, and anticipated loss of control. Using a web-based data collection procedure, we recruited MDMA/ecstasy users (n = 240) to rate their agreement with eight craving statements immediately before and immediately following 90 seconds of exposure to either ecstasy-related or control stimuli. Participants then completed questionnaires to measure ecstasy refusal self-efficacy, passionate engagement in ecstasy use, substance use history, and demographic information. Fifty percent of participants indicated some level of agreement with at least two (out of eight) statements indicative of craving and 30% agreed at some level with six or more such statements. The questionnaire used to assess craving was internally consistent, unidimensional, and had excellent one-week test-retest reliability. Craving scores varied as a function of both cue exposure and frequency of ecstasy use, and were significantly associated with ecstasy-related attitudes. Recreational users of MDMA/ecstasy endorse some experiences indicative of craving for this drug, even though only a minority report intense craving following explicit cue exposure.

  10. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.; Gandia, Luis; Escubedo, Elena; Pubill, David

    2010-01-01

    Previous work by our group demonstrated that homomeric α7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca 2+ increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific α7 agonist PNU 282987 with IC 50 values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human α7 but not with α4β2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and α-bungarotoxin but not by dihydro-β-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on α7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca 2+ release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca 2+ levels and induced an increase in α-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and α7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca 2+ -dependent enzymes such as

  11. Depression, impulsiveness, sleep, and memory in past and present polydrug users of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy).

    Science.gov (United States)

    Taurah, Lynn; Chandler, Chris; Sanders, Geoff

    2014-02-01

    Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is a worldwide recreational drug of abuse. Unfortunately, the results from human research investigating its psychological effects have been inconsistent. The present study aimed to be the largest to date in sample size and 5HT-related behaviors; the first to compare present ecstasy users with past users after an abstinence of 4 or more years, and the first to include robust controls for other recreational substances. A sample of 997 participants (52 % male) was recruited to four control groups (non-drug (ND), alcohol/nicotine (AN), cannabis/alcohol/nicotine (CAN), non-ecstasy polydrug (PD)), and two ecstasy polydrug groups (present (MDMA) and past users (EX-MDMA). Participants completed a drug history questionnaire, Beck Depression Inventory, Barratt Impulsiveness Scale, Pittsburgh Sleep Quality Index, and Wechsler Memory Scale-Revised which, in total, provided 13 psychometric measures. While the CAN and PD groups tended to record greater deficits than the non-drug controls, the MDMA and EX-MDMA groups recorded greater deficits than all the control groups on ten of the 13 psychometric measures. Strikingly, despite prolonged abstinence (mean, 4.98; range, 4-9 years), past ecstasy users showed few signs of recovery. Compared with present ecstasy users, the past users showed no change for ten measures, increased impairment for two measures, and improvement on just one measure. Given this record of impaired memory and clinically significant levels of depression, impulsiveness, and sleep disturbance, the prognosis for the current generation of ecstasy users is a major cause for concern.

  12. Adaptive Plasticity in the Hippocampus of Young Mice Intermittently Exposed to MDMA Could Be the Origin of Memory Deficits.

    Science.gov (United States)

    Abad, S; Camarasa, J; Pubill, D; Camins, A; Escubedo, E

    2016-12-01

    (±)3,4-Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. This study was designed to evaluate whether MDMA exposure affects their recognition memory and hippocampal expression of plasticity markers. Mice were administered with increasing doses of MDMA once per week for 8 weeks (three times in 1 day, every 3 h) and killed 2 weeks (2w) or 3 months (3m) later. The treatment did not modify hippocampal tryptophan hydroxylase 2, a serotonergic indicator, but induced an initial reduction in dopaminergic markers in substantia nigra, which remained stable for at least 3 months. In parallel, MDMA produced a decrease in dopamine (DA) levels in the striatum at 2w, which were restored 3 months later, suggesting dopaminergic terminal regeneration (sprouting phenomenon). Moreover, recognition memory was assessed using the object recognition test. Young (2w) and mature (3m) adult mice exhibited impaired memory after 24-h but not after just 1-h retention interval. Two weeks after the treatment, animals showed constant levels of CREB but an increase in its phosphorylated form and in c-Fos expression. Brain-derived neurotrophic factor (BDNF) and especially Arc overexpression was sustained and long-lasting. We cannot rule out the absence of MDMA injury in the hippocampus being due to the generation of BDNF. The levels of NMDAR2B, PSD-95, and synaptophysin were unaffected. In conclusion, the young mice exposed to MDMA showed increased expression of early key markers of plasticity, which sometimes remained for 3 months, and suggests hippocampal maladaptive plasticity that could explain memory deficits evidenced here.

  13. MDMA-evoked changes in the binding of dopamine D(2) receptor ligands in striatum of rats with unilateral serotonin depletion

    DEFF Research Database (Denmark)

    Ostergaard, Søren Dinesen; Alstrup, Aage Kristian Olsen; Gramsbergen, Jan Bert

    2010-01-01

    We earlier reported an anomalous 50% decrease in [(11)C]N-methylspiperone ([(11)C]NMSP) binding to dopamine D(2)-like receptors in living pig striatum after challenge with 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), suggesting either (1) a species peculiarity in the vulnerability...... lesions, later verified by [(125)I]RTI-55 autoradiography. Baseline [(11)C]NMSP microPET recordings were followed by either saline or MDMA-HCl (4 mg/kg) injections (i.v.), and a second [(11)C]NMSP recording, culminating with injection of [(3)H]raclopride for autoradiography ex vivo. Neither MDMA......-challenge nor serotonin lesion had any detectable effect on [(11)C]NMSP binding. In contrast, MDMA challenge increased receptor occupancy by [(3)H]raclopride ex vivo (relative to the B(max) in vitro) from 8% to 12%, and doubled the free ligand concentration in cerebral cortex, apparently by blocking hepatic CYP...

  14. MDMA is certainly damaging after 25 years of empirical research: a reply and refutation of Doblin et al. (2014).

    Science.gov (United States)

    Parrott, Andrew C

    2014-03-01

    Human Psychopharmacology recently published my review into the increase in empirical knowledge about the human psychobiology of MDMA over the past 25 years (Parrott, 2013a). Deficits have been demonstrated in retrospective memory, prospective memory, higher cognition, complex visual processing, sleep architecture, sleep apnoea, pain, neurohormonal activity, and psychiatric status. Neuroimaging studies have shown serotonergic deficits, which are associated with lifetime Ecstasy/MDMA usage, and degree of neurocognitive impairment. Basic psychological skills remain intact. Ecstasy/MDMA use by pregnant mothers leads to psychomotor impairments in the children. Hence, the damaging effects of Ecstasy/MDMA were far more widespread than was realized a few years ago. In their critique of my review, Doblin et al. (2014) argued that my review contained misstatements, omitted contrary findings, and recited dated misconceptions. In this reply, I have answered all the points they raised. I have been able to refute each of their criticisms by citing the relevant empirical data, since many of their points were based on inaccurate summaries of the actual research findings. Doblin and colleagues are proponents of the use of MDMA for drug-assisted psychotherapy, and their strongest criticisms were focused on my concerns about this proposal. However, again all the issues I raised were based on sound empirical evidence or theoretical understanding. Indeed I would recommend potentially far safer co-drugs such as D-cycloserine or oxytocin. In summary, MDMA can induce a wide range of neuropsychobiological changes, many of which are damaging to humans. Copyright © 2014 John Wiley & Sons, Ltd.

  15. A protocol for the delivery of cannabidiol (CBD) and combined CBD and ∆9-tetrahydrocannabinol (THC) by vaporisation.

    Science.gov (United States)

    Solowij, Nadia; Broyd, Samantha J; van Hell, Hendrika H; Hazekamp, Arno

    2014-10-16

    Significant interest has emerged in the therapeutic and interactive effects of different cannabinoids. Cannabidiol (CBD) has been shown to have anxiolytic and antipsychotic effects with high doses administered orally. We report a series of studies conducted to determine the vaporisation efficiency of high doses of CBD, alone and in combination with ∆9-tetrahydrocannabinol (THC), to achieve faster onset effects in experimental and clinical trials and emulate smoked cannabis. Purified THC and CBD (40 mg/ml and 100 mg/ml respectively) were loaded onto a liquid absorbing pad in a Volcano vaporiser, vaporised and the vapours quantitatively analysed. Preliminary studies determined 200 mg CBD to be the highest dose effectively vaporised at 230 ° C, yielding an availability of approximately 40% in the vapour phase. Six confirmatory studies examined the quantity of each compound delivered when 200 mg or 4 mg CBD was loaded together with 8 mg of THC. THC showed 55% availability when vaporised alone or with low dose CBD, while large variation in the availability of high dose CBD impacted upon the availability of THC when co-administered, with each compound affecting the vaporisation efficiency of the other in a dynamic and dose-dependent manner. We describe optimised protocols that enable delivery of 160 mg CBD through vaporisation. While THC administration by vaporisation is increasingly adopted in experimental studies, often with oral predosing with CBD to examine interactive effects, no studies to date have reported the administration of CBD by vaporisation. We report the detailed methodology aimed at optimising the efficiency of delivery of therapeutic doses of CBD, alone and in combination with THC, by vaporisation. These protocols provide a technical advance that may inform methodology for clinical trials in humans, especially for examining interactions between THC and CBD and for therapeutic applications of CBD. Current Controlled Trials ISRCTN24109245.

  16. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    International Nuclear Information System (INIS)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr.

    1989-01-01

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects

  17. Δ9-Tetrahydrocannabinol (Δ9-THC) Promotes Neuroimmune-Modulatory MicroRNA Profile in Striatum of Simian Immunodeficiency Virus (SIV)-Infected Macaques.

    Science.gov (United States)

    Simon, Liz; Song, Keijing; Vande Stouwe, Curtis; Hollenbach, Andrew; Amedee, Angela; Mohan, Mahesh; Winsauer, Peter; Molina, Patricia

    2016-03-01

    Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing. Among the 24 miRs that were differentially expressed among the four groups, 16 miRs were modulated by THC in the presence of SIV. These 16 miRs were classified into four categories and the biological processes enriched by the target genes determined. Our results indicate that Δ9-THC modulates miRs that regulate mRNAs of proteins involved in 1) neurotrophin signaling, 2) MAPK signaling, and 3) cell cycle and immune response thus promoting an overall neuroprotective environment in the striatum of SIV-infected macaques. This is also reflected by increased Brain Derived Neurotrophic Factor (BDNF) and decreased proinflammatory cytokine expression compared to the VEH/SIV group. Whether Δ9-THC-mediated modulation of epigenetic mechanisms provides neuroprotection in other regions of the brain and during chronic SIV-infection remains to be determined.

  18. MDMA-assisted psychotherapy using low doses in a small sample of women with chronic posttraumatic stress disorder.

    Science.gov (United States)

    Bouso, José Carlos; Doblin, Rick; Farré, Magí; Alcázar, Miguel Angel; Gómez-Jarabo, Gregorio

    2008-09-01

    The purpose of this study was to investigate the safety of different doses of MDMA-assisted psychotherapy administered in a psychotherapeutic setting to women with chronic PTSD secondary to a sexual assault, and also to obtain preliminary data regarding efficacy. Although this study was originally planned to include 29 subjects, political pressures led to the closing of the study before it could be finished, at which time only six subjects had been treated. Preliminary results from those six subjects are presented here. We found that low doses of MDMA (between 50 and 75 mg) were both psychologically and physiologically safe for all the subjects. Future studies in larger samples and using larger doses are needed in order to further clarify the safety and efficacy of MDMA in the clinical setting in subjects with PTSD.

  19. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol

    Science.gov (United States)

    Cluny, Nina L.; Keenan, Catherine M.; Reimer, Raylene A.; Le Foll, Bernard; Sharkey, Keith A.

    2015-01-01

    Objective Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Methods Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. Results THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Conclusions Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity. PMID:26633823

  20. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    Science.gov (United States)

    Kuypers, Kim P C; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636.

  1. No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation.

    Directory of Open Access Journals (Sweden)

    Kim P C Kuypers

    Full Text Available The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg, with or without pindolol (20 mg, oxytocin nasal spray (40 IU+16 IU or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18-26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial registration: MDMA & PSB NTR 2636.

  2. No Evidence that MDMA-Induced Enhancement of Emotional Empathy Is Related to Peripheral Oxytocin Levels or 5-HT1a Receptor Activation

    Science.gov (United States)

    Kuypers, Kim P. C.; de la Torre, Rafael; Farre, Magi; Yubero-Lahoz, Samanta; Dziobek, Isabel; Van den Bos, Wouter; Ramaekers, Johannes G.

    2014-01-01

    The present study aimed at investigating the effect of MDMA on measures of empathy and social interaction, and the roles of oxytocin and the 5-HT1A receptor in these effects. The design was placebo-controlled within-subject with 4 treatment conditions: MDMA (75 mg), with or without pindolol (20 mg), oxytocin nasal spray (40 IU+16 IU) or placebo. Participants were 20 healthy poly-drug MDMA users, aged between 18–26 years. Cognitive and emotional empathy were assessed by means of the Reading the Mind in the Eyes Test and the Multifaceted Empathy Test. Social interaction, defined as trust and reciprocity, was assessed by means of a Trust Game and a Social Ball Tossing Game. Results showed that MDMA selectively affected emotional empathy and left cognitive empathy, trust and reciprocity unaffected. When combined with pindolol, these effects remained unchanged. Oxytocin did not affect measures of empathy and social interaction. Changes in emotional empathy were not related to oxytocin plasma levels. It was concluded that MDMA (75 mg) selectively enhances emotional empathy in humans. While the underlying neurobiological mechanism is still unknown, it is suggested that peripheral oxytocin does not seem to be the main actor in this; potential candidates are the serotonin 2A and the vasopressin 1A receptors. Trial Registration MDMA & PSB NTR 2636 PMID:24972084

  3. Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"): preliminary findings

    NARCIS (Netherlands)

    Reneman, L.; Lavalaye, J.; Schmand, B.; de Wolff, F. A.; van den Brink, W.; den Heeten, G. J.; Booij, J.

    2001-01-01

    BACKGROUND: Although the popular drug 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") has been shown to damage brain serotonin (5-HT) neurons in animals, the fate and functional consequences of 5-HT neurons after MDMA injury are not known in humans. We investigated the long-term effects of

  4. Self-Reported Ecstasy/MDMA/“Molly” Use in a Sample of Nightclub and Dance Festival Attendees in New York City

    Science.gov (United States)

    Palamar, Joseph J.; Acosta, Patricia; Ompad, Danielle C.; Cleland, Charles M.

    2016-01-01

    Background Ecstasy (MDMA) use has regained popularity in the United States, particularly in the form of “Molly,” which is often marketed as pure MDMA. Surveys have generally not included “Molly” in the definition of ecstasy, so rates of use may be underestimated. As popularity of ecstasy increases, research is needed to examine use among those at highest risk for use—nightlife attendees. Methods We surveyed 679 young adults (age 18–25) entering nightclubs and festivals holding electronic dance music (EDM) parties in New York City in 2015. A variation of time-space sampling was utilized. We examined prevalence and correlates of self-reported lifetime ecstasy use. Results Self-reported lifetime ecstasy use was common (42.8%, 95% CI: 32.8, 52.7). Use was most common among older participants, frequent party attendees, and those reporting higher levels of exposure to users. Those surveyed outside of festivals were less likely to report use compared to those surveyed outside of nightclubs (AOR=0.37, p = .015). Over a third of ecstasy users (36.8%) reported use in pill, powder, and crystal form. Ecstasy users were also more likely to report use of other drugs, including novel psychoactive substances (e.g., 2C series drugs, synthetic cathinones [“bath salts”]). Half (50.4%) reported suspecting (21.9%) or finding out (28.5%) that their ecstasy had ever contained a drug other than MDMA. Conclusion A large percentage of nightlife attendees in NYC report lifetime ecstasy use. Findings should inform prevention and harm reduction programming. Further research is needed as ecstasy continues to change (e.g., in form, purity, and name). PMID:27661470

  5. A phase I study to assess the effect of food on the single dose bioavailability of the THC/CBD oromucosal spray.

    Science.gov (United States)

    Stott, C G; White, L; Wright, S; Wilbraham, D; Guy, G W

    2013-04-01

    To assess the effect of food on the single-dose bioavailability of delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) spray, an endocannabinoid system modulator, when administered to healthy male subjects. Twelve subjects took part in this fed-fasted cross-over study and received a single dose of THC/CBD spray (4 sprays = 10.8 mg THC + 10 mg CBD) in the fasted then fed state (or vice versa) with a 3-day wash-out period between treatments. Plasma samples were collected at designated time-points for analysis of CBD, THC, and its active metabolite, 11-hydroxy delta-9-tetrahydrocannabinol (11-OH-THC). Statistically significant increases in the mean area under the curve (AUC) and mean maximum plasma drug concentration (Cmax) were observed in subjects during fed conditions. Mean AUC and Cmax were one to three-fold higher for THC and 11-OH-THC, and five and three-fold higher for CBD respectively during fed conditions. A large inter-subject variability in exposure from the same dose was observed, particularly for THC. The Cmax for THC in fed versus fasted subjects was higher in 7 subjects (4.80-14.91 ng/ml) and lower in 5 subjects (2.81-3.51 ng/ml) compared with the mean Cmax of 3.98 ng/ml (range 0.97-9.34 ng/ml) observed in the fasted state. Increases in mean AUC(0-t), AUC(0-inf), and Cmax for THC, CBD, and 11-OH-THC in the fed state were within the range of inter-subject variability, which was considerable. Food also appeared to delay the time to peak concentration (Tmax) of all analytes by approximately 2-2.5 h. Only mild adverse events were reported. The THC/CBD spray was well tolerated in male subjects at a single dose of four sprays. The large inter-subject variability in exposure suggests that the changes observed are unlikely to be clinically relevant.

  6. Effect of combined oral doses of Δ(9)-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models.

    Science.gov (United States)

    Rock, Erin M; Connolly, Cassidy; Limebeer, Cheryl L; Parker, Linda A

    2016-09-01

    The purpose of this study was to evaluate the potential of oral combined cannabis constituents to reduce nausea. The objective of this study was to determine the effect of combining subthreshold oral doses of Δ(9)-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models of conditioned gaping. The potential of intragastric (i.g.) administration of THC, CBDA, or combined doses, to interfere with acute nausea-induced conditioned gaping (acute nausea) or the expression of contextually elicited conditioned gaping (anticipatory nausea), was evaluated. For acute nausea, i.g. administration of subthreshold doses of THC (0.5 and 1 mg/kg) or CBDA (0.5 and 1 μg/kg) significantly suppressed acute nausea-induced gaping, whereas higher individual doses of both THC and CBDA were maximally effective. Combined i.g. administration of higher doses of THC and CBDA (2.5 mg/kg THC-2.5 μg/kg CBDA; 10 mg/kg THC-10 μg/kg CBDA; 20 mg/kg THC-20 μg/kg CBDA) also enhanced positive hedonic reactions elicited by saccharin solution during conditioning. For anticipatory nausea, combined subthreshold i.g. doses of THC (0.1 mg/kg) and CBDA (0.1 μg/kg) suppressed contextually elicited conditioned gaping. When administered i.g., THC was effective on its own at doses ranging from 1 to 10 mg/kg, but CBDA was only effective at 10 μg/kg. THC alone was equally effective by intraperitoneal (i.p.) and i.g. administration, whereas CBDA alone was more effective by i.p. administration (Rock et al. in Psychopharmacol (Berl) 232:4445-4454, 2015) than by i.g. administration. Oral administration of subthreshold doses of THC and CBDA may be an effective new treatment for acute nausea and anticipatory nausea and appetite enhancement in chemotherapy patients.

  7. 40 CFR 63.3555 - How do I determine the outlet THC emissions and add-on control device emission destruction or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I determine the outlet THC.../outlet Concentration Option § 63.3555 How do I determine the outlet THC emissions and add-on control... section to determine either the outlet THC emissions or add-on control device emission destruction or...

  8. Potency of delta 9-THC and other cannabinoids in cannabis in England in 2005: implications for psychoactivity and pharmacology.

    Science.gov (United States)

    Potter, David J; Clark, Peter; Brown, Marc B

    2008-01-01

    Gas chromatography was used to study the cannabinoid content ("potency") of illicit cannabis seized by police in England in 2004/5. Of the four hundred and fifty two samples, indoor-grown unpollinated female cannabis ("sinsemilla") was the most frequent form, followed by resin (hashish) and imported outdoor-grown herbal cannabis (marijuana). The content of the psychoactive cannabinoid delta 9-tetrahydrocannabinol (THC) varied widely. The median THC content of herbal cannabis and resin was 2.1% and 3.5%, respectively. The median 13.9% THC content of sinsemilla was significantly higher than that recorded in the UK in 1996/8. In sinsemilla and imported herbal cannabis, the content of the antipsychotic cannabinoid cannabidiol (CBD) was extremely low. In resin, however, the average CBD content exceeded that of THC, and the relative proportions of the two cannabinoids varied widely between samples. The increases in average THC content and relative popularity of sinsemilla cannabis, combined with the absence of the anti-psychotic cannabinoid CBD, suggest that the current trends in cannabis use pose an increasing risk to those users susceptible to the harmful psychological effects associated with high doses of THC.

