WorldWideScience

Sample records for thc dependent mice

  1. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    2010-02-01

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  2. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.

    Science.gov (United States)

    Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L

    2015-06-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice.

    Science.gov (United States)

    Bilkei-Gorzo, Andras; Albayram, Onder; Draffehn, Astrid; Michel, Kerstin; Piyanova, Anastasia; Oppenheimer, Hannah; Dvir-Ginzberg, Mona; Rácz, Ildiko; Ulas, Thomas; Imbeault, Sophie; Bab, Itai; Schultze, Joachim L; Zimmer, Andreas

    2017-06-01

    The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ9-tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.

  4. [Pharmacokinetics and relative bioavailability of THC and THC-solid dispersion orally to mice at single dose].

    Science.gov (United States)

    Liao, Li; Hua, Hua; Zhao, Jun-Ning; Luo, Heng; Yang, An-Dong

    2014-03-01

    To establish a fast sensitive, reproducible LC-MS/MS method to study pharmacokinetic properties of THC, and compare relative bioavailability of THC and its solid dispersion in mice. 200 mice were divided randomly into two groups, and administered orally with THC and THC-solid dispersion after fasting (calculate on THC:400 mg x kg(-1)), used HPLC-MS/MS method to determine the THC concentration of each period at the following times: baseline ( predose ), 15, 30, 45 min, 1, 1.5, 2, 3, 4, 6, 24 h after dosing. Calculating the pharmacokinetic parameters according to the C-t curv, and then use the Phoenix WinNonlin software for data analysis. The calibration curves were linear over the range 9.06-972 microg x L(-1) for THC (R2 = 0.999). The limit of detection (LOD) was 0.7 microg x L(-1), respectively. The average extraction recoveries for THC was above 75%, The methodology recoveries were between 79% and 108%. The intra-day and inter-day RSD were less than 13%, the stability test showed that the plasma samples was stable under different conditions (RSD THC and THC-solid dispersion orally to mice shows as fllows: T(max), were 60 and 15 min, AUC(0-t) were 44 500.43 and 57 497.81 mg x L(-1) x min, AUC(0-infinity) were 51 226.00 and 68 031.48 mg x L(-1) x min, MRT(0-infinity) were 596.915 6, 661.747 7 min, CL(z)/F were 0.007 809 and 0.005 88 L x min(-1) x kg(-1). Compared with THC, the MRT and t1/2 of the THC-solid dispersion were all slightly extended, the t(max) was significantly reduced, AUC(0-24 h), AUC(0-infinity) and C(max) were all significantly higher, the relative bioavailability of THC-solid dispersion is 1.34 times of THC. The results of the experiment shows that the precision, accuracy, recovery and applicability were found to be adequate for the pharmacokinetic studies. After oral administration to mice, the relative bioavailability of THC-solid dispersion show significant improvement compared to THC.

  5. Effect of oral THC pretreatment on marijuana cue-induced responses in cannabis dependent volunteers.

    Science.gov (United States)

    Lundahl, Leslie H; Greenwald, Mark K

    2015-04-01

    The current study tested whether oral Δ(9)-tetrahydrocannabinol (THC: 0-, 10-, and 20-mg) pretreatment would attenuate polysensory cue-induced craving for marijuana. Cannabis dependent participants (7 males and 7 females, who smoked on average 5.4 ± 1.1 blunts daily) completed 3 experimental sessions (oral THC pretreatment dose; counterbalanced order) using a placebo-controlled within-subject crossover design. During each session, participants completed a baseline evaluation and were first exposed to neutral cues then marijuana cues while physiological measures and subjective ratings of mood, craving, and drug effect were recorded. Following placebo oral THC pretreatment, marijuana (vs. neutral) cues significantly increased ratings of marijuana craving (desire and urge to use, Marijuana Craving Questionnaire (MCQ)-Compulsivity scale), anxious mood and feeling hungry. Males also reported feeling more "Down" during marijuana cues relative to females. Pretreatment with oral THC (10-mg and/or 20-mg vs. placebo) significantly attenuated marijuana cue-induced increases in craving and anxiety but not hunger. Oral THC attenuation of the cue-induced increase in MCQ-Compulsivity ratings was observed in females only. Oral THC produced statistically (but not clinically) significant increases in heart rate and decreases in diastolic blood pressure, independent of cues. These marijuana-cue findings replicate earlier results and further demonstrate that oral THC can attenuate selected effects during marijuana multi-cue exposure, and that some of these effects may be sex-related. Results of this study suggest oral THC may be effective for reducing marijuana cue-elicited (conditioned) effects. Further study is needed to determine whether females may selectively benefit from oral THC for this purpose. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Short-term exposure and long-term consequences of neonatal exposure to Δ(9)-tetrahydrocannabinol (THC) and ibuprofen in mice.

    Science.gov (United States)

    Philippot, Gaëtan; Nyberg, Fred; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik

    2016-07-01

    Both Δ(9)-tetrahydrocannabinol (THC) and ibuprofen have analgesic properties by interacting with the cannabinoid receptor type 1 (CB1R) and the cyclooxygenase (COX) systems, respectively. Evaluation of these analgesics is important not only clinically, since they are commonly used during pregnancy and lactation, but also to compare them with acetaminophen, with a known interaction with both CB1R and the COX systems. Short-term exposure of neonatal rodents to acetaminophen during the first weeks of postnatal life, which is comparable with a period from the third trimester of pregnancy to the first years of postnatal life in humans, induces long-term behavioral disturbances. This period, called the brain growth spurt (BGS) and is characterized by series of rapid and fundamental changes and increased vulnerability, peaks around postnatal day (PND) 10 in mice. We therefore exposed male NMRI mice to either THC or ibuprofen on PND 10. At 2 months of age, the mice were subjected to a spontaneous behavior test, consisting of a 60min recording of the variables locomotion, rearing and total activity. Mice exposed to THC, but not ibuprofen, exhibited altered adult spontaneous behavior and habituation capability in a dose-dependent manner. This highlights the potency of THC as a developmental neurotoxicant, since a single neonatal dose of THC was enough to affect adult cognitive function. The lack of effect from ibuprofen also indicates that the previously seen developmental neurotoxicity of acetaminophen is non-COX-mediated. These results might be of importance in future research as well as in the ongoing risk/benefit assessment of THC. Copyright © 2016. Published by Elsevier B.V.

  7. In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Δ9-THC in mice: inhalation versus intraperitoneal injection.

    Science.gov (United States)

    Marshell, R; Kearney-Ramos, T; Brents, L K; Hyatt, W S; Tai, S; Prather, P L; Fantegrossi, W E

    2014-09-01

    Human users of synthetic cannabinoids (SCBs) JWH-018 and JWH-073 typically smoke these drugs, but preclinical studies usually rely on injection for drug delivery. We used the cannabinoid tetrad and drug discrimination to compare in vivo effects of inhaled drugs with injected doses of these two SCBs, as well as with the phytocannabinoid Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Mice inhaled various doses of Δ(9)-THC, JWH-018 or JWH-073, or were injected intraperitoneally (IP) with these same compounds. Rectal temperature, tail flick latency in response to radiant heat, horizontal bar catalepsy, and suppression of locomotor activity were assessed in each animal. In separate studies, mice were trained to discriminate Δ(9)-THC (IP) from saline, and tests were performed with inhaled or injected doses of the SCBs. Both SCBs elicited Δ(9)-THC-like effects across both routes of administration, and effects following inhalation were attenuated by pretreatment with the CB1 antagonist/inverse agonist rimonabant. No cataleptic effects were observed following inhalation, but all compounds induced catalepsy following injection. Injected JWH-018 and JWH-073 fully substituted for Δ(9)-THC, but substitution was partial (JWH-073) or required relatively higher doses (JWH-018) when drugs were inhaled. These studies demonstrate that the SCBs JWH-018 and JWH-073 elicit dose-dependent, CB1 receptor-mediated Δ(9)-THC-like effects in mice when delivered via inhalation or via injection. Across these routes of administration, differences in cataleptic effects and, perhaps, discriminative stimulus effects, may implicate the involvement of active metabolites of these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Sex-Dependent Psychoneuroendocrine Effects of THC and MDMA in an Animal Model of Adolescent Drug Consumption

    Science.gov (United States)

    Llorente-Berzal, Alvaro; Puighermanal, Emma; Burokas, Aurelijus; Ozaita, Andrés; Maldonado, Rafael; Marco, Eva M.; Viveros, Maria-Paz

    2013-01-01

    Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd) 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46), MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB), whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs. PMID:24223797

  9. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment.

    Science.gov (United States)

    Englund, Amir; Morrison, Paul D; Nottage, Judith; Hague, Dominic; Kane, Fergus; Bonaccorso, Stefania; Stone, James M; Reichenberg, Avi; Brenneisen, Rudolf; Holt, David; Feilding, Amanda; Walker, Lucy; Murray, Robin M; Kapur, Shitij

    2013-01-01

    Community-based studies suggest that cannabis products that are high in Δ⁹-tetrahydrocannabinol (THC) but low in cannabidiol (CBD) are particularly hazardous for mental health. Laboratory-based studies are ideal for clarifying this issue because THC and CBD can be administered in pure form, under controlled conditions. In a between-subjects design, we tested the hypothesis that pre-treatment with CBD inhibited THC-elicited psychosis and cognitive impairment. Healthy participants were randomised to receive oral CBD 600 mg (n=22) or placebo (n=26), 210 min ahead of intravenous (IV) THC (1.5 mg). Post-THC, there were lower PANSS positive scores in the CBD group, but this did not reach statistical significance. However, clinically significant positive psychotic symptoms (defined a priori as increases ≥ 3 points) were less likely in the CBD group compared with the placebo group, odds ratio (OR)=0.22 (χ²=4.74, pTHC paranoia, as rated with the State Social Paranoia Scale (SSPS), was less in the CBD group compared with the placebo group (t=2.28, pTHC/low-CBD cannabis products are associated with increased risks for mental health.

  10. Chronic administration during early adulthood does not alter the hormonally-dependent disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC) on complex behavior in female rats.

    Science.gov (United States)

    Winsauer, Peter J; Sutton, Jessie L

    2014-02-01

    This study examined whether chronic Δ(9)-THC during early adulthood would produce the same hormonally-dependent deficits in learning that are produced by chronic Δ(9)-THC during adolescence. To do this, either sham-operated (intact) or ovariectomized (OVX) female rats received daily saline or 5.6 mg/kg of Δ(9)-THC i.p. for 40 days during early adulthood. Following chronic administration, and a drug-free period to train both a learning and performance task, acute dose-effect curves for Δ(9)-THC (0.56-10 mg/kg) were established in each of the four groups (intact/saline, intact/THC, OVX/saline and OVX/THC). The dependent measures of responding under the learning and performance tasks were the overall response rate and the percentage of errors. Although the history of OVX and chronic Δ(9)-THC in early adulthood did not significantly affect non-drug or baseline behavior under the tasks, acute administration of Δ(9)-THC produced both rate-decreasing and error-increasing effects on learning and performance behavior, and these effects were dependent on their hormone condition. More specifically, both intact groups were more sensitive to the rate-decreasing and error-increasing effects of Δ(9)-THC than the OVX groups irrespective of chronic Δ(9)-THC administration, as there was no significant main effect of chronic treatment and no significant interaction between chronic treatment (saline or Δ(9)-THC) and the dose of Δ(9)-THC administered as an adult. Post mortem examination of 10 brain regions also indicated there were significant differences in agonist-stimulated GTPγS binding across brain regions, but no significant effects of chronic treatment and no significant interaction between the chronic treatment and cannabinoid signaling. Thus, acute Δ(9)-THC produced hormonally-dependent effects on learning and performance behavior, but a period of chronic administration during early adulthood did not alter these effects significantly, which is contrary to what we

  11. Tolerance to the Diuretic Effects of Cannabinoids and Cross-Tolerance to a κ-Opioid Agonist in THC-Treated Mice.

    Science.gov (United States)

    Chopda, Girish R; Parge, Viraj; Thakur, Ganesh A; Gatley, S John; Makriyannis, Alexandros; Paronis, Carol A

    2016-08-01

    Daily treatment with cannabinoids results in tolerance to many, but not all, of their behavioral and physiologic effects. The present studies investigated the effects of 7-day exposure to 10 mg/kg daily of Δ(9)-tetrahydrocannabinol (THC) on the diuretic and antinociceptive effects of THC and the synthetic cannabinoid AM4054. Comparison studies determined diuretic responses to the κ-opioid agonist U50,488 and furosemide. After determination of control dose-response functions, mice received 10 mg/kg daily of THC for 7 days, and dose-response functions were re-determined 24 hours, 7 days, or 14 days later. THC and AM4054 had biphasic diuretic effects under control conditions with maximum effects of 30 and 35 ml/kg of urine, respectively. In contrast, antinociceptive effects of both drugs increased monotonically with dose to >90% of maximal possible effect. Treatment with THC produced 9- and 7-fold rightward shifts of the diuresis and antinociception dose-response curves for THC and, respectively, 7- and 3-fold rightward shifts in the AM4054 dose-response functions. U50,488 and furosemide increased urine output to >35 ml/kg under control conditions. The effects of U50,488 were attenuated after 7-day treatment with THC, whereas the effects of furosemide were unaltered. Diuretic effects of THC and AM4054 recovered to near-baseline levels within 14 days after stopping daily THC injections, whereas tolerance to the antinociceptive effects persisted longer than 14 days. The tolerance induced by 7-day treatment with THC was accompanied by a 55% decrease in the Bmax value for cannabinoid receptors (CB1). These data indicate that repeated exposure to THC produces similar rightward shifts in the ascending and descending limbs of cannabinoid diuresis dose-effect curves and to antinociceptive effects while resulting in a flattening of the U50,488 diuresis dose-effect function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Llorente-Berzal, Alvaro; Garcia-Segura, Luis M; Viveros, Maria-Paz

    2014-03-01

    Many young people consume ecstasy as a recreational drug and often in combination with cannabis. In this study, we aimed to mimic human consumption patterns and investigated, in male and female animals, the long-term effects of Δ(9) -tetrahydrocannabinol (THC) and 3,4-methylenedioxymethamphetamine (MDMA) on diverse neuroinflammation and neurotoxic markers. Male and female Wistar rats were chronically treated with increasing doses of THC and/or MDMA during adolescence. The effects of THC and/or MDMA on glial reactivity and on serotoninergic and cannabinoid systems were assessed by immunohistochemistry in the hippocampus and parietal cortex. THC increased the area staining for glial fibrilar acidic protein in both sexes. In males, both drugs, either separately or in combination, increased the proportion of reactive microglia cells [ionized calcium binding adaptor molecule 1 (Iba-1)]. In contrast, in females, each drug, administered alone, decreased of this proportion, whereas the combination of both drugs resulted in a 'normalization' to control values. In males, MDMA reduced the number of SERT positive fibres, THC induced the opposite effect and the group receiving both drugs did not significantly differ from the controls. In females, MDMA reduced the number of SERT positive fibres and the combination of both drugs counteracted this effect. THC also reduced immunostaining for CB1 receptors in females and this effect was aggravated by the combination with MDMA. Adolescent exposure of rats to THC and/or MDMA induced long-term, sex-dependent neurochemical and glial alterations, and revealed interactions between the two drugs. This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6. © 2013 The British Pharmacological Society.

  13. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum.

    Science.gov (United States)

    Tournier, Benjamin B; Tsartsalis, Stergios; Dimiziani, Andrea; Millet, Philippe; Ginovart, Nathalie

    2016-09-15

    This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Delta-9-tetrahydrocannabinol (THC) history fails to affect THC's ability to induce place preferences in rats.

    Science.gov (United States)

    Hempel, Briana J; Wakeford, Alison G P; Clasen, Matthew M; Friar, Mary A; Riley, Anthony L

    2016-05-01

    In pre-clinical models of marijuana abuse, there is relatively limited evidence of delta-9-tetrahydrocannabinol's (THC) rewarding effects, as indexed by its general inability to induce a place preference. One explanation for this failure is that its rewarding effects are masked by its concurrently occurring aversive properties. Consistent with this explanation, THC pre-exposure, which presumably weakens its aversive effects, induces place preferences. Such demonstrations are limited to mice and given reported species differences in THC reactivity, it is unknown to what extent the same shift in affective properties would be evident in rats. The present experiment examined the effect of THC history (3.2mg/kg) on THC (1 or 3.2mg/kg) induced place preference conditioning in rats. An assessment of taste avoidance was also run to independently characterize THC's aversive effects and any changes that occurred with drug pre-exposure. These assessments were made in a combined taste avoidance/place preference procedure in which a novel saccharin solution and environment were paired with THC (0, 1 or 3.2mg/kg). THC did not induce place conditioning, and a history of THC was ineffective in increasing THC's ability to do so, despite the fact that this same history significantly attenuated the aversive effects of THC. The failure of THC to consistently induce place preferences has been argued to be a function of its concurrently occurring aversive effects masking its rewarding properties. The fact that pre-exposure to THC significantly reduced its aversive effects without impacting THC's ability to induce place preferences suggests that THC has weak rewarding effects and/or its residual aversive affects may have still masked its rewarding properties. An important area for future work will be characterizing under what conditions THC is rewarding and whether its overall reinforcing effects are impacted by the relationship between its affective properties. Copyright © 2016

  15. Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner.

    Science.gov (United States)

    Tai, S; Hyatt, W S; Gu, C; Franks, L N; Vasiljevik, T; Brents, L K; Prather, P L; Fantegrossi, W E

    2015-12-01

    These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The potential therapeutic effects of THC on Alzheimer's disease.

    Science.gov (United States)

    Cao, Chuanhai; Li, Yaqiong; Liu, Hui; Bai, Ge; Mayl, Jonathan; Lin, Xiaoyang; Sutherland, Kyle; Nabar, Neel; Cai, Jianfeng

    2014-01-01

    The purpose of this study was to investigate the potential therapeutic qualities of Δ9-tetrahydrocannabinol (THC) with respect to slowing or halting the hallmark characteristics of Alzheimer's disease. N2a-variant amyloid-β protein precursor (AβPP) cells were incubated with THC and assayed for amyloid-β (Aβ) levels at the 6-, 24-, and 48-hour time marks. THC was also tested for synergy with caffeine, in respect to the reduction of the Aβ level in N2a/AβPPswe cells. THC was also tested to determine if multiple treatments were beneficial. The MTT assay was performed to test the toxicity of THC. Thioflavin T assays and western blots were performed to test the direct anti-Aβ aggregation significance of THC. Lastly, THC was tested to determine its effects on glycogen synthase kinase-3β (GSK-3β) and related signaling pathways. From the results, we have discovered THC to be effective at lowering Aβ levels in N2a/AβPPswe cells at extremely low concentrations in a dose-dependent manner. However, no additive effect was found by combining caffeine and THC together. We did discover that THC directly interacts with Aβ peptide, thereby inhibiting aggregation. Furthermore, THC was effective at lowering both total GSK-3β levels and phosphorylated GSK-3β in a dose-dependent manner at low concentrations. At the treatment concentrations, no toxicity was observed and the CB1 receptor was not significantly upregulated. Additionally, low doses of THC can enhance mitochondria function and does not inhibit melatonin's enhancement of mitochondria function. These sets of data strongly suggest that THC could be a potential therapeutic treatment option for Alzheimer's disease through multiple functions and pathways.

  17. A novel recombinant 6Aβ15-THc-C chimeric vaccine (rCV02) mitigates Alzheimer's disease-like pathology, cognitive decline and synaptic loss in aged 3 × Tg-AD mice.

    Science.gov (United States)

    Yu, Yun-Zhou; Liu, Si; Wang, Hai-Chao; Shi, Dan-Yang; Xu, Qing; Zhou, Xiao-Wei; Sun, Zhi-Wei; Huang, Pei-Tang

    2016-06-03

    Alzheimer's disease (AD) is a neurodegenerative disorder that impairs memory and cognition. Targeting amyloid-β (Aβ) may be currently the most promising immunotherapeutic strategy for AD. In this study, a recombinant chimeric 6Aβ15-THc-C immunogen was formulated with alum adjuvant as a novel Aβ B-cell epitope candidate vaccine (rCV02) for AD. We examined its efficacy in preventing the cognitive deficit and synaptic impairment in 3 × Tg-AD mice. Using a toxin-derived carrier protein, the rCV02 vaccine elicited robust Aβ-specific antibodies that markedly reduced AD-like pathology and improved behavioral performance in 3 × Tg-AD mice. Along with the behavioral improvement in aged 3 × Tg-AD mice, rCV02 significantly decreased calpain activation concurrent with reduced soluble Aβ or oligomeric forms of Aβ, probably by preventing dynamin 1 and PSD-95 degradation. Our data support the hypothesis that reducing Aβ levels in rCV02-immunized AD mice increases the levels of presynaptic dynamin 1 and postsynaptic PSD-95 allowing functional recovery of cognition. In conclusion, this novel and highly immunogenic rCV02 shows promise as a new candidate prophylactic vaccine for AD and may be useful for generating rapid and strong Aβ-specific antibodies in AD patients with pre-existing memory Th cells generated after immunization with conventional tetanus toxoid vaccine.

  18. Adolescent delta-9-tetrahydrocannabinol (THC) exposure fails to affect THC-induced place and taste conditioning in adult male rats.

    Science.gov (United States)

    Wakeford, Alison G P; Flax, Shaun M; Pomfrey, Rebecca L; Riley, Anthony L

    2016-01-01

    Adolescent initiation of drug use has been linked to problematic drug taking later in life and may represent an important variable that changes the balance of the rewarding and/or aversive effects of abused drugs which may contribute to abuse vulnerability. The current study examined the effects of adolescent THC exposure on THC-induced place preference (rewarding effects) and taste avoidance (aversive effects) conditioning in adulthood. Forty-six male Sprague-Dawley adolescent rats received eight injections of an intermediate dose of THC (3.2mg/kg) or vehicle. After these injections, animals were allowed to mature and then trained in a combined CTA/CPP procedure in adulthood (PND ~90). Animals were given four trials of conditioning with intervening water-recovery days, a final CPP test and then a one-bottle taste avoidance test. THC induced dose-dependent taste avoidance but did not produce place conditioning. None of these effects was impacted by adolescent THC exposure. Adolescent exposure to THC had no effect on THC taste and place conditioning in adulthood. The failure to see an effect of adolescent exposure was addressed in the context of other research that has assessed exposure of drugs of abuse during adolescence on drug reactivity in adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Δ9-Tetrahydrocannabinol (THC), 11-Hydroxy-THC, and 11-Nor-9-carboxy-THC Plasma Pharmacokinetics during and after Continuous High-Dose Oral THC

    Science.gov (United States)

    Schwilke, Eugene W.; Schwope, David M.; Karschner, Erin L.; Lowe, Ross H.; Darwin, William D.; Kelly, Deanna L.; Goodwin, Robert S.; Gorelick, David A.; Huestis, Marilyn A.

    2011-01-01

    BACKGROUND Δ9-Tetrahydrocannabinol (THC) is the primary psychoactive constituent of cannabis and an active cannabinoid pharmacotherapy component. No plasma pharmacokinetic data after repeated oral THC administration are available. METHODS Six adult male daily cannabis smokers resided on a closed clinical research unit. Oral THC capsules (20 mg) were administered every 4–8 h in escalating total daily doses (40–120 mg) for 7 days. Free and glucuronidated plasma THC, 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THC COOH) were quantified by 2-dimensional GC-MS during and after dosing. RESULTS Free plasma THC, 11-OH-THC, and THCCOOH concentrations 19.5 h after admission (before controlled oral THC dosing) were mean 4.3 (SE 1.1), 1.3 (0.5), and 34.0 (8.4) μg/L, respectively. During oral dosing, free 11-OH-THC and THCCOOH increased steadily, whereas THC did not. Mean peak plasma free THC, 11-OH-THC, and THCCOOH concentrations were 3.8 (0.5), 3.0 (0.7), and 196.9 (39.9) μg/L, respectively, 22.5 h after the last dose. Escherichia coli β-glucuronidase hydrolysis of 264 cannabinoid specimens yielded statistically significant increases in THC, 11-OH-THC, and THCCOOH concentrations (P 1 μg/L for at least 1 day after daily cannabis smoking and also after cessation of multiple oral THC doses. We report for the first time free plasma THC concentrations after multiple high-dose oral THC throughout the day and night, and after Escherichia coli β-glucuronidase hydrolysis. These data will aid in the interpretation of plasma THC concentrations after multiple oral doses. PMID:19833841

  20. Postmortem Fluid and Tissue Concentrations of THC, 11-OH-THC and THC-COOH.

    Science.gov (United States)

    Saenz, Sunday R; Lewis, Russell J; Angier, Mike K; Wagner, Jarrad R

    2017-07-01

    Marijuana is the most commonly abused illicit drug worldwide. Marijuana is used for its euphoric and relaxing properties. However, marijuana use has been shown to result in impaired memory, cognitive skills and psychomotor function. The Federal Aviation Administration's Civil Aerospace Medical Institute conducts toxicological analysis on aviation fatalities. Due to severe trauma associated with aviation accidents, blood is not always available; therefore, the laboratory must rely on specimens other than blood for toxicological analysis in ~30-40% of cases. However, the postmortem distribution of cannabinoids has not been well characterized. The purpose of this research is to evaluate the distribution of Δ9-tetrahydrocannabinol (THC), and its metabolites, 11-hydroxy-tetrahydrocannabinol (11-OH-THC) and THC-COOH, in postmortem fluid and tissue specimens from 11 fatal aviation accident cases (2014-2015) previously found positive for cannabinoids. Specimens evaluated, when available, included: blood, urine, vitreous humor, liver, lung, kidney, spleen, muscle, brain, heart and bile. We developed and validated (following SWGTOX guidelines) a sensitive and robust method using solid-phase extraction and liquid chromatography-tandem mass spectrometry to identify and quantify THC, 11-OH-THC and THC-COOH in postmortem fluids and tissues. The method readily identified and quantified these cannabinoids in postmortem fluids and tissues below 1 ng/mL. Qualitative cannabinoid results within each case were comparable between blood and non-blood specimens. However, there was no consistent distribution of the cannabinoids between blood and any other fluids or tissues. Therefore, while quantitative interpretation of non-blood postmortem fluid and tissues samples is not prudent, a majority of the non-blood specimens tested could be suitable alternative/supplemental choices for qualitative cannabinoid detection. Published by Oxford University Press 2017. This work is written by (a) US

  1. Dissociation of the Pharmacological Effects of THC by mTOR Blockade

    Science.gov (United States)

    Puighermanal, Emma; Busquets-Garcia, Arnau; Gomis-González, Maria; Marsicano, Giovanni; Maldonado, Rafael; Ozaita, Andrés

    2013-01-01

    The potential therapeutic benefits of cannabinoid compounds have raised interest in understanding the molecular mechanisms that underlie cannabinoid-mediated effects. We previously showed that the acute amnesic-like effects of delta9-tetrahydrocannabinol (THC) were prevented by the subchronic inhibition of the mammalian target of rapamycin (mTOR) pathway. In the present study, we assess the relevance of the mTOR pathway in other acute and chronic pharmacological effects of THC. The rapamycin derivative temsirolimus, an inhibitor of the mTOR pathway approved by the Food and Drug Administration, prevents both the anxiogenic- and the amnesic-like effects produced by acute THC. In contrast, THC-induced anxiolysis, hypothermia, hypolocomotion, and antinociception are not sensitive to the mTOR inhibition. In addition, a clear tolerance to THC-induced anxiolysis, hypothermia, hypolocomotion, and antinociception was observed after chronic treatment, but not to its anxiogenic- and amnesic-like effects. Temsirolimus pre-treatment prevented the amnesic-like effects of chronic THC without affecting the downregulation of CB1 receptors (CB1R) induced by this chronic treatment. Instead, temsirolimus blockade after chronic THC cessation did not prevent the residual cognitive deficit produced by chronic THC. Using conditional knockout mice lacking CB1R in GABAergic or glutamatergic neurons, we found that GABAergic CB1Rs are mainly downregulated under chronic THC treatment conditions, and CB1–GABA–KO mice did not develop cognitive deficits after chronic THC exposure. Therefore, mTOR inhibition by temsirolimus allows the segregation of the potentially beneficial effects of cannabinoid agonists, such as the anxiolytic and antinociceptive effects, from the negative effects, such as anxiogenic- and amnesic-like responses. Altogether, these results provide new insights for targeting the endocannabinoid system in order to prevent possible side effects. PMID:23358238

  2. Around-the-clock oral THC effects on sleep in male chronic daily cannabis smokers.

    Science.gov (United States)

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schroeder, Jennifer R; Schwope, David M; Kelly, Deanna L; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2013-01-01

    Δ9-tetrahydrocannabinol (THC) promotes sleep in animals; clinical use of THC is associated with somnolence. Human laboratory studies of oral THC have not shown consistent effects on sleep. We prospectively evaluated self-reported sleep parameters during controlled oral THC administration to research volunteers. Thirteen male chronic daily cannabis smokers (mean ± SD age 24.6± 3.7 years, self-reported smoking frequency of 5.5 ± 5.9 (range 1-24) joint-equivalents daily at study entry) were administered oral THC doses (20 mg) around-the-clock for 7 days (40-120 mg daily) starting the afternoon after admission. The St. Mary's Hospital Sleep Questionnaire was completed every morning. Plasma THC and 11-OH-THC (active metabolite) concentrations were measured in venous blood samples collected every evening. Changes in sleep characteristics over time and associations between sleep characteristics and plasma cannabinoid concentrations were evaluated with repeated measures mixed linear regression. Higher evening THC and 11-OH-THC concentrations were significantly associated with shorter sleep latency, less difficulty falling asleep, and more daytime sleep the following day. In contrast, the duration of calculated and self-reported nighttime sleep decreased slightly (3.54 and 5.34 minutes per night, respectively) but significantly during the study. These findings suggest that tolerance to the somnolent effects of THC may have occurred, but results should be considered preliminary due to design limitations. Somnolence from oral THC may dissipate with chronic, high-dose use. This has implications for patients who may take chronic oral THC for medicinal purposes, including cannabis dependence treatment. (Am J Addict 2013;22:510-514). Copyright © American Academy of Addiction Psychiatry.

  3. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC) Induces Trophoblast Dysfunction.

    Science.gov (United States)

    Chang, Xinwen; Bian, Yiding; He, Qizhi; Yao, Julei; Zhu, Jingping; Wu, Jinting; Wang, Kai; Duan, Tao

    2017-01-01

    Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC), the major component of marijuana, on trophoblast function, placental development, and birth outcomes. The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC) staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3) were detected by western blot. We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC Induces Trophoblast Dysfunction

    Directory of Open Access Journals (Sweden)

    Xinwen Chang

    2017-06-01

    Full Text Available Aims: Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC, the major component of marijuana, on trophoblast function, placental development, and birth outcomes. Methods: The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3 were detected by western blot. Results: We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Conclusion: Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction.

  5. Peripheral surgical wounding and age-dependent neuroinflammation in mice.

    Directory of Open Access Journals (Sweden)

    Zhipeng Xu

    Full Text Available Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. Our recent studies have established a pre-clinical model in mice, and have found that the peripheral surgical wounding without the influence of general anesthesia induces an age-dependent Aβ accumulation and cognitive impairment in mice. We therefore set out to assess the effects of peripheral surgical wounding, in the absence of general anesthesia, on neuroinflammation in mice with different ages. Abdominal surgery under local anesthesia was established in 9 and 18 month-old mice. The levels of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, Iba1 positive cells (the marker of microglia activation, CD33, and cognitive function in mice were determined. The peripheral surgical wounding increased the levels of TNF-α, IL-6, and Iba1 positive cells in the hippocampus of both 9 and 18 month-old mice, and age potentiated these effects. The peripheral surgical wounding increased the levels of CD33 in the hippocampus of 18, but not 9, month-old mice. Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients.

  6. Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats.

    Science.gov (United States)

    Fadda, Paola; Robinson, Lianne; Fratta, Walter; Pertwee, Roger G; Riedel, Gernot

    2004-12-01

    Cannabinoid receptors in the brain (CB(1)) take part in modulation of learning, and are particularly important for working and short-term memory. Here, we employed a delayed-matching-to-place (DMTP) task in the open-field water maze and examined the effects of cannabis plant extracts rich in either Delta(9)-tetrahydrocannabinol (Delta(9)-THC), or rich in cannabidiol (CBD), on spatial working and short-term memory formation in rats. Delta(9)-THC-rich extracts impaired performance in the memory trial (trial 2) of the DMTP task in a dose-dependent but delay-independent manner. Deficits appeared at doses of 2 or 5 mg/kg (i.p.) at both 30 s and 4 h delays and were similar in severity compared with synthetic Delta(9)-THC. Despite considerable amounts of Delta(9)-THC present, CBD-rich extracts had no effect on spatial working/short-term memory, even at doses of up to 50 mg/kg. When given concomitantly, CBD-rich extracts did not reverse memory deficits of the additional Delta(9)-THC-rich extract. CBD-rich extracts also did not alter Delta(9)-THC-rich extract-induced catalepsy as revealed by the bar test. It appears that spatial working/short-term memory is not sensitive to CBD-rich extracts and that potentiation and antagonism of Delta(9)-THC-induced spatial memory deficits is dependent on the ratio between CBD and Delta(9)-THC.

  7. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology.

    Science.gov (United States)

    Nguyen, Jacques D; Aarde, Shawn M; Vandewater, Sophia A; Grant, Yanabel; Stouffer, David G; Parsons, Loren H; Cole, Maury; Taffe, Michael A

    2016-10-01

    Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [The effects of cannabis and THC].

    Science.gov (United States)

    Grotenhermen, F

    1999-10-01

    Cannabis and THC exert manifold actions on a number of organ systems. A lethal dose of THC in humans is unknown. Above the psychotropic threshold, ingestion of cannabis causes an enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important unwanted acute psychical effects are anxiety and panic attacks. Acute somatic effects are increased heart rate, changes of blood pressure, conjunctival injection and dry mouth. Properties that might be used therapeutically comprise analgesia, muscle relaxation, sedation, increase of mood, stimulation of appetite, antiemesis, lowering of intraoccular pressure and bronchodilation. Chronic use may lead to dependency and to a mild withdrawal syndrome. The extent of possible long-term damage on psyche and cognition, immune system, fertility and pregnancy remains controversial. Marijuana can induce a schizophrenic psychosis in vulnerable persons presumably without increasing the incidence of the disease. Disturbance of immunological and hormonal functions and long-term impairment of memory, attention, and complex cognitive processes are low and do not preclude a legitimate therapeutic use. Copyright 1999 S. Karger GmbH, Freiburg

  9. Unraveling the neurobiology of nicotine dependence using genetically engineered mice.

    Science.gov (United States)

    Stoker, Astrid K; Markou, Athina

    2013-08-01

    This review article provides an overview of recent studies of nicotine dependence and withdrawal that used genetically engineered mice. Major progress has been made in recent years with mutant mice that have knockout and gain-of-function of specific neuronal nicotinic acetylcholine receptor (nAChR) subunit genes. Nicotine exerts its actions by binding to neuronal nAChRs that consist of five subunits. The different nAChR subunits that combine to compose a receptor determine the distinct pharmacological and kinetic properties of the specific nAChR. Recent findings in genetically engineered mice have indicated that while α4-containing and β2-containing nAChRs are involved in the acquisition of nicotine self-administration and initial stages of nicotine dependence, α7 homomeric nAChRs appear to be involved in the later stages of nicotine dependence. In the medial habenula, α5-containing, α3-containing, and β4-containing nAChRs were shown to be crucially important in the regulation of the aversive aspects of nicotine. Studies of the involvement of α6 nAChR subunits in nicotine dependence have only recently emerged. The use of genetically engineered mice continues to vastly improve our understanding of the neurobiology of nicotine dependence and withdrawal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Dependence Induced Increases in Intragastric Alcohol Consumption (IGAC) in Mice

    Science.gov (United States)

    Fidler, Tara L.; Powers, Matthew S.; Ramirez, Jason J.; Crane, Andrew; Mulgrew, Jennifer; Smitasin, Phoebe; Cunningham, Christopher L.

    2011-01-01

    Three experiments used the Intragastric Alcohol Consumption (IGAC) procedure to examine effects of variations in passive ethanol exposure on withdrawal and voluntary ethanol intake in two inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2). Experimental treatments were selected to induce quantitative differences in ethanol dependence and withdrawal severity by: (a) varying the periodicity of passive ethanol exposure (3, 6 or 9 infusions/day), (b) varying the dose per infusion (Low, Medium or High), and (c) varying the duration of passive exposure (3, 5 or 10 days). All experiments included control groups passively exposed to water. B6 mice generally self-infused more ethanol than D2 mice, but passive ethanol exposure increased IGAC in both strains, with D2 mice showing larger relative increases during the first few days of ethanol access. Bout data supported the characterization of B6 mice as sippers and D2 mice as gulpers. Three larger infusions per day produced a stronger effect on IGAC than six or nine smaller infusions, especially in D2 mice. Increased IGAC was strongly predicted by cumulative ethanol dose and intoxication during passive exposure in both strains. Withdrawal during the passive exposure phase was also a strong predictor of increased IGAC in D2 mice. However, B6 mice showed little withdrawal, precluding analysis of its potential role. Overall, these data support the hypothesis that dependence-induced increases in IGAC are jointly determined by two processes that might vary across genotypes: (a) tolerance to aversive post-absorptive ethanol effects, and (b) negative reinforcement (i.e., alleviation of withdrawal by self-administered ethanol). PMID:21955048

  11. TH-C-19A-03: Characterization of the Dose Per Pulse Dependence of Various Detectors Used in Quality Assurance of FFF Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Karan, T [Stronach Regional Cancer Center, Newmarket, ON (Canada); Viel, F; Atwal, P; Gete, E; Camborde, M; Horwood, R; Strgar, V; Duzenli, C [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2014-06-15

    Purpose: To present the dose per pulse dependence of various QA devices under Flattening Filter Free (FFF) conditions. Methods: Air and liquid filled ion chamber arrays, diode arrays, radiochromic film and optically stimulated luminescence detectors were investigated. All detectors were irradiated under similar conditions of varying dose per pulse on a TrueBeam linac. Dose per pulse was controlled by varying SSD from 70 to 160 cm providing a range from ~0.5 to ~3 mGy per pulse. MU rates of up to 2400 MU/min for 10X FFF and 1400 MU/min for the 6X FFF beam were used. Beam pulses were counted using the Profiler™ diode array and pulse timing was confirmed by examining linac node files. Delivered doses were calculated with the Eclipse™ treatment planning system. Results: The detectors show a range of behaviors depending on the detector type, as expected. Diode arrays show up to 4% change in sensitivity (sensitivity increases with increasing dose per pulse) over the range tested. Air and liquid ion chambers arrays show a change in sensitivity of up to 3% (air) and 6% (liquid) (sensitivity decreases with increasing dose per pulse) while film and OSLD do not demonstrate a dependence on dose per pulse. Conclusion: Dependence of detector response on dose per pulse varies considerably depending on detector design. Interplay between dose per pulse and MU rate also exists for some detectors. Due diligence is required to characterize detector response prior to implementation of a QA protocol for FFF treatment delivery. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. We intend to further investigate the implications of this for VMAT FFF patient specific quality assurance. T Karan and F Viel have received partial funding through the Varian Research program.

  12. Effect of (--∆9-tetrahydrocannabinoid on the hepatic redox state of mice

    Directory of Open Access Journals (Sweden)

    C.E. Pinto

    2010-04-01

    Full Text Available (--∆9-Tetrahydrocannabinol (∆9-THC, a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10, treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10, treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil/ethanol/saline]; Ctrl (N = 10, treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase, caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.

  13. Postmortem redistribution of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH).

    Science.gov (United States)

    Holland, Michael G; Schwope, David M; Stoppacher, Robert; Gillen, Shane B; Huestis, Marilyn A

    2011-10-10

    Postmortem redistribution (PMR), a well-described phenomenon in forensic toxicology for certain drugs, can result in increased central blood concentrations relative to peripheral blood concentrations. Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive component in cannabis or marijuana, is the illicit substance most commonly implicated in driving under the influence of drugs (DUID) cases and fatally-injured drivers. No investigation of PMR of THC in human blood has been reported to date. Matched heart and iliac postmortem blood specimens were collected from 19 medical examiner cases (16 Males, 3 Females) with positive cannabinoid urine immunoassay screens. THC, its equipotent metabolite 11-hydroxy-THC (11-OH-THC) and non-psychoactive metabolite 11-nor-9-carboxy-THC (THCCOOH) were quantified by two-dimensional gas chromatography-mass spectrometry with cryofocusing, with 0.5 ng/mL limits of quantification (LOQ) for all analytes. 10 cases had quantifiable THC and 11-OH-THC; THCCOOH was present in all 19. Median (range) heart:iliac blood ratios were 1.5 for THC (range: 0.3-3.1); 1.6 for 11-OH-THC (range: 0.3-2.7); and 1.8 for THCCOOH (range: 0.5-3.0). Cannabinoids, in general, exhibited a mean and median central:peripheral (C:P) concentration ratio of less than 2 following death. A trend was observed for greater PMR with increasing postmortem interval between death and sampling. To our knowledge, these are the first data on THC PMR in humans, providing important scientific data to aid in the interpretation of postmortem cannabinoid concentrations in medico-legal investigations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. On the pharmacological properties of Delta9-tetrahydrocannabinol (THC).

    Science.gov (United States)

    Costa, Barbara

    2007-08-01

    Cannabis is one of the first plants used as medicine, and the notion that it has potentially valuable therapeutic properties is a matter of current debate. The isolation of its main constituent, Delta9-tetrahydrocannabinol (THC), and the discovery of the endocannabinoid system (cannabinoid receptors CB1 and CB2 and their endogenous ligands) made possible studies concerning the pharmacological activity of cannabinoids. This paper reviews some of the most-important findings in the field of THC pharmacology. Clinical trials, anecdotal reports, and experiments employing animal models strongly support the idea that THC and its derivatives exhibit a wide variety of therapeutic applications. However, the psychotropic effects observed in laboratory animals and the adverse reactions reported during human trials, as well as the risk of tolerance development and potential dependence, limit the application of THC in therapy. Nowadays, researchers focus on other therapeutic strategies by which the endocannabinoid system might be modulated to clinical advantage (inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism). However, emerging evidence highlights the beneficial effects of the whole cannabis extract over those observed with single components, indicating cannabis-based medicines as new perspective to revisit the pharmacology of this plant.

  15. Attenuation of morphine tolerance and dependence by thymoquinone in mice

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinzadeh

    2016-01-01

    Full Text Available Objectives: Dependence and tolerance are major restricting factors in the clinical use of opioid analgesics. In the present study, the effects of thymoquinone, the major constituent of Nigella sativa seeds, on morphine dependence and tolerance were investigated in mice. Materials and Methods: Male adult NMRI mice were made tolerant and dependent by repeated injections of morphine (50, 50, and 75 mg/kg, i.p. on 9 a.m., 1 p.m., and 5 p.m., respectively during a 3-day administration schedule. The hot-plate test was used to assess tolerance to the analgesic effects of morphine. Naloxone (2 mg/kg, i.p. was injected to precipitate withdrawal syndrome in order to assess the morphine dependence. To evaluate the effects of thymoquinone on tolerance and dependence to morphine, different single or repeated doses of thymoquinone were administered in mice. Rotarod was used to assess the motor coordination. Results: Administration of single or repeated doses of thymoquinone (20 and 40 mg/kg, i.p. significantly decreased the number of jumps in morphine dependent animals. Repeated administration of thymoquinone (20 and 40 mg/kg, for 3 days and also single injection of thymoquinone (40 mg/kg, on the fourth day attenuated tolerance to the analgesic effect of morphine. None of the thymoquinone doses (10, 20, and 40 mg/kg produced any antinociceptive effects on their own. Motor coordination of animals was impaired by the high dose of thymoquinone (40 mg/kg. Conclusion: Based on these results, it can be concluded that thymoquinone prevents the development of tolerance and dependence to morphine.

  16. Strain-dependent Differences in LTP and Hippocampus-dependent Memory in Inbred Mice

    Science.gov (United States)

    Nguyen, Peter V.; Abel, Ted; Kandel, Eric R.; Bourtchouladze, Roussoudan

    2000-01-01

    Many studies have used “reverse” genetics to produce “knock-out” and transgenic mice to explore the roles of various molecules in long-term potentiation (LTP) and spatial memory. The existence of a variety of inbred strains of mice provides an additional way of exploring the genetic bases of learning and memory. We examined behavioral memory and LTP expression in area CA1 of hippocampal slices prepared from four different inbred strains of mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms-+Ter?/J. We found that LTP induced by four 100-Hz trains of stimulation was robust and long-lasting in C57BL/6J and DBA/2J mice but decayed in CBA/J and 129/SvEms-+Ter?/J mice. LTP induced by one 100-Hz train was significantly smaller after 1 hr in the 129/SvEms-+Ter?/J mice than in the other three strains. Theta-burst LTP was shorter lasting in CBA/J, DBA/2J, and 129/SvEms-+Ter?/J mice than in C57BL/6J mice. We also observed specific memory deficits, among particular mouse strains, in spatial and nonspatial tests of hippocampus-dependent memory. CBA/J mice showed defective learning in the Morris water maze, and both DBA/2J and CBA/J strains displayed deficient long-term memory in contextual and cued fear conditioning tests. Our findings provide strong support for a genetic basis for some forms of synaptic plasticity that are linked to behavioral long-term memory and suggest that genetic background can influence the electrophysiological and behavioral phenotypes observed in genetically modified mice generated for elucidating the molecular bases of learning, memory, and LTP. PMID:10837506

  17. Acute and chronic effects of cannabidiol on Δ⁹-tetrahydrocannabinol (Δ⁹-THC)-induced disruption in stop signal task performance.

    Science.gov (United States)

    Jacobs, David S; Kohut, Stephen J; Jiang, Shan; Nikas, Spyros P; Makriyannis, Alexandros; Bergman, Jack

    2016-10-01

    Recent clinical and preclinical research has suggested that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized. To address this, we investigated the effects of Δ9-THC and CBD independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys (n = 6) performing a stop signal task (SST). Additionally, the development of tolerance to the effects of Δ9-THC on SST performance was evaluated by determining the effects of acutely administered Δ9-THC (0.1-3.2 mg/kg), during a 24-day chronic Δ9-THC treatment period with Δ9-THC alone or in combination with CBD. Results indicate that Δ9-THC (0.032-0.32 mg/kg) dose-dependently decreased go success but did not alter go reaction time (RT) or stop signal RT (SSRT); CBD (0.1-1.0 mg/kg) was without effect on all measures and, when coadministered in a 1:1 dose ratio, did not exacerbate or attenuate the effects of Δ9-THC. When coadministered in a 1:3 dose ratio, CBD (1.0 mg/kg) attenuated the disruptive effects of 0.32 mg/kg Δ9-THC but did not alter the effects of other Δ9-THC doses. Increases in ED50 values for the effects of Δ9-THC on SST performance were apparent during chronic Δ9-THC treatment, with little evidence for modification of changes in sensitivity by CBD. These results indicate that CBD, when combined with Δ9-THC in clinically available dose ratios, does not exacerbate and, under restricted conditions may even attenuate, Δ9-THC's behavioral effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part I: development and validation of a pulmonary cannabinoid route of exposure for experimental pharmacology studies in rodents.

    Science.gov (United States)

    Manwell, Laurie A; Charchoglyan, Armen; Brewer, Dyanne; Matthews, Brittany A; Heipel, Heather; Mallet, Paul E

    2014-01-01

    Most studies evaluating the effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in animal models administer it via a parenteral route (e.g., intraperitoneal (IP) or intravenous injection (IV)), however, the common route of administration for human users is pulmonary (e.g., smoking or vapourizing marijuana). A vapourized Δ(9)-THC delivery system for rodents was developed and used to compare the effects of pulmonary and parenteral Δ(9)-THC administration on blood cannabinoid levels and behaviour. Sprague-Dawley rats were exposed to pulmonary Δ(9)-THC (1, 5, and 10mg of inhaled vapour) delivered via a Volcano® vapourizing device (Storz and Bickel, Germany) or to parenteral Δ(9)-THC (0.25, 0.5, 1.0, and 1.5mg/kg injected IP). Quantification of Δ(9)-THC and its psychoactive metabolite, 11-hydroxy-Δ(9)-THC (11-OH-Δ(9)-THC), in blood was determined by liquid chromatography/mass spectrometry (LC/MS). In order to verify the potential for the vapourization procedure to produce a robust conditioned place preference (CPP) or conditioned place avoidance CPA, classical conditioning procedures were systematically varied by altering the exposure time (10 or 20min) and number of exposed rats (1 or 2) while maintaining the same vapourization dose (10mg). Blood collected at 20min intervals showed similar dose-dependent and time-dependent changes in Δ(9)-THC and 11-OH-Δ(9)-THC for both pulmonary and parenteral administration of Δ(9)-THC. However, vapourized Δ(9)-THC induced CPP under certain conditions whereas IP-administered Δ(9)-THC induced CPA. These results support and extend the limited evidence (e.g., in humans, Naef et al., 2004; in rodents, Niyuhire et al., 2007) that Δ(9)-THC produces qualitatively different effects on behaviour depending upon the route of administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Determination of ∆-9-Tetrahydrocannabinol (THC), 11-hydroxy-THC, 11-nor-9-carboxy-THC and Cannabidiol in Human Plasma using Gas Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Andrenyak, David M; Moody, David E; Slawson, Matthew H; O'Leary, Daniel S; Haney, Margaret

    2017-05-01

    Two marijuana compounds of particular medical interest are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). A gas chromatography-tandem mass spectrometry (GC-MS-MS) method was developed to test for CBD, THC, hydroxy-THC (OH-THC) and carboxy-THC (COOH-THC) in human plasma. Calibrators (THC and OH-THC, 0.1 to 100; CBD, 0.25 to 100; COOH-THC, 0.5-500 ng/mL) and controls (0.3, 5 and 80 ng/mL, except COOH-THC at 1.5, 25 and 400 ng/mL) were prepared in blank matrix. Deuterated (d3) internal standards were added to 1-mL samples. Preparation involved acetonitrile precipitation, liquid-liquid extraction (hexane:ethyl acetate, 9:1), and MSTFA derivatization. An Agilent 7890 A GC was interfaced with an Agilent 7000 MS Triple Quadrupole. Selected reaction monitoring was employed. Blood samples were provided from a marijuana smoking study (two participants) and a CBD ingestion study (eight participants). Three analytes with the same transitions (THC, OH-THC and COOH-THC) were chromatographically separated. Matrix selectivity studies showed endogenous chromatographic peak area ratios (PAR) at the analyte retention times were THC, OH-THC and COOH-THC were seen; low concentrations of CBD were detected at early time points. In moderate users who had not smoked for at least 9 hours before ingesting an 800 mg oral dose of CBD, the method was sensitive enough to follow residual concentrations of THC and OH-THC; sustained COOH-THC concentrations over 50 ng/mL validated its higher analytical range. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Persistent effects of chronic Δ9-THC exposure on motor impulsivity in rats.

    Science.gov (United States)

    Irimia, Cristina; Polis, Ilham Y; Stouffer, David; Parsons, Loren H

    2015-08-01

    In humans, long-term marijuana use is associated with impaired impulse control and attentional capacity, though it has been difficult to distinguish pre-existing cognitive deficits from possible consequences of prolonged marijuana exposure. To evaluate the effects of long-term exposure to Δ9-Tetrahydrocannabinol (Δ9-THC), the primary psychoactive constituent in marijuana, on indices of impulse control and attentional capacity using the rat 5-Choice Serial Reaction Time Task (5-CSRTT). Ten 14-day cycles of Δ9-THC dosing and 5-CSRTT testing were employed, each comprised of 5-day Δ9-THC dosing (0.3 or 3 mg/kg b.i.d.) and 5-CSRTT testing during the 9 days of drug abstinence. Subsequent 5-CSRTT testing continued during 5 weeks of protracted abstinence. Dose-dependent increases in motor impulsivity (premature responses) and behavioral disinhibition (perseverative responses) emerged following 5 cycles of Δ9-THC exposure that persisted for the remaining dosing and testing cycles. Δ9-THC-related disruptions in motor impulsivity and behavioral inhibition were most pronounced during cognitively challenging 5-CSRTT sessions incorporating varying novel inter-trial intervals (ITIs), and these disruptions persisted for at least 5 weeks of Δ9-THC abstinence. Δ9-THC-related impairments in attentional capacity (response accuracy) were also evident during variable ITI challenge tests, though these attentional disruptions abated within 3 weeks of Δ9-THC abstinence. These observations demonstrate that long-term intermittent exposure to clinically meaningful Δ9-THC doses induces persistent impairments in impulse control and attentional function. If present in humans, these disruptions may impact academic and professional performance.

  1. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  2. Sex differences in the subjective effects of oral Δ9-THC in cannabis users.

    Science.gov (United States)

    Fogel, Jessica S; Kelly, Thomas H; Westgate, Philip M; Lile, Joshua A

    2017-01-01

    Previous studies suggest that there are sex differences in endocannabinoid function and the response to exogenous cannabinoids, though data from clinical studies comparing acute cannabinoid effects in men and women under controlled laboratory conditions are limited. To further explore these potential differences, data from 30 cannabis users (N=18 M, 12 F) who completed previous Δ9-tetrahydrocannabinol (Δ9-THC) discrimination studies were combined for this retrospective analysis. In each study, subjects learned to discriminate between oral Δ9-THC and placebo and then received a range of Δ9-THC doses (0, 5, 15 and a "high" dose of either 25 or 30mg). Responses on a drug-discrimination task, subjective effects questionnaire, psychomotor performance tasks, and physiological measures were assessed. Δ9-THC dose-dependently increased drug-appropriate responding, ratings on "positive" Visual Analog Scale (VAS) items (e.g., good effects, like drug, take again), and items related to intoxication (e.g., high, stoned). Δ9-THC also dose-dependently impaired performance on psychomotor tasks and elevated heart rate. Sex differences on VAS items emerged as a function of dose. Women exhibited significantly greater subjective responses to oral drug administration than men at the 5mg Δ9-THC dose, whereas men were more sensitive to the subjective effects of the 15mg dose of Δ9-THC than women. These results demonstrate dose-dependent separation in the subjective response to oral Δ9-THC administration by sex, which might contribute to the differential development of problematic cannabis use. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 40 CFR 1065.660 - THC and NMHC determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false THC and NMHC determination. 1065.660... CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.660 THC and NMHC determination. (a) THC determination and THC/CH 4 initial contamination corrections. (1) If we require you to...

  4. Is THC-COOH-glucuronide a useful marker for Tetrahydrocannabinol (THC) in DUID cases?

    DEFF Research Database (Denmark)

    Telving, Rasmus; Hasselstrøm, Jørgen Bo; Andreasen, Mette Findal

    ). Introduction The physical and chemical nature of THC makes it difficult to include in traditional screening procedures along with other common legal and illegal drugs. Development of multi-component toxicological screening procedures that include THC is therefore a challenge but also highly desirable in high...... from Bruker. The Screening for THC-COOH-glucuronide included 1608 DUID whole blood samples from 2013 and 2014 already quantified on an existing validated LC-MS/MS method using Multiple Reaction Monitoring (MRM). The Danish per se limit for THC in DUID cases is 1.0 µg/kg blood and to compensate...

  5. Acute and chronic effects of cannabidiol on Δ9-tetrahydrocannabinol (Δ9-THC)-induced disruption in stop signal task performance

    Science.gov (United States)

    Jacobs, David S.; Kohut, Stephen J.; Jiang, Shan; Nikas, Spyros P.; Makriyannis, Alexandros; Bergman, Jack

    2016-01-01

    Recent clinical and preclinical research suggests that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized. To address this, the effects of Δ9-THC and CBD were investigated independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys (n=6) performing a stop signal task (SST). Additionally, the development of tolerance to the effects of THC on SST performance was evaluated by determining the effects of acutely administered Δ9-THC (0.1-3.2 mg/kg), during a 24-day chronic Δ9-THC treatment period with Δ9-THC alone or with CBD. Results indicate that Δ9-THC (0.032 - 0.32 mg/kg) dose-dependently decreased ‘go’ success but did not alter ‘go’ reaction time or stop signal reaction time (SSRT); CBD (0.1-1.0 mg/kg) was without effect on all measures and, when co-administered in a 1:1 dose-ratio, did not exacerbate or attenuate the effects of Δ9-THC. When co-administered in a 1:3 dose-ratio, CBD (1.0 mg/kg) attenuated the disruptive effects of 0.32 mg/kg Δ9-THC but did not alter the effects of other Δ9-THC doses. Increases in ED50 values for the effects of Δ9-THC on SST performance were apparent during chronic Δ9-THC treatment, with little evidence for modification of changes in sensitivity by CBD. These results indicate that CBD, when combined with THC in clinically available dose-ratios does not exacerbate and, under restricted conditions, may even attenuate Δ9-THC’s behavioral effects. PMID:27690502

  6. Tolerance to Chronic Delta-9-Tetrahydrocannabinol (Δ9-THC) in Rhesus Macaques Infected With Simian Immunodeficiency Virus

    Science.gov (United States)

    Winsauer, Peter J.; Molina, Patricia E.; Amedee, Angela M.; Filipeanu, Catalin M.; McGoey, Robin R.; Troxclair, Dana A.; Walker, Edith M.; Birke, Leslie L.; Stouwe, Curtis Vande; Howard, Jessica M.; Leonard, Stuart T.; Moerschbaecher, Joseph M.; Lewis, Peter B.

    2011-01-01

    Although Δ9-THC has been approved to treat anorexia and weight loss associated with AIDS, it may also reduce well-being by disrupting complex behavioral processes or enhancing HIV replication. To investigate these possibilities, four groups of male rhesus macaques were trained to respond under an operant acquisition and performance procedure, and administered vehicle or Δ9-THC before and after inoculation with simian immunodeficiency virus(SIVmac251, 100 TCID50/ml, i.v.). Prior to chronic Δ9-THC and SIV inoculation, 0.032– 0.32 mg/kg of Δ9-THC produced dose-dependent rate-decreasing effects and small, sporadic error-increasing effects in the acquisition and performance components in each subject. Following 28 days of chronic Δ9-THC (0.32 mg/kg, i.m.) or vehicle twice daily, delta-9-THC-treated subjects developed tolerance to the rate-decreasing effects, and this tolerance was maintained during the initial 7–12 months irrespective of SIV infection (i.e., +THC/−SIV, +THC/+SIV). Full necropsy was performed on all SIV subjects an average of 329 days post-SIV inoculation, with postmortem histopathology suggestive of a reduced frequency of CNS pathology as well as opportunistic infections in delta-9-THC-treated subjects. Chronic Δ9-THC also significantly reduced CB-1 and CB-2 receptor levels in the hippocampus, attenuated the expression of a proinflammatory cytokine (MCP-1), and did not increase viral load in plasma, cerebrospinal fluid, or brain tissue compared to vehicle-treated subjects with SIV. Together, these data indicate that chronic Δ9-THC produces tolerance to its behaviorally disruptive effects on complex tasks while not adversely affecting viral load or other markers of disease progression during the early stages of infection. PMID:21463073

  7. Genetic dissection of behavioural and autonomic effects of Delta(9-tetrahydrocannabinol in mice.

    Directory of Open Access Journals (Sweden)

    Krisztina Monory

    2007-10-01

    Full Text Available Marijuana and its main psychotropic ingredient Delta(9-tetrahydrocannabinol (THC exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1, which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release gamma aminobutyric acid, cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.

  8. Impaired Hippocampus-Dependent and Facilitated Striatum-Dependent Behaviors in Mice Lacking the Delta Opioid Receptor

    OpenAIRE

    Le Merrer, Julie; Rezai, Xavier; Scherrer, Grégory; Becker, Jérôme A. J.; Kieffer, Brigitte L

    2013-01-01

    Pharmacological data suggest that delta opioid receptors modulate learning and memory processes. In the present study, we investigated whether inactivation of the delta opioid receptor modifies hippocampus (HPC)- and striatum-dependent behaviors. We first assessed HPC-dependent learning in mice lacking the receptor (Oprd1−/− mice) or wild-type (WT) mice treated with the delta opioid antagonist naltrindole using novel object recognition, and a dual-solution cross-maze task. Second, we subjecte...

  9. Does cannabidiol protect against adverse psychological effects of THC?

    Directory of Open Access Journals (Sweden)

    Raymond J.M. eNiesink

    2013-10-01

    Full Text Available The recreational use of cannabis can have persistent adverse effects on mental health. Delta-9-tetrahydrocannabinol (THC is the main psychoactive constituent of cannabis, and most, if not all, of the effects associated with the use of cannabis are caused by THC. Recent studies have suggested a possible protective effect of another cannabinoid, cannabidiol (CBD. A literature search was performed in the bibliographic databases PubMed, PsycINFO and Web of Science using the keyword ‘cannabidiol.’ After removing duplicate entries, 1295 unique titles remained. Based on the titles and abstracts, an initial selection was made. The reference lists of the publications identified in this manner were examined for additional references. Cannabis is not a safe drug. Depending on how often someone uses, the age of onset, the potency of the cannabis that is used and someone's individual sensitivity, the recreational use of cannabis may cause permanent psychological disorders. Most recreational users will never be faced with such persistent mental illness, but in some individuals cannabis use leads to undesirable effects: cognitive impairment, anxiety, paranoia and increased risks of developing chronic psychosis or drug addiction. Studies examining the protective effects of CBD have shown that CBD can counteract the negative effects of THC. However, the question remains of how the laboratory results translate to the types of cannabis that are encountered by real-world recreational users.

  10. Pharmacokinetic and pharmacodynamic profile of supratherapeutic oral doses of Δ9-THC in cannabis users

    Science.gov (United States)

    Lile, Joshua A.; Kelly, Thomas H.; Charnigo, Richard J.; Stinchcomb, Audra L.; Hays, Lon R.

    2013-01-01

    Oral Δ9-tetrahydrocannabinol (Δ9-THC) has been evaluated as a medication for cannabis dependence, but repeated administration of acute oral doses up to 40 mg has not been effective at reducing drug-taking behavior. Larger doses might be necessary to affect cannabis use. The purpose of the present study was therefore to determine the physiological and behavioral effects of oral Δ9-THC at acute doses higher than those tested previously. The pharmacokinetic and pharmacodynamic profile of oral Δ9-THC, administered in ascending order in 15 mg increments across separate sessions, up to a maximum of 90 mg, was determined in seven cannabis users. Five subjects received all doses and two experienced untoward side effects at lower doses. Δ9-THC produced a constellation of effects consistent with previous clinical studies. Low cannabinoid concentrations were associated with significant effects on drug- sensitive measures, although progressively greater levels did not lead to proportionately larger drug effects. Considerable variability in Cmax and tmax was observed. Doses of oral Δ9-THC larger than those tested previously can be administered to individuals with a history of cannabis use, although given the pharmacokinetic variability of oral Δ9-THC and individual differences in sensitivity, individualized dose adjustment is needed to avoid side effects and maximize therapeutic response. PMID:23754596

  11. Sleep selectively enhances hippocampus-dependent memory in mice.

    Science.gov (United States)

    Cai, Denise J; Shuman, Tristan; Gorman, Michael R; Sage, Jennifer R; Anagnostaras, Stephan G

    2009-08-01

    Sleep has been implicated as playing a critical role in memory consolidation. Emerging evidence suggests that reactivation of memories during sleep may facilitate the transfer of declarative memories from the hippocampus to the neocortex. Previous rodent studies have utilized sleep-deprivation to examine the role of sleep in memory consolidation. The present study uses a novel, naturalistic paradigm to study the effect of a sleep phase on rodent Pavlovian fear conditioning, a task with both hippocampus-dependent and -independent components (contextual vs. cued memories). Mice were trained 1 hour before their sleep/rest phase or awake/active phase and then tested for contextual and cued fear 12 or 24 hr later. The authors found that hippocampus-dependent contextual memory was enhanced if tested after a sleep phase within 24 hr of training. This enhancement was specific to context, not cued, memory. These findings provide direct evidence of a role for sleep in enhancing hippocampus-dependent memory consolidation in rodents and detail a novel paradigm for examining sleep-induced memory effects. 2009 APA, all rights reserved

  12. Dose-dependent effects of celecoxib on CB-1 agonist-induced antinociception in the mice

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zarrindast

    2009-04-01

    Full Text Available "nObjective: Endocannabinoid produce analgesia that is comparable which of opioids. The mechanism of antinociceptive effects of (∆ - 9 tetrahydrocannabinol (THC is suggested to be through cyclooxygenase (COX pathway. In the present work, the effect of two extreme dose ranges of celecoxib (mg/kg and ng/kg, a cyclooxygenase-2 (COX-2 antagonist, on arachidonylcyclopropylamide (ACPA, a selective CB1 agonist induced antinociception in mice was examined. "nMethods: We have investigated the interaction between celecoxib, at the doses of mg/kg (50, 100, 200 and 400 i.p.  and ultra low dose (ULD (25 and 50 ng/kg, i.p., on the antinociceptive effect of intracerebroventricular (i.c.v. administration of ACPA (0.004, 0.0625 and 1 μg/mice, using formalin test in mice. "nResults: I.C.V. administration of ACPA induced antinociception. Intraperitoneal administration of celecoxib (mg/kg and its ULD (ng/kg attenuated and potentiated, ACPA antinociceptive effects, respectively. "nConclusion: It is concluded that the mg/kg doses of COX-2 antagonist showed opposite effects compare to the ultra-low dose of the drug.

  13. Interactions between cannabidiol and Δ9-THC following acute and repeated dosing: Rebound hyperactivity, sensorimotor gating and epigenetic and neuroadaptive changes in the mesolimbic pathway.

    Science.gov (United States)

    Todd, Stephanie M; Zhou, Cilla; Clarke, David J; Chohan, Tariq W; Bahceci, Dilara; Arnold, Jonathon C

    2017-02-01

    The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  14. The psychoactive compound of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC) inhibits the human trophoblast cell turnover.

    Science.gov (United States)

    Costa, M A; Fonseca, B M; Marques, F; Teixeira, N A; Correia-da-Silva, G

    2015-08-06

    The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Reasons for Synthetic THC Use among College Students

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Burbage, Michelle L.

    2013-01-01

    Synthetic THC, also known as fake marijuana, is used by college students in the United States. The present study examined reasons for recent synthetic THC use among college students (N = 339). Students completed a 3-page survey during regularly scheduled class times. Results indicated students reported using synthetic THC for curiosity, to get…

  16. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. CHRONIC Δ9-THC IN RHESUS MONKEYS: EFFECTS ON COGNITIVE PERFORMANCE AND DOPAMINE D2/D3 RECEPTOR AVAILABILITY.

    Science.gov (United States)

    John, William S; Martin, Thomas J; Solingapuram Sai, Kiran K; Nader, Susan H; Gage, H D; Mintz, Akiva; Nader, Michael A

    2017-12-04

    Cannabis-related impairments to cognitive function may represent novel therapeutic targets for cannabis-use disorder, although the nature, persistence, and reversibility of those deficits remain unclear. Adult male rhesus monkeys (N=6) responded in the mornings on tasks designed to assess different cognitive domains using CANTAB touchscreens followed by responding maintained under a fixed-ratio (FR) 10 schedule of food presentation in different operant chambers. First, the acute effects of Δ9-tetrahydrocannabinol (THC; 0.01-0.56 mg/kg, i.v.) on cognitive performance, FR responding and body temperature were determined. Next, THC (1.0-2.0 mg/kg, s.c.) was administered daily after FR10 sessions for 12 weeks during which the residual effects of THC (i.e., 22 hrs after administration) on cognition were examined and the acute effects of THC were redetermined. In a subgroup of monkeys, dopamine D2/D3 receptor availability was assessed after 4 weeks of chronic THC exposure and compared to drug-naive controls using positron emission tomography and [11C]-raclopride (N=4/group). Acute THC pretreatments dose-dependently decreased FR responding and body temperature, while impairment to cognitive performance was task specific. During chronic treatment, THC produced persistent residual impairment only to working memory; tolerance differentially developed to acute cognitive impairments. There was recovery from residual cognitive impairments to working memory within 2 weeks of abstinence. Compared to controls, D2/D3 receptor availability was not altered during chronic THC treatment. In conclusion, THC-induced disruptions in cognition were task-specific, as was tolerance development, and not related to changes in D2/D3 receptor availability. Intervention strategies for cannabis-use disorder that enhance working memory performance may facilitate positive treatment outcomes. The American Society for Pharmacology and Experimental Therapeutics.

  18. Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata.

    Science.gov (United States)

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Li, Yingying; Li, Yaqian; Chen, Jie

    2015-05-01

    Mutant T66 was isolated from 450 mutants (constructed with Agrobacterium tumefaciens-mediated transformation method) of Trichoderma harzianum. Maize seeds coated with T66 were more susceptible to Curvularia lunata when compared with those coated with wild-type (WT) strain. The disease index of maize treated with T66 and WT were 62.5 and 42.1%, respectively. Further research showed T-DNA has inserted into the ORF of one gene, which resulted in the functional difference between WT and T66. The gene was cloned and named Thc6, which encodes a novel 327 amino acid protein. To investigate its function, we obtained knockout, complementation, and overexpression mutants of Thc6. Challenge inoculation studies suggested that the Thc6 overexpression mutant can reduce the disease index of maize inbred line Huangzao 4 against the leaf spot pathogen (C. lunata). Meanwhile, The Thc6 mutants were found to affect the resistance of maize inbred line Huangzao 4 against C. lunata by enhancing the activation of jasmonate-responsive genes expression. Liquid chromatography-mass spectrometry (LC-MS) data further confirmed that the concentration of jasmonate in the induced maize exhibits a parallel change tendency with the expression level of defense-related genes. Hence, the Thc6 gene could be participated in the induced resistance of maize inbred line Huangzao 4 against C. lunata infection through a jasmonic acid-dependent pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Age dependent course of EAE in Aire-/- mice.

    Science.gov (United States)

    Aharoni, Rina; Aricha, Revital; Eilam, Raya; From, Ido; Mizrahi, Keren; Arnon, Ruth; Souroujon, Miriam C; Fuchs, Sara

    2013-09-15

    This study explores the consequences of deficiency in the autoimmune regulator (Aire) on the susceptibility to experimental autoimmune encephalomyelitis (EAE). Increased susceptibility to EAE was found in Aire knockout (KO) compared to wild type (WT) in 6month old mice. In contrast, 2month old Aire KO mice were less susceptible to EAE than WT mice, and this age-related resistance correlated with elevated proportions of T regulatory (Treg) cells in their spleen and brain. Combined with our previous findings in experimental autoimmune myasthenia gravis, we suggest an age-related association between Aire and Treg cells in the susceptibility to autoimmunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Total hydrocarbon content (THC) testing in liquid oxygen (LOX) systems

    Science.gov (United States)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2015-12-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  1. Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)

    Science.gov (United States)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2016-01-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  2. Oral fluid/plasma cannabinoid ratios following controlled oral THC and smoked cannabis administration.

    Science.gov (United States)

    Lee, Dayong; Vandrey, Ryan; Milman, Garry; Bergamaschi, Mateus; Mendu, Damodara R; Murray, Jeannie A; Barnes, Allan J; Huestis, Marilyn A

    2013-09-01

    Oral fluid (OF) is a valuable biological alternative for clinical and forensic drug testing. Evaluating OF to plasma (OF/P) cannabinoid ratios provides important pharmacokinetic data on the disposition of drug and factors influencing partition between matrices. Eleven chronic cannabis smokers resided on a closed research unit for 51 days. There were four 5-day sessions of 0, 30, 60, and 120 mg oral ∆(9)-tetrahydrocannabinol (THC)/day followed by a five-puff smoked cannabis challenge on Day 5. Each session was separated by 9 days ad libitum cannabis smoking. OF and plasma specimens were analyzed for THC and metabolites. During ad libitum smoking, OF/P THC ratios were high (median, 6.1; range, 0.2-348.5) within 1 h after last smoking, decreasing to 0.1-20.7 (median, 2.1) by 13.0-17.1 h. OF/P THC ratios also decreased during 5-days oral THC dosing, and after the smoked cannabis challenge, median OF/P THC ratios decreased from 1.4 to 5.5 (0.04-245.6) at 0.25 h to 0.12 to 0.17 (0.04-5.1) at 10.5 h post-smoking. In other studies, longer exposure to more potent cannabis smoke and oromucosal cannabis spray was associated with increased OF/P THC peak ratios. Median OF/P 11-nor-9-carboxy-THC (THCCOOH) ratios were 0.3-2.5 (range, 0.1-14.7) ng/μg, much more consistent in various dosing conditions over time. OF/P THC, but not THCCOOH, ratios were significantly influenced by oral cavity contamination after smoking or oromucosal spray of cannabinoid products, followed by time-dependent decreases. Establishing relationships between OF and plasma cannabinoid concentrations is essential for making inferences of impairment or other clinical outcomes from OF concentrations.

  3. Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice.

    Directory of Open Access Journals (Sweden)

    Jarrah R Spencer

    2013-02-01

    Full Text Available Neuregulin 1 (NRG1 is linked to an increased risk of developing schizophrenia and cannabis dependence. Mice that are hypomorphic for Nrg1 (Nrg1 HET mice display schizophrenia-relevant behavioural phenotypes and aberrant expression of serotonin and glutamate receptors. Nrg1 HET mice also display idiosyncratic responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC. To gain traction on the molecular pathways disrupted by Nrg1 hypomorphism and Nrg1-cannabinoid interactions we conducted a proteomic study. Adolescent wildtype (WT and Nrg1 HET mice were exposed to repeated injections of vehicle or THC and their hippocampi were submitted to 2D gel proteomics. Comparison of WT and Nrg1 HET mice identified proteins linked to molecular changes in schizophrenia that have not been previously associated with Nrg1. These proteins are involved in vesicular release of neurotransmitters such as SNARE proteins; enzymes impacting serotonergic neurotransmission, and; proteins affecting growth factor expression. Nrg1 HET mice treated with THC expressed a distinct protein expression signature compared to WT mice. Replicating prior findings, THC caused proteomic changes in WT mice suggestive of greater oxidative stress and neurodegeneration. We have previously observed that THC selectively increased hippocampal NMDA receptor binding of adolescent Nrg1 HET mice. Here we observed outcomes consistent with heightened NMDA-mediated glutamatergic neurotransmission. This included differential expression of proteins involved in NMDA receptor trafficking to the synaptic membrane; lipid raft stabilization of synaptic NMDA receptors; and homeostatic responses to dampen excitotoxicity. These findings uncover for the first time novel proteins altered in response to Nrg1 hypomorphism and Nrg1-cannabinoid interactions that improves our molecular understanding of Nrg1 signaling and Nrg1-mediated genetic vulnerability to the neurobehavioural effects

  4. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    Science.gov (United States)

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The effects of Piperine on the jumping induced by Naloxone in Morphine dependent mice

    Directory of Open Access Journals (Sweden)

    Moghadam Nia AA

    2001-07-01

    Full Text Available Black pepper has been used in traditional medicine as an analgesic. In this investigation, the effects of piperine, an alkaloid derived from black pepper seeds on the jumping induced by naloxone were studied on morphine dependent mice. This experimental study was conducted on case (piperine and control (saline groups of mice. Mice were made dependent to morphine using Marshall method. For evaluation of dependency, the number of jumps after naloxone injection was counted in a period of 30 minutes. There was a significant difference between number of jumps of mice in saline (10 ml/kg, IP and drug groups (piperine 25, 50, 75 mg/kg, IP, as well as significant differences in latency period for jumping behavior in two groups. Based on these results, piperine may affect the intensity of morphine dependency.

  6. A protocol for the delivery of cannabidiol (CBD) and combined CBD and ∆9-tetrahydrocannabinol (THC) by vaporisation.

    Science.gov (United States)

    Solowij, Nadia; Broyd, Samantha J; van Hell, Hendrika H; Hazekamp, Arno

    2014-10-16

    Significant interest has emerged in the therapeutic and interactive effects of different cannabinoids. Cannabidiol (CBD) has been shown to have anxiolytic and antipsychotic effects with high doses administered orally. We report a series of studies conducted to determine the vaporisation efficiency of high doses of CBD, alone and in combination with ∆9-tetrahydrocannabinol (THC), to achieve faster onset effects in experimental and clinical trials and emulate smoked cannabis. Purified THC and CBD (40 mg/ml and 100 mg/ml respectively) were loaded onto a liquid absorbing pad in a Volcano vaporiser, vaporised and the vapours quantitatively analysed. Preliminary studies determined 200 mg CBD to be the highest dose effectively vaporised at 230 ° C, yielding an availability of approximately 40% in the vapour phase. Six confirmatory studies examined the quantity of each compound delivered when 200 mg or 4 mg CBD was loaded together with 8 mg of THC. THC showed 55% availability when vaporised alone or with low dose CBD, while large variation in the availability of high dose CBD impacted upon the availability of THC when co-administered, with each compound affecting the vaporisation efficiency of the other in a dynamic and dose-dependent manner. We describe optimised protocols that enable delivery of 160 mg CBD through vaporisation. While THC administration by vaporisation is increasingly adopted in experimental studies, often with oral predosing with CBD to examine interactive effects, no studies to date have reported the administration of CBD by vaporisation. We report the detailed methodology aimed at optimising the efficiency of delivery of therapeutic doses of CBD, alone and in combination with THC, by vaporisation. These protocols provide a technical advance that may inform methodology for clinical trials in humans, especially for examining interactions between THC and CBD and for therapeutic applications of CBD. Current Controlled Trials ISRCTN24109245.

  7. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr. (National Center for Toxicological Research, Jefferson, Arkansas (USA))

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the (35S)TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of (35S)TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects.

  8. Comparative effects of phencyclidine (PCP) and. delta. /sup 9/-tetrahydrocannabinol (THC) on glucose oxidation in the rat testis

    Energy Technology Data Exchange (ETDEWEB)

    Husain, S.; Bauer, V.

    1986-03-05

    Glucose and fructose are important fuels of cellular energetics in organs like testis and brain. The previous in-vitro studies indicated that THC may disrupt many gonadal functions by inhibiting energy metabolism in the testis. PCP is sold on the street as any one of a variety of psychoactive drugs. Most commonly it is misrepresented as THC. Therefore, to compare the effects of PCP and THC on glucose utilization, in-vitro radiorespirometric experiments were conducted in rat testicular tissues. The /sup 14/CO/sub 2/ production from 5.5 mM radiolabelled glucose was followed in the presence and absence of 0.2, 0.1, 0.05, 0.01, 0.005, 0.0025 mM PCP. PCP produced a dose-dependent biphasic effect, stimulating /sup 14/CO/sub 2/ production by 6.2, 17 and 5.8% and then inhibiting it by 13.2, 15.4 and 8.9% with respective concentrations of PCP. This is in contrast to THC which produced a dose-related inhibition of 15.2, 18.1, 20.1 and 25.3% in /sup 14/CO/sub 2/ production with 0.1, 0.2, 0.3 and 0.4 mM THC. These observations are significant due to the possible abuse of PCP together with THC either deliberately or by misrepresentation.

  9. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    Directory of Open Access Journals (Sweden)

    Adena S Spiro

    Full Text Available The ABC transporters P-glycoprotein (P-gp, Abcb1 and breast cancer resistance protein (Bcrp, Abcg2 regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9-tetrahydrocannabinol (THC has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT mice. Abcb1a/b (-/-, Abcg2 (-/- and wild-type (WT mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/- and Abcg2 (-/- mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/- mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis.

  10. Beyond THC: The New Generation of Cannabinoid Designer Drugs

    National Research Council Canada - National Science Library

    Fattore, Liana; Fratta, Walter

    2011-01-01

    Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC), the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs...

  11. Moderate hyperhomocysteinemia decreases endothelial-dependent vasorelaxation in pregnant but not nonpregnant mice.

    Science.gov (United States)

    Powers, Robert W; Gandley, Robin E; Lykins, David L; Roberts, James M

    2004-09-01

    Increased homocysteine is associated with the pregnancy complication preeclampsia and with later-life cardiovascular disease. Although elevated homocysteine persists after pregnancy, the vascular changes of preeclampsia abate with delivery, and cardiovascular disease occurs decades later. This suggests the vasculature during pregnancy may manifest increased sensitivity to homocysteine. We used the cystathionine-beta synthase (CBS)-deficient transgenic mouse to investigate whether hyperhomocysteinemia would differentially affect vascular function in nonpregnant and pregnant animals. Mesenteric arteries from nonpregnant and midpregnant (14 to 16 days) wild-type, heterozygous, and homozygous CBS-deficient transgenic mice were investigated for their response to vasoconstriction, endothelial-dependent, and endothelial-independent relaxation using an isometric wire myograph system. Endothelial-dependent vasodilation was similar in arteries from nonpregnant heterozygous and wild-type mice. In contrast, endothelial-dependent relaxation was reduced significantly in arteries from pregnant heterozygous animals compared with wild-type mice. Inhibition of NO synthesis blunted relaxation in arteries from pregnant wild-type but not pregnant heterozygous mice. Endothelial-dependent relaxation was restored by in vitro pretreatment with the tetrahydrobiopterin precursor sepiapterin. These data indicate that in pregnant mice, endothelial-dependent vasodilation is more sensitive to the effect of increased homocysteine than arteries from nonpregnant mice. This effect appears to result from a loss in NO-mediated relaxation that may be mediated by the oxidative inactivation of the NO synthase cofactor tetrahydrobiopterin.

  12. Contributions of thrombin targets to tissue factor-dependent metastasis in hyperthrombotic mice.

    Science.gov (United States)

    Yokota, N; Zarpellon, A; Chakrabarty, S; Bogdanov, V Y; Gruber, A; Castellino, F J; Mackman, N; Ellies, L G; Weiler, H; Ruggeri, Z M; Ruf, W

    2014-01-01

    Tumor cell tissue factor (TF)-initiated coagulation supports hematogenous metastasis by fibrin formation, platelet activation and monocyte/macrophage recruitment. Recent studies identified host anticoagulant mechanisms as a major impediment to successful hematogenous tumor cell metastasis. Here we address mechanisms that contribute to enhanced metastasis in hyperthrombotic mice with functional thrombomodulin deficiency (TM(Pro) mice). Pharmacological and genetic approaches were combined to characterize relevant thrombin targets in a mouse model of experimental hematogenous metastasis. TF-dependent, but contact pathway-independent, syngeneic breast cancer metastasis was associated with marked platelet hyperreactivity and formation of leukocyte-platelet aggregates in immune-competent TM(Pro) mice. Blockade of CD11b or genetic deletion of platelet glycoprotein Ibα excluded contributions of these receptors to enhanced platelet-dependent metastasis in hyperthrombotic mice. Mice with very low levels of the endothelial protein C receptor (EPCR) did not phenocopy the enhanced metastasis seen in TM(Pro) mice. Genetic deletion of the thrombin receptor PAR1 or endothelial thrombin signaling targets alone did not diminish enhanced metastasis in TM(Pro) mice. Combined deficiency of PAR1 on tumor cells and the host reduced metastasis in TM(Pro) mice. Metastasis in the hyperthrombotic TM(Pro) mouse model is mediated by platelet hyperreactivity and contributions of PAR1 signaling on tumor and host cells. © 2013 International Society on Thrombosis and Haemostasis.

  13. Functional interaction and cross-tolerance between ethanol and Δ9-THC: possible modulation by mouse cerebellar adenosinergic A1/GABAergic-A receptors.

    Science.gov (United States)

    Dar, M Saeed

    2014-08-15

    We have previously shown a functional motor interaction between ethanol and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) that involved cerebellar adenosinergic A1 and GABAergic A receptor modulation. We now report the development of cross-tolerance between intracerebellar Δ(9)-THC and intraperitoneal ethanol using ataxia as the test response in male CD-1 mice. The drugs [Δ(9)-THC (20 μg), N(6)-cyclohexyladenosine, CHA (12 ng), muscimol (20 ng)] used in the study were directly microinfused stereotaxically via guide cannulas into the cerebellum except ethanol. Δ(9)-THC, infused once daily for 5 days followed 16 h after the last infusion by acute ethanol (2g/kg) and Rotorod evaluation, virtually abolished ethanol ataxia indicating development of cross-tolerance. The cross-tolerance was also observed when the order of ethanol and Δ(9)-THC treatment was reversed, i.e., ethanol injected once daily for 5 days followed 16 h after the last ethanol injection by Δ(9)-THC infusion. The cross-tolerance appeared within 24-48 h, lasted over 72 h and was maximal in 5-day ethanol/Δ(9)-THC-treated animals. Finally, tolerance in chronic ethanol/Δ(9)-THC/-treated animals developed not only to ethanol/Δ(9)-THC-induced ataxia, respectively, but also to the ataxia potentiating effect of CHA and muscimol, indicating modulation by cerebellar adenosinergic A1 and GABAA receptors. A practical implication of these results could be that marijuana smokers may experience little or no negative effects such as ataxia following alcohol consumption. Clinically, such antagonism of ethanol-induced ataxia can be observed in marijuana users thereby encouraging more alcohol consumption and thus may represent a risk factor for the development of alcoholism in this segment of population. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Inactivation of the lateral orbitofrontal cortex increases drinking in ethanol-dependent but not non-dependent mice.

    Science.gov (United States)

    den Hartog, Carolina; Zamudio-Bulcock, Paula; Nimitvilai, Sudarat; Gilstrap, Meghin; Eaton, Bethany; Fedarovich, Hleb; Motts, Andrew; Woodward, John J

    2016-08-01

    Long-term consumption of ethanol affects cortical areas that are important for learning and memory, cognition, and decision-making. Deficits in cortical function may contribute to alcohol-abuse disorders by impeding an individual's ability to control drinking. Previous studies from this laboratory show that acute ethanol reduces activity of lateral orbitofrontal cortex (LOFC) neurons while chronic exposure impairs LOFC-dependent reversal learning and induces changes in LOFC excitability. Despite these findings, the role of LOFC neurons in ethanol consumption is unknown. To address this issue, we examined ethanol drinking in adult C57Bl/6J mice that received an excitotoxic lesion or viral injection of the inhibitory DREADD (designer receptor exclusively activated by designer drug) into the LOFC. No differences in ethanol consumption were observed between sham and lesioned mice during access to increasing concentrations of ethanol (3-40%) every other day for 7 weeks. Adulterating the ethanol solution with saccharin (0.2%) or quinine (0.06 mM) enhanced or inhibited, respectively, consumption of the 40% ethanol solution similarly in both groups. Using a chronic intermittent ethanol (CIE) vapor exposure model that produces dependence, we found no difference in baseline drinking between sham and lesioned mice prior to vapor treatments. CIE enhanced drinking in both groups as compared to air-treated animals and CIE treated lesioned mice showed an additional increase in ethanol drinking as compared to CIE sham controls. This effect persisted during the first week when quinine was added to the ethanol solution but consumption decreased to control levels in CIE lesioned mice in the following 2 weeks. In viral injected mice, baseline drinking was not altered by expression of the inhibitory DREADD receptor and repeated cycles of CIE exposure enhanced drinking in DREADD and virus control groups. Consistent with the lesion study, treatment with clozapine-N-oxide (CNO) further

  15. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC on learning in female rats

    Directory of Open Access Journals (Sweden)

    Peter J Winsauer

    2015-07-01

    Full Text Available The effects of hormone status and age on the development of tolerance to D9-THC were assessed in sham-operated (intact or ovariectomized (OVX female rats that received either intraperitoneal saline or 5.6 mg/kg of D9-THC daily from postnatal day (PD 75 to 180 (early adulthood onward or PD 35 to 140 (adolescence onward. During this time, the 4 groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC were trained in a learning and performance procedure and dose-effect curves were established for D9-THC (0.56-56 mg/kg and the cannabinoid type-1 receptor (CB1R antagonist rimonabant (0.32-10 mg/kg. Despite the persistence of small rate-decreasing and error-increasing effects in intact and OVX females from both ages during chronic D9-THC, all of the D9-THC groups developed tolerance. However, the magnitude of tolerance, as well as the effect of hormone status, varied with the age at which chronic D9-THC was initiated. There was no evidence of dependence in any of the groups. Hippocampal protein expression of CB1R, AHA1 (a co-chaperone of CB1R and HSP90β (a molecular chaperone modulated by AHA-1 was affected more by OVX than chronic D9-THC; striatal protein expression was not consistently affected by either manipulation. Hippocampal BDNF expression varied with age, hormone status, and chronic treatment. Thus, hormonal status differentially affects the development of tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (D9-THC on learning and performance behavior in adolescent, but not adult, female rats. These factors and their interactions also differentially affect cannabinoid signaling proteins in the hippocampus and striatum, and ultimately, neural plasticity.

  16. Impaired hippocampus-dependent and facilitated striatum-dependent behaviors in mice lacking the δ opioid receptor.

    Science.gov (United States)

    Le Merrer, Julie; Rezai, Xavier; Scherrer, Grégory; Becker, Jérôme A J; Kieffer, Brigitte L

    2013-05-01

    Pharmacological data suggest that delta opioid receptors modulate learning and memory processes. In the present study, we investigated whether inactivation of the delta opioid receptor modifies hippocampus (HPC)- and striatum-dependent behaviors. We first assessed HPC-dependent learning in mice lacking the receptor (Oprd1(-/-) mice) or wild-type (WT) mice treated with the delta opioid antagonist naltrindole using novel object recognition, and a dual-solution cross-maze task. Second, we subjected mutant animals to memory tests addressing striatum-dependent learning using a single-solution response cross-maze task and a motor skill-learning task. Genetic and pharmacological inactivation of delta opioid receptors reduced performance in HPC-dependent object place recognition. Place learning was also altered in Oprd1(-/-) animals, whereas striatum-dependent response and procedural learning were facilitated. Third, we investigated the expression levels for a large set of genes involved in neurotransmission in both HPC and striatum of Oprd1(-/-) mice. Gene expression was modified for several key genes that may contribute to alter hippocampal and striatal functions, and bias striatal output towards striatonigral activity. To test this hypothesis, we finally examined locomotor effects of dopamine receptor agonists. We found that Oprd1(-/-) and naltrindole-treated WT mice were more sensitive to the stimulant locomotor effect of SKF-81297 (D1/D5), supporting the hypothesis of facilitated striatonigral output. These data suggest, for the first time, that delta receptor activity tonically inhibits striatal function, and demonstrate that delta opioid receptors modulate learning and memory performance by regulating the HPC/striatum balance.

  17. Investigations on hormone dependency of human mammary carcinomas transplanted into nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M

    1981-01-01

    Since human mammary cancer can be transplanted into nude mice, this makes possible the in vivo study of relations between hormone dependency and the steroid hormone receptor content of the tumors. The macroscopic growth curve of the transplanted tumors during endocrine therapy will reflect...... the hormone dependency. The results can be compared with successive steroid hormone receptor determinations in the tumor tissue....

  18. Repeatability of oral fluid collection methods for THC measurement.

    NARCIS (Netherlands)

    Houwing, S. Smink, B.E. Legrand, S.-A. Mathijssen, M.P.M. Verstraete, A.G. & Brookhuis, K.A.

    2013-01-01

    The study objective was to determine the influence of sample collection for two different collection methods on THC concentrations and to compare THC concentrations collected by both methods. A total of 136 pairs of oral fluid samples from subjects who had recently smoked Cannabis were obtained by

  19. Repeatability of oral fluid collection methods for THC measurement

    NARCIS (Netherlands)

    Houwing, Sjoerd; Smink, Beitske E.; Legrand, Sara-Ann; Mathijssen, Rene P. M.; Verstraete, Alain G.; Brookhuis, Karel A.

    2012-01-01

    Study objectives: To determine the influence of sample collection for two different collection methods on THC concentrations and to compare THC concentrations collected by both methods. Methods: A total of 136 pairs of oral fluid samples from subjects who had recently smoked Cannabis were obtained

  20. Total Hydrocarbon (THC) of the Lower Kolo Creek in Otuogidi ...

    African Journals Online (AJOL)

    Aquatic wild life and habitats are affected by pollution through physical contact, absorption and inhalation. This study was carried out to investigate the THC values of lower Kolo creek in Otuogidi Bayelsa State – Nigeria for 12 months. THC of sediment and water covering wet and dry season obtained from the creek were ...

  1. Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits

    Science.gov (United States)

    Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.

    2012-01-01

    Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…

  2. Dietary arginine requirements for growth are dependent on the rate of citrulline production in mice.

    Science.gov (United States)

    Marini, Juan C; Agarwal, Umang; Didelija, Inka C

    2015-06-01

    In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. The objective of this study was to determine the metabolic and molecular basis for the requirement of arginine in 2 mouse strains. Institute of Cancer Research (ICR) and C57BL/6 (BL6) male mice were fed arginine-free or arginine-sufficient diets (Expt. 1) or 1 of 7 diets with increasing arginine concentration (from 0- to 8-g/kg diet, Expt. 2) between day 24 and 42 of life to determine the arginine requirements for growth. Citrulline production and "de novo" arginine synthesis were measured with use of stable isotopes, and arginine requirements were determined by breakpoint analysis and enzyme expression by reverse transcriptase-polymerase chain reaction. In Expt. 1, ICR mice grew at the same rate regardless of the arginine concentration of the diet (mean ± SE: 0.66 ± 0.04 g/d, P = 0.80), but BL6 mice had a reduced growth rate when fed the arginine-free diet (0.25 ± 0.02 g/d, P requirement for growth of BL6 mice was met with 2.32 ± 0.39 g arginine/kg diet; for ICR mice, however, no breakpoint was found. Our data indicate that a reduced expression of OTC in BL6 mice translates into a reduced production of citrulline and arginine compared with ICR mice, which results in a dietary arginine requirement for growth in BL6 mice, but not in ICR mice. © 2015 American Society for Nutrition.

  3. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice.

    Directory of Open Access Journals (Sweden)

    Frank A J A Bodewes

    Full Text Available The cause of Cystic fibrosis liver disease (CFLD, is unknown. It is well recognized that hepatic exposure to hydrophobic bile salts is associated with the development of liver disease. For this reason, we hypothesize that, CFTR dependent variations, in the hepatic handling of hydrophobic bile salts, are related to the development CFLD. To test our hypothesis we studied, in Cftr-/- and control mice, bile production, bile composition and liver pathology, in normal feeding condition and during cholate exposure, either acute (intravenous or chronic (three weeks via the diet. In Cftr-/- and control mice the basal bile production was comparable. Intravenous taurocholate increased bile production to the same extent in Cftr-/- and control mice. However, chronic cholate exposure increased the bile flow significantly less in Cftr-/- mice than in controls, together with significantly higher biliary bile salt concentration in Cftr-/- mice. Prolonged cholate exposure, however, did not induce CFLD like pathology in Cftr-/- mice. Chronic cholate exposure did induce a significant increase in liver mass in controls that was absent in Cftr-/- mice. Chronic cholate administration induces a cystic fibrosis-specific hepatobiliary phenotype, including changes in bile composition. These changes could not be associated with CFLD like pathological changes in CF mouse livers. However, chronic cholate administration induces liver growth in controls that is absent in Cftr-/- mice. Our findings point to an impaired adaptive homeotrophic liver response to prolonged hydrophobic bile salt exposure in CF conditions.

  4. Transitional Home Care program utilizing the Integrated Practice Unit concept (THC-IPU: Effectiveness in improving acute hospital utilization

    Directory of Open Access Journals (Sweden)

    Lian Leng Low

    2017-08-01

    Full Text Available Background: Organizing care into integrated practice units (IPUs around conditions and patient segments has been proposed to increase value. We organized transitional care into an IPU (THC-IPU for a patient segment of functionally dependent patients with limited community ambulation. Methods: 1,166 eligible patients were approached for enrolment into THC-IPU. THC-IPU patients received a comprehensive assessment within two weeks of discharge; medication reconciliation; education using standardized action plans and a dedicated nurse case manager for up to 90 days after discharge. Patients who rejected enrolment into THC-IPU received usual post-discharge care planned by their attending hospital physician, and formed the control group. The primary outcome was the proportion of patients with at least one unscheduled readmission within 30 days after discharge. Results: We found a statistically significant reduction in 30-day readmissions and emergency department visits in patients on THC-IPU care compared to usual care, even after adjusting for confounders. Conclusion: Delivering transitional care to patients with functional dependence in the form of home visits and organized into an IPU reduced acute hospital utilization in this patient segment. Extending the program into the pre-hospital discharge phase to include discharge planning can have incremental effectiveness in reducing avoidable hospital readmissions.

  5. Transitional Home Care Program Utilizing the Integrated Practice Unit Concept (THC-IPU): Effectiveness in Improving Acute Hospital Utilization.

    Science.gov (United States)

    Low, Lian Leng; Tay, Wei Yi; Tan, Shu Yun; Chia, Elian Hui San; Towle, Rachel Marie; Lee, Kheng Hock

    2017-08-14

    Organizing care into integrated practice units (IPUs) around conditions and patient segments has been proposed to increase value. We organized transitional care into an IPU (THC-IPU) for a patient segment of functionally dependent patients with limited community ambulation. 1,166 eligible patients were approached for enrolment into THC-IPU. THC-IPU patients received a comprehensive assessment within two weeks of discharge; medication reconciliation; education using standardized action plans and a dedicated nurse case manager for up to 90 days after discharge. Patients who rejected enrolment into THC-IPU received usual post-discharge care planned by their attending hospital physician, and formed the control group. The primary outcome was the proportion of patients with at least one unscheduled readmission within 30 days after discharge. We found a statistically significant reduction in 30-day readmissions and emergency department visits in patients on THC-IPU care compared to usual care, even after adjusting for confounders. Delivering transitional care to patients with functional dependence in the form of home visits and organized into an IPU reduced acute hospital utilization in this patient segment. Extending the program into the pre-hospital discharge phase to include discharge planning can have incremental effectiveness in reducing avoidable hospital readmissions.

  6. Cannabidiol potentiates Δ⁹-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats.

    Science.gov (United States)

    Klein, Charlotte; Karanges, Emily; Spiro, Adena; Wong, Alexander; Spencer, Jarrah; Huynh, Thanh; Gunasekaran, Nathan; Karl, Tim; Long, Leonora E; Huang, Xu-Feng; Liu, Kelly; Arnold, Jonathon C; McGregor, Iain S

    2011-11-01

    The interactions between Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) during chronic treatment, and at equivalent doses, are not well characterised in animal models. The aim of this study is to examine whether the behavioural effects of THC, and blood and brain THC levels are affected by pre-treatment with equivalent CBD doses. Adolescent rats were treated with ascending daily THC doses over 21 days (1 then 3 then 10 mg/kg). Some rats were given equivalent CBD doses 20 min prior to each THC injection to allow examination of possible antagonistic effects of CBD. During dosing, rats were assessed for THC and CBD/THC effects on anxiety-like behaviour, social interaction and place conditioning. At the end of dosing, blood and brain levels of THC, and CB(1) and 5-HT(1A) receptor binding were assessed. CBD potentiated an inhibition of body weight gain caused by chronic THC, and mildly augmented the anxiogenic effects, locomotor suppressant effects and decreased social interaction seen with THC. A trend towards place preference was observed in adolescent rats given CBD/THC but not those given THC alone. With both acute and chronic administration, CBD pre-treatment potentiated blood and brain THC levels, and lowered levels of THC metabolites (THC-COOH and 11-OH-THC). CBD co-administration did not alter the THC-induced decreases in CB(1) receptor binding and no drug effects on 5-HT(1A) receptor binding were observed. CBD can potentiate the psychoactive and physiological effects of THC in rats, most likely by delaying the metabolism and elimination of THC through an action on the CYP450 enzymes that metabolise both drugs.

  7. Separate and combined effects of the GABAB agonist baclofen and Δ9-THC in humans discriminating Δ9-THC

    Science.gov (United States)

    Lile, Joshua A.; Kelly, Thomas H.; Hays, Lon R.

    2012-01-01

    Background Our previous research with the GABA reuptake inhibitor tiagabine suggested the involvement GABA in the interoceptive effects of Δ9-THC. The aim of the present study was to determine the potential involvement of the GABAB receptor subtype by assessing the separate and combined effects of the GABAB-selective agonist baclofen and Δ9-THC using pharmacologically specific drug-discrimination procedures. Methods Eight cannabis users learned to discriminate 30 mg oral Δ9-THC from placebo and then received baclofen (25 and 50 mg), Δ9-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Results Δ9-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug), elevated heart rate and impaired rate and accuracy on a psychomotor performance task. Baclofen alone (50 mg) substituted for the Δ9-THC discriminative stimulus, and both baclofen doses shifted the discriminative-stimulus effects of Δ9-THC leftward/upward. Similar results were observed on other cannabinoid-sensitive outcomes, although baclofen generally did not engender Δ9-THC-like subjective responses when administered alone. Conclusions These results suggest that the GABAB receptor subtype is involved in the abuse-related effects of Δ9-THC, and that GABAB receptors were responsible, at least in part, for the effects of tiagabine-induced elevated GABA on cannabinoid-related behaviors in our previous study. Future research should test GABAergic compounds selective for other GABA receptor subtypes (i.e., GABAA) to determine the contribution of the different GABA receptors in the effects of Δ9-THC, and by extension cannabis, in humans. PMID:22699093

  8. Multifactorial Control of Autoimmune Insulin-Dependent Diabetes in NOD Mice: Lessons for IBD

    Directory of Open Access Journals (Sweden)

    Edward H Leiter

    1995-01-01

    Full Text Available Development of autoimmune insulin-dependent diabetes mellitus in nonobese diabetic (NOD mice is an example of a complex multifactorial disease with strong genetic and environmental components. As such, this model may provide insight not only into mouse models of inflammatory bowel disease, but also may provide insight into how the environment may interact with the genome to initiate pathogenesis in humans. NOD mice are characterized by accumulation of unusually high percentages of T lymphocytes in lymphoid organs. Pancreatic beta cell destruction in NOD mice is T lymphocyte-mediated. Complex interactions between the inherently diabetogenic major histocompatibility complex (MHC haplotype of this strain and non-MHC-associated insulin-dependent diabetes susceptibility genes (Idd are required for cytopathic activation of the leukocytic infiltrates in the pancreas (insulitis. Penetrance of the diabetogenic Idd genes is strongly influenced by both dietary and microbiological factors in the environment. Genetic susceptibility is transmitted by hemopoietic stem cells, and specific defects in T immunoregulation have been traced to defects in the development and function of marrow-derived antigen presenting cells. The spontaneous development of diabetes in NOD mice is different from experimentally induced forms of diabetes in mice in several important respects. In addition to the pathognomic development of pancreatic insulitis, the generalized loss of immunoregulatory control of autoreactive T lymphocytes in NOD mice is reflected by development of leukocytic infiltrates into a plethora of organ systems including the submandibular salivary glands, thyroid glands, kidneys and, occasionally, the colon.

  9. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats.

    Science.gov (United States)

    Flax, Shaun M; Wakeford, Alison G P; Cheng, Kejun; Rice, Kenner C; Riley, Anthony L

    2015-09-01

    The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.

  10. Thymus dependency of induced immune responses against Hymenolepis nana (cestode) using congenitally athymic nude mice.

    Science.gov (United States)

    Ito, A

    1985-01-01

    Anti-parasite antibody responses were compared among several strains of mice experimentally infected with the dwarf tapeworm, Hymenolepis nana. The antibody titres were highly variable among the mouse strains in addition to variation in worm fecundity and longevity. The influence of the thymus on both infection and anti-parasite antibody production (especially of IgE isotype) was studied by the use of congenitally athymic (nu/nu) nude and their phenotypically normal (nu/+) CD-1(ICR) mice infected with H. nana. All nude (nu/nu) mice harboured fully mature 70 day old adult tapeworms of the first generation derived from eggs initially given on day 0. In addition, they contained (a) younger second generation adults derived from autoinfection and present in the intestinal lumen, (b) a number of abnormally large (about 1-2 mm in diameter) balloon like, fluid filled cysticercoids in not only the intestinal tissue but also parenteral tissues such as the mesenteric lymph nodes, liver and lung, and (c) normal cysticercoids derived from challenging eggs in the intestinal tissue. Infected nude mice produced no antibodies detectable by PCA (IgE) and double diffusion (IgG) tests. In contrast, normal (nu/+) mice and nude mice reconstituted with thymocytes expelled almost all luminal adults of the primary infection by day 70 and produced antibodies to extracts of adult H. nana. Neither autoinfection nor reinfection following egg challenge occurred in any of these normal (nu/+) and reconstituted nude mice. Therefore, acquired immune responses against H. nana (as assessed by resistance not only to the tissue phase measured by the failure of tissue cysticercoid recovery from egg challenge, but also to the lumen phase assessed by the failure of autoinfection adult recovery and 'worm expulsion' of the initially established adults) are all thymus-dependent in mice. The antibody responses examined are also thymus-dependent. PMID:4006301

  11. Exercise increases plasma THC concentrations in regular cannabis users.

    Science.gov (United States)

    Wong, Alexander; Montebello, Mark E; Norberg, Melissa M; Rooney, Kieron; Lintzeris, Nicholas; Bruno, Raimondo; Booth, Jessica; Arnold, Jonathon C; McGregor, Iain S

    2013-12-01

    The major psychoactive ingredient of cannabis, Δ(9)-tetrahydrocannabinol (THC) accumulates in fat tissue from where it slowly diffuses back into blood. THC pre-treated rats can show elevated plasma cannabinoid levels when subjected to conditions that promote fat utilization, such as fasting. Here we examine whether fasting and exercise increase plasma THC concentrations in regular cannabis users. Fourteen regular cannabis users completed 35 min of exercise on a stationary bicycle in either a fed or overnight fasted state. Plasma cannabinoid levels were assessed prior to exercise, immediately post-exercise and 2h post-exercise. Plasma samples were also analyzed for indices of lipolysis (free fatty acids (FFA) and glycerol). Exercise induced a small, statistically significant increase in plasma THC levels accompanied by increased plasma FFA and glycerol levels. Exercise-induced increases in plasma THC concentrations were positively correlated with body mass index. Fasting induced a significant increase in plasma FFA levels, and a lowering of blood glucose, but did not significantly alter plasma cannabinoid levels. Here we demonstrate that exercise enhances plasma THC levels in regular cannabis users. The lack of a fasting effect may reflect the modest duration of fasting used which was associated with only a modest increase in fat utilization relative to exercise. Overall, these results suggest that exercise may elevate blood THC levels by releasing dormant THC from fat stores. These data suggest the interpretation of blood THC levels in roadside and workplace tests might be complicated by recent exercise. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  13. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The

  14. Development and validation of an automated liquid-liquid extraction GC/MS method for the determination of THC, 11-OH-THC, and free THC-carboxylic acid (THC-COOH) from blood serum.

    Science.gov (United States)

    Purschke, Kirsten; Heinl, Sonja; Lerch, Oliver; Erdmann, Freidoon; Veit, Florian

    2016-06-01

    The analysis of Δ(9)-tetrahydrocannabinol (THC) and its metabolites 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) from blood serum is a routine task in forensic toxicology laboratories. For examination of consumption habits, the concentration of the phase I metabolite THC-COOH is used. Recommendations for interpretation of analysis values in medical-psychological assessments (regranting of driver's licenses, Germany) include threshold values for the free, unconjugated THC-COOH. Using a fully automated two-step liquid-liquid extraction, THC, 11-OH-THC, and free, unconjugated THC-COOH were extracted from blood serum, silylated with N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and analyzed by GC/MS. The automation was carried out by an x-y-z sample robot equipped with modules for shaking, centrifugation, and solvent evaporation. This method was based on a previously developed manual sample preparation method. Validation guidelines of the Society of Toxicological and Forensic Chemistry (GTFCh) were fulfilled for both methods, at which the focus of this article is the automated one. Limits of detection and quantification for THC were 0.3 and 0.6 μg/L, for 11-OH-THC were 0.1 and 0.8 μg/L, and for THC-COOH were 0.3 and 1.1 μg/L, when extracting only 0.5 mL of blood serum. Therefore, the required limit of quantification for THC of 1 μg/L in driving under the influence of cannabis cases in Germany (and other countries) can be reached and the method can be employed in that context. Real and external control samples were analyzed, and a round robin test was passed successfully. To date, the method is employed in the Institute of Legal Medicine in Giessen, Germany, in daily routine. Automation helps in avoiding errors during sample preparation and reduces the workload of the laboratory personnel. Due to its flexibility, the analysis system can be employed for other liquid-liquid extractions as

  15. Effects of Brugmansia arborea Extract and Its Secondary Metabolites on Morphine Tolerance and Dependence in Mice

    OpenAIRE

    Mattioli, Laura; Bracci, Antonio; Titomanlio, Federica; Perfumi, Marina; De Feo, Vincenzo

    2012-01-01

    The aim of the present study was to investigate, in vivo, the effect of a Brugmansia arborea extract (BRU), chromatographic fractions (FA and FNA), and isolated alkaloids on the expression and the acquisition of morphine tolerance and dependence. Substances were acutely (for expression) or repeatedly (for acquisition) administered in mice treated with morphine twice daily for 5 or 6 days, in order to make them tolerant or dependent. Morphine tolerance was assessed using the tail-flick test at...

  16. Doublecortin knockout mice show normal hippocampal-dependent memory despite CA3 lamination defects.

    Directory of Open Access Journals (Sweden)

    Johanne Germain

    Full Text Available Mutations in the human X-linked doublecortin gene (DCX cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability.

  17. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.

    Science.gov (United States)

    Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L

    2014-06-10

    When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The effect of amitriptyline on inhibitory avoidance in mice is dose-dependent.

    Science.gov (United States)

    Parra, Andrés; Vinader-Caerols, Concepción; Ferrer-Añó, Aránzazu; Urquiza, Adoración; Monleón, Santiago

    2009-11-01

    The purpose of the present work was to study the dose-effect relationship of the antidepressant amitriptyline on inhibitory avoidance in male and female mice. Subjects received physiological saline or 2.5, 5, 10 or 20 mg/kg of amitriptyline hydrochloride 30 min before the training phase, and were subjected to the test phase 24 h later. Results showed a clear impairing effect of amitriptyline on inhibitory avoidance in both male and female mice, and that the effect is dose-dependent.

  19. Cyclooxygenase-2-dependent prostacyclin formation and blood pressure homeostasis: targeted exchange of cyclooxygenase isoforms in mice

    DEFF Research Database (Denmark)

    Yu, Ying; Stubbe, Jane; Ibrahim, Salam

    2010-01-01

    RATIONALE: Cyclooxygenase (COX)-derived prostanoids (PGs) are involved in blood pressure homeostasis. Both traditional nonsteroidal antiinflammatory drugs (NSAIDs) that inhibit COX-1 and COX-2 and NSAIDs designed to be selective for inhibition of COX-2 cause sodium retention and elevate blood...... pressure. OBJECTIVE: To elucidate the role of COX-2 in blood pressure homeostasis using COX-1>COX-2 mice, in which the COX-1 expression is controlled by COX-2 regulatory elements. METHODS AND RESULTS: COX-1>COX-2 mice developed systolic hypertension relative to wild types (WTs) on a high-salt diet (HSD...... and again the increase in formation of PGI(2) observed in WTs was suppressed in cells derived from both mutants. Intramedullary infusion of the PGI(2) receptor agonist increased urine volume and sodium excretion in mice. CONCLUSIONS: These studies suggest that dysregulated expression of the COX-2 dependent...

  20. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    Science.gov (United States)

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.

  1. Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Tadafumi Yokoyama

    Full Text Available The Wiskott-Aldrich syndrome (WAS is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg obtained from Was gene knockout (WKO mice and found that their numbers were significantly lower in these mice compared to wild type (WT controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS.

  2. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Keizo Takao

    Full Text Available Calcium-calmodulin dependent protein kinase IV (CaMKIV is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.

  3. Adenomatous polyposis coli heterozygous knockout mice display hypoactivity and age-dependent working memory deficits

    Directory of Open Access Journals (Sweden)

    Hisatsugu eKoshimizu

    2011-12-01

    Full Text Available A tumor suppressor gene, Adenomatous polyposis coli (Apc, is expressed in the nervous system from embryonic to adulthood stage, and transmits the Wnt signaling pathway in which schizophrenia susceptibility genes, including T-cell factor 4 (TCF4 and calcineurin (CN, are involved. However, the functions of Apc in the nervous system are largely unknown. In this study, as the first evaluation of Apc function in the nervous system, we have investigated the behavioral significance of the Apc gene, applying a battery of behavioral tests to Apc heterozygous knockout (Apc+/− mice. Apc+/− mice showed no significant impairment in neurological reflexes or sensory and motor abilities. In various tests, including light/dark transition, open-field, social interaction, eight-arm radial maze, and fear conditioning tests, Apc+/− mice exhibited hypoactivity. In the eight-arm radial maze, Apc+/− mice 7 to 11 weeks of age displayed almost normal performance, whereas those 11 to 14 weeks of age showed a severe performance deficit in working memory, suggesting that Apc is involved in working memory performance in an age-dependent manner. The possibility that anemia, which Apc+/− mice develop by 17 weeks of age, impairs working memory performance, however, cannot be excluded. Our results suggest that Apc plays a role in the regulation of locomotor activity and presumably working memory performance.

  4. Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice

    Science.gov (United States)

    Yokoyama, Tadafumi; Yoshizaki, Ayumi; Simon, Karen L.; Kirby, Martha R.; Anderson, Stacie M.; Candotti, Fabio

    2015-01-01

    The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS. PMID:26448644

  5. Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice.

    Science.gov (United States)

    Voelkl, Jakob; Alesutan, Ioana; Leibrock, Christina B; Quintanilla-Martinez, Leticia; Kuhn, Volker; Feger, Martina; Mia, Sobuj; Ahmed, Mohamed S E; Rosenblatt, Kevin P; Kuro-O, Makoto; Lang, Florian

    2013-02-01

    Klotho is a potent regulator of 1,25-hydroxyvitamin D3 [1,25(OH)2D3] formation and calcium-phosphate metabolism. Klotho-hypomorphic mice (kl/kl mice) suffer from severe growth deficits, rapid aging, hyperphosphatemia, hyperaldosteronism, and extensive vascular and soft tissue calcification. Sequelae of klotho deficiency are similar to those of end-stage renal disease. We show here that the mineralocorticoid receptor antagonist spironolactone reduced vascular and soft tissue calcification and increased the life span of kl/kl mice, without significant effects on 1,25(OH)2D3, FGF23, calcium, and phosphate plasma concentrations. Spironolactone also reduced the expression of osteoinductive Pit1 and Tnfa mRNA, osteogenic transcription factors, and alkaline phosphatase (Alpl) in calcified tissues of kl/kl mice. In human aortic smooth muscle cells (HAoSMCs), aldosterone dose-dependently increased PIT1 mRNA expression, an effect paralleled by increased expression of osteogenic transcription factors and enhanced ALP activity. The effects of aldosterone were reversed by both spironolactone treatment and PIT1 silencing and were mitigated by FGF23 cotreatment in HAoSMCs. In conclusion, aldosterone contributes to vascular and soft tissue calcification, an effect due, at least in part, to stimulation of spironolactone-sensitive, PIT1-dependent osteoinductive signaling.