  9. New Insights on Different Response of MDMA-Elicited Serotonin Syndrome to Systemic and Intracranial Administrations in the Rat Brain.

    Science.gov (United States)

    Shokry, Ibrahim M; Callanan, John J; Sousa, John; Tao, Rui

    2016-01-01

    In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation has been challenged, and alternative hypotheses need to be explored. Here, we tested the hypothesis that serotonin syndrome is the result of excessive 5HT simultaneously in many brain areas, while MDMA administered intracranially fails to cause serotonin syndrome because it produces only a localized effect at the delivery site and not to other parts of the brain. This hypothesis was examined using adult male Sprague Dawley rats by comparing 5HT responses in the right and left hemispheric frontal cortices, right and left hemispheric diencephalons, and medullar raphe nucleus. Occurrence of serotonin syndrome was confirmed by measuring change in body temperature. Administration routes included intraperitoneal (IP), intracerebroventricular (ICV) and reverse microdialysis. First, we found that IP administration caused excessive 5HT in all five sites investigated and induced hypothermia, suggesting the development of the serotonin syndrome. In contrast, ICV and reverse microdialysis caused excessive 5HT only in regions of delivery sites without changes in body-core temperature, suggesting the absence of the syndrome. Next, chemical dyes were used to trace differences in distribution and diffusion patterns between administration routes. After systemic administration, the dyes were found to be evenly distributed in the brain. However, the dyes administered through ICV or reverse microdialysis injection still remained in the delivery sites, poorly diffusing to the brain. In conclusion, intracranial MDMA administration in one area has no or little effect on other areas, which must be considered a plausible reason for the

  10. New Insights on Different Response of MDMA-Elicited Serotonin Syndrome to Systemic and Intracranial Administrations in the Rat Brain.

    Directory of Open Access Journals (Sweden)

    Ibrahim M Shokry

    Full Text Available In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation has been challenged, and alternative hypotheses need to be explored. Here, we tested the hypothesis that serotonin syndrome is the result of excessive 5HT simultaneously in many brain areas, while MDMA administered intracranially fails to cause serotonin syndrome because it produces only a localized effect at the delivery site and not to other parts of the brain. This hypothesis was examined using adult male Sprague Dawley rats by comparing 5HT responses in the right and left hemispheric frontal cortices, right and left hemispheric diencephalons, and medullar raphe nucleus. Occurrence of serotonin syndrome was confirmed by measuring change in body temperature. Administration routes included intraperitoneal (IP, intracerebroventricular (ICV and reverse microdialysis. First, we found that IP administration caused excessive 5HT in all five sites investigated and induced hypothermia, suggesting the development of the serotonin syndrome. In contrast, ICV and reverse microdialysis caused excessive 5HT only in regions of delivery sites without changes in body-core temperature, suggesting the absence of the syndrome. Next, chemical dyes were used to trace differences in distribution and diffusion patterns between administration routes. After systemic administration, the dyes were found to be evenly distributed in the brain. However, the dyes administered through ICV or reverse microdialysis injection still remained in the delivery sites, poorly diffusing to the brain. In conclusion, intracranial MDMA administration in one area has no or little effect on other areas, which must be considered a plausible

  11. Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata.

    Science.gov (United States)

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Li, Yingying; Li, Yaqian; Chen, Jie

    2015-05-01

    Mutant T66 was isolated from 450 mutants (constructed with Agrobacterium tumefaciens-mediated transformation method) of Trichoderma harzianum. Maize seeds coated with T66 were more susceptible to Curvularia lunata when compared with those coated with wild-type (WT) strain. The disease index of maize treated with T66 and WT were 62.5 and 42.1%, respectively. Further research showed T-DNA has inserted into the ORF of one gene, which resulted in the functional difference between WT and T66. The gene was cloned and named Thc6, which encodes a novel 327 amino acid protein. To investigate its function, we obtained knockout, complementation, and overexpression mutants of Thc6. Challenge inoculation studies suggested that the Thc6 overexpression mutant can reduce the disease index of maize inbred line Huangzao 4 against the leaf spot pathogen (C. lunata). Meanwhile, The Thc6 mutants were found to affect the resistance of maize inbred line Huangzao 4 against C. lunata by enhancing the activation of jasmonate-responsive genes expression. Liquid chromatography-mass spectrometry (LC-MS) data further confirmed that the concentration of jasmonate in the induced maize exhibits a parallel change tendency with the expression level of defense-related genes. Hence, the Thc6 gene could be participated in the induced resistance of maize inbred line Huangzao 4 against C. lunata infection through a jasmonic acid-dependent pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dose-related effects of delta-9-THC on emotional responses to acute psychosocial stress.

    Science.gov (United States)

    Childs, Emma; Lutz, Joseph A; de Wit, Harriet

    2017-08-01

    Cannabis smokers often report that they use the drug to relax or to relieve emotional stress. However, few clinical studies have shown evidence of the stress-relieving effects of cannabis or cannabinoid agonists. In this study, we sought to assess the influence of delta-9-tetrahydrocannabinol (THC), a main active ingredient of cannabis, upon emotional responses to an acute psychosocial stressor among healthy young adults. Healthy volunteers (N=42) participated in two experimental sessions, one with psychosocial stress (Trier Social Stress Test, TSST) and another with a non-stressful task, after receiving 0 (N=13), 7.5mg (N=14) or 12.5mg (N=15) oral THC. Capsules were administered under randomized, double blind conditions, 2.5h before the tasks began. We measured subjective mood and drug effects, vital signs and salivary cortisol before and at repeated times after the capsule and tasks. Subjects also appraised the tasks, before and after completion. In comparison to placebo, 7.5mg THC significantly reduced self-reported subjective distress after the TSST and attenuated post-task appraisals of the TSST as threatening and challenging. By contrast, 12.5mg THC increased negative mood overall i.e., both before and throughout the tasks, and pre-task ratings of the TSST as threatening and challenging. It also impaired TSST performance and attenuated blood pressure reactivity to the stressor. Our findings suggest that a low dose of THC produces subjective stress-relieving effects in line with those commonly reported among cannabis users, but that higher doses may non-specifically increase negative mood. Copyright © 2017. Published by Elsevier B.V.

  13. Interactions between cannabidiol and Δ9-THC following acute and repeated dosing: Rebound hyperactivity, sensorimotor gating and epigenetic and neuroadaptive changes in the mesolimbic pathway.

    Science.gov (United States)

    Todd, Stephanie M; Zhou, Cilla; Clarke, David J; Chohan, Tariq W; Bahceci, Dilara; Arnold, Jonathon C

    2017-02-01

    The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  14. Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats.

    Science.gov (United States)

    Pari, Leelavinothan; Amali, D Rosalin

    2005-04-30

    Tetrahydrocurcumin (THC) is an antioxidative substance, which is derived from curcumin, the component of turmeric. In the present investigation, the effect of THC and curcumin against chloroquine (CQ) induced hepatotoxicity were studied in female Wistar rats. On single oral administration of CQ (970 mg/kg body weight) the activities of serum marker enzymes namely aspartate transaminase, alanine transaminase and alkaline phosphatase and the levels of bilirubin were significantly increased with significant alterations of lipids in serum and lipidperoxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides in plasma and liver were also elevated in CQ treated rats. The levels of non-enzymic antioxidants (vitamin C, vitamin E and reduced glutathione) and enzymic antioxidants (superoxide dismutase, catalase and glutathione peroxidase) were also decreased in CQ treated rats. Administration of THC (80 mg/kg body weight) and curcumin (80 mg/kg body weight) for 8 days before and 7 days after single administration of CQ significantly decreased the activities of serum markers and lipids in serum. In addition, the level of TBARS and hydroperoxides were significantly decreased with significant increase in non-enzymic and enzymic antioxidants on treatment with THC and curcumin. The biochemical observation was supplemented by histopathological examination of liver section. The results of the study reveal that THC shows more pronounced protective effect than curcumin against CQ induced toxicity.

  15. Travel risk behaviors as a determinants of receiving pre-travel health consultation and prevention.

    Science.gov (United States)

    Shady, Ibrahim; Gaafer, Mohammed; Bassiony, Lamiaa

    2015-01-01

    An estimated 30-60 % of travelers experience an illness while traveling. The incidence of travel-related illness can be reduced by preventive measures such as those provided by the Traveler Health Clinic (THC) in Kuwait. The present study is an analytical comparative study between groups of travelers visiting the THC during the study period (May 2009 - December 2010) and an age- and gender-matched control group of non-visitors (800 people). Both groups completed a modified pre-departure questionnaire. Bivariate analysis revealed that Kuwaitis (68.2 %), those traveling for work (25.3 %) or leisure (59.5 %), those living in camps (20.4 %) or hotels (64.0 %), and those with knowledge of the THC from the media (28.1 %) or other sources (57.3 %), were more likely to be associated with a high frequency of visits to the THC ( p  travelers heading to Africa (47 %) and South America (10 %) visited the THC more than did others ( P  travel, duration of stay, and choice of travel destination are independent predictors of receiving pre-travel consultation from the THC. Nationality, purpose of travel, length of stay, and travel destination are predictors for receiving a pre-travel consultation from the THC.

  16. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    Science.gov (United States)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  17. Brain imaging study of the acute effects of Delta9-tetrahydrocannabinol (THC) on attention and motor coordination in regular users of marijuana.

    Science.gov (United States)

    Weinstein, Aviv; Brickner, Orit; Lerman, Hedva; Greemland, Mazal; Bloch, Miki; Lester, Hava; Chisin, Roland; Mechoulam, Raphael; Bar-Hamburger, Rachel; Freedman, Nanette; Even-Sapir, Einat

    2008-01-01

    Twelve regular users of marijuana underwent two positron emission tomography (PET) scans using [18F] Fluorodeoxyglucose (FDG), one while subject to the effects of 17 mg THC, the other without THC. In both sessions, a virtual reality maze task was performed during the FDG uptake period. When subject to the effects of 17 mg THC, regular marijuana smokers hit the walls more often on the virtual maze task than without THC. Compared to results without THC, 17 mg THC increased brain metabolism during task performance in areas that are associated with motor coordination and attention in the middle and medial frontal cortices and anterior cingulate, and reduced metabolism in areas that are related to visual integration of motion in the occipital lobes. These findings suggest that in regular marijuana users, the immediate effects of marijuana may impact on cognitive-motor skills and brain mechanisms that modulate coordinated movement and driving.

  18. Role of the Dopaminergic System in the Acquisition, Expression and Reinstatement of MDMA-Induced Conditioned Place Preference in Adolescent Mice

    Science.gov (United States)

    Vidal-Infer, Antonio; Roger-Sánchez, Concepción; Daza-Losada, Manuel; Aguilar, María A.; Miñarro, José; Rodríguez-Arias, Marta

    2012-01-01

    Background The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood. Methodology/Principal Findings In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.250 mg/kg), the DA D2 antagonist Haloperidol (0.1 and 0.2 mg/kg), the D2 antagonist Raclopride (0.3 and 0.6 mg/kg) and the dopamine release inhibitor CGS 10746B (3 and 10 mg/kg) on the acquisition, expression and reinstatement of a CPP induced by 10 mg/kg of MDMA were evaluated in adolescent mice. As expected, MDMA significantly increased the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, and a priming dose of 5 mg/kg reinstated the extinguished preference. The higher doses of Haloperidol, Raclopride and CGS 10746B and both doses of SCH 23390 blocked acquisition of the MDMA-induced CPP. However, only Haloperidol blocked expression of the CPP. Reinstatement of the extinguished preference was not affected by any of the drugs studied. Analysis of brain monoamines revealed that the blockade of CPP acquisition was accompanied by an increase in DA concentration in the striatum, with a concomitant decrease in DOPAC and HVA levels. Administration of haloperidol during the Post-C test produced increases in striatal serotonin, DOPAC and HVA concentrations. In mice treated with the higher doses of haloperidol and CGS an increase in SERT concentration in the striatum was detected during acquisition of the CPP, but no changes in DAT were observed. Conclusions/Significance These results demonstrate that, in adolescent mice, the dopaminergic system is involved in the acquisition and expression of MDMA-induced CPP, but not in its reinstatement. PMID:22916213

  19. Untargeted metabolomics applied retrospectively to UPLC-HR-TOFMS data of whole blood samples from Danish drivers exposed to 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Lykke; Telving, Rasmus; Andreasen, Mette Findal

    to evaluate the drug metabolism of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). Despite of the untraditional experimental setup, and a very heterogeneous population with different concentrations of MDMA/kg blood weight, as well as unknown information about amount and time of administration in relation...... to blood sampling, it was possible to extract meaningful information. Various statistical methods were tested and their predictability was validated by the positive identification of MDMA blood metabolites. In addition, endogenous metabolites that may be related to energy metabolism, the serotonergic...

  20. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    Science.gov (United States)

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and related psychostimulants: mechanisms and mediators

    Science.gov (United States)

    Vanattou-Saïfoudine, N; McNamara, R; Harkin, A

    2012-01-01

    Concomitant consumption of caffeine with recreational psychostimulant drugs of abuse can provoke severe acute adverse reactions in addition to longer term consequences. The mechanisms by which caffeine increases the toxicity of psychostimulants include changes in body temperature regulation, cardiotoxicity and lowering of the seizure threshold. Caffeine also influences the stimulatory, discriminative and reinforcing effects of psychostimulant drugs. In this review, we consider our current understanding of such caffeine-related drug interactions, placing a particular emphasis on an adverse interaction between caffeine and the substituted amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’), which has been most recently described and characterized. Co-administration of caffeine profoundly enhances the acute toxicity of MDMA in rats, as manifested by high core body temperature, tachycardia and increased mortality. In addition, co-administration of caffeine enhances the long-term serotonergic neurotoxicity induced by MDMA. Observations to date support an interactive model of drug-induced toxicity comprising MDMA-related enhancement of dopamine release coupled to a caffeine-mediated antagonism of adenosine receptors in addition to inhibition of PDE. These experiments are reviewed together with reports of caffeine-related drug interactions with cocaine, d-amphetamine and ephedrine where similar mechanisms are implicated. Understanding the underlying mechanisms will guide appropriate intervention strategies for the management of severe reactions and potential for increased drug-related toxicity, resulting from concomitant caffeine consumption. PMID:22671762

  2. In abstinent MDMA users the cortisol awakening response is off-set but associated with prefrontal serotonin transporter binding as in non-users

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Erritzoe, David; Holst, Klaus Kähler

    2014-01-01

    awakening response (CAR). Here, we tested (1) if such a correlation persists in a human model of chronic serotonin depletion, namely in 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') users, and (2) if CAR differed between MDMA users (N = 18) and non-using healthy volunteers (N = 32). Participants...... underwent SERT brain imaging with [11C]DASB-PET, and performed home-sampling of CAR, defined as the area under curve with respect to cortisol increase from awakening level. When adjusting for age and group, CAR was positively coupled to prefrontal SERT binding (p = 0.006) and MDMA users showed significantly...... higher CAR than the control group (p = 0.0003). In conclusion, our data confirm the recently described positive association between prefrontal SERT binding and CAR, this time in a human model of serotonin deficiency. Also, we find that CAR was higher in MDMA users relative to non-users. We suggest...

  3. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    Science.gov (United States)

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. Copyright © 2015. Published by Elsevier Inc.

  4. A clinical plan for MDMA (Ecstasy) in the treatment of posttraumatic stress disorder (PTSD): partnering with the FDA.

    Science.gov (United States)

    Doblin, Rick

    2002-01-01

    The FDA and the Spanish Ministry of Health have concluded that the risk/benefit ratio is favorable under certain circumstances for clinical studies investigating MDMA-assisted psychotherapy. Both agencies have approved pilot studies in chronic posttraumatic stress disorder (PTSD) patients who have failed to obtain relief from at least one course of conventional treatment. These studies, the only ones in the world into the therapeutic use of MDMA, are being funded by a nonprofit research and educational organization, the Multidisciplinary Association for Psychedelic Studies (MAPS, www.maps.org). A rationale is offered explaining why MAPS chose to focus its limited resources on MDMA, and also on PTSD patients. A Clinical Plan is elaborated for the conduct of the "adequate and well-controlled" trials necessary to evaluate the safety and efficacy of MDMA-assisted psychotherapy for PTSD, with the studies estimated to cost about 5 million dollars and to take about five years. The Clinical Plan has been developed, in part, through analysis of the studies conducted by Pfizer in its successful effort to have Zoloft approved by the FDA for use with PTSD patients, and through review of transcripts of the FDA's Psychopharmacologic Drugs Advisory Committee meeting that recommended approval of Zoloft for PTSD.

  5. Gender differences in hyperthermia and regional 5-HT and 5-HIAA depletion in the brain following MDMA administration in rats

    NARCIS (Netherlands)

    Wallinga, Alinde E.; Grahlmann, Carolin; Granneman, Ramon A.; Koolhaas, Jaap M.; Buwalda, Bauke

    2011-01-01

    In the present research the role of gender in MDMA-induced hyperthermia and serotonin depletion is studied by injecting male and female male rats with MDMA or saline 3 times (i.p.) with 3 h interval at dosages of 0.3, 1, 3 or 9 mg/kg at an ambient temperature of 25 degrees C. The acute hyperthermia

  6. The Effects of Ecstasy (MDMA) on Brain Serotonin Transporters Are Dependent on Age-of-First Exposure in Recreational Users and Animals

    NARCIS (Netherlands)

    Klomp, Anne; den Hollander, Bjørnar; de Bruin, Kora; Booij, Jan; Reneman, Liesbeth

    2012-01-01

    Objective: Little is known on the effects of ecstasy (MDMA, a potent 5-HT-releaser and neurotoxin) exposure on brain development in teenagers. The objective of this study was to investigate whether in humans, like previous observations made in animals, the effects of MDMA on the 5-HT system are

  7. Hair analysis for Δ(9) -tetrahydrocannabinolic acid A (THCA-A) and Δ(9) -tetrahydrocannabinol (THC) after handling cannabis plant material.

    Science.gov (United States)

    Moosmann, Bjoern; Roth, Nadine; Auwärter, Volker

    2016-01-01

    A previous study has shown that Δ(9) -tetrahydrocannabinolic acid A (THCA-A), the non-psychoactive precursor of Δ(9) -tetrahydrocannabinol (THC) in the cannabis plant does not get incorporated in relevant amounts into the hair through the bloodstream after repeated oral intake. However, THCA-A can be measured in forensic hair samples in concentrations often exceeding the detected THC concentrations. To investigate whether the handling of cannabis plant material prior to consumption is a contributing factor for THC-positive hair results and also the source for THCA-A findings in hair, a study comprising ten participants was conducted. In this study, the participants rolled a marijuana joint on five consecutive days and hair samples of each participant were obtained. Urine samples were taken to exclude cannabis consumption prior to and during the study. THCA-A and THC could be detected in the hair samples from all participants taken at the end of the exposure period (concentration range: 15-1800 pg/mg for THCA-A and THC). Four weeks after the first exposure, THCA-A could still be detected in the hair samples of nine participants (concentration range: 4-57 pg/mg). Furthermore, THC could be detected in the hair samples of five participants (concentration range: THC as well as the major part of THCA-A found in routine hair analysis derives from external contamination caused by direct transfer through contaminated fingers. This finding is of particular interest in interpreting THC-positive hair results of children or partners of cannabis users, where such a transfer can occur due to close body contact. Analytical findings may be wrongly interpreted as a proof of consumption or at least passive exposure to cannabis smoke. Such misinterpretation could lead to severe consequences for the people concerned. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Guanfacine Attenuates Adverse Effects of Dronabinol (THC) on Working Memory in Adolescent-Onset Heavy Cannabis Users: A Pilot Study.

    Science.gov (United States)

    Mathai, David S; Holst, Manuela; Rodgman, Christopher; Haile, Colin N; Keller, Jake; Hussain, Mariyah Z; Kosten, Thomas R; Newton, Thomas F; Verrico, Christopher D

    2018-01-01

    The cannabinoid-1 receptor (CB1R) agonist Δ9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, adversely effects working memory performance in humans. The α2A-adrenoceptor (AR) agonist guanfacine improves working memory performance in humans. The authors aimed to determine the effects of short-term (6 days) treatment with guanfacine on adverse cognitive effects produced by THC. Employing a double-blind, placebo-controlled crossover design, the cognitive, subjective, and cardiovascular effects produced by oral THC (20 mg) administration were determined twice in the same cannabis users: once after treatment with placebo and once after treatment with guanfacine (3 mg/day). Compared with performance at baseline, THC negatively affected accuracy on spatial working memory trials while participants were maintained on placebo (p=0.012) but not guanfacine (p=0.497); compared with placebo, accuracy was significantly (p=0.003, Cohen's d=-0.640) improved while individuals were treated with guanfacine. Similarly, compared with baseline, THC increased omission errors on an attentional task while participants were maintained on placebo (p=0.017) but not on guanfacine (p=0.709); compared with placebo, there were significantly (p=0.034, Cohen's d=0.838) fewer omissions while individuals were maintained on guanfacine. Although THC increased visual analog scores of subjective effects and heart rate, these increases were similar during treatment with placebo and guanfacine. THC did not significantly affect performance of a recognition memory task or blood pressure while individuals were maintained on either treatment. Although preliminary, these results suggest that guanfacine warrants further testing as a potential treatment for cannabis-induced cognitive deficits.