  6. Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2–dependent fibrinolysis

    Science.gov (United States)

    Jacovina, Andrew T.; Deora, Arunkumar B.; Ling, Qi; Broekman, M. Johan; Almeida, Dena; Greenberg, Caroline B.; Marcus, Aaron J.; Smith, Jonathan D.; Hajjar, Katherine A.

    2009-01-01

    When plasma levels of homocysteine (HC), a thiol amino acid formed upon methionine demethylation, exceed 12 μM, individuals are at increased risk of developing large vessel atherothrombosis and small vessel dysfunction. The annexin A2 complex (termed “A2”) is the cell surface coreceptor for plasminogen and TPA and accelerates the catalytic activation of plasmin, the major fibrinolytic agent in mammals. We previously showed that HC prevents A2-mediated, TPA-dependent activation of plasminogen in vitro by disulfide derivatization of the “tail” domain of A2. We also demonstrated that fibrinolysis and angiogenesis are severely impaired in A2-deficient mice. We now report here that, although hyperhomocysteinemic mice had a normal coagulation profile and normal platelet function, fibrin accumulated in their tissues due to reduced perivascular fibrinolytic activity and angiogenesis was impaired. A2 isolated from hyperhomocysteinemic mice failed to fully support TPA-dependent plasmin activation. However, infusion of hyperhomocysteinemic mice with fresh recombinant A2, which localized to neoangiogenic endothelial cells, resulted in normalization of angiogenesis and disappearance of peri- and intravascular fibrin. We therefore conclude that hyperhomocysteinemia impairs postnatal angiogenesis by derivatizing A2, preventing perivascular fibrinolysis, and inhibiting directed endothelial cell migration. These findings provide a mechanistic explanation for microvascular dysfunction and macrovascular occlusion in individuals with hyperhomocysteinemia. PMID:19841537

  7. Rats that acquire a THC discrimination more rapidly are more sensitive to THC and faster in reaching operant criteria.

    Science.gov (United States)

    O'Neal, M F; Means, L W; Porter, J H; Rosecrans, J A; Mokler, D J

    1988-01-01

    Male Sprague-Dawley rats were trained to discriminate delta-9-tetrahydrocannabinol (THC) from saline in a two-lever operant task using successive training criteria. Untreated animals were first shaped to barpress for a milk reward with one lever available. As each animal reached criterion the second lever was installed, the first lever was removed, and the animal was treated with 3.0 mg/kg THC 30 min prior to barpress training. When criterion on the second lever was reached the rats were trained to discriminate THC from vehicle injections with both levers available. Following acquisition of the discrimination, test doses of THC at 0.00, 0.375, 0.75, 1.5 and 3.0 mg/kg revealed that the half of the 24 rats who reached criterion (STC) more rapidly exhibited significantly greater sensitivity to THC at the 0.75 mg/kg test dose than did the 12 slow-learner rats; the former group generated an ED50 of 0.77 mg/kg, whereas the ED50 for the later group was 1.63 mg/kg. The fast learners acquired both the initial barpress response and the discrimination more rapidly than did slow-learners. Results suggest that some animals are inherently more sensitive to THC and faster in meeting learning criteria.

  8. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin

    DEFF Research Database (Denmark)

    Soliz, Jorge; Thomsen, Jonas Juhl; Soulage, Christophe

    2009-01-01

    that women cope better than men with reduced oxygen supply (as observed at high altitude), we analyzed the hypoxic ventilatory response in Epo-overexpressing transgenic male and female mice with high Epo levels in brain and plasma (Tg6) or in wild-type animals injected with recombinant human Epo (rh....... Alterations of catecholamines in the brain stem's respiratory centers were also sex dependent. In a proof-of-concept study, human volunteers were intravenously injected with 5,000 units rhEpo and subsequently exposed to 10% oxygen. Compared with men, the hypoxic ventilatory response was significantly...... increased in women. We conclude that Epo exerts a sex-dependent impact on hypoxic ventilation improving the response in female mice and in women that most probably involves sexual hormones. Our data provides an explanation as to why women are less susceptible to hypoxia-associated syndromes than men....

  9. Age-dependent chloride channel expression in skeletal muscle fibres of normal and HSALR myotonic mice

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2013-01-01

    We combine electrophysiological and optical techniques to investigate the role that the expression of chloride channels (ClC-1) plays on the age-dependent electrical properties of mammalian muscle fibres. To this end, we comparatively evaluate the magnitude and voltage dependence of chloride currents (ICl), as well as the resting resistance, in fibres isolated from control and human skeletal actin (HSA)LR mice (a model of myotonic dystrophy) of various ages. In control mice, the maximal peak chloride current ([peak-ICl]max) increases from −583 ± 126 to −956 ± 260 μA cm−2 (mean ± SD) between 3 and 6 weeks old. Instead, in 3-week-old HSALR mice, ICl are significantly smaller (−153 ± 33 μA cm−2) than in control mice, but after a long period of ∼14 weeks they reach statistically comparable values. Thus, the severe ClC-1 channelopathy in young HSALR animals is slowly reversed with aging. Frequency histograms of the maximal chloride conductance (gCl,max) in fibres of young HSALR animals are narrow and centred in low values; alternatively, those from older animals show broad distributions, centred at larger gCl,max values, compatible with mosaic expressions of ClC-1 channels. In fibres of both animal strains, optical data confirm the age-dependent increase in gCl, and additionally suggest that ClC-1 channels are evenly distributed between the sarcolemma and transverse tubular system membranes. Although gCl is significantly depressed in fibres of young HSALR mice, the resting membrane resistance (Rm) at −90 mV is only slightly larger than in control mice due to upregulation of a Rb-sensitive resting conductance (gK,IR). In adult animals, differences in Rm are negligible between fibres of both strains, and the contributions of gCl and gK,IR are less altered in HSALR animals. We surmise that while hyperexcitability in young HSALR mice can be readily explained on the basis of reduced gCl, myotonia in adult HSALR animals may be explained on the basis of a

  10. Luteolin Inhibits Microglia and Alters Hippocampal-Dependent Spatial Working Memory in Aged Mice123

    OpenAIRE

    Jang, Saebyeol; Dilger, Ryan N.; Johnson, Rodney W.

    2010-01-01

    A dysregulated overexpression of inflammatory mediators by microglia may facilitate cognitive aging and neurodegeneration. Considerable evidence suggests the flavonoid luteolin has antiinflammatory effects, but its ability to inhibit microglia, reduce inflammatory mediators, and improve hippocampal-dependent learning and memory in aged mice is unknown. In initial studies, pretreatment of BV-2 microglia with luteolin inhibited the induction of inflammatory genes and the release of inflammatory...

  11. Role of state-dependent learning in the cognitive effects of caffeine in mice

    OpenAIRE

    Sanday, Leandro [UNIFESP; Zanin, Karina Agustini [UNIFESP; Patti, Camilla de Lima [UNIFESP; Fernandes-Santos, Luciano [UNIFESP; Oliveira, Larissa C. [UNIFESP; Longo, Beatriz Monteiro [UNIFESP; Andersen, Monica Levy [UNIFESP; Tufik, Sergio [UNIFESP; Frussa-Filho, Roberto [UNIFESP

    2013-01-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine be...

  12. B16 melanoma tumor growth is delayed in mice in an age-dependent manner

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2012-08-01

    Full Text Available A major risk factor for cancer is increasing age, which suggests that syngeneic tumor implants in old mice would grow more rapidly. However, various reports have suggested that old mice are not as permissive to implanted tumor cells as young mice. In order to determine and characterize the age-related response to B16 melanoma, we implanted 5×105 tumor cells into 8, 16, 24, and 32-month-old male C57BL/6 (B6 and C57BL/6×BALB/c F1 (CB6 F1 mice subcutaneously in the inguinal and axillary spaces, or intradermally in the lateral flank. Results showed decreased tumor volume with increasing age, which varied according to mouse genetic background and the implanted site. The B6 strain showed robust tumor growth at 8 months of age at the inguinal implantation site, with an average tumor volume of 1341.25 mm3. The 16, 24, and 32-month age groups showed a decrease in tumor growth with tumor volumes of 563.69, 481.02, and 264.55 mm3, respectively (p≤0.001. The axillary implantation site was less permissive in 8-month-old B6 mice with an average tumor volume of 761.52 mm3. The 24- and 32-month age groups showed a similar decrease in tumor growth with tumor volumes of 440 and 178.19 mm3, respectively (p≤0.01. The CB6F1 strain was not as tumor permissive at 8 months of age as B6 mice with average tumor volumes of 446.96 and 426.91 mm3 for the inguinal and axillary sites, respectively. There was a decrease in tumor growth at 24 months of age at both inguinal and axillary sites with an average tumor volume of 271.02 and 249.12 mm3, respectively (p≤0.05. The strain dependence was not apparent in 8-month-old mice injected intradermally with B16 melanoma cells, with average tumor volumes of 736.82 and 842.85 mm3 for B6 and CB6 F1, respectively. However, a strain difference was seen in 32-month-old B6 mice with an average decrease in tumor volume of 250.83 mm3 (p≤0.01. In contrast, tumor growth significantly decreased earlier in CB6 F1 mice with average

  13. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Dominguez-Bello, Maria Gloria; Kronsteiner, Barbara; Carbo, Adria; Lu, Pinyi; Viladomiu, Monica; Pedragosa, Mireia; Zhang, Xiaoying; Sobral, Bruno W; Mane, Shrinivasrao P; Mohapatra, Saroj K; Horne, William T; Guri, Amir J; Groeschl, Michael; Lopez-Velasco, Gabriela; Hontecillas, Raquel

    2012-01-01

    There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag(-) strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99-305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.

  14. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Josep Bassaganya-Riera

    Full Text Available BACKGROUND: There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag(- strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99-305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM and increased adipose tissue regulatory T cells (Treg cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4 in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. CONCLUSIONS/SIGNIFICANCE: Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.

  15. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis.

    Science.gov (United States)

    Swindell, William R; Michaels, Kellie A; Sutter, Andrew J; Diaconu, Doina; Fritz, Yi; Xing, Xianying; Sarkar, Mrinal K; Liang, Yun; Tsoi, Alex; Gudjonsson, Johann E; Ward, Nicole L

    2017-03-09

    Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. RNA-seq was used to evaluate the psoriasiform phenotype elicited by 6 days of Aldara (5% IMQ) treatment in both sexes of seven mouse strains (C57BL/6 J (B6), BALB/cJ, CD1, DBA/1 J, FVB/NJ, 129X1/SvJ, and MOLF/EiJ). In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and B6). Compared with BALB/c, the B6 phenotype showed increased expression of genes associated with DNA replication, IL-17A stimulation, and activated CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells. Although IMQ-induced expression shifts mirrored psoriasis, responses in BALB/c, 129/SvJ, DBA, and MOLF mice were more consistent with other human skin conditions (e.g., wounds or infections). IMQ responses in B6 mice were most consistent with human psoriasis and best replicated expression patterns specific to psoriasis lesions. These findings demonstrate strain-dependent aspects of IMQ dermatitis in mice. We have shown that IMQ does not uniquely model psoriasis but in fact triggers a core set of pathways active in diverse skin diseases. Nonetheless, our findings suggest that B6 mice provide a better background than other strains for modeling psoriasis disease mechanisms.

  16. Predictive model accuracy in estimating last Δ9-tetrahydrocannabinol (THC) intake from plasma and whole blood cannabinoid concentrations in chronic, daily cannabis smokers administered subchronic oral THC*

    Science.gov (United States)

    Karschner, Erin L.; Schwope, David M.; Schwilke, Eugene W.; Goodwin, Robert S.; Kelly, Deanna L.; Gorelick, David A.; Huestis, Marilyn A.

    2012-01-01

    Background Determining time since last cannabis/Δ9-tetrahydrocannabinol (THC) exposure is important in clinical, workplace, and forensic settings. Mathematical models calculating time of last exposure from whole blood concentrations typically employ a theoretical 0.5 whole blood-to-plasma (WB/P) ratio. No studies previously evaluated predictive models utilizing empirically-derived WB/P ratios, or whole blood cannabinoid pharmacokinetics after subchronic THC dosing. Methods Ten male chronic, daily cannabis smokers received escalating around-the-clock oral THC (40-120 mg daily) for 8 days. Cannabinoids were quantified in whole blood and plasma by two-dimensional gas chromatography-mass spectrometry. Results Maximum whole blood THC occurred 3.0 h after the first oral THC dose and 103.5 h (4.3 days) during multiple THC dosing. Median WB/P ratios were THC 0.63 (n=196), 11-hydroxy-THC 0.60 (n=189), and 11-nor-9-carboxy-THC (THCCOOH) 0.55 (n=200). Predictive models utilizing these WB/P ratios accurately estimated last cannabis exposure in 96% and 100% of specimens collected within 1-5 h after a single oral THC dose and throughout multiple dosing, respectively. Models were only 60% and 12.5% accurate 12.5 and 22.5 h after the last THC dose, respectively. Conclusions Predictive models estimating time since last cannabis intake from whole blood and plasma cannabinoid concentrations were inaccurate during abstinence, but highly accurate during active THC dosing. THC redistribution from large cannabinoid body stores and high circulating THCCOOH concentrations create different pharmacokinetic profiles than those in less than daily cannabis smokers that were used to derive the models. Thus, the models do not accurately predict time of last THC intake in individuals consuming THC daily. PMID:22464363

  17. Predictive model accuracy in estimating last Δ9-tetrahydrocannabinol (THC) intake from plasma and whole blood cannabinoid concentrations in chronic, daily cannabis smokers administered subchronic oral THC.

    Science.gov (United States)

    Karschner, Erin L; Schwope, David M; Schwilke, Eugene W; Goodwin, Robert S; Kelly, Deanna L; Gorelick, David A; Huestis, Marilyn A

    2012-10-01

    Determining time since last cannabis/Δ9-tetrahydrocannabinol (THC) exposure is important in clinical, workplace, and forensic settings. Mathematical models calculating time of last exposure from whole blood concentrations typically employ a theoretical 0.5 whole blood-to-plasma (WB/P) ratio. No studies previously evaluated predictive models utilizing empirically-derived WB/P ratios, or whole blood cannabinoid pharmacokinetics after subchronic THC dosing. Ten male chronic, daily cannabis smokers received escalating around-the-clock oral THC (40-120 mg daily) for 8 days. Cannabinoids were quantified in whole blood and plasma by two-dimensional gas chromatography-mass spectrometry. Maximum whole blood THC occurred 3.0 h after the first oral THC dose and 103.5h (4.3 days) during multiple THC dosing. Median WB/P ratios were THC 0.63 (n=196), 11-hydroxy-THC 0.60 (n=189), and 11-nor-9-carboxy-THC (THCCOOH) 0.55 (n=200). Predictive models utilizing these WB/P ratios accurately estimated last cannabis exposure in 96% and 100% of specimens collected within 1-5h after a single oral THC dose and throughout multiple dosing, respectively. Models were only 60% and 12.5% accurate 12.5 and 22.5h after the last THC dose, respectively. Predictive models estimating time since last cannabis intake from whole blood and plasma cannabinoid concentrations were inaccurate during abstinence, but highly accurate during active THC dosing. THC redistribution from large cannabinoid body stores and high circulating THCCOOH concentrations create different pharmacokinetic profiles than those in less than daily cannabis smokers that were used to derive the models. Thus, the models do not accurately predict time of last THC intake in individuals consuming THC daily. Published by Elsevier Ireland Ltd.

  18. Time- and temperature-dependent changes in cytochrome c oxidase activity and cyanide concentration in excised mice organs and mice cadavers.

    Science.gov (United States)

    Singh, Poonam; Rao, Pooja; Yadav, Shiv K; Gujar, Niranjan L; Satpute, Ravindra M; Bhattacharya, Rahul

    2015-01-01

    Postmortem stability of cyanide biomarkers is often disputed. We assessed the time and temperature-dependent changes in cytochrome c oxidase (CCO) activity and cyanide concentration in various organs of mice succumbing to cyanide. Immediately after death, excised mice organs and mice cadavers were stored at room temperature (35°C ± 5°C) or in frozen storage (-20°C ± 2°C). At various times after death, CCO activity and cyanide concentrations were measured in excised mice organs or organs removed from mice cadavers. The study revealed that (i) measuring both the biomarkers in mice cadavers was more reliable compared to excised mice organs, (ii) measuring temporal CCO activity and cyanide concentration in vital organs from mice cadavers (room temperature) was reliable up to 24 h, and (iii) CCO activity in the brain and lungs and cyanide concentration in organs from mice cadavers (frozen) were measurable beyond 21 days. This study will be helpful in postmortem determination of cyanide poisoning. © 2014 American Academy of Forensic Sciences.

  19. Strain-dependent differences in bone development, myeloid hyperplasia, morbidity and mortality in ptpn2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Florian Wiede

    Full Text Available Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2 have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2(ex2-/ex2- mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2(-/- mice (BALB/c-129SJ generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2(ex2-/ex2- mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2(-/- (BALB/c mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea evident in Ptpn2(-/- (BALB/c mice were not detected in Ptpn2(ex2-/ex2- mice. At 14 days of age, bone development was delayed in Ptpn2(-/- (BALB/c mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2(ex2-/ex2- mice. Ptpn2(ex2-/ex2- mice had defects in erythropoiesis and B cell development as evident in Ptpn2(-/- (BALB/c mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2(-/- (BALB/c mice. Moreover, thymic atrophy, another feature of Ptpn2(-/- (BALB/c mice, was delayed in Ptpn2(ex2-/ex2- mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2(-/- (BALB/c mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2(ex2-/ex2- mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent.

  20. Age-dependent relevance of endogenous 5-lipoxygenase derivatives in anxiety-like behavior in mice.

    Science.gov (United States)

    Leo, Luciana M; Almeida-Corrêa, Suellen; Canetti, Claudio A; Amaral, Olavo B; Bozza, Fernando A; Pamplona, Fabricio A

    2014-01-01

    When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.

  1. Sex-Dependent Effects of HO-1 Deletion from Adipocytes in Mice.

    Science.gov (United States)

    Hosick, Peter A; Weeks, Mary Frances; Hankins, Michael W; Moore, Kyle H; Stec, David E

    2017-03-11

    Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1 in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were determined every six weeks. Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue. These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a greater protective role in females as compared to males.

  2. Role of state-dependency in memory impairment induced by acute administration of midazolam in mice.

    Science.gov (United States)

    Sanday, Leandro; Zanin, Karina A; Patti, Camilla L; Tufik, Sergio; Frussa-Filho, Roberto

    2012-04-27

    Although the memory deficits produced by pre-training benzodiazepines administration have been extensively demonstrated both in humans and in animal studies, there is considerable controversy about the involvement of the state-dependency phenomenon on benzodiazepines-induced anterograde amnesia. The present study aimed to characterize the role of state-dependency on memory deficits induced by the benzodiazepine midazolam (MID) in mice submitted to the plus-maze discriminative avoidance task (PM-DAT). This animal model concomitantly evaluates learning and retention of discriminative avoidance task, exploratory habituation as well as anxiety-like behavior and motor activity. Mice received 2mg/kg MID before training and/or before testing in the PM-DAT. Pre-training (but not pre-test) MID administration impaired the retention of the discriminative avoidance task, which was not counteracted by a subsequent pre-test administration of this drug, thus refuting the role of state-dependency. Conversely, the pre-training administration of MID also led to an impairment of the habituation of exploration in the PM-DAT (an animal model of non-associative memory). This habituation deficit was state-dependent since it was absent in pre-training plus pre-test MID treated mice. Concomitantly, MID pre-training administration induced anxiolytic effects and diminished the aversive effectiveness of the aversive stimuli of the task, leading to an impairment of the acquisition of the discriminative avoidance task. Our findings suggest that pre-training benzodiazepine administration can impair the retention of different types of memory by producing specific deleterious effects on learning or by inducing state-dependent memory deficits. Copyright © 2012. Published by Elsevier Inc.

  3. Dose-related modulation of event-related potentials to novel and target stimuli by intravenous Δ⁹-THC in humans.

    Science.gov (United States)

    D'Souza, Deepak Cyril; Fridberg, Daniel J; Skosnik, Patrick D; Williams, Ashley; Roach, Brian; Singh, Nagendra; Carbuto, Michelle; Elander, Jacqueline; Schnakenberg, Ashley; Pittman, Brian; Sewell, R Andrew; Ranganathan, Mohini; Mathalon, Daniel

    2012-06-01

    Cannabinoids induce a host of perceptual alterations and cognitive deficits in humans. However, the neural correlates of these deficits have remained elusive. The current study examined the acute, dose-related effects of delta-9-tetrahydrocannabinol (Δ⁹-THC) on psychophysiological indices of information processing in humans. Healthy subjects (n=26) completed three test days during which they received intravenous Δ⁹-THC (placebo, 0.015 and 0.03 mg/kg) in a within-subject, double-blind, randomized, cross-over, and counterbalanced design. Psychophysiological data (electroencephalography) were collected before and after drug administration while subjects engaged in an event-related potential (ERP) task known to be a valid index of attention and cognition (a three-stimulus auditory 'oddball' P300 task). Δ⁹-THC dose-dependently reduced the amplitude of both the target P300b and the novelty P300a. Δ⁹-THC did not have any effect on the latency of either the P300a or P300b, or on early sensory-evoked ERP components preceding the P300 (the N100). Concomitantly, Δ⁹-THC induced psychotomimetic effects, perceptual alterations, and subjective 'high' in a dose-dependent manner. Δ⁹-THC -induced reductions in P3b amplitude correlated with Δ⁹-THC-induced perceptual alterations. Lastly, exploratory analyses examining cannabis use status showed that whereas recent cannabis users had blunted behavioral effects to Δ(9)-THC, there were no dose-related effects of Δ⁹-THC on P300a/b amplitude between cannabis-free and recent cannabis users. Overall, these data suggest that at doses that produce behavioral and subjective effects consistent with the known properties of cannabis, Δ⁹-THC reduced P300a and P300b amplitudes without altering the latency of these ERPs. Cannabinoid agonists may therefore disrupt cortical processes responsible for context updating and the automatic orientation of attention, while leaving processing speed and earlier sensory ERP

  4. Effects of ketamine and magnesium on morphine induced tolerance and dependence in mice

    Directory of Open Access Journals (Sweden)

    Bohlul Habibi Asl

    2005-05-01

    Full Text Available The goal of this study was to evaluate the effects of ketamine and magnesium on prevention of development of morphine tolerance and dependence in mice. In this study different groups of mice received morphine (50 mg/kg, sc + (saline 10ml/kg, morphine (50 mg/kg, sc + ketamine (25,50 or 75mg/kg, ip, morphine (50 mg/kg, sc + magnesium (10,20 or 40 mg/kg, ip, morphine (50 mg/kg, sc +ketamine (25 mg/kg, ip + magnesium (10 mg/kg, ip] once a day for four days. Tolerance was assessed by administration of morphine (9 mg/kg, ip and using hot plate test on fifth day. Withdrawal symptoms were assessed by administration of naloxone (4 mg/kg, ip two hours after co-administration of morphine with either ketamine or magnesium. It was found that pretreatment with ketamine or magnesium decreased the degree of tolerance and dependence. Additionally, co-administration of ketamine and magnesium before morphine administration decreased the tolerance and dependence significantly. From these results it may be concluded that administration of ketamine or magnesium alone or together could prevent the development of tolerance and dependence to the analgesic effects of morphine. These effects may be related to the N-Methyl-DAspartate (NMDA receptor antagonist behavior of ketamine and the ability of magnesium to block the Ca channel of NMDA receptors.

  5. Structural Phase Transition of ThC Under High Pressure.

    Science.gov (United States)

    Yu, Cun; Lin, Jun; Huai, Ping; Guo, Yongliang; Ke, Xuezhi; Yu, Xiaohe; Yang, Ke; Li, Nana; Yang, Wenge; Sun, Baoxing; Xie, Ruobing; Xu, Hongjie

    2017-03-07

    Thorium monocarbide (ThC) as a potential fuel for next generation nuclear reactor has been subjected to its structural stability investigation under high pressure, and so far no one reported the observation of structure phase transition induced by pressure. Here, utilizing the synchrotron X-ray diffraction technique, we for the first time, experimentally revealed the phase transition of ThC from B1 to P4/nmm at pressure of ~58 GPa at ambient temperature. A volume collapse of 10.2% was estimated during the phase transition. A modulus of 147 GPa for ThC at ambient pressure was obtained and the stoichiometry was attributed to the discrepancy of this value to the previous reports.

  6. Aggravation of Allergic Airway Inflammation by Cigarette Smoke in Mice Is CD44-Dependent.

    Directory of Open Access Journals (Sweden)

    Smitha Kumar

    Full Text Available Although epidemiological studies reveal that cigarette smoke (CS facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation.Wild type (WT and CD44 knock-out (KO mice were exposed simultaneously to house dust mite (HDM extract and CS. Inflammatory cells, hyaluronic acid (HA and osteopontin (OPN levels were measured in bronchoalveolar lavage fluid (BALF. Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures.In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice.We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics.

  7. Strong increase in total delta-THC in cannabis preparations sold in Dutch coffee shops.

    Science.gov (United States)

    Pijlman, F T A; Rigter, S M; Hoek, J; Goldschmidt, H M J; Niesink, R J M

    2005-06-01

    The total concentration of THC has been monitored in cannabis preparations sold in Dutch coffee shops since 1999. This annual monitoring was issued by the Ministry of Health after reports of increased potency. The level of the main psychoactive compound, Delta9-tetrahydrocannabinol (THC), is measured in marijuana and hashish. A comparison is made between imported and Dutch preparations, and between seasons. Samples of cannabis preparations from randomly selected coffee shops were analyzed using gas chromatography (GC-FID) for THC, CBD and CBN. In 2004, the average THC level of Dutch home-grown marijuana (Nederwiet) (20.4% THC) was significantly higher than that of imported marijuana (7.0% THC). Hashish derived from Dutch marijuana (Nederhasj) contained 39.3% THC in 2004, compared with 18.2% THC in imported hashish. The average THC percentage of Dutch marijuana, Dutch hashish and imported hashish was significantly higher than in previous years. It nearly doubled over 5 years. During this period, the THC percentage in imported marijuana remained unchanged. A higher price had to be paid for cannabis with higher levels of THC. Whether the increase in THC levels causes increased health risks for users can only be concluded when more data are available on adjusted patterns of use, abuse liability, bioavailability and levels of THC in the brain.

  8. Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice.

    Directory of Open Access Journals (Sweden)

    Olajumoke Omolara Ojo

    Full Text Available Salinomycin is used as an antibiotic in animal husbandry. Its implication in cancer therapy has recently been proposed. Present study evaluated the toxic effects of Salinomycin on male reproductive system of mice. Doses of 1, 3 or 5 mg/kg of Salinomycin were administered daily for 28 days. Half of the mice were sacrificed after 24 h of the last treatment and other half were sacrificed 28 days after withdrawal of treatment. Effects of SAL on body and reproductive organ weights were studied. Histoarchitecture of testis and epididymis was evaluated along with ultrastructural changes in Leydig cells. Serum and testicular testosterone and luteinizing hormones were estimated. Superoxide dismutase, reduced glutathione, lipid peroxidation, catalase and lactate dehydrogenase activities were measured. Spermatozoa count, morphology, motility and fertility were evaluated. Expression patterns of steroidogenic acute regulatory protein (StAR and cytochrome P450 side chain cleavage proteins (CYP11A1 were assessed by Western blotting. Salinomycin treatment was lethal to few mice and retarded body growth in others with decreased weight of testes and seminal vesicles in a dose dependent manner. Seminiferous tubules in testes were disrupted and the epithelium of epididymis showed frequent occurrence of vacuolization and necrosis. Leydig cells showed hypertrophied cytoplasm with shrunken nuclei, condensed mitochondria, proliferated endoplasmic reticulum and increased number of lipid droplets. Salinomycin decreased motility and spermatozoa count with increased number of abnormal spermatozoa leading to infertility. The testosterone and luteinizing hormone levels were decreased in testis but increased in serum at higher doses. Depletion of superoxide dismutase and reduced glutathione with increased lipid peroxidation in both testis and epididymis indicated generation of oxidative stress. Suppressed expression of StAR and CYP11A1 proteins indicates inhibition of

  9. Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice.

    Science.gov (United States)

    Jang, Saebyeol; Dilger, Ryan N; Johnson, Rodney W

    2010-10-01

    A dysregulated overexpression of inflammatory mediators by microglia may facilitate cognitive aging and neurodegeneration. Considerable evidence suggests the flavonoid luteolin has antiinflammatory effects, but its ability to inhibit microglia, reduce inflammatory mediators, and improve hippocampal-dependent learning and memory in aged mice is unknown. In initial studies, pretreatment of BV-2 microglia with luteolin inhibited the induction of inflammatory genes and the release of inflammatory mediators after lipopolysaccharide (LPS) stimulation. Supernatants from LPS-stimulated microglia caused discernible death in Neuro.2a cells. However, treating microglia with luteolin prior to LPS reduced neuronal cell death caused by conditioned supernatants, indicating luteolin was neuroprotective. In subsequent studies, adult (3-6 mo) and aged (22-24 mo) mice were fed control or luteolin (20 mg/d)-supplemented diet for 4 wk and spatial working memory was assessed as were several inflammatory markers in the hippocampus. Aged mice fed control diet exhibited deficits in spatial working memory and expression of inflammatory markers in the hippocampus indicative of increased microglial cell activity. Luteolin consumption improved spatial working memory and restored expression of inflammatory markers in the hippocampus compared with that of young adults. Luteolin did not affect either spatial working memory or inflammatory markers in young adults. Taken together, the current findings suggest dietary luteolin enhanced spatial working memory by mitigating microglial-associated inflammation in the hippocampus. Therefore, luteolin consumption may be beneficial in preventing or treating conditions involving increased microglial cell activity and inflammation.

  10. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice.

    Science.gov (United States)

    Yamacita-Borin, Fabiane Y; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2015-09-25

    Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

    Science.gov (United States)

    Ip, Blanche C.; Liu, Chun; Ausman, Lynne M.; von Lintig, Johannes; Wang, Xiang-Dong

    2014-01-01

    Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10’-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9’,10’-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether the lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 is important in BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs 20%) and multiplicity (58% vs 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic pro-inflammatory signaling (phosphorylation of nuclear factor-κB p65 and signal transducer and activator of transcription 3; interleukin-6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ERUPR), through decreasing ERUPR-mediated protein kinase RNA-activated like kinase– eukaryotic initiation factor 2α activation, and inositol requiring 1α–X-box binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals including Met mRNA, β-catenin protein, and mammalian target of rapamycin (mTOR) complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR-214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. PMID:25293877

  12. Role of vasopressin V1a receptor in ∆9-tetrahydrocannabinol-induced cataleptic immobilization in mice.

    Science.gov (United States)

    Egashira, Nobuaki; Koushi, Emi; Myose, Takayuki; Tanoue, Akito; Mishima, Kenichi; Tsuchihashi, Ryota; Kinjo, Junei; Tanaka, Hiroyuki; Morimoto, Satoshi; Iwasaki, Katsunori

    2017-12-01

    Cannabis is a widely used illicit substance. ∆9-tetrahydrocannabinol (THC), the major psychoactive component of cannabis, is known to cause catalepsy in rodents. Recent studies have shown that vasopressin V1a and V1b receptors are widely distributed in the central nervous system and are capable of influencing a wide variety of brain functions such as social behavior, emotionality, and learning and memory. The present study was designed to examine the possible involvement of V1a and V1b receptors in THC-induced catalepsy-like immobilization. The induction of catalepsy following treatment with THC (10 mg/kg, i.p.) or haloperidol (1 mg/kg, i.p.) was evaluated in wild-type (WT), V1a receptor knockout (V1aRKO), and V1b receptor knockout (V1bRKO) mice. The effect of treatment with the selective 5-hydroxytryptamine1A receptor antagonist WAY100635 (0.1 mg/kg, i.p.) on THC-induced catalepsy was also evaluated in V1aRKO mice. Moreover, the effects of the V1a receptor antagonist VMAX-357 and the V1b receptor antagonist ORG-52186 on THC-induced catalepsy were evaluated in ddY mice. THC and haloperidol markedly caused catalepsy in V1bRKO mice as well as in WT mice. However, V1aRKO mice exhibited a reduction in catalepsy induced by THC but not by haloperidol. WAY100635 dramatically enhanced THC-induced catalepsy in V1aRKO mice. Although VMAX-357 (10 mg/kg, p.o.) but not ORG-52186 significantly attenuated THC-induced catalepsy, it had no significant effect on the enhancement of THC-induced catalepsy by WAY100635 in ddY mice. These findings suggest that V1a receptor regulates THC-induced catalepsy-like immobilization.

  13. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  14. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Adarsh, E-mail: adarsh.gandhi@nih.gov [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Guo, Tao, E-mail: tguo4@jhu.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Shah, Pranav [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Baylor College of Medicine, Department of Pediatrics, 1102 Bates Avenue, Suite 530, Houston, TX 77030 (United States); Ghose, Romi, E-mail: rghose@uh.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States)

    2013-02-01

    Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP{sup +/+} and TIRAP{sup −/−} mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP{sup +/+} mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP{sup −/−} mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies

  15. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiun; Hong, Meng-Yeng; Huang, G Steve [Institute of Nanotechnology, Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China); Hung, Yao-Ching [Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, China Medical University and Hospital, 91 Hsueh Shih Road, Taichung 404, Taiwan (China); Lin, Li-Wei [School of Chinese Medicine for Post-Baccalaureate, I-Shou University, 8 Yida Road, Yanchao Township, Kaohsiung Country 82445, Taiwan (China); Liau, Ian, E-mail: gstevehuang@mail.nctu.edu.tw [Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China)

    2010-12-03

    We explored the size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles (GNPs). GNPs of 17 and 37 nm in diameter were injected intraperitoneally into BALB/c mice at doses ranging from 0.5 to 14.6 mg kg{sup -1}. ICP-MS was performed on brain tissue collected 1, 14 and 21 days after the injection. A passive-avoidance test was performed on day 21. Monoamine levels were determined on day 21. The microscopic distribution of GNPs in the hippocampus was examined using coherent anti-Stokes Raman scattering (CARS) microscopy and transmission electron microscopy (TEM). The results indicated that 17 nm GNPs passed through the blood-brain barrier more rapidly than 37 nm GNPs. Treatment with 17 nm GNPs decreased the latency time, which was comparable to the effect of scopolamine treatment, while 37 nm GNPs showed no significant effect. Dopamine levels and serotonin levels in the brain were significantly altered by the injection of 17 and 37 nm GNPs. GNPs affected dopaminergic and serotonergic neurons. CARS microscopy indicated that 17 nm GNPs entered the Cornu Ammonis (CA) region of the hippocampus, while 37 nm GNPs were excluded from the CA region. TEM verified the presence of 17 nm GNPs in the cytoplasm of pyramidal cells. In this study, we showed that the ability of GNPs to damage cognition in mice was size-dependent and associated with the ability of the particles to invade the hippocampus. The dosage and duration of the treatment should be taken into account if GNPs are used in the future as vehicles to carry therapeutic agents into the brain.

  16. Light evokes melanopsin-dependent vocalization and neural activation associated with aversive experience in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Anton Delwig

    Full Text Available Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are the only functional photoreceptive cells in the eye of newborn mice. Through postnatal day 9, in the absence of functional rods and cones, these ipRGCs mediate a robust avoidance behavior to a light source, termed negative phototaxis. To determine whether this behavior is associated with an aversive experience in neonatal mice, we characterized light-induced vocalizations and patterns of neuronal activation in regions of the brain involved in the processing of aversive and painful stimuli. Light evoked distinct melanopsin-dependent ultrasonic vocalizations identical to those emitted under stressful conditions, such as isolation from the litter. In contrast, light did not evoke the broad-spectrum calls elicited by acute mechanical pain. Using markers of neuronal activation, we found that light induced the immediate-early gene product Fos in the posterior thalamus, a brain region associated with the enhancement of responses to mechanical stimulation of the dura by light, and thought to be the basis for migrainous photophobia. Additionally, light induced the phosphorylation of extracellular-related kinase (pERK in neurons of the central amygdala, an intracellular signal associated with the processing of the aversive aspects of pain. However, light did not activate Fos expression in the spinal trigeminal nucleus caudalis, the primary receptive field for painful stimulation to the head. We conclude that these light-evoked vocalizations and the distinct pattern of brain activation in neonatal mice are consistent with a melanopsin-dependent neural pathway involved in processing light as an aversive but not acutely painful stimulus.

  17. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on

  18. Pairmate-dependent pup retrieval as parental behavior in male mice

    Directory of Open Access Journals (Sweden)

    Mingkun eLiang

    2014-07-01

    Full Text Available Appropriate parental care by fathers can greatly facilitate healthy human family life. However, much less is known about paternal behavior in animals compared to those regarding maternal behavior. Previously, we reported that male ICR strain laboratory mice, although not spontaneously parental, can be induced to display maternal-like parental care (pup retrieval when separated from their pups by signals from the pairmate dam (Liu et al., Nat. Commun, 4:1346, 2013. This parental behavior by the ICR sires, which are not genetically biparental, is novel and has been designated as pairmate-dependent paternal behavior. However, the factors critical for this paternal behavior are unclear. Here, we report that the pairmate-dependent paternal retrieval behavior is observed especially in the ICR strain and not in C57BL/6 or BALB/c mice. An ICR sire displays retrieval behavior only toward his biological pups. A sire co-housed with an unrelated non-pairing dam in a new environment, under which 38-kHz ultrasonic vocalizations are not detected, does not show parenting behavior. It is important for sires to establish their own home territory (cage by continuous housing and testing to display retrieval behavior. These results indicated that the ICR sires display distinct paternity, including father-child social interaction, and shed light on parental behavior, although further analyses of paternal care at the neuroendocrinological and neurocircuitry levels are required.

  19. Blockade by narcotic drugs of naloxone-precipitated jumping in morphine-dependent mice.

    Science.gov (United States)

    Iorio, L C; Deacon, M A; Ryan, E A

    1975-01-01

    A dose regimen for administration of morphine, test drugs with potential to cause physical dependence and naloxone was determined to allow within one experimental day acquisition of morphine-dependent mice and evaluation of the narcotic drugs for their ability to prevent naloxone-precipitated jumping. This test procedure can be used to assess capacity of unknown drugs to suppress morphine withdrawal symptoms; the mechanism of suppression can be subsequently determined in secondary tests. However, for known morphine-like analgesics, the test procedure appears to reliably assess physical dependence properties. The results obtained on subcutaneous administration of five selected narcotic drugs and apomorphine show that their order of potency was methadone greater than meperidine equal apomorphine greater than d-propoxyphene greater than pentazocine. Codeine, also tested subcutaneously, did not substitute at sublethal doses. Except for apomorphine, which might have masked naloxone-precipitated jumping by inducing behavioral aggression, the order of potency compares favorably with the degree of physical dependence reported in humans. Thus, the described procedure might be employed to evaluate morphine substitution and hence potential physical dependence liability of unknown narcotic-like analgesics.

  20. Cyclophilin D-dependent mitochondrial permeability transition is not involved in neurodegeneration in mnd2 mutant mice.

    Science.gov (United States)

    Ideguchi, Kan; Shimizu, Shigeomi; Okumura, Meinoshin; Tsujimoto, Yoshihide

    2010-03-05

    Parkinson's disease (PD) is a common neurodegenerative disorder. The motor neuron degeneration 2 mutant (mnd2) mouse exhibits loss of striatal neurons, muscle wasting, weight loss, and death within 40days of birth, and is considered to be a useful animal model of PD. mnd2 was identified as an autosomal recessive mutation in the HtrA2/Omi gene, which encodes a mitochondrial serine protease. Omi-deficient mitochondria are more sensitive to mitochondrial permeability transition (mPT), which raises the possibility that mPT plays a role in motor neurodegeneration in mnd2 mice. Given that cyclophilin D (CypD)-deficient mitochondria are resistant to mPT, we examined whether CypD-dependent mPT is involved in the pathogenesis of neurodegenerative disorders in mnd2 mice by generating CypD-deficient mnd2 mice. Brain mitochondria isolated from CypD-deficient mnd2 mice were more resistant to Ca(2+)-induced mPT than those of mnd2 mice. However, both mnd2 mice and CypD-deficient mnd2 mice showed similar survival periods and phenotypes, including the lack of weight gain, muscle wasting, and resting tremor. Our data suggest that CypD-dependent mPT does not play a major role in neurodegeneration in mnd2 mice. 2010 Elsevier Inc. All rights reserved.

  1. Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88-dependent and interleukin-1-dependent pathway

    DEFF Research Database (Denmark)

    Vennegaard, Marie T; Dyring-Andersen, Beatrice; Skov, Lone

    2014-01-01

    of nickel in the epidermis, and induces nickel allergy in mice. The allergic response to nickel following epicutaneous exposure is MyD88-dependent and interleukin (IL)-1 receptor-dependent, but independent of toll-like receptor (TLR)-4. CONCLUSION: This new model for nickel allergy that reflects...... epicutaneous exposure to nickel in humans shows that nickel allergy is dependent on MyD88 and IL-1 receptor signalling, but independent of TLR4....

  2. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ9-THC in humans discriminating Δ9-THC

    Science.gov (United States)

    Lile, Joshua A.; Kelly, Thomas H.; Hays, Lon R.

    2014-01-01

    Background Our previous research suggested the involvement γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ9-tetrahydrocannabinol (Δ9-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ9-THC using pharmacologically selective drug-discrimination procedures. Methods Ten cannabis users learned to discriminate 30 mg oral Δ9-THC from placebo and then received diazepam (5 and 10 mg), Δ9-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Results Δ9-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ9-THC discriminative stimulus or alter the Δ9-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ9-THC. Conclusions These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ9-THC, and by extension cannabis, in humans. PMID:25124305

  3. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ⁹-THC in humans discriminating Δ⁹-THC.

    Science.gov (United States)

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2014-10-01

    Our previous research suggested the involvement of γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ(9)-THC using pharmacologically selective drug-discrimination procedures. Ten cannabis users learned to discriminate 30 mg oral Δ(9)-THC from placebo and then received diazepam (5 and 10mg), Δ(9)-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Δ(9)-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ(9)-THC discriminative stimulus or alter the Δ(9)-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ(9)-THC. These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ(9)-THC, and by extension cannabis, in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of Brugmansia arborea Extract and Its Secondary Metabolites on Morphine Tolerance and Dependence in Mice.

    Science.gov (United States)

    Mattioli, Laura; Bracci, Antonio; Titomanlio, Federica; Perfumi, Marina; De Feo, Vincenzo

    2012-01-01

    The aim of the present study was to investigate, in vivo, the effect of a Brugmansia arborea extract (BRU), chromatographic fractions (FA and FNA), and isolated alkaloids on the expression and the acquisition of morphine tolerance and dependence. Substances were acutely (for expression) or repeatedly (for acquisition) administered in mice treated with morphine twice daily for 5 or 6 days, in order to make them tolerant or dependent. Morphine tolerance was assessed using the tail-flick test at 1st and 5th days. Morphine dependence was evaluated through the manifestation of withdrawal symptoms induced by naloxone injection at 6th day. Results showed that BRU significantly reduced the expression of morphine tolerance, while it was ineffective to modulate its acquisition. Chromatographic fractions and pure alkaloids failed to reduce morphine tolerance. Conversely BRU, FA, and pure alkaloids administrations significantly attenuated both development and expression of morphine dependence. These data suggest that Brugmansia arborea Lagerh might have human therapeutic potential for treatment of opioid addiction.

  5. Effects of Brugmansia arborea Extract and Its Secondary Metabolites on Morphine Tolerance and Dependence in Mice

    Directory of Open Access Journals (Sweden)

    Laura Mattioli

    2012-01-01

    Full Text Available The aim of the present study was to investigate, in vivo, the effect of a Brugmansia arborea extract (BRU, chromatographic fractions (FA and FNA, and isolated alkaloids on the expression and the acquisition of morphine tolerance and dependence. Substances were acutely (for expression or repeatedly (for acquisition administered in mice treated with morphine twice daily for 5 or 6 days, in order to make them tolerant or dependent. Morphine tolerance was assessed using the tail-flick test at 1st and 5th days. Morphine dependence was evaluated through the manifestation of withdrawal symptoms induced by naloxone injection at 6th day. Results showed that BRU significantly reduced the expression of morphine tolerance, while it was ineffective to modulate its acquisition. Chromatographic fractions and pure alkaloids failed to reduce morphine tolerance. Conversely BRU, FA, and pure alkaloids administrations significantly attenuated both development and expression of morphine dependence. These data suggest that Brugmansia arborea Lagerh might have human therapeutic potential for treatment of opioid addiction.

  6. Role of state-dependent learning in the cognitive effects of caffeine in mice.

    Science.gov (United States)

    Sanday, Leandro; Zanin, Karina A; Patti, Camilla L; Fernandes-Santos, Luciano; Oliveira, Larissa C; Longo, Beatriz M; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2013-08-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.

  7. Simultaneous quantification of delta-9-THC, THC-acid A, CBN and CBD in seized drugs using HPLC-DAD.

    Science.gov (United States)

    Ambach, Lars; Penitschka, Franziska; Broillet, Alain; König, Stefan; Weinmann, Wolfgang; Bernhard, Werner

    2014-10-01

    An HPLC-DAD method for the quantitative analysis of Δ(9)-tetrahydrocannabinol (THC), Δ(9)-tetrahydrocannabinolic acid-A (THCA-A), cannabidiol (CBD), and cannabinol (CBN) in confiscated cannabis products has been developed, fully validated and applied to analyse seized cannabis products. For determination of the THC content of plant material, this method combines quantitation of THCA-A, which is the inactive precursor of THC, and free THC. Plant material was dried, homogenized and extracted with methanol by ultrasonication. Chromatographic separation was achieved with a Waters Alliance 2695 HPLC equipped with a Merck LiChrospher 60 RP-Select B (5μm) precolumn and a Merck LiChroCart 125-4 LiChrospher 60 RP-Select B (5μm) analytical column. Analytes were detected and quantified using a Waters 2996 photo diode array detector. This method has been accepted by the public authorities of Switzerland (Bundesamt für Gesundheit, Federal Office of Public Health), and has been used to analyse 9092 samples since 2000. Since no thermal decarboxylation of THCA-A occurs, the method is highly reproducible for different cannabis materials. Two calibration ranges are used, a lower one for THC, CBN and CBD, and a higher one for THCA-A, due to its dominant presence in fresh plant material. As provider of the Swiss proficiency test, the robustness of this method has been tested over several years, and homogeneity tests even in the low calibration range (1%) show high precision (RSD≤4.3%, except CBD) and accuracy (bias≤4.1%, except CBN). Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    Science.gov (United States)

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  9. Cyclin‑dependent kinase inhibitor p21 does not impact embryonic endochondral ossification in mice.

    Science.gov (United States)

    Chinzei, Nobuaki; Hayashi, Shinya; Hashimoto, Shingo; Kanzaki, Noriyuki; Iwasa, Kenjiro; Sakata, Shuhei; Kihara, Shinsuke; Fujishiro, Takaaki; Kuroda, Ryosuke; Kurosaka, Masahiro

    2015-03-01

    Endochondral ossification at the growth plate is regulated by a number of factors and hormones. The cyclin‑dependent kinase inhibitor p21 has been identified as a cell cycle regulator and its expression has been reported to be essential for endochondral ossification in vitro. However, to the best of our knowledge, the function of p21 in endochondral ossification has not been evaluated in vivo. Therefore, the aim of this study was to investigate the function of p21 in embryonic endochondral ossification in vivo. Wild‑type (WT) and p21 knockout (KO) pregnant heterozygous mice were sacrificed on embryonic days E13.5, E15.5 and E18.5. Sagittal histological sections of the forearms of the embryos were collected and stained with Safranin O and 5‑bromo‑2'‑deoxyuridine (BrdU). Additionally, the expression levels of cyclin D1, type II collagen, type X collagen, Sox9, and p16 were examined using immunohistochemistry, and the expression levels of p27 were examined using immunofluorescence. Safranin O staining revealed no structural change between the cartilage tissues of the WT and p21KO mice at any time point. Type II collagen was expressed ubiquitously, while type X collagen was only expressed in the hypertrophic zone of the cartilage tissues. No differences in the levels of Sox9 expression were observed between the two groups at any time point. The levels of cyclin D1 expression and BrdU uptake were higher in the E13.5 cartilage tissue compared with those observed in the embryonic cartilage tissue at subsequent time points. Expression of p16 and p27 was ubiquitous throughout the tissue sections. These results indicate that p21 may not be essential for embryonic endochondral ossification in articular cartilage of mice and that other signaling networks may compensate for p21 deletion.

  10. Circadian phase dependent acute toxicity and pharmacokinetics of etidocaine in serum and brain of mice.

    Science.gov (United States)

    Bruguerolle, B; Prat, M

    1990-03-01

    The aim of this study was to investigate the possible influence of the time of administration on etidocaine acute toxicity and kinetics in mice. Different groups of adult male NMRI mice maintained under controlled environmental conditions (lights on 06.00-18.00) were injected at one of the following times: 10.00, 16.00, 19.00, 22.00, 01.00 and 04.00 h with four doses of etidocaine at each time point to establish the acute toxicity (LD 50). To assess chronokinetics, a single 40 mg kg-1 i.p. dose of etidocaine was given to adult male NMRI mice at four fixed times: 10.00, 16.00, 22.00 and 04.00 h. Etidocaine serum levels were determined by GLC. The data showed significant 24 h variations of the Cmax only (highest value = 9.64 +/- 1.31 micrograms mL-1 at 10.00 P less than 0.05; amplitude, (maximum-minimum) mean x 100 = 84%) Vd, (amplitude = 59.7%), alpha and beta phase elimination half-lives (amplitude = 52 and 35%, respectively), clearance (amplitude = 23%) and AUC infinity 0 (amplitude = 22%) were not found to be significantly time dependent. Etidocaine kinetics in brain were determined similarly; a significant temporal variation was found for the elimination half life (amplitude, 161.9%) and AUC (amplitude, 133.2%) but not for Cmax. These data demonstrate a temporal pattern of etidocaine kinetics similar to those reported previously for other local anaesthetic agents, bupivacaine and mepivacaine. The temporal changes in etidocaine induced acute toxicity may result in part from its chronokinetic changes.

  11. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Science.gov (United States)

    Chou, Austin; Morganti, Josh M; Rosi, Susanna

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC) functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI) model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  12. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  13. Age-dependent effect of apolipoprotein E4 on functional outcome after controlled cortical impact in mice.

    Science.gov (United States)

    Mannix, Rebekah C; Zhang, Jimmy; Park, Juyeon; Zhang, Xuan; Bilal, Kiran; Walker, Kendall; Tanzi, Rudolph E; Tesco, Giuseppina; Whalen, Michael J

    2011-01-01

    The apolipoprotein E4 (APOE4) gene leads to increased brain amyloid beta (Aβ) and poor outcome in adults with traumatic brain injury (TBI); however, its role in childhood TBI is controversial. We hypothesized that the transgenic expression of human APOE4 worsens the outcome after controlled cortical impact (CCI) in adult but not immature mice. Adult and immature APOE4 mice had worse motor outcome after CCI (P<0.001 versus wild type (WT)), but the Morris water maze performance was worse only in adult APOE4 mice (P=0.028 at 2 weeks, P=0.019 at 6 months versus WT), because immature APOE4 mice had performance similar to WT for up to 1 year after injury. Brain lesion size was similar in adult APOE4 mice but was decreased (P=0.029 versus WT) in injured immature APOE4 mice. Microgliosis was similar in all groups. Soluble brain Aβ(40) was increased at 48 hours after CCI in adult and immature APOE4 mice and in adult WT (P<0.05), and was dynamically regulated during the chronic period by APOE4 in adults but not immature mice. The data suggest age-dependent effects of APOE4 on cognitive outcome after TBI, and that therapies targeting APOE4 may be more effective in adults versus children with TBI.

  14. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ

    Science.gov (United States)

    Garofalo, Robert S.; Orena, Stephen J.; Rafidi, Kristina; Torchia, Anthony J.; Stock, Jeffrey L.; Hildebrandt, Audrey L.; Coskran, Timothy; Black, Shawn C.; Brees, Dominique J.; Wicks, Joan R.; McNeish, John D.; Coleman, Kevin G.

    2003-01-01

    The serine/threonine kinase Akt/PKB plays key roles in the regulation of cell growth, survival, and metabolism. It remains unclear, however, whether the functions of individual Akt/PKB isoforms are distinct. To investigate the function of Akt2/PKBβ, mice lacking this isoform were generated. Both male and female Akt2/PKBβ-null mice exhibit mild growth deficiency and an age-dependent loss of adipose tissue or lipoatrophy, with all observed adipose depots dramatically reduced by 22 weeks of age. Akt2/PKBβ-deficient mice are insulin resistant with elevated plasma triglycerides. In addition, Akt2/PKBβ-deficient mice exhibit fed and fasting hyperglycemia, hyperinsulinemia, glucose intolerance, and impaired muscle glucose uptake. In males, insulin resistance progresses to a severe form of diabetes accompanied by pancreatic β cell failure. In contrast, female Akt2/PKBβ-deficient mice remain mildly hyperglycemic and hyperinsulinemic until at least one year of age. Thus, Akt2/PKBβ-deficient mice exhibit growth deficiency similar to that reported previously for mice lacking Akt1/PKBα, indicating that both Akt2/PKBβ and Akt1/PKBα participate in the regulation of growth. The marked hyperglycemia and loss of pancreatic β cells and adipose tissue in Akt2/PKBβ-deficient mice suggest that Akt2/PKBβ plays critical roles in glucose metabolism and the development or maintenance of proper adipose tissue and islet mass for which other Akt/PKB isoforms are unable to fully compensate. PMID:12843127

  15. Age-dependent effect of apolipoprotein E4 on functional outcome after controlled cortical impact in mice

    Science.gov (United States)

    Mannix, Rebekah C; Zhang, Jimmy; Park, Juyeon; Zhang, Xuan; Bilal, Kiran; Walker, Kendall; Tanzi, Rudolph E; Tesco, Giuseppina; Whalen, Michael J

    2011-01-01

    The apolipoprotein E4 (APOE4) gene leads to increased brain amyloid beta (Aβ) and poor outcome in adults with traumatic brain injury (TBI); however, its role in childhood TBI is controversial. We hypothesized that the transgenic expression of human APOE4 worsens the outcome after controlled cortical impact (CCI) in adult but not immature mice. Adult and immature APOE4 mice had worse motor outcome after CCI (P<0.001 versus wild type (WT)), but the Morris water maze performance was worse only in adult APOE4 mice (P=0.028 at 2 weeks, P=0.019 at 6 months versus WT), because immature APOE4 mice had performance similar to WT for up to 1 year after injury. Brain lesion size was similar in adult APOE4 mice but was decreased (P=0.029 versus WT) in injured immature APOE4 mice. Microgliosis was similar in all groups. Soluble brain Aβ40 was increased at 48 hours after CCI in adult and immature APOE4 mice and in adult WT (P<0.05), and was dynamically regulated during the chronic period by APOE4 in adults but not immature mice. The data suggest age-dependent effects of APOE4 on cognitive outcome after TBI, and that therapies targeting APOE4 may be more effective in adults versus children with TBI. PMID:20588316

  16. [Glu2]TRH dose-dependently attenuates TRH-evoked analeptic effect in mice.

    Science.gov (United States)

    Nguyen, Vien; Zharikova, Alevtina D; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2010-04-29

    Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH(2)) and the structurally related [Glu(2)]TRH (pGlu-Glu-Pro-NH(2)) are endogenous peptides with a plethora of actions in the central nervous system. Many centrally-mediated effects of TRH are shared with those of [Glu(2)]TRH, although the involvement of different receptors is presumed. The analeptic action is the best-known TRH-related central nervous system effect. While [Glu(2)]TRH itself is analeptic, its co-administration with TRH into mice produced a dose-dependent attenuation of TRH-evoked reversal of barbiturate-induced sleeping time. This finding is in agreement with our previous observations that [Glu(2)]TRH significantly attenuates TRH-induced hippocampal extracellular acetylcholine release. Taken together, [Glu(2)]TRH may be considered as a negative modulator for the cholinergic effect of TRH in the mouse brain. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Differential proteomics reveals age-dependent liver oxidative costs of innate immune activation in mice.