  9. Δ9-THC-Caused Synaptic and Memory Impairments Are Mediated through COX-2 Signaling

    OpenAIRE

    Chen, Rongqing; Zhang, Jian; Fan, Ni; Teng, Zhao-qian; Wu, Yan; Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmaco...

  10. Cocaine and MDMA Induce Cellular and Molecular Changes in Adult Neurogenic Systems: Functional Implications

    Directory of Open Access Journals (Sweden)

    Vivian Capilla-Gonzalez

    2011-06-01

    Full Text Available The capacity of the brain to generate new adult neurons is a recent discovery that challenges the old theory of an immutable adult brain. A new and fascinating field of research now focuses on this regenerative process. The two brain systems that constantly produce new adult neurons, known as the adult neurogenic systems, are the dentate gyrus (DG of the hippocampus and the lateral ventricules/olfactory bulb system. Both systems are involved in memory and learning processes. Different drugs of abuse, such as cocaine and MDMA, have been shown to produce cellular and molecular changes that affect adult neurogenesis. This review summarizes the effects that these drugs have on the adult neurogenic systems. The functional relevance of adult neurogenesis is obscured by the functions of the systems that integrate adult neurons. Therefore, we explore the effects that cocaine and MDMA produce not only on adult neurogenesis, but also on the DG and olfactory bulbs. Finally, we discuss the possible role of new adult neurons in cocaine- and MDMA-induced impairments. We conclude that, although harmful drug effects are produced at multiple physiological and anatomical levels, the specific consequences of reduced hippocampus neurogenesis are unclear and require further exploration.

  11. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC on learning in female rats

    Directory of Open Access Journals (Sweden)

    Peter J Winsauer

    2015-07-01

    Full Text Available The effects of hormone status and age on the development of tolerance to D9-THC were assessed in sham-operated (intact or ovariectomized (OVX female rats that received either intraperitoneal saline or 5.6 mg/kg of D9-THC daily from postnatal day (PD 75 to 180 (early adulthood onward or PD 35 to 140 (adolescence onward. During this time, the 4 groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC were trained in a learning and performance procedure and dose-effect curves were established for D9-THC (0.56-56 mg/kg and the cannabinoid type-1 receptor (CB1R antagonist rimonabant (0.32-10 mg/kg. Despite the persistence of small rate-decreasing and error-increasing effects in intact and OVX females from both ages during chronic D9-THC, all of the D9-THC groups developed tolerance. However, the magnitude of tolerance, as well as the effect of hormone status, varied with the age at which chronic D9-THC was initiated. There was no evidence of dependence in any of the groups. Hippocampal protein expression of CB1R, AHA1 (a co-chaperone of CB1R and HSP90β (a molecular chaperone modulated by AHA-1 was affected more by OVX than chronic D9-THC; striatal protein expression was not consistently affected by either manipulation. Hippocampal BDNF expression varied with age, hormone status, and chronic treatment. Thus, hormonal status differentially affects the development of tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (D9-THC on learning and performance behavior in adolescent, but not adult, female rats. These factors and their interactions also differentially affect cannabinoid signaling proteins in the hippocampus and striatum, and ultimately, neural plasticity.

  12. Urinary and plasma oxytocin changes in response to MDMA or intranasal oxytocin administration.

    Science.gov (United States)

    Francis, Sunday M; Kirkpatrick, Matthew G; de Wit, Harriet; Jacob, Suma

    2016-12-01

    The neuropeptide oxytocin (OT) has received increased experimental attention for its putative role in both normal social functioning and several psychiatric disorders that are partially characterized by social dysfunction (e.g., autism spectrum disorders: ASD). Many human experimental studies measure circulating plasma levels of OT in order to examine the relationship between the hormone and behavior. Urinary OT (uOT) assays offer a simple, easy, and non-invasive method to measure peripheral hormone levels, but the correspondence between uOT and plasma OT (pOT) levels is unclear. Here, we conducted two within-subjects, double-blind studies exploring changes in uOT and pOT levels following administration of two drugs: MDMA, an oxytocin-releasing drug (Study 1), and intranasal oxytocin (INOT: Study 1 and 2). In Study 1, 14 adult participants (2 females) were each administered either oral 1.5mg/kg MDMA or 40IU INOT across two different study sessions. In Study 2, 10 male participants (adolescents and young adults) diagnosed with ASD received either 40IU INOT or placebo across two different sessions. In both studies, blood and urine samples were collected before and after drug administration at each study session. For Study 1, 10 participants provided valid plasma and urine samples for the MDMA session, and 8 provided valid samples for the INOT session. For Study 2, all 10 participants provided valid samples for both INOT and placebo sessions. Pre- and post-administration levels of pOT and uOT were compared. Additionally, correlations between percent change from baseline uOT and pOT levels were examined. Study 1: Plasma OT and uOT levels significantly increased after administration of MDMA and INOT. Furthermore, uOT levels were positively correlated with pOT levels following administration of MDMA (r=0.57, p=0.042) but not INOT (r=0.51, p=0.097). Study 2: There was a significant increase in uOT levels after administration of INOT, but not after administration of

  13. Functional interaction and cross-tolerance between ethanol and Δ9-THC: possible modulation by mouse cerebellar adenosinergic A1/GABAergic-A receptors.

    Science.gov (United States)

    Dar, M Saeed

    2014-08-15

    We have previously shown a functional motor interaction between ethanol and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) that involved cerebellar adenosinergic A1 and GABAergic A receptor modulation. We now report the development of cross-tolerance between intracerebellar Δ(9)-THC and intraperitoneal ethanol using ataxia as the test response in male CD-1 mice. The drugs [Δ(9)-THC (20 μg), N(6)-cyclohexyladenosine, CHA (12 ng), muscimol (20 ng)] used in the study were directly microinfused stereotaxically via guide cannulas into the cerebellum except ethanol. Δ(9)-THC, infused once daily for 5 days followed 16 h after the last infusion by acute ethanol (2g/kg) and Rotorod evaluation, virtually abolished ethanol ataxia indicating development of cross-tolerance. The cross-tolerance was also observed when the order of ethanol and Δ(9)-THC treatment was reversed, i.e., ethanol injected once daily for 5 days followed 16 h after the last ethanol injection by Δ(9)-THC infusion. The cross-tolerance appeared within 24-48 h, lasted over 72 h and was maximal in 5-day ethanol/Δ(9)-THC-treated animals. Finally, tolerance in chronic ethanol/Δ(9)-THC/-treated animals developed not only to ethanol/Δ(9)-THC-induced ataxia, respectively, but also to the ataxia potentiating effect of CHA and muscimol, indicating modulation by cerebellar adenosinergic A1 and GABAA receptors. A practical implication of these results could be that marijuana smokers may experience little or no negative effects such as ataxia following alcohol consumption. Clinically, such antagonism of ethanol-induced ataxia can be observed in marijuana users thereby encouraging more alcohol consumption and thus may represent a risk factor for the development of alcoholism in this segment of population. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Transitional Home Care program utilizing the Integrated Practice Unit concept (THC-IPU: Effectiveness in improving acute hospital utilization

    Directory of Open Access Journals (Sweden)

    Lian Leng Low

    2017-08-01

    Full Text Available Background: Organizing care into integrated practice units (IPUs around conditions and patient segments has been proposed to increase value. We organized transitional care into an IPU (THC-IPU for a patient segment of functionally dependent patients with limited community ambulation. Methods: 1,166 eligible patients were approached for enrolment into THC-IPU. THC-IPU patients received a comprehensive assessment within two weeks of discharge; medication reconciliation; education using standardized action plans and a dedicated nurse case manager for up to 90 days after discharge. Patients who rejected enrolment into THC-IPU received usual post-discharge care planned by their attending hospital physician, and formed the control group. The primary outcome was the proportion of patients with at least one unscheduled readmission within 30 days after discharge. Results: We found a statistically significant reduction in 30-day readmissions and emergency department visits in patients on THC-IPU care compared to usual care, even after adjusting for confounders. Conclusion: Delivering transitional care to patients with functional dependence in the form of home visits and organized into an IPU reduced acute hospital utilization in this patient segment. Extending the program into the pre-hospital discharge phase to include discharge planning can have incremental effectiveness in reducing avoidable hospital readmissions.

  15. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    Science.gov (United States)

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Recreational 3,4-methylenedioxy-N-methylamphetamine (MDMA) or 'ecstasy' and self-focused compassion: Preliminary steps in the development of a therapeutic psychopharmacology of contemplative practices.

    Science.gov (United States)

    Kamboj, Sunjeev K; Kilford, Emma J; Minchin, Stephanie; Moss, Abigail; Lawn, Will; Das, Ravi K; Falconer, Caroline J; Gilbert, Paul; Curran, H Valerie; Freeman, Tom P

    2015-09-01

    3,4-methylenedioxy-N-methylamphetamine (MDMA) produces diverse pro-social effects. Cognitive training methods rooted in Eastern contemplative practices also produce these effects through the development of a compassionate mindset. Given this similarity, we propose that one potential mechanism of action of MDMA in psychotherapy is through enhancing effects on intrapersonal attitudes (i.e. pro-social attitudes towards the self). We provide a preliminary test of this idea. Recreational MDMA (ecstasy) users were tested on two occasions, having consumed or not consumed ecstasy. Self-critical and self-compassionate responses to self-threatening scenarios were assessed before (T1) and after (T2) ecstasy use (or non-use), and then after compassionate imagery (T3). Moderating roles of dispositional self-criticism and avoidant attachment were examined. Separately, compassionate imagery and ecstasy produced similar sociotropic effects, as well as increases in self-compassion and reductions in self-criticism. Higher attachment-related avoidance was associated with additive effects of compassionate imagery and ecstasy on self-compassion. Findings were in line with MDMA's neuropharmacological profile, its phenomenological effects and its proposed adjunctive use in psychotherapy. However, although conditions were balanced, the experiment was non-blind and MDMA dose/purity was not determined. Controlled studies with pharmaceutically pure MDMA are still needed to test these effects rigorously. © The Author(s) 2015.

  17. Screening for illicit drugs on Euro banknotes by LC-MS/MS.

    Science.gov (United States)

    Wimmer, Kurt; Schneider, Serge

    2011-03-20

    A method for the simultaneous quantification of illicit drugs on Euro banknotes, using an ultra-performance liquid chromatography tandem mass spectrometry, was developed and validated. The method included cocaine, benzoylecgonine, MDMA, MDEA, MDA, methamphetamine, diacetylmorphine, 6-MAM, morphine and Δ(9)-THC. Drug residues were monitored and quantified via positive ESI mode using multiple reaction monitoring. Banknotes were extracted with methanol by vigorous shaking. Recovery rates were in the range of 60-80%. Calibration was performed with spiked banknotes in the range of 10-100 ng/note (R(2) 0.98-0.99). Intra-day analysis showed fair precision and accuracy (≤ 15%). Matrix effects were in the range from 27% to 235%. 7-15 samples of each denomination were analyzed. The calculated median values per note were 106 ng cocaine, 43 ng benzoylecgonine, 41 ng heroin, 15.5 ng 6-MAM, 16.5 ng morphine, 9 ng MDMA and 7 ng methamphetamine. Δ(9)-THC was detected on 4 banknotes. MDEA and MDA were not detected on any note. A widespread background contamination for cocaine and opiates was demonstrated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects.

    Science.gov (United States)

    Reneman, Liesbeth; de Win, Maartje M L; van den Brink, Wim; Booij, Jan; den Heeten, Gerard J

    2006-03-01

    Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivoneuroimaging tools have begun to provide insights into the effects of ecstasy on the human brain. Single photon emission computed tomography (SPECT), positron emission computed tomography (PET) and proton magnetic resonance spectroscopy (1H-MRS) studies which have evaluated ecstasy's neurotoxic potential will be reviewed and discussed in terms of technical aspects, conceptual issues and future prospects. Although PET and SPECT may be limited by several factors such as the low cortical uptake and the use of a non-optimal reference region (cerebellum) the few studies conducted so far provide suggestive evidence that people who heavily use ecstasy are at risk of developing subcortical, and probably also cortical reductions in serotonin transporter (SERT) densities, a marker of 5-HT neurotoxicity. There seem to be dose-dependent and transient reductions in SERT for which females may be more vulnerable than males. 1H-MRS appears to be a less sensitive technique for studying ecstasy's neurotoxic potential. Whether individuals with a relatively low ecstasy exposure also demonstrate loss of SERT needs to be determined. Because most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causal links can be implied, longitudinal studies in human ecstasy users are needed to draw definite conclusions.

  19. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans.

    Science.gov (United States)

    Steuer, Andrea E; Schmidhauser, Corina; Tingelhoff, Eva H; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.

  20. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA and Its Phase I and II Metabolites in Humans.

    Directory of Open Access Journals (Sweden)

    Andrea E Steuer

    Full Text Available 3,4-methylenedioxymethamphetamine (MDMA; ecstasy metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA, followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs, intermediate metabolizers (IMs, and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax and area under the plasma concentration-time curve from 0 to 24 h (AUC24 of R-MDMA (9% and 25%, respectively and S-MDMA (16% and 38%, respectively. Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.

  1. Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells

    International Nuclear Information System (INIS)

    Sarafian, Theodore; Montes, Cindy; Harui, Airi; Beedanagari, Sudheer R.; Kiertscher, Sylvia; Stripecke, Renata; Hossepian, Derik; Kitchen, Christina; Kern, Rita; Belperio, John; Roth, Michael D.

    2008-01-01

    Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that Δ 9 -tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 [Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P., and Roth, M. D. (2003). Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 284, L298-306; Sarafian, T., Habib, N., Mao, J. T., Tsu, I. H., Yamamoto, M. L., Hsu, E., Tashkin, D. P., and Roth, M. D. (2005). Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett 158, 95-107]. The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the type 2 cannabinoid receptor (CB2R) using a self-inactivating lentiviral vector. This transduction resulted in a 60-fold increase in CB2R mRNA relative to cells transduced with a control vector. Transduced cell lines were used to study the effects of THC on chemotactic activity and mitochondrial function. Chemotaxis in response to a 10% serum gradient was suppressed in a concentration-dependent manner by exposure to THC. CB2R-transduced cells exhibited less intrinsic chemotactic activity (p m ) in both control and CB2R-transduced cells. However, these decreases did not play a significant role in chemotaxis inhibition since cyclosporine A, which protected against ATP loss, did not increase cell migration. Moreover, CB2R-transduced cells displayed higher Ψ m than did control cells. Since both Ψ m and chemotaxis are regulated by intracellular signaling, we investigated the effects of THC on the activation of multiple signaling pathways. Serum exposure activated several signaling events of which phosphorylation of IκB-α and JNK was regulated in a CB2R- and THC

  2. Chronic administration during early adulthood does not alter the hormonally-dependent disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC) on complex behavior in female rats.

    Science.gov (United States)

    Winsauer, Peter J; Sutton, Jessie L

    2014-02-01

    This study examined whether chronic Δ(9)-THC during early adulthood would produce the same hormonally-dependent deficits in learning that are produced by chronic Δ(9)-THC during adolescence. To do this, either sham-operated (intact) or ovariectomized (OVX) female rats received daily saline or 5.6 mg/kg of Δ(9)-THC i.p. for 40 days during early adulthood. Following chronic administration, and a drug-free period to train both a learning and performance task, acute dose-effect curves for Δ(9)-THC (0.56-10 mg/kg) were established in each of the four groups (intact/saline, intact/THC, OVX/saline and OVX/THC). The dependent measures of responding under the learning and performance tasks were the overall response rate and the percentage of errors. Although the history of OVX and chronic Δ(9)-THC in early adulthood did not significantly affect non-drug or baseline behavior under the tasks, acute administration of Δ(9)-THC produced both rate-decreasing and error-increasing effects on learning and performance behavior, and these effects were dependent on their hormone condition. More specifically, both intact groups were more sensitive to the rate-decreasing and error-increasing effects of Δ(9)-THC than the OVX groups irrespective of chronic Δ(9)-THC administration, as there was no significant main effect of chronic treatment and no significant interaction between chronic treatment (saline or Δ(9)-THC) and the dose of Δ(9)-THC administered as an adult. Post mortem examination of 10 brain regions also indicated there were significant differences in agonist-stimulated GTPγS binding across brain regions, but no significant effects of chronic treatment and no significant interaction between the chronic treatment and cannabinoid signaling. Thus, acute Δ(9)-THC produced hormonally-dependent effects on learning and performance behavior, but a period of chronic administration during early adulthood did not alter these effects significantly, which is contrary to what we

  3. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part I: development and validation of a pulmonary cannabinoid route of exposure for experimental pharmacology studies in rodents.

    Science.gov (United States)

    Manwell, Laurie A; Charchoglyan, Armen; Brewer, Dyanne; Matthews, Brittany A; Heipel, Heather; Mallet, Paul E

    2014-01-01

    Most studies evaluating the effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in animal models administer it via a parenteral route (e.g., intraperitoneal (IP) or intravenous injection (IV)), however, the common route of administration for human users is pulmonary (e.g., smoking or vapourizing marijuana). A vapourized Δ(9)-THC delivery system for rodents was developed and used to compare the effects of pulmonary and parenteral Δ(9)-THC administration on blood cannabinoid levels and behaviour. Sprague-Dawley rats were exposed to pulmonary Δ(9)-THC (1, 5, and 10mg of inhaled vapour) delivered via a Volcano® vapourizing device (Storz and Bickel, Germany) or to parenteral Δ(9)-THC (0.25, 0.5, 1.0, and 1.5mg/kg injected IP). Quantification of Δ(9)-THC and its psychoactive metabolite, 11-hydroxy-Δ(9)-THC (11-OH-Δ(9)-THC), in blood was determined by liquid chromatography/mass spectrometry (LC/MS). In order to verify the potential for the vapourization procedure to produce a robust conditioned place preference (CPP) or conditioned place avoidance CPA, classical conditioning procedures were systematically varied by altering the exposure time (10 or 20min) and number of exposed rats (1 or 2) while maintaining the same vapourization dose (10mg). Blood collected at 20min intervals showed similar dose-dependent and time-dependent changes in Δ(9)-THC and 11-OH-Δ(9)-THC for both pulmonary and parenteral administration of Δ(9)-THC. However, vapourized Δ(9)-THC induced CPP under certain conditions whereas IP-administered Δ(9)-THC induced CPA. These results support and extend the limited evidence (e.g., in humans, Naef et al., 2004; in rodents, Niyuhire et al., 2007) that Δ(9)-THC produces qualitatively different effects on behaviour depending upon the route of administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part II: comparison of behavioural effects of pulmonary versus parenteral cannabinoid exposure in rodents.

    Science.gov (United States)

    Manwell, Laurie A; Ford, Brittany; Matthews, Brittany A; Heipel, Heather; Mallet, Paul E

    2014-01-01

    Studies of the rewarding and addictive properties of cannabinoids using rodents as animal models of human behaviour often fail to replicate findings from human studies. Animal studies typically employ parenteral routes of administration, whereas humans typically smoke cannabis, thus discrepancies may be related to different pharmacokinetics of parenteral and pulmonary routes of administration. Accordingly, a novel delivery system of vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) was developed and assessed for its pharmacokinetic, pharmacodynamic, and behavioural effects in rodents. A commercially available vapourizer was used to assess the effects of pulmonary (vapourized) administration of Δ(9)-THC and directly compared to parenteral (intraperitoneal, IP) administration of Δ(9)-THC. Sprague-Dawley rats were exposed to pure Δ(9)-THC vapour (1, 2, 5, 10, and 20mg/pad), using a Volcano® vapourizing device (Storz and Bickel, Germany) or IP-administered Δ(9)-THC (0.1, 0.3, 0.5, 1.0mg/kg), and drug effects on locomotor activity, food and water consumption, and cross-sensitization to morphine (5mg/kg) were measured. Vapourized Δ(9)-THC significantly increased feeding during the first hour following exposure, whereas IP-administered Δ(9)-THC failed to produce a reliable increase in feeding at all doses tested. Acute administration of 10mg of vapourized Δ(9)-THC induced a short-lasting stimulation in locomotor activity compared to control in the first of four hours of testing over 7days of repeated exposure; this chronic exposure to 10mg of vapourized Δ(9)-THC did not induce behavioural sensitization to morphine. These results suggest vapourized Δ(9)-THC administration produces behavioural effects qualitatively different from those induced by IP administration in rodents. Furthermore, vapourized Δ(9)-THC delivery in rodents may produce behavioural effects more comparable to those observed in humans. We conclude that some of the conflicting findings in animal

  5. Probing the molecular mechanism behind the cognitive impairment induced by THC

    Czech Academy of Sciences Publication Activity Database

    Botta, J.; Cordomi, A.; Bondar, Alexey; Lazar, Josef; Pardo, L.; McCormick, P. J.

    2017-01-01

    Roč. 121, č. 2 (2017), s. 11-12 ISSN 1742-7835 Institutional support: RVO:67179843 Keywords : THC * molecular mechanism * cognitive impairment Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Toxicology Impact factor: 3.176, year: 2016

  6. A reconsideration and response to Parrott AC (2013) "Human psychobiology of MDMA or 'Ecstasy': an overview of 25 years of empirical research".

    Science.gov (United States)

    Doblin, Rick; Greer, George; Holland, Julie; Jerome, Lisa; Mithoefer, Michael C; Sessa, Ben

    2014-03-01

    Parrott recently published a review of literature on MDMA/ecstasy. This commentary is a response to the content and tenor of his review, which mischaracterizes the literature through misstatement and omission of contrary findings, and fails to address the central controversies in the literature. The review makes several erroneous statements concerning MDMA-assisted psychotherapy, such as incorrect statements about research design and other statements that are baseless or contradicted by the literature. Though it critiques an attempt by other authors to characterize the risks of MDMA, the review fails to produce a competing model of risk assessment, and does not discuss potential benefits. Parrott does not represent an even-handed review of the literature, but instead recites dated misconceptions about neurotoxicity concerns involving the recreational drug ecstasy, which do not relate directly to the use of pure MDMA in a therapeutic setting. Unchallenged, Parrott's report may deter researchers from further investigating an innovative treatment that in early clinical trials has demonstrated lasting benefits for people with chronic, treatment-resistant post-traumatic stress disorder. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Evaluation of three rapid oral fluid test devices on the screening of multiple drugs of abuse including ketamine.

    Science.gov (United States)

    Tang, Magdalene H Y; Ching, C K; Poon, Simon; Chan, Suzanne S S; Ng, W Y; Lam, M; Wong, C K; Pao, Ronnie; Lau, Angus; Mak, Tony W L

    2018-05-01

    Rapid oral fluid testing (ROFT) devices have been extensively evaluated for their ability to detect common drugs of abuse; however, the performance of such devices on simultaneous screening for ketamine has been scarcely investigated. The present study evaluated three ROFT devices (DrugWipe ® 6S, Ora-Check ® and SalivaScreen ® ) on the detection of ketamine, opiates, methamphetamine, cannabis, cocaine and MDMA. A liquid chromatography tandem mass spectrometry (LCMS) assay was firstly established and validated for confirmation analysis of the six types of drugs and/or their metabolites. In the field test, the three ROFT devices were tested on subjects recruited from substance abuse clinics/rehabilitation centre. Oral fluid was also collected using Quantisal ® for confirmation analysis. A total of 549 samples were collected in the study. LCMS analysis on 491 samples revealed the following drugs: codeine (55%), morphine (49%), heroin (40%), methamphetamine (35%), THC (8%), ketamine (4%) and cocaine (2%). No MDMA-positive cases were observed. Results showed that the overall specificity and accuracy were satisfactory and met the DRUID standard of >80% for all 3 devices. Ora-Check ® had poor sensitivities (ketamine 36%, methamphetamine 63%, opiates 53%, cocaine 60%, THC 0%). DrugWipe ® 6S showed good sensitivities in the methamphetamine (83%) and opiates (93%) tests but performed relatively poorly for ketamine (41%), cocaine (43%) and THC (22%). SalivaScreen ® also demonstrated good sensitivities in the methamphetamine (83%) and opiates (100%) tests, and had the highest sensitivity for ketamine (76%) and cocaine (71%); however, it failed to detect any of the 28 THC-positive cases. The test completion rate (proportion of tests completed with quality control passed) were: 52% (Ora-Check ® ), 78% (SalivaScreen ® ) and 99% (DrugWipe ® 6S). Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Hair MDMA samples are consistent with reported ecstasy use: findings from a study investigating effects of ecstasy on mood and memory.

    Science.gov (United States)

    Scholey, A B; Owen, L; Gates, J; Rodgers, J; Buchanan, T; Ling, J; Heffernan, T; Swan, P; Stough, C; Parrott, A C

    2011-01-01

    Our group has conducted several Internet investigations into the biobehavioural effects of self-reported recreational use of MDMA (3,4-methylenedioxymethamphetamine or Ecstasy) and other psychosocial drugs. Here we report a new study examining the relationship between self-reported Ecstasy use and traces of MDMA found in hair samples. In a laboratory setting, 49 undergraduate volunteers performed an Internet-based assessment which included mood scales and the University of East London Drug Use Questionnaire, which asks for history and current drug use. They also provided a hair sample for determination of exposure to MDMA over the previous month. Self-report of Ecstasy use and presence in hair samples were consistent (p happiness and higher self-reported stress. Self-reported Ecstasy use, but not presence in hair, was also associated with decreased tension. Different psychoactive drugs can influence long-term mood and cognition in complex and dynamically interactive ways. Here we have shown a good correspondence between self-report and objective assessment of exposure to MDMA. These data suggest that the Internet has potentially high utility as a useful medium to complement traditional laboratory studies into the sequelae of recreational drug use. Copyright © 2010 S. Karger AG, Basel.

  9. Δ⁹-tetrahydrocannabinol (Δ⁹-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson's disease.

    Science.gov (United States)

    Carroll, C B; Zeissler, M-L; Hanemann, C O; Zajicek, J P

    2012-10-01

    Δ⁹-tetrahydrocannabinol (Δ⁹-THC) is neuroprotective in models of Parkinson's disease (PD). Although CB1 receptors are increased within the basal ganglia of PD patients and animal models, current evidence suggests a role for CB1 receptor-independent mechanisms. Here, we utilized a human neuronal cell culture PD model to further investigate the protective properties of Δ⁹-THC. Differentiated SH-SY5Y neuroblastoma cells were exposed to PD-relevant toxins: 1-methyl-4-phenylpyridinium (MPP+), lactacystin and paraquat. Changes in CB1 receptor level were determined by quantitative polymerase chain reaction and Western blotting. Cannabinoids and modulatory compounds were co-administered with toxins for 48 h and the effects on cell death, viability, apoptosis and oxidative stress assessed. We found CB1 receptor up-regulation in response to MPP+, lactacystin and paraquat and a protective effect of Δ⁹-THC against all three toxins. This neuroprotective effect was not reproduced by the CB1 receptor agonist WIN55,212-2 or blocked by the CB1 antagonist AM251. Furthermore, the antioxidants α-tocopherol and butylhydroxytoluene as well as the antioxidant cannabinoids, nabilone and cannabidiol were unable to elicit the same neuroprotection as Δ⁹-THC. However, the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist T0070907 dose-dependently blocked the neuroprotective, antioxidant and anti-apoptotic effects of Δ⁹-THC, while the PPARγ agonist pioglitazone resulted in protection from MPP+-induced neurotoxicity. Furthermore, Δ⁹-THC increased PPARγ expression in MPP+-treated SH-SY5Y cells, another indicator of PPARγ activation. We have demonstrated up-regulation of the CB1 receptor in direct response to neuronal injury in a human PD cell culture model, and a direct neuronal protective effect of Δ⁹-THC that may be mediated through PPARγ activation. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological

  10. Bilateral pneumothorax, surgical emphysema and pneumomediastinum in a young male patient following MDMA intake.

    Science.gov (United States)

    Obiechina, Nonyelum Evangeline; Jayakumar, Ahrane; Khan, Yusra; Bass, James

    2018-04-07

    MDMA (3,4-methylenedioxymethamphetamine) or 'Ecstasy' is an illicit drug frequently used by young people at parties and 'raves'. It is readily available in spite of the fact that it is illegal. 1 It is perceived by a lot of young people as being 'harmless', but there have been a few high-profile deaths associated with its use. 2 Known side effects of MDMA include hyperthermia, rhabdomyolysis, coagulopathy and cardiac arrhythmias. 3 Rarer side effects include surgical emphysema and pneumomediastinum, which have been better described with cocaine abuse. 4-6 We present a case of bilateral pneumothorax, surgical emphysema and pneumomediastinum in a young man after taking ecstasy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Quantification of 11-Carboxy-Delta-9-Tetrahydrocannabinol (THC-COOH) in Meconium Using Gas Chromatography/Mass Spectrometry (GC/MS).

    Science.gov (United States)

    Peat, Judy; Davis, Brehon; Frazee, Clint; Garg, Uttam

    2016-01-01

    Maternal substance abuse is an ongoing concern and detecting drug use during pregnancy is an important component of neonatal care when drug abuse is suspected. Meconium is the preferred specimen for drug testing because it is easier to collect than neonatal urine and it provides a much broader time frame of drug exposure. We describe a method for quantifying 11-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in meconium. After adding a labeled internal standard (THC-COOH D9) and acetonitrile, samples are sonicated to release both free and conjugated THC-COOH. The acetonitrile/aqueous layer is removed and mixed with a strong base to hydrolyze the conjugated THC-COOH. The samples are then extracted with an organic solvent mixture as part of a sample "cleanup." The organic solvent layer is discarded and the remaining aqueous sample is acidified. Following extraction with a second organic mixture, the organic layer is removed and concentrated to dryness. The resulting residue is converted to a trimethylsilyl (TMS) derivative and analyzed using gas chromatography/mass spectrometry (GC/MS) in selective ion monitoring (SIM) mode.

  12. How cannabis causes paranoia: using the intravenous administration of ∆9-tetrahydrocannabinol (THC) to identify key cognitive mechanisms leading to paranoia.

    Science.gov (United States)

    Freeman, Daniel; Dunn, Graham; Murray, Robin M; Evans, Nicole; Lister, Rachel; Antley, Angus; Slater, Mel; Godlewska, Beata; Cornish, Robert; Williams, Jonathan; Di Simplicio, Martina; Igoumenou, Artemis; Brenneisen, Rudolf; Tunbridge, Elizabeth M; Harrison, Paul J; Harmer, Catherine J; Cowen, Philip; Morrison, Paul D

    2015-03-01

    Paranoia is receiving increasing attention in its own right, since it is a central experience of psychotic disorders and a marker of the health of a society. Paranoia is associated with use of the most commonly taken illicit drug, cannabis. The objective was to determine whether the principal psychoactive ingredient of cannabis-∆(9)-tetrahydrocannabinol (THC)-causes paranoia and to use the drug as a probe to identify key cognitive mechanisms underlying paranoia. A randomized, placebo-controlled, between-groups test of the effects of intravenous THC was conducted. A total of 121 individuals with paranoid ideation were randomized to receive placebo, THC, or THC preceded by a cognitive awareness condition. Paranoia was assessed extensively via a real social situation, an immersive virtual reality experiment, and standard self-report and interviewer measures. Putative causal factors were assessed. Principal components analysis was used to create a composite paranoia score and composite causal variables to be tested in a mediation analysis. THC significantly increased paranoia, negative affect (anxiety, worry, depression, negative thoughts about the self), and a range of anomalous experiences, and reduced working memory capacity. The increase in negative affect and in anomalous experiences fully accounted for the increase in paranoia. Working memory changes did not lead to paranoia. Making participants aware of the effects of THC had little impact. In this largest study of intravenous THC, it was definitively demonstrated that the drug triggers paranoid thoughts in vulnerable individuals. The most likely mechanism of action causing paranoia was the generation of negative affect and anomalous experiences. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  13. The effect of five day dosing with THCV on THC-induced cognitive, psychological and physiological effects in healthy male human volunteers: A placebo-controlled, double-blind, crossover pilot trial.

    Science.gov (United States)

    Englund, Amir; Atakan, Zerrin; Kralj, Aleksandra; Tunstall, Nigel; Murray, Robin; Morrison, Paul

    2016-02-01

    Cannabis is mostly grown under illegal and unregulated circumstances, which seems to favour a product increasingly high in its main cannabinoid ∆-9-tetrahydrocannabinol (THC). ∆-9-tetrahydrocannabivarin (THCV) is a relatively untested cannabinoid which is said to be a cannabinoid receptor neutral antagonist, and may inhibit the effects of THC. To explore the safety and tolerability of repeated THCV administration and its effects on symptoms normally induced by THC in a sample of healthy volunteers. Ten male cannabis users (THC on the fifth day. THCV was well tolerated and subjectively indistinguishable from placebo. THC did not significantly increase psychotic symptoms, paranoia or impair short-term memory, while still producing significant intoxicating effects. Delayed verbal recall was impaired by THC and only occurred under placebo condition (Z=-2.201, p=0.028), suggesting a protective effect of THCV. THCV also inhibited THC-induced increased heart rate (Z=-2.193, p=0.028). Nine out of ten participants reported THC under THCV condition (compared to placebo) to be subjectively weaker or less intense (χ(2)=6.4, p=0.011). THCV in combination with THC significantly increased memory intrusions (Z=-2.155, p=0.031). In this first study of THC and THCV, THCV inhibited some of the well-known effects of THC, while potentiating others. These findings need to be interpreted with caution due to a small sample size and lack of THC-induced psychotomimetic and memory-impairing effect, probably owing to the choice of dose. © The Author(s) 2015.

  14. Short-term exposure and long-term consequences of neonatal exposure to Δ(9)-tetrahydrocannabinol (THC) and ibuprofen in mice.

    Science.gov (United States)

    Philippot, Gaëtan; Nyberg, Fred; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik

    2016-07-01

    Both Δ(9)-tetrahydrocannabinol (THC) and ibuprofen have analgesic properties by interacting with the cannabinoid receptor type 1 (CB1R) and the cyclooxygenase (COX) systems, respectively. Evaluation of these analgesics is important not only clinically, since they are commonly used during pregnancy and lactation, but also to compare them with acetaminophen, with a known interaction with both CB1R and the COX systems. Short-term exposure of neonatal rodents to acetaminophen during the first weeks of postnatal life, which is comparable with a period from the third trimester of pregnancy to the first years of postnatal life in humans, induces long-term behavioral disturbances. This period, called the brain growth spurt (BGS) and is characterized by series of rapid and fundamental changes and increased vulnerability, peaks around postnatal day (PND) 10 in mice. We therefore exposed male NMRI mice to either THC or ibuprofen on PND 10. At 2 months of age, the mice were subjected to a spontaneous behavior test, consisting of a 60min recording of the variables locomotion, rearing and total activity. Mice exposed to THC, but not ibuprofen, exhibited altered adult spontaneous behavior and habituation capability in a dose-dependent manner. This highlights the potency of THC as a developmental neurotoxicant, since a single neonatal dose of THC was enough to affect adult cognitive function. The lack of effect from ibuprofen also indicates that the previously seen developmental neurotoxicity of acetaminophen is non-COX-mediated. These results might be of importance in future research as well as in the ongoing risk/benefit assessment of THC. Copyright © 2016. Published by Elsevier B.V.

  15. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    Science.gov (United States)

    Bossong, Matthijs G; Mehta, Mitul A; van Berckel, Bart N M; Howes, Oliver D; Kahn, René S; Stokes, Paul R A

    2015-08-01

    Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.

  16. Opioid gene expression changes and post-translational histone modifications at promoter regions in the rat nucleus accumbens after acute and repeated 3,4-methylenedioxy-methamphetamine (MDMA) exposure.

    Science.gov (United States)

    Caputi, Francesca Felicia; Palmisano, Martina; Carboni, Lucia; Candeletti, Sanzio; Romualdi, Patrizia

    2016-12-01

    The recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) has been shown to produce neurotoxic damage and long-lasting changes in several brain areas. In addition to the involvement of serotoninergic and dopaminergic systems, little information exists about the contribution of nociceptin/orphaninFQ (N/OFQ)-NOP and dynorphin (DYN)-KOP systems in neuronal adaptations evoked by MDMA. Here we investigated the behavioral and molecular effects induced by acute (8mg/kg) or repeated (8mg/kg twice daily for seven days) MDMA exposure. MDMA exposure affected body weight gain and induced hyperlocomotion; this latter effect progressively decreased after repeated administration. Gene expression analysis indicated a down-regulation of the N/OFQ system and an up-regulation of the DYN system in the nucleus accumbens (NAc), highlighting an opposite systems regulation in response to MDMA exposure. Since histone modifications have been strongly associated to the addiction-related maladaptive changes, we examined two permissive (acH3K9 and me3H3K4) and two repressive transcription marks (me3H3K27 and me2H3K9) at the pertinent opioid gene promoter regions. Chromatin immunoprecipitation assays revealed that acute MDMA increased me3H3K4 at the pN/OFQ, pDYN and NOP promoters. Following acute and repeated treatment a significant decrease of acH3K9 at the pN/OFQ promoter was observed, which correlated with gene expression results. Acute treatment caused an acH3K9 increase and a me2H3K9 decrease at the pDYN promoter which matched its mRNA up-regulation. Our data indicate that the activation of the DYNergic stress system together with the inactivation of the N/OFQergic anti-stress system contribute to the neuroadaptive actions of MDMA and offer novel epigenetic information associated with MDMA abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    Science.gov (United States)

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  18. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors

    OpenAIRE

    Milhazes, Nuno; Martins, Pedro; Uriarte, Eugenio; Garrido, Jorge; Calheiros, Rita; Marques, M. Paula M.; Borges, Fernanda

    2007-01-01

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-beta-methyl-beta-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to t...

  19. MDMA, Methylone, and MDPV: Drug-Induced Brain Hyperthermia and Its Modulation by Activity State and Environment.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn E

    2017-01-01

    Psychomotor stimulants are frequently used by humans to intensify the subjective experience of different types of social interactions. Since psychomotor stimulants enhance metabolism and increase body temperatures, their use under conditions of physiological activation and in warm humid environments could result in pathological hyperthermia, a life-threatening symptom of acute drug intoxication. Here, we will describe the brain hyperthermic effects of MDMA, MDPV, and methylone, three structurally related recreational drugs commonly used by young adults during raves and other forms of social gatherings. After a short introduction on brain temperature and basic mechanisms underlying its physiological fluctuations, we will consider how MDMA, MDPV, and methylone affect brain and body temperatures in awake freely moving rats. Here, we will discuss the role of drug-induced heat production in the brain due to metabolic brain activation and diminished heat dissipation due to peripheral vasoconstriction as two primary contributors to the hyperthermic effects of these drugs. Then, we will consider how the hyperthermic effects of these drugs are modulated under conditions that model human drug use (social interaction and warm ambient temperature). Since social interaction results in brain and body heat production, coupled with skin vasoconstriction that impairs heat loss to the external environment, these physiological changes interact with drug-induced changes in heat production and loss, resulting in distinct changes in the hyperthermic effects of each tested drug. Finally, we present our recent data, in which we compared the efficacy of different pharmacological strategies for reversing MDMA-induced hyperthermia in both the brain and body. Specifically, we demonstrate increased efficacy of the centrally acting atypical neuroleptic compound clozapine over the peripherally acting vasodilator drug, carvedilol. These data could be important for understanding the potential

  20. Identification and quantitation of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in human urine by 1H NMR spectroscopy. Application to five cases of intoxication.

    Science.gov (United States)

    Liu, Jonathan; Decatur, John; Proni, Gloria; Champeil, Elise

    2010-01-30

    Identification of 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) in five cases of intoxication using nuclear magnetic resonance (NMR) spectroscopy of human urine is reported. A new water suppression technique PURGE (Presaturation Utilizing Relaxation Gradients and Echoes) was used. A calibration curve was obtained using spiked samples. The method gave a linear response (correlation coefficient of 0.992) over the range 0.01-1mg/mL. Subsequently, quantitation of the amount of MDMA present in the samples was performed. The benefit and reliability of NMR investigations of human urine for cases of intoxication with MDMA are discussed. Published by Elsevier Ireland Ltd.

  1. Effect of combined doses of Δ(9)-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea using rat (Sprague- Dawley) models of conditioned gaping.

    Science.gov (United States)

    Rock, Erin M; Limebeer, Cheryl L; Parker, Linda A

    2015-12-01

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) found in cannabis both reduce the distressing symptom of nausea, but their combined effects are not understood. The potential of combined doses of THC and CBDA to reduce acute nausea and anticipatory nausea in rodent models was assessed. For acute nausea, the potential of cannabinoid pretreatment(s) to reduce LiCl-induced nausea paired with saccharin was evaluated in a subsequent drug free taste reactivity test, followed by a taste avoidance test. For anticipatory nausea, the potential of the cannabinoid pretreatment(s) to reduce the expression of LiCl-induced contextually elicited conditioned gaping was evaluated. Combined subthreshold doses of THC (0.01 and 0.1 mg/kg) and CBDA (0.01 and 0.1 μg/kg) reduced acute nausea. Higher doses of THC (1.0, 10 mg/kg) or CBDA (1.0, 10 μg/kg) alone, as well as these combined doses also reduced acute nausea. THC (10 mg/kg) interfered with conditioned taste avoidance, an effect attenuated by CBDA (10 μg/kg). On the other hand, combined subthreshold doses of THC (0.01 and 0.1 mg/kg) and CBDA (0.01 and 0.1 μg/kg) did not suppress contextually elicited conditioned gaping in a test for anticipatory nausea. However, higher doses of THC (1.0, 10 mg/kg) or CBDA (1.0, 10 μg/kg) alone, as well as these combined doses, also reduced anticipatory nausea. Only at the highest dose (10 mg/kg) did THC impair locomotor activity, but CBDA did not at any dose. Combined subthreshold doses of THC:CBDA are particularly effective as a treatment for acute nausea. At higher doses, CBDA may attenuate THC-induced interference with learning.

  2. Pressure-induced structural transformations and polymerization in ThC2

    Science.gov (United States)

    Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie

    2017-04-01

    Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC2) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC2.

  3. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum.