    Science.gov (United States)

    Plumel, Marine I; Benhaim-Delarbre, Margaux; Rompais, Magali; Thiersé, Danièle; Sorci, Gabriele; van Dorsselaer, Alain; Criscuolo, François; Bertile, Fabrice

    2016-03-01

    Individual response to an immune challenge results from the optimization of a trade-off between benefits and costs of immune cell activation. Age-related immune disorders may have several mechanistic bases, from immune cell defects to chronic pro-inflammatory status and oxidative imbalance, but we are still lacking experimental data showing the relative importance of each of these mechanisms. Using a proteomic approach and subsequent biochemical validations of proteomics-derived hypotheses, we found age-dependent regulations in the liver of 3-months and 1-year old-mice in response to an acute innate immune activation. Old mice presented a chronic up-regulation of several proteins involved in pathways related to oxidative stress control. Interestingly, these pathways were weakly affected by the innate immune activation in old compared to young individuals. In addition, old mice suffered from lower glutathione-S-transferase activity and from higher oxidative damage at the end of the experiment, thus suggesting that they paid a higher immune-related cost than young individuals. On the whole, our data showed that a substantial fraction of the liver costs elicited by an activation of the innate immune response is effectively related to oxidative stress, and that ageing impairs the capacity of old individuals to control it. Our paper tackles the open question of the cost of mounting an innate immune response. Evolutionary biologists are familiar since a long time with the concept of trade-offs among key traits of an organism, trade-offs that shape life history trajectories of species and individuals, ultimately in terms of reproduction and survival. On the other hand, medicine and molecular biologists study the intimate mechanisms of immune senescence and underline that oxidative imbalance is probably playing a key role in the progressive loss of immune function with age. This paper merges the two fields by exploring the nature of the cellular pathways that are mainly

  18. Effects of sleep deprivation on memory in mice: role of state-dependent learning.

    Science.gov (United States)

    Patti, Camilla L; Zanin, Karina A; Sanday, Leandro; Kameda, Sonia R; Fernandes-Santos, Luciano; Fernandes, Helaine A; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2010-12-01

    A considerable amount of experimental evidence suggests that sleep plays a critical role in learning/memory processes. In addition to paradoxical sleep, slow wave sleep is also reported to be involved in the consolidation process of memories. Additionally, sleep deprivation can induce other behavioral modifications, such as emotionality and alternations in locomotor activity in rodents. These sleep deprivation-induced alterations in the behavioral state of animals could produce state-dependent learning and contribute, at least in part, to the amnestic effects of sleep deprivation. The aim of the present study was to examine the participation of state-dependent learning during memory impairment induced by either paradoxical sleep deprivation (PSD) or total sleep deprivation (TSD) in mice submitted to the plus-maze discriminative avoidance or to the passive avoidance task. Paradoxical sleep deprivation (by the multiple platform method) and total sleep deprivation (by the gentle handling method) were applied to animals before training and/or testing. Whereas pre-training or pre-test PSD impaired retrieval in both memory models, pre-training plus pre-test PSD counteracted this impairment. For TSD, pre-training, pre-test, and pre-training plus pre-test TSD impaired retrieval in both models. Our data demonstrate that PSD- (but not TSD-) memory deficits are critically related to state-dependent learning.

  19. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    Science.gov (United States)

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  20. Can oral fluid cannabinoid testing monitor medication compliance and/or cannabis smoking during oral THC and oromucosal Sativex administration?

    Science.gov (United States)

    Lee, Dayong; Karschner, Erin L; Milman, Garry; Barnes, Allan J; Goodwin, Robert S; Huestis, Marilyn A

    2013-06-01

    We characterize cannabinoid disposition in oral fluid (OF) after dronabinol, synthetic oral Δ(9)-tetrahydrocannabinol (THC), and Sativex, a cannabis-extract oromucosal spray, and evaluate whether smoked cannabis relapse or Sativex compliance can be identified with OF cannabinoid monitoring. 5 and 15 mg synthetic oral THC, low (5.4 mg THC, 5.0 mg cannabidiol (CBD)) and high (16.2 mg THC, 15.0 mg CBD) dose Sativex, and placebo were administered in random order (n=14). Oral fluid specimens were collected for 10.5 h after dosing and analyzed for THC, CBD, cannabinol (CBN), and 11-nor-9-carboxy-THC (THCCOOH). After oral THC, OF THC concentrations decreased over time from baseline, reflecting residual THC excretion from previously self-administered smoked cannabis. CBD and CBN also were rarely detected. After Sativex, THC, CBD and CBN increased greatly, peaking at 0.25-1 h. Median CBD/THC and CBN/THC ratios were 0.82-1.34 and 0.04-0.06, respectively, reflecting cannabinoids' composition in Sativex. THCCOOH/THC ratios within 4.5 h post Sativex were ≤ 1.6 pg/ng, always lower than after oral THC and placebo. THCCOOH/THC ratios increased throughout each dosing session. Lack of measurable THC, CBD and CBN in OF following oral THC, and high OF CBD/THC ratios after Sativex distinguish oral and sublingual drug delivery routes from cannabis smoking. Low THCCOOH/THC ratios suggest recent Sativex and smoked cannabis exposure. These data indicate that OF cannabinoid monitoring can document compliance with Sativex pharmacotherapy, and identify relapse to smoked cannabis during oral THC medication but not Sativex treatment, unless samples were collected shortly after smoking. Published by Elsevier Ireland Ltd.

  1. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice.

    Science.gov (United States)

    Kim, Yeon Sun; Kim, Hye-Ryun; Kim, Hyongbum; Yang, Seung Chel; Park, Mira; Yoon, Jung Ah; Lim, Hyunjung J; Hong, Seok-Ho; DeMayo, Francesco J; Lydon, John P; Choi, Youngsok; Lee, Dong Ryul; Song, Haengseok

    2016-02-02

    DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8(d/d)) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8(d/d) females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8(d/d) mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice.

  2. [C57BL/6 mice open field behaviour qualitatively depends on arena size].

    Science.gov (United States)

    Lebedev, I V; Pleskacheva, M G; Anokhin, K V

    2012-01-01

    Open field behavior is well known to depend on physical characteristics of the apparatus. However many of such effects are poorly described especially with using of modern methods of behavioral registration and analysis. The previous results of experiments on the effect of arena size on behavior are not numerous and contradictory. We compared the behavioral scores of four groups of C57BL/6 mice in round open field arenas of four different sizes (diameter 35, 75, 150 and 220 cm). The behavior was registered and analyzed using Noldus EthoVision, WinTrack and SegmentAnalyzer software. A significant effect of arena size was found. Traveled distance and velocity increased, but not in proportion to increase of arena size. Moreover a significant effect on segment characteristics of the trajectory was revealed. Detailed behavior analysis revealed drastic differences in trajectory structure and number of rears between smaller (35 and 75 cm) and bigger (150 and 220 cm) arenas. We conclude, that the character of exploration in smaller and bigger arenas depends on relative size of central open zone in arena. Apparently its extension increases the motivational heterogeneity of space, that requires another than in smaller arenas, strategy of exploration.

  3. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans.

    Science.gov (United States)

    Hayashi, Genki; Jasoliya, Mittal; Sahdeo, Sunil; Saccà, Francesco; Pane, Chiara; Filla, Alessandro; Marsili, Angela; Puorro, Giorgia; Lanzillo, Roberta; Brescia Morra, Vincenzo; Cortopassi, Gino

    2017-08-01

    The induction of mitochondrial biogenesis could potentially alleviate mitochondrial and muscle disease. We show here that dimethyl fumarate (DMF) dose-dependently induces mitochondrial biogenesis and function dosed to cells in vitro, and also dosed in vivo to mice and humans. The induction of mitochondrial gene expression is more dependent on DMF's target Nrf2 than hydroxycarboxylic acid receptor 2 (HCAR2). Thus, DMF induces mitochondrial biogenesis primarily through its action on Nrf2, and is the first drug demonstrated to increase mitochondrial biogenesis with in vivo human dosing. This is the first demonstration that mitochondrial biogenesis is deficient in Multiple Sclerosis patients, which could have implications for MS pathophysiology and therapy. The observation that DMF stimulates mitochondrial biogenesis, gene expression and function suggests that it could be considered for mitochondrial disease therapy and/or therapy in muscle disease in which mitochondrial function is important. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Dose-dependent sickness behavior, abortion and inflammation induced by systemic LPS injection in pregnant mice.

    Science.gov (United States)

    Toyama, Rovana Paludo; Xikota, João Carlos; Schwarzbold, Marcelo L; Frode, Tania Silvia; Buss, Ziliani da Silva; Nunes, Jean Costa; Funchal, Gabriela Di Giunta; Nunes, Fernanda Costa; Walz, Roger; Pires, Maria Marlene de Souza

    2015-03-01

    Clinical and experimental evidences indicate that intrauterine inflammation during pregnancy is associated to brain damage. The objective of this study is to determine the effects of lipopolysaccharide in temperature, cytokine production and sickness behavior of pregnant dams. A single i.p. injection of lipopolysaccharide (LPS) (50, 150 or 300 µg/kg) was administered on E18. Controls received isotonic saline. Body temperature was controlled before and 3 h after injections. Animals' behavior was assessed by the OF test 3 h following treatment. Animals were sacrificed for leukocyte, IL-1β and TNF-α determination. Placental tissue and abortion were also examined. LPS administration elicited hypothermia. Abortion was observed in LPS 150 and 300 µg/kg. Leukocyte levels were significantly lower with LPS 300 µg/kg than in controls. LPS induced dose-dependent impairment in animals' locomotion. IL-1β serum and amniotic fluid were higher than the saline, and TNF-α serum and amniotic fluid increased when compared to controls. Placental histopathologic abnormality was not found. LPS induces dose-dependent sickness behavior and hypothermia in pregnant mice. Our findings suggest that the presence of inflammation may be a causative factor for premature labor and that Escherichia coli antigens modify the concentration of pro-inflammatory agents in circulatory system and intra-uterine environment.

  5. The effect of picosecond laser pulses on redox-dependent processes in mice red blood cells studied in vivo

    Science.gov (United States)

    Voronova, Olga; Gening, Tatyana; Abakumova, Tatyana; Sysolyatin, Aleksey; Zolotovskiy, Igor; Antoneeva, Inna; Ostatochnikov, Vladimir; Gening, Snezhanna

    2014-02-01

    The study highlights the effect of different modes of in vivo laser irradiation of mice using a PFL8LA laser with λ = 1560 nm, pulse duration of 1,4•10-12 s, peak power of 3,72•103 W and average output power of 20•10-3 W on the lipid peroxidation parameters: conjugated dienes, ketodienes and conjugated trienes, malondialdehyde, Schiff bases and the activity of antioxidant enzymes - catalase, glutathione -S-transferase and superoxide dismutase in erythrocytes and plasma of mice. Two groups of mice received a total dose of 3.8 J/cm2 per group, but the 1st group was irradiated only once, while the 2nd - four times. Significant differences in the parameters of the 1st and 2nd groups indicate different effects of the irradiation modes on redox-dependent processes in red blood cells of mice.

  6. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice.

    Science.gov (United States)

    Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S; Liu, Qinfang; Stankowski, Jeannette N; Lee, Byoung Dae; Ko, Han Seok; Lee, Yunjong; Grima, Jonathan C; Mao, Xiaobo; Jiang, Haisong; Kang, Sung-Ung; Swing, Deborah A; Iacovitti, Lorraine; Tessarollo, Lino; Dawson, Ted M; Dawson, Valina L

    2018-02-13

    Mutations in LRRK2 are known to be the most common genetic cause of sporadic and familial Parkinson's disease (PD). Multiple lines of LRRK2 transgenic or knockin mice have been developed, yet none exhibit substantial dopamine (DA)-neuron degeneration. Here we develop human tyrosine hydroxylase (TH) promoter-controlled tetracycline-sensitive LRRK2 G2019S (GS) and LRRK2 G2019S kinase-dead (GS/DA) transgenic mice and show that LRRK2 GS expression leads to an age- and kinase-dependent cell-autonomous neurodegeneration of DA and norepinephrine (NE) neurons. Accompanying the loss of DA neurons are DA-dependent behavioral deficits and α-synuclein pathology that are also LRRK2 GS kinase-dependent. Transmission EM reveals that that there is an LRRK2 GS kinase-dependent significant reduction in synaptic vesicle number and a greater abundance of clathrin-coated vesicles in DA neurons. These transgenic mice indicate that LRRK2-induced DA and NE neurodegeneration is kinase-dependent and can occur in a cell-autonomous manner. Moreover, these mice provide a substantial advance in animal model development for LRRK2-associated PD and an important platform to investigate molecular mechanisms for how DA neurons degenerate as a result of expression of mutant LRRK2.

  7. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    Science.gov (United States)

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  8. DEPRESSIVE BEHAVIOR AND METABOLIC ALTERATIONS IN MICE ARE MUSICAL STYLE-DEPENDENT

    Directory of Open Access Journals (Sweden)

    V. S. Lima

    2015-10-01

    Full Text Available Nowadays, the world population has been affected by two serious psychological disorders, anxiety and depression, but there are few discoveries for new therapies to combat them. Studies have shown that music therapy has its beneficial behavioral effects. Therefore, the aim of the present study it was to investigate the possible effects of two music styles in some lipids and carbohydrate metabolism parameters resulting from behavioral changes related to anxiety and depression. So, mice were used with 30 days of age, divided into 6 groups: G1: saline, G2: Diazepam (DZP, G3: Fluoxetine (FLX, G4: control (no treatment, G5: Rock, and G6: Mozart Sonata. The animals from groups G1, G2 and G3 received treatments by oral route (gavage for 15 days. The music therapy sessions (2x/day 4 hours/day occurred in the same period of time at a 65dB frequency for G5 and G6 groups. After being evaluated in spontaneous locomotion, elevated plus maze and forced swimming tests, the animals were euthanized. The lactate, total cholesterol and plasma glucose levels were measured from the blood. No change was observed in spontaneous locomotion test and elevated plus maze. In the forced swimming test animals exposed to Rock showed an increase in immobility time. Furthermore, it was observed an increase in glucose and a reduction in cholesterol levels in the groups exposed to Rock and Mozart, while a decrease of lactate was observed only in group Rock. It was concluded that the auditory stimulus caused by music in mice was able to encourage depressive behavior and alter some lipids and carbohydrate metabolism parameters dependently of the musical style.

  9. Possible Signaling Pathways Mediating Neuronal Calcium Sensor-1-Dependent Spatial Learning and Memory in Mice.

    Directory of Open Access Journals (Sweden)

    Tomoe Y Nakamura

    Full Text Available Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1. However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/- mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production.

  10. Hippocampal dysregulation of neurofibromin-dependent pathways is associated with impaired spatial learning in engrailed 2 knock-out mice.

    Science.gov (United States)

    Provenzano, Giovanni; Pangrazzi, Luca; Poli, Andrea; Pernigo, Mattia; Sgadò, Paola; Genovesi, Sacha; Zunino, Giulia; Berardi, Nicoletta; Casarosa, Simona; Bozzi, Yuri

    2014-10-01

    Genome-wide association studies indicated the homeobox-containing transcription factor Engrailed-2 (En2) as a candidate gene for autism spectrum disorders (ASD). Accordingly, En2 knock-out (En2(-/-)) mice show anatomical and behavioral "ASD-like" features, including decreased sociability and learning deficits. The molecular pathways underlying these deficits in En2(-/-) mice are not known. Deficits in signaling pathways involving neurofibromin and extracellular-regulated kinase (ERK) have been associated with impaired learning. Here we investigated the neurofibromin-ERK cascade in the hippocampus of wild-type (WT) and En2(-/-) mice before and after spatial learning testing. When compared with WT littermates, En2(-/-) mice showed impaired performance in the Morris water maze (MWM), which was accompanied by lower expression of the activity-dependent gene Arc. Quantitative RT-PCR, immunoblotting, and immunohistochemistry experiments showed a marked downregulation of neurofibromin expression in the dentate gyrus of both naive and MWM-treated En2(-/-) mice. ERK phosphorylation, known to be induced in the presence of neurofibromin deficiency, was increased in the dentate gyrus of En2(-/-) mice after MWM. Treatment of En2(-/-) mice with lovastatin, an indirect inhibitor of ERK phosphorylation, markedly reduced ERK phosphorylation in the dentate gyrus, but was unable to rescue learning deficits in MWM-trained mutant mice. Further investigation is needed to unravel the complex molecular mechanisms linking dysregulation of neurofibromin-dependent pathways to spatial learning deficits in the En2 mouse model of ASD. Copyright © 2014 the authors 0270-6474/14/3413281-08$15.00/0.

  11. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  12. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-04

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Modulation of ethanol state-dependent learning by dorsal hippocampal NMDA receptors in mice.

    Science.gov (United States)

    Rezayof, Ameneh; Sharifi, Khadijeh; Zarrindast, Mohammad-Reza; Rassouli, Yassaman

    2008-12-01

    The possible role of N-methyl-D-aspartate (NMDA) receptors of dorsal hippocampus on ethanol state-dependent learning was studied in adult male mice (Pasteur Institute, Iran). As a model of memory, a single-trial step-down passive avoidance task was used. All animals were bilaterally implanted with cannulae into the CA1 regions of dorsal hippocampi. Results show that intraperitoneal (i.p.) administration of ethanol (0.5 and 1 g/kg) 30 min before training impaired memory performance in animals when tested 24h later. Pretest administration of the same doses of ethanol-induced state-dependent retrieval of the memory acquired under pretraining ethanol (1 g/kg, i.p.) influence. Pretest intra-CA1 microinjection of NMDA (0.001, 0.01, and 0.1 microg/mouse) by itself had no effect on memory retrieval and ethanol-induced amnesia. However, pretest intra-CA1 administration of the same doses of NMDA with an ineffective dose of ethanol (0.25 g/kg, i.p.) significantly restored the retrieval and potentiated ethanol state-dependent learning. On the other hand, pretest administration of a competitive NMDA receptor antagonist D-AP5 (D-(-)-2-Amino-5-phosphonopentanoic acid) (0.01, 0.1, and 1 microg/mouse, intra-CA1) or a noncompetitive NMDA receptor antagonist MK-801 maleate [(5S, 10R)-(+)-5-Methyl-10, 11-dihydro-5H-dibenzo [a, d] cyclohepten-5, 10-imine maleate] (0.25, 0.5, and 1 g/mouse, intra-CA1) 5 min before the administration of ethanol (1 g/kg, i.p.) significantly inhibited ethanol state-dependent learning. Intra-CA1 pretest administration of D-AP5 (0.01, 0.1, and 1 microg/mouse) or MK-801 maleate [5S, 10R)-(+)-5-Methyl-10, 11-dihydro-5H-dibenzo [a, d] cyclohepten-5, 10-imine maleate] (0.25, 0.5, and 1 microg/mouse) alone did not affect memory retention. It may be concluded that dorsal hippocampal NMDA receptors are involved in mediating ethanol state-dependent learning.

  14. [Effect of hydroxylated pyrimidine derivatives on activities of thiamine-dependent enzymes and some parameters of lipid metabolism in mice].

    Science.gov (United States)

    Oparin, D A; Gorenshteĭn, B I; Karaedova, L M; Naruta, E E; Zabrodskaia, S V; Rudiak, T V; Akat'ev, V E; Larin, F S

    1997-01-01

    It has been found that hydroxylated pyrimidine derivatives actively participate in metabolic proceeds related to functioning of vitamin B1-dependent enzymes (transketolase, 2-oxo acid dehydrogenase). Hydroxypyrimidines also induce a significant increase in the levels of total lipids and cholesterol in the mice liver, not changing the phospholipid content.

  15. Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice.

    Science.gov (United States)

    Uribe, Valeria; Wong, Bibiana K Y; Graham, Rona K; Cusack, Corey L; Skotte, Niels H; Pouladi, Mahmoud A; Xie, Yuanyun; Feinberg, Konstantin; Ou, Yimiao; Ouyang, Yingbin; Deng, Yu; Franciosi, Sonia; Bissada, Nagat; Spreeuw, Amanda; Zhang, Weining; Ehrnhoefer, Dagmar E; Vaid, Kuljeet; Miller, Freda D; Deshmukh, Mohanish; Howland, David; Hayden, Michael R

    2012-05-01

    Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.

  16. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice.

    Science.gov (United States)

    Terada, Yuka; Tsubota, Maho; Sugo, Hiiragi; Wakitani, Kohei; Sekiguchi, Fumiko; Wada, Kyoichi; Takada, Mitsutaka; Oita, Akira; Kawabata, Atsufumi

    2017-01-01

    Transient receptor potential vanilloid-1 (TRPV1) expressed in nociceptors is directly phosphorylated and activated by protein kinase C, and involved in the signaling of pancreatic pain. On the other hand, Cav3.2 T-type Ca2+ channels expressed in nociceptors are functionally upregulated by phosphorylation with protein kinase A and also play a role in pancreatitis-related pain. Calcineurin, a phosphatase, negatively regulates various channel functions including TRPV1, and calcineurin inhibitor-induced pain syndrome by tacrolimus, a calcineurin inhibitor, used as an immunosuppressant, has been a clinical problem. We thus examined the effect of tacrolimus on pancreatitis-related pain in mice. Repeated treatment with cerulein caused referred hyperalgesia accompanying acute pancreatitis, which was unaffected by tacrolimus. Pancreatitis-related symptoms disappeared in 24 h, whereas the referred hyperalgesia recurred following the administration of tacrolimus, which was abolished by the blockers of TRPV1 but not T-type Ca2+ channels. Thus, tacrolimus appears to cause the TRPV1-dependent relapse of pancreatitis-related pain, suggesting the involvement of calcineurin in the termination of pancreatic pain. © 2017 S. Karger AG, Basel.

  17. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2.

    Science.gov (United States)

    Schmidt, Paul J; Fleming, Mark D

    2012-06-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2(Y245X/Y245X) mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, coimmunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. Copyright © 2012 Wiley Periodicals, Inc.

  18. Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner.

    Science.gov (United States)

    Tao, Shasha; Rojo de la Vega, Montserrat; Quijada, Hector; Wondrak, Georg T; Wang, Ting; Garcia, Joe G N; Zhang, Donna D

    2016-01-05

    Mechanical ventilation (MV) is a therapeutic intervention widely used in the clinic to assist patients that have difficulty breathing due to lung edema, trauma, or general anesthesia. However, MV causes ventilator-induced lung injury (VILI), a condition characterized by increased permeability of the alveolar-capillary barrier that results in edema, hemorrhage, and neutrophil infiltration, leading to exacerbated lung inflammation and oxidative stress. This study explored the feasibility of using bixin, a canonical NRF2 inducer identified during the current study, to ameliorate lung damage in a murine VILI model. In vitro, bixin was found to activate the NRF2 signaling pathway through blockage of ubiquitylation and degradation of NRF2 in a KEAP1-C151 dependent manner; intraperitoneal (IP) injection of bixin led to pulmonary upregulation of the NRF2 response in vivo. Remarkably, IP administration of bixin restored normal lung morphology and attenuated inflammatory response and oxidative DNA damage following MV. This observed beneficial effect of bixin derived from induction of the NRF2 cytoprotective response since it was only observed in Nrf2(+/+) but not in Nrf2(-/-) mice. This is the first study providing proof-of-concept that NRF2 activators can be developed into pharmacological agents for clinical use to prevent patients from lung injury during MV treatment.

  19. Role of Mincle in alveolar macrophage-dependent innate immunity against mycobacterial infections in mice.

    Science.gov (United States)

    Behler, Friederike; Steinwede, Kathrin; Balboa, Luciana; Ueberberg, Bianca; Maus, Regina; Kirchhof, Gabriele; Yamasaki, Sho; Welte, Tobias; Maus, Ulrich A

    2012-09-15

    The role of macrophage-inducible C-type lectin Mincle in lung innate immunity against mycobacterial infection is incompletely defined. In this study, we show that wild-type (WT) mice responded with a delayed Mincle induction on resident alveolar macrophages and newly immigrating exudate macrophages to infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG), peaking by days 14-21 posttreatment. As compared with WT mice, Mincle knockout (KO) mice exhibited decreased proinflammatory mediator responses and leukocyte recruitment upon M. bovis BCG challenge, and they demonstrated increased mycobacterial loads in pulmonary and extrapulmonary organ systems. Secondary mycobacterial infection on day 14 after primary BCG challenge led to increased cytokine gene expression in sorted alveolar macrophages of WT mice, but not Mincle KO mice, resulting in substantially reduced alveolar neutrophil recruitment and increased mycobacterial loads in the lungs of Mincle KO mice. Collectively, these data show that WT mice respond with a relatively late Mincle expression on lung sentinel cells to M. bovis BCG infection. Moreover, M. bovis BCG-induced upregulation of C-type lectin Mincle on professional phagocytes critically shapes antimycobacterial responses in both pulmonary and extrapulmonary organ systems of mice, which may be important for elucidating the role of Mincle in the control of mycobacterial dissemination in mice.

  20. Proposed mechanistic description of dose-dependent BDE-47 urinary elimination in mice using a physiologically based pharmacokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Claude, E-mail: claude.emond@umontreal.ca [BioSimulation Consulting Inc., Newark, DE (United States); Departments of Environmental and Occupational Health, Medicine Faculty, University of Montreal, Montreal, Quebec (Canada); Sanders, J. Michael, E-mail: sander10@mail.nih.gov [National Cancer Institute, Research Triangle Park, NC (United States); Wikoff, Daniele, E-mail: dwikoff@toxstrategies.com [ToxStrategies, Austin, TX (United States); Birnbaum, Linda S., E-mail: birnbaumls@niehs.nih.gov [National Cancer Institute, Research Triangle Park, NC (United States)

    2013-12-01

    Polybrominated diphenyl ethers (PBDEs) have been used in a wide variety of consumer applications as additive flame retardants. In North America, scientists have noted continuing increases in the levels of PBDE congeners measured in human serum. Some recent studies have found that PBDEs are associated with adverse health effects in humans, in experimental animals, and wildlife. This laboratory previously demonstrated that urinary elimination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) is saturable at high doses in mice; however, this dose-dependent urinary elimination has not been observed in adult rats or immature mice. Thus, the primary objective of this study was to examine the mechanism of urinary elimination of BDE-47 in adult mice using a physiologically based pharmacokinetic (PBPK) model. To support this objective, additional laboratory data were collected to evaluate the predictions of the PBPK model using novel information from adult multi-drug resistance 1a/b knockout mice. Using the PBPK model, the roles of mouse major urinary protein (a blood protein carrier) and P-glycoprotein (an apical membrane transporter in proximal tubule cells in the kidneys, brain, intestines, and liver) were investigated in BDE-47 elimination. The resulting model and new data supported the major role of m-MUP in excretion of BDE-47 in the urine of adult mice, and a lesser role of P-gp as a transporter of BDE-47 in mice. This work expands the knowledge of BDE-47 kinetics between species and provides information for determining the relevancy of these data for human risk assessment purposes. - Highlights: • We report the first study on PBPK model on flame retardant in mice for BDE-47. • We examine mechanism of urinary elimination of BDE-47 in mice using a PBPK model. • We investigated roles of m-MUP and P-gp as transporters in urinary elimination.

  1. Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice

    Directory of Open Access Journals (Sweden)

    Sandra L. Rebholz

    2016-01-01

    Full Text Available Perfluorooctanoic acid (PFOA is a man-made surfactant with a number of industrial applications. It has a long half-life environmentally and biologically. Past studies suggest a direct relationship between plasma cholesterol and PFOA serum concentrations in humans and an inverse one in rodents fed standard rodent chow, making it difficult to examine mechanisms responsible for the potential PFOA-induced hypercholesterolemia and altered sterol metabolism. To examine dietary modification of PFOA-induced effects, C57BL/6 and BALB/c mice were fed PFOA in a fat- and cholesterol-containing diet. When fed these high fat diets, PFOA ingestion resulted in marked hypercholesterolemia in male and female C57BL/6 mice and less robust hypercholesterolemia in male BALB/c mice. The PFOA-induced hypercholesterolemia appeared to be the result of increased liver masses and altered expression of genes associated with hepatic sterol output, specifically bile acid production. mRNA levels of genes associated with sterol input were reduced only in C57BL/6 females, the mice with the greatest increase in plasma cholesterol levels. Strain-specific PFOA-induced changes in cholesterol concentrations in mammary tissues and ovaries paralleled changes in plasma cholesterol levels. mRNA levels of sterol-related genes were reduced in ovaries of C57BL/6 but not in BALB/c mice and not in mammary tissues. Our data suggest that PFOA ingestion leads to hypercholesterolemia in mice fed fat and cholesterol and effects are dependent upon the genetic background and gender of the mice with C57BL/6 female mice being most responsive to PFOA.

  2. p53-dependent delayed effects of radiation vary according to time of irradiation of p53 + / - mice.

    Science.gov (United States)

    Okazaki, Ryuji; Ootsuyama, Akira

    2014-01-01

    We previously reported that in p53 (+ / -) mice that had been given a whole-body dose of 3 Gy at 8 weeks of age, p53-dependent delayed effects of radiation, as manifested in T-cell receptor (TCR) variant fractions (VF) instability in mouse splenocytes, were biphasic, namely, induction of TCR-VF mutation reappeared at 44 weeks. The manifestation of the delayed effects and the measures of biological markers varied according to the timing of irradiation. We also reported that the decrease in function of the p53 gene was related to the effects of a delayed mutation. In the present study, we investigated the functions and mutations of the p53 gene in old age for p53 (+ / -) mice following irradiation at various ages. p53 (+ / -) mice were given a whole-body dose of 3 Gy at 8, 28 or 40 weeks of age. There were significant differences for all variables tested at 8 weeks of age. This was similarly the case for mice irradiated at 28 weeks of age, in which there were also significant differences in TCR VF and the percentage of apoptosis. In mice irradiated at 40 weeks of age, there were significant differences for all considered variables except for the p53 allele. We demonstrated that the different patterns of delayed mutation of the p53 gene at 56 weeks of age depended on the age at which mice had undergone 3-Gy whole-body irradiation. Our conclusions are limited to variation in p53-dependent delayed effects according to the time of irradiation.

  3. RORα-dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice.

    Science.gov (United States)

    Rajput, Charu; Cui, Tracy; Han, Mingyuan; Lei, Jing; Hinde, Joanna L; Wu, Qian; Bentley, J Kelley; Hershenson, Marc B

    2017-06-01

    Early-life wheezing-associated respiratory tract infection by rhinovirus (RV) is considered a risk factor for asthma development. We have shown that RV infection of 6-day-old BALB/c mice, but not mature mice, induces an asthmalike phenotype that is associated with an increase in the population of type 2 innate lymphoid cells (ILC2s) and dependent on IL-13 and IL-25. We hypothesize that ILC2s are required and sufficient for development of the asthmalike phenotype in immature mice. Mice were infected with RV1B on day 6 of life and treated with vehicle or a chemical inhibitor of retinoic acid receptor-related orphan receptor-α (RORα), SR3335 (15 mg·kg -1 ·day -1 ip for 7 days). We also infected Rora sg/sg mice without functional ILC2s. ILC2s were identified as negative for lineage markers and positive for cluster of differentiation 25 (CD25)/IL-2Rα and CD127/IL-7Rα. Effects of SR3335 on proliferation and function of cultured ILC2s were determined. Finally, sorted ILC2s were transferred into naïve mice, and lungs were harvested 14 days later for assessment of gene expression and histology. SR3335 decreased the number of RV-induced lung lineage-negative, CD25 + , CD127 + ILC2s in immature mice. SR3335 also attenuated lung mRNA expression of IL-13, Muc5ac, and Gob5 as well as mucous metaplasia. We also found reduced expansion of ILC2s in RV-infected Rora sg/sg mice. SR3335 also blocked IL-25 and IL-33-induced ILC2 proliferation and IL-13 production ex vivo. Finally, adoptive transfer of ILC2s led to development of asthmalike phenotype in immature and adult mice. RORα-dependent ILC2s are required and sufficient for type 2 cytokine expression and mucous metaplasia in immature mice. Copyright © 2017 the American Physiological Society.

  4. Inhibition of Interleukin-10 Signaling Induces Microbiota-Dependent Chronic Colitis in Apolipoprotein E Deficient Mice

    Science.gov (United States)

    Singh, Vishal; Kumar, Manish; Yeoh, Beng San; Xiao, Xia; Saha, Piu; Kennett, Mary J.; Vijay-Kumar, Matam

    2015-01-01

    Background Apolipoprotein E (ApoE) mediates potent anti-inflammatory and immunomodulatory properties in addition to its roles in regulating cholesterol transport and metabolism. However, its role in the intestine, specifically during inflammation is largely unknown. Methods Mice [C57BL/6 or ApoE deficient (ApoE-KO) mice] were administered either single or four injections (weekly) of anti-interleukin (IL)-10 receptor monoclonal antibody (1.0 mg/mouse; intraperitoneally) and euthanized one week after the last injection. 16S rRNA sequencing was performed in fecal samples to analyze the gut bacterial load and its composition. Microbiota was ablated by administration of broad-spectrum antibiotics in drinking water. IL-10KO mice were cohoused with ApoE-KO mice or their WT littermates to monitor the colitogenic potential of gut microbiota harbored in ApoE-KO mice. Results ApoE-KO mice developed severe colitis upon neutralization of IL-10 signaling as assessed by every parameter analyzed. 16S rRNA sequencing revealed that the ApoE-KO mice display elevated and altered gut microbiota that were accompanied with impaired production of intestinal antimicrobial peptides. Interestingly, microbiota ablation ameliorates the colitis development in ApoE-KO mice. Exacerbated and accelerated colitis was observed in IL-10KO mice when cohoused with ApoE-KO mice. Conclusions Our study highlights a novel interplay between ApoE and IL-10 in maintaining gut homeostasis and that such cross-talk may play a critical role in inflammatory bowel disease (IBD) pathogenesis. Gut sterilization and cohousing experiment suggests that microbiota play pivotal role in the development of IBD in mice lacking ApoE. PMID:26891260

  5. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence.

    Directory of Open Access Journals (Sweden)

    Theresa Alexandra Mattioli

    Full Text Available The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4. Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (- naloxone, an opioid receptor antagonist, and (+ naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.

  6. Inhibition of the lateral habenular CaMKⅡ abolishes naloxone-precipitated conditioned place aversion in morphine-dependent mice.

    Science.gov (United States)

    Wang, Jing; Li, Min; Wang, Ping; Zha, Yunhong; He, Zhi; Li, Zicheng

    2017-07-13

    Addictive substances mediate positive and negative states promoting compulsive drug use. However, substrates for aversive effects of drugs are not fully understood. We found that inactivation of the lateral habenula (LHb) by microinjection of tetrodotoxin (TTX) abolished naloxone-precipitated conditioned place aversion (CPA) in morphine-dependent mice. We also found that lateral habenular administration of KN-62, a specific inhibitor for calcium/calmodulin dependent protein kinase II (CaMKII), abolished naloxone-precipitated CPA in morphine-dependent mice. Furthermore, we found chronic morphine treatment induced overexpression of CaMKII in the LHb. In conclusion, our results suggest that the increased expression of CaMKII in the LHb is instrumental for morphine-driven aversive behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mountain-Scale Coupled Processes (TH/THC/THM)

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes

  8. CD4+ cell-dependent granuloma formation in humanized mice infected with mycobacteria

    Science.gov (United States)

    Heuts, Frank; Gavier-Widén, Dolores; Carow, Berit; Juarez, Julius; Wigzell, Hans; Rottenberg, Martin E.

    2013-01-01

    We have used humanized mice, in which human immune cells differentiate de novo from transplanted cord blood progenitor cells, to study the human immune responses to infection with Mycobacterium bovis bacillus Calmette–Guérin and Mycobacterium tuberculosis. Granulomas with a core containing giant cells, human CD68+ macrophages, and high bacilli numbers surrounded by a layer of CD3+ T cells and a fibrotic response encapsulating the lesions were observed in livers and lungs from bacillus Calmette–Guérin-infected humanized mice but not in nonhumanized infected controls. Paradoxically, humanized mice contained higher mycobacterial numbers in organs than nonhumanized controls. The enhancement of bacterial load was mediated by human CD4+ cells and associated to an increased expression of Programmed Death-1 protein and CD57 on T cells, molecules associated with inhibition and senescence. The lesions from mice depleted of CD4+ cells were scarcer, minimal, and irregular compared with those from mice depleted of CD8+ cells or nondepleted controls. Granulomas of bacillus Calmette–Guérin-infected humanized mice administered with a TNF-neutralizing TNF receptor fusion molecule preserved their structure, but contained higher levels of intracellular bacilli. Extended necrosis was observed in granulomas from M. tuberculosis- but not bacillus Calmette–Guérin-infected humanized mice. Our data indicate that humanized mice can be used as a model to study the formation and maintenance of human granuloma in tuberculosis and other infectious or noninfectious diseases. PMID:23559373

  9. ERK-dependent brain-derived neurotrophic factor regulation by hesperidin in mice exposed to chronic mild stress.

    Science.gov (United States)

    Li, Cheng-Fu; Chen, Shao-Mei; Chen, Xue-Mei; Mu, Rong-Hao; Wang, Shuang-Shuang; Geng, Di; Liu, Qing; Yi, Li-Tao

    2016-06-01

    A previous study found that the antidepressant-like effects of ethanolic extracts from Hemerocallis citrina are predominantly related to the flavonoid, hesperidin. The study herein aimed to explore the antidepressant-like mechanism of hesperidin in mice induced by chronic mild stress (CMS). The results indicated that hesperidin reversed the reduction of sucrose preference and the elevation of immobility time in mice induced by CMS. In addition, the increase in serum corticosterone levels and decrease in hippocampal extracellular signal-regulated kinase (ERK) phosphorylation and brain-derived neurotrophic factor (BDNF) levels in CMS mice were also ameliorated by hesperidin treatment. In contrast, improvement by hesperidin was suppressed by pretreatment with ERK inhibitor SL327. Taken together, our findings confirmed the antidepressant-like effect of hesperidin and indicated that hesperidin-induced BDNF up-regulation was mediated in an ERK-dependent manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Subacute cannabinoid treatment: anticonvulsant activity and withdrawal excitability in mice.

    OpenAIRE

    Karler, R.; Turkanis, S. A.

    1980-01-01

    1 The effects of subacute treatment with cannabidiol, delta 9-tetrahydrocannabinol (delta 9-THC), phenytoin and phenobarbitone on anticonvulsant activity and on withdrawal excitability in mice were compared in three electrically induced seizure-threshold tests. 2 In the maximal electroshock-threshold test, subacute treatment did not alter the anticonvulsant activity of cannabidiol, phenytoin or phenobarbitone, but tolerance developed to delta 9-THC. 3 In the 60 Hz electroshock-threshold test,...

  11. Delta-9 tetrahydrocannabinol (THC inhibits lytic replication of gamma oncogenic herpesviruses in vitro

    Directory of Open Access Journals (Sweden)

    Friedman Herman

    2004-09-01

    Full Text Available Abstract Background The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC, has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Methods Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV and Epstein-Barr virus (EBV replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS of monkeys, murine gamma herpesvirus 68 (MHV 68, and herpes simplex type 1 (HSV-1 was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Results Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. Conclusions THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC

  12. Menthol disrupts nicotine's psychostimulant properties in an age and sex-dependent manner in C57BL/6J mice.

    Science.gov (United States)

    Fait, Benjamin W; Thompson, David C; Mose, Tenna N; Jatlow, Peter; Jordt, Sven E; Picciotto, Marina R; Mineur, Yann S

    2017-09-15

    Menthol is a commonly used flavorant in tobacco and e-cigarettes, and could contribute to nicotine sensitivity. To understand how menthol could contribute to nicotine intake and addiction, it is important to determine whether specific mechanisms related to sex and age could underlie behavioral changes induced by menthol-laced nicotinic products. Using a validated paradigm of nicotine-dependent locomotor stimulation, adolescent and adult C57BL/6J mice of both sexes were exposed to nicotine, or nicotine laced with menthol, as their sole source of fluid, and psychostimulant effects were evaluated by recording home cage locomotor activity for ten days. Nicotine and cotinine blood levels were measured following exposure. Results show an interaction between treatment, age, and sex on liquid consumption, indicating that mice responded differently to menthol and nicotine based on their age and sex. Adult male mice greatly increased their nicotine intake when given menthol. In female mice of both age groups, menthol did not have this effect. Despite an increase in nicotine intake promoted by menthol, adult male mice showed a significant decrease in locomotion, suggesting that menthol blunted nicotine-induced psychostimulation. This behavioral response to menthol was not detected in adolescent mice of either sex. These data confirm that menthol is more than a flavorant, and can influence both nicotine intake and its psychostimulant effects. These results suggest that age- and sex-dependent mechanisms could underlie menthol's influence on nicotine intake and that studies including adolescent and adult menthol smokers of both sexes are warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Clozapine and SCH 23390 prevent the spatial working memory disruption induced by Δ9-THC administration into the medial prefrontal cortex.

    Science.gov (United States)

    Rodrigues, Lívia Carla de Melo; Conti, Catarine Lima; Nakamura-Palacios, Ester Miyuki

    2011-03-25

    Marijuana (Cannabis sativa) is one of the most widely used illicit drugs in the world. Its use is associated with impairments in cognitive function. We previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the primary psychoactive component of marijuana, impaired spatial working memory in the radial maze task when injected intracortically (IC) into the medial prefrontal cortex (mPFC) of rats. Here, we used this paradigm to evaluate the involvement of prefrontal dopamine receptors in working memory disruption induced by Δ(9)-THC. Intracortical pre-treatment of animals with either the D(1)- or D(2)-like dopamine receptor antagonists SCH 23390 or clozapine, respectively, significantly reduced the number of errors rats made in the radial maze following treatment with Δ(9)-THC also administered intracortically. These results were obtained in the absence of locomotor impairment, as evidenced by the time spent in each arm a rat visited. Our findings suggest that prefrontal dopamine receptors are involved in Δ(9)-THC-induced disruption of spatial working memory. This interaction between the cannabinoid system and dopamine release in the PFC contributes to new directions in research and to treatments for cognitive dysfunctions associated with drug abuse and dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Fasting induces impairment of gastric mucosal integrity in non-insulin-dependent diabetic (db/db) mice.

    Science.gov (United States)

    Kinoshita, M; Igarashi, S; Kume, E; Saito, N; Arakawa, K

    2000-03-01

    Although diabetic patients often have gastrointestinal complications, the gastric mucosal function in diabetes has not been well documented. To investigate the effect of fasting on the gastric mucosa in C57BL/KsJ-db +/+ db (db/db) mice, genetically non-insulin-dependent diabetic animals. Blood glucose levels, gastric mucosal morphology, and the amount of gastric mucin were examined before and after 18 h of fasting with free access to water in db/db mice and their non-diabetic littermates (db/m). Although 18 h of fasting reduced the blood glucose levels of both db/db and db/m mice, fasting decreased the amount of gastric adherent mucin and caused haemorrhagic gastric lesions only in db/db mice. After fasting, oral administration of ethanol induced much more severe gastric damage in db/db than in db/m mice. The above fasting-induced gastric damage such as haemorrhagic lesions, loss of the mucin, and the increased sensitivity to ethanol worsened as the duration of diabetes became longer. Glucose ingestion in drinking water during the fasting counteracted the fall in blood glucose and prevented the decrease in the amount of gastric mucin and the formation of gastric mucosal lesions in db/db mice. These findings indicate that fasting-induced glucose deficit causes gastric mucosal lesions and increases the susceptibility of gastric mucosa to noxious agents owing to the loss of mucus glycoprotein in db/db mice. Prolonged diabetes is likely to augment the severity of fasting-induced impairment of the gastric mucosal function.

  15. TLR9-dependent systemic interferon-beta production by intravenous injection of plasmid DNA/cationic liposome complex in mice.

    Science.gov (United States)

    Yoshida, Hiroyuki; Nishikawa, Makiya; Yasuda, Sachiyo; Mizuno, Yumiko; Toyota, Hiroyasu; Kiyota, Tsuyoshi; Takahashi, Rei; Takakura, Yoshinobu

    2009-08-01

    The type I interferon (IFN) response to DNA/cationic liposome complex, or lipoplex, has been reported in cultured cells, but little is known about the response in vivo. Studies of the pro-inflammatory cytokine response to lipoplex have shown the importance of the unmethylated CpG dinucleotide (CpG motif) and its receptor, Toll-like receptor (TLR)-9. CpG- and non-CpG lipoplex consisting of CpG- or non-CpG plasmid DNA, respectively, and N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride/cholesterol liposomes were intravenously injected into mice. IFN-beta and interleukin (IL)-6 in the serum and organs were measured by the enzyme-linked immunosorbent assay. The involvement of TLR9, phagocytic cells and the spleen in the responses was evaluated using TLR9(-/-), clodronate liposome-treated-, and splenectomized mice, respectively. Accumulation of blood cells in the lung was evaluated histologically. CpG lipoplex induced a large increase in the levels of IFN-beta and IL-6 in the serum, liver, spleen, lung and kidney, whereas non-CpG lipoplex scarcely had any effect. Neither formulation led to significant cytokine production in TLR9(-/-) mice. Clodronate liposome-treated mice showed a large reduction in both IFN-beta and IL-6 levels. Splenectomized mice receiving CpG lipoplex also showed a significantly low production of IL-6 but a similar level of IFN-beta production to that of unsplenectomized mice. A large number of monocytes were found in the capillary vessels around the pulmonary alveoli of mice receiving lipoplex. These findings indicate that, in contrast to the production of IL-6 from splenic macrophages, IFN-beta is produced from phagocytic cells other than splenic macrophages after the injection of CpG lipoplex through the TLR9-dependent pathway.

  16. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner.

    Science.gov (United States)

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-12-01

    The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice.

    Science.gov (United States)

    Poole, Rachel L; Braak, David; Gould, Thomas J

    2016-02-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, which suggests that the developing hippocampus may be sensitive to the effects of caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Predictive model accuracy in estimating last Δ9-tetrahydrocannabinol (THC) intake from plasma and whole blood cannabinoid concentrations in chronic, daily cannabis smokers administered subchronic oral THC

    National Research Council Canada - National Science Library

    Karschner, Erin L; Schwope, David M; Schwilke, Eugene W; Goodwin, Robert S; Kelly, Deanna L; Gorelick, David A; Huestis, Marilyn A

    2012-01-01

    ... 0.5 whole blood-to-plasma (WB/P) ratio. No studies previously evaluated predictive models utilizing empirically-derived WB/P ratios, or whole blood cannabinoid pharmacokinetics after subchronic THC dosing...

  19. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ⁹-THC in humans discriminating Δ⁹-THC

    National Research Council Canada - National Science Library

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2014-01-01

    ...)-tetrahydrocannabinol (Δ(9)-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ(9...

  20. Altered Histone Acetylation Is Associated with Age-Dependent Memory Impairment in Mice

    National Research Council Canada - National Science Library

    Shahaf Peleg; Farahnaz Sananbenesi; Athanasios Zovoilis; Susanne Burkhardt; Sanaz Bahari-javan; Roberto Carlos Agis-Balboa; Perla Cota; Jessica Lee Wittnam; Andreas Gogol-Doering; Lennart Opitz; Gabriella Salinas-Riester; Markus Dettenhofer; Hui Kang; Laurent Farinelli; Wei Chen; André Fischer

    2010-01-01

    .... During learning, aged mice display a specific deregulation of histone H4 lysine 12 (H4K12) acetylation and fail to initiate a hippocampal gene expression program associated with memory consolidation...

  1. Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice

    National Research Council Canada - National Science Library

    Jang, Saebyeol; Dilger, Ryan N; Johnson, Rodney W

    2010-01-01

    ... and memory in aged mice is unknown. In initial studies, pretreatment of BV-2 microglia with luteolin inhibited the induction of inflammatory genes and the release of inflammatory mediators after lipopolysaccharide (LPS) stimulation...

  2. THC-concentraties in wiet, nederwiet en hasj in Nederlandse coffeeshops

    NARCIS (Netherlands)

    Niesink, R.J.M.

    2000-01-01

    Centraal in dit onderzoek stond de vraag hoe hoog de THC-concentraties zijn in de cannabisproducten die verkocht worden in Nederlandse coffeeshops. Daarnaast zijn de in Nederland gekweekte producten vergeleken met uit het buitenland afkomstige softdrugs. Nederwiet bevat significant meer THC (8,6

  3. TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port ...

  4. THC-concentraties in wiet, nederwiet en hasj in Nederlandse coffeeshops (2001 - 2002)

    NARCIS (Netherlands)

    Niesink, R.J.M.; Pijlman, F.T.A.; Rigter, S.; Hoek, J.; Mostert, L.

    2002-01-01

    THC (tetrahydrocannabinol) is de belangrijkste psychoactieve verbinding in de cannabisplant. In 1999 is door de ministeries van VWS en Justitie een onafhankelijke monitor geëntameerd naar de THC-gehaltes in cannabisproducten zoals die in de Nederlandse coffeeshops worden verkocht, als input voor het

  5. Separate and combined effects of the cannabinoid agonists nabilone and Δ⁹-THC in humans discriminating Δ⁹-THC.

    Science.gov (United States)

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2011-07-01

    Agonist replacement treatment is a promising strategy to manage cannabis-use disorders. The aim of this study was to assess the combined effects of the synthetic cannabinoid agonist nabilone and Δ⁹-tetrahydrocannabinol (Δ⁹-THC) using drug-discrimination procedures, which are sensitive to drug interactions. Testing the concurrent administration of nabilone and Δ⁹-THC was also conducted to provide initial safety and tolerability data, which is important because cannabis users will likely lapse during treatment. Six cannabis users learned to discriminate 30 mg oral Δ⁹-THC from placebo and then received nabilone (0, 1 and 3mg) and Δ⁹-THC (0, 5, 15 and 30 mg), alone and in combination. Subjects completed the multiple-choice procedure to assess drug reinforcement, and self-report, task performance and physiological measures were collected. Δ⁹-THC and nabilone alone shared discriminative-stimulus effects with the training dose of Δ⁹-THC, increased crossover point on the multiple-choice procedure, produced overlapping subject ratings and decreased skin temperature. Nabilone alone also elevated heart rate. In combination, nabilone shifted the discriminative-stimulus effects of Δ⁹-THC leftward/upward and enhanced Δ⁹-THC effects on the other outcome measures. These results replicate a previous study demonstrating that nabilone shares agonist effects with the active constituent of cannabis in cannabis users, and contribute further by indicating that nabilone would likely be safe and well tolerated when combined with cannabis. These data support the conduct of future studies to determine if nabilone treatment would produce cross-tolerance to the abuse-related effects of cannabis and reduce cannabis use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Anxiolytic effect of music depends on ovarian steroid in female mice.

    Science.gov (United States)

    Chikahisa, Sachiko; Sano, Atsuko; Kitaoka, Kazuyoshi; Miyamoto, Ken-Ichi; Sei, Hiroyoshi

    2007-04-16

    Music is known to be able to elicit emotional changes, including anxiolytic effects. The gonadal steroid hormones estradiol and progesterone have also been reported to play important roles in the modulation of anxiety. In the present study, we examined whether the effect of music on anxiety is related to ovarian steroid in female mice. Behavioral paradigms measuring anxiety were tested in gonadally intact (SHAM) and ovariectomized (OVX) female mice chronically treated with either placebo (OVX/Placebo), 17beta-estradiol (OVX/E), or progesterone (OVX/P). In the elevated plus maze, light-dark transition, and marble burying tests, SHAM and OVX/P mice exposed to music showed less anxiety than those exposed to white noise or silence while OVX/placebo mice did not show these effects at all. OVX/E mice showed the anxiolytic effect of music only in the marble burying test. Furthermore, pretreatment with progesterone's metabolite inhibitor completely prevented the anxiolytic effect of music in behavioral tests, while pretreatment with a progesterone receptor blocker did not prevent the anxiolytic effect of music. These results suggest that exposure to music reduces anxiety levels, and ovarian steroids, mainly progesterone, may be involved in the anxiolytic effect of music observed in female mice.

  7. Cannabinoids therapeutic use: what is our current understanding following the introduction of THC, THC:CBD oromucosal spray and others?

    Science.gov (United States)

    Maccarrone, Mauro; Maldonado, Rafael; Casas, Miguel; Henze, Thomas; Centonze, Diego

    2017-04-01

    The complexity of the endocannabinoid (eCB) system is becoming better understood and new drivers of eCB signaling are emerging. Modulation of the activities of the eCB system can be therapeutic in a number of diseases. Research into the eCB system has been paralleled by the development of agents that interact with cannabinoid receptors. In this regard it should be remembered that herbal cannabis contains a myriad of active ingredients, and the individual cannabinoids have quite distinct biological activities requiring independent studies. Areas covered: This article reviews the most important current data involving the eCB system in relation to human diseases, to reflect the present (based mainly on the most used prescription cannabinoid medicine, THC/CBD oromucosal spray) and potential future uses of cannabinoid-based therapy. Expert commentary: From the different therapeutic possibilities, THC/CBD oromucosal spray has been in clinical use for approximately five years in numerous countries world-wide for the management of multiple sclerosis (MS)-related moderate to severe resistant spasticity. Clinical trials have confirmed its efficacy and tolerability. Other diseases in which different cannabinoids are currently being investigated include various pain states, Alzheimer's disease, Parkinson's disease, Huntington's disease and epilepsy. The continued characterization of individual cannabinoids in different diseases remains important.

  8. Altered CREB Binding to Activity-Dependent Genes in Serine Racemase Deficient Mice, a Mouse Model of Schizophrenia.

    Science.gov (United States)

    Balu, Darrick T; Coyle, Joseph T

    2017-11-27

    cAMP-response-element-binding protein (CREB) is a transcription factor ubiquitously expressed in the brain that regulates neuroplasticity by modulating gene expression. The influx of calcium through N-methyl-d-aspartate receptors (NMDARs) is a well-defined mechanism that leads to the increased expression of CREB-dependent genes, including brain derived neurotrophic factor (BDNF), microRNA-132, and activity-regulated cytoskeleton-associated protein (Arc). These molecules are implicated in the pathophysiology of schizophrenia. We previously demonstrated that serine racemase knockout (SR-/-) mice, which exhibit NMDAR hypofunction due to a lack of the forebrain NMDAR co-agonist d-serine, also have reduced expression of CREB-dependent genes in the hippocampus. Using chromatin immunoprecipitation, we show here that, in SR-/- mice, there is less CREB bound to the promoter regions of BDNF, microRNA-132, and Arc. These data suggest that NMDAR hypofunction in SR-/- mice leads to reduced CREB binding on known activity-dependent genes, in turn contributing to their reduced expression.

  9. Enhanced discriminative stimulus effects of Δ(9)-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys.

    Science.gov (United States)

    McMahon, Lance R

    2016-08-01

    Cannabidiol, a therapeutic with potential serotonin (5-hydroxytryptamine; 5-HT) 5-HT1A receptor agonist activity, is the second most prevalent cannabinoid in Cannabis after Δ(9)-THC. The extent to which cannabidiol modifies the effects of Δ(9)-THC has not been firmly established, especially with respect to abuse-related effects in rhesus monkeys where previously antagonistic interactions have been reported for some behavioral outcomes. Cannabidiol and the 5-HT1A receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) were tested in two separate discrimination assays in rhesus monkeys. One group (n=6) discriminated Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 0.1mg/kg i.v.); a second group (n=6) discriminated the cannabinoid antagonist rimonabant (1mg/kg i.v.) while receiving Δ(9)-THC daily (1mg/kg/12hs.c.). Responding was maintained under a fixed ratio 5 schedule of stimulus-shock termination. Both training drugs dose-dependently increased the percentage of responses on the respective drug-associated levers. Cannabidiol (up to 17.8mg/kg) and 8-OH-DPAT (up to 0.178mg/kg) did not substitute for either training drug; however, both significantly increased the potency of Δ(9)-THC to produce discriminative stimulus effects. Moreover, 8-OH-DPAT significantly attenuated the discriminative stimulus effects of rimonabant, whereas cannabidiol did not modify the rimonabant discriminative stimulus. These results, which are consistent with cannabidiol lacking CB1 receptor agonist or antagonist activity in vivo, demonstrate enhancement of the effects of Δ(9)-THC by cannabidiol, albeit at cannabidiol amounts larger than those in Cannabis or cannabidiol-based therapeutics (nabiximols). In addition to showing that cannabidiol and a 5-HT1A receptor agonist have overlapping behavioral effects, the current results suggest that 5-HT1A agonism enhances the CB1 receptor-mediated effects of Δ(9)-THC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Strain-Dependent Anterior Segment Dysgenesis and Progression to Glaucoma in Col4a1 Mutant Mice

    Science.gov (United States)

    Mao, Mao; Smith, Richard S.; Alavi, Marcel V.; Marchant, Jeffrey K.; Cosma, Mihai; Libby, Richard T.; John, Simon W. M.; Gould, Douglas B.

    2015-01-01

    Purpose Mutations in the gene encoding collagen type IV alpha 1 (COL4A1) cause multisystem disorders including anterior segment dysgenesis (ASD) and optic nerve hypoplasia. The penetrance and severity of individual phenotypes depends on genetic context. Here, we tested the effects of a Col4a1 mutation in two different genetic backgrounds to compare how genetic context influences ocular dysgenesis, IOP, and progression to glaucoma. Methods Col4a1 mutant mice maintained on a C57BL/6J background were crossed to either 129S6/SvEvTac or CAST/EiJ and the F1 progeny were analyzed by slit-lamp biomicroscopy and optical coherence tomography. We also measured IOPs and compared tissue sections of eyes and optic nerves. Results. We found that the CAST/EiJ inbred strain has a relatively uniform and profound suppression on the effects of Col4a1 mutation and that mutant CASTB6F1 mice were generally only very mildly affected. In contrast, mutant 129B6F1 mice had more variable and severe ASD and IOP dysregulation that were associated with glaucomatous signs including lost or damaged retinal ganglion cell axons and excavation of the optic nerve head. Conclusions. Ocular defects in Col4a1 mutant mice model ASD and glaucoma that are observed in a subset of patients with COL4A1 mutations. We demonstrate that different inbred strains of mice give graded severities of ASD and we detected elevated IOP and glaucomatous damage in 129B6F1, but not CASTB6F1 mice that carried a Col4a1 mutation. These data demonstrate that genetic context differences are one factor that may contribute to the variable penetrance and severity of ASD and glaucoma in patients with COL4A1 mutations. PMID:26567795

  11. IL-33-Dependent Endothelial Activation Contributes to Apoptosis and Renal Injury in Orientia tsutsugamushi-Infected Mice.

    Directory of Open Access Journals (Sweden)

    Thomas R Shelite

    2016-03-01

    Full Text Available Endothelial cells (EC are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang 2/Ang1 ratio, increased endothelin 1 (ET-1 and endothelial nitric oxide synthase (eNOS expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33 every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2, and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection.

  12. Whole body exposure of mice to secondhand smoke induces dose-dependent and persistent promutagenic DNA adducts in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-In [Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010 (United States); Arlt, Volker M. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG (United Kingdom); Yoon, Jae-In [Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010 (United States); Cole, Kathleen J. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG (United Kingdom); Pfeifer, Gerd P. [Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010 (United States); Phillips, David H. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG (United Kingdom); Besaratinia, Ahmad, E-mail: ania@coh.org [Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010 (United States)

    2011-11-01

    Secondhand smoke (SHS) exposure is a known risk factor for lung cancer in lifelong nonsmokers. However, the underlying mechanism of action of SHS in lung carcinogenesis remains elusive. We have investigated, using the {sup 32}P-postlabeling assay, the genotoxic potential of SHS in vivo by determining the formation and kinetics of repair of DNA adducts in the lungs of mice exposed whole body to SHS for 2 or 4 months (5 h/day, 5 days/week), and an ensuing one-month recovery period. We demonstrate that exposure of mice to SHS elicits a significant genotoxic response as reflected by the elevation of DNA adduct levels in the lungs of SHS-exposed animals. The increases in DNA adduct levels in the lungs of SHS-exposed mice are dose-dependent as they are related to the intensity and duration of SHS exposure. After one month of recovery in clean air, the levels of lung DNA adducts in the mice exposed for 4 months remain significantly higher than those in the mice exposed for 2 months (P < 0.0005), levels in both groups being significantly elevated relative to controls (P < 0.00001). Our experimental findings accord with the epidemiological data showing that exposure to smoke-derived carcinogens is a risk factor for lung cancer; not only does the magnitude of risk depend upon carcinogen dose, but it also becomes more irreversible with prolonged exposure. The confirmation of epidemiologic data by our experimental findings is of significance because it strengthens the case for the etiologic involvement of SHS in nonsmokers' lung cancer. Identifying the etiologic factors involved in the pathogenesis of lung cancer can help define future strategies for prevention, early detection, and treatment of this highly lethal malignancy.

  13. A THC Simulator for Modeling Fluid-Rock Interactions

    Science.gov (United States)

    Hamidi, Sahar; Galvan, Boris; Heinze, Thomas; Miller, Stephen

    2014-05-01

    Fluid-rock interactions play an essential role in many earth processes, from a likely influence on earthquake nucleation and aftershocks, to enhanced geothermal system, carbon capture and storage (CCS), and underground nuclear waste repositories. In THC models, two-way interactions between different processes (thermal, hydraulic and chemical) are present. Fluid flow influences the permeability of the rock especially if chemical reactions are taken into account. On one hand solute concentration influences fluid properties while, on the other hand, heat can affect further chemical reactions. Estimating heat production from a naturally fractured geothermal systems remains a complex problem. Previous works are typically based on a local thermal equilibrium assumption and rarely consider the salinity. The dissolved salt in fluid affects the hydro- and thermodynamical behavior of the system by changing the hydraulic properties of the circulating fluid. Coupled thermal-hydraulic-chemical models (THC) are important for investigating these processes, but what is needed is a coupling to mechanics to result in THMC models. Although similar models currently exist (e.g. PFLOTRAN), our objective here is to develop algorithms for implementation using the Graphics Processing Unit (GPU) computer architecture to be run on GPU clusters. To that aim, we present a two-dimensional numerical simulation of a fully coupled non-isothermal non-reactive solute flow. The thermal part of the simulation models heat transfer processes for either local thermal equilibrium or nonequilibrium cases, and coupled to a non-reactive mass transfer described by a non-linear diffusion/dispersion model. The flow process of the model includes a non-linear Darcian flow for either saturated or unsaturated scenarios. For the unsaturated case, we use the Richards' approximation for a mixture of liquid and gas phases. Relative permeability and capillary pressure are determined by the van Genuchten relations

  14. Male mice song syntax depends on social contexts and influences female preferences

    Directory of Open Access Journals (Sweden)

    Jonathan eChabout

    2015-04-01

    Full Text Available In 2005 Holy & Guo advanced the idea that male mice produce ultrasonic vocalizations (USV with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

  15. Subacute cannabinoid treatment: anticonvulsant activity and withdrawal excitability in mice.

    Science.gov (United States)

    Karler, R; Turkanis, S A

    1980-03-01

    1 The effects of subacute treatment with cannabidiol, delta 9-tetrahydrocannabinol (delta 9-THC), phenytoin and phenobarbitone on anticonvulsant activity and on withdrawal excitability in mice were compared in three electrically induced seizure-threshold tests. 2 In the maximal electroshock-threshold test, subacute treatment did not alter the anticonvulsant activity of cannabidiol, phenytoin or phenobarbitone, but tolerance developed to delta 9-THC. 3 In the 60 Hz electroshock-threshold test, the activity of delta 9-THC and cannabidiol did not change, but tolerance developed to phenobarbitone, and there was an increase in sensitivity to phenytoin. 4 In the 6 Hz electroshock-threshold test, there was an increase in sensitivity to both delta 9-THC and cannabidiol, there was tolerance to phenobarbitone, while the activity of phenytoin did not change. 5 Although tolerance developed in some of the seizure-threshold tests to delta 9-THC and phenobarbitone, tolerance to cannabidiol and phenytoin did not develop in any of the tests. 6 Hyperexcitability followed withdrawal from only delta 9-THC (6 Hz and 60 Hz electroshock-threshold tests) and phenobarbitone (maximal electroshock-threshold and 60 Hz electroshock-threshold tests). 7 The delta 9-THC withdrawal hyperexcitability suggests that the use of marihuana may jeopardize the control of seizures in epileptics.

  16. Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI.

    Science.gov (United States)

    Berkowitz, Bruce A; Roberts, Robin; Bissig, David

    2010-08-30

    To test the hypothesis that in young, functionally blind mice, light-dependent intraretinal ion regulation occurs via melanopsin. Postnatal day (P) 7 wild type (WT, C57Bl/6) and melanopsin knockout (KO, opn4-/-, B6129) mice were light or dark adapted. Awake and freely moving animals were injected intraperitoneally (ip) with MnCl(2). Four hours later, the mice in both groups were anesthetized and studied with manganese-enhanced MRI (MEMRI) to measure the extent of intraretinal uptake of manganese and whole retinal thicknesses. In control P7 mice, light exposure increased (pdark. This difference was observed throughout most of the retina. In P7 KO mice, intraretinal manganese uptake did not differ from that in age-matched dark-adapted WT mice, and was not light-dependent. No differences in whole retinal thickness were noted between groups. First time evidence is presented which demonstrates intraretinal ion regulation by melanopsin in vivo.

  17. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice.

    Science.gov (United States)

    McMahon, John J; Yu, Wilson; Yang, Jun; Feng, Haihua; Helm, Meghan; McMahon, Elizabeth; Zhu, Xinjun; Shin, Damian; Huang, Yunfei

    2015-01-01

    Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres.

    Directory of Open Access Journals (Sweden)

    Ignacio Flores

    Full Text Available Telomere maintenance is essential to ensure proper size and function of organs with a high turnover. In particular, a dwarf phenotype as well as phenotypes associated to premature loss of tissue regeneration, including the skin (hair loss, hair graying, decreased wound healing, are found in mice deficient for telomerase, the enzyme responsible for maintaining telomere length. Coincidental with the appearance of these phenotypes, p53 is found activated in several tissues from these mice, where is thought to trigger cellular senescence and/or apoptotic responses. Here, we show that p53 abrogation rescues both the small size phenotype and restitutes the functionality of epidermal stem cells (ESC of telomerase-deficient mice with dysfunctional telomeres. In particular, p53 ablation restores hair growth, skin renewal and wound healing responses upon mitogenic induction, as well as rescues ESCmobilization defects in vivo and defective ESC clonogenic activity in vitro. This recovery of ESC functions is accompanied by a downregulation of senescence markers and an increased proliferation in the skin and kidney of telomerase-deficient mice with critically short telomeres without changes in apoptosis rates. Together, these findings indicate the existence of a p53-dependent senescence response acting on stem/progenitor cells with dysfunctional telomeres that is actively limiting their contribution to tissue regeneration, thereby impinging on tissue fitness.

  19. Efflux of Creatine Kinase from Isolated Soleus Muscle Depends on Age, Sex and Type of Exercise in Mice

    Directory of Open Access Journals (Sweden)

    Juozas Baltusnikas, Tomas Venckunas, Audrius Kilikevicius, Andrej Fokin, Aivaras Ratkevicius

    2015-06-01

    Full Text Available Elevated plasma creatine kinase (CK activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL of adult (7.5-month old female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05 after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h−1, respectively, but smaller (p < 0.05 than for young females after the same type of exercise (1069 ± 341 mU·h−1. Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h−1, respectively, p < 0.001. Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice.

  20. Expansion of the fetoplacental vasculature in late gestation is strain dependent in mice

    OpenAIRE

    Rennie, Monique Y.; Detmar, Jacqui; Whiteley, Kathie J.; Jurisicova, Andrea; Adamson, S. Lee; Sled, John G.

    2012-01-01

    How the fetoplacental arterial tree grows and expands during late gestational development is largely unknown. In this study, we quantified changes in arterial branching in the fetal exchange region of the mouse placenta during late gestation, when capillarization increases rapidly. We studied two commonly used mouse strains, CD1 and C57Bl/6 (B6), at embryonic days (E)13.5, 15.5, and 17.5. B6 mice differ from CD1 mice by exhibiting a blunted fetal weight gain in late gestation. We found that B...

  1. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  2. The Behavioral Consequence of Phenylketonuria in Mice Depends on the Genetic Background

    NARCIS (Netherlands)

    Bruinenberg, Vibeke M.; van der Goot, Els; van Vliet, Danique; de Groot, Martijn J.; Mazzola, Priscila N.; Heiner-Fokkema, M. Rebecca; van Faassen, Martijn; van Spronsen, Francjan J.; van der Zee, Eddy A.

    2016-01-01

    To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are

  3. Nasopharyngeal colonization with Streptococcus pneumoniae triggers dendritic cell dependent antibody responses against invasive disease in mice.

    Science.gov (United States)

    Dommaschk, Anne; Ding, Nadine; Tort Tarres, Meritxell; Bittersohl, Lara F; Maus, Regina; Stolper, Jennifer; Jonigk, Danny; Braubach, Peter; Lippmann, Torsten; Welte, Tobias; Maus, Ulrich A

    2017-03-01

    Nasopharyngeal colonization with Streptococcus pneumoniae (Spn) is an important precondition for the development of pneumococcal pneumonia. At the same time, nasopharyngeal colonization with Spn has been shown to mount adaptive immune responses against Spn in mice and humans. Cellular responses of the nasopharyngeal compartment, including the nasal-associated lymphoid tissue, to pneumococcal colonization and their importance for developing adaptive immune responses are poorly defined. We show that nasopharyngeal colonization with S. pneumoniae led to substantial expansion of dendritic cells (DCs) both in nasopharyngeal tissue and nasal-associated lymphoid tissue of mice. Depletion of DCs achieved by either diphtheria toxin (DT) treatment of chimeric zDC+/DTR mice, or by use of FMS-like tyrosine kinase 3 ligand (Flt3L) KO mice exhibiting congenitally reduced DC pool sizes, significantly diminished antibody responses after colonization with Spn, along with impaired protective immunity against invasive pneumococcal disease. Collectively, the data show that classical DCs contribute to pneumococcal colonization induced adaptive immune responses against invasive pneumococcal disease in two different mouse models. These data may be useful for future nasopharyngeal vaccination strategies against pneumococcal diseases in humans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity

    Directory of Open Access Journals (Sweden)

    Moens Ugo

    2007-11-01

    Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.

  5. Effects of Menthol on Nicotine Pharmacokinetic, Pharmacology and Dependence in Mice.

    Directory of Open Access Journals (Sweden)

    Shakir D Alsharari

    Full Text Available Although menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol. Administration of i.p. menthol significantly decreased nicotine's clearance (2-fold decrease and increased its AUC compared to i.p. vehicle treatment. In addition, menthol pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (2.5 mg/kg, s.c. for periods up to 180 min post-nicotine administration. Repeated administration of menthol with nicotine increased the intensity of mecamylamine-precipitated withdrawal signs in mice exposed chronically to nicotine. The potentiation of withdrawal intensity by menthol was accompanied by a significant increase in nicotine plasma levels in these mice. Western blot analyses of α4 and β2 nAChR subunit expression suggests that chronic menthol impacts the levels and distribution of these nicotinic subunits in various brain regions. In particular, co-administration of menthol and nicotine appears to promote significant increase in β2 and α4 nAChR subunit expression in the hippocampus, prefrontal cortex and striatum of mice. Surprisingly, chronic injections of menthol alone to mice caused an upregulation of β2 and α4 nAChR subunit levels in these brain regions. Because the addition of menthol to tobacco products has been suggested to augment their addictive potential, the current findings reveal several new pharmacological molecular adaptations that may contribute to its unique addictive profile.

  6. Effects of Menthol on Nicotine Pharmacokinetic, Pharmacology and Dependence in Mice.

    Science.gov (United States)

    Alsharari, Shakir D; King, Justin R; Nordman, Jacob C; Muldoon, Pretal P; Jackson, Asti; Zhu, Andy Z X; Tyndale, Rachel F; Kabbani, Nadine; Damaj, M Imad

    2015-01-01

    Although menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia) and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol. Administration of i.p. menthol significantly decreased nicotine's clearance (2-fold decrease) and increased its AUC compared to i.p. vehicle treatment. In addition, menthol pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (2.5 mg/kg, s.c.) for periods up to 180 min post-nicotine administration. Repeated administration of menthol with nicotine increased the intensity of mecamylamine-precipitated withdrawal signs in mice exposed chronically to nicotine. The potentiation of withdrawal intensity by menthol was accompanied by a significant increase in nicotine plasma levels in these mice. Western blot analyses of α4 and β2 nAChR subunit expression suggests that chronic menthol impacts the levels and distribution of these nicotinic subunits in various brain regions. In particular, co-administration of menthol and nicotine appears to promote significant increase in β2 and α4 nAChR subunit expression in the hippocampus, prefrontal cortex and striatum of mice. Surprisingly, chronic injections of menthol alone to mice caused an upregulation of β2 and α4 nAChR subunit levels in these brain regions. Because the addition of menthol to tobacco products has been suggested to augment their addictive potential, the current findings reveal several new pharmacological molecular adaptations that may contribute to its unique addictive profile.

  7. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.

    Science.gov (United States)

    Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela

    2015-01-01

    Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Clinical experience with THC:CBD oromucosal spray in patients with multiple sclerosis-related spasticity.

    Science.gov (United States)

    Koehler, Jürgen; Feneberg, Wolfgang; Meier, Martin; Pöllmann, Walter

    2014-09-01

    This detailed medical charts' data collection study conducted at a multiple sclerosis (MS) clinic in Germany evaluated the effectiveness of tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray in patients with resistant MS spasticity. Over a 15-month timeframe, THC:CBD spray was initiated in 166 patients. Mean follow-up was 9 months. In all, 120 patients remained on treatment for a response rate of 72%. THC:CBD spray was used as add-on therapy in 95 patients and as monotherapy in 25 patients to achieve best-possible therapeutic results. Among responders, the mean spasticity 0-10 numerical rating scale (NRS) score decreased by 57%, from 7.0 before treatment to 3.0 within 10 days of starting THC:CBD spray. The mean dosage was 4 sprays/day. Most patients who withdrew from treatment (40/46) had been receiving THC:CBD spray for less than 60 days. Main reasons for treatment discontinuation were: adverse drug reactions, mainly dizziness, fatigue and oral discomfort (23 patients; 13.9%); lack of efficacy (14 patients; 8.4%); or need for a baclofen pump (9 patients; 5.4%). No new safety signals were noted with THC:CBD spray during the evaluation period. In this routine clinical practice setting at an MS clinic in Germany, THC:CBD spray was effective and well tolerated as add-on therapy or as monotherapy in a relevant proportion of patients with resistant MS spasticity.

  9. Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge.

    Science.gov (United States)

    Pinsky, Mariel; Rauch, Maayan; Abbas, Atallah; Sharabi-Nov, Adi; Tamir, Snait; Gutman, Roee

    2017-01-01

    We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams' serum and breast milk, and in their pup's stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio-suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA-eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA's postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup's total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA's higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne) factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis.

  10. Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge.

    Directory of Open Access Journals (Sweden)

    Mariel Pinsky

    Full Text Available We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams' serum and breast milk, and in their pup's stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio-suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA-eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA's postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup's total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA's higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis.

  11. Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35.

    Science.gov (United States)

    Drerup, Justin M; Hayashi, Kanehiro; Cui, Huxing; Mettlach, Gabriel L; Long, Michael A; Marvin, Marian; Sun, Xiankai; Goldberg, Matthew S; Lutter, Michael; Bibb, James A

    2010-12-15

    Attention-deficit/hyperactivity disorder (ADHD) may result from delayed establishment of corticolimbic circuitry or perturbed dopamine (DA) neurotransmission. Despite the widespread use of stimulants to treat ADHD, little is known regarding their long-term effects on neurotransmitter levels and metabolism. Cyclin-dependent kinase 5 (Cdk5) regulates DA signaling through control of synthesis, postsynaptic responses, and vesicle release. Mice lacking the Cdk5-activating cofactor p35 are deficient in cortical lamination, suggesting altered motor/reward circuitry. We employed mice lacking p35 to study the effect of altered circuitry in vivo. Positron emission tomography measured glucose metabolism in the cerebral cortex using 2-deoxy-2-[¹⁸F] fluoro-d-glucose as the radiotracer. Retrograde dye tracing and tyrosine hydroxylase immunostains assessed the effect of p35 knockout on the medial prefrontal cortex (PFC), especially in relation to mesolimbic circuit formation. We defined the influence of Cdk5/p35 activity on catecholaminergic neurotransmission and motor activity via examination of locomotor responses to psychostimulants, monoamine neurotransmitter levels, and DA signal transduction. Here, we report that mice deficient in p35 display increased glucose uptake in the cerebral cortex, basal hyperactivity, and paradoxical decreased locomotion in response to chronic injection of cocaine or methylphenidate. Knockout mice also exhibited an increased susceptibility to changes in PFC neurotransmitter content after chronic methylphenidate exposure and altered basal DAergic activity in acute striatal and PFC slices. Our findings suggest that dysregulation of Cdk5/p35 activity during development may contribute to ADHD pathology, as indicated by the behavioral phenotype, improperly established mesolimbic circuitry, and aberrations in striatal and PFC catecholaminergic signaling in p35 knockout mice. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier

  12. Cigarette smoke-induced accumulation of lung dendritic cells is interleukin-1α-dependent in mice

    Directory of Open Access Journals (Sweden)

    Botelho Fernando M

    2012-09-01

    Full Text Available Abstract Background Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure. Methods Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation. Results Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice. Conclusion Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure.

  13. Cigarette smoke-induced accumulation of lung dendritic cells is interleukin-1α-dependent in mice

    Science.gov (United States)

    2012-01-01

    Background Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure. Methods Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation. Results Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice. Conclusion Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure. PMID:22992200

  14. Co-administration of THC and MDMA ('ecstasy') synergistically disrupts memory in rats.

    Science.gov (United States)

    Young, June M; McGregor, Iain S; Mallet, Paul E

    2005-08-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') and cannabis are two of the most commonly used illicit drugs in the western world, and are often used in combination. Very little research has examined their effect on cognitive function or behavior when combined, The present study used a double Y-maze task to examine the acute effect of MDMA and delta9-tetrahydrocannabinol (THC, the principal psychoactive ingredient of cannabis) on mnemonic function in rats, at a range of doses representative of common human use. Experiment I (low doses) examined the effect of 0.25 mg/kg THC and 1.25 mg/kg MDMA alone and together. At these doses MDMA or THC given alone had no effect on working memory, but the co-administered drugs significantly disrupted working memory. Experiment 2 (medium doses) examined the effect of 0.5 mg/kg THC and 2.5 mg/kg MDMA given alone or together. At these doses THC, but not MDMA, impaired working memory. Although MDMA alone had no effect, it exacerbated the impairment due to THC when the drugs were co-administered. Experiment 3 (high doses) examined the effects of 1 mg/kg THC and 5 mg/kg MDMA alone and together. Both drugs significantly impaired memory when given alone, although the impairment due to MDMA was less than that caused by THC. When co-administered at these doses, the drugs caused a major disruption of behavior and this precluded ascribing a mnemonic cause to poor performance on the double Y-maze task Taken together, these experiments demonstrate a synergistic disruption of working memory by acute co-administration of THC and MDMA.

  15. Qualitative and quantitative analysis of THC, 11-hydroxy-THC and 11-nor-9-carboxy-THC in whole blood by ultra-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Simões, Susana Sadler; Ajenjo, Antonio Castañera; Dias, Mário João

    2011-09-30

    A qualitative and quantitative analytical method was developed for the simultaneous determination of Δ(9) -tetrahydrocannabinol (THC), 11-hydroxy-Δ(9) -tetrahydrocannabinol (11-OH-THC) and l1-nor-9-carboxy-Δ(9) -tetrahydrocannabinol (THC-COOH) in whole blood. The samples were prepared by solid-phase extraction followed by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis using positive ion electrospray ionization and multiple reaction monitoring. The chromatographic separation was performed with an Acquity UPLC® HSS T3 (50 × 2.1 mm i.d., 1.8 µm) reversed-phase column using a methanol/2 mM ammonium formate (formic acid 0.1%) gradient in a total run time of 9.5 min. MS/MS detection was achieved with two precursor-product ion transitions per substance. The method was fully validated, including selectivity and capacity of identification, according to the identification criteria (two transitions per substance, signal-to-noise ratio, relative retention time and ion ratio) without the presence of interferences, limit of detection (0.2 µg/L for THC and 0.5 µg/L for 11-OH-THC and THC-COOH), limit of quantitation (0.5 µg/L for all cannabinoids), recovery (53-115%), carryover, matrix effect (34-43%), linearity (0.5-100 µg/L), intra-assay precision (CV < 10% for the relative peak area ratios and <0.1% for the relative retention time), inter-assay accuracy (mean relative error <10%) and precision (CV <11%). The method has already been successfully used in proficiency tests and subsequently applied to authentic samples in routine forensic analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Detection of Δ9-tetrahydrocannabinol (THC in hair using GC–MS

    Directory of Open Access Journals (Sweden)

    Himanshu Khajuria

    2014-03-01

    Full Text Available Detection of drugs from hair samples has become an imperative technique in forensic toxicological analysis. In this study, hair samples were collected from 20 cannabis users undergoing treatment at a rehabilitation center at different time intervals. Hair samples were cleaned and digested, followed by extraction and quantification of THC by GC–MS. At LOD of 0.1 ng/mg of THC, the concentration ranged from 0.16 to 2.3 ng/mg (mean, 0.95 ng/mg. Results indicate that THC is detectable after 3 months of last drug intake.

  17. Dose-dependent Effects of mTOR Inhibition on Weight and Mitochondrial Disease in Mice

    Directory of Open Access Journals (Sweden)

    Simon C Johnson

    2015-07-01

    Full Text Available Rapamycin extends lifespan and attenuates age-related pathologies in mice when administered through diet at 14 parts per million (PPM. Recently, we reported that daily intraperitoneal injection of rapamycin at 8 mg/kg attenuates mitochondrial disease symptoms and progression in the Ndufs4 knockout mouse model of Leigh Syndrome. Although rapamycin is a widely used pharmaceutical agent dosage has not been rigorously examined and no dose-response profile has been established. Given these observations we sought to determine if increased doses of oral rapamycin would result in more robust impact on mTOR driven parameters. To test this hypothesis, we compared the effects of dietary rapamycin at doses ranging from 14 to 378 PPM on growth in control and Ndufs4 knockout mice and on health and survival in the Ndufs4 knockout model. High dose rapamycin was well tolerated, dramatically reduced growth, and overcame gender differences. The highest oral dose, approximately 27-times the dose shown to extend murine lifespan, increased survival in Ndufs4 knockout mice similarly to daily rapamycin injection without observable adverse effects. These findings have broad implications for the effective use of rapamycin in murine studies and for the translational potential of rapamycin in the treatment of mitochondrial disease. This data, further supported by a comparison of available literature, suggests that 14 PPM dietary rapamycin is a sub-optimal dose for targeting mTOR systemically in mice. Our findings suggest that the role of mTOR in mammalian biology may be broadly underestimated when determined through treatment with rapamycin at commonly used doses.

  18. Diurnal sex differences in the sleep-wake cycle of mice are dependent on gonadal function.

    Science.gov (United States)

    Paul, Ketema N; Dugovic, Christine; Turek, Fred W; Laposky, Aaron D

    2006-09-01

    Sex is an important determinant of the pathophysiology of several disorders that influence and/or impair sleep-wake regulation. To date, few studies have examined either the role of sex or the gonadal hormones on sleep and wakefulness. The difficulty in performing well-controlled clinical experiments on sex and sleep underscores the need for effective animal models to investigate the influence of the gonadal hormones on sleep-wake states. This study describes the influence of sex on sleep and wakefulness in mice, the primary mammalian genetic model for sleep analysis, and tests the hypothesis that gonadal function drives sex differences in sleep-wake states. Electroencephalogram/electromyogram sleep-wake patterns were recorded in intact and gonadectomized male and female C57BL/6J mice maintained on a 14-hour light:10-hour dark schedule. Following a 24-hour baseline recording, mice were sleep deprived during the light phase by gentle handling and given a 10-hour recovery opportunity during the immediate dark phase. Intact female mice spent more time awake than intact males during 24 hours of baseline recording at the expense of non-rapid eye movement (NREM) sleep. Though the recovery response of NREM sleep was similar between males and females, when examined in reference to baseline levels, females exhibited a more robust recovery response. Gonadectomy in males and females reduced or eliminated the majority of sex differences in sleep architecture and homeostasis. These data demonstrate that the gonadal hormones influence the amount, distribution, and intensity of sleep but do not account for all sex differences in the sleep-wake cycle.

  19. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1.

    Science.gov (United States)

    Ruud, Johan; Nilsson, Anna; Engström Ruud, Linda; Wang, Wenhua; Nilsberth, Camilla; Iresjö, Britt-Marie; Lundholm, Kent; Engblom, David; Blomqvist, Anders

    2013-03-01

    It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Temperature dependence of the sodium pump is altered in the cerebral cortex of CCK2 receptor-deficient mice.

    Science.gov (United States)

    Salum, T; Kõks, S; Kairane, C; Mahlapuu, R; Zilmer, M; Vasar, E

    2010-05-01

    Previously we have shown that the temperature dependence of the sodium pump (Na(+),K(+)-ATPase) is altered under different neuropathological conditions. In this study we compared temperature dependence of the Na(+),K(+)-ATPase in the fronto-parietal cortex of CCK(2) receptor-deficient (homo- and heterozygous) and normal (wild-type) mice. The Arrhenius plot for Na(+),K(+)-ATPase from wild-type brain is non-linear with a breakpoint at 20.3 +/- 0.4 degrees C. In case of the brain cell membrane of CCK(2) receptor-deficient mice (homo- and heterozygous) the breakpoint on Arrhenius plot was detected at 26.0 +/- 1.1 degrees C and 25.4 +/- 0.4 degrees C, respectively. The shift of the breakpoint on the Arrhenius plot established in CCK(2) receptor-deficiency as well as in case of some other pathological conditions confirms that such kind of alteration in the Na(+),K(+)-ATPase temperature dependence is likely related to the homeostatic adjustment of altered function of the sodium pump.

  1. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.

    Directory of Open Access Journals (Sweden)

    Nicole Schöbel

    Full Text Available Intracellular Cl(- concentrations ([Cl(-](i of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG and olfactory sensory neurons (OSNs, Cl(- is accumulated by the Na(+-K(+-2Cl(- cotransporter 1 (NKCC1, resulting in a [Cl(-](i above electrochemical equilibrium and a depolarizing Cl(- efflux upon Cl(- channel opening. Here, we investigate the [Cl(-](i and function of Cl(- in primary sensory neurons of trigeminal ganglia (TG of wild type (WT and NKCC1(-/- mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl(-](i of WT TG neurons indicated active NKCC1-dependent Cl(- accumulation. Gamma-aminobutyric acid (GABA(A receptor activation induced a reduction of [Cl(-](i as well as Ca(2+ transients in a corresponding fraction of TG neurons. Ca(2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca(2+ channels (VGCCs. Ca(2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1 were diminished in NKCC1(-/- TG neurons, but elevated under conditions of a lowered [Cl(-](o suggesting a Cl(--dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS, we found expression of different Ca(2+-activated Cl(- channels (CaCCs in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca(2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1(-/- mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca(2+-activated Cl(--dependent signal amplification mechanism in TG neurons that requires intracellular Cl(- accumulation by NKCC1 and the activation of CaCCs.

  2. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol.

    Science.gov (United States)

    Cluny, Nina L; Keenan, Catherine M; Reimer, Raylene A; Le Foll, Bernard; Sharkey, Keith A

    2015-01-01

    Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.

  3. Cognitive and psychomotor effects in males after smoking a combination of tobacco and cannabis containing up to 69 mg delta-9-tetrahydrocannabinol (THC).

    NARCIS (Netherlands)

    Hunault, C.C.; Mensinga, T.T.; Böcker, K.B.E.; Schipper, C.M.; Kruidenier, M.; Leenders, M.E.C.; de Vries, I.; Meulenbelt, J.|info:eu-repo/dai/nl/079479227

    2009-01-01

    RATIONALE: Delta(9)-Tetrahydrocannabinol (THC) is the main active constituent of cannabis. In recent years, the average THC content of some cannabis cigarettes has increased up to approximately 60 mg per cigarette (20% THC cigarettes). Acute cognitive and psychomotor effects of THC among

  4. Astragalus polysaccharides repress myocardial lipotoxicity in a PPARalpha-dependent manner in vitro and in vivo in mice.

    Science.gov (United States)

    Chen, Wei; Lai, Yanni; Wang, Liying; Xia, Yanping; Chen, Wenjie; Zhao, Xuelan; Yu, Maohua; Li, Yiming; Zhang, Yu; Ye, Hongying

    2015-03-01

    The role of peroxisome proliferator-activated receptor alpha (PPARα) in the development of myocardial lipotoxicity is widely observed in diabetic disorders. Thus, we investigated if treatment of Astragalus polysaccharides modulates lipotoxic cardiomyopathy both in vivo and in vitro through PPARα mechanisms. The effects of Astragalus polysaccharides (APS) on PPARα target gene expression and protein levels were tested in vitro and in vivo, including in mice with PPARα cardiac-restricted overexpression [myosin heavy chain (MHC)-PPARα] and in H9c2 embryonic rat cardiomyocytes with or without PPARα agonist. Echocardiographic studies, analyses of myocardial triglyceride and cardiac fuel utilization analyses were also performed in MHC-PPARα mice. Treatment with APS prevented myocardial triglyceride accumulation and cardiac dysfunction in the MHC-PPARα mice, with the normalization of energy metabolic derangements in hearts including reduced free fatty acids utilization and increased glucose uptake. Consistently, both in the MHC-PPARα hearts and H9c2 cardiomyocytes with PPARα agonist, the activation of PPARα gene regulatory pathway involved in FFA-oxidation was down-regulated by APS treatment, while the suppression of PPARα target genes involved in glucose uptake and oxidation was normalized by APS administration. Therapy with APS could prevent the development of lipotoxic cardiomyopathy through a mechanism mainly dependent on the cardiac PPARα-mediated regulatory pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT Slc13a5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Armando R Irizarry

    Full Text Available There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.

  6. Enhanced hippocampus-dependent memory and reduced anxiety in mice over-expressing human catalase in mitochondria.

    Science.gov (United States)

    Olsen, Reid H J; Johnson, Lance A; Zuloaga, Damian G; Limoli, Charles L; Raber, Jacob

    2013-04-01

    Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT-generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5- to 6-month-old mice over-expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus-dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8-hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over-expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS. © 2013 International Society for Neurochemistry.

  7. Effects of a Rhodiola rosea L. extract on acquisition and expression of morphine tolerance and dependence in mice.

    Science.gov (United States)

    Mattioli, Laura; Perfumi, Marina

    2011-03-01

    This study investigated the effect of Rhodiola rosea L. extract on acquisition and expression of morphine tolerance and dependence in mice. Therefore animals were injected with repeated administration of morphine (10 mg/kg, subcutaneous) twice daily for five or six days, in order to make them tolerant or dependent. Rhodiola rosea L. extract (0, 10, 15 and 20 mg/kg) was administered by the intragastric route 60 min prior to each morphine injection (for acquisition) or prior the last injection of morphine or naloxone on test day (for tolerance or dependence expression, respectively). Morphine tolerance was evaluated by testing its analgesic effect in the tail flick test at the 1st and 5th days. Morphine dependence was evaluated by counting the number of withdrawal signs (jumping, rearing, forepaw tremor, teeth chatter) after naloxone injection (5 mg/kg; intraperitoneal) on the test day (day 6). Results showed that Rhodiola rosea L. extract significantly reduced the expression of morphine tolerance, while it was ineffective in modulating its acquisition. Conversely, Rhodiola rosea L. extract significantly and dose-dependently attenuated both development and expression of morphine dependence after chronic or acute administration. These data suggest that Rhodiola rosea L. may have human therapeutic potential for treatment of opioid addiction.

  8. Context-dependent efficacy of a counter-conditioning strategy with atypical neuroleptic drugs in mice previously sensitized to cocaine.

    Science.gov (United States)

    Oliveira-Lima, A J; Marinho, Eav; Santos-Baldaia, R; Hollais, A W; Baldaia, M A; Talhati, F; Ribeiro, L T; Wuo-Silva, R; Berro, L F; Frussa-Filho, R

    2017-02-06

    We have previously demonstrated that treatment with ziprasidone and aripiprazole selectively inhibit the development of behavioral sensitization to cocaine in mice. We now investigate their effects on a counter-conditioning strategy in mice and the importance of the treatment environment for this phenomenon. Evaluate the context-specificity of ziprasidone and aripiprazole on conditioned locomotion to cocaine and cocaine-induced hyperlocomotion and behavioral sensitization in a counter-conditioning strategy in mice. Animals were sensitized with saline or cocaine injections in the open-field apparatus in a 15-day intermittent treatment and subsequently treated with vehicle, 5mg/kg ziprasidone or 0.1mg/kg aripiprazole paired to the open-field or the home-cage for 4 alternate days. Mice were then challenged with saline and cocaine in the open-field apparatus on subsequent days. While treatment with ziprasidone decreased spontaneous locomotion and conditioned locomotion alike, treatment with aripiprazole specifically attenuated the expression of conditioned hyperlocomotion to cocaine. Ziprasidone and aripiprazole had no effects on cocaine-induced conditioned hyperlocomotion observed during saline challenge after drug withdrawal. Treatment with either ziprasidone or aripiprazole when previously given in the cocaine-paired environment attenuated the subsequent expression of behavioral sensitization to cocaine. Animals treated with aripiprazole in the open-field, but not in the home-cage, showed a blunted response to cocaine when receiving a cocaine challenge for the first time. Both neuroleptic drugs showed a context-dependent effectiveness in attenuating long-term expression of cocaine-induced behavioral sensitization when administered in the cocaine-associated environment, with aripiprazole also showing effectiveness in blocking the expression of acute cocaine effects. Copyright © 2016. Published by Elsevier Inc.

  9. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Huang, Huimin; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn; Fan, Ting; Mu, Qingli; Li, Huani

    2013-10-01

    Excessive alcohol consumption can lead to gastric ulcer and the present work was aimed to examine the protective effect of tetrahydrocoptisine (THC) in the model of ethanol-induced gastric ulcer in mice. Fasted mice treated with ethanol 75% (0.5 ml/100 g) were pre-treated with THC (10 or 20 mg/kg, ip), cimetidine (100 mg/kg, ip) or saline in different experimental sets for a period of 3 days, and animals were euthanized 4 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that ethanol induced gastric damage, improving nitric oxide (NO) level, increased pro-inflammatory cytokine (TNF-α and IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression of nuclear factor-κB (NF-κB) in the ethanol group. Pretreatment of THC at doses of 10 and 20 mg/kg bodyweight significantly attenuated the gastric lesions as compared to the ethanol group. These results suggest that the gastroprotective activity of THC is attributed to reducing NO production and adjusting the pro-inflammatory cytokine, inhibited neutrophil accumulation and NF-κB expression. - Highlights: • THC decreased ethanol-induced pro-inflammatory cytokine release. • THC inhibited the production of NO in serum and gastric tissue. • THC reduced NF-κB expression and MPO accumulation in ethanol-induced gastric tissue.

  10. TECHNOLOGY EVALUATION REPORT: TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN. Project Summary

    Science.gov (United States)

    A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...

  11. Probing the molecular mechanism behind the cognitive impairment induced by THC

    Czech Academy of Sciences Publication Activity Database

    Botta, J.; Cordomi, A.; Bondar, Alexey; Lazar, Josef; Pardo, L.; McCormick, P. J.

    2017-01-01

    Roč. 121, 2 (SI) (2017), s. 11-2 ISSN 1742-7835 Institutional support: RVO:67179843 Keywords : THC * molecular mechanism * cognitive impairment Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.176, year: 2016

  12. Combined effects of THC and caffeine on working memory in rats

    National Research Council Canada - National Science Library

    Panlilio, Leigh V; Ferré, Sergi; Yasar, Sevil; Thorndike, Eric B; Schindler, Charles W; Goldberg, Steven R

    2012-01-01

    ...‐term memory. Caffeine, a non‐selective adenosine receptor antagonist, attenuates some memory deficits, but there have been few studies addressing the effects of caffeine and THC in combination...

  13. Effects of chronic delta-9-THC treatment on cardiac beta-adrenoceptors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.B.; Seifen, E.; Kennedy, R.H.; Kafiluddi, R.; Paule, M.G.; Scallet, A.C.; Ali, S.F.; Slikker, W. Jr.

    1987-10-01

    This study was designed to determine if chronic treatment with delta-9-tetrahydrocannabinol (THC) alters cardiac beta-adrenoceptors in the rat. Following daily oral administration of 10 or 20 mg/kg THC or an equivalent volume of control solvent for 90 days, rats were sacrificed, and sarcolemmal membranes were prepared from ventricular myocardium. Beta-adrenoceptor density and binding affinity estimated with (-)(/sup 3/H)dihydroalprenolol; a beta-adrenergic antagonist, were not significantly affected by treatment with THC when compared to vehicle controls. These results suggest that the tolerance to cardiovascular effects of THC which develops during chronic exposure in the rat is not associated with alterations in cardiac beta-adrenoceptors as monitored by radiolabeled antagonist binding.

  14. Regional particle size dependent deposition of inhaled aerosols in rats and mice.

    Science.gov (United States)

    Kuehl, Philip J; Anderson, Tamara L; Candelaria, Gabriel; Gershman, Benjamin; Harlin, Ky; Hesterman, Jacob Y; Holmes, Thomas; Hoppin, John; Lackas, Christian; Norenberg, Jeffrey P; Yu, Hongang; McDonald, Jacob D

    2012-01-01

    The current data analysis tools in nuclear medicine have not been used to evaluate intra organ regional deposition patterns of pharmaceutical aerosols in preclinical species. This study evaluates aerosol deposition patterns as a function of particle size in rats and mice using novel image analysis techniques. Mice and rats were exposed to radiolabeled polydisperse aerosols at 0.5, 1.0, 3.0, and 5.0 µm MMAD followed by SPECT/CT imaging for deposition analysis. Images were quantified for both macro deposition patterns and regional deposition analysis using the LRRI-developed Onion Model. The deposition fraction in both rats and mice was shown to increase as the particle size decreased, with greater lung deposition in rats at all particle sizes. The Onion Model indicated that the smaller particle sizes resulted in increased peripheral deposition. These data contrast the commonly used 10% deposition fraction for all aerosols between 1.0 and 5.0 µm and indicate that lung deposition fraction in this range does change with particle size. When compared to historical data, the 1.0, 3.0, and 5.0 µm particles result in similar lung deposition fractions; however, the 0.5 µm lung deposition fraction is markedly different. This is probably caused by the current aerosols that were polydisperse to reflect current pharmaceutical aerosols, while the historical data were generated with monodisperse aerosols. The deposition patterns of aerosols between 0.5 and 5.0 µm showed an increase in both overall and peripheral deposition as the particle size decreased. The Onion Model allows a more complex analysis of regional deposition in preclinical models.

  15. Dipotassium Glycyrrhizate Inhibits HMGB1-Dependent Inflammation and Ameliorates Colitis in Mice.

    Directory of Open Access Journals (Sweden)

    Roberta Vitali

    Full Text Available High mobility group box-1 (HMGB1 is a DNA-binding protein that is released from injured cells during inflammation. Advances in targeting HMGB1 represent a major challenge to improve the treatment of acute/chronic inflammation.This study is aimed at verifying whether the inhibition of HMGB1 through dipotassium glycyrrhizate (DPG is a good strategy to reduce intestinal inflammation.Human colon adenocarcinoma cell line, HT29, human epithelial colorectal adenocarcinoma, Caco2, and murine macrophage cell line, RAW 264.7, were cultured to investigate the effect of DPG on the secretion of HMGB1. Acute colitis was induced in C57BL/6 mice through administration of 3% dextran sodium sulphate (DSS; a combined treatment with DSS and 3 or 8 mg/kg/day DPG was used to investigate the effects of DPG on intestinal inflammation. Animals were euthanized at seventh day and colonic samples underwent molecular and histological analyses.DPG significantly reduces in vitro the release of HMGB1 in the extracellular matrix as well as expression levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, by inhibiting HMGB1. Moreover, DPG significantly decreases the severity of DSS-induced colitis in mice. Murine colonic samples show decreased mRNA levels of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6, as well as HMGB1 receptors, RAGE and TLR4. Finally, HMGB1, abundantly present in the feces of mice with DSS-induced colitis, is strongly reduced by DPG.HMGB1 is an early pro-inflammatory cytokine and an active protagonist of mucosal gut inflammation. DPG exerts inhibitory effects against HMGB1 activity, significantly reducing intestinal inflammation. Thus, we reason that DPG could represent an innovative tool for the management of human intestinal inflammation.

  16. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice

    DEFF Research Database (Denmark)

    Patrick, David M; Montgomery, Rusty L; Qi, Xiaoxia

    2010-01-01

    cardiac hypertrophy and fibrosis in rodents in response to pressure overload. In contrast, we have shown here that miR-21-null mice are normal and, in response to a variety of cardiac stresses, display cardiac hypertrophy, fibrosis, upregulation of stress-responsive cardiac genes, and loss of cardiac......MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent...... for pathological cardiac remodeling....

  17. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection....... These results indicate that the principal CNS targets for JCV infection are astrocytes and GPCs and that infection is associated with progressive mutation, while demyelination is a secondary occurrence, following T antigen-triggered oligodendroglial apoptosis. More broadly, this study provides a model by which...... to further assess the biology and treatment of human-specific gliotropic viruses....

  18. Regulation of Reentrainment Function Is Dependent on a Certain Minimal Number of Intact Functional ipRGCs in rd Mice

    Directory of Open Access Journals (Sweden)

    Jingxue Zhang

    2017-01-01

    Full Text Available Purpose. To investigate the effect of partial ablation of melanopsin-containing retinal ganglion cells (mcRGCs on nonimage-forming (NIF visual functions in rd mice lacking rods. Methods. The rd mice were intravitreally injected with different doses (100 ng/μl, 200 ng/μl, and 400 ng/μl of immunotoxin melanopsin-SAP. And then, the density of ipRGCs was examined. After establishing the animal models with different degrees of ipRGC damage, a wheel-running system was used to evaluate their reentrainment response. Results. Intravitreal injection of melanopsin-SAP led to partial ablation of ipRGCs in a dose-dependent manner. The survival rates of ipRGCs in the 100 ng/μl, 200 ng/μl, and 400 ng/μl groups were 74.14% ± 4.15%, 39.25% ± 2.29%, and 38.38% ± 3.74%, respectively. The wheel-running experiments showed that more severe ipRGC loss was associated with a longer time needed for reentrainment. When the light/dark cycle was delayed by 8 h, the rd mice in the PBS control group took 4.67 ± 0.79 days to complete the synchronization with the shifted cycle, while those in the 100 ng/μl and 200 ng/μl groups required 7.90 ± 0.55 days and 11.00 ± 0.79 days to complete the synchronization with the new light/dark cycle, respectively. Conclusion. Our study indicates that the regulation of some NIF visual functions is dependent on a certain minimal number of intact functional ipRGCs.

  19. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice.

    Science.gov (United States)

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan

    2015-12-28

    To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be a potential therapeutic strategy for this disease.

  20. Sex-Dependent Effects of Cadmium Exposure in Early Life on Gut Microbiota and Fat Accumulation in Mice.

    Science.gov (United States)

    Ba, Qian; Li, Mian; Chen, Peizhan; Huang, Chao; Duan, Xiaohua; Lu, Lijun; Li, Jingquan; Chu, Ruiai; Xie, Dong; Song, Haiyun; Wu, Yongning; Ying, Hao; Jia, Xudong; Wang, Hui

    2017-03-01

    Environmental cadmium, with a high average dietary intake, is a severe public health risk. However, the long-term health implications of environmental exposure to cadmium in different life stages remain unclear. We investigated the effects of early exposure to cadmium, at an environmentally relevant dosage, on adult metabolism and the mechanism of action. We established mouse models with low-dose cadmium (LDC) exposure in early life to examine the long-term metabolic consequences. Intestinal flora measurement by 16S rDNA sequencing, microbial ecological analyses, and fecal microbiota transplant was conducted to explore the potential underlying mechanisms. Early LDC exposure (100 nM) led to fat accumulation in adult male mice. Hepatic genes profiling revealed that fatty acid and lipid metabolic processes were elevated. Gut microbiota were perturbed by LDC to cause diversity reduction and compositional alteration. Time-series studies indicated that the gut flora at early-life stages, especially at 8 weeks, were vulnerable to LDC and that an alteration during this period could contribute to the adult adiposity, even if the microbiota recovered later. The importance of intestinal bacteria in LDC-induced fat accumulation was further confirmed through microbiota transplantation and removal experiments. Moreover, the metabolic effects of LDC were observed only in male, but not female, mice. An environmental dose of cadmium at early stages of life causes gut microbiota alterations, accelerates hepatic lipid metabolism, and leads to life-long metabolic consequences in a sex-dependent manner. These findings provide a better understanding of the health risk of cadmium in the environment. Citation: Ba Q, Li M, Chen P, Huang C, Duan X, Lu L, Li J, Chu R, Xie D, Song H, Wu Y, Ying H, Jia X, Wang H. 2017. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect 125:437-446; http://dx.doi.org/10.1289/EHP360.

  1. Novel genes involved in pathophysiology of gonadotropin-dependent adrenal tumors in mice

    DEFF Research Database (Denmark)

    Doroszko, Milena; Chrusciel, Marcin; Belling, Kirstine González-Izarzugaza

    2017-01-01

    reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp......11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting...... with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed....

  2. Exacerbated Autoimmunity in the Absence of TLR9 in MRLFaslpr Mice Depends on Ifnar11

    Science.gov (United States)

    Nickerson, Kevin M.; Cullen, Jaime L.; Kashgarian, Michael; Shlomchik, Mark J.

    2013-01-01

    TLR9 suppresses TLR7-driven pathogenesis in the MRL.Faslpr murine model of systemic lupus erythematosus, but the mechanisms by which TLR7 promotes and TLR9 prevents disease in this and other lupus models remain unclear. Type I interferons have also been implicated in the pathogenesis of lupus both in patients and in several murine models of disease, but their role in MRL.Faslpr mice is controversial. Using MRL.Faslpr mice genetically deficient in a subunit of the receptor for type I interferon, Ifnar1, we show that type I interferons contribute significantly to renal disease in this model. Ifnar1 had no effect on anti-nucleosome or anti-Sm autoantibody titers, but instead regulated anti-cytoplasmic and anti-RNA specificities. Moreover, Ifnar1 deficiency prevented the exacerbation of clinical disease observed in Tlr9-deficient animals in this lupus model. Thus, type I interferon signaling is an important mediator of lupus pathogenesis and anti-RNA antibody production that is dysregulated in the absence of Tlr9. PMID:23467932

  3. CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice.

    Science.gov (United States)

    Zellweger, Raphaël M; Eddy, William E; Tang, William W; Miller, Robyn; Shresta, Sujan

    2014-10-15

    Dengue virus (DENV) causes pathologies ranging from the febrile illness dengue fever to the potentially lethal severe dengue disease. A major risk factor for developing severe dengue disease is the presence of subprotective DENV-reactive Abs from a previous infection (or from an immune mother), which can induce Ab-dependent enhancement of infection (ADE). However, infection in the presence of subprotective anti-DENV Abs does not always result in severe disease, suggesting that other factors influence disease severity. In this study we investigated how CD8(+) T cell responses influence the outcome of Ab-mediated severe dengue disease. Mice were primed with aluminum hydroxide-adjuvanted UV-inactivated DENV prior to challenge with DENV. Priming failed to induce robust CD8(+) T cell responses, and it induced nonneutralizing Ab responses that increased disease severity upon infection. Transfer of exogenous DENV-activated CD8(+) T cells into primed mice prior to infection prevented Ab-dependent enhancement and dramatically reduced viral load. Our results suggest that in the presence of subprotective anti-DENV Abs, efficient CD8(+) T cell responses reduce the risk of Ab-mediated severe dengue disease. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users.

    Science.gov (United States)

    Lewis, John; Molnar, Anna; Allsop, David; Copeland, Jan; Fu, Shanlin

    2016-01-01

    Urinary 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (Carboxy-THC) concentrations, normalised to creatinine output, have been demonstrated to be a useful tool in the interpretation of the results of a series of urine tests for cannabis. These tests, often termed historical data, can be used to identify potential chronic cannabis users who may present occupational health and safety risks within the workplace. Conversely, the data can also be used to support employee claims of previous regular, rather than recent, cannabis use. This study aimed at examining the mean elimination of Carboxy-THC in 37 chronic users undergoing voluntary abstinence over a 2-week period. Urine specimens were collected prior to the study and after 1 and 2 weeks of abstinence. Carboxy-THC levels in urine were measured by gas chromatography-mass spectrometry (GC-MS) following alkaline hydrolysis, organic solvent extraction and derivatisation to form its pentafluoropropionic derivative. The creatinine-normalised Carboxy-THC concentrations declined rapidly over the 2 weeks of abstinence period and the majority of chronic cannabis users (73%) reduced their urinary Carboxy-THC levels to below the 15-μg/L confirmatory cutoff within that time. The study further highlights the value of historical urinary Carboxy-THC data as a means of identifying potential occupational health and safety risks among chronic cannabis users.

  5. Cannabinoids and metabolites in expectorated oral fluid after 8 days of controlled around-the-clock oral THC administration.

    Science.gov (United States)

    Milman, Garry; Barnes, Allan J; Schwope, David M; Schwilke, Eugene W; Goodwin, Robert S; Kelly, Deana L; Gorelick, David A; Huestis, Marilyn A

    2011-08-01

    Oral fluid (OF) is an increasingly accepted matrix for drug testing programs, but questions remain about its usefulness for monitoring cannabinoids. Expectorated OF specimens (n = 360) were obtained from 10 adult daily cannabis smokers before, during, and after 37 20-mg oral Δ(9)-tetrahydrocannabinol (THC) doses over 9 days to characterize cannabinoid disposition in this matrix. Specimens were extracted and analyzed by gas chromatography-mass spectrometry with electron-impact ionization for THC, 11-hydroxy-THC, cannabidiol, and cannabinol, and negative chemical ionization for 11-nor-9-carboxy-THC (THCCOOH). Linear ranges for THC, 11-hydroxy-THC, and cannabidiol were 0.25-50 ng/mL; cannabinol 1-50 ng/mL; and THCCOOH 5-500 pg/mL. THCCOOH was the most prevalent analyte in 344 specimens (96.9%), with concentrations up to 1,390.3 pg/mL. 11-hydroxy-THC, cannabidiol, and cannabinol were detected in 1, 1, and 3 specimens, respectively. THC was detected in only 13.8% of specimens. The highest THC concentrations were obtained at admission (median 1.4 ng/mL, range 0.3-113.6) from previously self-administered smoked cannabis. A total of 2.5 and 3.7% of specimens were THC-positive at the recommended Substance Abuse and Mental Health Services Administration (2 ng/mL) and Driving Under the Influence of Drugs, Alcohol and Medicines (DRUID) (1 ng/mL) confirmation cutoffs, respectively. THC is currently the only analyte for monitoring cannabis exposure in OF; however, these data indicate chronic therapeutic oral THC administration and illicit oral THC use are unlikely to be identified with current guidelines. Measurement of THCCOOH may improve the detection and interpretation of OF cannabinoid tests and minimize the possibility of OF contamination from passive inhalation of cannabis smoke.

  6. Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice.

    Directory of Open Access Journals (Sweden)

    Mary Wines-Samuelson

    2010-04-01

    Full Text Available Presenilins are the major causative genes of familial Alzheimer's disease (AD. Our previous study has demonstrated essential roles of presenilins in memory and neuronal survival. Here, we explore further how loss of presenilins results in age-related, progressive neurodegeneration in the adult cerebral cortex, where the pathogenesis of AD occurs. To circumvent the requirement of presenilins for embryonic development, we used presenilin conditional double knockout (Psen cDKO mice, in which presenilin inactivation is restricted temporally and spatially to excitatory neurons of the postnatal forebrain beginning at 4 weeks of age. Increases in the number of degenerating (Fluoro-Jade B+, 7.6-fold and apoptotic (TUNEL+, 7.4-fold neurons, which represent approximately 0.1% of all cortical neurons, were first detected at 2 months of age when there is still no significant loss of cortical neurons and volume in Psen cDKO mice. By 4 months of age, significant loss of cortical neurons (approximately 9% and gliosis was found in Psen cDKO mice. The apoptotic cell death is associated with caspase activation, as shown by increased numbers of cells immunoreactive for active caspases 9 and 3 in the Psen cDKO cortex. The vulnerability of cortical neurons to loss of presenilins is region-specific with cortical neurons in the lateral cortex most susceptible. Compared to the neocortex, the increase in apoptotic cell death and the extent of neurodegeneration are less dramatic in the Psen cDKO hippocampus, possibly in part due to increased neurogenesis in the aging dentate gyrus. Neurodegeneration is also accompanied with mitochondrial defects, as indicated by reduced mitochondrial density and altered mitochondrial size distribution in aging Psen cortical neurons. Together, our findings show that loss of presenilins in cortical neurons causes apoptotic cell death occurring in a very small percentage of neurons, which accumulates over time and leads to substantial loss

  7. Transgenic Mice Lacking NMDAR-Dependent LTD Exhibit Deficits in Behavioral Flexibility

    National Research Council Canada - National Science Library

    Nicholls, Russell E; Alarcon, Juan Marcos; Malleret, Gaël; Carroll, Reed C; Grody, Michael; Vronskaya, Svetlana; Kandel, Eric R

    2008-01-01

    .... This physiological phenotype was associated with deficits in behavioral flexibility in both the Morris water maze and a delayed nonmatch to place T-maze task, suggesting that NMDAR-dependent LTD...

  8. Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

    DEFF Research Database (Denmark)

    Købler, Carsten; Poulsen, Sarah S.; Saber, Anne T.

    2015-01-01

    Background and Methods Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice......: one short (850 nm) and tangled, and two longer (4 mu m and 5.7 mu m) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. Results TEM analysis revealed that the three CNTs followed the same overall...... of cellular interactions in lung tissue, with the longer and thicker CNTs resulting inmore severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP)....

  9. Adiponectin mediated MHC class II mismatched cardiac graft rejection in mice is IL-4 dependent.

    Directory of Open Access Journals (Sweden)

    Daxu Li

    Full Text Available BACKGROUND: Adiponectin regulates glucose and fatty-acid metabolism but its role in chronic graft rejection mediated by Th2 cytokines remains ill-defined. METHODOLOGY/PRINCIPAL FINDINGS: Wild type and adiponectin-null mice were used as graft recipients in mouse MHC class II disparate cardiac transplantation (bm12 toB6 and the graft rejection was monitored. In adiponectin-null mice we observed that the cellular infiltrate of eosinophils, CD4(+ and CD8(+ T cells was reduced in grafts compared to the controls as was collagen deposition and vessel occlusion. A similar outcome was observed for skin transplants except that neutrophil infiltration was increased. Low levels of IL-4 were detected in the grafts and serum. The effect of adiponectin signaling on IL-4 expression was further investigated. Treatment with AMPK and p38 MAPK inhibitors blocked adiponectin enhanced T cell proliferation in mixed lymphocyte reactions. Inhibition of AMPK reduced eosinophil infiltration in skin grafts in wild type recipients and in contrast AMPK activation increased eosinophils in adiponectin-null recipients. The addition of adiponectin increased IL-4 production by the T cell line EL4 with augmented nuclear GATA-3 and phospho-STAT6 expression which were suppressed by knockdown of adiponectin receptor 1 and 2. CONCLUSIONS: Our results demonstrate a direct effect of adiponectin on IL-4 expression which contributes to Th2 cytokine mediated rejection in mouse MHC class II histoincompatible transplants. These results add to our understanding of the interrelationship of metabolism and immune regulation and raise the possibility that AMPK inhibitors may be beneficial in selected types of rejection.