    Science.gov (United States)

    Tournier, Benjamin B; Tsartsalis, Stergios; Dimiziani, Andrea; Millet, Philippe; Ginovart, Nathalie

    2016-09-15

    This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Current Perspective on MDMA-Assisted Psychotherapy for Posttraumatic Stress Disorder

    OpenAIRE

    Thal, Sascha B.; Lommen, Miriam J.J.

    2018-01-01

    The present paper discusses the current literature with regard to substance-assisted psychotherapy with Methylenedioxymethamphetamine (MDMA) for posttraumatic stress disorder (PTSD). The aim of the paper is to give a comprehensive overview of the development from MDMA’s early application in psychotherapy to its present and future role in the treatment of PTSD. It is further attempted to increase the attention for MDMA’s therapeutic potential by providing a thorough depiction of the scientific...

  5. Enhanced discriminative stimulus effects of Δ(9)-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys.

    Science.gov (United States)

    McMahon, Lance R

    2016-08-01

    Cannabidiol, a therapeutic with potential serotonin (5-hydroxytryptamine; 5-HT) 5-HT1A receptor agonist activity, is the second most prevalent cannabinoid in Cannabis after Δ(9)-THC. The extent to which cannabidiol modifies the effects of Δ(9)-THC has not been firmly established, especially with respect to abuse-related effects in rhesus monkeys where previously antagonistic interactions have been reported for some behavioral outcomes. Cannabidiol and the 5-HT1A receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) were tested in two separate discrimination assays in rhesus monkeys. One group (n=6) discriminated Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 0.1mg/kg i.v.); a second group (n=6) discriminated the cannabinoid antagonist rimonabant (1mg/kg i.v.) while receiving Δ(9)-THC daily (1mg/kg/12hs.c.). Responding was maintained under a fixed ratio 5 schedule of stimulus-shock termination. Both training drugs dose-dependently increased the percentage of responses on the respective drug-associated levers. Cannabidiol (up to 17.8mg/kg) and 8-OH-DPAT (up to 0.178mg/kg) did not substitute for either training drug; however, both significantly increased the potency of Δ(9)-THC to produce discriminative stimulus effects. Moreover, 8-OH-DPAT significantly attenuated the discriminative stimulus effects of rimonabant, whereas cannabidiol did not modify the rimonabant discriminative stimulus. These results, which are consistent with cannabidiol lacking CB1 receptor agonist or antagonist activity in vivo, demonstrate enhancement of the effects of Δ(9)-THC by cannabidiol, albeit at cannabidiol amounts larger than those in Cannabis or cannabidiol-based therapeutics (nabiximols). In addition to showing that cannabidiol and a 5-HT1A receptor agonist have overlapping behavioral effects, the current results suggest that 5-HT1A agonism enhances the CB1 receptor-mediated effects of Δ(9)-THC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Enhanced discriminative stimulus effects of Δ9-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys

    Science.gov (United States)

    McMahon, Lance R.

    2016-01-01

    Background Cannabidiol, a therapeutic with potential serotonin (5-hydroxytryptamine; 5-HT) 5-HT1A receptor agonist activity, is the second most prevalent cannabinoid in Cannabis after Δ9-THC. The extent to which cannabidiol modifies the effects of Δ9-THC has not been firmly established, especially with respect to abuse-related effects in rhesus monkeys where previously antagonistic interactions have been reported for some behavioral outcomes. Methods Cannabidiol and the 5-HT1A receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) were tested in two separate discrimination assays in rhesus monkeys. One group (n=6) discriminated Δ9-tetrahydrocannabinol (Δ9-THC; 0.1 mg/kg i.v.); a second group (n=6) discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.) while receiving Δ9-THC daily (1 mg/kg/12 h s.c.). Responding was maintained under a fixed ratio 5 schedule of stimulus-shock termination. Results Both training drugs dose-dependently increased the percentage of responses on the respective drug-associated levers. Cannabidiol (up to 17.8 mg/kg) and 8-OH-DPAT (up to 0.178 mg/kg) did not substitute for either training drug; however, both significantly increased the potency of Δ9-THC to produce discriminative stimulus effects. Moreover, 8-OH-DPAT significantly attenuated the discriminative stimulus effects of rimonabant, whereas cannabidiol did not modify the rimonabant discriminative stimulus. Conclusions These results, which are consistent with cannabidiol lacking CB1 receptor agonist or antagonist activity in vivo, demonstrate enhancement of the effects of Δ9-THC by cannabidiol, albeit at cannabidiol amounts larger than those in Cannabis or cannabidiol-based therapeutics (nabiximols). In addition to showing that cannabidiol and a 5-HT1A receptor agonist have overlapping behavioral effects, the current results suggest that 5-HT1A agonism enhances the CB1 receptor-mediated effects of Δ9-THC. PMID:27289270

  7. Symptoms of anxiety and depression in childhood and use of MDMA: prospective, population based study

    NARCIS (Netherlands)

    A.C. Huizink (Anja); R.F. Ferdinand (Robert); J. van der Ende (Jan); F.C. Verhulst (Frank)

    2006-01-01

    textabstractOBJECTIVE: To investigate whether using ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is preceded by symptoms of behavioural and emotional problems in childhood and early adolescence. DESIGN: Prospective, longitudinal, population based study SETTING: The Dutch

  8. The Role of MDMA (Ecstasy) in Coping with Negative Life Situations Among Urban Young Adults

    Science.gov (United States)

    Moonzwe, Lwendo S.; Schensul, Jean J.; Kostick, Kristin M.

    2011-01-01

    This article examines the role of Ecstasy (MDMA or 3, 4-methylenedioxymethamphetamine) as a drug used for self-medication and coping with both short- and long-term negative life situations. We show that urban youth who do not have a specific diagnosed mental illness are more likely than those who have been diagnosed and have received treatment to use Ecstasy to cope with both situational stress and lifetime trauma. Diagnosed and treated youth sometimes self-medicate with other drugs, but do not choose Ecstasy for mediation of their psychological stress. We discuss the implications of self-medication with Ecstasy for mental health services to urban youth experiencing mental health disparities, and for the continued testing and prescription of MDMA for therapeutic use in controlled clinical settings. PMID:22111403

  9. THC/CBD oromucosal spray in patients with multiple sclerosis overactive bladder: a pilot prospective study.

    Science.gov (United States)

    Maniscalco, Giorgia Teresa; Aponte, R; Bruzzese, D; Guarcello, G; Manzo, V; Napolitano, M; Moreggia, O; Chiariello, F; Florio, C

    2018-01-01

    Lower urinary tract dysfunctions (LUTDs) are commonly reported in multiple sclerosis (MS) patients and are mainly related to neurogenic overactive bladder (OAB). The aim of this observational study was to assess the effect of a tetrahydrocannabinol-cannabidiol (THC/CBD) oromucosal spray on resistant OAB by means of clinical and instrumental tools. Twenty-one MS patients were screened, and 15 cases have been evaluated. They underwent a specific clinical assessment (overactive bladder symptom score, OABSS) and a urodynamic assessment evaluating the maximal cystometric capacity (CCmax), bladder compliance (Qmax), maximum detrusor pressure (Pdet max), detrusor pressure at the first desire (Pdet first), bladder volume at the first desire (BVFD), leakage volume (LV), and post-void residual volume (PVR), before and after 4 weeks of THC/CBD administration. A complete neurological evaluation, including the assessment of their spasticity using the Modified Ashworth Scale (MAS) and the spasticity 0-10 numerical rating scale (NRS), was performed at the same times. Mobility was evaluated through the 25-ft walking-time test (T25-WT). The THC/CBD treatment successfully reduced the OAB symptoms (p = 0.001). Regarding the urodynamic findings after the end of treatment, PVR was significantly reduced (p = 0.016). Regarding the urodynamic findings after the end of treatment, PVR was significantly reduced (p = 0.016), while BVFD and CCmax were increased although the difference was not statistically significant. THC/CBD oromucosal spray has shown to be effective in improving overactive bladder symptoms in MS patients demonstrating a favorable impact on detrusor overactivity.

  10. Symptoms of anxiety and depression in childhood and use of MDMA: prospective, population based study

    NARCIS (Netherlands)

    Huizink, A.C.; Ferdinand, R.F.; Ende, J. van den; Verhulst, F.C.

    2006-01-01

    Objective To investigate whether using ecstasy (3,4-methylenedioxymethamphetamine, MDMA) is preceded by symptoms of behavioural and emotional problems in childhood and early adolescence. Design Prospective, longitudinal, population based study. Setting The Dutch province of

  11. Impaired functional connectivity of brain reward circuitry in patients with schizophrenia and cannabis use disorder: Effects of cannabis and THC.

    Science.gov (United States)

    Fischer, Adina S; Whitfield-Gabrieli, Susan; Roth, Robert M; Brunette, Mary F; Green, Alan I

    2014-09-01

    Cannabis use disorder (CUD) occurs in up to 42% of patients with schizophrenia and substantially worsens disease progression. The basis of CUD in schizophrenia is unclear and available treatments are rarely successful at limiting cannabis use. We have proposed that a dysregulated brain reward circuit (BRC) may underpin cannabis use in these patients. In the present pilot study, we used whole-brain seed-to-voxel resting state functional connectivity (rs-fc) to examine the BRC of patients with schizophrenia and CUD, and to explore the effects of smoked cannabis and orally administered delta-9-tetrahydrocannabinol (THC) on the BRC. 12 patients with schizophrenia and CUD and 12 control subjects each completed two fMRI resting scans, with patients administered either a 3.6% THC cannabis cigarette (n=6) or a 15 mg THC capsule (n=6) prior to their second scan. Results revealed significantly reduced connectivity at baseline in patients relative to controls, with most pronounced hypoconnectivity found between the nucleus accumbens and prefrontal cortical BRC regions (i.e., anterior prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex). Both cannabis and THC administration increased connectivity between these regions, in direct correlation with increases in plasma THC levels. This study is the first to investigate interregional connectivity of the BRC and the effects of cannabis and THC on this circuit in patients with schizophrenia and CUD. The findings from this pilot study support the use of rs-fc as a means of measuring the integrity of the BRC and the effects of pharmacologic agents acting on this circuit in patients with schizophrenia and CUD. Copyright © 2014. Published by Elsevier B.V.

  12. An exploratory study of the combined effects of orally administered methylphenidate and delta-9-tetrahydrocannabinol (THC) on cardiovascular function, subjective effects, and performance in healthy adults.

    Science.gov (United States)

    Kollins, Scott H; Schoenfelder, Erin N; English, Joseph S; Holdaway, Alex; Van Voorhees, Elizabeth; O'Brien, Benjamin R; Dew, Rachel; Chrisman, Allan K

    2015-01-01

    Methylphenidate (MPH) is commonly prescribed for the treatment of Attention Deficit Hyperactivity Disorder (ADHD), and is often used illicitly by young adults. Illicit users often coadminister MPH with marijuana. Little is known about physiologic and subjective effects of these substances used in combination. In this double-blind, cross-over experiment, sixteen healthy adult subjects free from psychiatric illness (including ADHD) and reporting modest levels of marijuana use participated in 6 experimental sessions wherein all combinations of placebo or 10mg oral doses of delta-9-tetrahydocannibinol (THC); and 0mg, 10mg and 40 mg of MPH were administered. Sessions were separated by at least 48 hours. Vital signs, subjective effects, and performance measure were collected. THC and MPH showed additive effects on heart rate and rate pressure product (e.g., peak heart rate for 10mg THC+0mg, 10mg, and 40 mg MPH=89.1, 95.9, 102.0 beats/min, respectively). Main effects of THC and MPH were also observed on a range of subjective measures of drug effects, and significant THC dose × MPH dose interactions were found on measures of "Feel Drug," "Good Effects," and "Take Drug Again." THC increased commission errors on a continuous performance test (CPT) and MPH reduced reaction time variability on this measure. Effects of THC, MPH, and their combination were variable on a measure of working memory (n-back task), though in general, MPH decreased reaction times and THC mitigated these effects. These results suggest that the combination of low to moderate doses of MPH and THC produces unique effects on cardiovascular function, subjective effects and performance measures. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The effect of high-dose dronabinol (oral THC) maintenance on cannabis self-administration.

    Science.gov (United States)

    Schlienz, Nicolas J; Lee, Dustin C; Stitzer, Maxine L; Vandrey, Ryan

    2018-06-01

    There is a clear need for advancing the treatment of cannabis use disorders. Prior research has demonstrated that dronabinol (oral THC) can dose-dependently suppress cannabis withdrawal and reduce the acute effects of smoked cannabis. The present study was conducted to evaluate whether high-dose dronabinol could reduce cannabis self-administration among daily users. Non-treatment seeking daily cannabis users (N = 13) completed a residential within-subjects crossover study and were administered placebo, low-dose dronabinol (120 mg/day; 40 mg tid), or high-dose dronabinol (180-240 mg/day; 60-80 mg tid) for 12 consecutive days (order counterbalanced). During each 12-day dronabinol maintenance phase, participants were allowed to self-administer smoked cannabis containing <1% THC (placebo) or 5.7% THC (active) under forced-choice (drug vs. money) or progressive ratio conditions. Participants self-administered significantly more active cannabis compared with placebo in all conditions. When active cannabis was available, self-administration was significantly reduced during periods of dronabinol maintenance compared with placebo maintenance. There was no difference in self-administration between the low- and high-dose dronabinol conditions. Chronic dronabinol dosing can reduce cannabis self-administration in daily cannabis users and suppress withdrawal symptoms. Cannabinoid agonist medications should continue to be explored for therapeutic utility in the treatment of cannabis use disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The detection of THC, CBD and CBN in the oral fluid of Sativex® patients using two on-site screening tests and LC-MS/MS.

    Science.gov (United States)

    Molnar, Anna; Fu, Shanlin; Lewis, John; Allsop, David J; Copeland, Jan

    2014-05-01

    Sativex(®) is an oromucosal spray used to treat spasticity in multiple sclerosis sufferers in some European countries, the United Kingdom, Canada and New Zealand. The drug has also recently been registered by the Therapeutic Goods Administration (TGA) in Australia for treatment of multiple sclerosis. Sativex(®) contains high concentrations of Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), with the former being the subject of random roadside drug tests across Australia to detect cannabis use. This pilot study aims to determine whether or not patients taking Sativex(®) will test positive to THC using these roadside screening tests. Detectable levels of THC, CBD and cannabinol (CBN) in their oral fluid were also confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The study was a double-blind, placebo controlled design. Oral fluid was tested prior to and immediately after dosing with either Sativex(®) or placebo at intervals up to 2h after the dose. Two Sativex(®) doses were studied. The low dose contained 5.4mg THC, the high dose 21.6mg THC. Results indicate that the primary screening test used in Australian roadside drug testing, the DrugWipe(®) II Twin, often gave a false negative response for THC, even with high concentrations present. However, secondary screening test, Cozart(®) DDS (used by police after a DrugWipe test gives a positive result), gave true positive results in all cases where patients were being treated with Sativex(®). Confirmatory testing showed high concentrations of THC and CBD (>5356ng/mL THC and >3826ng/mL CBD) in the oral fluid shortly after dosing and also elevated concentrations of CBN. Levels dropped quickly but remained at detectable concentrations (>67.6ng/mL) two hours after drug administration. The average concentration ratio of THC/CBD across all positive samples was 1.10 (%RSD 19.9) reflecting the composition of the Sativex(®) spray. In conclusion, Sativex(®) users may test positive for THC by

  15. A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-rich plants of Cannabis sativa L.

    Science.gov (United States)

    Staginnus, Christina; Zörntlein, Siegfried; de Meijer, Etienne

    2014-07-01

    Neither absolute THC content nor morphology allows the unequivocal discrimination of fiber cultivars and drug strains of Cannabis sativa L. unequivocally. However, the CBD/THC ratio remains constant throughout the plant's life cycle, is independent of environmental factors, and considered to be controlled by a single locus (B) with two codominant alleles (B(T) and B(D)). The homozygous B(T)/B(T) genotype underlies the THC-predominant phenotype, B(D)/B(D) is CBD predominant, and an intermediate phenotype is induced by the heterozygous state (B(T)/B(D)). Using PCR-based markers in two segregating populations, we proved that the THCA synthase gene represents the postulated B locus and that specific sequence polymorphisms are absolutely linked either to the THC-predominant or the THC-intermediate chemotype. The absolute linkage provides an excellent reliability of the marker signal in forensic casework. For validation, the species-specific marker system was applied to a large number of casework samples and fiber hemp cultivars. © 2014 American Academy of Forensic Sciences.

  16. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA by an Immobilized Polysaccharide-Based Chiral Phase.

    Directory of Open Access Journals (Sweden)

    Juliana C Barreiro

    Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.

  17. Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G J H; Schoemaker, R C; Touw, D J; Sweep, F C G J; Buitelaar, J K; van Gerven, J M A; Verkes, R J

    In Western societies, a considerable percentage of young people use 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'). The use of alcohol (ethanol) in combination with ecstasy is common. The aim of the present study was to assess the acute psychomotor and subjective effects of (co-)

  18. Chronic marijuana smoke exposure in the rhesus monkey. IV: Neurochemical effects and comparison to acute and chronic exposure to delta-9-tetrahydrocannabinol (THC) in rats.

    Science.gov (United States)

    Ali, S F; Newport, G D; Scallet, A C; Paule, M G; Bailey, J R; Slikker, W

    1991-11-01

    THC is the major psychoactive constituent of marijuana and is known to produce psychopharmacological effects in humans. These studies were designed to determine whether acute or chronic exposure to marijuana smoke or THC produces in vitro or in vivo neurochemical alterations in rat or monkey brain. For the in vitro study, THC was added (1-100 nM) to membranes prepared from different regions of the rat brain and muscarinic cholinergic (MCh) receptor binding was measured. For the acute in vivo study, rats were injected IP with vehicle, 1, 3, 10, or 30 mg THC/kg and sacrificed 2 h later. For the chronic study, rats were gavaged with vehicle or 10 or 20 mg THC/kg daily, 5 days/week for 90 days and sacrificed either 24 h or 2 months later. Rhesus monkeys were exposed to the smoke of a single 2.6% THC cigarette once a day, 2 or 7 days a week for 1 year. Approximately 7 months after the last exposure, animals were sacrificed by overdose with pentobarbital for neurochemical analyses. In vitro exposure to THC produced a dose-dependent inhibition of MCh receptor binding in several brain areas. This inhibition of MCh receptor binding, however, was also observed with two other nonpsychoactive derivatives of marijuana, cannabidiol and cannabinol. In the rat in vivo study, we found no significant changes in MCh or other neurotransmitter receptor binding in hippocampus, frontal cortex or caudate nucleus after acute or chronic exposure to THC. In the monkey brain, we found no alterations in the concentration of neurotransmitters in caudate nucleus, frontal cortex, hypothalamus or brain stem.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Cocaine, MDMA and methamphetamine residues in wastewater: Consumption trends (2009-2015) in South East Queensland, Australia.

    Science.gov (United States)

    Lai, Foon Yin; O'Brien, Jake W; Thai, Phong K; Hall, Wayne; Chan, Gary; Bruno, Raimondo; Ort, Christoph; Prichard, Jeremy; Carter, Steve; Anuj, Shalona; Kirkbride, K Paul; Gartner, Coral; Humphries, Melissa; Mueller, Jochen F

    2016-10-15

    Wastewater analysis, or wastewater-based epidemiology, has become a common tool to monitor trends of illicit drug consumption around the world. In this study, we examined trends in cocaine, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine consumption by measuring their residues in wastewater from two wastewater treatment plants in Australia (specifically, an urban and a rural catchment, both in South East Queensland) between 2009 and 2015. With direct injection of the samples, target analytes were identified and quantified using liquid chromatography-mass spectrometry. Cocaine and MDMA residues and metabolites were mainly quantifiable in the urban catchment while methamphetamine residues were consistently detected in both urban and rural catchments. There was no consistent trend in the population normalised mass loads observed for cocaine and MDMA at the urban site between 2009 and 2015. In contrast, there was a five-fold increase in methamphetamine consumption over this period in this catchment. For methamphetamine consumption, the rural area showed a very similar trend as the urban catchment starting at a lower baseline. The observed increase in per capita loads of methamphetamine via wastewater analysis over the past six years in South East Queensland provides objective evidence for increased methamphetamine consumption in the Australian population while the use of other illicit stimulants remained relatively stable. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980-1997.

    Science.gov (United States)

    ElSohly, M A; Ross, S A; Mehmedic, Z; Arafat, R; Yi, B; Banahan, B F

    2000-01-01

    The analysis of 35,312 cannabis preparations confiscated in the USA over a period of 18 years for delta-9-tetrahydrocannabinol (delta9-THC) and other major cannabinoids is reported. Samples were identified as cannabis, hashish, or hash oil. Cannabis samples were further subdivided into marijuana (loose material, kilobricks and buds), sinsemilla, Thai sticks and ditchweed. The data showed that more than 82% of all confiscated samples were in the marijuana category for every year except 1980 (61%) and 1981 (75%). The potency (concentration of delta9-THC) of marijuana samples rose from less than 1.5% in 1980 to approximately 3.3% in 1983 and 1984, then fluctuated around 3% till 1992. Since 1992, the potency of confiscated marijuana samples has continuously risen, going from 3.1% in 1992 to 4.2% in 1997. The average concentration of delta9-THC in all cannabis samples showed a gradual rise from 3% in 1991 to 4.47% in 1997. Hashish and hash oil, on the other hand, showed no specific potency trends. Other major cannabinoids [cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC)] showed no significant change in their concentration over the years.