  10. Neural correlates of interactions between cannabidiol and Δ9‐tetrahydrocannabinol in mice: implications for medical cannabis

    Science.gov (United States)

    Todd, S M

    2015-01-01

    Background and Purpose It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ9‐tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC. However, our understanding of CBD and THC interactions is limited and the brain circuitry mediating interactions between CBD and THC are unknown. The aim of this study was to investigate whether CBD modulated the functional effects and c‐Fos expression induced by THC, using a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols. Experimental Approach Male C57BL/6 mice were treated with vehicle, CBD, THC or a combination of CBD and THC (10 mg·kg−1 i.p. for both cannabinoids) to examine effects on locomotor activity, anxiety‐related behaviour, body temperature and brain c‐Fos expression (a marker of neuronal activation). Key Results CBD potentiated THC‐induced locomotor suppression but reduced the hypothermic and anxiogenic effects of THC. CBD alone had no effect on these measures. THC increased brain activation as measured by c‐Fos expression in 11 of the 35 brain regions studied. CBD co‐administration suppressed THC‐induced c‐Fos expression in six of these brain regions. This effect was most pronounced in the medial preoptic nucleus and lateral periaqueductal gray. Treatment with CBD alone diminished c‐Fos expression only in the central nucleus of the amygdala compared with vehicle. Conclusions and Implications These data confirm that CBD modulated the pharmacological actions of THC and provide new information regarding brain regions involved in the interaction between CBD and THC. PMID:26377899

  11. Detection time for THC in oral fluid after frequent cannabis smoking.

    Science.gov (United States)

    Andås, Hilde T; Krabseth, Hege-Merete; Enger, Asle; Marcussen, Bjarne N; Haneborg, An-Magritt; Christophersen, Asbjørg S; Vindenes, Vigdis; Øiestad, Elisabeth L

    2014-12-01

    The use of oral fluid for detecting drugs of abuse has become increasingly more frequent. Few studies have, however, investigated the detection times for drugs of abuse in oral fluid, compared with that of in urine or in blood. Cannabis is the world's most widely used drug of abuse, and the detection times for cannabis, in different types of matrixes, are therefore important information to the laboratories or institutions performing and evaluating drugs of abuse analyses. It is well known that frequent use of high dosages of cannabis, for longer periods of time, might lead to prolonged detection times for THC-COOH in urine. Cannabis intake is detected in oral fluid as THC, and a positive finding is considered to be a result of recent smoking, although some studies have already reported longer detection times. The aim of this study was to investigate the detection time for THC in oral fluid, collected from drug addicts admitted for detoxification. Findings in oral fluid were compared with findings in urine, among 26 patients admitted to a closed detoxification unit. The study, being the first in doing so, describes the concentration-time profiles for THC in oral fluid among chronic cannabis users, during monitored abstinence, using the Intercept collection kit. The study also includes the concentration-time profiles for creatinine-corrected THC-COOH ratios in urine samples, included to monitor for the possibility of new intakes. THC was detected in oral fluid collected from 11 of the 26 patients in the study. The elimination curves for THC in oral fluid revealed that negative samples could be interspersed among positive samples several days after cessation, whereas the THC-COOH concentrations in urine were decreasing. THC was, in this study, detected in oral fluid for up to 8 days after admission. The study shows that frequent use of high dosages of cannabis may lead to prolonged detection times, and that positive samples can be interspersed among negative samples

  12. An observational postmarketing safety registry of patients in the UK, Germany, and Switzerland who have been prescribed Sativex® (THC:CBD, nabiximols) oromucosal spray.

    Science.gov (United States)

    Etges, Tilden; Karolia, Kari; Grint, Thomas; Taylor, Adam; Lauder, Heather; Daka, Brian; Wright, Stephen

    2016-01-01

    The global exposure of Sativex® (Δ9-tetrahydrocannabinol [THC]:cannabidiol [CBD], nabiximols) is estimated to be above 45,000 patient-years since it was given marketing approval for treating treatment-resistant spasticity in multiple sclerosis (MS). An observational registry to collect safety data from patients receiving THC:CBD was set up following its approval in the UK, Germany, and Switzerland, with the aim of determining its long-term safety in clinical practice. Twice a year, the Registry was opened to prescribing physicians to voluntarily report data on patients' use of THC:CBD, clinically significant adverse events (AEs), and special interest events. The Registry contains data from 941 patients with 2,213.98 patient-years of exposure. Within this cohort, 60% were reported as continuing treatment, while 83% were reported as benefiting from the treatment. Thirty-two percent of patients stopped treatment, with approximately one third citing lack of effectiveness and one quarter citing AEs. Psychiatric AEs of clinical significance were reported in 6% of the patients, 6% reported falls requiring medical attention, and suicidality was reported in 2%. Driving ability was reported to have worsened in 2% of patients, but improved in 7%. AEs were more common during the first month of treatment. The most common treatment-related AEs included dizziness (2.3%) and fatigue (1.7%). There were no signals to indicate abuse, diversion, or dependence. The long-term risk profile from the Registry is consistent with the known (labeled) safety profile of THC:CBD, and therefore supports it being a well-tolerated and beneficial medication for the treatment of MS spasticity. No evidence of new long-term safety concerns has emerged.

  13. An observational postmarketing safety registry of patients in the UK, Germany, and Switzerland, who have been prescribed Sativex® (THC:CBD, nabiximols oromucosal spray

    Directory of Open Access Journals (Sweden)

    Etges T

    2016-11-01

    Full Text Available Tilden Etges, Kari Karolia, Thomas Grint, Adam Taylor, Heather Lauder, Brian Daka, Stephen Wright GW Pharmaceuticals, Cambridge, UK Abstract: The global exposure of Sativex® (Δ9-tetrahydrocannabinol [THC]:cannabidiol [CBD], nabiximols is estimated to be above 45,000 patient-years since it was given marketing approval for treating treatment-resistant spasticity in multiple sclerosis (MS. An observational registry to collect safety data from patients receiving THC:CBD was set up following its approval in the UK, Germany, and Switzerland, with the aim of determining its long-term safety in clinical practice. Twice a year, the Registry was opened to prescribing physicians to voluntarily report data on patients’ use of THC:CBD, clinically significant adverse events (AEs, and special interest events. The Registry contains data from 941 patients with 2,213.98 patient-years of exposure. Within this cohort, 60% were reported as continuing treatment, while 83% were reported as benefiting from the treatment. Thirty-two percent of patients stopped treatment, with approximately one third citing lack of effectiveness and one quarter citing AEs. Psychiatric AEs of clinical significance were reported in 6% of the patients, 6% reported falls requiring medical attention, and suicidality was reported in 2%. Driving ability was reported to have worsened in 2% of patients, but improved in 7%. AEs were more common during the first month of treatment. The most common treatment-related AEs included dizziness (2.3% and fatigue (1.7%. There were no signals to indicate abuse, diversion, or dependence. The long-term risk profile from the Registry is consistent with the known (labeled safety profile of THC:CBD, and therefore supports it being a well-tolerated and beneficial medication for the treatment of MS spasticity. No evidence of new long-term safety concerns has emerged. Keywords: cannabidiol, tetrahydrocannabinol, non-interventional, multiple sclerosis

  14. Negative Impact of Female Sex on Outcomes from Repetitive Mild Traumatic Brain Injury in hTau Mice Is Age Dependent: A Chronic Effects of Neurotrauma Consortium Study

    Directory of Open Access Journals (Sweden)

    Scott A. Ferguson

    2017-12-01

    Full Text Available Traumatic brain injury (TBI is a serious public health concern which strikes someone every 15 s on average in the US. Even mild TBI, which comprise as many as 75% of all TBI cases, carries long term consequences. The effects of age and sex on long term outcome from TBI is not fully understood, but due to the increased risk for neurodegenerative diseases after TBI it is important to understand how these factors influence the outcome from TBI. This study examined the neurobehavioral and neuropathological effects of age and sex on the outcome 15 days following repetitive mild traumatic brain injury (r-mTBI in mice transgenic for human tau (hTau. These mice express the six human isoforms of tau but do not express endogenous murine tau and they develop tau pathology and memory impairment in an age-dependent manner. After 5 mild impacts, aged female mice showed motor impairments that were absent in aged male mice, as well as younger animals. Conversely, aged female sham mice outperformed all other groups of aged mice in a Barnes maze spatial memory test. Pathologically, increases in IBA-1 and GFAP staining typically seen in this model of r-mTBI showed the expected increases with both injury and age, but phosphorylated tau stained with CP13 in the hippocampus (reduced in female sham mice compared to males and PHF1 in the cortex (reduced in female TBI mice compared to male TBI mice showed the only histological signs of sex-dependent differences in these mice.

  15. The Behavioral Consequence of Phenylketonuria in Mice Depends on the Genetic Background

    Directory of Open Access Journals (Sweden)

    Vibeke Marijn Bruinenberg

    2016-12-01

    Full Text Available To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are often still considered equals. An example of this, is the research done in phenylketonuria (PKU, an inheritable metabolic disorder. In this field, a PKU mouse model (either on a BTBR or C57Bl/6 background is often used to examine underlying mechanisms of the disease and/or new treatment strategies. Both strains have a point mutation in the gene coding for the enzyme phenylalanine hydroxylase which causes toxic concentrations of the amino acid phenylalanine in blood and brain, as found in PKU patients. Although the mutation is identical and therefore assumed to equally affect physiology and behavior in both strains, no studies directly compared the two genetic backgrounds to test this assumption. Therefore, this study compared the BTBR and C57Bl/6 wild-type and PKU mice on PKU-relevant amino acid- and neurotransmitter levels and at a behavioral level. The behavioral paradigms were selected from previous literature on the PKU mouse model and address four domains, namely 1 activity levels, 2 motor performance, 3 anxiety and/or depression-like behavior, and 4 learning and memory. The results of this study showed comparable biochemical changes in phenylalanine and neurotransmitter concentrations. In contrast, clear differences in behavioral outcome between the strains in all four above-mentioned domains were found, most notably in the learning and memory domain. The outcome in this domain seem to be primarily due to factors inherent to the genetic background of the mouse and much less by differences in PKU-specific biochemical parameters in blood and brain. The difference in behavioral outcome between PKU of both strains emphasizes that the consequence of the

  16. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters

    Directory of Open Access Journals (Sweden)

    Jinzhong Jeremy Goh

    2013-01-01

    Full Text Available Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP and long-term depression (LTD, it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction in mice in the CA1 region has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7 or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g. 900 pulses given twice at 5 min intervals, or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g. learning conditions.

  17. Monocyte tissue factor–dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin

    Science.gov (United States)

    Owens, A. Phillip; Passam, Freda H.; Antoniak, Silvio; Marshall, Stephanie M.; McDaniel, Allison L.; Rudel, Lawrence; Williams, Julie C.; Hubbard, Brian K.; Dutton, Julie-Ann; Wang, Jianguo; Tobias, Peter S.; Curtiss, Linda K.; Daugherty, Alan; Kirchhofer, Daniel; Luyendyk, James P.; Moriarty, Patrick M.; Nagarajan, Shanmugam; Furie, Barbara C.; Furie, Bruce; Johns, Douglas G.; Temel, Ryan E.; Mackman, Nigel

    2012-01-01

    Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor–deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex. PMID:22214850

  18. Supplementation of selenium-enriched yeast attenuates age-dependent transcriptional changes of heart in mitochondrial DNA mutator mice

    Directory of Open Access Journals (Sweden)

    Rijin Xiao

    2014-03-01

    Full Text Available Background: Age is a major risk factor in developing heart diseases and has been associated with profound transcriptional changes in mammalian tissues. Low tissue selenium has recently been linked to several age-related diseases, including cardiovascular disease. This study investigated the global effects of age and dietary supplementation of selenium on heart transcriptional profiles in POLG mutator mice. Methods: Heart transcription profiles from young (2-month-old and old (13-month-old animals fed either a control diet or a diet supplemented with 1.0 mg selenium from seleniumenriched yeast (SP/kg diet were obtained and validated using microarray and real-time RTPCR techniques. Results: Aging led to significant transcriptional changes, where the expression of 1942 genes in old animals was changed by a fold change larger than 2.0, when compared to young animals. Age-regulated genes are associated with cardiovascular system development, immune and inflammatory response, and cellular oxidative stress response. Multiple genes linked with cardiomyocyte apoptosis, hypertrophy, and cardiac fibrosis, such as Myh7, Lcn2, Spp1, and Serpine1, were significantly up-regulated in old animals. SP supplementation also caused significant transcriptional changes in the heart, especially in old mice where many age-dependent transcriptional changes were totally or partially reversed by SP. Upstream regulator analysis further indicated that genes for Foxo1 and Foxo3, two transcriptional regulators involved in the regulation of cardiac muscle remodeling, were significantly activated by SP, suggesting that Foxo-mediated transcriptional activities play important roles in the anti-aging properties of SP. Functional Foods in Health and Disease 2014; 4(3:98- 119 Page 99 of 119 Conclusions: Results of this study indicate that SP supplementation attenuated age-related transcriptional changes in the heart of old POLG mice, which implies a potential clinical application of

  19. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to {gamma} Rays

    Energy Technology Data Exchange (ETDEWEB)

    Trani, Daniela [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Maastricht Radiation Oncology (MaastRO) Lab, GROW-School for Oncology and Developmental Biology, University of Maastricht (Netherlands); Moon, Bo-Hyun [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Kallakury, Bhaskar; Hartmann, Dan P. [Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Datta, Kamal [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Fornace, Albert J., E-mail: af294@georgetown.edu [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-01-01

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  20. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    Science.gov (United States)

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  1. Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI

    OpenAIRE

    Berkowitz, Bruce A.; Roberts, Robin; Bissig, David

    2010-01-01

    Purpose To test the hypothesis that in young, functionally blind mice, light-dependent intraretinal ion regulation occurs via melanopsin. Methods Postnatal day (P) 7 wild type (WT, C57Bl/6) and melanopsin knockout (KO, opn4−/−, B6129) mice were light or dark adapted. Awake and freely moving animals were injected intraperitoneally (ip) with MnCl2. Four hours later, the mice in both groups were anesthetized and studied with manganese-enhanced MRI (MEMRI) to measure the extent of intraretinal up...

  2. Time-dependent subcellular distribution and effects of carbon nanotubes in lungs of mice.

    Directory of Open Access Journals (Sweden)

    Carsten Købler

    Full Text Available Pulmonary deposited carbon nanotubes (CNTs are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm and tangled, and two longer (4 μm and 5.7 μm and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM 1, 3 and 28 days after instillation.TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia.Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP.

  3. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis.

    Science.gov (United States)

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C; Pasterkamp, R Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-10-26

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits.

  4. Time-Point Dependent Activation of Autophagy and the UPS in SOD1G93A Mice Skeletal Muscle.

    Science.gov (United States)

    Oliván, Sara; Calvo, Ana Cristina; Gasco, Samanta; Muñoz, María Jesús; Zaragoza, Pilar; Osta, Rosario

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by a selective loss of motor neurons together with a progressive muscle weakness. Albeit the pathophysiological mechanisms of the disease remain unknown, growing evidence suggests that skeletal muscle can be a target of ALS toxicity. In particular, the two main intracellular degradation mechanisms, autophagy and the ubiquitin-proteasome degradative system (UPS) have been poorly studied in this tissue. In this study we investigated the activation of autophagy and the UPS as well as apoptosis in the skeletal muscle from SOD1G93A mice along disease progression. Our results showed a significant upregulation of proteasome activity at early symptomatic stage, while the autophagy activation was found at presymptomatic and terminal stages. The mRNA upregulated levels of LC3, p62, Beclin1, Atg5 and E2f1 were only observed at symptomatic and terminal stages, which reinforced the time-point activation of autophagy. Furthermore, no apoptosis activation was observed along disease progression. The combined data provided clear evidence for the first time that there is a time-point dependent activation of autophagy and UPS in the skeletal muscle from SOD1G93A mice.

  5. Acute effects of THC on time perception in frequent and infrequent cannabis users.

    Science.gov (United States)

    Sewell, R Andrew; Schnakenberg, Ashley; Elander, Jacqueline; Radhakrishnan, Rajiv; Williams, Ashley; Skosnik, Patrick D; Pittman, Brian; Ranganathan, Mohini; D'Souza, D Cyril

    2013-03-01

    Cannabinoids have been shown to alter time perception, but existing literature has several limitations. Few studies have included both time estimation and production tasks, few control for subvocal counting, most had small sample sizes, some did not record subjects' cannabis use, many tested only one dose, and used either oral or inhaled administration of Δ⁹-tetrahydrocannabinol (THC), leading to variable pharmacokinetics, and some used whole-plant cannabis containing cannabinoids other than THC. Our study attempted to address these limitations. This study aims to characterize the acute effects of THC and frequent cannabis use on seconds-range time perception. THC was hypothesized to produce transient, dose-related time overestimation and underproduction. Frequent cannabis smokers were hypothesized to show blunted responses to these alterations. IV THC was administered at doses from 0.015 to 0.05 mg/kg to 44 subjects who participated in several double-blind, randomized, counterbalanced, crossover, placebo-controlled studies. Visual time estimation and production tasks in the seconds range were presented to subjects three times on each test day. All doses induced time overestimation and underproduction. Chronic cannabis use had no effect on baseline time perception. While infrequent/nonsmokers showed temporal overestimation at medium and high doses and temporal underproduction at all doses, frequent cannabis users showed no differences. THC effects on time perception were not dose related. A psychoactive dose of THC increases internal clock speed as indicated by time overestimation and underproduction. This effect is not dose related and is blunted in chronic cannabis smokers who did not otherwise have altered baseline time perception.

  6. Morphine decreases social interaction of adult male rats, while THC does not affect it.

    Science.gov (United States)

    Šlamberová, R; Mikulecká, A; Macúchová, E; Hrebíčková, I; Ševčíková, M; Nohejlová, K; Pometlová, M

    2016-12-22

    The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.

  7. The relationship between observed signs of impairment and THC concentration in oral fluid.

    Science.gov (United States)

    Fierro, Inmaculada; González-Luque, Juan Carlos; Alvarez, F Javier

    2014-11-01

    Studies have shown that cannabis intake increases the risk of traffic accidents. Controlled experiments support these findings and have shown a positive dose-effect relationship. In this retrospective cross-sectional study of data from a roadside survey, we investigated whether a police officer's judgment regarding signs of impairment is related to the concentration of delta-9-tetrahydrocannabinol (THC) in the oral fluid (OF). We investigated 2,632 cases from a representative sample of 3,302 Spanish drivers: 253 drivers positive for THC only, 32 positive for THC and ethanol, 201 with only ethanol detected in their breath, and 2,146 drivers who tested negative for ethanol in breath and drugs in OF. Recorded data comprised breath alcohol concentrations, THC concentrations in the OF, and the 31 observed signs of impairment. Subject groups were compared using the chi-square test, and logistic regression was used to examine the risk of being categorized as exhibiting signs of impairment. A relationship was found between the OF THC concentration and some observed signs of impairment. Eye signs were noticeable from a THC concentration >3.0 ng/ml in OF, and >25 ng/ml was related to behavior, facial expression, and speech signs. Alcohol and THC contribute to impairment independently and, when taken simultaneously, the effects are comparable to the sum of the effects when consumed separately. The observation of signs of impairment due to cannabis occurs in an OF concentration-related manner but, as a clinical test, OF has low sensitivity and specificity in a random roadside survey. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Fasting and exercise increase plasma cannabinoid levels in THC pre-treated rats: an examination of behavioural consequences.

    Science.gov (United States)

    Wong, Alexander; Keats, Kirily; Rooney, Kieron; Hicks, Callum; Allsop, David J; Arnold, Jonathon C; McGregor, Iain S

    2014-10-01

    Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in fat tissue where it can remain for prolonged periods. Under conditions of increased fat utilisation, blood cannabinoid concentrations can increase. However, it is unclear whether this has behavioural consequences. Here, we examined whether rats pre-treated with multiple or single doses of THC followed by a washout would show elevated plasma cannabinoids and altered behaviour following fasting or exercise manipulations designed to increase fat utilisation. Behavioural impairment was measured as an inhibition of spontaneous locomotor activity or a failure to successfully complete a treadmill exercise session. Fat utilisation was indexed by plasma free fatty acid (FFA) levels with plasma concentrations of THC and its terminal metabolite (-)-11-nor-9-carboxy-∆(9)-tetrahydrocannabinol (THC-COOH) also measured. Rats given daily THC (10 mg/kg) for 5 days followed by a 4-day washout showed elevated plasma THC-COOH when fasted for 24 h relative to non-fasted controls. Fasted rats showed lower locomotor activity than controls suggesting a behavioural effect of fat-released THC. However, rats fasted for 20 h after a single 5-mg/kg THC injection did not show locomotor suppression, despite modestly elevated plasma THC-COOH. Rats pre-treated with THC (5 mg/kg) and exercised 20 h later also showed elevated plasma THC-COOH but did not differ from controls in their likelihood of completing 30 min of treadmill exercise. These results confirm that fasting and exercise can increase plasma cannabinoid levels. Behavioural consequences are more clearly observed with pre-treatment regimes involving repeated rather than single THC dosing.

  9. Effects of hydroalcoholic extract of Borago officinalis on naloxone-precipitated withdrawal syndrome in morphine-dependent mice

    Directory of Open Access Journals (Sweden)

    Zahra Rabiei

    2016-12-01

    Full Text Available The aim of the present study was to investigate the effect of hydroalcoholic extract of Borago officinalis on morphine withdrawal syndrome in mice. Morphine-dependent group received morphine for nine days and then received naloxone via intraperitoneal injection. Control group received saline for nine days. Post-treated group received B. officinalis extract intraperitoneally (100 mg/kg on the day 10 before naloxone injection. Co-treated group received B. officinalis extract intraperitoneally (100 mg/kg and morphine for nine days and then received naloxone. Extract-treated group received extract for nine days and then received naloxone. Naloxone injection significantly increased the frequency of jumping, blinking, ptosis, defecation, paw trembling, and two-legged standing in comparison to the control group. Co-treatment and post-treatment with B. officinalis extract significantly decreased the withdrawal symptoms. In conclusion, hydroalcoholic extract of B. officinalis significantly attenuated the symptoms of morphine withdrawal syndrome.

  10. Differential neonatal testosterone imprinting of GH-dependent liver proteins and genes in female mice.

    Science.gov (United States)

    Ramirez, María Cecilia; Luque, Guillermina María; Ornstein, Ana María; Becu-Villalobos, Damasia

    2010-12-01

    Abnormal exposure to steroid hormones within a critical developmental period elicits permanent alterations in female reproductive physiology in rodents, but the impact on the female GH axis and the underlying sexual differences in hepatic enzymes have not been described in detail. We have investigated the effect of neonatal androgenization of female mice (achieved by s.c. injection of 100 μg testosterone propionate (TP) on the day of birth: TP females) on the GHRH-somatostatin-GH axis and downstream GH targets, which included female and male predominant liver enzymes and secreted proteins. At 4 months of age, an organizational effect of neonatal testosterone was evidenced on hypothalamic Ghrh mRNA level but not on somatostatin (stt) mRNA level. Ghrh mRNA levels were higher in males than in females, but not in TP females. Increased expression in TP females correlated with increased pituitary GH content and somatotrope population, increased serum and liver IGF-I concentration, and ultimately higher body weight. Murine urinary proteins (MUPs) that were excreted at higher levels in male urine, and whose expression requires pulsatile occupancy of liver GH receptors, were not modified in TP females and neither was liver Mup 1/2/6/8 mRNA expression. Furthermore, a male predominant liver gene (Cyp2d9) was not masculinized in TP females either, whereas two female predominant genes (Cyp2b9 and Cyp2a4) were defeminized. These data support the hypothesis that neonatal steroid exposure contributes to the remodeling of the GH axis and defeminization of hepatic steroid-metabolizing enzymes, which may compromise liver physiology.

  11. Staphylococcus epidermidis Bacteremia Induces Brain Injury in Neonatal Mice via Toll-like Receptor 2-Dependent and -Independent Pathways.

    Science.gov (United States)

    Bi, Dan; Qiao, Lili; Bergelson, Ilana; Ek, C Joakim; Duan, Luqi; Zhang, Xiaoli; Albertsson, Anna-Maj; Pettengill, Matthew; Kronforst, Kenny; Ninkovic, Jana; Goldmann, Donald; Janzon, Anders; Hagberg, Henrik; Wang, Xiaoyang; Mallard, Carina; Levy, Ofer

    2015-11-01

    Staphylococcus epidermidis causes late-onset sepsis in preterm infants. Staphylococcus epidermidis activates host responses in part via Toll-like receptor 2 (TLR2). Epidemiologic studies link bacteremia and neonatal brain injury, but direct evidence is lacking. Wild-type and TLR2-deficient (TLR2-/-) mice were injected intravenously with S. epidermidis at postnatal day 1 prior to measuring plasma and brain cytokine and chemokine levels, bacterial clearance, brain caspase-3 activation, white/gray matter volume, and innate transcriptome. Staphylococcus epidermidis bacteremia spontaneously resolved over 24 hours without detectable bacteria in the cerebrospinal fluid (CSF). TLR2-/- mice demonstrated delayed S. epidermidis clearance from blood, spleen, and liver. Staphylococcus epidermidis increased the white blood cell count in the CSF, increased interleukin 6, interleukin 12p40, CCL2, and CXCL1 concentrations in plasma; increased the CCL2 concentration in the brain; and caused rapid (within 6 hours) TLR2-dependent brain activation of caspase-3 and TLR2-independent white matter injury. Staphylococcus epidermidis bacteremia, in the absence of bacterial entry into the CSF, impairs neonatal brain development. Staphylococcus epidermidis bacteremia induced both TLR2-dependent and -independent brain injury, with the latter occurring in the absence of TLR2, a condition associated with an increased bacterial burden. Our study indicates that the consequences of transient bacteremia in early life may be more severe than commonly appreciated, and our findings may inform novel approaches to reduce bacteremia-associated brain injury. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice.

    Science.gov (United States)

    de Laat, A; van der Leun, J C; de Gruijl, F R

    1997-05-01

    Although ultraviolet B (UVB wavelengths 280-315 nm) dominates the carcinogenic effect of sunlight, ultraviolet A (UVA 315-400 nm) is estimated to contribute 10-20% to the carcinogenic dose; a substantial background that is not affected by a depletion of the ozone layer. Furthermore, certain high-power modern tanning lamps emit mainly long wave UVA (UVA1; 340-400 nm). For a proper risk estimate of UVA exposure its carcinogenicity relative to that of UVB exposure needs to be determined more accurately. To this end we determined the dose-time relationship for skin tumor induction in hairless mice that were irradiated daily with custom-made Philips 365-nm sources. Irradiation of the group exposed to the highest of the four daily doses (430, 240, 140 and 75 kJ/m2) had to be discontinued because severe scratching set in after 3 months (no tumors). In the lower dose-groups the prevalence curves for skin carcinomas (percentage of tumor-bearing mice versus logarithm of time) ran virtually parallel, and were similar to those found with daily UVB exposure. However, the relationship between the daily dose (D) and the median tumor induction time (t50) appeared to differ: with UVB we found that t50 D(r) = constant, with r = 0.6, whereas with UVA1 we found r approximately 0.4. This would imply that 365-nm carcinogenesis shows less of a dose-dependency than UVB carcinogenesis, and that 365-nm radiation becomes more carcinogenic, relative to UVB, as the daily doses are lowered. This relative shift at low doses complicates extrapolation of UVB to UVA risks in humans. Based on the t50 from the lowest dose-group we found that the carcinogenicity at 365 nm (per J/m2) is 0.9 x 10(-4) times that at 293 nm, the wavelength of maximum carcinogenicity in hairless mice. This result for 365-nm carcinogenicity falls well within the margins of error of the wavelength dependency that was estimated earlier from experiments with broadband UV sources.

  13. THC:CBD in Daily Practice: Available Data from UK, Germany and Spain.

    Science.gov (United States)

    Fernández, Óscar

    2016-01-01

    From the time Sativex (THC:CBD) oromucosal spray first became available in European Union countries in 2010 for the management of treatment-resistant multiple sclerosis (MS) spasticity, data from daily practice have been collected through various projects. A retrospective registry study and a prospective safety study of THC:CBD oromucosal spray are reported. The most recent analysis of a retrospective registry established in the United Kingdom (UK), Germany and Switzerland, which collected safety data on more than 900 patients, has indicated a positive risk-benefit profile for THC:CBD oromucosal spray during long-term use. Long-term continuation rates were 68% (mean follow-up time 1 year) and the mean dose was 5.4 sprays/day. No new safety concerns were identified, and adverse events of special interest for a cannabis-based medicine were limited. The UK registry has since been closed but remains open in Germany and Switzerland. A prospective safety study undertaken in Spain involved 207 patients from 13 specialized MS centres who had been prescribed THC:CBD oromucosal spray. The findings aligned closely with the UK/German/Swiss registry data in terms of 1-year continuation rates (64.7%), mean daily dose (6.6 sprays/day) and safety profile, including no evidence of addiction, abuse or misuse. The homogeneity between these observational studies supports the interest in THC:CBD oromucosal spray for management of MS spasticity in daily practice. © 2016 S. Karger AG, Basel.

  14. Acute administration of THC impairs spatial but not associative memory function in zebrafish.

    Science.gov (United States)

    Ruhl, Tim; Prinz, Nicole; Oellers, Nadine; Seidel, Nathan Ian; Jonas, Annika; Albayram, Onder; Bilkei-Gorzo, Andras; von der Emde, Gerhard

    2014-10-01

    The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio). First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval. We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish. The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.

  15. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling

    Science.gov (United States)

    Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894

  16. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice

    Science.gov (United States)

    Rickard, James A; Anderton, Holly; Etemadi, Nima; Nachbur, Ueli; Darding, Maurice; Peltzer, Nieves; Lalaoui, Najoua; Lawlor, Kate E; Vanyai, Hannah; Hall, Cathrine; Bankovacki, Aleks; Gangoda, Lahiru; Wong, Wendy Wei-Lynn; Corbin, Jason; Huang, Chunzi; Mocarski, Edward S; Murphy, James M; Alexander, Warren S; Voss, Anne K; Vaux, David L; Kaiser, William J; Walczak, Henning; Silke, John

    2014-01-01

    SHARPIN regulates immune signaling and contributes to full transcriptional activity and prevention of cell death in response to TNF in vitro. The inactivating mouse Sharpin cpdm mutation causes TNF-dependent multi-organ inflammation, characterized by dermatitis, liver inflammation, splenomegaly, and loss of Peyer's patches. TNF-dependent cell death has been proposed to cause the inflammatory phenotype and consistent with this we show Tnfr1, but not Tnfr2, deficiency suppresses the phenotype (and it does so more efficiently than Il1r1 loss). TNFR1-induced apoptosis can proceed through caspase-8 and BID, but reduction in or loss of these players generally did not suppress inflammation, although Casp8 heterozygosity significantly delayed dermatitis. Ripk3 or Mlkl deficiency partially ameliorated the multi-organ phenotype, and combined Ripk3 deletion and Casp8 heterozygosity almost completely suppressed it, even restoring Peyer's patches. Unexpectedly, Sharpin, Ripk3 and Casp8 triple deficiency caused perinatal lethality. These results provide unexpected insights into the developmental importance of SHARPIN. DOI: http://dx.doi.org/10.7554/eLife.03464.001 PMID:25443632

  17. Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains.

    OpenAIRE

    Shao, Z Q; Behki, R

    1996-01-01

    A cytochrome P-450 system in Rhodococcus strains, encoded by thcB, thcC, and thcD, participates in the degradation of thiocarbamates and several other pesticides. The regulation of the system was investigated by fusing a truncated lacZ in frame to thcB, the structural gene for the cytochrome P-450 monooxygenase. Analysis of the thcB-lacZ fusion showed that the expression of thcB was 10-fold higher in the presence of the herbicide EPTC (s-ethyl dipropylthiocarbamate). Similar enhancement of th...

  18. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice

    DEFF Research Database (Denmark)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte

    2017-01-01

    abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic...... as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning....

  19. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    Science.gov (United States)

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca(2+) surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP3 R2)-knockout (KO) mice, in which IP3 /Ca(2+) signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca(2+) elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP3 R2)-knockout (KO) mice, in which astrocytic Ca(2+) elevations are largely diminished. We found that the gamma power was also higher in IP3 R2-KO-ENR mice compared to IP3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  20. Aspirin-triggered lipoxin induces CB1-dependent catalepsy in mice.

    Science.gov (United States)

    Pamplona, Fabrício A; Menezes-de-Lima, Octávio; Takahashi, Reinaldo N

    2010-02-05

    Evidence are that inhibition of cyclooxygenase 2 (COX-2) enhances endocannabinoid signaling, indicating a crosstalk between these two eicosanoid pathways. Aspirin, a non-selective COX inhibitor, acetylates COX-2 with generation of a lipoxygenase (LOX) substrate, whose end product is the 15-epi-lipoxin A(4) (15-epi-LXA(4)), an aspirin-triggered lipoxin. Our objective was to investigate whether 15-epi-LXA(4) would potentiate in vivo effects of the endocannabinoid anandamide (AEA). Catalepsy was selected as a behavioral parameter and tested 5 min after AEA injection in all experiments. AEA induced dose-dependent (200 pmol/2 microl, i.c.v.) catalepsy. A sub-dose of AEA (10 pmol/2 microl, i.c.v.) was potentiated by aspirin (300 mg/kg, p.o.) via a 5-LOX-dependent step. The cataleptic effect induced by the interaction between sub-doses of 15-epi-LXA(4) (0.01 pmol/2 microl, i.c.v.) and AEA (10 pmol/2 microl, i.c.v.) was prevented by the cannabinoid CB(1) receptors antagonist SR141716A (1mg/kg, i.p.), but not by the antagonist of lipoxin ALX receptors Boc-2 (10 microg/kg, i.p.). While previous studies have shown that COX inhibition itself may enhance endocannabinoid effects, here we add another piece of evidence revealing that a LOX-derivative produced in consequence of COX-2 acetylation participates in this process. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Central amygdala activation of extracellular signal-regulated kinase 1 and age-dependent changes in inflammatory pain sensitivity in mice.

    Science.gov (United States)

    Sadler, Katelyn E; Gartland, Nathan M; Cavanaugh, Jane E; Kolber, Benedict J

    2017-08-01

    Aging populations are more sensitive to noxious stimuli as a result of altered somatosensory systems. In these experiments, we examined pain-like behaviors in young, middle-aged, and old mice during peripheral inflammation to determine if the same sensitivity exists in preclinical animal models. Immediately following injury, middle-aged and old mice exhibited more spontaneous pain-like behaviors than young mice, matching pain prevalence in clinical populations. Middle-aged and old mice also developed persistent mechanical hypersensitivity in the injured paw. Furthermore, old mice developed mechanical hypersensitivity in the noninjured paw suggesting age-dependent changes in central nociceptive systems. To address this end, pain-related protein expression was examined in the central nucleus of the amygdala, a limbic brain region that modulates somatic pain. Following injury, increased phosphorylation of extracellular signal-regulated kinase 1, a protein with known nociceptive functions, was observed in the right central nucleus of the amygdala of old mice and not middle-aged or young animals. These findings suggest that age-dependent changes in supraspinal nociceptive systems may account for increased pain-like behaviors in aging populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Time-dependent mode of immunization augments suppressed antibody responses in spleen cell cultures from mice experimentally infected with Trypanosoma cruzi.

    Science.gov (United States)

    Choromanski, L; Kuhn, R E

    1989-12-01

    Mice infected with Trypanosoma cruzi develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC). After normal or infected mice were primed with SRBC, their spleen cells were restimulated 4 days later with SRBC in Mishell-Dutton cultures and found to mount hyperaugmented IgM anti-SRBC responses. It was also demonstrated that T-cells derived from normal mice primed in vivo 4 days previously with SRBC, and subsequently added to cultures of spleen cells from T. cruzi-infected mice, enhanced anti-SRBC DPFC responses in a dose-dependent fashion. These results show that functional help provided by T-cells activated during an in vivo priming and exposed to an in vitro challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in the spleen cell cultures from T. cruzi-infected mice.

  3. Positional cloning reveals strain-dependent expression of Trim16 to alter susceptibility to bleomycin-induced pulmonary fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Anguel N Stefanov

    Full Text Available Pulmonary fibrosis is a disease of significant morbidity, with no effective therapeutics and an as yet incompletely defined genetic basis. The chemotherapeutic agent bleomycin induces pulmonary fibrosis in susceptible C57BL/6J mice but not in mice of the C3H/HeJ strain, and this differential strain response has been used in prior studies to map bleomycin-induced pulmonary fibrosis susceptibility loci named Blmpf1 and Blmpf2. In this study we isolated the quantitative trait gene underlying Blmpf2 initially by histologically phenotyping the bleomycin-induced lung disease of sublines of congenic mice to reduce the linkage region to 13 genes. Of these genes, Trim16 was identified to have strain-dependent expression in the lung, which we determined was due to sequence variation in the promoter. Over-expression of Trim16 by plasmid injection increased pulmonary fibrosis, and bronchoalveolar lavage levels of both interleukin 12/23-p40 and neutrophils, in bleomycin treated B6.C3H-Blmpf2 subcongenic mice compared to subcongenic mice treated with bleomycin only, which follows the C57BL/6J versus C3H/HeJ strain difference in these traits. In summary we demonstrate that genetic variation in Trim16 leads to its strain-dependent expression, which alters susceptibility to bleomycin-induced pulmonary fibrosis in mice.

  4. Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase–Dependent Manner in Diabetic Mice

    Science.gov (United States)

    Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519

  5. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1

    DEFF Research Database (Denmark)

    Christensen, Pernille M; Liu, Catherine H; Swendeman, Steven L

    2016-01-01

    by decreased plasma levels of S1P and reduced S1P1 stimulation. In a carrageenan-induced model of inflammation, Apom(-/-) mice had increased vascular leakage compared with that in WT mice. Adenoviral overexpression of ApoM in Apom(-/-) mice decreased the vascular leakage compared to adenoviral overexpression...

  6. Augmentation of suppressed antibody responses in mice during experimental Chagas' disease by T helper cells activated in a time-dependent mode of immunization.

    Science.gov (United States)

    Choromanski, L; Kuhn, R E

    1990-01-01

    Mice infected with the protozoan parasite Trypanosoma cruzi, the causative agent of human Chagas' disease, develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC), hapten-conjugated SRBC (TNP-SRBC), and horse erythrocytes (TNP-HRBC). Studies in vivo demonstrated that anti-SRBC responses were best enhanced when T. cruzi-infected mice were injected with primed T cells derived from normal or infected mice immunized four days previously. The presence of enhancing capacities for DPFC responses by T cells from T. cruzi-infected mice were also supported by experiments examining the hapten-carrier effect. Preimmunization of infected mice with SRBC or HRBC four days before injection of hapten-homologous (TNP-SRBC or TNP-HRBC) carrier resulted in markedly augmented anti-hapten antibody responses. These results show that functional help provided by T cells activated during priming and exposed to a challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in T. cruzi-infected mice.

  7. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics.

    Science.gov (United States)

    Heuberger, Jules A A C; Guan, Zheng; Oyetayo, Olubukayo-Opeyemi; Klumpers, Linda; Morrison, Paul D; Beumer, Tim L; van Gerven, Joop M A; Cohen, Adam F; Freijer, Jan

    2015-02-01

    Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.

  8. The dose effects of short-term dronabinol (oral THC) maintenance in daily cannabis users.

    Science.gov (United States)

    Vandrey, Ryan; Stitzer, Maxine L; Mintzer, Miriam Z; Huestis, Marilyn A; Murray, Jeannie A; Lee, Dayong

    2013-02-01

    Prior studies have separately examined the effects of dronabinol (oral THC) on cannabis withdrawal, cognitive performance, and the acute effects of smoked cannabis. A single study examining these clinically relevant domains would benefit the continued evaluation of dronabinol as a potential medication for the treatment of cannabis use disorders. Thirteen daily cannabis smokers completed a within-subject crossover study and received 0, 30, 60 and 120mg dronabinol per day for 5 consecutive days. Vital signs and subjective ratings of cannabis withdrawal, craving and sleep were obtained daily; outcomes under active dose conditions were compared to those obtained under placebo dosing. On the 5th day of medication maintenance, participants completed a comprehensive cognitive performance battery and then smoked five puffs of cannabis for subjective effects evaluation. Each dronabinol maintenance period occurred in a counterbalanced order and was separated by 9 days of ad libitum cannabis use. Dronabinol dose-dependently attenuated cannabis withdrawal and resulted in few adverse side effects or decrements in cognitive performance. Surprisingly, dronabinol did not alter the subjective effects of smoked cannabis, but cannabis-induced increases in heart rate were attenuated by the 60 and 120mg doses. Dronabinol's ability to dose-dependently suppress cannabis withdrawal may be therapeutically beneficial to individuals trying to stop cannabis use. The absence of gross cognitive impairment or side effects in this study supports safety of doses up to 120mg/day. Continued evaluation of dronabinol in targeted clinical studies of cannabis treatment, using an expanded range of doses, is warranted. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. A history of chronic morphine exposure during adolescence increases despair-like behaviour and strain-dependently promotes sociability in abstinent adult mice.

    Science.gov (United States)

    Lutz, P E; Reiss, D; Ouagazzal, A M; Kieffer, B L

    2013-04-15

    A crucial issue in treating opiate addiction, a chronic relapsing disorder, is to maintain a drug-free abstinent state. Prolonged abstinence associates with mood disorders, strongly contributing to relapse. In particular, substance use disorders occurring during adolescence predispose to depression later in adulthood. Using our established mouse model of opiate abstinence, we characterized emotional consequences into adulthood of morphine exposure during adolescence. Our results indicate that morphine treatment in adolescent mice has no effect on anxiety-like behaviours in adult mice, after abstinence. In contrast, morphine treatment during adolescence increases behavioural despair in adult mice. We also show that morphine exposure strain-dependently enhances sociability in adult mice. Additional research will be required to understand where and how morphine acts during brain maturation to affect emotional and social behaviours into adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging.

    Science.gov (United States)

    McMullan, Rachel C; Kelly, Scott A; Hua, Kunjie; Buckley, Brian K; Faber, James E; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2016-11-01

    Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age-related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long-term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long-term patterns of exercise during aging and its physiological effects in a well-controlled environment. One-year-old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long-term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex-dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long-term exercise may serve as a preventive measure against age-related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long-term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype-by-environment interactions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    Directory of Open Access Journals (Sweden)

    Perna Marla K

    2011-04-01

    Full Text Available Abstract Background Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene. Results Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types. Conclusions p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia

  12. Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1.

    Science.gov (United States)

    Harrison, Theresa A; Smith Adams, Lorraine B; Moore, Preston D; Perna, Marla K; Sword, Jarrod D; Defoe, Dennis M

    2011-04-20

    Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene. Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types. p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia and tissue disruption seen in certain developing p27Kip1

  13. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans.

    Science.gov (United States)

    Cortes-Briones, Jose; Skosnik, Patrick D; Mathalon, Daniel; Cahill, John; Pittman, Brian; Williams, Ashley; Sewell, R Andrew; Ranganathan, Mohini; Roach, Brian; Ford, Judith; D'Souza, Deepak Cyril

    2015-08-01

    Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.

  14. 'Prion-like' propagation of the synucleinopathy of M83 transgenic mice depends on the mouse genotype and type of inoculum.

    Science.gov (United States)

    Sargent, Dorian; Verchère, Jérémy; Lazizzera, Corinne; Gaillard, Damien; Lakhdar, Latifa; Streichenberger, Nathalie; Morignat, Eric; Bétemps, Dominique; Baron, Thierry

    2017-10-01

    The M83 transgenic mouse is a model of human synucleinopathies that develops severe motor impairment correlated with accumulation of the pathological Ser129-phosphorylated α-synuclein (α-syn(P) ) in the brain and spinal cord. M83 disease can be accelerated by intracerebral inoculation of brain extracts from sick M83 mice. This has also recently been described using peripheral routes, injecting recombinant preformed α-syn fibrils into the muscle or the peritoneum. Here, we inoculated homozygous and/or hemizygous M83 neonates via the intraperitoneal and/or intracerebral routes with two different brain extracts: one from sick M83 mice inoculated with brain extract from other sick M83 mice, and the other derived from a human multiple system atrophy source passaged in M83 mice. Detection of α-syn(P) using ELISA and western blot confirmed the disease in mice. The distribution of α-syn(P) in the central nervous system was similar, independently of the inoculum or inoculation route, consistent with previous studies describing M83 disease. ELISA tests revealed higher levels of α-syn(P) in homozygous than in hemizygous sick M83 mice, at least after IC inoculation. Interestingly, the immunoreactivity of α-syn(P) detected by ELISA was significantly lower in M83 mice inoculated with the multiple system atrophy inoculum than in M83 mice inoculated with the M83 inoculum, at the first two passages. 'Prion-like' propagation of the synucleinopathy up to the clinical disease was accelerated by both intracerebral and intraperitoneal inoculations of brain extracts from sick mice. This acceleration, however, depends on the levels of α-syn expression by the mouse and the type of inoculum. © 2017 International Society for Neurochemistry.

  15. Apolipoprotein E4 causes age- and sex-dependent impairments of hilar GABAergic interneurons and learning and memory deficits in mice.

    Directory of Open Access Journals (Sweden)

    Laura Leung

    Full Text Available Apolipoprotein (apo E4 is the major genetic risk factor for Alzheimer's disease (AD. ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in female mice, leading to learning and memory deficits. Here, we investigate whether the detrimental effects of apoE4 on hilar GABAergic interneurons are sex-dependent using apoE knock-in (KI mice across different ages. We found that in female apoE-KI mice, there was an age-dependent depletion of hilar GABAergic interneurons, whereby GAD67- or somatostatin-positive--but not NPY- or parvalbumin-positive-interneuron loss was exacerbated by apoE4. Loss of these neuronal populations was correlated with the severity of spatial learning deficits at 16 months of age in female apoE4-KI mice; however, this effect was not observed in female apoE3-KI mice. In contrast, we found an increase in the numbers of hilar GABAergic interneurons with advancing age in male apoE-KI mice, regardless of apoE genotype. Moreover, male apoE-KI mice showed a consistent ratio of hilar inhibitory GABAergic interneurons to excitatory mossy cells approximating 1.5 that is independent of apoE genotype and age, whereas female apoE-KI mice exhibited an age-dependent decrease in this ratio, which was exacerbated by apoE4. Interestingly, there are no apoE genotype effects on GABAergic interneurons in the CA1 and CA3 subregions of the hippocampus as well as the entorhinal and auditory cortexes. These findings suggest that the sex-dependent effects of apoE4 on developing AD is in part attributable to inherent sex-based differences in the numbers of hilar GABAergic interneurons, which is further modulated by apoE genotype.

  16. Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice

    NARCIS (Netherlands)

    Wit, de Nicole; Boekschoten, Mark; Bachmair, Eva-Maria; Hooiveld, Guido; Groot, de Philip; Rubio-Aliaga, Isabel; Hannelore, Daniel; Muller, Michael

    2011-01-01

    Excessive intake of dietary fat is known to be a contributing factor in the development of obesity. In this study, we determined the dose-dependent effects of dietary fat on the development of this metabolic condition with a focus on changes in gene expression in the small intestine. C57BL/6J mice

  17. Cannabis-based medicine reduces multiple pathological processes in AβPP/PS1 mice.

    Science.gov (United States)

    Aso, Ester; Sánchez-Pla, Alexandre; Vegas-Lozano, Esteban; Maldonado, Rafael; Ferrer, Isidro

    2015-01-01

    Several recent findings suggest that targeting the endogenous cannabinoid system can be considered as a potential therapeutic approach to treat Alzheimer's disease (AD). The present study supports this hypothesis demonstrating that delta-9-tetrahydrocannabinol (THC) or cannabidiol (CBD) botanical extracts, as well as the combination of both natural cannabinoids, which are the components of an already approved cannabis-based medicine, preserved memory in AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage. Moreover, THC + CBD reduced learning impairment in AβPP/PS1 mice. A significant decrease in soluble Aβ42 peptide levels and a change in plaques composition were also observed in THC + CBD-treated AβPP/PS1 mice, suggesting a cannabinoid-induced reduction in the harmful effect of the most toxic form of the Aβ peptide. Among the mechanisms related with these positive cognitive effects, the anti-inflammatory properties of cannabinoids may also play a relevant role. Here we observed reduced astrogliosis, microgliosis, and inflammatory-related molecules in treated AβPP/PS1 mice, which were more marked after treatment with THC + CBD than with either THC or CBD. Moreover, other cannabinoid-induced effects were uncovered by a genome-wide gene expression study. Thus, we have identified the redox protein thioredoxin 2 and the signaling protein Wnt16 as significant substrates for the THC + CBD-induced effects in our AD model. In summary, the present findings show that the combination of THC and CBD exhibits a better therapeutic profile than each cannabis component alone and support the consideration of a cannabis-based medicine as potential therapy against AD.

  18. Chronic Adolescent Δ9-Tetrahydrocannabinol Treatment of Male Mice Leads to Long-Term Cognitive and Behavioral Dysfunction, Which Are Prevented by Concurrent Cannabidiol Treatment.

    Science.gov (United States)

    Murphy, Michelle; Mills, Sierra; Winstone, Joanna; Leishman, Emma; Wager-Miller, Jim; Bradshaw, Heather; Mackie, Ken

    2017-01-01

    Introduction: The high prevalence of adolescent cannabis use, the association between this use and later psychiatric disease, and increased access to high-potency cannabis highlight the need for a better understanding of the long-term effects of adolescent cannabis use on cognitive and behavioral outcomes. Furthermore, increasing Δ 9 -tetrahydrocannabinol (THC) in high-potency cannabis is accompanied by a decrease in cannabidiol (CBD), thus an understanding of the interactions between CBD and THC in the neurodevelopmental effects of THC is also important. The current study examined the immediate and long-term behavioral consequences of THC, CBD, and their combination in a mouse model of adolescent cannabis use. Materials and Methods: Male CD1 mice received daily injections of THC (3 mg/kg), CBD (3 mg/kg), CBD+THC (3 mg/kg each), vehicle, or remained undisturbed in their home cage (no handling/injections), either during adolescence (postnatal day [PND] 28-48) or during early adulthood (PND 69-89). Animals were then evaluated with a battery of behavioral tests 1 day after drug treatment, and again after 42 drug-free days. The tests included the following: open field (day 1), novel object recognition (NOR; day 2), marble burying (day 3), elevated plus maze (EPM; day 4), and Nestlet shredding (day 5). Results: Chronic administration of THC during adolescence led to immediate and long-term impairments in object recognition/working memory, as measured by the NOR task. In contrast, adult administration of THC caused immediate, but not long term, impairment of object/working memory. Adolescent chronic exposure to THC increased repetitive and compulsive-like behaviors, as measured by the Nestlet shredding task. Chronic administration of THC, either during adolescence or during adulthood, led to a delayed increase in anxiety as measured by the EPM. All THC-induced behavioral abnormalities were prevented by the coadministration of CBD+THC, whereas CBD alone did not

  19. Insulin-dependent H2O2 production is higher in muscle fibers of mice fed with a high-fat diet.

    Science.gov (United States)

    Espinosa, Alejandra; Campos, Cristian; Díaz-Vegas, Alexis; Galgani, José E; Juretic, Nevenka; Osorio-Fuentealba, César; Bucarey, José L; Tapia, Gladys; Valenzuela, Rodrigo; Contreras-Ferrat, Ariel; Llanos, Paola; Jaimovich, Enrique

    2013-07-29

    Insulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD) are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2) produced by NADPH oxidase 2 (NOX2) is involved in signaling pathways triggered by insulin. We evaluated oxidative status in skeletal muscle fibers from insulin-resistant and control mice by determining H2O2 generation (HyPer probe), reduced-to-oxidized glutathione ratio and NOX2 expression. After eight weeks of HFD, insulin-dependent glucose uptake was impaired in skeletal muscle fibers when compared with control muscle fibers. Insulin-resistant mice showed increased insulin-stimulated H2O2 release and decreased reduced-to-oxidized glutathione ratio (GSH/GSSG). In addition, p47phox and gp91phox (NOX2 subunits) mRNA levels were also high (~3-fold in HFD mice compared to controls), while protein levels were 6.8- and 1.6-fold higher, respectively. Using apocynin (NOX2 inhibitor) during the HFD feeding period, the oxidative intracellular environment was diminished and skeletal muscle insulin-dependent glucose uptake restored. Our results indicate that insulin-resistant mice have increased H2O2 release upon insulin stimulation when compared with control animals, which appears to be mediated by an increase in NOX2 expression.

  20. Insulin-Dependent H2O2 Production Is Higher in Muscle Fibers of Mice Fed with a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Ariel Contreras-Ferrat

    2013-07-01

    Full Text Available Insulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2 produced by NADPH oxidase 2 (NOX2 is involved in signaling pathways triggered by insulin. We evaluated oxidative status in skeletal muscle fibers from insulin-resistant and control mice by determining H2O2 generation (HyPer probe, reduced-to-oxidized glutathione ratio and NOX2 expression. After eight weeks of HFD, insulin-dependent glucose uptake was impaired in skeletal muscle fibers when compared with control muscle fibers. Insulin-resistant mice showed increased insulin-stimulated H2O2 release and decreased reduced-to-oxidized glutathione ratio (GSH/GSSG. In addition, p47phox and gp91phox (NOX2 subunits mRNA levels were also high (~3-fold in HFD mice compared to controls, while protein levels were 6.8- and 1.6-fold higher, respectively. Using apocynin (NOX2 inhibitor during the HFD feeding period, the oxidative intracellular environment was diminished and skeletal muscle insulin-dependent glucose uptake restored. Our results indicate that insulin-resistant mice have increased H2O2 release upon insulin stimulation when compared with control animals, which appears to be mediated by an increase in NOX2 expression.

  1. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome.

    Science.gov (United States)

    Pignatelli, Marco; Piccinin, Sonia; Molinaro, Gemma; Di Menna, Luisa; Riozzi, Barbara; Cannella, Milena; Motolese, Marta; Vetere, Gisella; Catania, Maria Vincenza; Battaglia, Giuseppe; Nicoletti, Ferdinando; Nisticò, Robert; Bruno, Valeria

    2014-03-26

    Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.

  2. Exacerbated Th2-mediated airway inflammation and hyperresponsiveness in autoimmune diabetes-prone NOD mice: a critical role for CD1d-dependent NKT cells.

    Science.gov (United States)

    Araujo, Luiza M; Lefort, Jean; Nahori, Marie-Anne; Diem, Séverine; Zhu, Ren; Dy, Michel; Leite-de-Moraes, Maria C; Bach, J F; Vargaftig, B Boris; Herbelin, André

    2004-02-01

    The NOD mouse has proved to be a relevant model of insulin-dependent diabetes mellitus, closely resembling the human disease. However, it is unknown whether this strain presents a general biastoward Th1-mediated autoimmunity or remains capable of mounting complete Th2-mediated responses. Here, we show that NOD mice have the capacity to develop a typical Th2-mediated disease, namely experimental allergic asthma. In contrast to what might have been expected, they even developed a stronger Th2-mediated pulmonary inflammatory response than BALB/c mice, a strain that shows a typical Th2 bias in this model. Thus, after allergen sensitization and intra-nasal challenge, the typical features of experimental asthma were exacerbated in NOD mice, including enhanced bronchopulmonary responsiveness, mucus production and eosinophilic inflammation in the lungs as well as specific IgE titers in serum. These hallmarks of allergic asthma were associated with increased IL-4, IL-5, IL-13 and eotaxin production in the lungs, as compared with BALB/c mice. Notwithstanding their quantitative and functional defect in NOD mice, CD1d-dependent NKT cells contribute to aggravate the disease, since in OVA-immunized CD1d(-/-) NOD mice, which are deficient in this particular T cell subset, airway eosinophilia was clearly diminished relative to NOD littermates. This is the first evidence that autoimmune diabetes-prone NOD mice can also give rise to enhanced Th2-mediated responses and might thus provide a useful model for the study of common genetic and cellular components, including NKT cells that contribute to both asthma and type 1 diabetes.

  3. Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice.

    Science.gov (United States)

    Liu, Xiao-Long; Luo, Liu; Mu, Rong-Hao; Liu, Bin-Bin; Geng, Di; Liu, Qing; Yi, Li-Tao

    2015-11-02

    Previous studies have demonstrated that the mammalian target of rapamycin (mTOR) signaling pathway has an important role in ketamine-induced, rapid antidepressant effects despite the acute administration of fluoxetine not affecting mTOR phosphorylation in the brain. However, the effects of long-term fluoxetine treatment on mTOR modulation have not been assessed to date. In the present study, we examined whether fluoxetine, a type of commonly used antidepressant agent, alters mTOR signaling following chronic administration in different brain regions, including the frontal cortex, hippocampus, amygdala and hypothalamus. We also investigated whether fluoxetine enhanced synaptic protein levels in these regions via the activation of the mTOR signaling pathway and its downstream regulators, p70S6K and 4E-BP-1. The results indicated that chronic fluoxetine treatment attenuated the chronic, unpredictable, mild stress (CUMS)-induced mTOR phosphorylation reduction in the hippocampus and amygdala of mice but not in the frontal cortex or the hypothalamus. Moreover, the CUMS-decreased PSD-95 and synapsin I levels were reversed by fluoxetine, and these effects were blocked by rapamycin only in the hippocampus. In conclusion, our findings suggest that chronic treatment with fluoxetine can induce synaptic protein expression by activating the mTOR signaling pathway in a region-dependent manner and mainly in the hippocampus.

  4. Hsp65-Producing Lactococcus lactis Prevents Inflammatory Intestinal Disease in Mice by IL-10- and TLR2-Dependent Pathways

    Science.gov (United States)

    Gomes-Santos, Ana Cristina; de Oliveira, Rafael Pires; Moreira, Thaís Garcias; Castro-Junior, Archimedes Barbosa; Horta, Bernardo Coelho; Lemos, Luísa; de Almeida, Leonardo Augusto; Rezende, Rafael Machado; Cara, Denise Carmona; Oliveira, Sérgio Costa; Azevedo, Vasco Ariston Carvalho; Miyoshi, Anderson; Faria, Ana Maria Caetano

    2017-01-01

    Heat shock proteins (Hsps) are highly expressed at all sites of inflammation. As they are ubiquitous and immunodominant antigens, these molecules represent good candidates for the therapeutic use of oral tolerance in autoimmune and chronic inflammatory diseases. Evidences from human and animal studies indicate that inflammatory bowel disease (IBD) results from uncontrolled inflammatory responses to intestinal microbiota. Hsps are immunodominant proteins expressed by several immune cells and by commensal bacteria. Using an IBD mouse model, we showed that oral pretreatment with genetically modified Lactococcus lactis that produces and releases Mycobacterium Hsp65, completely prevented DSS-induced colitis in C57BL/6 mice. Protection was associated with reduced pro-inflammatory cytokines, such as IFN-γ, IL-6, and TNF-α; increased IL-10 production in colonic tissue; and expansion of CD4+Foxp3+ and CD4+LAP+ regulatory T cells in spleen and mesenteric lymph nodes. This effect was dependent on IL-10 and toll-like receptor 2. Thus, this approach may open alternative options for long-term management of IBD. PMID:28194152

  5. Dosing-Time Dependent Effects of Sodium Nitroprusside on Cerebral, Renal, and Hepatic Catalase Activity in Mice

    Directory of Open Access Journals (Sweden)

    Mamane Sani

    2015-01-01

    Full Text Available To investigate the time dependence of sodium nitroprusside- (NPS- induced oxidative effects, the authors study the variation of the antioxidant enzyme CAT activity in various tissues after the administration of a single 2.5 mg/kg dose of SNP or sodium chloride (NaCl 0.9%. For each of the two dosing times (1 and 13 hours after light onset, HALO, which correspond to the beginning of diurnal rest span and of nocturnal activity span of mice, resp., brain, kidney, and liver tissues were excised from animals at 0, 1, 3, 6, 9, 12, 24, and 36 h following the drug administration and CAT activity was assayed. The results suggest that SNP-induced stimulation of CAT activity is greater in all three tissues when the drug is administered at 1 HALO than at 13 HALO. Two-way ANOVA revealed that CAT activity significantly (P<0.004 varied as a function of the sampling time but not of the treatment in all three tissues. Moreover, a statistically significant (P<0.004 interaction between the organ sampling-time and the SNP treatment was revealed in kidney regardless of the dosing time, whereas a highly significant (P<0.0002 interaction was validated in liver only in animals injected at 13 HALO.

  6. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock.

    Directory of Open Access Journals (Sweden)

    Benoît Kornmann

    2007-02-01

    Full Text Available The mammalian circadian timing system consists of a master pacemaker in neurons of the suprachiasmatic nucleus (SCN and clocks of a similar molecular makeup in most peripheral body cells. Peripheral oscillators are self-sustained and cell autonomous, but they have to be synchronized by the SCN to ensure phase coherence within the organism. In principle, the rhythmic expression of genes in peripheral organs could thus be driven not only by local oscillators, but also by circadian systemic signals. To discriminate between these mechanisms, we engineered a mouse strain with a conditionally active liver clock, in which REV-ERBalpha represses the transcription of the essential core clock gene Bmal1 in a doxycycline-dependent manner. We examined circadian liver gene expression genome-wide in mice in which hepatocyte oscillators were either running or arrested, and found that the rhythmic transcription of most genes depended on functional hepatocyte clocks. However, we discovered 31 genes, including the core clock gene mPer2, whose expression oscillated robustly irrespective of whether the liver clock was running or not. By contrast, in liver explants cultured in vitro, circadian cycles of mPer2::luciferase bioluminescence could only be observed when hepatocyte oscillators were operational. Hence, the circadian cycles observed in the liver of intact animals without functional hepatocyte oscillators were likely generated by systemic signals. The finding that rhythmic mPer2 expression can be driven by both systemic cues and local oscillators suggests a plausible mechanism for the phase entrainment of subsidiary clocks in peripheral organs.

  7. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice.

    Science.gov (United States)

    Sebastian, Becky M; Roychowdhury, Sanjoy; Tang, Hui; Hillian, Antoinette D; Feldstein, Ariel E; Stahl, Gregory L; Takahashi, Kazue; Nagy, Laura E

    2011-10-14

    Chronic, heavy alcohol exposure results in inflammation in adipose tissue, insulin resistance, and liver injury. Here we have identified a CYP2E1/Bid/C1q-dependent pathway that is activated in response to chronic ethanol and is required for the development of inflammation in adipose tissue. Ethanol feeding for 25 days to wild-type (C57BL/6J) mice increased expression of multiple markers of adipose tissue inflammation relative to pair-fed controls independent of increased body weight or adipocyte size. Ethanol feeding increased the expression of CYP2E1 in adipocytes, but not stromal vascular cells, in adipose tissue and Cyp2e1(-/-) mice were protected from adipose tissue inflammation in response to ethanol. Ethanol feeding also increased the number of TUNEL-positive nuclei in adipose tissue of wild-type mice but not in Cyp2e1(-/-) or Bid (-/-) mice. Apoptosis contributed to adipose inflammation, as the expression of multiple inflammatory markers was decreased in mice lacking the Bid-dependent apoptotic pathway. The complement protein C1q binds to apoptotic cells, facilitating their clearance and activating complement. Making use of C1q-deficient mice, we found that activation of complement via C1q provided the critical link between CYP2E1/Bid-dependent apoptosis and onset of adipose tissue inflammation in response to chronic ethanol. In summary, chronic ethanol increases CYP2E1 activity in adipose, leading to Bid-mediated apoptosis and activation of complement via C1q, finally resulting in adipose tissue inflammation. Taken together, these data identify a novel mechanism for the development of adipose tissue inflammation that likely contributes to the pathophysiological effects of ethanol.

  8. Babassu aqueous extract (BAE as an adjuvant for T helper (Th1-dependent immune responses in mice of a Th2 immune response-prone strain

    Directory of Open Access Journals (Sweden)

    Nascimento Flavia RF

    2011-01-01

    Full Text Available Abstract Background The aqueous extract of a Brazilian palm-tree fruit - the babassu - (BAE exerts a clear immunostimulative activity in vivo. In the present work, the possibility that BAE can promote Th1 immune responses in mice of a Th2 immune response-prone strain - the BALB/c was investigated. BAE itself, and preparations consisting of Leishmania amazonensis promastigote extract (LE, adsorbed or not to Al(OH3, and in the presence or not of BAE, were used as immunogens. LE and Al(OH3 have been shown to preferentially elicit Th2 immune responses. Results The addition of BAE to LE-containing immunogenic preparations, adsorbed or not to Al(OH3, clearly promoted the in vitro production of interferon γ (IFN-γ, a major Th1-dependent cytokine, and not of interleukin (IL-4 (a Th2-dependent cytokine, by LE-stimulated splenocytes of immunized BALB/c mice. It also promoted the in vivo formation of IgG2a anti-LE antibodies. However, immunization with LE by itself led to an increased production of IL-4 by LE-stimulated splenocytes, and this production, albeit not enhanced, was not reduced by the addition of BAE to the immunogen. On the other hand, the IL-4 production by LE-stimulated splenocytes was significantly lower in mice immunized with a preparation containing Al(OH3-adsorbed LE and BAE than in mice immunized with the control preparation of Al(OH3-adsorbed LE without BAE. Moreover, an increased production of IFN-γ, and not of IL-4, was observed in the culture supernatants of splenocytes, from BAE-immunized mice, which were in vitro stimulated with BAE or which received no specific in vitro stimulus. No differences in IL-10 (an immunoregulatory cytokine levels in the supernatants of splenocytes from mice that were injected with BAE, in relation to splenocytes from control mice, were observed. The spontaneous ex vivo production of NO by splenocytes of mice that had been injected with BAE was significantly higher than the production of NO by

  9. 40 CFR 63.3555 - How do I determine the outlet THC emissions and add-on control device emission destruction or...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I determine the outlet THC.../outlet Concentration Option § 63.3555 How do I determine the outlet THC emissions and add-on control... section to determine either the outlet THC emissions or add-on control device emission destruction or...

  10. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

    OpenAIRE

    Russo, Ethan B

    2011-01-01

    Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expres...

  11. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    Science.gov (United States)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  12. Effects of Δ(9)-tetrahydrocannabinol (THC) on human amniotic epithelial cell proliferation and migration.

    Science.gov (United States)

    Yao, J L; He, Q Z; Liu, M; Chang, X W; Wu, J T; Duan, T; Wang, K

    2018-02-01

    The deleterious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) is able to cross the placenta barrier and cause alterations in fetal growth, low birth weight and preterm labor. However, the effects of THC on the human placenta amnion are still unknown. The distributions of CB1R and CB2R in human amnion tissues were observed by immunohistochemistry (IHC). Human amniotic epithelial cell proliferation and migration in response to THC treatment were measured by MTS and transwell assays, respectively. The PCR array was performed to study the key regulators involved in the cell migration. The protein levels of CB1R, CB2R in amnion tissues and MMP2, MMP9 in cells were detected by western blotting. Small interfering RNAs (siRNAs) were used to knockdown MMP2 and MMP9 in WISH cells. Our results indicated that both CB1R and CB2R primarily identified in the epithelial layer of human placental amnion tissue. The CB1R expression in the amnion tissue was higher in the preterm group than normal control. High-dose of THC (30uM, but not 20 and 10uM) significantly inhibited (p<0.01) human amniotic epithelial cell lines (WISH) proliferation. Meanwhile, THC at both 10uM and 20uM (p<0.05) significantly suppressed cells migration in both WISH and primary human amniotic epithelial cells. The PCR array data and siRNA experiments demonstrated that MMP2/9 were tightly involved in the regulation of THC-inhibited cell migration in WISH cells. These results suggested that THC inhibited the migration of human amniotic epithelial cell through the regulation of MMP2 and MMP9, which in turn altered the development of the amnion during the gestation and partially resulted in preterm labor and other adverse pregnancy outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Bupropion induced changes in exploratory and anxiety-like behaviour in NMRI male mice depends on the age

    NARCIS (Netherlands)

    Carmen Carrasco, M.; Vidal Mollon, Jose; Redolat, Rosa

    The aim of this study was to assess the effects of the antidepressant bupropion on anxiety and novelty-seeking in adolescent mice of different ages and adults. Behavioural differences between early adolescent, late adolescent and adult NMRI mice were measured both in the elevated plus-maze and the

  14. Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Nicole J W de Wit

    Full Text Available Excessive intake of dietary fat is known to be a contributing factor in the development of obesity. In this study, we determined the dose-dependent effects of dietary fat on the development of this metabolic condition with a focus on changes in gene expression in the small intestine. C57BL/6J mice were fed diets with either 10, 20, 30 or 45 energy% (E% derived from fat for four weeks (n = 10 mice/diet. We found a significant higher weight gain in mice fed the 30E% and 45E% fat diet compared to mice on the control diet. These data indicate that the main shift towards an obese phenotype lies between a 20E% and 30E% dietary fat intake. Analysis of differential gene expression in the small intestine showed a fat-dose dependent gradient in differentially expressed genes, with the highest numbers in mice fed the 45E% fat diet. The main shift in fat-induced differential gene expression was found between the 30E% and 45E% fat diet. Furthermore, approximately 70% of the differentially expressed genes were changed in a fat-dose dependent manner. Many of these genes were involved in lipid metabolism-related processes and were already differentially expressed on a 30E% fat diet. Taken together, we conclude that up to 20E% of dietary fat, the small intestine has an effective 'buffer capacity' for fat handling. From 30E% of dietary fat, a switch towards an obese phenotype is triggered. We further speculate that especially fat-dose dependently changed lipid metabolism-related genes are involved in development of obesity.

  15. Acidified bile acids enhance tumor progression and telomerase activity of gastric cancer in mice dependent on c-Myc expression.

    Science.gov (United States)

    Wang, Xiaolong; Sun, Lei; Wang, Xijing; Kang, Huafeng; Ma, Xiaobin; Wang, Meng; Lin, Shuai; Liu, Meng; Dai, Cong; Dai, Zhijun

    2017-04-01

    c-Myc overexpression has been implicated in several malignancies including gastric cancer. Here, we report that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer via c-Myc activation both in vivo and in vitro. c-Myc mRNA and protein levels were assessed in ten primary and five local recurrent gastric cancer samples by quantitative real-time polymerase chain reaction and western blotting analysis. The gastric cancer cell line MGC803 was exposed to bile salts (100 μmol/L glycochenodeoxycholic acid and deoxycholic acid) in an acid medium (pH 5.5) for 10 min daily for 60 weeks to develop an MGC803-resistant cell line. Control MGC803 cells were grown without acids or bile salts for 60 weeks as a control. Cell morphology, proliferation, colony formation and apoptosis of MGC803-resistant cells were analyzed after 60 weeks. To determine the involvement of c-Myc in tumor progression and telomere aging in MGC803-resistant cells, we generated xenografts in nude mice and measured xenograft volume and in vivo telomerase activity. The c-Myc and hTERT protein and mRNA levels were significantly higher in local recurrent gastric cancer samples than in primary gastric cancer samples. MGC803-resistant cells showed a marked phenotypic change under normal growth conditions with more clusters and acini, and exhibited increased cell viability and colony formation and decreased apoptosis in vitro. These phenotypic changes were found to be dependent on c-Myc activation using the c-Myc inhibitor 10058-F4. MGC803-resistant cells also showed a c-Myc-dependent increase in xenograft growth and telomerase activity in vivo. In conclusion, these observations support the hypothesis that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer and that these effects are dependent on c-Myc activity. These findings suggest that acidified bile acids play an important role in the malignant progression of local recurrent

  16. Chronic adolescent exposure to Δ-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes.

    Science.gov (United States)

    O'Tuathaigh, Colm M P; Hryniewiecka, Magdalena; Behan, Aine; Tighe, Orna; Coughlan, Catherine; Desbonnet, Lieve; Cannon, Mary; Karayiorgou, Maria; Gogos, Joseph A; Cotter, David R; Waddington, John L

    2010-10-01

    Cannabis use confers a two-fold increase in the risk for psychosis, with adolescent use conferring even greater risk. A high-low activity catechol-O-methyltransferase (COMT) polymorphism may modulate the effects of adolescent Δ-9-tetrahydrocannabinol (THC) exposure on the risk for adult psychosis. Mice with knockout of the COMT gene were treated chronically with THC (4.0 and 8.0 mg/kg over 20 days) during either adolescence (postnatal days (PDs) 32-52) or adulthood (PDs 70-90). The effects of THC exposure were then assessed in adulthood across behavioral phenotypes relevant for psychosis: exploratory activity, spatial working memory (spontaneous and delayed alternation), object recognition memory, social interaction (sociability and social novelty preference), and anxiety (elevated plus maze). Adolescent THC administration induced a larger increase in exploratory activity, greater impairment in spatial working memory, and a stronger anti-anxiety effect in COMT knockouts than in wild types, primarily among males. No such effects of selective adolescent THC administration were evident for other behaviors. Both object recognition memory and social novelty preference were disrupted by either adolescent or adult THC administration, independent of genotype. The COMT genotype exerts specific modulation of responsivity to chronic THC administration during adolescence in terms of exploratory activity, spatial working memory, and anxiety. These findings illuminate the interaction between genes and adverse environmental exposures over a particular stage of development in the expression of the psychosis phenotype.

  17. Long-Lived αMUPA Mice Show Attenuation of Cardiac Aging and Leptin-Dependent Cardioprotection.

    Directory of Open Access Journals (Sweden)

    Esther Levy

    Full Text Available αMUPA transgenic mice spontaneously consume less food compared with their wild type (WT ancestors due to endogenously increased levels of the satiety hormone leptin. αMUPA mice share many benefits with mice under caloric restriction (CR including an extended life span. To understand mechanisms linked to cardiac aging, we explored the response of αMUPA hearts to ischemic conditions at the age of 6, 18, or 24 months. Mice were subjected to myocardial infarction (MI in vivo and to ischemia/reperfusion ex vivo. Compared to WT mice, αMUPA showed functional and histological advantages under all experimental conditions. At 24 months, none of the WT mice survived the first ischemic day while αMUPA mice demonstrated 50% survival after 7 ischemic days. Leptin, an adipokine decreasing under CR, was consistently ~60% higher in αMUPA sera at baseline. Leptin levels gradually increased in both genotypes 24h post MI but were doubled in αMUPA. Pretreatment with leptin neutralizing antibodies or with inhibitors of leptin signaling (AG-490 and Wortmannin abrogated the αMUPA benefits. The antibodies also reduced phosphorylation of the leptin signaling components STAT3 and AKT specifically in the αMUPA myocardium. αMUPA mice did not show elevation in adiponectin, an adipokine previously implicated in CR-induced cardioprotection. WT mice treated for short-term CR exhibited cardioprotection similar to that of αMUPA, however, along with increased adiponectin at baseline. Collectively, the results demonstrate a life-long increased ischemic tolerance in αMUPA mice, indicating the attenuation of cardiac aging. αMUPA cardioprotection is mediated through endogenous leptin, suggesting a protective pathway distinct from that elicited under CR.

  18. Long-Lived αMUPA Mice Show Attenuation of Cardiac Aging and Leptin-Dependent Cardioprotection.

    Science.gov (United States)

    Levy, Esther; Kornowski, Ran; Gavrieli, Reut; Fratty, Ilana; Greenberg, Gabriel; Waldman, Maayan; Birk, Einat; Shainberg, Asher; Akirov, Amit; Miskin, Ruth; Hochhauser, Edith

    2015-01-01

    αMUPA transgenic mice spontaneously consume less food compared with their wild type (WT) ancestors due to endogenously increased levels of the satiety hormone leptin. αMUPA mice share many benefits with mice under caloric restriction (CR) including an extended life span. To understand mechanisms linked to cardiac aging, we explored the response of αMUPA hearts to ischemic conditions at the age of 6, 18, or 24 months. Mice were subjected to myocardial infarction (MI) in vivo and to ischemia/reperfusion ex vivo. Compared to WT mice, αMUPA showed functional and histological advantages under all experimental conditions. At 24 months, none of the WT mice survived the first ischemic day while αMUPA mice demonstrated 50% survival after 7 ischemic days. Leptin, an adipokine decreasing under CR, was consistently ~60% higher in αMUPA sera at baseline. Leptin levels gradually increased in both genotypes 24h post MI but were doubled in αMUPA. Pretreatment with leptin neutralizing antibodies or with inhibitors of leptin signaling (AG-490 and Wortmannin) abrogated the αMUPA benefits. The antibodies also reduced phosphorylation of the leptin signaling components STAT3 and AKT specifically in the αMUPA myocardium. αMUPA mice did not show elevation in adiponectin, an adipokine previously implicated in CR-induced cardioprotection. WT mice treated for short-term CR exhibited cardioprotection similar to that of αMUPA, however, along with increased adiponectin at baseline. Collectively, the results demonstrate a life-long increased ischemic tolerance in αMUPA mice, indicating the attenuation of cardiac aging. αMUPA cardioprotection is mediated through endogenous leptin, suggesting a protective pathway distinct from that elicited under CR.

  19. ApoE-dependent modulation of HDL and atherosclerosis by G2A in LDL receptor-deficient mice independent of bone marrow-derived cells.

    Science.gov (United States)

    Parks, Brian W; Srivastava, Roshni; Yu, Shaohua; Kabarowski, Janusz H S

    2009-04-01

    Deletion of the lysophospholipid-sensitive receptor, G2A, in low-density lipoprotein receptor knockout (LDLR(-/-)) mice elevates plasma high-density lipoprotein (HDL) cholesterol and suppresses atherosclerosis. However, chemotactic action of G2A in monocytes/macrophages, in addition to its modulatory effect on HDL, may contribute to the proatherogenic action of G2A. We determined that deletion of G2A in LDLR(-/-) mice increases the ApoA1, ApoE, and cholesterol content of plasma HDL fractions. Hepatocytes were shown to express G2A and hepatocytes from G2A-deficient LDLR(-/-) mice secreted more ApoA1 and ApoE in HDL fractions compared to their G2A-sufficient counterparts. The atheroprotective and HDL modulatory effects of G2A deficiency were dependent on the presence of ApoE, as deletion of G2A in ApoE(-/-) and ApoE(-/-)LDLR(-/-) mice failed to raise HDL and did not suppress atherosclerosis. G2A deficiency in bone marrow-derived cells of LDLR(-/-) mice had no effect on atherosclerosis or HDL, whereas G2A deficiency in resident tissues was sufficient to raise HDL and suppress atherosclerosis. These data demonstrate that the chemotactic function of G2A in bone marrow-derived monocytes does not modulate atherosclerosis in LDLR(-/-) mice and suggest an ApoE-dependent function for G2A in the control of hepatic HDL metabolism that might contribute to its proatherogenic action.

  20. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  1. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice.

    Science.gov (United States)

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte; Pauling, Josch K; Færgeman, Nils J; Ejsing, Christer S

    2017-02-01

    The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic cholesteryl esters, and that lipids featuring an 18:1 fatty acid moiety are increased in Acbp depleted mice across all tissues investigated. Our results also show that the perturbation of systemic lipid metabolism in Acbp knockout mice is transient and becomes normalized and similar to that of wild type as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dynorphin-dependent reduction of excitability and attenuation of inhibitory afferents of NPS neurons in the pericoerulear region of mice

    Directory of Open Access Journals (Sweden)

    Kay eJuengling

    2016-03-01

    Full Text Available The Neuropeptide S system, consisting of the 20-amino acid peptide neuropeptide S (NPS and its G-protein coupled receptor (NPSR, modulates arousal, wakefulness, anxiety, and fear-extinction in mice. In addition, recent evidence indicates that the NPS system attenuates stress-dependent impairment of fear extinction, and that NPS-expressing neurons in close proximity to the locus coeruleus (pericoerulear, periLC region are activated by stress. Furthermore, periLC NPS neurons receive afferents from neurons of the centrolateral nucleus of the amygdala (CeL, of which a substantial population expresses the kappa opioid receptor (KOR ligand precursor prodynorphin. This study aims to identify the effect of the dynorphinergic system on NPS neurons in the periLC via pre- and postsynaptic mechanisms. Using electrophysiological recordings in mouse brain slices, we provide evidence that NPS neurons in the periLC region are directly inhibited by dynorphin A via activation of κ-opioid receptor 1 (KOR1 and a subsequent increase of potassium conductances. Thus, the dynorphinergic system is suited to inactivate NPS neurons in the periLC. In addition to this direct, somatic effect, dynorphin A reduces the efficacy of GABAergic synapses on NPS neurons via KOR1 and KOR2. In conclusion, the present study provides evidence for the interaction of the NPS and the kappa opioid system in the periLC. Therefore, the endogenous opioid dynorphin is suited to inhibit NPS neurons with a subsequent decrease in NPS release in putative target regions leading to a variety of physiological consequences such as increased anxiety or vulnerability to stress exposure.

  3. Site requirements and kinetics of immune-dependent elimination of intravascularly administered lung stage schistosomula in mice immunized with highly irradiated cercariae of Schistosoma mansoni

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, B.L.; Dean, D.A.; Coulson, P.S.; Wilson, R.A.

    1986-03-01

    Experiments were performed to compare the migration and survival of 75Se-labeled schistosomes, introduced by percutaneous cercarial exposure or by intravascular administration of 7-day-old lung stage schistosomula, in control and irradiated cercaria-immunized mice. Schistosomula were intravascularly introduced into the lungs, systemic organs and liver by injection via the femoral vein (FV), left ventricle (LV), and superior mesenteric vein (SMV), respectively. The fate of challenge larvae was examined by autoradiography of host tissues and by recovery of adult worms. It was found that both normal and immune elimination were site-dependent. In control mice 45%-60% of cercarial penetrants and lung schistosomula injected into the FV and LV were recoverable as adult worms, while a significantly greater number (70%-85%) were recoverable when lung schistosomula were injected into the SMV. In immunized mice, parasites introduced as either cercariae or FV-injected schistosomula were both highly sensitive to immune elimination. LV-injected schistosomula were also sensitive but to a slightly lesser degree. In contrast, schistosomula placed directly in the liver by SMV injection were totally insensitive to immune elimination. It was concluded that elimination of schistosomula in irradiated cercaria-immunized mice occurs in the lungs and/or in the systemic organs, but not in the liver. Also, it was concluded that immune elimination is not a rapid process, since more than 7 days were required after intravascular challenge for the development of demonstrable differences between control and immunized mice.

  4. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice.

    Science.gov (United States)

    Pati, Paramita; Fulton, David J R; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A; Stepp, David W; Rudic, R Daniel

    2016-03-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension. © 2016 American Heart Association, Inc.

  5. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background.

    Science.gov (United States)

    Saqui-Salces, Milena; Tsao, Amy C; Gillilland, Merritt G; Merchant, Juanita L

    2017-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. Copyright © 2017 the American Physiological Society.

  6. Cross-sectional and prospective relation of cannabis potency, dosing and smoking behaviour with cannabis dependence: an ecological study.

    Science.gov (United States)

    van der Pol, Peggy; Liebregts, Nienke; Brunt, Tibor; van Amsterdam, Jan; de Graaf, Ron; Korf, Dirk J; van den Brink, Wim; van Laar, Margriet

    2014-07-01

    Increased delta-9-tetrahydrocannabinol (THC) concentrations in cannabis may lead to higher THC exposure, cannabis dependence and treatment need, but users may also adapt the actual intake of THC through reduced inhalation of THC containing smoke (titration). We investigated whether consumers of stronger cannabis use less cannabis per joint or inhale less smoke than those using less potent cannabis and whether these factors predict cannabis dependence severity. Heavy cannabis users (n = 98) brought their own cannabis, rolled a joint and smoked it ad libitum in a naturalistic setting. We analysed the content of the joint, its association with smoking behaviour and the cross-sectional and prospective (1.5-year follow-up) relations between smoking behaviour and cannabis dependence severity (total number of DSM-IV dependence symptoms). THC concentration in cannabis (range 1.10-24.70%) was correlated positively with cannabis dose per joint (b = 0.008, P = 0.01), but the resulting THC concentration per joint (range 0.24-15.72%) was associated negatively with inhalation volume (b = -0.05, P = 0.03). Smoking behaviour measures (number of puffs, inhaled volume, reduction of puff volume and puff duration while smoking) predicted follow-up dependence severity, independently of baseline dependence severity and monthly THC dose (number of joints × cannabis dose × cannabis THC concentration). Monthly THC dose only predicted follow-up dependence severity when unadjusted for baseline severity. Cannabis users titrate their delta-9-tetrahydrocannabinol intake by inhaling lower volumes of smoke when smoking strong joints, but this does not fully compensate for the higher cannabis doses per joint when using strong cannabis. Thus, users of more potent cannabis are generally exposed to more delta-9-tetrahydrocannabinol. Smoking behaviour appears to be a stronger predictor for cannabis dependence severity than monthly delta-9-tetrahydrocannabinol dose.

  7. Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent

    DEFF Research Database (Denmark)

    Rune, I.; Hansen, C. H. F.; Ellekilde, M.

    2013-01-01

    at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study...... in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a "window" exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well...

  8. Role of the endocannabinoid system in brain functions relevant for schizophrenia: an overview of human challenge studies with cannabis or ∆9-tetrahydrocannabinol (THC).

    Science.gov (United States)

    Bossong, Matthijs G; Jansma, J Martijn; Bhattacharyya, Sagnik; Ramsey, Nick F

    2014-07-03

    Accumulating evidence suggests involvement of the endocannabinoid system in the pathophysiology of schizophrenia, which signifies a potential application for this system in the treatment of this disorder. However, before new research can focus on potential treatments that work by manipulating the endocannabinoid system, it needs to be elucidated how this system is involved in symptoms of schizophrenia. Here we review human studies that investigated acute effects of cannabis or ∆9-tetrahydrocannabinol (THC) on brain functions that are implicated in schizophrenia. Results suggest that the impact of THC administration depends on the difficulty of the task performed. Impaired performance of cognitive paradigms is reported on more challenging tasks, which is associated with both activity deficits in temporal and prefrontal areas and a failure to deactivate regions of the default mode network. Comparable reductions in prefrontal activity and impairments in deactivation of the default mode network are seen in patients during performance of cognitive paradigms. Normal performance levels after THC administration demonstrated for less demanding tasks are shown to be related to either increased neural effort in task-specific regions ('neurophysiological inefficiency'), or recruitment of alternative brain areas, which suggests a change in strategy to meet cognitive demands. Particularly a pattern of performance and brain activity corresponding with an inefficient working memory system is consistently demonstrated in patients. These similarities in brain function between intoxicated healthy volunteers and schizophrenia patients provide an argument for a role of the endocannabinoid system in symptoms of schizophrenia, and further emphasize this system as a potential novel target for treatment of these symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Oxidative stress and cannabinoid receptor expression in type-2 diabetic rat pancreas following treatment with Δ⁹-THC.

    Science.gov (United States)

    Coskun, Zeynep Mine; Bolkent, Sema

    2014-10-01

    The objectives of study were (a) to determine alteration of feeding, glucose level and oxidative stress and (b) to investigate expression and localization of cannabinoid receptors in type-2 diabetic rat pancreas treated with Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Rats were randomly divided into four groups: control, Δ(9)-THC, diabetes and diabetes + Δ(9)-THC groups. Diabetic rats were treated with a single dose of nicotinamide (85 mg/kg) 15 min before injection of streptozotocin (65 mg/kg). Δ(9)-THC was administered intraperitoneally at 3 mg/kg/day for 7 days. Body weights and blood glucose level of rats in all groups were measured on days 0, 7, 14 and 21. On day 15 after the Δ(9)-THC injections, pancreatic tissues were removed. Blood glucose levels and body weights of diabetic rats treated with Δ(9)-THC did not show statistically significant changes when compared with the diabetic animals on days 7, 14 and 21. Treatment with Δ(9)-THC significantly increased pancreas glutathione levels, enzyme activities of superoxide dismutase and catalase in diabetes compared with non-treatment diabetes group. The cannabinoid 1 receptor was found in islets, whereas the cannabinoid 2 receptor was found in pancreatic ducts. Their localization in cells was both nuclear and cytoplasmic. We can suggest that Δ(9) -THC may be an important agent for the treatment of oxidative damages induced by diabetes. However, it must be supported with anti-hyperglycaemic agents. Furthermore, the present study for the first time emphasizes that Δ(9)-THC may improve pancreatic cells via cannabinoid receptors in diabetes. The aim of present study was to elucidate the effects of Δ(9)-THC, a natural cannabinoid receptor agonist, on the expression and localization of cannabinoid receptors, and oxidative stress statue in type-2 diabetic rat pancreas. Results demonstrate that the cannabinoid receptors are presented in both Langerhans islets and duct regions. The curative effects

  10. The effects of cannabidiol (CBD) on Δ⁹-tetrahydrocannabinol (THC) self-administration in male and female Long-Evans rats.

    Science.gov (United States)

    Wakeford, Alison G P; Wetzell, Bradley B; Pomfrey, Rebecca L; Clasen, Matthew M; Taylor, William W; Hempel, Briana J; Riley, Anthony L

    2017-08-01

    Despite widespread cannabis use in humans, few rodent models exist demonstrating significant Δ⁹-tetrahydrocannabinol (THC) self-administration, possibly due to THC's co-occurring aversive effects, which impact drug reinforcement. Cannabis contains a number of phytocannabinoids in addition to THC, one of which, cannabidiol (CBD), has been reported to antagonize some of the aversive effects of THC. Given such effects of CBD, it is possible that it might influence THC intravenous self-administration in rodents. Accordingly, male and female Long-Evans rats were trained to self-administer THC over a 3-week period and then were assessed for the effects of CBD on responding for THC at 1:1 and 1:10 dose ratios or for the establishment of cocaine self-administration (as a positive control for drug self-administration). Consistent with previous research, THC self-administration was modest and only evident in a subset of animals (and unaffected by sex). Cocaine self-administration was high and evident in the majority of animals tested, indicating that the design was sensitive to drug reinforcement. There was no effect of CBD pretreatment on THC intravenous self-administration at any CBD:THC dose ratio. Future developments of animal models of THC self-administration and the examination of factors that affect its display remain important to establish procedures designed to assess the basis for and treatment of cannabis use and abuse. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Luteolin Inhibits Microglia and Alters Hippocampal-Dependent Spatial Working Memory in Aged Mice1-3

    National Research Council Canada - National Science Library

    Saebyeol Jang; Ryan N Dilger; Rodney W Johnson

    2010-01-01

    ... and memory in aged mice is unknown. In initial studies, pretreatment of BV-2 microglia with luteolin inhibited the induction of inflammatory genes and the release of inflammatory mediators after lipopolysaccharide (LPS) stimulation...

  12. Monocyte Chemoattractant Protein 1–Dependent Leukocytic Infiltrates Are Responsible for Autoimmune Disease in Mrl-Faslpr Mice

    OpenAIRE

    Tesch, Gregory H.; Maifert, Stefanie; Schwarting, Andreas; Rollins, Barrett J.; Kelley, Vicki Rubin

    1999-01-01

    Infiltrating leukocytes may be responsible for autoimmune disease. We hypothesized that the chemokine monocyte chemoattractant protein (MCP)-1 recruits macrophages and T cells into tissues that, in turn, are required for autoimmune disease. Using the MRL-Faslpr strain with spontaneous, fatal autoimmune disease, we constructed MCP-1–deficient MRL-Faslpr mice. In MCP-1–intact MRL-Faslpr mice, macrophages and T cells accumulate at sites (kidney tubules, glomeruli, pulmonary bronchioli, lymph nod...

  13. Evidence that active protection following oral immunization of mice with live rotavirus is not dependent on neutralizing antibody.

    Science.gov (United States)

    Ward, R L; McNeal, M M; Sheridan, J F

    1992-05-01

    Studies were performed to determine whether active immunity against murine rotavirus (EDIM) infection of mice correlated with titers of neutralizing antibody to the challenge virus. Neonatal mice administered either murine or heterologous rotaviruses all developed diarrhea and high titers of serum rotavirus IgG. However, only mice given EDIM, the murine EB, or simian SA11-FEM strains were protected against EDIM infection when challenged 60 days later. Other serotype 3 strains (RRV, SA11-SEM), as well as strains belonging to serotypes 5 and 6 (OSU, NCDV, WC3), were not protective. Serum neutralizing antibody titers to EDIM were almost undetectable after rotavirus infection with any strain and could not, therefore, be correlated with protection. Likewise, intestinal neutralizing antibody titers were extremely low 21 days after EDIM infection, and by 60 days after inoculation, EDIM-infected mice had no greater intestinal neutralizing antibody titers than uninoculated controls. Mice inoculated with SA11-FEM as neonates had much higher serum rotavirus IgG responses than mice inoculated as adults, and only those infected with this virus as neonates were protected. Thus, although immunity to EDIM did not correlate with the presence of neutralizing antibody to EDIM, it did correlate with the overall magnitude of the immune response after inoculation with SA11-FEM.

  14. Combined effects of THC and caffeine on working memory in rats.

    Science.gov (United States)

    Panlilio, Leigh V; Ferré, Sergi; Yasar, Sevil; Thorndike, Eric B; Schindler, Charles W; Goldberg, Steven R

    2012-04-01

    Cannabis and caffeine are two of the most widely used psychoactive substances. Δ(9) -Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, induces deficits in short-term memory. Caffeine, a non-selective adenosine receptor antagonist, attenuates some memory deficits, but there have been few studies addressing the effects of caffeine and THC in combination. Here, we evaluate the effects of these drugs using a rodent model of working memory. Rats were given THC (0, 1 and 3 mg·kg(-1) , i.p.) along with caffeine (0, 1, 3 and 10 mg·kg(-1) , i.p.), the selective adenosine A(1) -receptor antagonist CPT (0, 3 and 10 mg·kg(-1) ) or the selective adenosine A(2A) -receptor antagonist SCH58261 (0 and 5 mg·kg(-1) ) and were tested with a delayed non-matching-to-position procedure in which behaviour during the delay was automatically recorded as a model of memory rehearsal. THC alone produced memory deficits at 3 mg·kg(-1) . The initial exposure to caffeine (10 mg·kg(-1) ) disrupted the established pattern of rehearsal-like behaviour, but tolerance developed rapidly to this effect. CPT and SCH58261 alone had no significant effects on rehearsal or memory. When a subthreshold dose of THC (1 mg·kg(-1) ) was combined with caffeine (10 mg·kg(-1) ) or CPT (10 mg·kg(-1) ), memory performance was significantly impaired, even though performance of the rehearsal-like pattern was not significantly altered. Caffeine did not counteract memory deficits induced by THC but actually exacerbated them. These results are consistent with recent findings that adenosine A(1) receptors modulate cannabinoid signalling in the hippocampus. This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7. Published 2011. This article is a U

  15. Lack of hippocampal CB1 receptor desensitization by Δ(9)-tetrahydrocannabinol in aged mice and by low doses of JZL 184.

    Science.gov (United States)

    Feliszek, Monika; Bindila, Laura; Lutz, Beat; Zimmer, Andreas; Bilkei-Gorzo, Andras; Schlicker, Eberhard

    2016-06-01

    Activation of cannabinoid CB1 receptors may offer new therapeutic strategies, but the efficiency of CB1 receptor agonists may be impaired by tolerance development upon prolonged administration. We compared the influence of repeated administration of Δ(9)-tetrahydrocannabinol (THC) 10 mg/kg on the motility and on basal and CB1 receptor-stimulated (35)S-GTPγS binding of adolescent and aged mice. Moreover, we determined the influence of JZL 184 (which inhibits the 2-arachidonoylglycerol, 2-AG, degrading enzyme monoacylglycerol lipase, MAGL) on (35)S-GTPγS binding and 2-AG levels of young adult mice. Mouse motility was tested in the open field. (35)S-GTPγS binding was studied in hippocampal membranes. THC and CP 55,940 were used as cannabinoid agonists in the behavioural and biochemical studies, respectively. 2-AG levels were quantified by liquid chromatography-multiple reaction monitoring. The THC (10 mg/kg)-induced hypomotility was stronger in untreated than in THC-pretreated adolescent mice but similar in both treatment groups of aged mice. Basal and stimulated (35)S-GTPγS binding was decreased in membranes from THC-pretreated adolescent but not affected in membranes from aged mice. Treatment of young adult mice with JZL 184 (4, 10 and 40 mg/kg) for 14 days did not affect basal binding. Stimulated binding tended to be decreased by 25 % only in mice treated with JZL 184 (40 mg/kg). Hippocampal 2-AG level was increased by JZL 184 at 40 and 10 but not affected at 4 mg/kg. In conclusion, CB1 receptor tolerance does not occur in aged mice pretreated with THC and in young adult mice treated with a low dose of the MAGL inhibitor JZL 184.

  16. Menthol decreases oral nicotine aversion in C57BL/6 mice through a TRPM8-dependent mechanism.

    Science.gov (United States)

    Fan, Lu; Balakrishna, Shrilatha; Jabba, Sairam V; Bonner, Pamela E; Taylor, Seth R; Picciotto, Marina R; Jordt, Sven-Eric

    2016-11-01

    Nicotine is a major oral irritant in smokeless tobacco products and has an aversive taste. Mentholated smokeless tobacco products are highly popular, suggesting that menthol increases their palatability and may facilitate initiation of product use. While menthol is known to reduce respiratory irritation by tobacco smoke irritants, it is not known whether this activity extends to oral nicotine and its aversive effects. The two-bottle choice drinking assay was used to characterise aversion and preference in C57BL/6 mice to a range of menthol concentrations (10-200 µg/mL). Then, effects of menthol on oral nicotine aversion were determined. Responses were compared with those in mice deficient in the cold/menthol receptor, TRPM8, expressed in trigeminal sensory neurons innervating the oral cavity. Mice showed aversion to menthol concentrations of 100 µg/mL and above. When presented with a highly aversive concentration of nicotine (200 µg/mL), mice preferred solutions with 50 or 100 µg/mL menthol added over nicotine alone. In contrast to wild-type mice, Trpm8-/- showed a strong aversion to mentholated (100 µg/mL) nicotine (200 µg/mL) and preferred nicotine alone. Trpm8-/- mice show aversion to lower concentrations of menthol than wild-type mice. Oral menthol can reduce the aversive effects of oral nicotine and, at higher concentrations, acts as an irritant by itself. Menthol's effects in relation to nicotine require TRPM8, the cool temperature sensing ion channel that activates analgesic and counterirritant mechanisms. These mechanisms may underlie preference for menthol-containing smokeless tobacco products and may facilitate initiation of product use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model.

    Science.gov (United States)

    Takahashi, Noriko; Shibata, Rei; Ouchi, Noriyuki; Sugimoto, Masayuki; Murohara, Toyoaki; Komori, Kimihiro

    2015-02-01

    As first-line treatment for type 2 diabetes, metformin has gained a strong position. In addition, type 2 diabetics benefit from the fact that metformin is associated with a reduction in cardiovascular events. Nevertheless, there is a dearth of information concerning the functional role of metformin in regulating angiogenesis. Our present study explores whether metformin is involved in the modulation of the revascularization processes in vivo by employing a hindlimb mice model of ischemia-induced angiogenesis. For comparative purposes, randomly selected wild-type (WT) mice or endothelial nitric oxide synthase (eNOS) deficient mice were assigned to one of two groups. One group was orally administered a daily dose of metformin through a gastric tube whereas the other group served as a control with no metformin administered. Both groups were subjected to unilateral hindlimb ischemia. Laser Doppler analysis coupled with capillary density staining with CD31was the method employed to determine revascularization. Adenosine monophosphate-activated protein kinase (AMPK) and eNOS phosphorylation levels were assessed using Western blot analysis. Subsequent to hindlimb ischemic surgery, in comparison to the nontreated mice, metformin-treated WT mice showed accelerated limb perfusion, which was substantiated by laser Doppler blood-flow measurements and the presence of increased capillary density in the ischemic adductor muscle. Treatment with metformin significantly enhanced the increase in AMPK and eNOS phosphorylation levels of muscle tissues in WT mice induced by ischemia. In eNOS- deficient knockout mice, there was a significant increase in ischemic tissue AMPK phosphorylation induced by metformin; however, blood flow recovery in ischemic limb after surgery was unaffected. Metformin promoted revascularization in the presence of tissue ischemia through an AMPK/eNOS-related mechanism. Our study indicates that, in addition to its glucose-lowering effect, metformin fosters

  18. Inactivation of class II PI3K-C2α induces leptin resistance, age-dependent insulin resistance and obesity in male mice.

    Science.gov (United States)

    Alliouachene, Samira; Bilanges, Benoit; Chaussade, Claire; Pearce, Wayne; Foukas, Lazaros C; Scudamore, Cheryl L; Moniz, Larissa S; Vanhaesebroeck, Bart

    2016-07-01

    While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2α, -C2β and -C2γ) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2β increases insulin signalling and sensitivity, whereas PI3K-C2γ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2α in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2α affects glucose metabolism in mice. We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2α (Pik3c2a). While homozygosity for kinase-dead PI3K-C2α was embryonic lethal, heterozygous PI3K-C2α KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2α KI mice, in contrast to previous reports in which downregulation of PI3K-C2α in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2α KI mice at any age. Our data uncover a sex-dependent role for PI3K-C2α in the modulation of hypothalamic leptin action and systemic glucose homeostasis. All reagents are available upon request.

  19. Bisphenol A impairs the memory function and glutamatergic homeostasis in a sex-dependent manner in mice: Beneficial effects of diphenyl diselenide.

    Science.gov (United States)

    Jardim, Natália S; Sartori, Glaúbia; Sari, Marcel H M; Müller, Sabrina G; Nogueira, Cristina W

    2017-08-15

    Bisphenol A (BPA) is a compound integrated in commodities, which consequently increases the human exposure to this toxicant. The deleterious effects of BPA exposure during periods of brain development have been documented mainly concerning the impairment in memory functions. Diphenyl diselenide (PhSe)2, an organoselenium compound, shows protective/restorative effects against memory deficits in experimental models. Thus, this study investigated the effects of (PhSe)2 on the memory impairments induced by BPA exposure to male and female mice and the possible involvement of glutamatergic system in these effects. Three-week-old male and female Swiss mice received BPA (5mg/kg), intragastrically, from 21st to 60th postnatal day. After, the animals were intragastrically treated with (PhSe)2 (1mg/kg) during seven days. The mice performed the behavioral memory tests and the [3H] glutamate uptake and NMDA receptor subunits (2A and 2B) analyses were carried out in the hippocampus and cerebral cortex of mice. The results demonstrated that the BPA exposure induced impairment of object recognition memory in both sexes. However, it caused impairments in spatial memory in female and in the passive avoidance memory in male mice. Besides, BPA caused a decrease in the [3H] glutamate uptake and NMDA receptor subunit levels in the cortical and hippocampal regions depending on the sex. Treatment with (PhSe)2 reversed in a sex-independent manner the behavioral impairments and molecular alterations. In conclusion, BPA had a negative effect in different memory types as well as in the glutamatergic parameters in a sex-dependent manner and (PhSe)2 treatment was effective against these alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The flavonoid luteolin inhibits Fcγ-dependent respiratory burst in granulocytes, but not skin blistering in a new model of pemphigoid in adult mice.

    Directory of Open Access Journals (Sweden)

    Eva Oswald

    Full Text Available Bullous pemphigoid is an autoimmune blistering skin disease associated with autoantibodies against the dermal-epidermal junction. Passive transfer of antibodies against BP180/collagen (C XVII, a major hemidesmosomal pemphigoid antigen, into neonatal mice results in dermal-epidermal separation upon applying gentle pressure to their skin, but not in spontaneous skin blistering. In addition, this neonatal mouse model precludes treatment and observation of diseased animals beyond 2-3 days. Therefore, in the present study we have developed a new disease model in mice reproducing the spontaneous blistering and the chronic course characteristic of the human condition. Adult mice were pre-immunized with rabbit IgG followed by injection of BP180/CXVII rabbit IgG. Mice pre-immunized against rabbit IgG and injected 6 times every second day with the BP180/CXVII-specific antibodies (n = 35 developed spontaneous sustained blistering of the skin, while mice pre-immunized and then treated with normal rabbit IgG (n = 5 did not. Blistering was associated with IgG and complement C3 deposits at the epidermal basement membrane and recruitment of inflammatory cells, and was partly dependent on Ly-6G-positive cells. We further used this new experimental model to investigate the therapeutic potential of luteolin, a plant flavonoid with potent anti-inflammatory and anti-oxidative properties and good safety profile, in experimental BP. Luteolin inhibited the Fcγ-dependent respiratory burst in immune complex-stimulated granulocytes and the autoantibody-induced dermal-epidermal separation in skin cryosections, but was not effective in suppressing the skin blistering in vivo. These studies establish a robust animal model that will be a useful tool for dissecting the mechanisms of blister formation and will facilitate the development of more effective therapeutic strategies for managing pemphigoid diseases.

  1. Mammary tumorigenesis in APC{sup min/+} mice is enhanced by X-irradiation with a characteristic age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuhiko, Imaoka; Mayumi, Nishimura; Shizuko, Kakinuma; Yoshiya, Shimada [National Institute of Radiological Sciences, Experimental Radiobiology for Children' s Health Research Group, Research, Center for Radiation Protection (Japan); Mieko, Okamoto [Tokyo Metropolitan Institute of Medical Science (Japan)

    2006-07-01

    The ApcM{sup min/+} (Min) mouse is a genetically predisposed model of both intestinal and mammary tumorigenesis. We investigated age-related changes in the susceptibility of mice (before, during and after puberty) to radiation-induced mammary tumorigenesis using this model. Female Min and wild-type mice having the C57BL/6J background were irradiated with 2 Gy of X-rays at 2, 5, 7 and 10 weeks and sacrificed at 18 weeks of age. Min mice irradiated at 7 to 10 weeks of age (after puberty) developed mammary tumors with squamous metaplasia, whereas their wild-type litter-mates did not. Interestingly, irradiation of Min mice at 2 to 5 weeks (before and during puberty, respectively) did not induce mammary tumors but rather cystic nodules with metaplasia. The mammary tumors exhibited increased nuclear beta-catenin protein and loss of the wild-type Apc allele. Our results show that susceptibility to radiation-induced mammary tumorigenesis increases after puberty in Min mice, suggesting that the tumorigenic effect of ionizing radiation targets the lobular-alveolar progenitor cells, which increase in number with age and are controlled by beta-catenin signaling. (author)

  2. DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice.

    Science.gov (United States)

    Paterna, Jean-Charles; Leng, Andreas; Weber, Elisabeth; Feldon, Joram; Büeler, Hansruedi

    2007-04-01

    Parkin-deficient animals exhibit mitochondrial degeneration and increased oxidative stress vulnerability, and both mice and flies lacking DJ-1 are hypersensitive to environmental toxins associated with Parkinson's disease (PD). We used recombinant adeno-associated virus (AAV) gene transfer to study the influence of DJ-1 and Parkin on the dopaminergic system of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, a model for sporadic PD. After MPTP lesioning, significantly more dopamine neurons survived in the virus-injected substantia nigra of the AAV-DJ-1 and AAV-Parkin mice when compared with AAV-enhanced green fluorescent protein injected controls. Protection at the neuronal level was supported by increased amphetamine-induced contralateral turning behavior. Normal mice expressing DJ-1 showed apomorphine-induced ipsilateral turning, suggesting a hyporesponsiveness of striatal dopamine D1 receptors in the DJ-1-expressing hemisphere. MPTP drastically reduced dopamine to 19% of normal levels and neither DJ-1 nor Parkin protected against MPTP-induced catecholamine loss under these conditions. Our results show that Parkin and DJ-1 inhibit dopamine neuron death and enhance amphetamine-induced dopaminergic function in a mouse model of idiopathic PD. However, DJ-1 overexpression also reduced postsynaptic dopamine receptor responses in normal mice. These results warrant further exploration of DJ-1 and Parkin gene therapy for PD, although a better understanding of their effects on behavior and dopamine neurotransmission is required before these proteins can be safely used.

  3. Dose-dependent inhibitory effect of melatonin on carcinogenesis induced by benzo[a]pyrene in mice.

    Science.gov (United States)

    Vesnushkin, G M; Plotnikova, N A; Semenchenko, A I; Anisimov, V N

    2006-12-01

    Three-month-old Swiss-derived SHR mice were subcutaneously injected with 2 mg of benzo[a]pyrene (BP) dissolved in 0.1 ml of olive oil. After the injections of the carcinogen two groups of mice were given melatonin with night drinking water at the doses of 2 mg/l or 20 mg/l and one group of mice was not treated with melatonin and served as a PB-control. At the 28th week after the carcinogen administration the experiment was stopped and animals were sacrificed. The results show that melatonin treatment inhibits BP-induced carcinogenesis, decreases the incidence of subcutaneous sarcomas, increases their latency and survival of mice. The malone dialdehyde (MDA) level in the serum of BP-induced tumor-bearing mice was increased by 2.6 times (p melatonina on malignancies of mesenchymal origin. Lower dose of melatonin appeared to be more effective in the inhibition of lipid peroxidation and tumorigenesis induced by chemical carcinogen than a higher one.

  4. Effects of the fruit essential oil of Cuminum cyminum Linn. (Apiaceae) on acquisition and expression of morphine tolerance and dependence in mice.

    Science.gov (United States)

    Haghparast, Abbas; Shams, Jamal; Khatibi, Ali; Alizadeh, Amir-Mohammad; Kamalinejad, Mohammad

    2008-08-01

    The problem of morphine tolerance and dependence is a universal phenomenon threatening social health everywhere the world. The major objective of this paper was to investigate the effects of fruit essential oil (FEO) of Cuminum cyminum on acquisition and expression of morphine tolerance and dependence in mice. Animals were rendered dependent on morphine using the well-established method in which was morphine (50, 50, 75 mg/kg; s.c.) injected three times daily for 3 days. In experimental groups, administration of FEO (0.001, 0.01, 0.1, 0.5, 1 and 2%; 5 ml/kg; i.p.) or Tween-80 (5 ml/kg; i.p.) was performed 60 min prior to each morphine injection (for acquisition) or the last injection of morphine on test day (for expression). Morphine tolerance was measured by tail-flick before and after administration of a single dose of morphine (50 mg/kg; s.c.) in test day (4th day). Morphine dependence was also evaluated by counting the number of jumps after injection of naloxone (5 mg/kg; i.p.) on the test day. The results showed that Cumin FEO, only at the dose of 2%, significantly attenuated the development of morphine tolerance (PCumin FEO injection (0.001-2%) did not show any analgesic effect. In conclusion, the essential oil of Cuminum cyminum seems to ameliorate the morphine tolerance and dependence in mice.

  5. Evidence based decontamination protocols for the removal of external Δ9-tetrahydrocannabinol (THC) from contaminated hair.

    Science.gov (United States)

    Duvivier, Wilco F; Peeters, Ruth J P; van Beek, Teris A; Nielen, Michel W F

    2016-02-01

    External contamination can cause false positive results in forensic hair testing for drugs of abuse and is therefore a major concern when hair evidence is used in court. Current literature about decontamination strategies is mainly focused on external cocaine contamination and no consensus on the best decontamination procedure for hair samples containing cannabinoids has been reached so far. In this study, different protocols with solvents, both organic as well as aqueous, were tested on blank and drug user hair for their performance on removing external cannabis contamination originating from either smoke or indirect contact with cannabis plant material. Smoke contamination was mimicked by exposing hair samples to smoke from a cannabis cigarette and indirect contact contamination by handling hair with cannabis contaminated gloves or hands. Δ9-tetrahydrocannabinol (THC) levels in the hair samples and wash solvents were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Aqueous surfactant solutions removed more THC contamination compared to water, but much less than organic solvents. Methanol, dichloromethane and chloroform were most efficient in removing THC contamination. Due to its lower environmental impact, methanol was chosen as the preferred decontamination solvent. After testing of different sequential wash steps on externally contaminated blank hair, three protocols performed equally well, removing all normal level and more than 99% of unrealistically high levels of external cannabis contamination. Thorough testing on cannabis users' hair, both as such and after deliberate contamination, showed that using these protocols all contamination could be washed from the hair while no incorporated THC was removed from truly positive samples. The present study provides detailed scientific evidence in support of the recommendations of the Society of Hair Testing: a protocol using a single methanol wash followed by a single aqueous

  6. Limitations to the Dutch cannabis toleration policy: Assumptions underlying the reclassification of cannabis above 15% THC.

    Science.gov (United States)

    Van Laar, Margriet; Van Der Pol, Peggy; Niesink, Raymond

    2016-08-01

    The Netherlands has seen an increase in Δ9-tetrahydrocannabinol (THC) concentrations from approximately 8% in the 1990s up to 20% in 2004. Increased cannabis potency may lead to higher THC-exposure and cannabis related harm. The Dutch government officially condones the sale of cannabis from so called 'coffee shops', and the Opium Act distinguishes cannabis as a Schedule II drug with 'acceptable risk' from other drugs with 'unacceptable risk' (Schedule I). Even in 1976, however, cannabis potency was taken into account by distinguishing hemp oil as a Schedule I drug. In 2011, an advisory committee recommended tightening up legislation, leading to a 2013 bill proposing the reclassification of high potency cannabis products with a THC content of 15% or more as a Schedule I drug. The purpose of this measure was twofold: to reduce public health risks and to reduce illegal cultivation and export of cannabis by increasing punishment. This paper focuses on the public health aspects and describes the (explicit and implicit) assumptions underlying this '15% THC measure', as well as to what extent these are supported by scientific research. Based on scientific literature and other sources of information, we conclude that the 15% measure can provide in theory a slight health benefit for specific groups of cannabis users (i.e., frequent users preferring strong cannabis, purchasing from coffee shops, using 'steady quantities' and not changing their smoking behaviour), but certainly not for all cannabis users. These gains should be weighed against the investment in enforcement and the risk of unintended (adverse) effects. Given the many assumptions and uncertainty about the nature and extent of the expected buying and smoking behaviour changes, the measure is a political choice and based on thin evidence. Copyright © 2016 Springer. Published by Elsevier B.V. All rights reserved.

  7. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1 show modestly enhanced alcohol preference and consumption.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6% but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg, morphine (10 mg/kg, and cocaine (10 mg/kg, demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.

  8. Cannabinoids and metabolites in expectorated oral fluid after 8 days of controlled around-the-clock oral THC administration

    OpenAIRE

    Milman, Garry; Barnes, Allan J.; Schwope, David M.; Schwilke, Eugene W.; Goodwin, Robert S.; Kelly, Deana L.; Gorelick, David A.; Huestis, Marilyn A.

    2011-01-01

    Oral fluid (OF) is an increasingly accepted matrix for drug testing programs, but questions remain about its usefulness for monitoring cannabinoids. Expectorated OF specimens (n=360) were obtained from 10 adult daily cannabis smokers before, during, and after 37 20-mg oral Δ9-tetrahydrocannabinol (THC) doses over 9 days to characterize cannabinoid disposition in this matrix. Specimens were extracted and analyzed by gas chromatography– mass spectrometry with electron-impact ionization for THC,...