  1. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors

    International Nuclear Information System (INIS)

    Milhazes, Nuno; Martins, Pedro; Uriarte, Eugenio; Garrido, Jorge; Calheiros, Rita; Marques, M. Paula M.; Borges, Fernanda

    2007-01-01

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-β-methyl-β-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to the formation of a primary amine and an aldehyde. The vibrational spectroscopic experiments enable to afford a rapid and reliable detection of this type of compounds, since they yield characteristic spectral patterns that lead to an unequivocal identification. Moreover, the rational synthesis of the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') from one of its most relevant precursors 3,4-methylene-dioxyamphetamine (MDA), is reported. In addition, several approaches for the N-methylation of MDA, a limiting synthetic step, were attempted and the overall yields compared

  2. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors

    Energy Technology Data Exchange (ETDEWEB)

    Milhazes, Nuno [CEQOFFUP, Faculdade de Farmacia, Universidade do Porto (Portugal); Departamento de Quimica Organica, Faculdade de Farmacia, Universidade do Porto (Portugal); Instituto Superior de Ciencias da Saude-Norte, Gandra, Paredes (Portugal); Martins, Pedro [Departamento de Quimica Organica, Facultade de Farmacia, Universidad de Santiago de Compostela (Spain); Uriarte, Eugenio [Departamento de Quimica Organica, Facultade de Farmacia, Universidad de Santiago de Compostela (Spain); Garrido, Jorge [Unidade I and D ' Quimica-Fisica Molecular' (Portugal); Departamento de Engenharia Quimica, ISEP, Instituto Politecnico do Porto (Portugal); Calheiros, Rita [Unidade I and D ' Quimica-Fisica Molecular' (Portugal); Marques, M. Paula M. [Unidade I and D ' Quimica-Fisica Molecular' (Portugal); Departamento de Bioquimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra (Portugal); Borges, Fernanda [Departamento de Quimica Organica, Faculdade de Farmacia, Universidade do Porto (Portugal) and Unidade I and D ' Quimica-Fisica Molecular' (Portugal)]. E-mail: fborges@ff.up.pt

    2007-07-23

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-{beta}-methyl-{beta}-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to the formation of a primary amine and an aldehyde. The vibrational spectroscopic experiments enable to afford a rapid and reliable detection of this type of compounds, since they yield characteristic spectral patterns that lead to an unequivocal identification. Moreover, the rational synthesis of the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') from one of its most relevant precursors 3,4-methylene-dioxyamphetamine (MDA), is reported. In addition, several approaches for the N-methylation of MDA, a limiting synthetic step, were attempted and the overall yields compared.

  3. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors.

    Science.gov (United States)

    Milhazes, Nuno; Martins, Pedro; Uriarte, Eugenio; Garrido, Jorge; Calheiros, Rita; Marques, M Paula M; Borges, Fernanda

    2007-07-23

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-beta-methyl-beta-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to the formation of a primary amine and an aldehyde. The vibrational spectroscopic experiments enable to afford a rapid and reliable detection of this type of compounds, since they yield characteristic spectral patterns that lead to an unequivocal identification. Moreover, the rational synthesis of the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") from one of its most relevant precursors 3,4-methylene-dioxyamphetamine (MDA), is reported. In addition, several approaches for the N-methylation of MDA, a limiting synthetic step, were attempted and the overall yields compared.

  4. Strain and sex differences in puberty onset and the effects of THC administration on weight gain and brain volumes.

    Science.gov (United States)

    Keeley, R J; Trow, J; McDonald, R J

    2015-10-01

    The use of recreational marijuana is widespread and frequently begins and persists through adolescence. Some research has shown negative consequences of adolescent marijuana use, but this is not seen across studies, and certain factors, like genetic background and sex, may influence the results. It is critical to identify which characteristics predispose an individual to be susceptible to the negative consequences of chronic exposure to marijuana in adolescence on brain health and behavior. To this end, using males and females of two strains of rats, Long-Evans hooded (LER) and Wistar (WR) rats, we explored whether these anatomically and behaviorally dimorphic strains demonstrated differences in puberty onset and strain-specific effects of adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana. Daily 5 mg/kg treatment began on the day of puberty onset and continued for 14 days. Of particular interest were metrics of growth and volumetric estimates of brain areas involved in cognition that contain high densities of cannabinoid receptors, including the hippocampus and its subregions, the amygdala, and the frontal cortex. Brain volumetrics were analyzed immediately following the treatment period. LER and WR females started puberty at different ages, but no strain differences were observed in brain volumes. THC decreased weight gain throughout the treatment period for all groups. Only the hippocampus and some of its subregions were affected by THC, and increased volumes with THC administration was observed exclusively in females, regardless of strain. Long-term treatment of THC did not affect all individuals equally, and females displayed evidence of increased sensitivity to the effects of THC, and by extension, marijuana. Identifying differences in adolescent physiology of WR and LER rats could help determine the cause for strain and sex differences in brain and behavior of adults and help to refine the use of animal models

  5. Mechanisms and environmental factors that underlying the intensification of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)-induced serotonin syndrome in rats

    Science.gov (United States)

    Tao, Rui; Shokry, Ibrahim M.; Callanan, John J.; Adams, H. Daniel; Ma, Zhiyuan

    2014-01-01

    Rationale Illicit use of MDMA (3,4-methylenedioxymethamphetamine; Ecstasy) may cause a mild or severe form of the serotonin syndrome. The syndrome intensity is not just influenced by drug doses but also by environmental factors. Objectives Warm environmental temperatures and physical activity are features of raves. The purpose of this study was to assess how these two factors can potentially intensify the syndrome. Methods Rats were administered MDMA at doses of 0.3, 1 or 3 mg/kg, and examined in the absence or presence of warm temperature and physical activity. The syndrome intensity was estimated by visual scoring for behavioral syndrome and also instrumentally measuring changes in symptoms of the syndrome. Results Our results showed that MDMA at 3 mg/kg, but not 0.3 or 1 mg/kg, caused a mild serotonin syndrome in rats. Each environmental factor alone moderately intensified the syndrome. When the two factors were combined, the intensification became more severe than each factor alone highlighting a synergistic effect. This intensification was blocked by the 5-HT2A receptor antagonist M100907, competitive NMDA receptor antagonist CGS19755, autonomic ganglionic blocker hexamethonium, and the benzodiazepine-GABAA receptor agonist midazolam, but not by the 5-HT1A receptor antagonist WAY100635 or nicotinic receptor antagonist methyllycaconitine. Conclusions Our data suggest that, in the absence of environmental factors, the MDMA-induced syndrome is mainly mediated through the serotonergic transmission (5HT-dependent mechanism), and therefore, is relatively mild. Warm temperature and physical activity facilitate serotonergic and other neural systems such as glutamatergic and autonomic transmissions, resulting in intensification of the syndrome (non-5HT mechanisms). PMID:25300903

  6. TECHNOLOGY EVALUATION REPORT: TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN. Project Summary

    Science.gov (United States)

    A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...

  7. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of Δ9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences.

    Science.gov (United States)

    Tunbridge, Elizabeth M; Dunn, Graham; Murray, Robin M; Evans, Nicole; Lister, Rachel; Stumpenhorst, Katharina; Harrison, Paul J; Morrison, Paul D; Freeman, Daniel

    2015-11-01

    Cannabis use can induce cognitive impairments and psychotic experiences. A functional polymorphism in the catechol-O-methyltransferase (COMT) gene (Val(158)Met) appears to influence the immediate cognitive and psychotic effects of cannabis, or ∆(9)-tetrahydrocannabinol (THC), its primary psychoactive ingredient. This study investigated the moderation of the impact of experimentally administered THC by COMT. Cognitive performance and psychotic experiences were studied in participants without a psychiatric diagnosis, using a between-subjects design (THC vs. placebo). The effect of COMT Val(158)Met genotype on the cognitive and psychotic effects of THC, administered intravenously in a double-blind, placebo-controlled manner to 78 participants who were vulnerable to paranoia, was examined. The results showed interactive effects of genotype and drug group (THC or placebo) on working memory, assayed using the Digit Span Backwards task. Specifically, THC impaired performance in COMT Val/Val, but not Met, carriers. In contrast, the effect of THC on psychotic experiences, measured using the Community Assessment of Psychic Experiences (CAPE) positive dimension, was unaffected by COMT genotype. This study is the largest to date examining the impact of COMT genotype on response to experimentally administered THC, and the first using a purely non-clinical cohort. The data suggest that COMT genotype moderates the cognitive, but not the psychotic, effects of acutely administered THC. © The Author(s) 2015.

  8. In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Δ9-THC in mice: inhalation versus intraperitoneal injection.

    Science.gov (United States)

    Marshell, R; Kearney-Ramos, T; Brents, L K; Hyatt, W S; Tai, S; Prather, P L; Fantegrossi, W E

    2014-09-01

    Human users of synthetic cannabinoids (SCBs) JWH-018 and JWH-073 typically smoke these drugs, but preclinical studies usually rely on injection for drug delivery. We used the cannabinoid tetrad and drug discrimination to compare in vivo effects of inhaled drugs with injected doses of these two SCBs, as well as with the phytocannabinoid Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Mice inhaled various doses of Δ(9)-THC, JWH-018 or JWH-073, or were injected intraperitoneally (IP) with these same compounds. Rectal temperature, tail flick latency in response to radiant heat, horizontal bar catalepsy, and suppression of locomotor activity were assessed in each animal. In separate studies, mice were trained to discriminate Δ(9)-THC (IP) from saline, and tests were performed with inhaled or injected doses of the SCBs. Both SCBs elicited Δ(9)-THC-like effects across both routes of administration, and effects following inhalation were attenuated by pretreatment with the CB1 antagonist/inverse agonist rimonabant. No cataleptic effects were observed following inhalation, but all compounds induced catalepsy following injection. Injected JWH-018 and JWH-073 fully substituted for Δ(9)-THC, but substitution was partial (JWH-073) or required relatively higher doses (JWH-018) when drugs were inhaled. These studies demonstrate that the SCBs JWH-018 and JWH-073 elicit dose-dependent, CB1 receptor-mediated Δ(9)-THC-like effects in mice when delivered via inhalation or via injection. Across these routes of administration, differences in cataleptic effects and, perhaps, discriminative stimulus effects, may implicate the involvement of active metabolites of these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    Science.gov (United States)

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  10. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    Science.gov (United States)

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-03

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol.

    Science.gov (United States)

    Becker, Jérôme A J; Kieffer, Brigitte L; Le Merrer, Julie

    2017-09-01

    Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse. © 2016 Society for the Study of Addiction.

  12. Morphine Decreases Social Interaction of Adult Male Rats, While THC Does Not Affect It

    Czech Academy of Sciences Publication Activity Database

    Šlamberová, R.; Mikulecká, Anna; Macúchová, E.; Hrebíčková, I.; Ševčíková, M.; Nohejlová, K.; Pometlová, M.

    2016-01-01

    Roč. 65, Suppl.5 (2016), S547-S555 ISSN 0862-8408 Institutional support: RVO:67985823 Keywords : social behavior * opioids * morphine * cannabinoids * THC * male rats Subject RIV: FH - Neurology Impact factor: 1.461, year: 2016

  13. Potential long-term effects of MDMA on the basal ganglia-thalamocortical circuit: a proton MR spectroscopy and diffusion-tensor imaging study.

    Science.gov (United States)

    Liu, Hua-Shan; Chou, Ming-Chung; Chung, Hsiao-Wen; Cho, Nai-Yu; Chiang, Shih-Wei; Wang, Chao-Ying; Kao, Hung-Wen; Huang, Guo-Shu; Chen, Cheng-Yu

    2011-08-01

    To investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA, commonly known as "ecstasy") on the alterations of brain metabolites and anatomic tissue integrity related to the function of the basal ganglia-thalamocortical circuit by using proton magnetic resonance (MR) spectroscopy and diffusion-tensor MR imaging. This study was approved by a local institutional review board, and written informed consent was obtained from all subjects. Thirty-one long-term (>1 year) MDMA users and 33 healthy subjects were enrolled. Proton MR spectroscopy from the middle frontal cortex and bilateral basal ganglia and whole-brain diffusion-tensor MR imaging were performed with a 3.0-T system. Absolute concentrations of metabolites were computed, and diffusion-tensor data were registered to the International Consortium for Brain Mapping template to facilitate voxel-based group comparison. The mean myo-inositol level in the basal ganglia of MDMA users (left: 4.55 mmol/L ± 2.01 [standard deviation], right: 4.48 mmol/L ± 1.33) was significantly higher than that in control subjects (left: 3.25 mmol/L ± 1.30, right: 3.31 mmol/L ± 1.19) (P 50 voxels). Increased myo-inositol and Cho concentrations in the basal ganglia of MDMA users are suggestive of glial response to degenerating serotonergic functions. The abnormal metabolic changes in the basal ganglia may consequently affect the inhibitory effect of the basal ganglia to the thalamus, as suggested by the increased FA in the thalamus and abnormal changes in water diffusion in the corresponding basal ganglia-thalamocortical circuit. © RSNA, 2011.

  14. Methaemoglobinemia Induced by MDMA?

    Directory of Open Access Journals (Sweden)

    L. L. W. Verhaert

    2011-01-01

    Full Text Available Case. A 45-year-old man with a blank medical history presented at the emergency room with dizziness and cyanosis. Physical examination showed cyanosis with a peripheral saturation (SpO2 of 85%, he did not respond to supplemental oxygen. Arterial blood gas analysis showed a striking chocolate brown colour. Based on these data, we determined the arterial methaemoglobin concentration. This was 32%. We gave 100% oxygen and observed the patient in a medium care unit. The next day, patient could be discharged in good condition. Further inquiry about exhibitions and extensive history revealed that the patient used MDMA (3,4- methylenedioxymethamphetamine, the active ingredient of ecstasy. Conclusion. Acquired methaemoglobinemia is a condition that occurs infrequently, but is potentially life threatening. Different nutrients, medications, and chemicals can induce methaemoglobinemia by oxidation of haemoglobin. The clinical presentation of a patient with methaemoglobinemia is due to the impossibility of O2 binding and transport, resulting in tissue hypoxia. Important is to think about methaemoglobin in a patient who presents with cyanosis, a peripheral saturation of 85% that fails to respond properly to the administration of O2. Because methaemoglobin can be reduced physiologically, it is usually sufficient to remove the causative agent, to give O2, and to observe the patient.

  15. Adolescent THC exposure does not sensitize conditioned place preferences to subthreshold d-amphetamine in male and female rats.

    Science.gov (United States)

    Keeley, Robin J; Bye, Cameron; Trow, Jan; McDonald, Robert J

    2018-01-01

    The acute effects of marijuana consumption on brain physiology and behaviour are well documented, but the long-term effects of its chronic use are less well known. Chronic marijuana use during adolescence is of increased interest, given that the majority of individuals first use marijuana during this developmental stage , and  adolescent marijuana use is thought to increase the susceptibility to abusing other drugs when exposed later in life. It is possible that marijuana use during critical periods in adolescence could lead to increased sensitivity to other drugs of abuse later on. To test this, we chronically administered ∆ 9 -tetrahydrocannabinol (THC) to male and female Long-Evans (LER) and Wistar (WR) rats directly after puberty onset. Rats matured to postnatal day 90 before being exposed to a conditioned place preference task (CPP). A subthreshold dose of d-amphetamine, found not to induce place preference in drug naïve rats, was used as the unconditioned stimulus. The effect of d-amphetamine on neural activity was inferred by quantifying cfos expression in the nucleus accumbens and dorsal hippocampus following CPP training. Chronic exposure to THC post-puberty had no potentiating effect on a subthreshold dose of d-amphetamine to induce CPP. No differences in cfos expression were observed. These results show that chronic exposure to THC during puberty did not increase sensitivity to d-amphetamine in adult LER and WR rats. This supports the concept that THC may not sensitize the response to all drugs of abuse.

  16. The external gate of the human and Drosophila serotonin transporters requires a basic/acidic amino acid pair for 3,4-methylenedioxymethamphetamine (MDMA) translocation and the induction of substrate efflux.

    Science.gov (United States)

    Sealover, Natalie R; Felts, Bruce; Kuntz, Charles P; Jarrard, Rachel E; Hockerman, Gregory H; Lamb, Patrick W; Barker, Eric L; Henry, L Keith

    2016-11-15

    The substituted amphetamine, 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy), is a widely used drug of abuse that induces non-exocytotic release of serotonin, dopamine, and norepinephrine through their cognate transporters as well as blocking the reuptake of neurotransmitter by the same transporters. The resulting dramatic increase in volume transmission and signal duration of neurotransmitters leads to psychotropic, stimulant, and entactogenic effects. The mechanism by which amphetamines drive reverse transport of the monoamines remains largely enigmatic, however, promising outcomes for the therapeutic utility of MDMA for post-traumatic stress disorder and the long-time use of the dopaminergic and noradrenergic-directed amphetamines in treatment of attention-deficit hyperactivity disorder and narcolepsy increases the importance of understanding this phenomenon. Previously, we identified functional differences between the human and Drosophila melanogaster serotonin transporters (hSERT and dSERT, respectively) revealing that MDMA is an effective substrate for hSERT but not dSERT even though serotonin is a potent substrate for both transporters. Chimeric dSERT/hSERT transporters revealed that the molecular components necessary for recognition of MDMA as a substrate was linked to regions of the protein flanking transmembrane domains (TM) V through IX. Here, we performed species-scanning mutagenesis of hSERT, dSERT and C. elegans SERT (ceSERT) along with biochemical and electrophysiological analysis and identified a single amino acid in TM10 (Glu394, hSERT; Asn484, dSERT, Asp517, ceSERT) that is primarily responsible for the differences in MDMA recognition. Our findings reveal that an acidic residue is necessary at this position for MDMA recognition as a substrate and serotonin releaser. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ecstasy (MDMA and its effects on kidneys and their treatment: a review

    Directory of Open Access Journals (Sweden)

    Feyza Bora

    2016-11-01

    Full Text Available Ecstasy (MDMA; 3,4-methylenedioxymethylamphetamine is an illicit drug that has been increasingly abused by young people. Its effects include euphoria, enhanced sociability and heightened mental awareness. These come about via the increase of serotonin in both the central nervous system and the sympathetic nervous system. Despite the drug’s prevalent abuse, serious or adverse effects are rare. Due to personal pharmacokinetics, effects from the same dosage vary according to the individual. Fatal instances may include acute hyponatremia, hyperthermia (>42 °C, disseminated intravascular coagulation (DIC resulting from hyperthermia affecting the kidneys, and non-traumatic rhabdomyolysis. However, it is seldom the case that hyponatremia and hyperthermia co-exist. Hyponatremia is thought to be caused by HMMA – a metabolite of MDMA. Hyponatremia is caused by the inappropriate secretion of arginine vasopressin (AVP and the excessive intake of hypotonic liquid accompanied by increased hyperthermia. Symptomatic, even deadly hyponatremia is seen more frequently in females, with the effects of oestrogen on arginine vasopressin believed to be the cause. Onset in such cases is acute, and treatment should be given to symptomatic patients as quickly as possible, with 3% saline administered when necessary. Reasons for acute kidney injury may include rhabdomyolysis, malign hypertension, and necrotizing vasculitis.

  18. Limitations to the Dutch cannabis toleration policy: Assumptions underlying the reclassification of cannabis above 15% THC.

    Science.gov (United States)

    Van Laar, Margriet; Van Der Pol, Peggy; Niesink, Raymond

    2016-08-01

    The Netherlands has seen an increase in Δ9-tetrahydrocannabinol (THC) concentrations from approximately 8% in the 1990s up to 20% in 2004. Increased cannabis potency may lead to higher THC-exposure and cannabis related harm. The Dutch government officially condones the sale of cannabis from so called 'coffee shops', and the Opium Act distinguishes cannabis as a Schedule II drug with 'acceptable risk' from other drugs with 'unacceptable risk' (Schedule I). Even in 1976, however, cannabis potency was taken into account by distinguishing hemp oil as a Schedule I drug. In 2011, an advisory committee recommended tightening up legislation, leading to a 2013 bill proposing the reclassification of high potency cannabis products with a THC content of 15% or more as a Schedule I drug. The purpose of this measure was twofold: to reduce public health risks and to reduce illegal cultivation and export of cannabis by increasing punishment. This paper focuses on the public health aspects and describes the (explicit and implicit) assumptions underlying this '15% THC measure', as well as to what extent these are supported by scientific research. Based on scientific literature and other sources of information, we conclude that the 15% measure can provide in theory a slight health benefit for specific groups of cannabis users (i.e., frequent users preferring strong cannabis, purchasing from coffee shops, using 'steady quantities' and not changing their smoking behaviour), but certainly not for all cannabis users. These gains should be weighed against the investment in enforcement and the risk of unintended (adverse) effects. Given the many assumptions and uncertainty about the nature and extent of the expected buying and smoking behaviour changes, the measure is a political choice and based on thin evidence. Copyright © 2016 Springer. Published by Elsevier B.V. All rights reserved.