  9. Tolerance to Chronic Delta-9-Tetrahydrocannabinol (Δ9-THC) in Rhesus Macaques Infected With Simian Immunodeficiency Virus

    OpenAIRE

    Winsauer, Peter J.; Molina, Patricia E.; Amedee, Angela M.; Filipeanu, Catalin M; McGoey, Robin R.; Troxclair, Dana A.; Walker, Edith M.; Birke, Leslie L; Stouwe, Curtis Vande; Howard, Jessica M.; Leonard, Stuart T.; Moerschbaecher, Joseph M.; Lewis, Peter B.

    2011-01-01

    Although Δ9-THC has been approved to treat anorexia and weight loss associated with AIDS, it may also reduce well-being by disrupting complex behavioral processes or enhancing HIV replication. To investigate these possibilities, four groups of male rhesus macaques were trained to respond under an operant acquisition and performance procedure, and administered vehicle or Δ9-THC before and after inoculation with simian immunodeficiency virus(SIVmac251, 100 TCID50/ml, i.v.). Prior to chronic Δ9-...

  10. A Diet Rich in Olive Oil Phenolics Reduces Oxidative Stress in the Heart of SAMP8 Mice by Induction of Nrf2-Dependent Gene Expression

    Science.gov (United States)

    Bayram, Banu; Ozcelik, Beraat; Grimm, Stefanie; Roeder, Thomas; Schrader, Charlotte; Ernst, Insa M.A.; Wagner, Anika E.; Grune, Tilman; Frank, Jan

    2012-01-01

    Abstract A Mediterranean diet rich in olive oil has been associated with health benefits in humans. It is unclear if and to what extent olive oil phenolics may mediate these health benefits. In this study, we fed senescence-accelerated mouse-prone 8 (SAMP8, n=11 per group) semisynthetic diets with 10% olive oil containing either high (HP) or low amounts of olive oil phenolics (LP) for 4.5 months. Mice consuming the HP diet had significantly lower concentrations of the oxidative damage markers thiobarbituric acid–reactive substances and protein carbonyls in the heart, whereas proteasomal activity was similar in both groups. Nrf2-dependent gene expression may be impaired during the aging process. Therefore, we measured Nrf2 and its target genes glutathione-S-transferase (GST), γ-glutamyl cysteine synthetase (γ-GCS), nicotinamide adenine dinucleotide phosphate [NAD(P)H]:quinone oxidoreductase (NQO1), and paraoxonase-2 (PON2) in the hearts of these mice. Nrf2 as well as GST, γ-GCS, NQO1, and PON2 mRNA levels were significantly higher in heart tissue of the HP as compared to the LP group. The HP-fed mice had significantly higher PON1 activity in serum compared to those receiving the LP diet. Furthermore, HP feeding increased relative SIRT1 mRNA levels. Additional mechanistic cell culture experiments were performed, and they suggest that the olive oil phenolic hydroxytyrosol present in the HP oil may be responsible for the induction of Nrf2-dependent gene expression and the increase in PON activity. In conclusion, a diet rich in olive oil phenolics may prevent oxidative stress in the heart of SAMP8 mice by modulating Nrf2-dependent gene expression. PMID:22236145

  11. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  12. Helper-dependent adenoviral vector-mediated long-term expression of human apolipoprotein A-I reduces atherosclerosis in apo E-deficient mice.

    Science.gov (United States)

    Pastore, Lucio; Belalcazar, L Maria; Oka, Kazuhiro; Cela, Racel; Lee, Brendan; Chan, Lawrence; Beaudet, Arthur L

    2004-03-03

    Apolipoprotein A-I (APOA-I) is the major protein component of high-density lipoproteins (HDL). It has been shown that over-expression of human APOA-I increases HDL cholesterol and decreases atherosclerosis. We constructed a helper-dependent adenoviral (HD-Ad) vector that contains the entire human APOA-I gene (hgAI). Intravenous delivery of 1x10(13) viral particles/kg of this vector was followed by high levels of human APOA-I expression (up to 200 mg/dl) in the absence of detectable hepatic toxicity. We treated apo E-deficient mice with the hgAI vector and fed them either with a high-fat diet or with regular chow. As a control, two groups of mice were treated with PBS. The apo E-deficient mice treated with the hgAI vector showed supraphysiological levels of expression of human APOA-I at week 4 and high levels of HDL cholesterol compared to the control groups. Analysis of aortic atherosclerotic lesions 20 weeks after treatment, showed a significant reduction of lesion size in the treated mice with both diets. In conclusion, liver-directed gene transfer of human APOA-I using a HD-Ad vector resulted in a reduction of the development of atherosclerosis with the absence of significant toxicity.

  13. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits

    Directory of Open Access Journals (Sweden)

    Saul Herranz-Martin

    2017-07-01

    Full Text Available Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Two major pathologies stemming from the hexanucleotide RNA expansions (HREs have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43 pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches.

  14. Effects of transgenic methionine sulfoxide reductase A (MsrA expression on lifespan and age-dependent changes in metabolic function in mice

    Directory of Open Access Journals (Sweden)

    Adam B. Salmon

    2016-12-01

    Full Text Available Mechanisms that preserve and maintain the cellular proteome are associated with long life and healthy aging. Oxidative damage is a significant contributor to perturbation of proteostasis and is dealt with by the cell through regulation of antioxidants, protein degradation, and repair of oxidized amino acids. Methionine sulfoxide reductase A (MsrA repairs oxidation of free- and protein-bound methionine residues through enzymatic reduction and is found in both the cytosol and the mitochondria. Previous studies in Drosophila have shown that increasing expression of MsrA can extend longevity. Here we test the effects of increasing MsrA on longevity and healthy aging in two transgenic mouse models. We show that elevated expression of MsrA targeted specifically to the cytosol reduces the rate of age-related death in female mice when assessed by Gompertz analysis. However, neither cytosolic nor mitochondrial MsrA overexpression extends lifespan when measured by log-rank analysis. In mice with MsrA overexpression targeted to the mitochondria, we see evidence for improved insulin sensitivity in aged female mice. With these and our previous data, we conclude that the increasing MsrA expression in mice has differential effects on aging and healthy aging that are dependent on the target of its subcellular localization.

  15. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice

    Directory of Open Access Journals (Sweden)

    Pamela eCantanelli

    2014-08-01

    Full Text Available GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of AMPA receptors (AMPARs, the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q to R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease. With qRT-PCR, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.] and old (12 m.o.a Tg-AD mice and made comparisons with levels found in age-matched wild type (WT mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for short- and long-term spatial memory with the Morris Water Maze (MWM navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.

  16. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects.

    Science.gov (United States)

    Recordati, Camilla; De Maglie, Marcella; Bianchessi, Silvia; Argentiere, Simona; Cella, Claudia; Mattiello, Silvana; Cubadda, Francesco; Aureli, Federica; D'Amato, Marilena; Raggi, Andrea; Lenardi, Cristina; Milani, Paolo; Scanziani, Eugenio

    2016-02-29

    Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue

  17. Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans

    Science.gov (United States)

    Ballard, Michael E.; Gallo, David A.; de Wit, Harriet

    2012-01-01

    Rationale Many addictive drugs are known to have effects on learning and memory, and these effects could motivate future drug use. Specifically, addictive drugs may affect memory of emotional events and experiences in ways that are attractive to some users. However, few studies have investigated the effects of addictive drugs on emotional memory in humans. Objectives This study examined the effects of the memory-enhancing drug dextroamphetamine (AMP) and the memory-impairing drug Δ9-tetrahydrocannabinol (THC) on emotional memory in healthy volunteers. Methods Participants completed three experimental sessions across which they received capsules containing placebo and two doses of either AMP (10 and 20 mg; N=25) or THC (7.5 and 15 mg; N=25) before viewing pictures of positive (pleasant), neutral, and negative (unpleasant) scenes. Memory for the pictures was assessed two days later, under drug-free conditions. Results Relative to placebo, memory for emotional pictures was improved by AMP and impaired by THC, but neither drug significantly affected memory for unemotional pictures. Positive memory biases were not observed with either drug, and there was no indication that the drugs’ memory effects were directly related to their subjective or physiological effects alone. Conclusions This study provides the first clear evidence that stimulant drugs can preferentially strengthen, and cannabinoids can preferentially impair, memory for emotional events in humans. Although addictive drugs do not appear to positively bias memory, the possibility remains that these drugs’ effects on emotional memory could influence drug use among certain individuals. PMID:23224510

  18. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980-1997.

    Science.gov (United States)

    ElSohly, M A; Ross, S A; Mehmedic, Z; Arafat, R; Yi, B; Banahan, B F

    2000-01-01

    The analysis of 35,312 cannabis preparations confiscated in the USA over a period of 18 years for delta-9-tetrahydrocannabinol (delta9-THC) and other major cannabinoids is reported. Samples were identified as cannabis, hashish, or hash oil. Cannabis samples were further subdivided into marijuana (loose material, kilobricks and buds), sinsemilla, Thai sticks and ditchweed. The data showed that more than 82% of all confiscated samples were in the marijuana category for every year except 1980 (61%) and 1981 (75%). The potency (concentration of delta9-THC) of marijuana samples rose from less than 1.5% in 1980 to approximately 3.3% in 1983 and 1984, then fluctuated around 3% till 1992. Since 1992, the potency of confiscated marijuana samples has continuously risen, going from 3.1% in 1992 to 4.2% in 1997. The average concentration of delta9-THC in all cannabis samples showed a gradual rise from 3% in 1991 to 4.47% in 1997. Hashish and hash oil, on the other hand, showed no specific potency trends. Other major cannabinoids [cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC)] showed no significant change in their concentration over the years.

  19. Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans.

    Science.gov (United States)

    Ballard, Michael E; Gallo, David A; de Wit, Harriet

    2013-04-01

    Many addictive drugs are known to have effects on learning and memory, and these effects could motivate future drug use. Specifically, addictive drugs may affect memory of emotional events and experiences in ways that are attractive to some users. However, few studies have investigated the effects of addictive drugs on emotional memory in humans. This study examined the effects of the memory-enhancing drug dextroamphetamine (AMP) and the memory-impairing drug Δ(9)-tetrahydrocannabinol (THC) on emotional memory in healthy volunteers. Participants completed three experimental sessions across which they received capsules containing placebo and two doses of either AMP (10 and 20 mg; N = 25) or THC (7.5 and 15 mg; N = 25) before viewing pictures of positive (pleasant), neutral, and negative (unpleasant) scenes. Memory for the pictures was assessed 2 days later, under drug-free conditions. Relative to placebo, memory for emotional pictures was improved by AMP and impaired by THC, but neither drug significantly affected memory for unemotional pictures. Positive memory biases were not observed with either drug, and there was no indication that the drugs' memory effects were directly related to their subjective or physiological effects alone. This study provides the first clear evidence that stimulant drugs can preferentially strengthen, and cannabinoids can preferentially impair, memory for emotional events in humans. Although addictive drugs do not appear to positively bias memory, the possibility remains that these drugs' effects on emotional memory could influence drug use among certain individuals.

  20. Hepatotoxicity and P-4502E1-dependent metabolic oxidation of N,N-dimethylformamide in rats and mice.

    Science.gov (United States)

    Chieli, E; Saviozzi, M; Menicagli, S; Branca, T; Gervasi, P G

    1995-01-01

    A comparative biochemical and histological study on the hepatotoxicity of a single dose of N,N-dimethylformamide (DMF) and N-methylformamide (NMF) in control and acetone-treated SD male rats and CD-1 male mice was performed. In control and acetone-pretreated rats, neither DMF nor NMF caused hepatic damage or elevation of plasma transaminases. In contrast, in acetonized but not in control mice, DMF administration yielded some evidence of liver necrosis and elevation of ALAT (alanine-amino transferase) activity. After a DMF dose of 1000 mg/kg, ALAT activity was found 1215 +/- 832 mU/ml and 47 +/- 18 mU/ml in acetonized and control mice, respectively. NMF treatment was hepatotoxic in control mice and lethal in acetonized mice. In control mice, an NMF dose of 600 mg/kg increased ALAT activity from a basal value of 35 +/- 5 to 2210 +/- 1898 mU/ml. When the oxidative metabolism of DMF was investigated, microsomes from both rats and mice preinduced by acetone increased the demethylation rate of DMF 7 to 10-fold compared to that (about 0.25 nmol/min per mg protein) of the corresponding control microsomes. The enzymatic affinities for DMF oxidation, however, were different: in mice the Km (0.05 mM) was one order of magnitude lower than that (0.56 mM) found in rats. The experiments performed with purified rat and mouse P-450 2E1 in a reconstituted system confirmed that the P-450 2E1 isoforms are very active catalysts towards DMF oxidation (the turnover was about 10 nmol/min per nmol P-450 for both enzymes) but with a strikingly different affinity. Whereas the Km for mouse P-450 2E1 was 0.08 +/- 0.03 mM, that for rat P-450 2E1 was 1.1 +/- 0.2 mM.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Dose-dependent changes in the locomotor responses to methamphetamine in BALB/c mice: Low doses induce hypolocomotion

    OpenAIRE

    Singh, Rana A.K.; Kosten, Therese A.; Berma M Kinsey; Shen, Xiaoyun; Lopez, Angel Y.; Kosten, Thomas R.; Orson, Frank M.

    2012-01-01

    The overall goal of the present study was to determine the effects of different doses of (+)-methamphetamine (meth) on locomotor activity of Balb/C mice. Four experiments were designed to test a wide range of meth doses in BALB/c female mice. In Experiment 1, we examined locomotor activity induced by an acute administration of low doses of meth (0.01 and 0.03 mg/kg) in a 90-min session. Experiment 2 was conducted to test higher meth doses (0.3 – 10 mg/kg). In Experiment 3, separate sets of mi...

  2. Cigarette smoke-induced accumulation of lung dendritic cells is interleukin-1α-dependent in mice

    OpenAIRE

    Botelho Fernando M; Nikota Jake K; Bauer Carla MT; Morissette Mathieu C; Iwakura Yoichiro; Kolbeck Roland; Finch Donna; Humbles Alison A; Stämpfli Martin R

    2012-01-01

    Abstract Background Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure. Methods Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study...

  3. Regular and Moderate Exercise Counteracts the Decline of Antioxidant Protection but Not Methylglyoxal-Dependent Glycative Burden in the Ovary of Reproductively Aging Mice

    Directory of Open Access Journals (Sweden)

    S. Falone

    2016-01-01

    Full Text Available Population aging results in urgent needs of interventions aimed at ensuring healthy senescence. Exercise often results in healthy aging, yet many molecular mechanisms underlying such effects still need to be identified. We here investigated whether the age-dependent accumulation of oxidative and methylglyoxal- (MG- related molecular damage could be delayed by moderate exercise in the mouse ovary, an organ that first exhibits impaired function with advancing age in mammals. CD1 female mice underwent two- or four-month treadmill-based running through the transition from adult to middle age, when ovaries show signs of senescence, and markers of protection against reactive oxygen species (ROS and MG were measured. The long-term exercise reduced the protein oxidative damage in the ovaries (P<0.01, and this was linked to the preservation of the glutathione peroxidase protection against ROS (P<0.001, as well as to the increased glutathione availability (P<0.001. Conversely, even though the age-related deactivation of the MG-targeting systems was partially prevented by the long-term running programme (P<0.001, exercised mice were not protected from the age-dependent glycative burden. In summary, lately initiated regular and moderate exercise limited some changes occurring in the ovaries of middle-aged mice, and this might help to develop nonpharmacological cointerventions to reduce the vulnerability of mammalian ovaries towards redox dysfunctions.

  4. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  5. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics.

    Science.gov (United States)

    Johnson, Jeremy R; Lossignol, Dominique; Burnell-Nugent, Mary; Fallon, Marie T

    2013-08-01

    Chronic pain in patients with advanced cancer poses a serious clinical challenge. The Δ9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (U.S. Adopted Name, nabiximols; Sativex(®)) is a novel cannabinoid formulation currently undergoing investigation as an adjuvant therapy for this treatment group. This follow-up study investigated the long-term safety and tolerability of THC/CBD spray and THC spray in relieving pain in patients with advanced cancer. In total, 43 patients with cancer-related pain experiencing inadequate analgesia despite chronic opioid dosing, who had participated in a previous three-arm (THC/CBD spray, THC spray, or placebo), two-week parent randomized controlled trial, entered this open-label, multicenter, follow-up study. Patients self-titrated THC/CBD spray (n=39) or THC spray (n=4) to symptom relief or maximum dose and were regularly reviewed for safety, tolerability, and evidence of clinical benefit. The efficacy end point of change from baseline in mean Brief Pain Inventory-Short Form scores for "pain severity" and "worst pain" domains showed a decrease (i.e., improvement) at each visit in the THC/CBD spray patients. Similarly, the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30 scores showed a decrease (i.e., improvement) from baseline in the domains of insomnia, pain, and fatigue. No new safety concerns associated with the extended use of THC/CBD spray arose from this study. This study showed that the long-term use of THC/CBD spray was generally well tolerated, with no evidence of a loss of effect for the relief of cancer-related pain with long-term use. Furthermore, patients who kept using the study medication did not seek to increase their dose of this or other pain-relieving medication over time, suggesting that the adjuvant use of cannabinoids in cancer-related pain could provide useful benefit. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc

  6. The Requirement of L-Type Voltage-Dependent Calcium Channel (L-VDCC) in the Rapid-Acting Antidepressant-Like Effects of Scopolamine in Mice.

    Science.gov (United States)

    Yu, Hanjie; Li, Mengmeng; Shen, Xinbei; Lv, Dan; Sun, Xin; Wang, Jinting; Gu, Xinmei; Hu, Jingning; Wang, Chuang

    2018-02-01

    Previous studies have shown that a low dose of scopolamine produces rapid-acting antidepressant-like actions in rodents. Understanding the mechanisms underlying this effect and the dose-dependent variations of drug responses remains an important task. L-type voltage-dependent calcium channels were found to mediate rapid-acting antidepressant effects of certain medications (e.g., ketamine). Therefore, it is of great interest to determine the involvement of L-type voltage-dependent calcium channels in the action of scopolamine. Herein, we investigated the mechanisms underlying behavioral responses to various doses of scopolamine in mice to clarify the involvement of L-type voltage-dependent calcium channels in its modes of action. Open field test, novel object recognition test, and forced swimming test were performed on mice administered varied doses of scopolamine (0.025, 0.05, 0.1, 1, and 3 mg/kg, i.p.) alone or combined with L-type voltage-dependent calcium channel blocker verapamil (5 mg/kg, i.p.). Then, the changes in brain-derived neurotrophic factor and neuropeptide VGF (nonacronymic) levels in the hippocampus and prefrontal cortex of these mice were analyzed. Low doses of scopolamine (0.025 and 0.05 mg/kg) produced significant antidepressant-like effects in the forced swimming test, while higher doses (1 and 3 mg/kg) resulted in significant memory deficits and depressive-like behaviors. Moreover, the behavioral changes in responses to various doses may be related to the upregulation (0.025 and 0.05 mg/kg) and downregulation (1 and 3 mg/kg) of brain-derived neurotrophic factor and VGF in the hippocampus and prefrontal cortex in mice. We further found that the rapid-acting antidepressant-like effects and the upregulation on brain-derived neurotrophic factor and VGF produced by a low dose of scopolamine (0.025 mg/kg) were completely blocked by verapamil. These results indicate that L-type voltage-dependent calcium channels are likely involved in the behavioral

  7. Allergen endotoxins induce T-cell-dependent and non-IgE-mediated nasal hypersensitivity in mice.

    Science.gov (United States)

    Iwasaki, Naruhito; Matsushita, Kazufumi; Fukuoka, Ayumi; Nakahira, Masakiyo; Matsumoto, Makoto; Akasaki, Shoko; Yasuda, Koubun; Shimizu, Takeshi; Yoshimoto, Tomohiro

    2017-01-01

    Allergen-mediated cross-linking of IgE on mast cells/basophils is a well-recognized trigger for type 1 allergic diseases such as allergic rhinitis (AR). However, allergens may not be the sole trigger for AR, and several allergic-like reactions are induced by non-IgE-mediated mechanisms. We sought to describe a novel non-IgE-mediated, endotoxin-triggered nasal type-1-hypersensitivity-like reaction in mice. To investigate whether endotoxin affects sneezing responses, mice were intraperitoneally immunized with ovalbumin (OVA), then nasally challenged with endotoxin-free or endotoxin-containing OVA. To investigate the role of T cells and mechanisms of the endotoxin-induced response, mice were adoptively transferred with in vitro-differentiated OVA-specific TH2 cells, then nasally challenged with endotoxin-free or endotoxin-containing OVA. Endotoxin-containing, but not endotoxin-free, OVA elicited sneezing responses in mice independent from IgE-mediated signaling. OVA-specific TH2 cell adoptive transfer to mice demonstrated that local activation of antigen-specific TH2 cells was required for the response. The Toll-like receptor 4-myeloid differentiation factor 88 signaling pathway was indispensable for endotoxin-containing OVA-elicited rhinitis. In addition, LPS directly triggered sneezing responses in OVA-specific TH2-transferred and nasally endotoxin-free OVA-primed mice. Although antihistamines suppressed sneezing responses, mast-cell/basophil-depleted mice had normal sneezing responses to endotoxin-containing OVA. Clodronate treatment abrogated endotoxin-containing OVA-elicited rhinitis, suggesting the involvement of monocytes/macrophages in this response. Antigen-specific nasal activation of CD4+ T cells followed by endotoxin exposure induces mast cell/basophil-independent histamine release in the nose that elicits sneezing responses. Thus, environmental or nasal residential bacteria may exacerbate AR symptoms. In addition, this novel phenomenon might explain

  8. “Drinking in the Dark” (DID) Procedures: A Model of Binge-Like Ethanol Drinking in Non-Dependent Mice

    Science.gov (United States)

    Thiele, Todd E.; Navarro, Montserrat

    2013-01-01

    This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called “drinking in the dark” (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes et al. (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hours, beginning 3 hours into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal’s dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol

  9. Cryptococcus neoformans Infection in Mice Lacking Type I Interferon Signaling Leads to Increased Fungal Clearance and IL-4-Dependent Mucin Production in the Lungs.

    Directory of Open Access Journals (Sweden)

    Ko Sato

    Full Text Available Type I interferons (IFNs are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR, which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection.

  10. Cryptococcus neoformans Infection in Mice Lacking Type I Interferon Signaling Leads to Increased Fungal Clearance and IL-4-Dependent Mucin Production in the Lungs.

    Science.gov (United States)

    Sato, Ko; Yamamoto, Hideki; Nomura, Toshiki; Matsumoto, Ikumi; Miyasaka, Tomomitsu; Zong, Tong; Kanno, Emi; Uno, Kazuko; Ishii, Keiko; Kawakami, Kazuyoshi

    2015-01-01

    Type I interferons (IFNs) are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR), which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection.

  11. Age-dependent effects of esculetin on mood-related behavior and cognition from stressed mice are associated with restoring brain antioxidant status.

    Science.gov (United States)

    Martín-Aragón, Sagrario; Villar, Ángel; Benedí, Juana

    2016-02-04

    Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. Copyright © 2015. Published by Elsevier Inc.

  12. Dose-dependent decrease in mortality with no cognitive or muscle function improvements due to dietary EGCG supplementation in aged mice.

    Science.gov (United States)

    Pence, Brandt D; Bhattacharya, Tushar K; Park, Pul; Rytych, Jennifer L; Allen, Jacob M; Sun, Yi; McCusker, Robert H; Kelley, Keith W; Johnson, Rodney W; Rhodes, Justin S; Woods, Jeffrey A

    2017-05-01

    We have previously shown that a diet containing epigallocatechin gallate (EGCG) and beta-alanine is not effective in improving either cognitive or muscle function in aged (18 month) mice (Gibbons et al., Behav. Brain Res., 2014, 272:131-140; Pence et al., Appl. Physiol. Nutr. Metab., 2016, 41(2): 181-190). However, this diet reduced oxidative stress in the brain, and previous studies using longer term interventions and other doses have documented beneficial effects in cognitive and muscle function, especially with EGCG. Here we hypothesized that a different dose of EGCG or longer feeding period would be more efficacious in improving cognition. Aged (21-25 mo) Balb/cByJ male mice underwent 63 days of feeding with EGCG at 0, 0.091, or 3.67 mg/g AIN-93M diet and were then subjected to a battery of cognitive and muscle function tests. EGCG feeding at either of the 2 doses did not alter preference for novel versus familiar arm in the Y-maze test (p = 0.29) and did not affect learning in the active avoidance test (p = 0.76). Similarly, EGCG did not affect preference for novel versus familiar mice in a social discrimination test (p = 0.17). Likewise, there was no effect of EGCG on muscle function by grip strength (p = 0.16), rotarod (p = 0.18), or treadmill test to exhaustion (p = 0.25). EGCG reduced mortality in a dose-dependent fashion (p = 0.05, log-rank test for trend), with 91% of high EGCG, 72% of low EGCG, and 55% of control mice surviving to the end of the study. In conclusion, EGCG improves survival in aged mice but does not affect cognitive or muscle function.

  13. The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent.

    Science.gov (United States)

    Prentice, Leah M; d'Anglemont de Tassigny, Xavier; McKinney, Steven; Ruiz de Algara, Teresa; Yap, Damian; Turashvili, Gulisa; Poon, Steven; Sutcliffe, Margaret; Allard, Pat; Burleigh, Angela; Fee, John; Huntsman, David G; Colledge, William H; Aparicio, Samuel A J

    2011-04-28

    Humans and mice with loss of function mutations in GPR54 (KISS1R) or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods. We show here, using 1 million exon mouse arrays (Exon 1.0 Affymetrix) and quantitative polymerase chain reaction (QPCR) validation to analyse microdissected hypothalamic tissue from Gpr54 and Kiss1 knockout mice, the extent of transcriptional regulation in the hypothalamus. The sensitivity to detect important transcript differences in microdissected RNA was confirmed by the observation of counter-regulation of Kiss1 expression in Gpr54 knockouts and confirmed by immunohistochemistry (IHC). Since Gpr54 and Kiss1 knockout animals are effectively pre-pubertal with low testosterone (T) levels, we also determined which of the validated transcripts were T-responsive and which varied according to genotype alone. We observed four types of transcriptional regulation (i) genotype only dependent regulation, (ii) T only dependent regulation, (iii) genotype and T-dependent regulation with interaction between these variables, (iv) genotype and T-dependent regulation with no interaction between these variables. The results implicate for the first time several transcription factors (e.g. Npas4, Esr2), proteases (Klk1b22), and the orphan 10-transmembrane transporter TMEM144 in the biology of GPR54/kisspeptin function in the hypothalamus. We show for the neuronal activity regulated transcription factor NPAS4, that distinct protein over-expression is seen in the hypothalamus and hippocampus in Gpr54 knockout mice. This links for the first time the hypothalamic-gonadal axis with this important regulator of inhibitory synapse formation. Similarly we confirm TMEM144 up-regulation in the hypothalamus by RNA in situ hybridization and western blot. Taken together, global transcriptional profiling shows that loss of GPR

  14. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; Holm, Sverre; Scheffler, Katja

    2016-01-01

    an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe-/- Neil3-/- mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation...... of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage....

  15. Critical role of P-selectin-dependent leukocyte recruitment in endotoxin-induced intestinal barrier dysfunction in mice.

    OpenAIRE

    Mangell, Peter; Röme, Andrada; Wang, Yusheng; Schramm, R; Jeppsson, Bengt; Thorlacius, Henrik

    2007-01-01

    Objective: To define the importance of leukocyte recruitment in endotoxin-induced gut permeability. Materials and methods: 31 male C57BL/6 mice were challenged with lipopolysaccharide (LPS). Ileal permeability was measured in Ussing chambers and leukocyte-endothelium interactions studied with intravital fluorescence microscopy after 18 h. Results: LPS caused a clear-cut increase in leukocyte accumulation and intestinal permeability. Immunoneutralisation of P-selectin not only reduced leukocyt...

  16. Defects in CD4+ T cell LFA-1 integrin-dependent adhesion and proliferation protect Cd47-/- mice from EAE.

    Science.gov (United States)

    Azcutia, Veronica; Bassil, Ribal; Herter, Jan M; Engelbertsen, Daniel; Newton, Gail; Autio, Anu; Mayadas, Tanya; Lichtman, Andrew H; Khoury, Samia J; Parkos, Charles A; Elyaman, Wassim; Luscinskas, Francis W

    2017-02-01

    CD47 is known to play an important role in CD4+ T cell homeostasis. We recently reported a reduction in mice deficient in the Cd47 gene (Cd47-/-) CD4+ T cell adhesion and transendothelial migration (TEM) in vivo and in vitro as a result of impaired expression of high-affinity forms of LFA-1 and VLA-4 integrins. A prior study concluded that Cd47-/- mice were resistant to experimental autoimmune encephalomyelitis (EAE) as a result of complete failure in CD4+ T cell activation after myelin oligodendrocyte glycoprotein peptide 35-55 aa (MOG35-55) immunization. As the prior EAE study was published before our report, authors could not have accounted for defects in T cell integrin function as a mechanism to protect Cd47-/- in EAE. Thus, we hypothesized that failure of T cell activation involved defects in LFA-1 and VLA-4 integrins. We confirmed that Cd47-/- mice were resistant to MOG35-55-induced EAE. Our data, however, supported a different mechanism that was not a result of failure of CD4+ T cell activation. Instead, we found that CD4+ T cells in MOG35-55-immunized Cd47-/- mice were activated, but clonal expansion contracted within 72 h after immunization. We used TCR crosslinking and mitogen activation in vitro to investigate the underlying mechanism. We found that naïve Cd47-/- CD4+ T cells exhibited a premature block in proliferation and survival because of impaired activation of LFA-1, despite effective TCR-induced activation. These results identify CD47 as an important regulator of LFA-1 and VLA-4 integrin-adhesive functions in T cell proliferation, as well as recruitment, and clarify the roles played by CD47 in MOG35-55-induced EAE. © Society for Leukocyte Biology.

  17. Dose-dependent changes in the locomotor responses to methamphetamine in BALB/c mice: low doses induce hypolocomotion.

    Science.gov (United States)

    Singh, Rana A K; Kosten, Therese A; Kinsey, Berma M; Shen, Xiaoyun; Lopez, Angel Y; Kosten, Thomas R; Orson, Frank M

    2012-12-01

    The overall goal of the present study was to determine the effects of different doses of (+)-methamphetamine (meth) on locomotor activity of Balb/C mice. Four experiments were designed to test a wide range of meth doses in BALB/c female mice. In Experiment 1, we examined locomotor activity induced by an acute administration of low doses of meth (0.01 and 0.03mg/kg) in a 90-min session. Experiment 2 was conducted to test higher meth doses (0.3-10mg/kg). In Experiment 3, separate sets of mice were pre-treated with various meth doses once or twice (one injection/week) prior to a locomotor challenge with a low meth dose. Finally, in Experiment 4, we tested whether locomotor activation would be affected by pretreatment with a low or moderate dose of meth one month prior to the low meth dose challenge. Results show that low doses of meth induce hypolocomotion whereas moderate to high doses induce hyperlocomotion. Prior exposure to either one moderate or high dose of meth or to two, low doses of meth attenuated the hypolocomotor effect of a low meth dose one week later. This effect was also attenuated in mice tested one month after administration of a moderate meth dose. These results show that low and high doses of meth can have opposing effects on locomotor activity. Further, prior exposure to the drug leads to tolerance, rather than sensitization, of the hypolocomotor response to low meth doses. Published by Elsevier Inc.

  18. Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Ehrlich, Lori A; Yang-Iott, Katherine; DeMicco, Amy; Bassing, Craig H

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of immature T cells that exhibits heterogeneity of oncogenic lesions, providing an obstacle for development of more effective and less toxic therapies. Inherited deficiency of ATM, a regulator of the cellular DNA damage response, predisposes young humans and mice to T-ALLs with clonal chromosome translocations. While acquired ATM mutation or deletion occurs in pediatric T-ALLs, the role of somatic ATM alterations in T-ALL pathogenesis remains unknown. We demonstrate here that somatic Atm inactivation in haematopoietic cells starting as these cells differentiate in utero predisposes mice to T-ALL at similar young ages and harboring analogous translocations as germline Atm-deficient mice. However, some T-ALLs from haematopoietic cell specific deletion of Atm were of more mature thymocytes, revealing that the developmental timing and celluar origin of Atm inactivation influences the phenotype of ATM-deficient T-ALLs. Although it has been hypothesized that ATM suppresses cancer by preventing deletion and inactivation of TP53, we find that Atm inhibits T-ALL independent of Tp53 deletion. Finally, we demonstrate that the Cyclin D3 protein that drives immature T cell proliferation is essential for transformation of Atm-deficient thymocytes. Our study establishes a pre-clinical model for pediatric T-ALLs with acquired ATM inactivation and identifies the cell cycle machinery as a therapeutic target for this aggressive childhood T-ALL subtype.

  19. Loss of SPRR3 in ApoE-/- mice leads to atheroma vulnerability through Akt dependent and independent effects in VSMCs.

    Directory of Open Access Journals (Sweden)

    Caressa D Lietman

    Full Text Available Vascular smooth muscle cells (VSMCs represent important modulators of plaque stability in advanced lesions. We previously reported that loss of small proline-rich repeat protein 3 (Sprr3, leads to VSMC apoptosis in a PI3K/Akt-dependent manner and accelerates lesion progression. Here, we investigated the role of Sprr3 in modulating plaque stability in hyperlipidemic ApoE-/- mice. We show that loss of Sprr3 increased necrotic core size and reduced cap collagen content of atheromas in brachiocephalic arteries with evidence of plaque rupture and development of intraluminal thrombi. Moreover, Sprr3-/-ApoE-/- mice developed advanced coronary artery lesions accompanied by intraplaque hemorrhage and left ventricle microinfarcts. SPRR3 is known to reduce VSMC survival in lesions by promoting their apoptosis. In addition, we demonstrated that Sprr3-/- VSMCs displayed reduced expression of procollagen in a PI3K/Akt dependent manner. SPRR3 loss also increased MMP gelatinase activity in lesions, and increased MMP2 expression, migration and contraction of VSMCs independently of PI3K/Akt. Consequently, Sprr3 represents the first described VSMC modulator of each of the critical features of cap stability, including VSMC numbers, collagen type I synthesis, and protease activity through Akt dependent and independent pathways.

  20. Guanfacine Attenuates Adverse Effects of Dronabinol (THC) on Working Memory in Adolescent-Onset Heavy Cannabis Users: A Pilot Study.

    Science.gov (United States)

    Mathai, David S; Holst, Manuela; Rodgman, Christopher; Haile, Colin N; Keller, Jake; Hussain, Mariyah Z; Kosten, Thomas R; Newton, Thomas F; Verrico, Christopher D

    2018-01-01

    The cannabinoid-1 receptor (CB1R) agonist Δ9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, adversely effects working memory performance in humans. The α2A-adrenoceptor (AR) agonist guanfacine improves working memory performance in humans. The authors aimed to determine the effects of short-term (6 days) treatment with guanfacine on adverse cognitive effects produced by THC. Employing a double-blind, placebo-controlled crossover design, the cognitive, subjective, and cardiovascular effects produced by oral THC (20 mg) administration were determined twice in the same cannabis users: once after treatment with placebo and once after treatment with guanfacine (3 mg/day). Compared with performance at baseline, THC negatively affected accuracy on spatial working memory trials while participants were maintained on placebo (p=0.012) but not guanfacine (p=0.497); compared with placebo, accuracy was significantly (p=0.003, Cohen's d=-0.640) improved while individuals were treated with guanfacine. Similarly, compared with baseline, THC increased omission errors on an attentional task while participants were maintained on placebo (p=0.017) but not on guanfacine (p=0.709); compared with placebo, there were significantly (p=0.034, Cohen's d=0.838) fewer omissions while individuals were maintained on guanfacine. Although THC increased visual analog scores of subjective effects and heart rate, these increases were similar during treatment with placebo and guanfacine. THC did not significantly affect performance of a recognition memory task or blood pressure while individuals were maintained on either treatment. Although preliminary, these results suggest that guanfacine warrants further testing as a potential treatment for cannabis-induced cognitive deficits.

  1. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats.

    Science.gov (United States)

    Stopponi, Serena; Soverchia, Laura; Ubaldi, Massimo; Cippitelli, Andrea; Serpelloni, Giovanni; Ciccocioppo, Roberto

    2014-07-01

    Cannabis derivatives are among the most widely used illicit substances among young people. The addictive potential of delta-9-tetrahydrocannabinol (THC), the major active ingredient of cannabis is well documented in scientific literature. However, the consequence of THC exposure during adolescence on occurrence of addiction for other drugs of abuse later in life is still controversial. To explore this aspect of THC pharmacology, in the present study, we treated adolescent rats from postnatal day (PND) 35 to PND-46 with increasing daily doses of THC (2.5-10mg/kg). One week after intoxication, the rats were tested for anxiety-like behavior in the elevated plus maze (EPM) test. One month later (starting from PND 75), rats were trained to operantly self-administer heroin intravenously. Finally, following extinction phase, reinstatement of lever pressing elicited by the pharmacological stressor, yohimbine (1.25mg/kg) was evaluated. Data revealed that in comparison to controls, animals treated with chronic THC during adolescence showed a higher level of anxiety-like behavior. When tested for heroin (20μg per infusion) self-administration, no significant differences were observed in both the acquisition of operant responding and heroin intake at baseline. Noteworthy, following the extinction phase, administration of yohimbine elicited a significantly higher level of heroin seeking in rats previously exposed to THC. Altogether these findings demonstrate that chronic exposure to THC during adolescence is responsible for heightened anxiety and increased vulnerability to drug relapse in adulthood. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  2. Effects of a major androgen-dependent urinary protein,. alpha. 2u-globulin on the pituitary-gonadal axis and hypothalamic monoamines in adult male mice

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.K.; Chandrashekar, V.; Steger, R. Bartke, A. (Southern Illinois Univ., Carbondale (USA))

    1990-01-01

    The purpose of the present study was to evaluate the effects of alpha-2u-globulin, a sex-dependent male rat urinary protein on pituitary-gonadal functions and hypothalamic monamine contents in male mice. Adult male mice, maintained under standardized laboratory conditions were injected subcutaneously with alpha-2u-globulin or with vehicle daily for 14 days and killed 16 h after the last injection. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T) and testicular levels of T were measured by radioimmunoassays. The concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in medial basal hypothalamus (MBH) and anterior hypothalamus (AH) were measured by high performance liquid chromatography. Administration of alpha-2u-globulin led to a significant increase in plasma FSH and LH levels. In the MBH of alpha-2u-globulin treated mice, there were significant elevations of NE, DA and 5-HT contents. In the AH, both DA and 5-HT contents were decreased while NE content remained unaltered.

  3. Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Corthier Gérard

    2007-07-01

    Full Text Available Abstract Background Human immune cells generate large amounts of reactive oxygen species (ROS throughout the respiratory burst that occurs during inflammation. In inflammatory bowel diseases, a sustained and abnormal activation of the immune system results in oxidative stress in the digestive tract and in a loss of intestinal homeostasis. We previously showed that the heterologous production of the Lactobacillus plantarum ATCC14431 manganese-dependant catalase (MnKat in Lb. casei BL23 successfully enhances its survival when exposed to oxidative stress. In this study, we evaluated the preventive effects of this antioxidative Lb. casei strain in a murine model of dextran sodium sulfate (DSS-induced moderate colitis. Results Either Lb. casei BL23 MnKat- or MnKat+ was administered daily to mice treated with DSS for 10 days. In contrast to control mice treated with PBS for which DSS induced bleeding diarrhea and mucosal lesions, mice treated with both Lb. casei strains presented a significant (p Conclusion No contribution of MnKat to the protective effect from epithelial damage has been observed in the tested conditions. In contrast, these results confirm the high interest of Lb. casei as an anti-inflammatory probiotic strain.

  4. Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: Possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits.

    Science.gov (United States)

    Yang, Miyoung; Kim, Joong-Sun; Song, Myoung-Sub; Kim, Sung-Ho; Kang, Seong Soo; Bae, Chun-Sik; Kim, Jong-Choon; Wang, Hongbing; Shin, Taekyun; Moon, Changjong

    2010-05-01

    Cyclophosphamide (CYP) is an anti-neoplastic agent as well as an immunosuppressive agent. In order to elucidate the alteration in adult hippocampal function following acute CYP treatment, hippocampus-related behavioral dysfunction and changes in adult hippocampal neurogenesis in CYP-treated (intraperitoneally, 40 mg/kg) mice (8-10-week-old ICR) were analyzed using hippocampus-dependent learning and memory tasks (passive avoidance and object recognition memory test) and immunohistochemical markers of neurogenesis (Ki-67 and doublecortin (DCX)). Compared to the vehicle-treated controls, mice trained at 12h after CYP injection showed significant memory deficits in passive avoidance and the object recognition memory test. The number of Ki-67- and DCX-positive cells began to decrease significantly at 12h post-injection, reaching the lowest level at 24h after CYP injection; however, this reverted gradually to the vehicle-treated control level between 2 and 10 days. We suggest that the administration of a chemotherapeutic agent in adult mice interrupts hippocampal functions, including learning and memory, possibly through the suppression of hippocampal neurogenesis. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Therapeutic index of methotrexate depends on circadian cycling of tumour necrosis factor-alpha in collagen-induced arthritic rats and mice.

    Science.gov (United States)

    To, Hideto; Irie, Sadaharu; Tomonari, Mari; Watanabe, Yuko; Kitahara, Takashi; Sasaki, Hitoshi

    2009-10-01

    Rheumatoid arthritis is an autoimmune disorder of unknown aetiology. Morning stiffness, a characteristic feature of rheumatoid arthritis, shows a 24-h rhythm. Noticing this rhythm, we hypothesized the presence of a similar rhythm for a rheumatoid arthritis indicator, in addition to dosing-time dependency of the anti-rheumatic effect of methotrexate in arthritis induced by collagen in rats and mice, which reflect the symptomatology of rheumatoid arthritis patients. To measure tumour necrosis factor (TNF)-alpha concentration, blood was taken at different times (2, 6, 10, 14, 18 or 22 h after the light was turned on (HALO)) in collagen-induced arthritic mice. Methotrexate was administered at two different dosing times based on these findings to estimate arthritis. The arthritis score was significantly lower in the 22 HALO-treated group than in the control and 10 HALO-treated groups in collagen-induced arthritic rats and mice. Plasma TNF-alpha concentrations showed obvious 24-h rhythms, with higher levels at light phase and lower levels at dark phase after rheumatoid arthritis crisis. Arthritis was relieved after administration of methotrexate during the dark phase in synchronization with the 24-h rhythm. Our findings suggest that choosing an optimal dosing time associated with the 24-h cycling of TNF-alpha could lead to effective treatment of rheumatoid arthritis by methotrexate.

  6. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC) on learning in female rats

    OpenAIRE

    Peter J. Winsauer; Filipeanu, Catalin M.; Weed, Peter F.; Sutton, Jessie L.

    2015-01-01

    The effects of hormone status and age on the development of tolerance to Δ9-THC were assessed in sham-operated (intact) or ovariectomized (OVX) female rats that received either intraperitoneal saline or 5.6 mg/kg of Δ9-THC daily from postnatal day (PD) 75–180 (early adulthood onward) or PD 35–140 (adolescence onward). During this time, the four groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC) were trained in a learning and performance procedure and dose-effect cu...

  7. Δ9-Tetrahydrocannabinol (Δ9-THC) Promotes Neuroimmune-Modulatory MicroRNA Profile in Striatum of Simian Immunodeficiency Virus (SIV)-Infected Macaques.

    Science.gov (United States)

    Simon, Liz; Song, Keijing; Vande Stouwe, Curtis; Hollenbach, Andrew; Amedee, Angela; Mohan, Mahesh; Winsauer, Peter; Molina, Patricia

    2016-03-01

    Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing. Among the 24 miRs that were differentially expressed among the four groups, 16 miRs were modulated by THC in the presence of SIV. These 16 miRs were classified into four categories and the biological processes enriched by the target genes determined. Our results indicate that Δ9-THC modulates miRs that regulate mRNAs of proteins involved in 1) neurotrophin signaling, 2) MAPK signaling, and 3) cell cycle and immune response thus promoting an overall neuroprotective environment in the striatum of SIV-infected macaques. This is also reflected by increased Brain Derived Neurotrophic Factor (BDNF) and decreased proinflammatory cytokine expression compared to the VEH/SIV group. Whether Δ9-THC-mediated modulation of epigenetic mechanisms provides neuroprotection in other regions of the brain and during chronic SIV-infection remains to be determined.

  8. Lack of cortistatin or somatostatin differentially influences DMBA-induced mammary gland tumorigenesis in mice in an obesity-dependent mode.

    Science.gov (United States)

    Luque, Raúl M; Villa-Osaba, Alicia; L-López, Fernando; Pozo-Salas, Ana I; Sánchez-Sánchez, Rafael; Ortega-Salas, Rosa; de Lecea, Luis; Álvarez-Benito, Marina; López-Miranda, José; Gahete, Manuel D; Castaño, Justo P

    2016-03-08

    Somatostatin (SST) and cortistatin (CORT), two structurally and functionally related peptides, share a family of widespread receptors (sst1-5) to exert apparently similar biological actions, including endocrine/metabolic regulation and suppression of tumor cell proliferation. However, despite their therapeutic potential, attempts to apply SST-analogs to treat breast cancer have yielded unsatisfactory results. Actually, the specific roles of SST and CORT in mammary gland tumorigenesis (MGT), particularly in relation to metabolic dysregulation (i.e. obesity), remain unknown. The role of endogenous SST and CORT in carcinogen-induced MGT was investigated under normal (lean) and obesity conditions. To that end, SST- and CORT-knockout (KO) mice and their respective littermate-controls, fed low-fat (LF) or high-fat (HF) diets, were treated with 7,12-dimethyl-benza-anthracene (DMBA) once a week (wk) for 3 wk, and MGT was monitored for 25 wk. Additionally, we examined the effect of SST or CORT removal in the development of the mammary gland. Lack of SST did not alter DMBA-induced MGT incidence under lean conditions; conversely, lack of endogenous CORT severely aggravated DMBA-induced MGT in LF-fed mice. These differences were not attributable to altered mammary gland development. HF-diet modestly increased the sensitivity to DMBA-induced carcinogenesis in control mice, whereas, as observed in LF-fed CORT-KO, HF-fed CORT-KO mice exhibited aggravated tumor incidence, discarding a major influence of obesity on these CORT actions. In marked contrast, HF-fed SST-KO mice exhibited much higher tumor incidence than LF-fed SST-KO mice, which could be associated with higher mammary complexity. Endogenous SST and CORT distinctly impact on DMBA-induced MGT, in a manner that is strongly dependent on the metabolic/endocrine milieu (lean vs. obese status). Importantly, CORT, rather than SST, could represent a major inhibitor of MGT under normal/lean-conditions, whereas both neuropeptides

  9. Bond energies of ThO+ and ThC+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO

    Science.gov (United States)

    Cox, Richard M.; Citir, Murat; Armentrout, P. B.; Battey, Samuel R.; Peterson, Kirk A.

    2016-05-01

    Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+-O) = 8.57 ± 0.14 eV and D0(Th+-C) = 4.82 ± 0.29 eV. The present value of D0 (Th+-O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0 (Th+-C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+, ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  10. Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice.

    Science.gov (United States)

    Wahlang, Banrida; Falkner, K Cameron; Gregory, Bonnie; Ansert, Douglas; Young, David; Conklin, Daniel J; Bhatnagar, Aruni; McClain, Craig J; Cave, Matt

    2013-09-01

    Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that are detectable in the serum of all American adults. Amongst PCB congeners, PCB 153 has the highest serum level. PCBs have been dose-dependently associated with obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in epidemiological studies. The purpose of this study is to determine mechanisms by which PCB 153 worsens diet-induced obesity and NAFLD in male mice fed a high-fat diet (HFD). Male C57BL6/J mice were fed either control or 42% milk fat diet for 12 weeks with or without PCB 153 coexposure (50 mg/kg ip ×4). Glucose tolerance test was performed, and plasma and tissues were obtained at necropsy for measurements of adipocytokine levels, histology and gene expression. In control diet-fed mice, addition of PCB 153 had minimal effects on any of the measured parameters. However, PCB 153 treatment in high-fat-fed mice was associated with increased visceral adiposity, hepatic steatosis and plasma adipokines including adiponectin, leptin, resistin and plasminogen activator inhibitor-1 levels. Likewise, coexposure reduced expression of hepatic genes implicated in β-oxidation while increasing the expression of genes associated with lipid biosynthesis. Regardless of diet, PCB 153 had no effect on insulin resistance or tumor necrosis factor alpha levels. PCB 153 is an obesogen that exacerbates hepatic steatosis, alters adipocytokines and disrupts normal hepatic lipid metabolism when administered with HFD but not control diet. Because all US adults have been exposed to PCB 153, this particular nutrient-toxicant interaction potentially impacts human obesity/NAFLD. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  12. Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice.

    Science.gov (United States)

    Nestor, Casey C; Qiu, Jian; Padilla, Stephanie L; Zhang, Chunguang; Bosch, Martha A; Fan, Wei; Aicher, Sue A; Palmiter, Richard D; Rønnekleiv, Oline K; Kelly, Martin J

    2016-06-01

    Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1(ARC)) and they express androgen receptors, Kiss1(ARC) neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1(ARC) neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1(ARC) neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1(ARC) neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction.

  13. Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice.

    Science.gov (United States)

    Barnes, Michael J; Aksoylar, Halil; Krebs, Philippe; Bourdeau, Tristan; Arnold, Carrie N; Xia, Yu; Khovananth, Kevin; Engel, Isaac; Sovath, Sosathya; Lampe, Kristin; Laws, Eleana; Saunders, Amy; Butcher, Geoffrey W; Kronenberg, Mitchell; Steinbrecher, Kris; Hildeman, David; Grimes, H Leighton; Beutler, Bruce; Hoebe, Kasper

    2010-04-01

    Homeostatic control of the immune system involves mechanisms that ensure the self-tolerance, survival and quiescence of hematopoietic-derived cells. In this study, we demonstrate that the GTPase of immunity associated protein (Gimap)5 regulates these processes in lymphocytes and hematopoietic progenitor cells. As a consequence of a recessive N-ethyl-N-nitrosourea-induced germline mutation in the P-loop of Gimap5, lymphopenia, hepatic extramedullary hematopoiesis, weight loss, and intestinal inflammation occur in homozygous mutant mice. Irradiated fetal liver chimeric mice reconstituted with Gimap5-deficient cells lose weight and become lymphopenic, demonstrating a hematopoietic cell-intrinsic function for Gimap5. Although Gimap5-deficient CD4(+) T cells and B cells appear to undergo normal development, they fail to proliferate upon Ag-receptor stimulation although NF-kappaB, MAP kinase and Akt activation occur normally. In addition, in Gimap5-deficient mice, CD4(+) T cells adopt a CD44(high)CD62L(low)CD69(low) phenotype and show reduced IL-7ralpha expression, and T-dependent and T-independent B cell responses are abrogated. Thus, Gimap5-deficiency affects a noncanonical signaling pathway required for Ag-receptor-induced proliferation and lymphocyte quiescence. Antibiotic-treatment or the adoptive transfer of Rag-sufficient splenocytes ameliorates intestinal inflammation and weight loss, suggesting that immune responses triggered by microbial flora causes the morbidity in Gimap5-deficient mice. These data establish Gimap5 as a key regulator of hematopoietic integrity and lymphocyte homeostasis.

  14. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  15. Cortistatin Is a Key Factor Regulating the Sex-Dependent Response of the GH and Stress Axes to Fasting in Mice.

    Science.gov (United States)

    Cordoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M

    2016-07-01

    Cortistatin (CORT) shares high structural and functional similarities with somatostatin (SST) but displays unique sex-dependent pituitary actions. Indeed, although female CORT-knockout (CORT-KO) mice exhibit enhanced GH expression/secretion, Proopiomelanocortin expression, and circulating ACTH/corticosterone/ghrelin levels, male CORT-KO mice only display increased plasma GH/corticosterone levels. Changes in peripheral ghrelin and SST (rather than hypothalamic levels) seem to regulate GH/ACTH axes in CORT-KOs under fed conditions. Because changes in GH/ACTH axes during fasting provide important adaptive mechanisms, we sought to determine whether CORT absence influences GH/ACTH axes during fasting. Accordingly, fed and fasted male/female CORT-KO were compared with littermate controls. Fasting increased circulating GH levels in male/female controls but not in CORT-KO, suggesting that CORT can be a relevant regulator of GH secretion during fasting. However, GH levels were already higher in CORT-KO than in controls in fed state, which might preclude a further elevation in GH levels. Interestingly, although fasting-induced pituitary GH expression was elevated in both male/female controls, GH expression only increased in fasted female CORT-KOs, likely owing to specific changes observed in key factors controlling somatotrope responsiveness (ie, circulating ghrelin and IGF-1, and pituitary GHRH and ghrelin receptor expression). Fasting increased corticosterone levels in control and, most prominently, in CORT-KO mice, which might be associated with a desensitization to SST signaling and to an augmentation in CRH and ghrelin-signaling regulating corticotrope function. Altogether, these results provide compelling evidence that CORT plays a key, sex-dependent role in the regulation of the GH/ACTH axes in response to fasting.

  16. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice.

    Science.gov (United States)

    Martínez-López, María; Iborra, Salvador; Conde-Garrosa, Ruth; Sancho, David

    2015-01-01

    The role of different DC subsets in priming and maintenance of immunity against Leishmania major (L. major) infection is debated. The transcription factor basic leucine zipper transcription factor, ATF-like 3 (Batf3) is essential for the development of mouse CD103(+) DCs and some functions of CD8α(+) DCs. We found that CD103(+) DCs were significantly reduced in the dermis of Batf3-deficient C57BL/6 mice. Batf3(-/-) mice developed exacerbated and unresolved cutaneous pathology following a low dose of intradermal L. major infection in the ear pinnae. Parasite load was increased 1000-fold locally and expanded systemically. Batf3 deficiency did not affect L. major antigen presentation to T cells, which was directly exerted by CD8α(-) conventional DCs (cDCs) in the skin draining LN. However, CD4(+) T-cell differentiation in the LN and skin was skewed to nonprotective Treg- and Th2-cell subtypes. CD103(+) DCs are major IL-12 producers during L. major infection. Local Th1 immunity was severely hindered, correlating with impaired IL-12 production and reduction in CD103(+) DC numbers. Adoptive transfer of WT but not IL-12p40(-/-) Batf3-dependent DCs significantly improved anti-L. major response in infected Batf3(-/-) mice. Our results suggest that IL-12 production by Batf3-dependent CD103(+) DCs is crucial for maintenance of local Th1 immunity against L. major infection. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Loss of the AE3 Cl-/HCO3- exchanger in mice affects rate-dependent inotropy and stress-related AKT signaling in heart

    Directory of Open Access Journals (Sweden)

    Vikram ePrasad

    2013-12-01

    Full Text Available Cl-/HCO3- exchangers are expressed abundantly in cardiac muscle, suggesting that HCO3- extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3, a major cardiac Cl-/HCO3- exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM. AE3-null mice had normal cardiac contractility under basal conditions and after -adrenergic stimulation, but pacing of hearts revealed that frequency-dependent inotropy was blunted, suggesting that AE3-mediated HCO3- extrusion is required for a robust force-frequency response (FFR during acute biomechanical stress in vivo. Modest changes in expression of proteins that affect Ca2+-handling were observed, but Ca2+-transient analysis of AE3-null myocytes showed normal twitch-amplitude and Ca2+-clearance. Phosphorylation and expression of several proteins implicated in HCM and FFR, including phospholamban, myosin binding protein C, and troponin I were not altered in hearts of paced AE3-null mice; however, phosphorylation of Akt, which plays a central role in mechanosensory signaling, was significantly higher in paced AE3-null hearts than in wild-type controls and phosphorylation of AMPK, which is affected by Akt and is involved in energy metabolism and some cases of HCM, was reduced. These data show loss of AE3 leads to impaired rate-dependent inotropy, appears to affect mechanical stress-responsive signaling, and reduces activation of AMPK, which may contribute to decompensation in heart failure.

  18. Exacerbated autoimmunity in the absence of TLR9 in MRL.Fas(lpr) mice depends on Ifnar1.

    Science.gov (United States)

    Nickerson, Kevin M; Cullen, Jaime L; Kashgarian, Michael; Shlomchik, Mark J

    2013-04-15

    TLR9 suppresses TLR7-driven pathogenesis in the MRL.Fas(lpr) murine model of systemic lupus erythematosus, but the mechanisms by which TLR7 promotes and TLR9 prevents disease in this and other lupus models remain unclear. Type I IFNs (IFN-I) have also been implicated in the pathogenesis of lupus both in patients and in several murine models of disease, but their role in MRL.Fas(lpr) mice is controversial. Using MRL.Fas(lpr) mice genetically deficient in a subunit of the receptor for IFN-I, Ifnar1, we show that IFN-I contribute significantly to renal disease in this model. Ifnar1 had no effect on anti-nucleosome or anti-Sm autoantibody titers, but instead regulated anticytoplasmic and anti-RNA specificities. Moreover, Ifnar1 deficiency prevented the exacerbation of clinical disease observed in Tlr9-deficient animals in this lupus model. Thus, IFN-I signaling is an important mediator of lupus pathogenesis and anti-RNA Ab production that is dysregulated in the absence of Tlr9.

  19. A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice.

    Science.gov (United States)

    Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim

    2010-08-01

    Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.

  20. Prefrontal Cortex Dysfunction in Frag