  19. Δ9-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ 9 -THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ 9 -THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ 9 -THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ 9 -THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ 9 -THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ 9 -THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ 9 -THC up-regulation of FA2H in MDA-MB-231 cells

  20. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-04

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Screening for illicit drugs in pooled human urine and urinated soil samples and studies on the stability of urinary excretion products of cocaine, MDMA, and MDEA in wastewater by hyphenated mass spectrometry techniques

    DEFF Research Database (Denmark)

    Mardal, Marie; Kinyua, Juliet; Ramin, Pedram

    2017-01-01

    were the most frequently detected illicit drugs; an analytical method was developed to quantify their excretion products. Hydroxymethoxymethamphetamine (HMMA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), HMMA sulfate (HMMA-S), benzoylecgonine (BE), and cocaethylene...... (CE) had 85–102% of initial concentration after 8 h of incubation, whereas COC and ecgonine methyl ester (EME) had 74 and 67% after 8 h, respectively. HMMA showed a net increase during 24 h of incubation (107% ± 27, n = 8), possibly due to the cleavage of HMMA conjugates, and biotransformation of MDMA....... The results suggest HMMA as analytical target for MDMA consumption in WBE, due to its stability in wastewater and its excretion as the main phase I metabolite of MDMA. Copyright © 2016 John Wiley & Sons, Ltd....

  2. Theoretical Insights into Monometallofullerene Th@C76: Strong Covalent Interaction between Thorium and the Carbon Cage.

    Science.gov (United States)

    Zhao, Pei; Zhao, Xiang; Ehara, Masahiro

    2018-03-19

    Th@C 76 has been studied by density functional theory combined with statistical mechanics calculations. The results reveal that Th@ T d (19151)-C 76 satisfying the isolated pentagon rule possesses the lowest energy. Nevertheless, considering the enthalpy-entropy interplay, Th@ C 1 (17418)-C 76 with one pair of adjacent pentagons is thermodynamically favorable at elevated temperatures, which is reported for the first time. The bonding critical points in both isomers were analyzed to disclose covalent interactions between the inner Th and cages. In addition, the Wiberg bond orders of M-C bonding in different endohedral metallofullerenes (EMFs) were investigated to prove stronger covalent interactions of Th-C in Th-based EMFs.

  3. Validity of in vivo [123I]beta-CIT SPECT in detecting MDMA-induced neurotoxicity in rats

    NARCIS (Netherlands)

    de Win, Maartje M. L.; de Jeu, Rogier A. M.; de Bruin, Kora; Habraken, Jan B. A.; Reneman, Liesbeth; Booij, Jan; den Heeten, Gerard J.

    2004-01-01

    This study investigated the ability of a high-resolution pinhole single-photon emission computed tomography (SPECT) system, with [(123)I]beta-CIT as a radiotracer, to detect 3,4-methelenedioxymethamphetamine (MDMA, 'Ecstasy')-induced loss of serotonin transporters (SERTs) in the living rat brain. In

  4. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    Science.gov (United States)

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  5. Sensitive determination of THC and main metabolites in human plasma by means of microextraction in packed sorbent and gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Rosado, T; Fernandes, L; Barroso, M; Gallardo, E

    2017-02-01

    Cannabis is one of the most available and consumed illicit drug in the world and its identification and quantification in biological specimens can be a challenge given its low concentrations in body fluids. The present work describes a fast and fully validated procedure for the simultaneous detection and quantification of ▵ 9 -tetrahydrocannabinol (▵ 9_ THC) and its two main metabolites 11-hydroxy ▵ 9_ tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-▵ 9 - tetrahydrocannbinol (THC-COOH) in plasma samples using microextraction by packed sorbent (MEPS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). A small plasma volume (0.25mL) pre-diluted (1:20), was extracted with MEPS M1 sorbent as follows: conditioning (4 cycles of 250μL methanol and 4 cycles of 250μL 0.1% formic acid in water); sample load (26 cycles of 250μL); wash (100μL of 3% acetic acid in water followed by 100μL 5% methanol in water); and elution (6 cycles of 100μL of 10% ammonium hydroxide in methanol). The procedure allowed the quantification of all analytes in the range of 0.1-30ng/mL. Recoveries ranged from 53 to 78% (THC), 57 to 66% (11-OH-THC) and 62 to 65% (THC-COOH), allowing the limits of detection and quantification to be set at 0.1ng/mL for all compounds. Intra-day precision and accuracy revealed coefficients of variation (CVs) lower than 10% at the studied concentrations, with a mean relative error within±9%, while inter-day precision and accuracy showed CVs lower than 15% for all analytes at the tested concentrations, with an inaccuracy within±8%. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Δ{sup 9}-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shuso [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112 (Japan); Ikeda, Eriko [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Su, Shengzhong [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Harada, Mari [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Okazaki, Hiroyuki [Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Watanabe, Kazuhito [Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181 (Japan); Omiecinski, Curtis J. [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Aramaki, Hironori [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan)

    2014-12-04

    We recently reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ{sup 9}-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ{sup 9}-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ{sup 9}-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ{sup 9}-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ{sup 9}-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ{sup 9}-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ{sup 9}-THC up-regulation of FA2H in MDA-MB-231 cells.

  7. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy

    OpenAIRE

    Wagner, Mark T; Mithoefer, Michael C; Mithoefer, Ann T; MacAulay, Rebecca K; Jerome, Lisa; Yazar-Klosinski, Berra; Doblin, Rick

    2017-01-01

    A growing body of research suggests that traumatic events lead to persisting personality change characterized by increased neuroticism. Relevantly, enduring improvements in Post-Traumatic Stress Disorder (PTSD) symptoms have been found in response to 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy. There is evidence that lasting changes in the personality feature of ?openness? occur in response to hallucinogens, and that this may potentially act as a therapeutic mechanism of c...

  8. Determination of the relative percentage distribution of THCA and Δ(9)-THC in herbal cannabis seized in Austria - Impact of different storage temperatures on stability.

    Science.gov (United States)

    Taschwer, Magdalena; Schmid, Martin G

    2015-09-01

    Cannabis is globally by far the most widespread illicit drug of abuse. Especially since its legalization in some of the US, controversies about the legal status of cannabis for recreational and medical use have come up. Δ(9)-Tetrahydrocannabinol (Δ(9)-THC), which is the major active ingredient in cannabis products, is mainly responsible for the psychoactive effects. Its inactive biosynthetic precursor tetrahydrocannabinolic acid (THCA) is present in different quantities in fresh and undried cannabis plants. Under influence of drying, temperature and UV exposure it decomposes to Δ(9)-THC. In this study, a quantification of Δ(9)-THC and THCA was carried out to check the stability of cannabis samples. The determination of the degradation of THCA to Δ(9)-THC in 29 cannabis products seized in Austria was monitored by HPLC-UV. Mobile phase consisted of a 25mM triethylammoniumphosphate buffer (pH 3.0) and acetonitrile (36:64). A common LiChrospher(®) 100 RP-18 column was utilized as stationary phase. To check the influence of low as well as high temperature on the degradation process of the cannabinoid THCA to Δ(9)-THC, samples were stored in a freezer or in a drying cabinet for a specified time period. It was shown successfully that high storage temperatures led to a more rapid and complete decomposition of THCA to Δ(9)-THC while at low temperatures only slight or no changes of the percentage distribution were determined. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry

    International Nuclear Information System (INIS)

    Tadini, Maraine Catarina; Balbino, Marco Antonio; Eleoterio, Izabel Cristina; Siqueirade Oliveira, Laura; Dias, Luis Gustavo; Jean-François Demets, Grégoire; Firmino de Oliveira, Marcelo

    2014-01-01

    Graphical abstract: - Highlights: • A new stand in forensic chemistry. • Voltammetric method for the determination of MDMA in seized samples. • A new voltammetric sensor for MDMA. - Abstract: This study aimed to develop an electrode chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA), the main active principle of ecstasy samples, by voltammetry. We modified the electrode surface with a film containing cucurbit[6]uril, Nafion, and methanol, using the dip coating or the spin coating technique. During analysis, we employed an electrochemical cell with a conventional three-electrode system and KCl solution (0.1 mol L −1 ) as the supporting electrolyte. We conducted cyclic voltammetry at concentrations ranging from 4.2 × 10 −6 to 4.8 × 10 −5 mol L −1 . We also accomplished scanning electron microscopy, to investigate the structural behavior of the film that originated on the electrode surface. We obtained the following results when we used dip coating to prepare the modified electrode: standard deviation (SD) = 0.024 μA, limit of detection (LOD) = 3.5 μmol L −1 , limit of quantification (LOQ) = 11.7 μmol L −1 , and amperometric sensitivity (m) = 20.9 × 10 3 μA L mol −1 . As for spin coating, we obtained SD = 0.024 μA, LOD = 2.7 μmol L −1 , LOQ = 9.1 μmol L −1 and m = 25.9 × 10 3 μA mol L −1 . These are very promising data: the modified electrode is more sensitive than the conventional glassy carbon electrode under the studied experimental conditions

  10. Sativex Associated With Behavioral-Relapse Prevention Strategy as Treatment for Cannabis Dependence: A Case Series.

    Science.gov (United States)

    Trigo, Jose M; Soliman, Alexandra; Staios, Gregory; Quilty, Lena; Fischer, Benedikt; George, Tony P; Rehm, Jürgen; Selby, Peter; Barnes, Allan J; Huestis, Marilyn A; Le Foll, Bernard

    2016-01-01

    Cannabis is the most commonly used illicit drug; a substantial minority of users develop dependence. The current lack of pharmacological treatments for cannabis dependence warrants the use of novel approaches and further investigation of promising pharmacotherapy. In this case series, we assessed the use of self-titrated dosages of Sativex (1:1, Δ-tetrahydrocannabinol [THC]/cannabidiol [CBD] combination) and motivational enhancement therapy and cognitive behavioral therapy (MET/CBT) for the treatment of cannabis dependence among 5 treatment-seeking community-recruited cannabis-dependent subjects. Participants underwent a 3-month open-label self-titration phase with Sativex (up to 113.4 of THC/105 mg of CBD) and weekly MET/CBT, with a 3-month follow-up. Sativex was well-tolerated by all participants (average dosage 77.5 THC/71.7 mg CBD). The combination of Sativex and MET/CBT reduced the amount of cannabis use and progressively reduced craving and withdrawal scores. THC/CBD metabolite concentration indicated reduced cannabis use and compliance with medication. In summary, this pilot study found that with Sativex in combination with MET/CBT reduced cannabis use while preventing increases in craving and withdrawal in the 4 participants completing the study. Further systematic exploration of Sativex as a pharmacological treatment option for cannabis dependence should be performed.

  11. Population pharmacokinetics model of THC used by pulmonary route in occasional cannabis smokers.

    Science.gov (United States)

    Marsot, A; Audebert, C; Attolini, L; Lacarelle, B; Micallef, J; Blin, O

    Cannabis is the most widely used illegal drug in the world. Delta-9-tetrahydrocannabinol (THC) is the main source of the pharmacological effect. Some studies have been carried out and showed significant variability in the described models as the values of the estimated pharmacokinetic parameters. The objective of this study was to develop a population pharmacokinetic model for THC in occasional cannabis smokers. Twelve male volunteers (age: 20-28years, body weight: 62.5-91.0kg), tobacco (3-8 cigarette per day) and cannabis occasional smokers were recruited from the local community. After ad libitum smoking cannabis cigarette according a standardized procedure, 16 blood samples up to 72h were collected. Population pharmacokinetic analysis was performed using a non-linear mixed effects model, with NONMEM software. Demographic and biological data were investigated as covariates. A three-compartment model with first-order elimination fitted the data. The model was parameterized in terms of micro constants and central volume of distribution (V 1 ). Normal ALT concentration (6.0 to 45.0IU/l) demonstrated a statistically significant correlation with k 10 . The mean values (%Relative Standard Error (RSE)) for k 10 , k 12 , k 21 , k 23 , k 32 and V 1 were 0.408h -1 (48.8%), 4.070h -1 (21.4%), 0.022h -1 (27.0%), 1.070h -1 (14.3%), 1.060h -1 (16.7%) and 19.10L (39.7%), respectively. We have developed a population pharmacokinetic model able to describe the quantitative relationship between administration of inhaled doses of THC and the observed plasma concentrations after smoking cannabis. In addition, a linear relationship between ALT concentration and value of k 10 has been described and request further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Theoretical study of actinide monocarbides (ThC, UC, PuC, and AmC)

    Science.gov (United States)

    Pogány, Peter; Kovács, Attila; Visscher, Lucas; Konings, Rudy J. M.

    2016-12-01

    A study of four representative actinide monocarbides, ThC, UC, PuC, and AmC, has been performed with relativistic quantum chemical calculations. The two applied methods were multireference complete active space second-order perturbation theory (CASPT2) including the Douglas-Kroll-Hess Hamiltonian with all-electron basis sets and density functional theory with the B3LYP exchange-correlation functional in conjunction with relativistic pseudopotentials. Beside the ground electronic states, the excited states up to 17 000 cm-1 have been determined. The molecular properties explored included the ground-state geometries, bonding properties, and the electronic absorption spectra. According to the occupation of the bonding orbitals, the calculated electronic states were classified into three groups, each leading to a characteristic bond distance range for the equilibrium geometry. The ground states of ThC, UC, and PuC have two doubly occupied π orbitals resulting in short bond distances between 1.8 and 2.0 Å, whereas the ground state of AmC has significant occupation of the antibonding orbitals, causing a bond distance of 2.15 Å.

  13. Effects of varying marijuana potency on deposition of tar and delta9-THC in the lung during smoking.

    Science.gov (United States)

    Matthias, P; Tashkin, D P; Marques-Magallanes, J A; Wilkins, J N; Simmons, M S

    1997-12-01

    To determine whether smoking more, compared to less, potent marijuana (MJ) cigarettes to a desired level of intoxication ("high") reduces pulmonary exposure to noxious smoke components, in 10 habitual smokers of MJ, we measured respiratory delivery and deposition of tar and delta9-tetrahydrocannabinol (THC), carboxyhemoglobin (COHb) boost, smoking topography, including cumulative puff volume (CPV) and breathholding time, change in heart rate (deltaHR) and "high" during ad lib smoking of 0, 1.77, and 3.95% MJ cigarettes on 3 separate days. At each session, subjects had access to only a single MJ cigarette. On average, smoking topography and COHb boost did not differ across the different strengths of MJ, while THC delivery, as well as HR, were significantly greater (p studies using a standardized smoking technique revealed a mean 25% lower tar yield from 3.95% than 1.77% MJ (p marijuana. Under the conditions of this study, we conclude that tar delivery is reduced relative to THC content in a minority of subjects, and this reduction appears to be due to a reduced intake of smoke (decreased CPV) and/or a reduced tar yield from the stronger MJ preparation.

  14. Different effects of chronic THC on the neuroadaptive response of dopamine D2/3 receptor-mediated signaling in roman high- and roman low-avoidance rats.

    Science.gov (United States)

    Tournier, Benjamin B; Dimiziani, Andrea; Tsartsalis, Stergios; Millet, Philippe; Ginovart, Nathalie

    2018-04-01

    The Roman high (RHA)- and low (RLA)-avoidance rat sublines have been identified as an addiction-prone and addiction-resistant phenotype based on their high vs. low locomotor responsiveness to novelty and high vs. low ability to develop neurochemical and behavioral sensitization to psychostimulants, respectively. Most studies though have focused on psychostimulants and little is known about the neuroadaptive response of these two lines to cannabinoids. This study investigated the effects of chronic exposure to Δ 9 -tetrahydrocannabinol (THC) on dopamine D 2/3 receptor (D 2/3 R) availabilities and functional sensitivity in the mesostriatal system of RHA and RLA rats. At baseline, RLA rats exhibited higher densities of mesostriatal D2/3R but lower levels of striatal CB 1 R mRNA and displayed a lower locomotor response to acute THC as compared to RHAs. Following chronic THC treatment, striking changes in D 2/3 R signaling were observed in RLA but not in RHA rats, namely an increased availability and functional supersensitivity of striatal D 2/3 R, as evidenced by a supersensitive psychomotor response to the D 2/3 R agonist quinpirole. Moreover, in RLA rats, the lower was the locomotor response to acute THC, the higher was the psychomotor response to quinpirole following chronic THC. These results showing a greater neuroadaptive response of RLA vs. RHA rats to chronic THC thus contrast with previous studies showing a resistance to neuroadaptive response of RLAs to psychostimulants, This suggests that, contrasting with their low proneness to psychostimulant drug-seeking, RLAs may exhibit a heightened proneness to cannabinoid drug-seeking as compared to RHA rats. © 2017 Wiley Periodicals, Inc.

  15. The distribution of controlled drugs on banknotes via counting machines.

    Science.gov (United States)

    Carter, James F; Sleeman, Richard; Parry, Joanna

    2003-03-27

    Bundles of paper, similar to sterling banknotes, were counted in banks in England and Wales. Subsequent analysis showed that the counting process, both by machine and by hand, transferred nanogram amounts of cocaine to the paper. Crystalline material, similar to cocaine hydrochloride, could be observed on the surface of the paper following counting. The geographical distribution of contamination broadly followed Government statistics for cocaine usage within the UK. Diacetylmorphine, Delta(9)-tetrahydrocannabinol (THC) and 3,4-methylenedioxymethylamphetamine (MDMA) were not detected during this study.

  16. Distribution of Curcumin and THC in Peripheral Blood Mononuclear Cells Isolated from Healthy Individuals and Patients with Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Bolger, Gordon T; Licollari, Albert; Tan, Aimin; Greil, Richard; Pleyer, Lisa; Vcelar, Brigitta; Majeed, Muhammad; Sordillo, Peter

    2018-01-01

    Background/Aim: Curcumin is being widely investigated for its anticancer properties and studies in the literature suggest that curcumin distributes to a higher degree in tumor versus non-tumor cells. In the current study, we report on investigation of the distribution of curcumin and metabolism to THC in PBMC from healthy individuals and chronic lymphocytic leukemia (CLL) patients following exposure to Lipocurc™ (liposomal curcumin). Materials and Methods: The time and temperature-dependent distribution of liposomal curcumin and metabolism to tetrahydrocurcumin (THC) were measured in vitro in human peripheral blood mononuclear cells (PBMC) obtained from healthy individuals, PBMC HI (cryopreserved and freshly isolated PBMC) and CLL patients (cryopreserved PBMC) with lymphocyte counts ranging from 17-58×10 6 cells/ml (PBMC CLL,Grp 1 ) and >150×10 6 cells/ml (PBMC CLL,Grp 2 ). PBMC were incubated in plasma protein supplemented media with Lipocurc™ for 2-16 min at 37°C and 4°C and the cell and medium levels of curcumin determined by LC-MS/MS. Results: PBMC from CLL patients displayed a 2.2-2.6-fold higher distribution of curcumin compared to PBMC HI Curcumin distribution into PBMCCLL, Grp 1/Grp 2 ranged from 384.75 - 574.50 ng/g w.w. of cell pellet and was greater compared to PBMC HI that ranged from 122.27-220.59 ng/g w.w. of cell pellet following incubation for up to 15-16 min at 37°C. The distribution of curcumin into PBMC CLL,Grp 2 was time-dependent in comparison to PBMC HI which did not display a time-dependence and there was no temperature-dependence for curcumin distribution in either cell type. Curcumin was metabolized to THC in PBMC. The metabolism of curcumin to THC was not markedly different between PBMC HI (range=23.94-42.04 ng/g w.w. cell pellet) and PBMC CLL,Grp 1/Grp 2 (range=23.08-48.22 ng/g. w.w. cell pellet). However, a significantly greater time and temperature-dependence was noted for THC in PBMC CLL,Grp 2 compared to PBMC HI Conclusion

  17. Agony of the ecstasy: report of five cases of MDMA smuggling.

    Science.gov (United States)

    Low, V H S; Dillon, E K

    2005-10-01

    The international smuggling of illicit drugs by the ingestion or rectal insertion of drug-filled packages is recognized in the trafficking of heroin and cocaine. Customs authorities, with suspicion of such activities, presented five subjects. The legally allowed radiological examination comprising one supine abdominal radiograph was performed. Radiographic findings demonstrated the presence of multiple enteric oval, capsule-shaped packages of soft tissue density. This was confirmed following supervised evacuation of bowel contents induced by the administration of laxatives. Analysis of the concealed material identified ecstasy (methylenedioxymethamphetamine (MDMA)), a substance not previously reported as transported by this route.

  18. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E.; Moran, Jeffery H.; Radominska-Pandya, Anna; Prather, Paul L.

    2013-01-01

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a “safe” and “legal” alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed “advantages” have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. PMID:24084047

  19. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E; Moran, Jeffery H; Radominska-Pandya, Anna; Prather, Paul L

    2014-02-27

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. © 2013.

  20. Therapeutic Use of Δ9-THC and Cannabidiol: Evaluation of a New Extraction Procedure for the Preparation of Cannabis-based Olive Oil.

    Science.gov (United States)

    Morini, Luca; Porro, Giorgio; Liso, Maurizio; Groppi, Angelo

    2017-01-01

    Since 2013 Cannabis-based preparations, containing the two main cannabinoids of interest, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD), can be used for therapeutic purposes, such as palliative care, neurodegenerative disorder treatment and other therapies. The preparations may consist of a drug partition in sachets, capsules or through the extraction in certified olive oil. The aims of the study were: a) to develop and validate a new liquid chromatographictandem mass spectrometric (LC-MS/MS) method for the identification and quantification of THC and CBD in olive oil; b) to evaluate the extraction efficiency and reproducibility of a new commercial extractor on the market. The olive oil was simply diluted three consecutive times, using organic solvents with increasing polarity index (n-hexane → isopropanol → methanol). The sample was then directly injected into LC-MS/MS system, operating in Multiple Reaction Monitoring Mode, in positive polarization. The method was then fully validated. The method assessed to be linear over the range 0.1-10 ng/µL for both THC and CBD. Imprecision and accuracy were within 12.2% and 16.9% respectively; matrix effects proved to be negligible; THC concentration in oil is stable up to two months at room temperature, whenever kept in the dark. CBD provided a degradation of 30% within ten weeks. The method was then applied to olive oil after sample preparation, in order to evaluate the efficiency of extraction of a new generation instrument. Temperature of extraction is the most relevant factor to be optimized. Indeed, a difference of 2°C (from 94.5°C to 96.5°C, the highest temperature reached in the experiments) of the heating phase, increases the percentage of extraction from 54.2% to 64.0% for THC and from 58.2% to 67.0% for CBD. The amount of THC acid and CBD acid that are decarboxylated during the procedure must be check out in the future. The developed method was simple and fast. The extraction procedure proved to be

  1. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    Science.gov (United States)

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  2. Tar, CO and delta 9THC delivery from the 1st and 2nd halves of a marijuana cigarette.

    Science.gov (United States)

    Tashkin, D P; Gliederer, F; Rose, J; Chang, P; Hui, K K; Yu, J L; Wu, T C

    1991-11-01

    Previous in vitro studies suggest that, with successive puffs from a marijuana cigarette, delta-9-THC becomes concentrated in the remaining uncombusted portion of the cigarette. These observations are consistent with the common practice of smoking marijuana cigarettes to a smaller butt length than that to which tobacco cigarettes are smoked. The purpose of the present study was to compare the delivery of delta-9-THC, as well as total insoluble smoke particulates (tar) and carbon monoxide, from the distal ("first") versus the proximal ("second") halves of a standard marijuana cigarette during "natural" smoking of marijuana. On 4 separate days, ten habitual marijuana users smoked nearly all or approximately 1/2 of a standard marijuana cigarette (83 mm length; 800-900 mg; 1.24% THC), as follows: day 1, "whole" cigarette (60 mm smoked, leaving a 23-mm butt); day 2, "first" half (first 30 mm); day 3, "second" half (second 30 mm) after the "first" half was presmoked with a syringe; and day 4, "second" half after the "first" half was excised. A previously described smoking apparatus (20) was used for measurement of puff volume and inhaled tar. Puff volume and number were allowed to vary spontaneously (provided that the specified length of cigarette was consumed), while inhaled volume (1.5 liters), breathholding time (14 s) and interpuff interval (30 s) were held constant. Blood samples were withdrawn prior to smoking and serially after completion of smoking for analysis of blood carboxyhemoglobin (COHb) and serum delta-9-THC. Heart rate was measured before and 5 min after smoking. Subjects rated their level of "high" 20 min after completion of smoking.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Significant enhancement of 11-Hydroxy-THC detection by formation of picolinic acid esters and application of liquid chromatography/multi stage mass spectrometry (LC-MS(3) ): Application to hair and oral fluid analysis.

    Science.gov (United States)

    Thieme, Detlef; Sachs, Ulf; Sachs, Hans; Moore, Christine

    2015-07-01

    Formation of picolinic acid esters of hydroxylated drugs or their biotransformation products is a promising tool to improve their mass spectrometric ionization efficiency, alter their fragmentation behaviour and enhance sensitivity and specificity of their detection. The procedure was optimized and tested for the detection of cannabinoids, which proved to be most challenging when dealing with alternative specimens, for example hair and oral fluid. In particular, the detection of the THC metabolites hydroxyl-THC and carboxy-THC requires ultimate sensitivity because of their poor incorporation into hair or saliva. Both biotransformation products are widely accepted as incorporation markers to distinguish drug consumption from passive contamination. The derivatization procedure was carried out by adding a mixture of picolinic acid, 4-(dimethylamino)pyridine and 2-methyl-6-nitrobenzoic anhydride in tetrahydrofuran/triethylamine to the dry extraction residues. Resulting derivatives were found to be very stable and could be reconstituted in aqueous or organic buffers and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). Owing to the complex consecutive fragmentation patterns, the application of multistage MS3 proved to be extremely useful for a sensitive identification of doubly picolinated hydroxy-THC in complex matrices. The detection limits - estimated by comparison of corresponding signal-to-noise ratios - increased by a factor of 100 following picolination. All other species examined, like cannabinol, THC, cannabidiol, and carboxy-THC, could also be derivatized exhibiting only moderate sensitivity improvements. The assay was systematically tested using hair samples and exemplarily applied to oral fluid. Concentrations of OH-THC identified in THC-positive hair samples ranged from 0.02 to 0.29pg/mg. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Δ9-tetrahydrocannabinol (Δ9-THC) administration after neonatal exposure to phencyclidine potentiates schizophrenia-related behavioral phenotypes in mice.

    Science.gov (United States)

    Rodríguez, Guadalupe; Neugebauer, Nichole M; Yao, Katherine Lan; Meltzer, Herbert Y; Csernansky, John G; Dong, Hongxin

    2017-08-01

    The clinical onset of schizophrenia often coincides with cannabis use in adolescents and young adults. However, the neurobiological consequences of this co-morbidity are not well understood. In this study, we examined the effects of Δ9-THC exposure during early adulthood on schizophrenia-related behaviors using a developmental mouse model of schizophrenia. Phencyclidine (PCP) or saline was administered once in neonatal mice (at P7; 10mg/kg). In turn, Δ9-THC or saline was administered sub-acutely later in life to cohorts of animals who had received either PCP or saline (P55-80, 5mg/kg). Mice who were administered PCP alone displayed behavioral changes in the Morris water waze (MWM) and pre-pulse inhibition (PPI) task paradigm that were consistent with schizophrenia-related phenotypes, but not in the locomotor activity or novel object recognition (NOR) task paradigms. Mice who were administered PCP and then received Δ9-THC later in life displayed behavioral changes in the locomotor activity paradigm (pschizophrenia-related phenotype, as well as potentiated changes in the NOR (pschizophrenia-related behavioral phenotypes induced by neonatal exposure to PCP in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Part II: Strain- and sex-specific effects of adolescent exposure to THC on adult brain and behaviour: Variants of learning, anxiety and volumetric estimates.

    Science.gov (United States)

    Keeley, R J; Trow, J; Bye, C; McDonald, R J

    2015-07-15

    Marijuana is one of the most highly used psychoactive substances in the world, and its use typically begins during adolescence, a period of substantial brain development. Females across species appear to be more susceptible to the long-term consequences of marijuana use. Despite the identification of inherent differences between rat strains including measures of anatomy, genetics and behaviour, no studies to our knowledge have examined the long-term consequences of adolescent exposure to marijuana or its main psychoactive component, Δ(9)-tetrahydrocannabinol (THC), in males and females of two widely used rat strains: Long-Evans hooded (LER) and Wistar (WR) rats. THC was administered for 14 consecutive days following puberty onset, and once they reached adulthood, changes in behaviour and in the volume of associated brain areas were quantified. Rats were assessed in behavioural tests of motor, spatial and contextual learning, and anxiety. Some tasks showed effects of injection, since handled and vehicle groups were included as controls. Performance on all tasks, except motor learning, and the volume of associated brain areas were altered with injection or THC administration, although these effects varied by strain and sex group. Finally, analysis revealed treatment-specific correlations between performance and brain volumes. This study is the first of its kind to directly compare males and females of two rat strains for the long-term consequences of adolescent THC exposure. It highlights the importance of considering strain and identifies certain rat strains as susceptible or resilient to the effects of THC. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Illicit use of LSD or psilocybin, but not MDMA or nonpsychedelic drugs, is associated with mystical experiences in a dose-dependent manner.

    Science.gov (United States)

    Lyvers, Michael; Meester, Molly

    2012-01-01

    Psychedelic drugs have long been known to be capable of inducing mystical or transcendental experiences. However, given the common "recreational" nature of much present-day psychedelic use, with typical doses tending to be lower than those commonly taken in the 1960s, the extent to which illicit use of psychedelics today is associated with mystical experiences is not known. Furthermore the mild psychedelic MDMA ("Ecstasy") is more popular today than "full" psychedelics such as LSD or psilocybin, and the contribution of illicit MDMA use to mystical experiences is not known. The present study recruited 337 adults from the website and newsletter of the Multidisciplinary Association for Psychedelic Studies (MAPS), most of whom reported use of a variety of drugs both licit and illicit including psychedelics. Although only a quarter of the sample reported "spiritual" motives for using psychedelics, use of LSD and psilocybin was significantly positively related to scores on two well-known indices of mystical experiences in a dose-related manner, whereas use of MDMA, cannabis, cocaine, opiates and alcohol was not. Results suggest that even in today's context of "recreational" drug use, psychedelics such as LSD and psilocybin, when taken at higher doses, continue to induce mystical experiences in many users.

  7. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  8. Determinação de 3,4-metilenodioximetanfetamina (MDMA em comprimidos de Ecstasy por cromatografia líquida de alta eficiência com detecção por fluorescência (CLAE-DF Determination of 3,4-methylenedioxymethamphetamine (MDMA in Ecstasy tablets by high performance liquid chromatography with fluorescence detection (HPLC-FD

    Directory of Open Access Journals (Sweden)

    José Luiz da Costa

    2009-01-01

    Full Text Available This paper describes the development and validation of simple and selective analytical method for determination of 3.4-methylenedioxymethamphetamine (MDMA in Ecstasy tablets, using high performance liquid chromatography with fluorescence detection. Analysis was performed in a reversed phase column (LiChrospher 100 C18, 150 x 4.6 mm, 5 µm, isocratic elution with phosphate buffer 25 mmol/L pH 3.0 and acetonitrile (95:5, v/v. The method presents adequate linearity, selectivity, precision and accuracy. MDMA concentration in analyzed tablets showed a remarkable variability (from 8.5 to 59.5 mg/tablet although the tablet weights were uniform, indicating poor manufacturing control thus imposing additional health risks to the users.

  9. The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model.

    Science.gov (United States)

    Cherniakov, Irina; Izgelov, Dvora; Domb, Abraham J; Hoffman, Amnon

    2017-11-15

    The lipophilic phytocannabinoids cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) show therapeutic efficacy in various medical conditions. Both molecules are poorly water soluble and subjected to extensive first pass metabolism in the gastrointestinal tract, leading to a limited oral bioavailability of approximately 9%. We have developed an advanced lipid based Self-Emulsifying Drug Delivery System termed Advanced Pro-NanoLiposphere (PNL) pre-concentrate. The PNL is composed of lipid and emulsifying excipients of GRAS status and are known to increase solubility and reduce Phase I metabolism of lipophilic active compounds. Advanced PNLs are PNLs with an incorporated natural absorption enhancers. These molecules are natural alkaloids and phenolic compounds which were reported to inhibit certain phase I and phase II metabolism processes. Here we use piperine, curcumin and resveratrol to formulate the Advanced-PNL formulations. Consequently, we have explored the utility of these Advanced-PNLs on CBD and THC oral bioavailability. Oral administration of CBD-piperine-PNL resulted in 6-fold increase in AUC compared to CBD solution, proving to be the most effective of the screened formulations. The same trend was found in pharmacokinetic experiments of THC-piperine-PNL which resulted in a 9.3-fold increase in AUC as compared to THC solution. Our Piperine-PNL can be used as a platform for synchronized delivery of piperine and CBD or THC to the enterocyte site. This co-localization provides an increase in CBD and THC bioavailability by its effect at the pre-enterocyte and the enterocyte levels of the absorption process. The extra augmentation in the absorption of CBD and THC by incorporating piperine into PNL is attributed to the inhibition of Phase I and phase II metabolism by piperine in addition to the Phase I metabolism and P-gp inhibition by PNL. These novel results pave the way to utilize piperine-PNL delivery system for other poorly soluble, highly metabolized

  10. High incidence of mild hyponatraemia in females using ecstasy at a rave party.

    Science.gov (United States)

    van Dijken, Geetruida D; Blom, Renske E; Hené, Ronald J; Boer, Walther H; NIGRAM Consortium

    2013-09-01

    Globally, millions of subjects regularly use ecstasy, a drug popular due to its empathogenic and entactogenic effects. Dilutional hyponatraemia, mainly caused by direct stimulation of antidiuretic hormone (ADH) secretion by ecstasy, is among the many side effects of the drug (active substance 3, 4-methylenedioxymethamphetamine, MDMA). Severe, symptomatic hyponatraemia related to the use of MDMA has been reported in more than 30 cases. The mortality of this complication is high and mainly females are involved. Dramatic cases that reach the literature probably represent the tip of the iceberg. We decided to study the incidence of hyponatraemia in subjects using MDMA at an indoor rave party. The study was performed at the indoor event 'Awakenings', held in Amsterdam in the fall of 2010. The plasma sodium concentration was measured at the party using a point of care method in 63 subjects using MDMA and 44 controls. The use of MDMA was confirmed by a urine test. The plasma sodium concentration in subjects using MDMA was significantly lower than in those not using the drug (138 ± 2 mmol/L versus 140 ± 2 mmol/L, respectively, P ecstasy pills ingested by the females developing hyponatraemia was not different from that ingested by those who did not develop this complication. Fluid intake in ecstasy users exceeded that of non-users, suggesting a dipsogenic effect of the drug. Only 3% of males, but no less than ∼25% of females attending a rave party and using MDMA developed mild hyponatraemia during the event. Especially females are therefore probably also at risk of developing severe symptomatic hyponatraemia. Not using MDMA is obviously the best option to prevent MDMA-induced hyponatraemia. However, accepting the fact that millions use the drug every weekend, strategies should also be developed to prevent hyponatraemia in subjects choosing to take MDMA. This would include matching the electrolyte content of the fluids and food ingested to that of the fluids that are

  11. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice.

    Science.gov (United States)

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, J A; Colado, M I; O'Shea, E

    2010-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.

  12. Effect profile of paracetamol, Δ9-THC and promethazine using an evoked pain test battery in healthy subjects.

    Science.gov (United States)

    van Amerongen, G; Siebenga, P; de Kam, M L; Hay, J L; Groeneveld, G J

    2018-04-10

    A battery of evoked pain tasks (PainCart) was developed to investigate the pharmacodynamic properties of novel analgesics in early-phase clinical research. As part of its clinical validation, compounds with different pharmacological mechanisms of actions are investigated. The aim was to investigate the analgesic effects of classic and nonclassic analgesics compared to a sedating negative control in a randomized placebo-controlled crossover study in 24 healthy volunteers using the PainCart. The PainCart consisted of pain tasks eliciting electrical, pressure, heat, cold and inflammatory pain. Subjective scales for cognitive functioning and psychotomimetic effects were included. Subjects were administered each of the following oral treatments: paracetamol (1000 mg), Δ9-THC (10 mg), promethazine (50 mg) or matching placebo. Pharmacodynamic measurements were performed at baseline and repeated up to 10 h postdose. Paracetamol did not show a significant reduction in pain sensation or subjective cognitive functioning compared to placebo. Promethazine induced a statistically significant reduction in PTT for cold pressor and pressure stimulation. Furthermore, reduced subjective alertness was observed. Δ9-THC showed a statistically significant decrease in PTT for electrical and pressure stimulation. Δ9-THC also demonstrated subjective effects, including changes in alertness and calmness, as well as feeling high and psychotomimetic effects. This study found a decreased pain tolerance due to Δ9-THC and promethazine, or lack thereof, using an evoked pain task battery. Pain thresholds following paracetamol administration remained unchanged, which may be due to insufficient statistical power. We showed that pain thresholds determined using this pain test battery are not driven by sedation. The multimodal battery of evoked pain tasks utilized in this study may play an important role in early-phase clinical drug development. This battery of pain tasks is not sensitive to the

  13. Amnesic syndrome and severe ataxia following the recreational use of 3,4-methylene-dioxymethamphetamine (MDMA, 'ecstasy') and other substances.

    Science.gov (United States)

    Kopelman, M D; Reed, L J; Marsden, P; Mayes, A R; Jaldow, E; Laing, H; Isaac, C

    2001-01-01

    A 26-year-old woman suffered disseminated intravascular coagulation (DIC) and a brief respiratory arrest following recreational use of 3,4-methylene-dioxymethamphetamine (MDMA; 'ecstasy'), together with amyl nitrate, lysergic acid (LSD), cannabis and alcohol. She was left with residual cognitive and physical deficits, particularly severe anterograde memory disorder, mental slowness, severe ataxia and dysarthria. Follow-up investigations have shown that these have persisted, although there has been some improvement in verbal recognition memory and in social functioning. Magnetic resonance imaging and quantified positron emission tomography investigations have revealed: (i) severe cerebellar atrophy and hypometabolism accounting for the ataxia and dysarthria; (ii) thalamic, retrosplenial and left medial temporal hypometabolism to which the anterograde amnesia can be attributed; and (iii) some degree of fronto-temporal-parietal hypometabolism, possibly accounting for the cognitive slowness. The putative relationship of these abnormalities to the direct and indirect effects of MDMA toxicity, hypoxia and ischaemia is considered.

  14. Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity.

    Directory of Open Access Journals (Sweden)

    M Paola Castelli

    Full Text Available Methamphetamine (METH is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS, production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4 × 10 mg/kg, 2 hours apart were pre- or post-treated with Δ9-THC (1 or 3 mg/kg and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP. Results showed that, as compared to corresponding controls (i METH-induced nNOS overexpression in the caudate-putamen (CPu was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals; (ii METH-induced GFAP-immunoreactivity (IR was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50% and by pre-treatment with 3 mg/kg Δ9-THC (-53%; (iii METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals. The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our

  15. Assessment of driving capability through the use of clinical and psychomotor tests in relation to blood cannabinoids levels following oral administration of 20 mg dronabinol or of a cannabis decoction made with 20 or 60 mg Delta9-THC.

    Science.gov (United States)

    Ménétrey, Annick; Augsburger, Marc; Favrat, Bernard; Pin, Marie A; Rothuizen, Laura E; Appenzeller, Monique; Buclin, Thierry; Mangin, Patrice; Giroud, Christian

    2005-01-01

    Delta(9)-Tetrahydrocannabinol (THC) is frequently found in the blood of drivers suspected of driving under the influence of cannabis or involved in traffic crashes. The present study used a double-blind crossover design to compare the effects of medium (16.5 mg THC) and high doses (45.7 mg THC) of hemp milk decoctions or of a medium dose of dronabinol (20 mg synthetic THC, Marinol on several skills required for safe driving. Forensic interpretation of cannabinoids blood concentrations were attempted using the models proposed by Daldrup (cannabis influencing factor or CIF) and Huestis and coworkers. First, the time concentration-profiles of THC, 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) (active metabolite of THC), and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THCCOOH) in whole blood were determined by gas chromatography-mass spectrometry-negative ion chemical ionization. Compared to smoking studies, relatively low concentrations were measured in blood. The highest mean THC concentration (8.4 ng/mL) was achieved 1 h after ingestion of the strongest decoction. Mean maximum 11-OH-THC level (12.3 ng/mL) slightly exceeded that of THC. THCCOOH reached its highest mean concentration (66.2 ng/mL) 2.5-5.5 h after intake. Individual blood levels showed considerable intersubject variability. The willingness to drive was influenced by the importance of the requested task. Under significant cannabinoids influence, the participants refused to drive when they were asked whether they would agree to accomplish several unimportant tasks, (e.g., driving a friend to a party). Most of the participants reported a significant feeling of intoxication and did not appreciate the effects, notably those felt after drinking the strongest decoction. Road sign and tracking testing revealed obvious and statistically significant differences between placebo and treatments. A marked impairment was detected after ingestion of the strongest decoction. A CIF value, which relies on the

  16. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Directory of Open Access Journals (Sweden)

    Malki Rana

    2008-04-01

    Full Text Available Abstract Background Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA. Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2, the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3, the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B, as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5 in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7th day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes. Results The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions. Conclusion Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.

  17. Determination of amphetamine, methamphetamine, MDA and MDMA in human hair by GC-EI-MS after derivatization with perfluorooctanoyl chloride

    DEFF Research Database (Denmark)

    Johansen, Sys Stybe; Jornil, Jakob

    2009-01-01

    ), methamphetamine (MA), methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA or ecstasy). An intra-day precision of 3-6% RSD and an inter-day precision of 3-17% RSD were observed. Trueness was between 96 % and 106% for the target compounds. The limit of detection ranged from 0.07 to 0.14 ng...

  18. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    Science.gov (United States)

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.

  19. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

    Science.gov (United States)

    Russo, Ethan B

    2011-01-01

    Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. LINKED ARTICLES

  20. The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers.

    Science.gov (United States)

    Roseman, Leor; Leech, Robert; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2014-01-01

    Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC) between a standard template of different independent components analysis (ICA)-derived resting state networks (RSNs) under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.